Data Communications \& Computer Networks

Chapter 9

Circuit and Packet Switching

Agenda

Key points - Circuit switching

- Circuit switching is used in public telephone networks and is the basis for private networks built on leased-lines.
- Circuit switching was developed to handle voice traffic but also digital data (although inefficient)
- With circuit switching a dedicated path is established between two stations for communication
- Switching and transmission resources within the network are reserved for the exclusive use of the circuit for the duration of the connection
- The connection is transparent: once it is established, it appears to attached devices as if there were a direct connection

Key points - Packet switching

- Packet switching was designed to provide a more efficient facility than circuit-switching for bursty data traffic
- With packet switching, a station transmits data in small blocks, called packets
- Each packet contains some portion of the user data plus control info needed for proper functioning of the network
- A key element of packet-switching networks is whether the internal operation is datagram or virtual circuit (VC).
- With internal VCs, a route is defined between two endpoints and all packets for that VC follow the same route
- With internal diagrams, each packet is treated independently, and packets intended for the same destination may follow different routes
- Examples of packet switching networks are X.25, Frame Relay, ATM and IP.

Preface

Preface

- Previous lectures described how info can be encoded and transmitted over a communication link
- Now, we turn to broader discussion of networks, which can be used to interconnect many devices and in particular with traditional approaches to wide area network design: circuit and packet switching
- Since the invention of the telephone, circuit switching has been the dominant technology for voice communications
- Packet switching has been researched since 1970 s and it is one of the few effective technologies for long-distance data communications
- Packet-switching networks consist of a distributed collection of packet-switching nodes
- Causes time delay
- Overhead involved (status info)
- As a result packet-switching networks can never perform "perfectly" and many algorithms are used to cope with the time delay and overhead penalties of network operation

Switching Networks

- Long distance transmission is typically done over a network of switched nodes
- Nodes not concerned with content of data
- Their purpose is to provide a switching facility that will move data from node to node until they reach their destination
- End devices are stations
- Computers, terminals, phones, etc.
- A collection of nodes and connections is a communications network
- Data routed by being switched from node to node

Nodes

- Nodes may connect to other nodes only, or to stations and other nodes
- Node to node links are usually multiplexed (using TDM or FDM)
- Network is usually partially connected
-Some redundant connections are desirable for reliability
- Two different switching technologies
-Circuit switching
-Packet switching

Simple Switched Network

- Nodes connected to one another by transmission links
- Each station attaches to a node
- The collection of nodes is a switched communication network

Circuit Switching

Circuit Switching

- Dedicated communication path between two stations
- Path is a connected sequence of links between network nodes
- On each physical link, a logical channel is dedicated to the connection
- Communication via circuit switching involves three phases:
- Circuit Establishment
- Data Transfer
- Circuit Disconnect
- Connection path must be established before data transmission begins
- Nodes must have switching capacity and channel capacity to establish connection
- Switches must have intelligence to work out routing

Circuit Switching - Applications

- Circuit switching is inefficient
- Channel capacity dedicated for duration of connection
- If no data, capacity wasted
- Set up (connection) takes time
- Once connected, transfer is transparent to the users
- Info is transmitted at a fixed data rate with no delay (except for the propagation delay)
- Developed for voice traffic (phone)
- may also be used for data traffic via modem
- Private Branch Exchange (PBX) interconnection
- Interconnection of telephones within a building or office

Public Switched Telephone Network (PSTN)

Telecoms Components

- Subscriber
- Devices attached to network
- Subscriber line
- Link between subscriber and the network
- Also called Local Loop or Subscriber loop
- Few km up to few tens of km
- Exchange
- Switching centers in the network
- End office or Local Exchange (class 5) supports subscribers
- Trunks
- Branches between exchanges
- Multiplexed

Circuit Establishment

Circuit Switch Elements

Circuit Switching Concepts

- Digital Switch
- Provides transparent signal path between devices
- Network Interface
- Represents functions and hardware needed to connect digital devices (eg data processing devices, digital telephones) to the network
- Control Unit
- Establishes connections
- Generally on demand
- Handles and acknowledges requests
- Determines if destination is free
- Constructs the path
- Maintains connection
—Disconnects

Blocking or Non-blocking

- An important characteristic of a circuit-switching device is whether it is blocking or nonblocking
- Blocking occurs when
-the network is unable to connect stations because all paths are in use
-A blocking network allows this
-Used on voice systems
- Short duration calls
- Non-blocking network
-Permits all stations to connect (in pairs) at once
-Used for some data connections

Space Division Switching

- Developed for analog environment
- Signal paths are physically separated from one another (divided in space)
- Basic building block of the switch is a metallic crosspoint that can be enabled and disabled by a control unit
- Crossbar switch
- Limitations
- Number of crosspoints grows as square of number of stations (costly for a large switch)
- Loss of crosspoint prevents connection
- Inefficient use of crosspoints
- All stations connected, only a few crosspoints are in use
- Single-stage crossbar matrix is non-blocking i.e. a path is always available to connect an input to an output
- To overcome these limitations, multiple-stage switches are used

Space Division Switch

Multistage Switch

- Reduced number of crosspoints
-This increases crossbar utilization
- More than one path through network
-Increases reliability
- More complex control
- May be blocking

Time Division Switching

- Modern digital systems rely on intelligent control of space and time division elements
- Use digital time division techniques to set up and maintain virtual circuits
- Partition low speed bit stream into pieces that share higher speed stream

Control Signaling Functions

- In a circuit-switched network, control signals are the means by which the network is managed and by which calls are established, maintained and terminated
- Functions of control signaling are:
- Audible communication with subscriber (dial tone, ringing tone)
- Transmission of dialed number
- Call cannot be completed indication
- Call ended indication
- Signal to ring phone
- Billing info
- Equipment and trunk status info
- Diagnostic info
- Control of specialist equipment

Control Signal Sequence

- Consider a typical phone connection sequence from one line to another in the same central office
- Prior to the call, both phones not in use (on hook)
- Subscriber lifts receiver (off hook)
- End office switch signaled
- Switch responds with dial tone
- Caller dials number
- If target not busy, sends ringer signal to target subscriber
- Feedback to caller
- Ringing tone, engaged tone, unobtainable
- Target accepts call by lifting receiver
- Switch terminates ringing signal and ringing tone
- Switch establishes connection
- Connection release when source subscriber hangs up

Switch to Switch Signaling

- When the called subscriber is attached to a different switch than the calling subscriber, the following switch-to-switch trunk signaling functions are required:
-Originating switch seizes an idle interswitch trunk
-Sends off hook signal on trunk, requesting digit register at target switch (for address)
-Terminating switch sends off hook followed by on hook to show register ready
-Originating switch sends address

Location of Signaling

- Signaling between subscriber to network
-Depends on subscriber device and switch
- Signaling within the network
-Management of subscriber calls and network
—more complex

In Channel Signaling

- Use same channel for signaling and call
- Requires no additional transmission facilities
- Inband signaling
- Uses same frequencies as voice signal
- Can go anywhere a voice signal can
- Impossible to set up a call on a faulty speech path
- Out of band signaling
- Voice signals do not use full 4kHz bandwidth
- Narrow signal band within 4 kHz used for control
- Can be sent whether or not voice signals are present
- Need extra electronics
- Slower signal rate (narrow bandwidth)

Drawbacks of In Channel Signaling

- Limited transfer rate
- Delay between entering address (dialing) and connection
- Overcome by use of common channel signaling

Common Channel Signaling

- Control signals carried over paths independent of voice channel
- One control signal channel can carry signals for a number of subscriber channels
- Common control channel for these subscriber lines
- Associated Mode
- Common channel closely tracks interswitch trunks
- Disassociated Mode
- Additional nodes (signal transfer points)
- Effectively two separate networks

Signaling System Number 7 (SS7)

- Common channel signaling scheme
- Specifically designed to be used in ISDNs
- Purpose of SS7 is to provide a standardized common channel signaling system with the following characteristics:
-Optimized for 64k digital channel network
-Call control, remote control, management and maintenance
-Reliable means of transfer of info in sequence
-Will operate over analog and below 64 k
-Point to point terrestrial and satellite links

SS7
 Signaling Network Elements

- Signaling point (SP)
-Any point in the network capable of handling SS7 control message
- Signal transfer point (STP)
-A signaling point capable of routing control messages
- Control plane
-Responsible for establishing and managing connections
- Information plane
-Once a connection is set up, info is transferred in the information plane

Transfer
Points

STP = Signaling transfer point
SP = Signaling point
TC = Transit center
LE = Local Exchange

Signaling Network Structures

- The following parameters influence the decision concerning the design of the network and the number of levels to be implemented:
- STP capacities
- Number of signaling links that can be handled
- Message transfer time
- Throughput capacity
- Network performance
— Number of SPs
- Signaling delays
- Availability and reliability
- Ability of network to provide services in the face of STP failures

Softswitching

Softswitch Architecture

- General purpose computer running software to make it a smart phone switch
- Lower costs
- Greater functionality
- Packetizing of digitized voice data
- Allowing Voice over IP (VoIP)
- Most complex part of telephone network switch is software controlling call process
- Call routing
- Call processing logic
- Typically running on proprietary processor
- Separate call processing from hardware function of switch
- Physical switching done by Media Gateway (MG)
- Call processing done by Media Gateway Controller (MGC)

Traditional Circuit Switching

Softswitch

Packet Switching

Packet Switching Principles

- Circuit switching designed for voice
-Key characteristic is that resources within the network are dedicated to a particular call
-Much of the time a data connection is idle
- inefficient
-Data rate is fixed
- Both ends must operate at the same rate, this limiting the utility of the network in interconnecting a variety of computers
- Packet switching networks address above problems

Basic Operation of packet switching networks

- Data transmitted in small packets
-Typically 1000 octets (bytes)
-Longer messages split into series of packets
-Each packet contains a portion of user data plus some control info
- Control info
-Includes routing (addressing) info
- At each node packets are received, stored briefly (buffered) and past on to the next node
-Store and forward

Use of Packets

Advantages of packet-switched over circuit-switched networks

- Line efficiency is greater, because
- Single node to node link can be shared by many packets over time
- Packets queued and transmitted as fast as possible
- Data rate conversion can be performed
- Each station connects to the local node at its own speed
- Nodes buffer data if required to equalize rates
- Packets are accepted even when network is busy
- Delivery may slow down
- Priorities can be used
- Transmit higher-priority packets first, so as to experience less delay

Switching Technique

- Station breaks long message into packets
- Packets sent one at a time to the network
- Packets handled in two ways
-Datagram
-Virtual circuit

Datagram

- Each packet treated independently
- Packets can take any practical route
- Packets may arrive out of order
- Packets may go missing
- Up to receiver to re-order packets and recover from missing packets

Datagram Diagram

- Each node chooses the next node on a packet's path taking into account info received from neighboring nodes on traffic, line failures, etc
- Packets with same destination address do not follow the same route (c) and may arrive out of order at the exit node
- Exit node restores packets to their original order before delivering them to the destination

Virtual Circuit

- Preplanned route established before any packets sent
- Once route is established, all the packets between the two communicating parties follow the same route through the network
- Call request and call accept packets establish connection (handshake)
- Each packet contains a Virtual Circuit Identifier (VCI) instead of destination address
- No routing decisions required for each packet
- Clear request to drop circuit
- Not a dedicated path

Virtual Circuit
 Diagram

- A preplaned route is established before any packets are sent
- Once route is established, all the packets follow same route

Virtual Circuits vs Datagrams

- Virtual circuits
-Network can provide sequencing and error control
-Packets are forwarded more quickly
- No routing decisions to make
—Less reliable
- Loss of a node looses all circuits through that node
- Datagrams
-No call setup phase
- Better if few packets
-More flexible
- Routing can be used to avoid congested parts of the network

Circuit vs Packet Switching

- Performance

-Propagation delay

- Time taken for a signal to propagate from one node to the next (generally negligible)
-Transmission time
- Time taken for a transmitter to send out a block of data
- Eg it takes 1 sec to transmit a 10.000 block of data onto a 10kbps line
-Node delay
- Time taken for a node to perform necessary processing as it switches data

Event Timing

(a) Circuit switching
(b) Virtual circuit packet switching
(c) Datagram packet switchin

Required Reading

- Stallings Chapter 10
- ITU-T web site
- Telephone company web sites

Home Exercises

Review questions

- Why is it useful to have more than one possible path through a network for each pair of stations?
- What are the four generic architectural components of a PSTN? Define each term.
- What is the principle application that has driven the design of circuit-switched networks?
- What is the difference between in-channel and common channel signaling?
- What are the drawbacks of in-channel signaling?
- What are the advantages of packet switching compared to circuit switching?
- What is the principle difference in the architecture of a softswitch compared to that of a traditional circuit switch?
- Explain the difference between datagram and virtual circuit operation.

