

Switching Networks

- Long distance transmission is typically done over a network of switched nodes
- · Nodes not concerned with content of data
 - Their purpose is to provide a switching facility that will move data from node to node until they reach their destination
- End devices are stations
 - Computers, terminals, phones, etc.
- A collection of nodes and connections is a communications network
- · Data routed by being switched from node to node

Circuit Switching

- Dedicated communication path between two stations
- Path is a connected sequence of links between network nodes
- On each physical link, a logical channel is dedicated to the connection
- Communication via circuit switching involves three phases:
 - Circuit Establishment
 - Data Transfer
 - Circuit Disconnect
- Connection path must be established before data transmission begins
- Nodes must have switching capacity and channel capacity to establish connection
- Switches must have intelligence to work out routing

Multistage Switch

- Reduced number of crosspoints —This increases crossbar utilization
- More than one path through network

 Increases reliability
- More complex control
- May be blocking

Time Division Switching

- Modern digital systems rely on intelligent control of space and time division elements
- Use digital time division techniques to set up and maintain virtual circuits
- Partition low speed bit stream into pieces that share higher speed stream

Control Signaling Functions

- In a circuit-switched network, control signals are the means by which the network is managed and by which calls are established, maintained and terminated
- Functions of control signaling are:
 - Audible communication with subscriber (dial tone, ringing tone)
 - Transmission of dialed number
 - Call cannot be completed indication
 - Call ended indication
 - Signal to ring phone
 - Billing info
 - Equipment and trunk status info
 - Diagnostic info
 - Control of specialist equipment

Switch to Switch Signaling

- When the called subscriber is attached to a different switch than the calling subscriber, the following switch-to-switch trunk signaling functions are required:
 - -Originating switch seizes an idle interswitch trunk
 - —Sends off hook signal on trunk, requesting digit register at target switch (for address)
 - Terminating switch sends off hook followed by on hook to show register ready
 - -Originating switch sends address

In Channel Signaling

- Use same channel for signaling and call
 - Requires no additional transmission facilities
- Inband signaling
 - Uses same frequencies as voice signal
 - Can go anywhere a voice signal can
 - Impossible to set up a call on a faulty speech path
- Out of band signaling
 - Voice signals do not use full 4kHz bandwidth
 - Narrow signal band within 4kHz used for control
 - Can be sent whether or not voice signals are present
 - Need extra electronics
 - Slower signal rate (narrow bandwidth)

Drawbacks of In Channel Signaling

- Limited transfer rate
- Delay between entering address (dialing) and connection
- Overcome by use of common channel signaling

Signaling System Number 7 (SS7)

- Common channel signaling scheme
- Specifically designed to be used in ISDNs
- Purpose of SS7 is to provide a standardized common channel signaling system with the following characteristics:
 - -Optimized for 64k digital channel network
 - Call control, remote control, management and maintenance
 - -Reliable means of transfer of info in sequence
 - -Will operate over analog and below 64k
 - -Point to point terrestrial and satellite links

Basic Operation of packet switching networks

- Data transmitted in small packets
 - -Typically 1000 octets (bytes)
 - -Longer messages split into series of packets
 - Each packet contains a portion of user data plus some control info
- Control info
 - -Includes routing (addressing) info
- At each node packets are received, stored briefly (buffered) and past on to the next node —Store and forward

Advantages of packet-switched over circuit-switched networks

- Line efficiency is greater, because
 - Single node to node link can be shared by many packets over time
 - Packets queued and transmitted as fast as possible
- Data rate conversion can be performed
 - Each station connects to the local node at its own speed
 - Nodes buffer data if required to equalize rates
- Packets are accepted even when network is busy
 - Delivery may slow down
- Priorities can be used
 - Transmit higher-priority packets first, so as to experience less delay

Switching Technique

- Station breaks long message into packets
- Packets sent one at a time to the network
- Packets handled in two ways
 - -Datagram
 - -Virtual circuit

Datagram

- Each packet treated independently
- Packets can take any practical route
- Packets may arrive out of order
- Packets may go missing
- Up to receiver to re-order packets and recover from missing packets

Virtual Circuit

- Preplanned route established before any packets sent
- Once route is established, all the packets between the two communicating parties follow the same route through the network
- Call request and call accept packets establish connection (handshake)
- Each packet contains a Virtual Circuit Identifier (VCI) instead of destination address
- No routing decisions required for each packet
- Clear request to drop circuit
- Not a dedicated path

Required Reading

- Stallings Chapter 10
- ITU-T web site
- Telephone company web sites

