

Data Broadcasting using Mobile FM Radio:
Design, Realization and Application

Hang Yu1, Ahmad Rahmati1, Ardalan Amiri Sani1, Lin Zhong1,
Jehan Wickramasuriya2, Venu Vasudevan2

1Department of Electrical & Computer Engineering
Rice University, Houston, Texas, USA

{hang.yu, rahmati, ardalan, lzhong}@rice.edu

2Betaworks, Applied Research Center
Motorola Mobility, Libertyville, Illinois, USA

{jehan, venu}@motorola.com

ABSTRACT
In this work, we offer a novel system, MicroStation
(µStation) that allows ubiquitous data broadcasting
applications using the FM radio on mobile devices such as
smartphones. µStation includes two key modules to enable
data broadcasting based on existing mobile FM radio
hardware. Channel Selector assigns different FM channels
to neighboring µStation broadcasters to avoid collision and
guides µStation listeners to find their broadcasting of
interest. Data Codec realizes bit-level communication
between mobile devices through existing FM radio
hardware. We describe an implementation of µStation on
the Nokia N900 smartphone, and provide low-level APIs
and services to support application development. We also
demonstrate two representative applications: Facebook-FM
and Sync-Flash. These applications demonstrate the
capability of µStation to readily enable a new class of
ubiquitous data broadcasting applications on mobile
devices.

Author Keywords
FM radio, data broadcasting, mobile devices.

ACM Classification Keywords
C2.0 Computer-Communication Networks: Data
communications

General Terms
Design, Experimentation, Measurement.

INTRODUCTION
Peer-to-peer (P2P) and location-based mobile applications
have long been an important focus of the ubiquitous
computing community. A few recent indicative applications
include Color [1] which allows a user to share photos with

others in their vicinity, and Cisco StadiumVision [2] which
delivers location-based content and service for sports
venues. The proliferation of such applications requires
power-efficient and overhead-free mobile broadcasting
technologies.

In this work, we exploit the FM radio that is increasingly
available on mobile devices to provide a data broadcasting
system for P2P and location-based applications. We are
motivated by a recent and important hardware trend on
mobile devices: due to its continuously reduced cost and
integration with other wireless technologies (e.g., Wi-Fi and
Bluetooth) on a single chipset, the FM radio is becoming
increasingly available on mobile devices such as
smartphones, tablets and media players. Testimony to this
trend includes the hardware requirements of the Windows
Phone 7 Platform, which embraces the FM radio [3]. As
another example, the Apple iPhone and iPod Touch already
incorporate the FM receiver and transmitter hardware, and
the software to enable them is reportedly under
development [4]. The mobile FM receiver and transmitter
are intended to allow users to listen to the broadcasted
programs, and stream music to short-range home and
automobile stereos, respectively. However, we go beyond
such intended uses of the mobile FM radio and enable data
broadcasting applications based on existing hardware.

We reveal two challenges toward enabling practical and
deployable data broadcasting applications. First,
simultaneous broadcasters must not collide. Therefore, they
should coordinate with each other to use the available FM
channels while remaining quickly identifiable by interested
listeners. Unlike radios in white space, FM radio has a
much shorter range (~5 meters) and multiple orthogonal
channels so that the solution requires special treatment
toward the hidden-node problem and channel allocation.
Second, the solution must not modify the FM radio
hardware, but has to rely on the device’s audio interface to
realize data broadcasting. Therefore, binary data must be
properly converted into audio, and the broadcaster and
listener must be symbol-synchronized using software.

We address these challenges with µStation, a software
solution that operates without modification to device

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UbiComp’11, September 17–21, 2011, Beijing, China.
Copyright 2011 ACM 978-1-4503-0630-0/11/09...$10.00.

Figure 1: FM radio hardware architecture on mobile devices

FM Receiver
ChipAudio

Codec
Chip

External
Antenna

Analog
audio

FM
signal

FM Transmitter
Chip

Built-in
Antenna

Digital
audio

FM
signal

Rest of
System

hardware, operating system, and the FM radio driver.
µStation has two key modules: Channel Selector and Data
Codec. First, Channel Selector enables automatic and
efficient FM channel allocation, so that nearby broadcasters
use orthogonal channels with high probability. Meanwhile,
it ensures listeners to find the channel with broadcasting of
interest timely, by letting broadcasters periodically
announce their presence. Second, Data Codec performs
conversion between binary data and audio to compatibly
work with the FM radio hardware. More importantly, it
effectively achieves symbol synchronization in software by
leveraging different sampling frequencies in the FM
transmitter digital-to-analog converter (DAC) and FM
receiver analog-to-digital converter (ADC).

We have implemented µStation on the Nokia N900
smartphone and provided both low-level APIs and services
to support a large set of mobile applications. We have also
developed two representative applications using µStation to
demonstrate its effectiveness. First, Facebook-FM
broadcasts a user’s Facebook ID so that nearby users can
load the corresponding Facebook profile to facilitate social
interaction. Second, Sync-Flash realizes a synchronized
flashing pattern using many smartphone screens from users
physically close to each other, e.g., the audience of a
concert or a sports game.

As the first publicly reported system that aims to enable
ubiquitous data broadcasting applications using existing
mobile FM radio hardware, µStation has offered the FM
radio, which possibly obtains little attention before,
significant potential to facilitate the interaction between
physically adjacent mobile devices. We hope our initial
endeavor with µStation can enlighten more innovative ways
to leverage the FM radio as an important hardware feature
on current and emerging mobile devices.

BACKGROUND OF MOBILE FM RADIO
We next provide background of the mobile FM radio.

Spectrum Usage
The spectrum usage of FM radio falls into the UHF band
and spans from 87.5 MHz to 107.9 MHz in the U.S. In this
case, the spectrum is equally divided into 103 orthogonal
channels, each of which is 200 KHz apart from its
neighbors. A FM channel can be identified by its center
frequency, or by a unique number (e.g., Channel #1 for the
channel at 87.5 MHz). In each FM channel, FM radio uses
15 KHz and 30 KHz bandwidth for broadcasting monaural
and stereo audios respectively. The remaining bandwidth is
used for sideband applications such as the Radio Broadcast
Data System (RBDS otherwise known as RDS in Europe)
[5], and the currently obsolete Microsoft DirectBand [6].

Both licensed and unlicensed FM broadcasting use the same
set of channels. Licensed broadcasting usually comes from
radio stations owned by commercial organizations or
educational institutions, with a fixed coverage and schedule.

As a result, given time and location, licensed broadcastings
are often highly predictable, as indicated by [7].

Regulations for Unlicensed Broadcasting
Most countries allow unlicensed FM broadcasting. The US
FCC regulates the output power and mandates that the field
strength of any unlicensed FM emissions must not exceed
250 microvolt/meter at 3 meters, leading to a maximum
output power of approximately 15 nW. The EU regulation
is similarly enacted but the maximum allowed output power
is 50 nW. Australia allows output power as high as 10 μW,
but only if the unlicensed transmission does not interfere
with present licensed broadcastings. We note that a few
countries such as China do not yet allow unlicensed FM
broadcasting; mobile devices used in these countries
usually have the FM transmitter disabled. Due to our
implementation and experimental constraints, we work
under the US FCC regulations.

We define available FM channels in the following way: a
FM channel is available if the channel RSSI under licensed
broadcasting is below certain threshold (e.g., -110dBm in
our implementation). We note that a FM channel can be
available even with present licensed broadcastings, as long
as the licensed broadcasting is sufficiently weak. As a result,
checking the availability of a FM channel can be simply
done by measuring the channel RSSI, which is supported by
mobile FM radio. Our RSSI based definition ensures the
quality of unlicensed broadcastings, yet there can be
alternative ways to define available FM channels such as
using the human perceivable quality of licensed
broadcasting. Nonetheless, µStation is agnostic of the
definition of channel availability, as we will show later.

Hardware Architecture
We show the hardware architecture of mobile FM radio in
Figure 1. We note that the FM transmitter and receiver may
be in the same or separate integrated circuits, e.g., the
Nokia N900 uses the Silicon Lab Si4713 for the transmitter
and Broadcom BCM2048 for the receiver, while the iPhone
4 utilizes the Broadcom BCM4329 including both the
transmitter and receiver. Furthermore, some FM radio
chipsets have an internal DAC for converting digital audio
into analog audio, and an ADC for the opposite conversion.
Other chipsets only provide an analog audio interface; an
audio codec chip provides the necessary ADC and DAC,
and effectively bridges the FM radio hardware with the rest
of the system through a digital audio interface. µStation is
independent on these implementation issues by interfacing
with the digital audio interface provided by either the FM

Figure 2: The headphone, earphone and the winding case
used in our experiments

Figure 3: RSSI with different cable lengths of the earphone
and headphone

Headphone Earphone Winding Case 0.2 0.4 0.6 0.8 1
-110

-105

-100

-95

-90

-85

Length (meter)

R
S

S
I (

dB
m

)

Earphone

0.2 0.4 0.6 0.8 1 1.2
-110

-105

-100

-95

-90

-85

Length (meter)

R
S

S
I (

dB
m

)

Headphone

radio chipsets or the audio codec. For generality, we use the
term FM radio hardware to refer to the FM transmitter, FM
receiver and audio codec if existing.

Current mobile FM transmitters and receivers employ
different antennas. To achieve small antenna loss, the
antenna length should be at least a tenth of the carrier
wavelength, i.e., about 30 cm for FM radio. Noticeably, this
is too big for mobile devices such as smartphone. As a
result, the transmitter simply uses a small antenna
integrated in the chip, which is sufficient to provide the low
permissible output power. The receiver, on the other hand,
usually relies on an earphone or headphone as the external
antenna, to maintain small antenna loss. But we note that
recent FM receiver realizations such as [8] can work with a
receive antenna that is built inside the mobile device.

Digital Audio
Digital audio has two important properties, the sampling
frequency fs and the quantization resolution m. The audio
can be either monaural or stereo. Stereo audio uses twice
the bandwidth as a monaural audio does, i.e., 30 KHz and
15 KHz in each FM channel respectively.

The DAC and ADC in the FM radio hardware can work
with any sampling frequency below their maximum, e.g.,
96 KHz in the N900. For FM transmission, if the sampling
frequency of the digital audio is lower than the maximum,
the DAC will perform up-sampling to the input digital
audio while maintaining the bandwidth of the output analog
audio. For FM reception, the digital audio output always
has the maximal sampling frequency but one can further
perform down-sampling using software. µStation exploits
these properties of the DAC and ADC to address the
symbol synchronization challenge.

Other Data Broadcasting Standards
FM radio has a set of benefits compared to other current
and emerging wireless technologies supporting
broadcasting, such as Wi-Fi, Bluetooth, ZigBee and ANT
[9]. First, FM radio is inherently connection-free, unlike all
the other technologies that require device pairing. This
feature of FM radio prevents extra overhead in connection
establishment and maintenance, and thus makes FM radio
perfectly fit mobile applications that are short-lived and
impromptu. Second, FM radio is power-efficient compared

to other technologies especially Wi-Fi, due to its much
lower output power under unlicensed regulation. The power
efficiency allows an always-on treatment of the FM radio
on battery-constrained mobile devices. Third, due to the
short range and low frequency nature of mobile FM radio, it
can provide an accurate indication of physical proximity
with minimum influence from environments. The
combination of all the features makes FM radio an
outstanding choice for one-way data broadcasting as the
focus of this work. For example, to broadcast one’s
socializing profile as one walks around, device pairing not
only is unnecessary but also degrades the throughput
significantly; meanwhile broadcasting in Wi-Fi’s range
would allow a much smaller number of simultaneous
broadcastings due to interference.

We note that Bluetooth can be alternatively used for
broadcasting without device paring, by presenting the
message as the device ID in the Bluetooth beacon that is
periodically broadcasted. However, this non-standard use of
Bluetooth has two limitations. First, each message has a
limited length, as the ID is limited to 128 bits. Second, the
achievable data rate is limited, e.g., around 1 Kbps for
Bluetooth vs. up to 20 Kbps for µStation. The second
limitation is made worse when there are multiple Bluetooth
broadcasting devices since they have to share the medium
for broadcasting beacons.

CHARACTERIZATION OF MOBILE FM RADIO
The mobile FM radio has several distinctive features
compared to conventional FM radio from licensed stations,
such as limited output power and the use of external
antenna for receiving. Since it is relatively new to mobile
devices, to the best of our knowledge, there is no published
work about its characteristics. Therefore, we next
experimentally evaluate the properties of the mobile FM
receiver and transmitter with real-life settings, based on the
FM radio chipsets in the Nokia N900.

FM Reception
As mentioned earlier, mobile FM receivers employ an
external antenna such as a headphone or an earphone. Our
measurements show that the choice of the headphone or
earphone, and its cable length (within a certain range) has
little impact on the quality of FM reception.

Figure 4: Broadcast range of mobile FM radio Figure 5: Overview of µStation

0 5 10-140

-120

-100

-80

-60

-40

-20

Distance (m)

R
S

S
I (

dB
m

)
Parking Lot

Calculated,n=4
Calculated,n=5
Sensitivity
Channel #5
Channel #49
Channel #99

0 5 10-140

-120

-100

-80

-60

-40

-20

Distance (m)

R
S

S
I (

dB
m

)

Conference Room

Calculated,n=4
Calculated,n=5
Sensitivity
Channel #5
Channel #49
Channel #99

FM Radio Hardware

Application

Channel
Selector

Data
Codec

Low-level APIs and
Service

Channel #Digital Audio

μStation

Headphones and earphones use a soft cable, which may
advertently or inadvertently become coiled. Therefore, we
examine the impact of cable length on FM reception quality
with real-life settings. To quantify the impact, we measure
the received RSSI at the FM receiver first with a 1.9 meters
Lenovo P550 headphone, and then with a 1.6 meters Nokia
N900 earphone. We use a winding case to adjust the cable
length in a controlled manner, as shown in Figure 2. To
ensure a fair comparison, we keep other settings fixed,
including the output power (15 nW) and the distance
between the transmitter and receiver (2.5 meters).

As shown in Figure 3, the RSSI is highly correlated with
the length of the headphone/earphone cable. We further
make three important observations. First, the RSSI drops
with a smaller cable length due to higher antenna loss, and
there is a significant drop when the length falls below 20
cm. Second, the two tested antennas exhibit similar
characteristics. Last and most importantly, there exists a
certain range of the cable length within which the RSSI is
approximately constant, e.g., 0.4-0.8 meter. Noticeably,
such range is often encountered in real-life situations, e.g.,
when a user is using a smartphone while wearing an
earphone/headphone. Based on these observations, we
conclude that the mobile FM reception quality will be
relatively independent on the receive antenna. Therefore,
for the experiments in the remainder of the paper, we use a
0.5 meter earphone as the receive antenna.

FM Transmission
The broadcast range of the mobile FM radio is important to
applications. Our measurements show that the broadcast
range is approximately five to six meters under regulation,
regardless of the environment or channel number.

We chose two environments to evaluate the broadcast
range. The first one is an empty campus parking lot with a
line-of-sight (LOS) path and the second one is a conference
room with people inside sitting around a table without any
LOS path. These two environments have little and rich
multipath effect respectively. We performed experiments
for three available FM channels at the center and far ends of
the spectrum: channel #5, #49, and #99. To see the
broadcast range, we measure the RSSI with different
distances between the transmitter and receiver. We also
compare our measurements with that under a theoretical
path loss model Pr=Pt∙[λ/(4πd)]n where Pt and Pr are the

transmit and received power, λ the wavelength, n the power
decay factor of the environment, and d the distance.

Our measurement results are summarized in Figure 4. We
can see that the broadcast range is limited to about 5-6
meters. The environment and channel number have little
impact on the range, due to the good penetration property of
FM radio and the closeness of FM channels in the spectrum.
The results also indicate a power decay factor between 4
and 5 for the path loss of FM radio.

AN OVERVIEW OF µSTATION
µStation leverages existing FM radio hardware to allow
mobile devices with data broadcasting and reception, as the
µStation broadcaster and µStation listener respectively. We
assume that each mobile device is, at any given time, either
a broadcaster or a listener. Application can choose and
quickly switch between these two roles at will. Figure 5
provides an overview of µStation: for both broadcasters and
listeners, µStation interacts with the FM radio hardware and
presents an interface to applications with low-level APIs
and services. There are two key modules in µStation.
Channel Selector uses one control channel and multiple
data channels so that with a high probability, no two nearby
broadcasters will use the same data channel. Furthermore,
Channel Selector guarantees listeners to find their
broadcasting of interest in a timely fashion, even when
devices are mobile. Data Codec converts binary data into an
audio stream for transmission and vice versa for reception,
in order to compatibly work with the FM radio hardware.
Data Codec meanwhile achieves symbol-synchronization
between the broadcaster and listener, solely in software.

µSTATION CHANNEL SELECTOR
µStation can be considered as a special incarnation of the
extensively researched cognitive radio systems in which
collision between coexistent users has to be resolved [10].
µStation Channel Selector enables multiple unlicensed and
equally important broadcasters to efficiently share multiple
orthogonal FM channels. While apparently the most
efficient way to avoid collision is to let the broadcasters use
orthogonal channels, achieving it is nontrivial.

µStation Channel Selector is based on one control channel
and multiple data channels, all of which are available FM
channels. First, all µStation broadcasters share the control
channel. On the control channel, a broadcaster either

(a) Broadcaster (b) Listener

Figure 6: State transition diagrams of µStation Channel Selector

Control Frame Broadcasted

Broadcasting
Terminated

Timer Expired + Carrier Sensed

Unused Data
Channel Found

(B1)

(B2)

(B4)

(B3)

Broadcasting Initiated

(B5)

Transmit
in Data

Channel

Transmit
in Control
Channel

Receive
in Control
Channel

Inactive

Desired Data Channel Found

(L1)

(L2)

Listening
Initiated(L3)

Listening
Terminated

Receive
in Data

Channel

Receive
in Control
Channel

Inactive

periodically announces which data channel it is using, or
finds an unused data channel by listening to the
announcement from other broadcasters. Second, only one
broadcaster can use each data channel to broadcast
application data. Any listener that is interested in the
application on a data channel can receive the broadcasting
based on the periodical announcement on the control
channel.

The control channel enables quick discovery of the data
channel usage by broadcasters and their applications. This
is important since each device can only listen to one
channel at any time. The control channel allows
broadcasters to indicate their presence on a single channel
to all potential listeners. However, in order to efficiently
leverage the spectrum resource of available FM channels,
application data broadcasting should utilize individual data
channels. Without the control channel, it would take
listeners much longer time to scan all the channels to find
the right one.

Channel Transition
We illustrate the operation of Channel Selector using state
transition diagrams shown in Figure 6. There are four
possible states for a broadcaster and three for a listener. We
next elaborate the state transitions.

Control Channel
When an application starts, the broadcaster or listener goes
from inactive to listening to the control channel (B1 and
L1). This is important for two reasons. First, new
broadcasters need to monitor the control channel in order to
identify an unused data channel for their broadcasting (B2).
Second, listeners similarly need to monitor the control
channel to find the desired data channel (L2). Once a
broadcaster has identified its data channel, it periodically
sends a control frame containing its data channel number,
its device ID, and its application ID. This enables listeners
to find their data channels of interest by receiving the
control frame.

Since multiple broadcasters use the same control channel,
we adopt a Carrier Sense Limited Access (CSLA)
mechanism for broadcasters to share the control channel.

CSLA avoids collision between broadcasters with carrier
sensing, and meanwhile limits the channel usage by each
broadcaster to a certain percentage. We note that CSLA is
intrinsically similar to p-persistent carrier sense multiple
access (CSMA) [11]. We choose not to use 1-persistent
CSMA [11] because the notorious hidden-node problem of
1-persistent CSMA may happen frequently due to the short
range nature of the mobile FM radio. In accordance to
CSLA, a broadcaster announces its presence on the control
channel periodically if and only if (i) the control channel is
free (carrier sensing by checking the RSSI), and (ii) it has
not broadcasted on the control channel for a certain
duration (two seconds in our design).

Data Channel
At any time, a data channel can be occupied by only one
broadcaster. The broadcaster can continuously broadcast on
its data channel, but must periodically switch to the control
channel to announce its presence, as discussed previously
(B3 and B4). We leave the decision on how often the
broadcaster should utilize the control channel to individual
applications, as long as their usage follows the CSLA rule.
When the application ends, the broadcaster releases its data
channel by stopping broadcasting control frames on the
control channel and going back into inactive (B5). A
listener finds a desired broadcast by listening to the control
channel. The listener then tunes to the desired data channel
for receiving (L2), until the application is terminated (L3).

Collision Performance
We next provide an analysis of the collision performance of
Channel Selector. That is, we analyze the probability for a
listener to successfully receive its broadcasting of interest,
with the presence of hidden broadcasters. For simplicity, we
assume N broadcasters are in the range of a listener, and K
of them are hidden from each other (i.e., the hidden
broadcasters cannot hear each other and therefore may
collide). We also assume the control frame on the control
channel lasts for t seconds, and each broadcaster is allowed
to broadcast on the control channel once every T seconds.
In this case, when the control channel utilization is small,
we can approximate the collision probability on the control
channel as:

Figure 7: An example of the original and decoded bits
without symbol synchronization

Figure 8: (Left) Symbol synchronization by µStation Data
Codec (Right) Bit error rate over different ρ

11 00

10 01
Decoded bit sequence at
the receiver

11 00 11 00

10 01 10 01

Original bit sequence at
the transmitter

Analog audio signal
in the air

× × ×

× × ×

× × × × ×

× ×

× × × × ×

×× ×

Sine detection

Sampling instant

× × ×

× × ×

1 1 1

0 0 0

1 0 1 0 1 0Training
symbols

Transmitter
DAC output

Receiver ADC
output

1 2 3 4 5 100

0.1

0.2

0.3

0.4

0.5

Tho

B
it

er
ro

r r
at

e

SNR=17dB
SNR=9dB

𝑃𝐶𝑜𝑛𝑡𝑟𝑜𝑙 ≅
2𝐾𝑡
𝑇

.

When a collision occurs on the control channel, the listener
cannot decode the control frame from all of the affected
broadcasters.

For the data channels, the hidden node problem appears in a
different fashion. Since the hidden broadcasters cannot hear
each other, there is a chance that more than one broadcaster
is using the same data channel. As a result, the number of
unused channels for the K hidden broadcasters is M'=M-(N-
K), where M is the total number of data channels. In this
case, the probability that more than one broadcaster is using
the same data channel is

𝑃𝐷𝑎𝑡𝑎 = 1 − (𝑀′)!
(𝑀′−𝐾)!

∙ 1
(𝑀′)𝐾

.

From the perspective of listeners, the probability of
successfully receiving its desired broadcasting is

𝑃 = 1 − 𝐾
𝑁

(𝑃𝐶𝑜𝑛𝑡𝑟𝑜𝑙 + (1 − 𝑃𝐶𝑜𝑛𝑡𝑟𝑜𝑙) ∙ 𝑃𝐷𝑎𝑡𝑎).

Assuming the following parameters that are typical in real-
life scenarios and adopted in our design

t=0.05, T=2, N=10, K=3, M=20,

we can calculate P=90%. Therefore, Channel Selector
ensures successful reception by listeners with a high chance.

Channel Convergence
For Channel Selector to operate correctly, we must ensure
that all µStation devices in a particular geographical area
converge on the same control channel and have identical
lists of data channels. The convergence is easily achievable
if all µStation devices have the same set of available FM
channels. In this case, the FM channel with the smallest
channel number can be treated as the control channel and
others as data channels.

In order to achieve channel convergence, we leverage an
important property of FM channels. That is, the FM channel
availability is time and location-dependent and more
importantly, highly predictable, since licensed radio stations
often follow a fixed broadcasting schedule. As a result, one
can simply construct a mapping from time and location to
available FM channels offline, and store it in a remote

server which can be accessed in real time. We highlight that
the location dependency of FM channel availability is
coarse-grained due to the large coverage of licensed
broadcastings; a device will usually see the same list of
available FM channels even when it moves over certain
kilometers. Therefore, localization based on cell towers is
more than sufficiently accurate, and device can even locally
store the mapping with minimal cost. Additionally, the
device only needs to store the mapping with locations
where it is used.

µSTATION DATA CODEC
Data Codec leverages the existing FM radio hardware to
realize bit-level communication between two µStation
devices. Here let us consider a single pair of transmitter and
receiver. We use the name “transmitter” and “receiver” to
generally refer to µStation devices that are transmitting and
receiving respectively, but note that a broadcaster needs to
both transmit and receive, while a listener only needs to
receive. Data Codec interfaces with both the application
and the FM radio hardware, by applying conversion
between digital data and audio. While the conversion may
sound straightforward, Data Codec must properly cope with
symbol (clock) synchronization, a particular challenge to
µStation. By addressing the symbol synchronization
challenge with proper design, Data Codec achieves an
effective bit rate of up to 10 Kbps for monaural audio.

Bits-Audio Conversion
We use pulse amplitude modulation (PAM) to convert
binary bits into audio. PAM is natural and straightforward
for our application: one only needs to specify the sampling
frequency fs and quantization resolution m of the audio.
Then, m bits are jointly represented as one audio sample
with 2m possible amplitudes, and the audio is streamed to
the FM radio hardware with a sampling frequency of fs.
Converting an audio stream to binary bits requires the same
procedure in reverse, but encounters an additional challenge,
symbol (clock) synchronization, which we will tackle in the
next subsection.

Choosing fs should follow the Nyquist sampling theorem,
i.e., fs can be no greater than twice the available analog
audio bandwidth, or fs≤30 KHz. Similar to other modulation
techniques in digital communication, a larger m will render

Figure 9: Framing in µStation Data Codec

Training Symbols
Frame
Header

Frame
Body

100 bits

Transition
Symbols

20 bits 44 bits Variable

Reference CodingLength

20 bits

Resolution

16 bits 2 bit 2 bits

Reserved

4 bits

higher bit error rates, thereby lower reliability. Based on
our experimental results, under typical distance between the
transmitter and receiver, such as 2.5 meters with a RSSI of -
100 dBm, m=2 can offer a good reliability, i.e., a bit error
rate of less than 5%.

Symbol Synchronization
Current mobile FM radio is not intended for digital
communication; therefore it lacks the dedicated hardware
for symbol synchronization, which is critical to PAM. For a
receiver to correctly recover the broadcasted bits, the
receiver ADC must be symbol-synchronized to the
transmitter DAC. That is, the receiver must perform analog-
to-digital conversion of the received audio at the right
instant. Figure 7 shows an example when the receiver ADC
and transmitter DAC are not symbol-synchronized. In the
example, a bit sequence of “110011001100” is transmitted
with m=2, i.e., each symbol representing two bits. Due to
up-sampling, a sine signal will be the analog output of the
transmitter DAC. Because the receiver ADC is not symbol-
synchronized, it samples the received analog signal with an
offset, decoding bits incorrectly.

To achieve symbol synchronization without hardware
support, we explore the properties of the DAC and ADC in
the FM radio hardware. Similar to the oversampling
technique in conventional digital communication but in the
software domain, we let the receiver ADC adopt a much
higher sampling frequency than that of the transmitter DAC.
As a result, the receiver can analyze the approximated
analog audio. To achieve symbol synchronization, a
transmitter sends a pre-determined sequence of training
symbols with alternative symbol “0” and symbol “1” with a
sampling frequency of fs,t. Due to up-sampling to the input
digital signal by the DAC, a sine signal with frequency
0.5fs,t will be the analog output and transmitted through FM.
On the other hand, the receiver expects a sine signal with its
peak corresponding to the symbol “1” in the training
symbol sequence. Importantly, the peak also indicates the
correct sampling time. The receiver employs a sampling
frequency fs,r much higher than fs,t so that the received
analog signal can be approximately recovered. Figure 8
(Left) illustrates the symbol synchronization procedure:
after getting the samples, the receiver seeks to detect the
training symbols which exhibit a sine pattern, and then
simply searches for the peak sample and treats it as the right
sampling instant.

Noticeably, the ratio of fs,r over fs,t, or ρ=fs,r/fs,t determines
the symbol synchronization accuracy. In our design, we
adopt ρ=5, which is identified experimentally. That is, we
measure the bit error rate performance of the broadcasting
under different ρ, shown in Figure 8 (Right). We repeat the
measurements with two different channel SNRs: 17 dB and
9 dB. One can clearly see that a larger ρ can reduce the bit
error rate and the reduction is not linear, i.e., after a certain
threshold, e.g., ρ=5, the reduction is trivial. This is because
the biggest offset from the right sampling instant is Ts/2ρ

where Ts is the signal period. As a result, the benefit of
increasing ρ decreases with larger ρ, and the BER is mainly
affected by channel SNR.

Given ρ=5, the concrete values of fs,r and fs,t in our design
are fs,r=50 KHz and fs,t=10 KHz respectively. While fs,r can
be as high as the maximum sampling rate of the receiver
ADC, i.e., 96 KHz in N900, we found that it is not only
unnecessary, but also hardly achievable. This is due to the
insufficient computing capacity of mobile devices for real-
time processing, especially when the device is under a
heavy workload. Our experimental experience reveals that a
maximal fs,r of around 50 KHz can be achieved in N900
without lagging the decoded data from the received audio.
It also indicates a fs,t of 10 KHz which is below the maximal
sampling frequency allowed by the FM channel.

Framing
Similar to conventional digital communication, to ease bits
delivery, Data Codec needs framing to organize binary bits.
We next present the frame design. As shown in Figure 9,
each Data Codec frame contains four parts: training
symbols, transition symbols, frame header and frame body.

Training symbols are utilized for two purposes: one is to
perform symbol synchronization as we explained
previously, and the other is to provide reference amplitude
of the symbols so that the rest of the frame can be correctly
translated with different quantization resolutions.

Transition symbols partition the training symbols and frame
header, in order to avoid the confusion of detecting the
starting bit of frame.

Frame header includes various control information for the
receiver to decode the bits. It is always translated with m=1
to maximize reliability.

Frame body carries actual data bits given by the application
and can have various length.

As shown, the non-data parts of a frame contain 164 bits
altogether, while the frame body is allowed to have
arbitrary length from 1 to 216=65536 bits, depending on the
application data. For connectionless broadcasting
applications, the broadcaster is often continuously and
repeatedly streaming data, and therefore the frame body
usually has a much longer duration than the other parts do,

meaning that the actual application throughput can
approach the raw bit rate of µStation.

Reliability Enhancement
µStation assumes one-way broadcasting. While an
occasional frame loss and moderate BER might be
acceptable for some applications, e.g., location-based
services, they can be fatal for applications that have a tight
accuracy requirement for data delivery, e.g.,
synchronization between devices. While the responsibility
of maintaining reliability can be left to applications, Data
Codec does employ coding to the raw binary bits to assist
the application for reliability enhancement. We use linear
coding with a rate of 1/2, which is simple and effective.

Bit Rate Performance
Given all the above techniques adopted by Data Codec and
the parameters in our design, we can approximately
calculate the effective bit rate as

𝑅𝑏𝑖𝑡 = 𝑓𝑠,𝑡 × 𝑚 × 𝑟𝑐𝑜𝑑𝑖𝑛𝑔,

which is 10 Kbps for monaural audio with fs,t=10 KHz, m=2
and rcoding=1/2. For stereo audio, the achievable bit rate can
be up to 20 Kbps.

IMPLEMENTATION
Our design of µStation compatibly works with existing
mobile FM radio hardware, and it is largely device
independent from an implementation perspective. To offer
application developers both flexibility and ease of use,
µStation provides both low-level APIs and services. In this
section, we first explain the APIs and services, and then
present our smartphone-based implementation of µStation.

µStation Low-level API
We encapsulate the basic functionality of µStation as a
regular python library, which can be imported by
applications and used on any mobile devices through the
provided low-level APIs. The core APIs include:

channel_getlist(): list all available FM channels. µStation
will gather location information, try to query the remote or
local server, and obtain the list of available channels.

channel_find(): find an unused data channel for
broadcasting. µStation will treat the device as a
broadcaster, tune to the control channel to get a list of
unused data channels, and randomly pick one among them.

channel_announce(): announce the application in the
control channel. µStation will switch to the control channel
and perform carrier sensing. If the medium is free and the
broadcaster has not used the control channel in the last T
seconds, µStation will broadcast a control frame with its
data channel number, device ID and application ID.

channel_bond(app_ID, dev_ID): find the data channel
occupied by app_ID and dev_ID. µStation will treat the
device as a listener, and keep monitoring the control

channel until finding the desired control frame. Then it will
tune to the corresponding data channel.

broadcast(bi_data, ch_data): broadcast binary data
bi_data in the data channel ch_data. µStation will generate
a frame as appropriate, form it as audio, and stream the
audio to the FM transmitter for broadcasting.

receive(bi_data[], ch_data): retrieve all the frames in the
data channel ch_data and store the decoded binary data in
bi_data[]. µStation will keep recording audio from the FM
receiver and extract the data within all the frames.

µStation Service
µStation services are built on top of the low-level APIs to
further ease application development. Here we show an
example service, inter-device synchronization, which
allows multiple devices to synchronize their system clocks
with high accuracy (<0.1 seconds).

µStation leverages the short range property of FM radio to
accomplish inter-device synchronization. That is, a
“beacon” device as the broadcaster periodically broadcasts
reference time signals through µStation. Seeing and then
decoding the broadcasted reference time signal,
surrounding devices as listeners can adjust their system
clocks accordingly. This provides a high-level of accuracy,
since the signal latency due to RF propagation is virtually
non-existent at the FM radio range, and our measurements
show that each device has a small and more importantly,
constant signal detection latency. Our experiments show
that the accuracy of inter-device synchronization can be less
than 0.1 seconds while devices are in range.

Smartphone-based Implementation
To demonstrate the feasibility of µStation, we choose the
Nokia N900 smartphone for implementation. The N900
adopts Maemo [12], which is open-source and allows rapid
customization and application development. Nonetheless,
µStation does not require any hardware, OS or FM radio
driver modification.

The N900 implements both the FM transmitter and receiver
as Video4Linux radio devices and controls them over the
hardware bus I2C. The FM transmitter integrates a DAC
within the chip thereby directly interacts with the system;
the FM receiver does not have an ADC and relies on the
audio codec for interaction. Hardware configurations such
as switching on and off the FM radio or changing the FM
channel can be achieved through the standard Video4Linux
APIs. The FM radio drivers also expose some information
in a virtual file system called sysfs, allowing simple
configurations such as setting the output power and
measuring RSSI. The audio codec and FM transmitter in
N900 do not enable very low-level interfacing, e.g., the user
cannot directly send or get a digital audio as a binary stream.
Nonetheless, µStation indirectly interacts with them using
the following methods: for transmission, µStation plays the
audio stream as a media which will be automatically

Broadcaster Listener
[ch_control, ch_data_list] =
channel_getlist()
ch_data = channel_find()
bi_data = enc(“Facebook ID”)
while (true):
 channel_announce()
 broadcast(bi_data, ch_data)
 if (app terminated):
 break

[ch_control, ch_data_list] =
channel_getlist()
ch_data[] = channel_bond
(“Facebook-FM”, N/A)
while (true):
 for ch in ch_data[]:
 receive(bi_data[], ch)
 if (app terminated):
 break

Figure 10: Realization of Facebook-FM using the low-level
APIs of µStation

captured by the FM transmitter; for reception, µStation
records the audio stream from the audio codec with proper
sampling frequency, using the PulseAudio utility [13]
available in Maemo.

Our smartphone-based implementation of µStation is
limited by the FM radio hardware and its software interface.
As a result, much of the computation of µStation has to be
realized using the powerful Application Processor, which
inevitably limits the power efficiency of µStation. However,
given proper firmware support, µStation can be
implemented in the microcontroller within the FM chipset
to significantly improve its power efficiency.

APPLICATION
µStation supports a large set of data broadcasting
applications on mobile devices, although the broadcast
range is limited (5 meters) and the data rate is moderate (20
Kbps). For example, a user can broadcast its profile during
a social gathering; a device can broadcast its sensing data to
peer devices to support collaborative sensing services; a
user can broadcast a product or service advertisement as he
or she moves around and encounters other people. Next we
present two example applications based on µStation:
Facebook-FM and Sync-Flash.

Facebook-FM
Facebook-FM is a socializing application that allows
automatic and rapid sharing of Facebook profiles among a
group of users in a small area. To enable the sharing, a
device as a broadcaster uses µStation to broadcast the
Facebook ID of the user. All the other in-range devices as
listeners can simultaneously receive the broadcasting. Each
device can switch between broadcasters and listeners so that
each user’s Facebook ID is shared among others. This
application can be particularly useful in public occasions
such as a party or a conference to initiate interaction
between attendees.

We have implemented Facebook-FM solely based on the
µStation low-level APIs, as shown in Figure 10. For
broadcasters, the application first calls channel_getlist() and
channel_find() to reserve a data channel, and then
repeatedly calls channel_announce() to indicate its presence
and broadcast() to broadcast the user’s Facebook ID in its
data channel. For listeners, the application first calls
channel_getlist() and channel_bond() to find the data
channel used by Facebook-FM. Then it calls receive() to
retrieve the message for each data channel that is associated
with Facebook-FM. The homepage associated with the
Facebook ID is further shown in the browser.

Sync-Flash
Another innovative application we create using µStation is
called Sync-Flash, which coordinates multiple mobile
devices to synchronously “flash” using their regular LED
flash or screen. It can be used in concerts or sports games
where the audiences/fans would like to present certain

flashing pattern using their smartphones. Another usage of
Sync-Flash can be to provide multiple “slave” flashes for
photography, in order to offer additional light or reduce
shadows.

We demonstrate Sync-Flash using the concert example
shown in Figure 11. Assuming there is a large population of
audience and they are uniformly distributed, a flashing
pattern can be realized by letting a subset of the audiences,
e.g., those in the middle in Figure 11, turn on the screen of
their smartphones. Clearly, all the intended audiences
should be triggered at the same time and their flashings
have to be in the same fashion, e.g., always on or flash
every one second, to achieve certain intended pattern.
Different fashions can be indicated by different pattern ID.

µStation realizes Sync-Flash using both the low-level APIs
and the inter-device synchronization service. The
realization involves three steps, as shown in Figure 12.
First, a few audiences need to become the initiators, either
voluntarily in real time by registration through Internet, or
in advance by pre-assignment. The initiators are responsible
for triggering the flash and broadcasting the intended
flashing pattern. They also act as “beacon” devices for
inter-device synchronization. The initiators can be remotely
synchronized. Second, when a flashing pattern is desired,
the intended initiators, depending on which subset of the
audience should flash, broadcast a triggering message to
their neighbors. The message has two uses: serving as the
reference time signal for inter-device synchronization, and
containing a pattern ID which the surrounding audience
identify and flash as appropriate. Finally, seeing the
triggering message from initiators, all involved audiences
simultaneously flash in the same fashion, collectively
offering a desired flashing pattern. The pattern stops when
the initiator broadcasts a termination message.

RELATED WORK
To the best of our knowledge, µStation is the first work that
leverages the mobile FM radio to enable data broadcasting
applications. Other uses of mobile FM radio beyond its
audio transmission and reception capability are exclusively
limited to localization based applications, such as [14].

There exist several systems for radio stations to broadcast
small amounts of application specific data alongside FM
audio broadcasting, including RBDS [5] and Microsoft
DirectBand [6]. Furthermore, the authors of [15] have

Figure 11: Sync-Flash performed by a concert audience Figure 12: Three steps to realize Sync-Flash with µStation

Synchronized FlashingNo Flashing

Triggered
simultaneously

Broadcast a
triggering
message!

I’m the
initiator!

Flash!

Flash! Flash!

Step 1 Step 2 Step 3

proposed and evaluated a protocol for radio stations to
transfer arbitrary files over RBDS. µStation is
fundamentally different. First, µStation targets short-range
data broadcasting from mobile devices, as opposed to
metropolitan-area radio station broadcastings of RBDS.
Second, µStation reuses the frequency band for analog
audio broadcasting in each FM channel, while RBDS has its
dedicated band allocation. Third and most importantly,
µStation only works with the digital audio interface of the
mobile FM radio, while the designers of RBDS have access
to the radio baseband and are free to develop their own
PHY protocols. Our work has its own challenges such as
symbol synchronization.

Using voice channels for data communication is an existing
concept, e.g., [16-20]. These works primarily focus on how
to improve the communication performance while
compatibly working with the voice codec in GSM systems.
Our work, µStation, has a different focus and targets on
data broadcasting from mobile devices, as well as the
supported applications. Again, the use of FM radio exhibits
its unique challenges such as FM channel selection.

CONCLUSION
In this work, we reported the design, realization and
applications of µStation, a data broadcasting system using
the mobile FM radio. µStation does not require any
modification to device hardware, OS or FM radio driver,
and supports efficient channel selection and transmitter-
receiver symbol synchronization. µStation enables
developers to easily implement a wide range of data
broadcasting applications with a compact set of APIs and
services, as demonstrated by Facebook-FM and Sync-Flash.

µStation departs from the traditional use of mobile FM
radio for audio transmission and reception and is the first
publicly reported exploration toward using it for short-
range data broadcasting. While we have showed the
feasibility of mobile FM radio for ubiquitous applications,
its potential invites more serious efforts from both the
research community and mobile hardware vendors.

REFERENCES
1. Color, http://www.color.com/.
2. Cisco StadiumVision,

http://www.cisco.com/web/strategy/sports/StadiumVisi
on.html.

3. Windows Phone 7 Series: Everything Is Different
Now, http://gizmodo.com/#!5471805/windows-phone-
7-series-everything-is-different-now.

4. 9 to 5 MAC: In-house Radio.app in the works for
iPhone and iPod touch,
http://www.9to5mac.com/10167/In-house-Radio-app-
in-the-works-for-iPhone-and-iPod-touch/.

5. RBDS, Radio Broadcast Data System.
6. DirectBand, Microsoft.
7. SiriusXM Radio, http://www.siriusxm.com/frequency.
8. BlueCore BC7820,

http://www.csr.com/products/10/bluecore-bc7820.
9. ANT, http://www.thisisant.com/.
10. S. Haykin, "Cognitive radio: brain-empowered wireless

communications," IEEE Journal on Selected Areas in
Communications (JSAC), 2005.

11. P. C. Gupta, Data Communications and Computer
Networks: PHI Learning Pvt. Ltd., 2011.

12. Nokia Maemo, http://maemo.org/.
13. PulseAudio, http://www.pulseaudio.org/.
14. A. Matic, A. Papliatseyeu, V. Osmani, and O. Mayora-

Ibarra, "Tuning to your position: FM radio based
indoor localization with spontaneous recalibration," in
Proc. IEEE PerCom, 2010.

15. A. Rahmati, L. Zhong, V. Vasudevan, J.
Wickramasuriya, and D. Stewart, "Enabling pervasive
mobile applications with the FM radio broadcast data
system," in Proc. ACM HotMobile, 2010.

16. T. Chmayssani and G. Baudoin, "Data transmission
over voice dedicated channels using digital
modulations," in Int. Conf. Radioelektronika, 2008.

17. N. N. Katugampala, K. T. Al-Naimi, S. Villette, and A.
M. Kondoz, "Real time data transmission over GSM
voice channel for secure voice and data applications,"
in Secure Mobile Communications Forum, 2004.

18. C. K. LaDue, V. V. Sapozhnykov, and K. S. Fienberg,
"A Data Modem for GSM Voice Channel," IEEE
Trans. Vehicular Technology, 2008.

19. M. Rashidi, A. Sayadiyan, and P. Mowlaee, "A
Harmonic Approach to Data Transmission over GSM
Voice Channel," in Proc. ICTTA, 2008.

20. A. Dhananjay, A. Sharma, M. Paik, J. Chen, T. K.
Kuppusamy, J. Li, and L. Subramanian, "Hermes: data
transmission over unknown voice channels," in Proc.
ACM MobiCom, 2010.

	ABSTRACT
	Author Keywords
	ACM Classification Keywords
	General Terms

	INTRODUCTION
	BACKGROUND OF MOBILE FM RADIO
	Spectrum Usage
	Regulations for Unlicensed Broadcasting
	Hardware Architecture
	Digital Audio

	CHARACTERIZATION OF MOBILE FM RADIO
	FM Reception
	FM Transmission

	AN OVERVIEW OF µSTATION
	µSTATION CHANNEL SELECTOR
	Channel Transition
	Control Channel
	Data Channel

	Collision Performance
	Channel Convergence

	µSTATION DATA CODEC
	Bits-Audio Conversion
	Symbol Synchronization
	Framing
	Reliability Enhancement
	Bit Rate Performance

	IMPLEMENTATION
	µStation Low-level API
	µStation Service
	Smartphone-based Implementation

	APPLICATION
	Facebook-FM
	Sync-Flash

	RELATED WORK
	CONCLUSION
	REFERENCES

