
HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Software Business and Engineering Institute

Pekka Laukkanen

Data-Driven and Keyword-Driven Test

Automation Frameworks

Master’s thesis submitted in partial fulfillment of the requirements for the degree
of Master of Science in Technology.

Espoo, February 24, 2006

Supervisor: Professor Reijo Sulonen

Instructor: Harri Töhönen, M.Sc.

HELSINKI UNIVERSITY ABSTRACT OF THE
OF TECHNOLOGY MASTER’S THESIS

Author: Pekka Laukkanen

Name of the thesis: Data-Driven and Keyword-Driven Test Automation Frameworks

Date: February 24, 2006 Number of pages: 98 + 0

Department: Department of Computer Professorship: T-76

Science and Engineering

Supervisor: Prof. Reijo Sulonen

Instructor: Harri Töhönen, M.Sc.

The growing importance and stringent quality requirements of software systems are in-
creasing demand for efficient software testing. Hiring more test engineers or lengthening
the testing time are not viable long-term solutions, rather there is a need to decrease the
amount of resources needed. One attractive solution to this problem is test automation,
i.e. allocating certain testing tasks to computers. There are countless approaches to test
automation, and they work differently in different contexts. This master’s thesis focuses
on only one of them, large-scale frameworks for automated test execution and reporting,
but other key approaches are also briefly introduced.

The thesis opens its discussion of test automation frameworks by defining their high-level
requirements. The most important requirements are identified as ease-of-use, maintain-
ability and, of course, the ability to automatically execute tests and report results. More
detailed requirements are derived from these high-level requirements: data-driven and
keyword-driven testing techniques, for example, are essential prerequisites for both ease-
of-use and maintainability.

The next step in the thesis is constructing and presenting a framework concept fulfilling
the defined requirements. The concept and its underlying requirements were tested
in a pilot where a prototype of the framework and some automated tests for different
systems were implemented. Based on the pilot results, the overall framework concept
was found to be feasible. Certain changes to the framework and original requirements
are presented, however. The most interesting finding is that it is possible to cover all
the data-driven testing needs with the keyword-driven approach alone.

Keywords: test automation, test automation framework, data-driven testing, keyword-
driven testing

ii

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ

Tekijä: Pekka Laukkanen

Työn nimi: Aineisto- ja avainsanaohjatut testiautomaatiojärjestelmät

Päivämäärä: 24.2.2006 Sivuja: 98 + 0

Osasto: Tietotekniikan osasto Professuuri: T-76

Työn valvoja: Prof. Reijo Sulonen

Työn ohjaaja: DI Harri Töhönen

Ohjelmistojärjestelmien merkityksen sekä laatuvaatimusten kasvaminen aiheuttaa pai-
neita ohjelmistojen testaukselle. Testaajien määrän lisääminen tai testausajan pi-
dentäminen ei ole loputtomasti mahdollista, pikemminkin resursseja halutaan vähentää.
Yksi houkutteleva ratkaisu on testauksen automatisointi eli osan testaustyön antami-
nen tietokoneiden hoidettavaksi. Erilaisia tapoja testauksen automatisointiin on lukui-
sia ja ne toimivat eri tavoin erilaisissa tilanteissa ja ympäristöissä. Tämä diplomityö
käsittelee tarkemmin vain yhtä lähestymistapaa, laajoja automaatiojärjestelmiä testien
automaattiseen suorittamiseen ja raportoimiseen, mutta myös muut tavat ovat tärkeitä.

Testiautomaatiojärjestelmien käsittely aloitetaan määrittelemällä niille korkean tason
vaatimukset. Tärkeimmiksi vaatimuksiksi todetaan helppokäyttöisyys, ylläpidettävyys
sekä tietenkin kyky automaattisesti suorittaa testejä ja raportoida niiden tulokset.
Näiden vaatimusten kautta päästään tarkempiin vaatimuksiin ja todetaan mm. että
aineisto-ohjattu (data-driven) ja avainsanaohjattu (keyword-driven) testaustekniikka
ovat edellytyksiä sekä helppokäyttöisyydelle että ylläpidettävyydelle.

Seuraavaksi työssä suunnitellaan määritellyt vaatimukset toteuttava testiautomaa-
tiojärjestelmä. Järjestelmän toimintaa sekä sen pohjana olleita vaatimuksia testataan
pilotissa, jossa toteutetaan sekä prototyyppi itse järjestelmästä että automatisoitu-
ja testejä erilaisille ohjelmistoille. Pilotin tuloksien perusteella suunnitellun automaa-
tiojärjestelmän voidaan todeta olevan pääperiaatteiltaan toimiva. Lisäksi kokemus-
ten perusteella järjestelmään sekä alkuperäisiin vaatimuksiin esitetään joitain muutok-
sia. Mielenkiintoisin löydös on se että kaikki aineisto-ohjatut testit voidaan toteuttaa
käyttäen ainoastaan avainsanaohjattua lähestymistapaa.

Avainsanat: testiautomaatio, testiautomaatiojärjestelmä, aineisto-ohjattu testaus,
avainsanaohjattu testaus

iii

Acknowledgements

This master’s thesis has been done for a Finnish software testing consultancy com-
pany Qentinel mainly during the year 2005. I wish to thank my instructor Harri
Töhönen, M.Sc. and all other Qentinelians for comments, feedback and patience.

From the Department of Computer Science and Engineering I first of all want to
thank my instructor Professor Reijo Sulonen. Additionally I am grateful for Juha
Itkonen and Casper Lassenius for their support and valuable comments.

I also want to express my gratitude to Mark Fewster who was kind enough to
review the thesis in its early form. Mark’s comments and positive feedback made
me believe that the ideas I present are valid and the remaining hard work is worth
the effort. Also I want to thank Petri Haapio who has been in charge of both the
automation project where I got the original idea for this thesis and a new one where
the automation framework presented in this thesis has been successfully taken into
real use.

Finally, I would like to thank my family and my wonderful girlfriend Sonja for
everything. Kiitos.

Espoo, February 24, 2006

Pekka Laukkanen

iv

Contents

Terms ix

1 Introduction 1

1.1 Promises and Problems of Test Automation 2

1.2 Different Test Automation Approaches 2

1.2.1 Dynamic vs. Static Testing 5

1.2.2 Functional vs. Non-Functional Testing 5

1.2.3 Granularity of the Tested System 6

1.2.4 Testing Activities . 8

1.2.5 Small Scale vs. Large Scale Test Automation 9

1.3 Scope . 11

1.4 Methodology . 12

1.5 Goals . 12

1.6 Structure . 13

2 Requirements for Test Automation Frameworks 14

2.1 High Level Requirements . 14

2.2 Framework Capabilities . 14

2.2.1 Executing Tests Unattended 15

2.2.2 Starting and Stopping Test Execution 15

2.2.3 Handling Errors . 15

2.2.4 Verifying Test Results . 16

2.2.5 Assigning Test Status . 16

2.2.6 Handling Expected Failures 16

2.2.7 Detailed Logging . 17

v

2.2.8 Automatic Reporting . 20

2.3 Modularity . 21

2.3.1 Linear Test Scripts . 21

2.3.2 Test Libraries and Driver Scripts 22

2.3.3 Promises and Problems . 23

2.4 Data-Driven Testing . 23

2.4.1 Introduction . 23

2.4.2 Editing and Storing Test Data 24

2.4.3 Processing Test Data . 26

2.4.4 Promises and Problems . 26

2.5 Keyword-Driven Testing . 27

2.5.1 Introduction . 27

2.5.2 Editing and Storing Test Data 27

2.5.3 Processing Test Data . 29

2.5.4 Keywords in Different Levels 29

2.5.5 Promises and Problems . 31

2.6 Other Implementation Issues . 31

2.6.1 Implementation Language . 32

2.6.2 Implementation Technique . 34

2.6.3 Testware Architecture . 34

2.7 Testability . 36

2.7.1 Control . 36

2.7.2 Visibility . 38

2.8 Roles . 38

2.8.1 Test Automation Manager . 39

2.8.2 Test Automation Architect 39

2.8.3 Test Automator . 40

2.8.4 Test Designer . 40

2.9 Detailed Requirements . 40

2.10 Chapter Summary . 42

3 Concept for Large Scale Test Automation Frameworks 43

3.1 Framework Structure . 43

vi

3.1.1 Test Design System . 43

3.1.2 Test Monitoring System . 44

3.1.3 Test Execution System . 44

3.2 Presenting and Processing Data-Driven Test Data 47

3.2.1 Presenting Test Cases . 48

3.2.2 Using Test Data . 50

3.2.3 Example . 51

3.3 Presenting and Processing Keyword-Driven Test Data 55

3.3.1 Presenting Test Cases . 55

3.3.2 Presenting User Keywords . 57

3.3.3 Using Test Data . 58

3.4 Chapter Summary . 61

4 Implementation and Pilot 62

4.1 Implementation Decisions . 62

4.1.1 Technical Decisions . 62

4.1.2 Decisions Regarding the Pilot 63

4.2 Implementing Reusable Framework Components 64

4.2.1 Test Data Parser . 64

4.2.2 Logger . 66

4.2.3 Summary . 67

4.3 Data-Driven Windows Application Testing 68

4.3.1 Test Data . 68

4.3.2 Driver Script . 68

4.3.3 Test Library . 71

4.3.4 Test Log . 71

4.3.5 Summary . 71

4.4 Keyword-Driven Windows Application Testing 72

4.4.1 Test Data . 72

4.4.2 Driver Script . 72

4.4.3 Test Library . 76

4.4.4 Test Log . 76

4.4.5 Summary . 76

vii

4.5 Keyword-Driven Web Testing . 79

4.5.1 Test Data . 79

4.5.2 Driver Script . 79

4.5.3 Test Library . 81

4.5.4 Test Log . 81

4.5.5 Summary . 81

4.6 Chapter Summary . 85

5 Results 86

5.1 Feasibility of the Framework Concept 86

5.2 Changes to the Framework and Requirements 87

5.2.1 Using Only Keyword-Driven Approach 87

5.2.2 Set Up and Tear Down . 89

5.2.3 Test Suites . 90

5.2.4 Generic Driver Script . 90

5.3 Revised List of Requirements . 91

5.4 Chapter Summary . 91

6 Conclusions 93

Bibliography 95

viii

Terms

Acceptance Testing A level of testing conducted from the viewpoint of the customer,
used to establish the criteria for acceptance of a system. Typ-
ically based upon the requirements of the system. (Craig and
Jaskiel, 2002)

Action Word See keyword.

Actual Outcome Outputs and data states that the system under test produces
from test inputs. See also expected outcome. (Fewster and Gra-
ham, 1999)

Automation See test automation.

Automation Framework See test automation framework.

Base Keyword A term defined in this thesis for keywords implemented in a test
library of a keyword-driven test automation framework. See also
user keyword.

Black-Box Testing A type of testing where the internal workings of the system are
unknown or ignored. Testing to see if the system does what it
is supposed to do. (Craig and Jaskiel, 2002)

Bug See defect.

Capture and Replay A scripting approach where a test tool records test input as it is
sent to the software under test. The input cases stored can then
be used to reproduce the test at a later time. Often also called
record and playback. (BS 7925-1)

Component One of the parts that make up a system. A collection
of units with a defined interface towards other components.
(IEEE Std 610.12-1990)

Component Testing Testing of individual components or groups of related compo-
nents. (IEEE Std 610.12-1990)

ix

Context-Driven Testing A testing methodology that underlines the importance of the
context where different testing practices are used over the prac-
tices themselves. The main message is that there are good prac-
tices in a context but there are no general best practices. (Kaner
et al., 2001)

Control Script See driver script.

Data-Driven Testing A scripting technique that stores test inputs and expected out-
comes as data, normally in a tabular format, so that a single
driver script can execute all of the designed test cases. (Fewster
and Graham, 1999)

Defect Introduced into software as the result of an error. A flaw in the
software with potential to cause a failure. Also called fault or,
informally, bug. (Craig and Jaskiel, 2002; Burnstein, 2003)

Domain code Part of the application code which contains system functionality.
See also presentation code. (Fowler, 2001)

Dynamic Testing The process of evaluating a system or component based
on its behavior during execution. See also static testing.
(IEEE Std 610.12-1990)

Driver A software module that invokes and, perhaps, controls and
monitors the execution of one or more other software modules.
(IEEE Std 610.12-1990)

Driver Script A test script that drives the test execution process using testing
functionality provided by test libraries and may also read test
data from external sources. Called a control script by Fewster
and Graham (1999).

Error A mistake, misconception, or misunderstanding on the part of a
software developer. (Burnstein, 2003)

Expected Failure Occurs when a test case which has failed previously fails again
similarly. Derived from Fewster and Graham (1999).

Expected Outcome Outputs and data states that should result from executing a test.
See also actual outcome. (Fewster and Graham, 1999)

Failure Inability of a software system or component to perform its re-
quired function within specified performance criteria. The man-
ifestation of a defect. (IEEE Std 610.12-1990; Craig and Jaskiel,
2002)

x

Fault See defect.

Functional Testing Testing conducted to evaluate the compliance of a sys-
tem or component with specified functional requirements.
(IEEE Std 610.12-1990)

Feature A software characteristic specified or implied by requirements
documentation. (IEEE Std 610.12-1990)

Framework An abstract design which can be extended by adding more or
better components to it. An important characteristic of a frame-
work that differentiates it from libraries is that the methods de-
fined by the user to tailor the framework are called from within
the framework itself. The framework often plays the role of the
main program in coordinating and sequencing application activ-
ity. (Johnson and Foote, 1988)

Integration Testing A level of test undertaken to validate the interface between in-
ternal components of a system. Typically based upon the system
architecture. (Craig and Jaskiel, 2002)

Keyword A directive that represents a single action in keyword-driven test-
ing. Called actions words by Buwalda et al. (2002).

Keyword-Driven Testing A test automation approach where test data and also keywords
instructing how to use the data are read from an external data
source. When test cases are executed keywords are interpreted
by a test library which is called by a test automation framework.
See also data-driven testing. (Fewster and Graham, 1999; Kaner
et al., 2001; Buwalda et al., 2002; Mosley and Posey, 2002)

Library A controlled collection of software and related documentation
designed to aid in software development, use, or maintenance.
See also framework. (IEEE Std 610.12-1990)

Non-Functional Testing Testing of those requirements that do not relate to functionality.
For example performance and usability. (BS 7925-1)

Manual Testing Manually conducted software testing. See also test automation.

Oracle A document or piece of software that allows test engineers or
automated tests to determine whether a test has been passed or
not. (Burnstein, 2003)

Precondition Environmental and state conditions which must be fulfilled be-
fore a test case can be executed. (BS 7925-1)

xi

Predicted Outcome See expected outcome.

Presentation Code Part of the application code which makes up the user interface
of the system. See also domain code. (Fowler, 2001)

Quality (1) The degree to which a system, component, or process meets
specified requirements.

(2) The degree to which a system, component, or process meets
customer or user needs or expectations. (IEEE Std 610.12-1990)

Record and Playback See capture and replay.

Regression Testing Retesting previously tested features to ensure that a change or
a defect fix has not affected them. (Craig and Jaskiel, 2002)

Requirement A condition or capability that must be met or possessed by a sys-
tem or system component to satisfy a contract, standard, spec-
ification, or other formally imposed documents. Can be either
functional or non-functional. (IEEE Std 610.12-1990)

Set Up Code that is executed before each automated test case in one
particular test suite. A related term used in manual testing is
precondition. See also tear down.

Smoke Testing A test run to demonstrate that the basic functionality of a system
exists and that a certain level of stability has been achieved.
(Craig and Jaskiel, 2002)

Software Test Automation See test automation.

Software Testing The process of operating a system or component under spec-
ified conditions, observing or recording the results, and mak-
ing an evaluation of some aspect of the system or component.
(IEEE Std 610.12-1990)

Static Testing The process of evaluating a system or component based on its
form, structure, content, or documentation. See also dynamic
testing. (IEEE Std 610.12-1990)

System Testing A comprehensive test undertaken to validate an entire system
and its characteristics. Typically based upon the requirements
and design of the system. (Craig and Jaskiel, 2002)

System Under Test (SUT) The entire system or product to be tested. (Craig and Jaskiel,
2002)

xii

Tear Down Code that is executed after each automated test case in one
particular test suite. Test automation frameworks run them re-
gardless the test status so actions that must always be done (e.g.
releasing resources) should be done there. See also set up.

Test Automation The use of software to control the execution of tests, the com-
parison of actual outcomes to predicted outcomes, the setting up
of test preconditions, and other test control and test reporting
functions. (BS 7925-1)

Test Automation
Framework

A framework used for test automation. Provides some core func-
tionality (e.g. logging and reporting) and allows its testing ca-
pabilities to be extended by adding new test libraries.

Test Case A set of inputs, execution preconditions and expected outcomes
developed for a particular objective, such as to exercise a par-
ticular program path or to verify compliance with a specific re-
quirement. (BS 7925-1)

Test Oracle See oracle.

Test Outcome See actual outcome.

Test Runner A generic driver script capable to execute different kinds of test
cases and not only variations with slightly different test data.

Test Suite A collection of one or more test cases for the software under test.
(BS 7925-1)

Test-Driven Development
(TDD)

Development technique where automated unit tests are written
before the system code. Tests drive the design and development
of the system and a comprehensive regression test suite is got as
a by-product. (Beck, 2003)

Testability A characteristic of system under test that defines how easily it
can be tested. Consists of visibility and control. (Pettichord,
2002)

Testing See software testing.

Testware The artifacts required to plan, design and execute test cases,
such as documentation, scripts, inputs, expected outcomes, set
up and tear down procedures, files, databases, environments and
any additional software or utilities used in testing. (Fewster and
Graham, 1999)

xiii

Unit A piece of code that performs a function, typically written by a
single programmer. (Craig and Jaskiel, 2002)

Unit Testing A level of test undertaken to validate a single unit of code. Unit
tests are typically automated and written by the programmer
who has written the code under test. (Craig and Jaskiel, 2002)

User Keyword A term defined in this thesis for keywords constructed from base
keywords and other user keywords in a test design system. User
keywords can be created easily even without programming skills.

White Box Testing Testing based upon knowledge of the internal structure of the
system. Testing not only what the system does, but also how it
does it. (Craig and Jaskiel, 2002)

xUnit Frameworks Frameworks that ease writing and executing automated unit
tests, provide set up and tear down functionalities for them and
allow constructing test suites. The most famous xUnit frame-
work is JUnit for Java but implementations exist for most pro-
gramming languages. (Hamill, 2004)

xiv

Chapter 1

Introduction

Software systems are getting more and more important for organizations and indi-
viduals alike and at the same time they are growing bigger and more complex. It is
thus only logical that importance of software quality1 is also rising. Software faults
have caused loss of huge sums of money and even human lives. If quality does not
get better as systems grow in size, complexity and importance, these losses are only
getting bigger. (Burnstein, 2003)

The need for better quality means more pressure for software testing and for test
engineers taking care of it. Test automation, i.e. giving some testing tasks to com-
puters, is an obvious way to ease their workload. Computers are relatively cheap,
they are faster than humans, they do not get tired or bored, and they work over
weekends without extra pay. They are not ideal workhorses, however, as they only
find defects from places where they are explicitly told to search them and they easily
get lost if something in the system under test (SUT) changes. Giving computers all
the needed details is not easy and takes time. (Fewster and Graham, 1999)

Test automation can be used in multiple ways. It can and should be used differently
in different contexts and no single automation approach works everywhere. Test
automation is no silver bullet either but it has a lot of potential and when done
well it can significantly help test engineers to get their work done. (Fewster and
Graham, 1999)

This thesis concentrates on larger test automation frameworks designed for test exe-
cution and reporting. Before the scope can be defined in more detailed manner some

1New terms are emphasized when used for the first time and their explanations can be found
from the list of terms on pages ix–xiv.

1

CHAPTER 1. INTRODUCTION 2

background information about different automation approaches is needed, however,
and that is presented in Section 1.2. Even before that it is time to investigate a bit
more thoroughly why test automation is needed and what are the main challenges
in taking it into use.

1.1 Promises and Problems of Test Automation

A comprehensive list of test automation promises, as presented by Fewster and
Graham (1999), is shown in Table 1.1. Similar promises have been reported also by
other authors like Pettichord (1999), Nagle (2000) and Kaner et al. (2001).

Most of the benefits in Table 1.1 can be summarized with words efficiency and
reuse. Test automation is expected to help run lots of test cases consistently again
and again on different versions of the system under test. Automation can also ease
test engineers’ workload and release them from repeating tasks. All this has the
potential to increase software quality and shorten testing time.

All these promises make test automation look really attractive but achieving them
in real life requires plenty of hard work. If automation is not done well it will be
abandoned and promises will never be realized. A list of common test automation
problems, again by Fewster and Graham (1999), can be found from Table 1.2.

The general problem with test automation seems to be forgetting that any larger
test automation project is a software project on its own right. Software projects fail
if they do not follow processes and are not managed adequately, and test automa-
tion projects are not different. Of all people, test engineers ought to realize how
important it is to have a disciplined approach to software development. (Kaner,
1997; Zambelich, 1998; Fewster and Graham, 1999; Pettichord, 1999; Kaner et al.,
2001; Zallar, 2001; Rice, 2003)

1.2 Different Test Automation Approaches

This section briefly introduces main test automation categories as an introduction
and background for the rest of this thesis. The focused scope and target for this
thesis are defined in next section.

CHAPTER 1. INTRODUCTION 3

Run existing regression tests on
a new version of a program

Being able to run previously created tests without
extra effort clearly makes testing more efficient.

Run more tests more often Automation means faster test execution which
means more test rounds. Automation should also
make creating new test cases easy and fast.

Perform tests which would be
difficult or impossible to do
manually

For example performance and stress tests are
nearly impossible to conduct without automation.

Better use of resources Automating repeating and boring tasks releases
test engineers for more demanding and rewarding
work.

Consistency and repeatability
of tests

Tests are always run the same way so test results
can be consistently compared to previous results
from previous testing rounds. Tests can also be
easily repeated on different environments.

Reuse of tests Reusing tests from earlier projects gives a kick
start to a new project.

Earlier time to market Reusing tests and shortening test execution time
fastens feedback cycle to developers. In the end
that shortens the time to market.

Increased confidence Running an extensive set of tests often, consis-
tently and on different environments successfully
increases the confidence that the product really is
ready to be released.

Table 1.1: Common test automation promises (Fewster and Graham, 1999)

CHAPTER 1. INTRODUCTION 4

Unrealistic expectations Managers may believe test automation will solve
all their testing problems and magically make
the software quality better. Automation experts
should help managers setting their expectations
right.

Poor testing practice If testing practices and processes are inadequate
it is better to start improving them than bringing
in test automation. Automating chaos just gives
faster chaos.

Expectation that automated
tests will find a lot of new
defects

After automated test has been run successfully
once it is not very likely to find new bugs unless
the tested functionality changes. Automators nor-
mally find more defects while they are developing
tests than when tests are re-executed.

False sense of security Just seeing a test report with no failures does not
mean that the SUT did not have any. Tests may
be incomplete, either not testing all features or not
able to see failures when they occur. Tests may
also have defects and show wrong results.

Maintenance When the SUT changes also its tests change. Hu-
man test engineers are able to handle even major
changes without problems but automated tests can
fail after a slightest change. If maintaining test
automation system takes more time than testing
manually it will surely be abandoned. The same
will happen also if adding new features to the au-
tomation system is too cumbersome.

Technical problems Building and taking test automation system to use
is a technical challenge which is unlikely to pro-
ceed without problems. Tools may be incompati-
ble with the tested system and they also often have
defects themselves.

Organizational issues Successful test automation project requires both
high technical skills and support from manage-
ment. Test automation has also big impact on
the organization and requires changes in many pro-
cesses.

Table 1.2: Common test automation problems (Fewster and Graham, 1999)

CHAPTER 1. INTRODUCTION 5

1.2.1 Dynamic vs. Static Testing

In very high level testing and test automation can be divided into dynamic and
static testing. In the former something is done to the tested system and test status
is checked afterwards but in the latter the developed code is not executed at all.
Examples of static testing are document and code reviews and static code analysis
(e.g. syntax correctness, code complexity). Reviews are by their nature done mainly
by humans while static analysis is mostly left for computers and there are plenty of
good tools available. (IEEE Std 610.12-1990; Burnstein, 2003)

I believe static testing is important and can greatly help in finding defects even in
early stages of projects. In this thesis, however, interest is only on dynamic testing.

1.2.2 Functional vs. Non-Functional Testing

Dynamic testing can be further divided into functional and non-functional test-
ing. Aim of the former, as the name implies, is ensuring that the functionality of
the system adheres to requirements. The latter is conducted to verify that other,
non-functional, aspects of the tested system work as well. (IEEE Std 610.12-1990;
Burnstein, 2003)

Generally all functional testing is done in two steps as illustrated Figure 1.1. First
something is done to the tested system. Next the test outcome, outputs produced
by the system and changes in system’s state, is verified against predefined expected
outcome. In most cases both of theses steps can be automated. (Fewster and
Graham, 1999)

There is plenty to test other than the functionality. Burnstein (2003) mentions
that other areas to cover include performance, security, usability, portability, re-

Figure 1.1: High level view to functional testing

CHAPTER 1. INTRODUCTION 6

liability and memory management. These testing areas are really important and
failures in any of them may ruin otherwise good and functionally correct prod-
uct. Non-functional testing differs quite a lot from functional testing and it is also
rather heterogeneous itself. Some areas (e.g. usability) are mainly tested manually
by experts while others (e.g. performance) are nearly impossible without adequate
automation tools.

In this thesis the scope is on functional testing but many ideas presented are relevant
also when automating non-functional testing.

1.2.3 Granularity of the Tested System

Traditionally testing is divided into different levels such as unit, integration, sys-
tem and acceptance testing (Dustin et al., 1999; Craig and Jaskiel, 2002; Burnstein,
2003). In my opinion this division is not very practical in test automation context,
however, because same automation approach can be used in many levels. For exam-
ple system and acceptance testing do not have much difference from this perspective.
That is why I prefer classification based on the granularity of the tested system into
unit, component and system testing, as suggested by Meszaros (2003).

Unit Testing

The smallest building block of any system is a unit. Units have an application pro-
gramming interface (API) which is used when interacting with other units and can
also be used to test them. Unit testing is in most cases best handled by developers
who know the code under test and techniques needed (Dustin et al., 1999; Craig
and Jaskiel, 2002; Mosley and Posey, 2002). Unit testing is by its nature mostly au-
tomated. In some situations manual tests may be ok but, as noticed by Maximilien
and Williams (2003), they are executed less often than automated ones.

Testing in unit level has multiple good characteristics. First of all unit interfaces
can be driven without any special tools. In this level interfaces also tend to be more
stable than in higher levels, especially in user interface level, and changes in other
units have little or no effect unless units are closely connected. Finding and fixing
defects is also cheapest in unit level.

De facto test tools in unit level are multiple xUnit frameworks. The first of the
many was SmalltalkUnit (Beck, 1994) which was soon ported to Java as JUnit by
Erich Gamma (Beck and Gamma, 1998). After JUnit’s big success implementations

CHAPTER 1. INTRODUCTION 7

for other languages—such as PyUnit for Python and NUnit for Microsoft’s .NET—
followed shortly. (Hamill, 2004)

Unit testing can be taken to new a level with test-driven development (TDD). In
TDD tests are, as the name implies, created before actual production code which
forces developers to think about the design and testability of the system. As a result
the design is clear and number of defects low (Beck, 2003). From testing point of
view the nice thing about TDD is that a comprehensive regression test set is got as
a bonus. Very promising results from using test-driven development are reported
for example by Geras et al. (2004) and Maximilien and Williams (2003), and my
personal experiences are also extremely positive.

The scope of this thesis is on higher test automation levels than unit testing. That
does not mean that I would consider unit testing and unit test automation less
important. On the contrary, I strongly believe that in most cases automation efforts
should be first directed into unit testing level where needed investments are small
and likely to pay back fast.

Component Testing

Components vary a lot from one situation to another but roughly speaking a com-
ponent is a collection of related units which have a common interface towards other
components. These interfaces may be similar programming interfaces as in unit level
but they can also be implemented with many higher level techniques like COM, XML
and HTTP.

Automation in component level is normally not too difficult. Test tools can be
hooked into the same interface which is used by other components. In many cases
there also exists good and free tools for driving the interface (e.g. HTTPUnit) and
even if no ready-made tool is available developers can easily write one. (Pettichord,
2002)

System Testing

The difference between a component and a system is that systems function stand-
alone while components are only used as part of a system. In real life this difference
can be rather vague as systems are often integrated together to form even bigger
systems.

CHAPTER 1. INTRODUCTION 8

Systems have different interfaces towards the rest of the world depending on whether
they are going to be used by humans or other systems. Systems used by humans
have some kind of user interface, either graphical or non-graphical, and systems used
by other systems have similar interfaces as components. Graphical user interfaces
are notoriously hard to automate but other interfaces are generally rather easy.
(Pettichord, 2002)

1.2.4 Testing Activities

Software testing is much more that just executing test cases and similarly test au-
tomation is not limited to automating only test execution.

Designing Test Cases

Functional system and acceptance tests are designed by test engineers using system
requirements and formal test design techniques like equivalence partitioning and
boundary value analysis. Designing good test cases is not easy and it is one of the
main skills a professional test engineer must possess. (Fewster and Graham, 1999;
Craig and Jaskiel, 2002; Burnstein, 2003)

There are also ways to automate the test design process. Expected results for tests
can sometimes be generated automatically using so called oracles, external trusted
entities which can be queried for expected results. Often an oracle is some existing
system, but they can also be created just for testing purposes (Richardson et al.,
1992; Memon et al., 2000). Tools can also generate test cases based on software
code or interfaces (Fewster and Graham, 1999). In model based testing the system
is modeled in such a detail that test cases can be derived automatically from the
model (Dalal et al., 1999; Fewster and Graham, 1999; Robinson, 2000). Plenty of
other methods like a data mining approach (Last et al., 2003), a goal-driven approach
(Memon et al., 1999) and a requirement-based test generation (Tahat et al., 2001)
are also possible.

These kind of methods are very interesting but scope of this thesis is solely on test
execution and task related to it. It should, however, be possible to integrate a test
design automation tool to a test execution framework presented in later chapters.

CHAPTER 1. INTRODUCTION 9

Executing Test Cases and Analyzing Results

After test cases have been designed and created they can be executed and results
verified as illustrated in Figure 1.1. Tests are often re-executed when a new version
of the tested system is available. Automating these regression tests or at least an
exemplary subset of them, often called smoke tests, can make test execution and
result analysis considerably faster. (Zambelich, 1998; Pettichord, 1999)

Reporting Test Results

After test engineers have run their tests they report findings to the project team
and management. If test execution is fully automated it makes sense to automate
also reporting. It probably is not a good idea to send all test reports automatically
to managers’ mail boxes but if a test report is created automatically test engineers
do not need to spend time gathering information from test logs and elsewhere.

Test Management

Many test management tasks like planning, monitoring, scheduling and defect track-
ing can be supported be tools. These tools and automation possibilities they provide
are not in the scope of this thesis.

1.2.5 Small Scale vs. Large Scale Test Automation

The scale of test automation can vary from using it only in small parts of testing,
like checking two files for equivalence, to large scale test automation systems doing
everything from setting up the environment and running tests to reporting results.
(Zallar, 2001)

Tool Aided Testing

Small scale test automation just helps manual testing. Test automation tools are
used in areas where computers are better than humans and where tools are available
or easily implemented. For example tasks like checking that an installation copied
all files to right places and verifying that two files have same data take time and are
error prone to humans but easily automated. This automation approach is strongly
advocated by Bach (2003). He notes that in small scale automation the test code is

CHAPTER 1. INTRODUCTION 10

generally so simple and inexpensive that it can either be easily fixed or trashed if it
is broken by changes in the tested system.

Bach (2003) proposes an idea that so called toolsmiths work with test engineers
and provide them with tools and utilities based on their needs. Toolsmiths should
have good programming skills, at least adequate testing skills and deep knowledge
of different automation tools and methods. There are plenty of good tools available
for this and many of them even are free. Tools that I have used successfully myself
include Unix originating utilities like grep and diff, shell scripts and higher level
scripting languages like Perl and Python, and various tools built by developers for
their development time testing. Bach (2003) and Kaner et al. (2001) list more tools
and sources where to find them. As Kaner et al. (2001) puts it, you may already
have more test tools than you realize.

Even though the scope of this thesis is in large scale test automation I believe small
scale test automation can often be a better strategy because it does not require big
investments and provides help fast. Especially if risk with larger frameworks feel too
big it is better to start small, gain more experience and then later invest to larger
frameworks (Zallar, 2001; Bach, 2003).

Test Automation Frameworks

When test automation is taken to highest level tests can be started with a push
of a button, they can be left running over-night unattended and next morning test
results are published. This kind of automation clearly requires some kind of a system
which makes creating, executing and maintaining test cases easy. The system should
provide some core functionality (e.g. monitoring and reporting) and allow extending
itself to make it possible to create new kinds of tests. This kind of systems match
the definition of framework by (Johnson and Foote, 1988) so it is appropriate to call
them test automation frameworks.

Test automation frameworks have evolved over the time. Kit (1999) summarizes
three generations as follows.

1. First generation frameworks are unstructured, have test data embedded into
the scripts and there is normally one script per one test case. Scripts are
mainly generated using capture and replay tools but may also be manually
coded. This kind of script is virtually non-maintainable and when the tested
system changes they need to be captured or written again.

CHAPTER 1. INTRODUCTION 11

2. In second generation scripts are well-designed, modular, robust, documented
and thus maintainable. Scripts do not only handle test execution but also
for example setup and cleanup and error detection and recovery. Test data
is still embedded into the scripts, though, and there is one driver scripts per
one test case. Code is mostly written manually and both implementation and
maintenance require programming skills which test engineers may not have.

3. Third generation frameworks have all the same good characteristics already
found from second generation. They go forward by taking test data out of
the scripts which has two significant benefits. First benefit is that one driver
script may execute multiple similar test cases by just altering the data and
adding new tests is trivial. Second benefit is that test design and framework
implementation are separate tasks—former can be given someone with the do-
main knowledge and latter to someone with programming skills. This concept
is called data-driven testing. Keyword-driven testing takes the concept even
further by adding keywords driving the test executing into the test data.

Third generation test automation frameworks are the actual interest of this thesis.

1.3 Scope

Previous section should have made it clear that test automation is a very broad
subject and covering it all in a single master’s thesis is impossible. Some large areas
were already excluded from the scope in Section 1.2 and what was left is following.

Designing and implementing a large scale test automation framework for
functional testing in component and system level. The framework must
be able to execute tests, verify results, recover from expected errors and
report results. It must also be both easy to use and maintain. It does not
need to provide support for automation of test planning and design.

Knowing how to automate something is clearly not enough to make an automation
project a success and some of the other important things to take into account are
listed in Table 1.3. These issues are excluded from the scope of this thesis but
they are listed here for completeness sake. They also help to understand how many
issues there are to handle when conducting test automation projects and how big
and challenging these projects can be.

CHAPTER 1. INTRODUCTION 12

When to automate. Tool selection process.

What to automate. Taking tools and frameworks into use.

What to automate first. Test planning and design.

What can be automated. Effect to development and testing processes.

How much to automate. Other organizational issues.

Build or buy. Costs and savings.

Build in-house or use consultants. Metrics.

Table 1.3: Some important issues excluded from the scope

1.4 Methodology

Hevner et al. (2004) assert that software engineering research is characterized by
two complementary paradigms: behavioral science and design science. Behavioral
science is theoretical and has its origins in natural science while design science
originates from engineering and tries to find practical solutions for research problems
from the field. The importance of practical research and concrete, evaluated results
is emphasized both by Hevner et al. (2004) and Shaw (2002) and the methodology
of this thesis is based on models presented by them.

Much of the knowledge of this thesis comes from multiple testing and test automa-
tion books and articles listed in the bibliography. This is not only a literature study,
however, as I have six years experience from testing and test automation using dif-
ferent tools and techniques. This experience gives first hand knowledge about the
subject and also greatly helps processing the information read from the literature.

1.5 Goals

The objective of the thesis is presenting a concept for a large scale test automation
framework. To achieve this goal I have to go through the following four steps which
are also requirements for this thesis.

1. Define requirements for large scale test automation frameworks.

2. Design a framework meeting these requirements.

3. Test the designed framework against the defined requirements in a pilot.

4. Collect results from the pilot and validate the feasibility of the framework
based on them. Adapt requirements based on the new information if necessary.

CHAPTER 1. INTRODUCTION 13

1.6 Structure

This chapter has presented promises and problems of test automation as a motiva-
tion for the thesis and different automation approaches as background information.
Also scope, methodology and requirements for the thesis have been defined.

Chapter 2 defines requirements for successful large scale test automation frameworks
and discusses ways how to meet these requirements.

Chapter 3 is the core of the thesis. In that chapter a framework meeting the re-
quirements set in Chapter 2 is introduced and explained in detail.

In Chapter 4 the presented framework is tested against defined requirements. This
is done by implementing a prototype of the framework and using it in two simple
but non-trivial pilots testing a Windows application and a web page.

Results and experiences from the pilot are collected together in Chapter 5. Based
on the results the general feasibility of the suggested framework is evaluated and
possibly changes made to the requirement set defined earlier.

Chapter 6 is left for conclusions. There it is evaluated how well requirements for
this thesis, defined in Section 1.5, are met.

Chapter 2

Requirements for Test

Automation Frameworks

Chapter 1 introduced different views to test automation and stated that the scope
of this thesis is large scale test automation frameworks. The aim of the chapter is to
define requirements for these frameworks and discuss methodologies and techniques
needed to meet the requirements.

2.1 High Level Requirements

A short list of high level requirements applicable for all large scale test automation
frameworks, derived from Kit (1999) and other sources, is shown in Table 2.1.

Automatic test execution is a high level functional requirement for test automation
frameworks. How it can be accomplished and how it breaks into more detailed
requirements is discussed in Section 2.2. Ease of use and maintainability are non-
functional in their nature and in general achieving them is harder than simply
implementing the functional requirements. Sections 2.3–2.8 present methods and
techniques how they can be fulfilled and how they turn into more detailed require-
ments. Detailed requirements are finally summarized in Section 2.9.

2.2 Framework Capabilities

This section explains what capabilities a test automation framework must have. Dis-
cussed features can be seen as functional requirements for automation frameworks.

14

CHAPTER 2. REQUIREMENTS 15

Automatic Test Execution Fully automatic test execution is of course the number
one requirement for test automation frameworks. Just
executing tests is not enough, however, and the frame-
work must also be capable to for example analyze test
outcome, handler errors and report results. (Kit, 1999)

Ease of Use Framework must be easy to use by test engineers or
it is very likely to be abandoned. Framework users
must be able to design and edit tests, run them and
monitor their status easily without any programming
skills. (Kaner, 1997; Kit, 1999; Nagle, 2000)

Maintainability It must be easy and fast to maintain both test data
and framework code when the tested system changes or
updates are needed otherwise. It should also be easy
to add new features to the framework. (Fewster and
Graham, 1999; Kit, 1999; Pettichord, 1999; Nagle, 2000;
Zallar, 2001; Rice, 2003)

Table 2.1: High level requirements for test automation frameworks

2.2.1 Executing Tests Unattended

Framework must be able to start executing tests with a push of a button and run
tests on its own. This means that framework must be able to set up the test
environment and preferably also check that all preconditions are met. (Fewster and
Graham, 1999; Pettichord, 1999)

2.2.2 Starting and Stopping Test Execution

It must be possible to start test execution manually. It is also convenient if tests can
be started automatically at a specified time or after a certain event (e.g. new version
of the SUT available). Easiest way to start execution at a certain time is making it
possible to start test execution manually from command line and using operating
system’s features for scheduling (at in Windows and cron in Unixes). Starting after
predefined events can be implemented similarly using external tools.

2.2.3 Handling Errors

Part of running tests unattended is recovering from errors caused by the tested
system or the test environment not working as expected. Test framework ought to
notice error situations and continue testing without manual intervention. Handling

CHAPTER 2. REQUIREMENTS 16

all possible but rare errors is seldom worth the effort, though, and over-engineering
should be avoided. (Pettichord, 1999)

2.2.4 Verifying Test Results

An integral part of test execution is verifying test results. Fewster and Graham
(1999) define verification as one or more comparisons between actual outcome of
a test and predefined expected outcome. They also explain different comparison
techniques which are out of the scope of this thesis.

2.2.5 Assigning Test Status

After a test is executed and its results verified it ought to be given a status. If the
test was executed without any problems and all comparisons between actual and
expected outcomes match the test gets a pass status. In every other case the status
is fail. Besides the status every test case should also get a short but descriptive
status message. For passed tests this message is normally not that important but
with failed tests it can give details about the cause of the problem (e.g. “Calculation
failed: expected 3, got 2” or “Initializing test environment failed: Not enough space
on disk”).

Some authors, e.g. Fewster and Graham (1999), propose having more statuses than
pass and fail. Other statuses could for example differentiate expected failures from
new ones and problems caused by test environment from other problems. While I
understand the motivation I suggest using the status message for those purposes
instead.

2.2.6 Handling Expected Failures

The most frustrating part of failure analysis is going through test cases which are
known to fail and checking whether they have failed similarly as before or have new
defects appeared. That is wasteful and clearly something that should be automated
as Fewster and Graham (1999) recommends.

To be able to differentiate expected failures from new ones the framework must
know what is the expected outcome when test fails. This means that the framework
must store both the expected outcome and the expected failed outcome of the test.
When a test fails, and is expected to do so, the expected failed outcome can be

CHAPTER 2. REQUIREMENTS 17

Figure 2.1: Handling expected failures

compared against the actual outcome as seen in the Figure 2.1. If outcomes match
an expected failure is detected, otherwise a new defect has been found. I recommend
communicating expected failures using status messages but, as already discussed, it
can be argued that a specific test status should be used instead. In either case it
sure is fast to analyze failed test which right away tells something like “Expected
failure. Defect id: #2712”.

Fewster and Graham (1999) also recommend notifying test engineers when a test
which is expected to fail passes (i.e. defect has been fixed). This way they can
manually verify that the test really has passed and defect is fixed without side
effects. After every passed test the framework should check whether the test was
expected to fail by checking does it have the expected fail outcome. If test was
expected to fail it should be labeled accordingly—I recommend setting the status
message to something like “Defect #2712 fixed”. The whole process of handling
expected failures is illustrated by a flowchart in Figure 2.1.

2.2.7 Detailed Logging

Test automation framework ought to give enough information to test engineers and
developers so that they can investigate failed test cases. Giving only test statuses
and short status messages is not enough. Instead more detailed test logs about the

CHAPTER 2. REQUIREMENTS 18

Fail Used to log the status of a failed test case.

Pass Used to log the status of a passed test case.

Fatal Used when an unrecoverable failure preventing further test
execution occurs. This kind of problem is most often in the
test environment (e.g. disk full or network down).

Error Used when an unexpected error preventing current test’s
execution occurs. For example the button to push in a test
does not exists.

Failure Used when the test outcome does not match the expected
outcome.

Warning Used when a recoverable error not affecting test execution
occurs. For example deleting some temporary file fails.

Info Used to log normal test execution like starting test and
passed verifications.

Debug Gives detailed information about what the test automation
framework or a particular test case is doing. Used mainly
for debugging the framework or test cases.

Trace Similar to debug but contains even more detailed informa-
tion.

Table 2.2: Suggested logging levels

test execution process and how the tested system behaved are needed. On top of
that the framework must log what it is doing internally to make it easier to debug
problems in the framework itself.

The main dilemma with any kind of logging, as stated by Pettichord (2002), is how
much to log. Logging too much makes finding relevant information hard and huge
log files cause a storage problem. Then again logging too little can make logs totally
useless. There is no perfect solution for this problem but for example using different
logging levels make the problem smaller.

Multiple logging levels provide a mechanism for controlling how much detail is cap-
tured. For example lowest levels, those that produce most output, can in normal
cases be filtered out before they are even logged. If detailed information is needed
the filter can be adjusted. Later when logs are viewed entries can be filtered even
further so that only interesting levels are viewed. What levels are needed depends
ultimately on the context but I have found the list in Table 2.2 pretty good for most
situations. Two examples how these levels can be used are found in Figure 2.2.

CHAPTER 2. REQUIREMENTS 19

Timestamp Level Message

20050502 15:14:01 Info Test execution started. SUT: Calculator v. 0.6.1, Test
suite: Calculator basic

20050502 15:14:04 Info Test environment setup without problems

20050502 15:14:04 Info Starting test case ’Add 01’

20050502 15:14:05 Info Test ’1 + 2’ returned 3

20050502 15:14:05 Pass ’Add 01’

20050502 15:14:06 Info Starting test case ’Add 02’

20050502 15:14:06 Info Test ’0 + 0’ returned 0

20050502 15:14:06 Pass ’Add 02’

20050502 15:14:07 Info Starting test case ’Add 03’

20050502 15:14:08 Failure Test ’1 + -1’ returned 2, expected 0

20050502 15:14:08 Fail ’Add 03’ failed: ’1 + -1’ returned 2, expected 0

20050502 15:14:09 Info Starting test case ’Add 04’

20050502 15:14:09 Info Test ’0.5 + 0.5’ returned 1

20050502 15:14:09 Pass ’Add 04’

20050502 15:14:10 Info Test execution ended. 4/4 test cases executed (100 %),
3/4 passed (75 %), 1/4 failed (25 %).

Timestamp Level Message

20050502 16:23:31 Info Test execution started. SUT: Calculator v. 0.6.2, Test
suite: Calculator basic

20050502 16:23:43 Fatal Setting up test environment failed

20050502 16:23:43 Info Test execution ended. 0/4 test cases executed (0 %), 0/4
passed (0 %), 0/4 failed (0 %).

Figure 2.2: Two test log examples

As already mentioned the level used for filtering log entries at the execution time
(often called simply logging level) must be configurable (Pettichord, 2002). Setting
a log level somewhere means that entries lower than the threshold level are not
to be logged. Adjusting the level must be easy for anyone executing tests and it
should preferably be possible also while tests are running. The default logging level
should normally be info. Info level gives required information about test execution
but no debugging details which should not be needed normally. For example logs
in Figure 2.2 would be too uninformative if higher level was used and unnecessarily
long if level was lower.

CHAPTER 2. REQUIREMENTS 20

2.2.8 Automatic Reporting

Test logs have all the information from test execution but, especially if they are
long, they are not good for seeing test statuses at a glance. This kind of view is
provided by concise test reports. Test reports provide statistical information about
the quality of the tested system and they are not only important for test engineers
but also for developers, managers and basically everyone involved with the project.
(Fewster and Graham, 1999)

Reports should not be too long or detailed. Having a short summary and list of
executed test cases with their statuses is probably enough. List of items every test
report should have is presented below—adapted from Buwalda et al. (2002)—and
Figure 2.3 shows a simple example.

• Name and version of the tested system.
• Identification of the executed test suite.
• The total number of passed tests and executed tests.
• List of errors found.
• Optionally a list of all executed tests along with their statuses.

Test reports can be either created at the same time when tests are run or they can
be constructed based on test logs afterwards. In my experience the latter method
is easier because then you only need to think about logging, not reporting, while
writing test code. It also makes reporting flexible because if more information is
needed later it can be parsed from logs and test code does not need to be changed.
Example report in Figure 2.3 is constructed based on earlier example test log in
Figure 2.2.

After tests are executed the created report should be published so that results are
easily available for everyone interested. Publishing can mean for example sending
report to some mailing list or uploading it to a web page. Published results should
also have a link or a reference to previous test results and to more detailed test logs.

CHAPTER 2. REQUIREMENTS 21

SUT Calculator v. 0.6.1

Test suite Calculator basic

Start time 20050502 15:14:01

End time 20050502 15:14:10

Tests executed 4/4 (100 %)

Tests passed 3/4 (75 %)

Tests failed 1/4 (25 %)

Failed Tests

20050502 15:14:08 Fail ’Add 03’ failed: ’1 + -1’ returned 2, expected 0

All Executed Tests

20050502 15:14:05 Pass ’Add 01’

20050502 15:14:06 Pass ’Add 02’

20050502 15:14:08 Fail ’Add 03’ failed: ’1 + -1’ returned 2, expected 0

20050502 15:14:09 Pass ’Add 04’

Figure 2.3: Example test report

2.3 Modularity

This section discusses the importance of modularity in test automation framework
design.

2.3.1 Linear Test Scripts

Linear test scripts do not use any external functions and, as illustrated in Figure 2.4,
they interact directly with the tested system. Simple linear scripts are fast to write
initially and they are thus well suited for small tasks. The problem with linear
scripts is that when tasks get bigger and more complicated also they grow longer,
more complicated and generally hard to maintain. They also tend to have repeating
code which could be taken out and reused. If many similar test scripts are created
the maintenance problem just grows bigger because one change in the tested system
can require changes in every script. (Fewster and Graham, 1999)

CHAPTER 2. REQUIREMENTS 22

2.3.2 Test Libraries and Driver Scripts

Structured coding is a common programming paradigm and it is of course applicable
with test code too (Kelly, 2003). In low level it can mean simply using small
functions in the same file as the main test script. In higher level use test functions
are placed to external, shared test libraries from where they can be used by any test
script.

When test libraries do most of the actual testing work test scripts can be short and
simple. Because scripts are only driving the test execution they are customarily
called driver scripts. Figure 2.5 shows how two driver scripts uses same test library
to interact with the tested system.

Figure 2.4: Linear test scripts

Figure 2.5: Driver scripts and a test library

CHAPTER 2. REQUIREMENTS 23

2.3.3 Promises and Problems

When enough functionality is available in easy to use test libraries creating new
driver scripts for different tests is very easy and fast. This is very efficient code
reuse but an even bigger advantage of this approach is that it makes maintenance
simpler. When something is changed in the tested system updating only one function
in the test library can make everything work again and even in worst cases changes
should be needed only in the test library. (Zambelich, 1998; Fewster and Graham,
1999; Kelly, 2003; Rice, 2003)

The problem with test libraries is that creating them is not easy. Fewster and
Graham (1999) mention that keeping track of, documenting, naming, and storing of
created scripts is a big task. They also note that if reusable functions are not easy to
find and well documented automators are likely to write their own versions. Marick
(1997) notes that writing well-designed API to a test library is as hard as writing
any good API and it should not be expected to be right the first time. Similar
problems have been noticed also by Kaner et al. (2001) and Pettichord (1999) who
are pretty skeptical about test libraries in general. They remark that effort required
to build a useful library is not always justified.

In my opinion modularity and test libraries are a must when building large test
automation frameworks. I cannot see how maintainability could be achieved without
them. Libraries sure are an overkill for simple cases but in those cases the whole
idea of building a big framework is questionable.

2.4 Data-Driven Testing

2.4.1 Introduction

Simple test scripts have test data embedded into them. This leads to a problem
that when test data needs to be updated actual script code must be changed. This
might not be a big deal for the person who originally implemented the script but for
a test engineer not having much programming experience the task is not so easy. If
the script is long and non-structured the task is hard for everyone. Another problem
with having the test data inside test scripts is that creating similar tests with slightly
different test data always requires programming. The task may be easy—original
script can be copied and test data edited—but at least some programming knowledge
is still required. This kind of reuse is also problematic because one particular change

CHAPTER 2. REQUIREMENTS 24

in the tested system may require updating all scripts. (Strang, 1996; Nagle, 2000)

Because of these problems embedding test data into scripts is clearly not a viable
solution when building larger test automation frameworks. A better approach is
reading the test data from external data sources and executing test based on it. This
approach is called data-driven testing and it is illustrated in Figure 2.6. External test
data must be easily editable by test engineers without any programming skills. It is
often in tabular format and edited in spreadsheet programs, as seen in Figure 2.7.
(Strang, 1996; Fewster and Graham, 1999; Nagle, 2000; Kaner et al., 2001; Rice,
2003; Mugridge and Cunningham, 2005)

2.4.2 Editing and Storing Test Data

Because data-driven test data is tabular it is natural to use spreadsheet programs
to edit it. Test engineers and business people are, as Mugridge and Cunningham
(2005) point out, also likely to be familiar with spreadsheet programs and already
have them available. Another benefit is that spreadsheet programs are often used
for simple test management tasks and in that case there is less need for storing same
data in different places or copying it back-and-forth.

Spreadsheet files can be saved in comma-separated-values (CSV), tab-separated-
values (TSV) or spreadsheet programs’ native formats. CSV and TSV files are
handy because they are very easy to parse but unfortunately most spreadsheet
programs seem to alter the data whey they open these files. For example if I store
phone number +358912345 and version number 1.5.1 to a CSV file and open it to
my Excel they are “auto-corrected” to 358912345 and 1.5.2001, respectively. The
easiest solution for this problem is storing data using program’s native format and
only exporting it into CSV or TSV. Another possibility is processing the native
format directly but it requires some more initial effort.

HTML tables provided another easy-to-parse format for presenting test data. Edit-
ing HTML with a decent graphical editor is nearly as convenient as using a spread-
sheet program but unlike their native formats HTML can also be edited with any
text editor if nothing else is available.

Storing test data into any kind of flat file has scalability problems in very large
scale use. If for example test data is created and edited in several workstations
and used in multiple test environments it gets hard to have the same version of the
data everywhere. Configuration management and clear instructions surely help but
even they may not be enough. The real solution for scalability problems is storing

CHAPTER 2. REQUIREMENTS 25

Figure 2.6: Data-driven approach

Figure 2.7: Data-driven test data file

data = open (’ t e s tda ta . t sv ’) . read ()
l i n e s = data . s p l i t l i n e s () [1 :] # [1 :] e xc lude s the header row

for l i n e in l i n e s :
t e s t Id , number1 , operator , number2 , expected = l i n e . s p l i t (’ \ t ’)
Actual t e s t f u n c t i o n a l i t y exc luded

Listing 2.1: Simple data-driven parser

CHAPTER 2. REQUIREMENTS 26

test data into a central database. That way the test data can be edited using for
example a web-based interface and driver scripts can query the data directly from
the database. Building such a system is a big project itself and can be recommended
only if scalability is a real problem.

Bird and Sermon (2001) and Bagnasco et al. (2002) have had good experience using
XML for storing the test data. I agree that XML has some good characteristics but
because using it would require implementing a separate test design system it is not
a good solution for situations where spreadsheets and HTML editors are sufficient.
For very large scale use I would then again rather select a database with a web-based
user interface because it would also provide a centralized data storage.

2.4.3 Processing Test Data

Implementing a script for parsing data-driven test data can be surprisingly easy with
modern scripting languages. For example data in Figure 2.7 can be exported into a
TSV file and parsed with four lines of Python code in Listing 2.1. In the example
test data is first read into data variable and then split to lines so that header row
is excluded. Data lines are then processed one by one. Lines are split to cells from
tabulator character and cells’ data assigned to variables making test data available
in the script for actual testing (which is excluded from the example).

In Listing 2.1 the parsing logic is in the same script as the actual testing code which
is against modularity goals presented in Section 2.3. This simple parser is also
limited in functionality and would fail for example if data had any empty rows or
columns were rearranged. If more functionality is required from the parser it should
be implemented as a common module which all driver scripts can use—this was
already seen in the Figure 2.6. How the parser should be implemented and what
kind of functionality it needs is further discussed in Section 3.2 and Chapter 3 in
general.

2.4.4 Promises and Problems

Main benefit of data-driven test automation is that it makes creating and running
lots of test variants very easy (Strang, 1996; Fewster and Graham, 1999; Kaner
et al., 2001). Editing tests and adding new similar ones is easy and requires no
programming skills (Kaner, 1997). Another benefit is that test data can be designed
and created before test implementation or even before the tested system is ready

CHAPTER 2. REQUIREMENTS 27

(Strang, 1996; Pettichord, 2003) and it is usable in manual testing even if automation
implementation is never finished. Overall, the data-driven approach is the key for
ease-of-use in large scale test automation.

The data-driven approach also helps with maintenance. When the tested system
changes it is often possible to change only either the test data or the test code
and their maintenance responsibilities can also be divided between different people.
(Strang, 1996; Kaner, 1997; Marick, 1997; Kaner et al., 2001; Rice, 2003)

The biggest limitation of the data-driven approach is that all test cases are similar
and creating new kinds of tests requires implementing new driver scripts that un-
derstand different test data. For example test data in Figure 2.7 and its parsing
script in Listing 2.1 are designed for testing calculations with only two numbers and
would require major changes to handle longer tests like 5 ∗ 8 + 2 = 42. In general
test data and driver scripts are strongly coupled and need to be synchronized if ei-
ther changes. Another disadvantage of data-driven testing is the initial set-up effort
which requires programming skills and management. (Fewster and Graham, 1999)

2.5 Keyword-Driven Testing

2.5.1 Introduction

Previous section introduced data-driven testing and stated that it has multiple
promises. It also mentioned that its biggest limitation is that all test cases are
similar and creating totally new tests requires programming effort. A solution for
this limitation, offered by Fewster and Graham (1999) and Kaner et al. (2001)
among others, is the keyword-driven approach where not only the test data but also
directives telling what to do with the data are taken from test scripts and put into
external input files. These directives are called keywords and test engineers can use
them to construct test cases freely. The basic idea—reading test data from external
files and running tests based on it—stays the same as in data-driven testing. As
Fewster and Graham (1999) put it, keyword-driven testing is a logical extension to
data-driven testing. Example of a keyword-driven test data file is seen in Figure 2.8.

2.5.2 Editing and Storing Test Data

There is no real difference between handling keyword-driven and data-driven test
data. In both cases spreadsheets or HTML tables are normally adequate but a
central database can solve scalability problems in very large scale use.

CHAPTER 2. REQUIREMENTS 28

Figure 2.8: Keyword-driven test data file

Figure 2.9: Handlers for keywords in Figure 2.8

CHAPTER 2. REQUIREMENTS 29

2.5.3 Processing Test Data

Processing a simple keyword-driven test data file as in Figure 2.8 is not much dif-
ferent from processing a simple data-driven test data file. Simple parser, much like
the one in Listing 2.1, can get keywords and their arguments to the driver script. In
more complex cases the parser should again be implemented only once and placed
into a common, reusable module.

After the test data is parsed the driver script must be able to interpret keywords
and execute the specified action using assigned arguments (Fewster and Graham,
1999). To keep the framework modular it is a good idea to have a handler (i.e. a
test function) for each keyword and put these handlers to external test library as
presented in Figure 2.9.

2.5.4 Keywords in Different Levels

One of the big decisions to make when designing a keyword-driven framework is the
level of the keywords to be used. In Figure 2.8 keywords are pretty low level (e.g.
Input, Push) making them suitable for detailed testing on the interface level. When
testing higher level functionality like business logic low level keywords tend to make
test cases very long and higher level keywords (e.g. Add in our calculator example)
are much more usable. Sometimes it is possible to use only either low or high level
keywords and build keyword handlers accordingly. Often both levels are needed and
then it is a good idea to construct higher level keywords from low level keywords.
For example low level keywords Input and Push could be used to create higher level
keywords Add, Subtract, Multiply and Divide and similarly Equals could be created
using Push and Check. Figure 2.10 shows how these higher level keywords make
test cases shorter.

A straightforward way to construct new high level keywords is letting framework
developers implement handlers for them in the framework so that new handlers use
lower level handlers as seen in Figure 2.11. Implementing higher level keywords
directly into the framework has its limitations, though, as test engineers are limited
only to keywords in the test library and they cannot easily create new ones.

A more flexible solution is allowing test engineers to construct higher level keywords
using the same interface they use for designing test cases. These kind of techniques
are presented with different implementation both by Buwalda et al. (2002) and Nagle
(2000). Figure 2.12 shows one option how new keywords could be constructed. To

CHAPTER 2. REQUIREMENTS 30

Figure 2.10: Keyword-driven test data file with higher level keywords

Figure 2.11: Creating higher level keywords in test library

Figure 2.12: Creating higher level keywords in test design system

CHAPTER 2. REQUIREMENTS 31

differentiate these new keywords from those implemented directly in the test library
I like to call them user keywords and base keywords, respectively. Test libraries do
not have handlers for user keywords, instead they are executed by executing base
keywords, or other user keywords, they are constructed from.

The main benefit in making it possible to construct new keywords using the test
design system is that new keywords can be created and maintained easily without
programming skills. Of course it can be argued that creating user keywords is
already programming but at least it is so easy that everyone involved with test
automation can learn it. The biggest problem with the approach is that processing
test data gets more complicated but, once again, the small increase in initial effort
is insignificant when building a large scale automation framework. Implementation
issues are discussed in greater detail later in Chapter 3 and especially in Section 3.3.

2.5.5 Promises and Problems

Keyword-driven testing has all the same benefits as data-driven testing. As already
mentioned the main advantage over data-driven testing is that the keyword-driven
technique makes it easy even for non-programmers to create new kinds of tests.
Comparing Figures 2.7 and 2.8 prove this point pretty explicitly. Keyword-driven
testing is a big step forward from pure data-driven testing where all tests are similar
and creating new tests requires new code in the framework.

One problem with the keyword-driven approach is that test cases tend to get longer
and more complex than when using the data-driven approach. For example test case
Add 01 is only one line in Figure 2.7 but five lines in Figure 2.8. This problem is
due to greater flexibility and can be pretty well solved using higher level keywords.
The main problem of keyword-driven testing is that it requires a more complicated
framework than data-driven testing.

2.6 Other Implementation Issues

Same processes, methodologies and techniques which are important when designing
and implementing any non-trivial software system are important also when building
larger test automation frameworks (Zallar, 2001). Those implementation issues
which I feel are the most important are discussed in this section.

CHAPTER 2. REQUIREMENTS 32

2.6.1 Implementation Language

Programming languages are needed when building test automation tools and frame-
works. Often automation tools are also controlled using input scripts which have
their own language. Requirements for language used when building a tool and for
language used with the tool can be very different. With multiple programming lan-
guages available picking the right choice in different situations is not an easy task.
Selecting a language already used in the organization or known otherwise is always
a safe bet but it is not the only criteria.

System Programming Languages

System programming languages such as C++ and Java are designed for building
data structures, algorithms and large systems from scratch (Ousterhout, 1998).
They are optimized for performance and scalability rather than for fast program-
ming speed. These languages may well be used when building test automation tools
and frameworks especially when developers know them well already and do not
know suitable higher level scripting languages. For a language to be used as an
input script for a tool they are too low level.

Scripting Languages

Scripting languages such as Perl, Python, Ruby, Tcl and Visual Basic are higher
level languages than system programming languages. Ousterhout (1998) states that
instead of building things from scratch they are designed for gluing components
and systems together. Ousterhout (1998) suggests that programming something
takes five to ten times less code in scripting language than in system programming
language. Because programmers write approximately the same number of lines in
same time regardless the language, scripting languages may fasten development time
with the same magnitude. Shorter programs are also easier to maintain.

Ousterhout (1998) mentions that scripting languages are somewhat slower than sys-
tem programming languages, but current computers are so fast that it is normally
not important. Pettichord (1999) notes that in test automation this slight perfor-
mance difference is hardly ever a problem because most of the time is spent waiting
for the tested system to respond for inputs or setting up test environment.

I have experience using both system programming and scripting languages for test
automation and I can second all the positive things Ousterhout (1998) says about

CHAPTER 2. REQUIREMENTS 33

the latter. They are excellent for implementing tools and frameworks and also as
input scripts used by tools.

Shell Scripts

Shell scripts are lower level scripting languages which come with the operating sys-
tem. In Unixes the primary shell scripting language is Bash and Windows machines
natively have primitive DOS batch files. Shell scripts are not as flexible as higher
level scripting languages but they are very handy for small tasks. I use shell scripts
regularly for small automation tasks but I consider them too cumbersome for im-
plementing larger frameworks.

Vendor Scripts

Vendor scripts are proprietary languages implemented by tool vendors to be used
with these tools. Test tools using vendor script should be approached with a certain
caution for reasons listed below.

• Nobody knows them. Developers and some test engineers are likely to know
many programming languages but not likely to know some special vendor
script. Hiring people with previous knowledge is hard. (Pettichord, 2001)

• Not mature enough. Vendor scripts do not have those features mature pro-
gramming languages and their support libraries have. If vendor script does
not have for example good enough string handling capabilities you have to
implement them yourself. (Pettichord, 2001)

• Vendor scripts have compatibility problems with other tools and languages.
(Rice, 2003)

Because of these reasons my advice is avoiding vendor scripts altogether if possible.
Luckily they are getting rare nowadays as vendors have started embedding exist-
ing mature scripting languages to their products. Examples of this are Mercury’s
QuickTest Pro which uses Visual Basic and PushToTest’s TestMaker using Jython
(a Java implementation of the Python language).

CHAPTER 2. REQUIREMENTS 34

2.6.2 Implementation Technique

Manual Programming

Manual script writing is a normal programming task and if done properly scripts are
easy to use and maintain. It has two obvious drawbacks: writing scripts takes some
time and requires programming skills which test engineers may not have. (Fewster
and Graham, 1999; Mosley and Posey, 2002)

Capture and Replay

Capture and replay tools are supposed to overcome problems with manual script
writing. The idea is that you push a record button and let the tool record every
action—keystroke, mouse movement or click—while executing test manually. The
tool stores captured actions in a script for later playback. This approach sounds
attractive and, as Meszaros (2003) note, it may be suitable for situations where
scripts are needed fast, they can be trashed in the future and programming skills
required for manual scripting are not available.

The biggest problem with capture and replay is that maintaining recorded scripts is
nearly impossible. More problems associated with it are listed for example by Kaner
(1997), Zambelich (1998), Pettichord (1999), Kaner et al. (2001), Zallar (2001),
Mosley and Posey (2002), Meszaros (2003), and Rice (2003). Because of these
numerous problems I do not consider capture and replay an option when building
larger test automation frameworks.

2.6.3 Testware Architecture

Test automation frameworks require plenty different artifacts from scripts to test
data and from documentation to test results. All these artifacts are commonly called
testware. Testware architecture is about managing the testware in an order to make
the framework easy to use and maintain. The bigger the framework is the greater
the need for detailed testware architecture. (Fewster and Graham, 1999)

Testware architecture is important both in manual and automated testing. Dis-
cussing it thoroughly is out of the scope of this thesis but this section goes through
few aspects I feel most important when talking about larger test automation frame-
works.

CHAPTER 2. REQUIREMENTS 35

Version Control

Version control and configuration management are required for any larger soft-
ware project and test automation frameworks are no exception. Maintaining all
the needed testware and its different versions is a nightmare without an adequate
version control system. (Fewster and Graham, 1999; Zallar, 2001; Buwalda et al.,
2002)

Coding and Naming Conventions

Coding and naming conventions cover everything from variable, function and file
naming to code indentation. The idea of coding conventions is that when everyone
writes similar code it is then easy to understand and maintain by anyone. Consistent
naming of modules, functions and files greatly helps with reuse when module and
function names are easy to remember and even guess. (Fewster and Graham, 1999)

These kinds of convention are very important when anything larger is programmed
and should not be forgotten when building large test automation systems. Conven-
tions should be agreed and documented when starting a test automation project.
Often this is easy as conventions used when implementing tested systems can be
used straight away or with slight modifications.

Documentation

Lack of adequate documentation makes using test libraries hard because people new
to them need to spent time finding how and under what circumstances to use them.
Documentation is also needed in maintenance. Need for quality documentation is
commonly understood but there are two problems: first the documentation must be
written and then it must be kept updated. (Fewster and Graham, 1999)

For code documentation purposes semi-automatic documentation systems such as
Javadoc are getting more and more popular. With these tools the original documen-
tation is kept within the code so that it is available when code is read and edited
and it can easily be kept updated with the code. Documentation can be extracted
with special tools so that it is readable with a web browser or some other viewer.
Tools can also read function and variable names from the code so that they do not
need to be documented manually.

Code documentation is very important but not enough on its own. Other needed

CHAPTER 2. REQUIREMENTS 36

documents include instructions for setting up, using and maintaining the framework.
It is the quality of the documentation, not its quantity, that is important. (Fewster
and Graham, 1999)

2.7 Testability

Most often the hardest part of a test automation effort is integrating the selected
tool with the tested system. Pettichord (2002) and Kaner et al. (2001) state that
instead of fine tuning the tool to handle all possible quirks of the tested system
it might be better to invest on increasing the testability of the system. Pettichord
(2002) has noticed that the success of the whole automation project may well depend
on testability issues and also others, e.g. Fewster and Graham (1999), Kaner et al.
(2001) and Bach (2003), underline importance of testability. Testability problems
are similar in small and large scale test automation projects but in larger scale its
positive effect to maintenance gets more and more important.

Pettichord (2002) defines testability as visibility and control and says that testability
means having reliable and convenient interfaces to drive the test execution and
verification. This definition maps very well to the two steps of functional testing
in Figure 1.1: we need control when doing something to the tested system and
visibility when verifying the test outcome. Pettichord (2002) states that the key for
testability is close cooperation between test engineers and programmers. Otherwise
test engineers may be afraid to ask for testability improvements they need and
programmers are unaware of what features are needed. Fewster and Graham (1999)
remark that what needs to be tested and how it can be tested should be decided
while the system is being designed and implemented and not afterwards.

2.7.1 Control

Software testing occurs through an interface and this interface has a huge impact
to the testability and especially its control part. Interfaces, as discussed in Sec-
tion 1.2.3, come in different levels and are meant either for humans or systems. All
kinds of programming interfaces inherently have high testability because test tools
can interact with them similarly as other programs. Interfaces used by humans can
be either graphical or non-graphical, and non-graphical ones can be further divided
into textual interfaces and command line interfaces (CLI). Command line inter-
faces normally have very high testability and they can be driven even with simple

CHAPTER 2. REQUIREMENTS 37

shell scripts. Textual interfaces are not that trivial but simple tools (e.g. Expect in
Unixes) can be easily used to control them. (Pettichord, 1999, 2002)

Graphical user interfaces (GUI) are not designed for automation (Marick, 2002) and
are technically complicated (Kaner et al., 2001). This leads to low testability and it is
no wonder that problems with GUI test automation are reported by several authors
like Pettichord (1999, 2002), Kaner et al. (2001), Marick (2002) and Bach (2003).
In practice GUI automation is complicated because user interface objects (often
called widgets) are hard to recognize and interact with automatically. Special tools
are needed and even they may not be able to work with non-standard or custom
controls (Pettichord, 2002). GUIs also tend to change frequently (Marick, 1997,
2002; Pettichord, 2002) and in worst cases changes occur at the very end of the
project when system functionality ought to be fully regression tested. Human tester
can find a button which has changed its text from Save to Submit and moved to
different position but that is not so easy for computers.

The number one solution for problems associated with GUI test automation is trying
to avoid it altogether (Kaner et al., 2001; Marick, 2002; Pettichord, 2002). System
functionality is tested much more easily below the GUI using an interface which
does not change as often and where test tools can be hooked without a hassle. If
the well known development practice to separate presentation code and domain code
is obeyed testing below the GUI should be easy (Fowler, 2001; Pettichord, 2002).
Sometimes there is a need to add a new testing interface to give even more control to
testing. As Pettichord (2002) and Marick (1997) note some people think that mixing
test code with product code undermines the integrity of the testing but neither they
nor Fowler (2001) share that feeling. Fowler (2001) even asserts that testability is
an important criteria for good design and notes that hard-to-test applications are
very difficult to modify.

Testing below GUI of course leaves the user interface untested but verifying that
GUI looks and works correctly is anyway something where humans are better than
computers. Humans can easily tell if everything is not correct while computers find
problems only from places where they are told to look them. Humans also notice
non-functional issues like usability problems and missing features. (Marick, 2002)

There are of course valid reasons for GUI test automation. Pettichord (1999) states
that the user interface itself can be so complicated that its testing must be auto-
mated. Second, and sadly more common, reason noted by Meszaros (2003) and
Marick (1997) is that if the system has not been initially build with testability in

CHAPTER 2. REQUIREMENTS 38

mind GUI might be the only available interface. Whatever the reason, testability
enhancements in the GUI can make automated testing easier. For example rec-
ognizing widgets can be eased assigning them a unique and unchanged identified
(Kaner et al., 2001; Pettichord, 2002), and if custom controls or other widgets are
not compatible with selected tool they should get special testability hooks (Kaner,
1997; Pettichord, 2002).

2.7.2 Visibility

Visibility can often be achieved through the same interface which is used for control
and similarly there sometimes is a need to extend this interface to increase its
testability. For example access into internals of the tested system greatly increases
the visibility. This kind of access may be used for checking intermediate results of
longer processes or getting some other detailed information about the state of the
system.

Other techniques to increase visibility, presented by Pettichord (2002), include ver-
bose output, logging, assertions, diagnostics and monitoring. Log files themselves
can have high or low visibility. Pettichord (2002) suggests having variable levels of
logging and that log messages should have timestamps and identify the subsystem
which produced them. He also warns about logging too much (hard to find impor-
tant messages, takes a lot of space) or too little (not enough details). Log files, as
well as other outputs, should also be easily machine readable. Machine readable
outputs are of course desirable also for other than testability reasons. For example
easily processed log file format does not only ease automated testing but also makes
it possible to automatically monitor system’s state even in production environment.
Another example is that having exported data in standard format like CSV or XML
makes using it in testing easy but also helps further processing of the data with
other tools.

2.8 Roles

This section lists and explains roles needed when building and using larger test
automation frameworks. List of roles is adapted from Zallar (2001) and Fewster
and Graham (1999), and it should be at least fine tuned based on the context. In
smaller projects the same people may play multiple roles and in larger ones there
can be several full time people per one role.

CHAPTER 2. REQUIREMENTS 39

2.8.1 Test Automation Manager

Test automation projects need managers who are responsible for big decisions like
starting the project and also discontinuing it if it seems to never pay back. It is
possible that a steering group acts as a sponsor like this. Management is needed
also in project execution level keeping the project on track. The same person can
act both as a sponsor and a project manager but these tasks can well be given to
separate persons. (Fewster and Graham, 1999)

2.8.2 Test Automation Architect

Test automation architect, sometimes also called a champion, is responsible for de-
signing the framework, implementing core components and maintaining them when
tested system changes or new features are needed. Architect also helps test automa-
tors implementing system specific test libraries and driver scripts. Other respon-
sibilities include setting coding and naming conventions and writing documenta-
tion, instructions and training material for test engineers and other people involved.
(Zambelich, 1998; Fewster and Graham, 1999; Zallar, 2001)

This is the most important role for project success. The person in this position has
a lot of responsibilities and successfully filling them requires plenty of skills. He
or she must have good programming skills, preferably from multiple programming
languages, and also quite a lot of designing skills. This person must also have testing
skills and be interested about it. First hand testing experience is not absolutely
mandatory but highly recommended. Automation champion must, of course, have
plenty of knowledge of test automation frameworks—reading the literature in the
bibliography of this thesis should help but real knowledge is only gained through
experience. (Fewster and Graham, 1999; Zallar, 2001)

Often there is nobody with required skills available for this role in the company.
Everyone may be busy with their own projects, test engineers lack programming
skills or developers do not have needed testing skills or experience from automation
frameworks. Zambelich (1998) suggests that in this situation hiring a consultant
with skills and experience is a good idea but, as Kaner (1997) warns, it has a
risk that all deeper knowledge of the framework is in external heads. Thus it is
recommended to either pair contractors with internal persons or use them only as
trainers.

CHAPTER 2. REQUIREMENTS 40

2.8.3 Test Automator

Test automators are mainly responsible for writing system specific driver scripts and
test libraries. They must have adequate programming skills and know the framework
well enough to be able to use test libraries and other reusable components it provides.
They of course need to know the tested system very well because driver scripts and
test libraries are always dependent on it. (Zallar, 2001; Rice, 2003)

In my experience developers who have implemented the tested system are often
best candidates to this role because they have both programming skills and know
the tested system by heart. Test engineers responsible for testing the system are
another good option, assuming that they have enough programming skills.

2.8.4 Test Designer

End users of an automation framework are test designers. They are most often
professional test engineers knowing the tested system well but in some cases they
can also be domain experts with minimum testing experience. In either case they
cannot be expected, or required, to have much programming skills. Framework
should be designed and implemented so well that these people can easily learn how
to use it and get their job done. (Kaner, 1997; Mugridge and Cunningham, 2005)

It is also possible to further divide end users’ responsibilities so that more experi-
enced test engineers both design and execute test cases while less experienced are
only executing them. Framework should thus allow executing earlier created tests
without needing to know how they actually are designed.

2.9 Detailed Requirements

The high level requirements for large scale test automation frameworks were defined
in Table 2.1 at the beginning of this chapter. Previous sections have discussed
different techniques, methods and other issues how to fulfill these requirements and
at the same time split them into more detailed ones. These detailed requirements
are now summarized in Table 2.3.

The list is rather long but fulfilling many of the requirements is actually pretty
straightforward. For example having multiple logging levels is a feature which needs
to be implemented and writing documentation is a task to undertake. The list should
not be taken as a complete set of requirements covering everything but rather as an
initial requirement set that needs to be adapted to a particular situation.

CHAPTER 2. REQUIREMENTS 41

High Level
Requirements

The framework MUST execute test cases automatically. That
includes also for example verifying results, handling errors and
reporting results.

The framework MUST be easy to use without programming
skills.

The framework MUST be easily maintainable.

Automatic Test
Execution

The framework MUST be able to execute tests unattended.

It MUST be possible to start and stop test execution manually.

It SHOULD be possible to start test execution automatically at
predefined time.

It SHOULD be possible to start test execution automatically
after certain events.

Non-fatal errors caused by the SUT or the test environment
MUST be handled gracefully without stopping test execution.

Test results MUST be verified.

Every executed test case MUST be assigned either Pass or Fail
status and failed test cases SHOULD have a short error
message explaining the failure.

Framework SHOULD differentiate expected failures (i.e. known
problems) from new failures.

Test execution MUST be logged.

Test execution SHOULD be logged using different, configurable
logging levels.

Test report MUST be created automatically.

Test report SHOULD be published automatically.

Ease of Use The framework MUST use either data-driven or keyword-driven
approach.

The framework SHOULD use both data-driven and
keyword-driven approach.

Keyword-driven framework SHOULD provide means to create
new higher level keywords from lower level keywords.

Maintainability The framework MUST be modular.

The framework SHOULD be implemented using high level
scripting languages.

The testware MUST be under version control.

The framework MUST have coding and naming conventions.

The framework MUST be adequately documented.

Testability of the tested system MUST be increased as much as
possible.

Clear roles MUST be assigned.

Table 2.3: Detailed requirements for a large scale test automation framework

CHAPTER 2. REQUIREMENTS 42

2.10 Chapter Summary

This chapter first defined that high level requirements for large scale test automation
frameworks are automatic test execution, ease of use and maintainability. Then
various issues related to how to fulfill the requirements were discussed, ranging from
needed features to implementation issues. Finally more detailed requirements were
summarized in Table 2.3.

Next chapter builds from the foundation laid in this chapter and suggests a high-level
concept for a framework fulfilling the defined requirements.

Chapter 3

Concept for Large Scale Test

Automation Frameworks

The previous chapter defined requirements for large scale test automation frame-
works and this chapter continues by presenting a framework concept that tries to
fulfill those requirements. The presented concept should, however, not to be consid-
ered universally suitable for all situations as is. Instead it is more like a high level
layout that needs to be adjusted based on the context where it is used.

3.1 Framework Structure

The requirement for the framework to be either data-driven, keyword-driven, or
both means that some kind of system where test data can be designed and created is
needed. Multiple requirements for monitoring test execution suggests that another
system is needed for monitoring purposes and yet another system is, of course,
needed for actually executing test cases. In high level these three must-have systems
make up the test automation framework as seen in Figure 3.1. Test design and
monitoring systems can of course also be integrated to make all user interfaces
available in one place.

3.1.1 Test Design System

Test design system is used for creating new test cases and editing existing ones. It
is test engineers’ and domain experts’ playground and must be easy to use with

43

CHAPTER 3. FRAMEWORK CONCEPT 44

minimal training and without programming skills.

As discussed in Section 2.4.2, the created test data can be stored into flat files or
databases. A simple solution is using an existing tool like spreadsheet program or
HTML editor as a test design system. A special test design tool made just for this
purpose would of course have its benefits but building something like that is out of
the reach for most automation projects.

3.1.2 Test Monitoring System

Test monitoring system is used for controlling test execution and checking test re-
sults. To fulfill requirements in Table 2.3 it should have at least the capabilities
listed below.

• Starting test execution manually.
• Starting test execution automatically after some specified event (e.g. new

version of the SUT available for testing).
• Starting test execution automatically at specified time.
• Stopping test execution.
• Monitoring test execution while tests are running.
• Viewing test logs while tests are running and afterwards.
• Viewing test report.
• Changing logging level.

The low-end test monitoring solution is using command line for starting and stopping
test execution and creating plain text test logs and reports. Next step is creating logs
and reports in HTML which is much richer than plain text but equally universally
viewable. The high-end solution could be having all test monitoring functionalities
in a web based system and integrating it also with the test design system.

3.1.3 Test Execution System

Test execution system is the core of the framework. Its main components are driver
scripts, the test library, the test data parser and other utilities like logger and
report generator. How all these and other framework components work together
is illustrated in Figure 3.2. Arrows in the diagram start from the component that
uses the other component. They do not mean that the interaction is only one way,
however, as the used component always returns something to the caller. For example

CHAPTER 3. FRAMEWORK CONCEPT 45

the parser returns processed test data and test functions return the test status and
the status message.

Driver Scripts

Test execution is controlled by driver scripts which are started using the test mon-
itoring system. As discussed in Section 2.3.2, driver scripts are pretty short and
simple because they mainly use services provided by test libraries and other reusable
modules. This can also be seen in Figure 3.2 which has plenty of arrows starting
from the driver script denoting that it is using the component at the other end.

Test Libraries

Test libraries contain all those reusable functions and modules which are used in
testing or in activities supporting it. Testing is mainly interacting with the tested
system and checking that it behaves correctly. Supporting activities are often related
to setting up the test environment and include tasks like copying files, initializing
databases and installing software. Functions in the test library can do their tasks
independently but they can also use other functions or even external tools—all these
three options are seen in Figure 3.2.

As explained in Section 2.3.2 one test library can be used by several driver scripts.
If the system under test is very large, or framework is designed for testing multiple
different systems, it could be a good idea to create one test library for each tested
system or subsystems.

Test Data Parser

The test data parser was introduced in Section 2.4.3 as a means to get test data
easily to driver scripts. Its task is processing the test data and returning it to the
driver script in easy to use test data containers. Test data containers provide an
easy and presentation neutral access to the test data.

The role of the parser in Figure 3.2 may seem small but in reality it is the heart of the
whole test execution system. Extending the metaphor test data containers are blood
cells carrying oxygen to muscles—only this time oxygen is test data and muscles are
functions in the test library. Finally the driver script controlling everything can be
seen as a brain of the framework.

CHAPTER 3. FRAMEWORK CONCEPT 46

Figure 3.1: High level view of the framework

Figure 3.2: Detailed view of the framework

CHAPTER 3. FRAMEWORK CONCEPT 47

Processing data-driven and keyword-driven test data requires two different parser
flavors. Data-driven parser and test data containers created by it are described in
Section 3.2 and keyword-driven versions in Section 3.3.

Logger

Section 2.2.7 introduced quite a few logging requirements to the framework. An
easy and modular way to fulfill them is having a common logger component with
the required features. This is illustrated in Figure 3.2 where both the driver script
and test functions use the same logger which in turn writes messages to the common
test log.

Report Generator

The reporting requirements of the framework are defined in Section 2.2.8 and they
can be summarized saying that a concise report must be created and published.
These tasks are given to a reusable report generator component.

3.2 Presenting and Processing Data-Driven Test Data

At this point the framework has a set of requirements and a layout which helps
to achieve them. Section 3.1.3 highlighted the importance of the test data parser
and test data containers it creates and dubbed them framework’s heart and blood
cells. This section explains how the data-driven version of the parser works and the
keyword-driven version is discussed in the next section.

The idea of having a separate parser and letting it create test data containers is not
directly from literature. It is based on my experiences from designing and imple-
menting a larger data-driven framework. Many of the original ideas were of course
borrowed from books and articles I had read earlier, and the now presented version
has been refined after I have studied the subject further. The parser component
conforms very well to similar components in frameworks presented by Nagle (2000),
Buwalda et al. (2002), Zambelich (1998) and Mosley and Posey (2002). Test data
containers, on the other hand, are something I have not seen presented elsewhere.
The framework in general is also pretty similar to Fit (Framework for Integrated
Testing) presented by Mugridge and Cunningham (2005) but that is mainly a coin-
cidence as I studied it more only after the framework was designed.

CHAPTER 3. FRAMEWORK CONCEPT 48

3.2.1 Presenting Test Cases

The layout and formatting of the test data creates a simple test description language.
Test designers must know how the languange is “programmed” and the associated
driver script must know how to parse and execute it. This language must be de-
signed cooperatively with test designers and test automators—the former knows
what is needed and the latter what is feasible technically. Figure 3.3 shows one way
of presenting data-driven test data and different parts of it are explained below.
Depending on the system under test, selected test design system and other issues
there are of course different suitable alternatives.

Test Case Name

The name of the test case is specified in the column with title Test Case. When
the data is parsed the name is given to the created test data container. The driver
script and other components can later query the name from the container and use
it when logging and reporting.

Figure 3.3: Example data-driven input file

CHAPTER 3. FRAMEWORK CONCEPT 49

Documentation

Test case’s documentation is specified in the next column. It obviously documents
the test data but that is not its only purpose. Since it is stored to the test data
container it is available also at test execution time and can be written to test logs
and reports. Python programmers may find the idea similar to how modules, classes
and functions are documented in Python.

Test Data

Actual test data is put into subsequent columns with appropriate column names.
The data is again stored to the container and can be queried from it when the name
of the column is known.

Settings

The most important part of the test data is of course a list of test cases and test
data associated with them. I have noticed, however, that it is often useful to have a
possibility to specify also settings controlling the test execution along with the data.
Settings can be generic (e.g. logging level and log file) or specific to the system under
test (e.g. IP address of a machine to use in tests).

Comments, Formatting and Empty Lines

Figure 3.3 shows how comment lines, marked with a hash character (#), can be
used to document the purpose of the whole file or to comment specific parts of it.
In general comments make the test data easier to understand. Similar effects are
achieved also with empty lines separating blocks of data and formatting (e.g. bold
and italic) helping to visualize the data.

All these features are unquestionably important as they increase both usability and
maintainability of the test data. In test execution phase they are not anymore
needed, however, and the parser should ignore them.

Handling Parsing Errors

If the test data is invalid or any errors occur during parsing, the parser must not
allow test execution with corrupted test data because that is likely to cause hard

CHAPTER 3. FRAMEWORK CONCEPT 50

import DataDrivenParser

testData = DataDrivenParser . parse (’ data−dr iven . sxc ’)
l ogLeve l = testData . g e tS e t t i ng (’ Log Leve l ’)
t e s tCase s = testData . getTestCases ()

for t e s tCase in t e s tCase s :
name = tes tCase . getName ()
doc = tes tCase . getDoc ()
number1 = tes tCase . getData (’Number 1 ’)
operator = tes tCase . getData (’ Operator ’)
number2 = tes tCase . getData (’Number 2 ’)
expected = tes tCase . getData (’ Expected ’)
Use the t e s t data f o r t e s t i n g

Listing 3.1: Using data-driven test data

to diagnose errors later on. Parser may either terminate immediately after the first
error, or continue parsing to find and report all possible errors. In either case it
must provide a clear error message telling what is wrong and where.

3.2.2 Using Test Data

The test data parser does not return the test data to driver scripts in rows and
columns as it is presented. Instead the parser creates generic test data containers
and stores processed test data into them. These containers are then returned to the
driver script which can use methods provided by them to query the test data when
it is needed. Listing 3.1 shows how driver scripts can get test data from the parser
and use returned containers.

Test Data Container

A test data container contains all the presented test data i.e. both test cases and
settings. In Listing 3.1 a test data container is returned by the imported parser and
assigned to the testData variable. It can then be queried to get settings and, more
interestingly, a list of test case containers.

It is a good idea to implement the getSetting method so that it accepts a default
argument which is returned if the queried setting is not defined. That way tests
can be run even if the value is not specified along the test data but the default can
be overridden easily. In Listing 3.1 that would change getting log level for example
into testData.getSetting(’Log Level’, ’info’).

CHAPTER 3. FRAMEWORK CONCEPT 51

Test Case Container

A test case container has all the test data of one particular test case. As it was seen
in Section 3.2.1 that data includes test case’s name, documentation and the actual
test data. Name and documentation are always present so they can be queried
with special methods (getName and getDoc) but other data must be queried using
a generic getData method with the name of the needed data as an argument.

Summary of Data Containers and Their Methods

Table 3.1 summarizes presented test data containers and their methods. If the
framework needs more capabilities it is possible to add additional methods to the
containers and make them more intelligent. For example method like getIntData

could be used to get the requested data as an integer.

Test Data Container getTestCases()

getSetting(name, default)

(default is optional)

Test Case Container getName()

getDoc()

getData(name)

Table 3.1: Test data containers and methods needed in data-driven testing

3.2.3 Example

It is a time for an example putting together features needed when using data-
driven test data. This example executes tests based on the test data in Figure 3.3.
Listing 3.2 shows an example driver script which uses a test library in Listing 3.3.
Created test log is shown later in Figure 3.4.

The system under test in this example is a simple calculator. In real life it would
probably be an external system used through special tool but in this case the calcu-
lator is just imported and used directly in the test library. More realistic examples
are presented in the next chapter.

CHAPTER 3. FRAMEWORK CONCEPT 52

Import r eu sab l e components
import DataDrivenParser
import TestLibrary
import TestLog

Parse t e s t data
testData = DataDrivenParser . parse (’ t e s tda ta . t sv ’)

Get l o g l e v e l , i n i t i a l i z e l o g g i n g and ge t a l o g g e r
l o gLeve l = testData . g e tS e t t i ng (’ Log Leve l ’)
TestLog . i n i t i a l i z e (’ t e s t l o g . l og ’ , l ogLeve l)
l o gg e r = TestLog . getLogger (’ Dr iver ’)

Log a message with in f o l e v e l
l o g g e r . i n f o (’ Test execut ion s t a r t ed ’)

Variab l e s c o l l e c t i n g t e s t s t a t i s t i c s
executed = 0
passed = 0

This loop i s i t e r a t e d f o r each t e s t case
for tc in testData . getTestCases () :

executed += 1
name = tc . getName ()
doc = tc . getDoc ()
l o gg e r . i n f o (’ Star ted t e s t case %s (%s) ’ % (name , doc))

Try running the t e s t . I f no er ror s occur t e s t ’ s s t a t u s and
a s t a t u s message are returned .
try :

(s tatus , message) = TestLibrary . t e s tFunct ion (tc)

Catch p o s s i b l e excep t i ons .
except Exception , e r r o r :

s t a tu s = False
message = s t r (e r r o r)

Log t e s t s t a t u s e i t h e r as Pass or Fa i l .
i f s t a tu s i s True :

l o gg e r . passed (’ Test case %s passed ’ % name)
passed += 1

else :
l o g g e r . f a i l e d (’ Test case %s f a i l e d : %s ’ % (name , message))

l o gg e r . i n f o (’%d t e s t ca s e s executed , %d passed , %d f a i l e d ’ % \
(executed , passed , executed − passed)

Listing 3.2: Data-driven driver script example

CHAPTER 3. FRAMEWORK CONCEPT 53

import TestLog
import Calcu la to r # The system under t e s t

Get own l o g g e r f o r the l i b r a r y
l o g g e r = TestLog . getLogger (’ L ibrary ’)

def t e s tFunct ion (tc) :

Get t e s t data . Note t ha t numeric data i s turned in to i n t e g e r s
(getIntData method would be convenient)
number1 = in t (tc . getData (’Number 1 ’))
operator = tc . getData (’ Operator ’)
number2 = in t (tc . getData (’Number 2 ’))
expected = in t (tc . getData (’ Expected ’))

Debug l o g g i n g he l p s i n v e s t i g a t i n g p o s s i b l e problems
l o g g e r . debug (’Num 1 : %d , Operator : %s , Num 2 : %d , Expected : %d ’ \

% (number1 , operator , number2 , expected))

Test the c a l c u l a t o r
Calcu la to r . input (number1)
i f operator == ’+’ :

Ca l cu la to r . add (number2)
i f operator == ’− ’ :

Ca l cu la to r . subt rac t (number2)
i f operator == ’ ∗ ’ :

Ca l cu la to r . mul t ip ly (number2)
i f operator == ’ / ’ :

Ca l cu la to r . d i v id e (number2)

r e s u l t = Ca l cu la to r . ge tResu l t ()

Check t e s t r e s u l t
i f r e s u l t == expected :

s t a tu s = True
message = ’ Test passed . Result : %d ’ % (r e s u l t)
l og . i n f o (message)

else :
s t a tu s = Fal se
message = ’ Expected : %d , but got : %d ’ % (expected , r e s u l t)
l og . f a i l u r e (message)

return s tatus , message

Listing 3.3: Data-driven test library example

CHAPTER 3. FRAMEWORK CONCEPT 54

Timestamp Module Level Message

20050509 12:23:34 Driver Info Test execution started.

20050509 12:23:34 Driver Info Started test case Add 01 (1 + 2 = 3)

20050509 12:23:35 Library Info Test passed. Result: 3

20050509 12:23:35 Driver Pass Test case Add 01 passed.

20050509 12:23:35 Driver Info Started test case Add 02 (1 + -2 = -1)

...
...

...
...

20050509 12:23:40 Driver Pass Test case Div 01 passed.

20050509 12:23:41 Driver Info Started test case Div 02 (2 / -2 != 42)

20050509 12:23:41 Library Failure Expected: 42, but got: -1

20050509 12:23:41 Driver Fail Test caseDiv 02 failed: Expected: 42, but
got: -1

20050509 12:23:42 Driver Info 8 test cases executed, 7 passed, 1 failed

Figure 3.4: Data-driven test log example

CHAPTER 3. FRAMEWORK CONCEPT 55

3.3 Presenting and Processing Keyword-Driven Test Data

The close relationship between keyword-driven and data-driven techniques makes
presenting and processing test data very similar in both cases. Many of the ideas
introduced in the previous section are thus valid also with keyword-driven test data.
There is a totally new challenge, though, as the framework should support con-
structing user keywords.

Because keyword-driven approach is more flexible than data-driven also test de-
scription language it provides is more expressive. For example creating new user
keywords with arguments is getting quite close to real programming. This kind of
features make the framework more powerful but also more complex. Just adding
more functionality like this is necessarily not a good thing as one of the main ideas
behind data-driven approaches is making test design simple and not requiring pro-
gramming skills. The presented syntax is still so simple, however, that learning
it should not be a problem for anyone involved with test automation. I believe a
right design goal in this kind of situations is keeping easy things easy but making
complicated things possible.

3.3.1 Presenting Test Cases

Figure 3.5 shows one possibility how keyword-driven test data can be presented. The
major difference between this example and earlier data-driven example in Figure 3.3
is that instead of having one test case per row there is now one keyword per row.
The number of keywords per test case may vary and nothing prevents test cases
from having totally different keywords.

Name and Documentation

Test case’s name and documentation are used exactly the same way as they are used
with data-driven test data.

Keyword and Arguments

Keywords and their arguments are something completely new compared to data-
driven test data. Keyword refers either to a base or user keyword which both can
be used freely when test cases are constructed. Keywords have variable number of
arguments and rest of the columns are reserved for them.

CHAPTER 3. FRAMEWORK CONCEPT 56

Figure 3.5: Keyword-driven test cases and user keywords

CHAPTER 3. FRAMEWORK CONCEPT 57

Settings

Even though Figure 3.5 does not have any settings they could be used similarly as
they are used with data-driven test data.

Comments, Formatting and Empty Lines

Comments, formatting and empty lines make both data-driven and keyword-driven
test data easier to use and maintain. In both cases they should also be ignored by
the parser.

Handling Parsing Errors

Both data-driven and keyword-driven parsers must terminate if the test data they
process is corrupted. Because keyword-driven test data is somewhat more complex
there can also be more errors and the parser must be better at catching and reporting
them. It should for example check that keywords used in tests actually exist.

3.3.2 Presenting User Keywords

Constructing new “virtual” user keywords from base keywords implemented in the
test library (and already created user keywords) is one of the most important features
of the presented framework concept. Because higher level keywords can be created
freely, keywords in the test library can be responsible only for atomic tasks. That,
in turn, makes implementing and maintaining base keywords easy.

Creating user keywords is an integral part of the keyword-driven test description
language. Figure 3.5 shows one approach which should not be too hard to under-
stand. This is certainly an area where a real test design tool could have a superior
user interface compared to a spreadsheet program.

User Keyword Name

User keyword’s name specifies how to call it in test cases or other user keywords.
User keywords could also have similar documentation as test cases have.

CHAPTER 3. FRAMEWORK CONCEPT 58

Keyword and Arguments

User keywords are constructed from other keywords which can be both base key-
words and other user keywords. Keywords are listed one per row similarly as when
designing test cases.

User keywords must be able to use arguments similarly as base keywords. In Fig-
ure 3.5 arguments are specified using a special Arguments keyword. Arguments
themselves look like ${ArgumentName} to make them stand out from literal text.
They can be used freely inside the user keyword. When the keyword-driven parser
processes the test data it substitutes the string ${ArgumentName} with the value
specified when the keyword is used. For example when Login keyword is used in a
test case with arguments “Joe” and “eoj” the following things happen.

1. User keyword Login is called with arguments Joe and eoj
2. Base keyword Input is called with arguments user-field and Joe
3. Base keyword Input is called with arguments password-field and eoj
4. Base keyword Click is called with argument login-button
5. Base keyword Check Title is called with argument Welcome Joe!

This is illustrated in Figure 3.5 where test cases Login 1 and Login 2 end up doing
exactly same things. That pretty well demonstrates how user keywords make tests
shorter and easier to read. Another nice benefit is that the same base keywords which
were used for creating the Login keyword can be used to create multiple other user
keywords. In general only a small set of low level base keywords is needed for testing
even a complex system.

3.3.3 Using Test Data

The keyword-driven parser creates similar containers from the test data as its data-
driven counterpart. The difference is that now the test data container does not
contain test data directly but a list of keyword containers. How keyword-driven
test data can be used is shown in Listing 3.4 and required containers are explained
afterwards.

CHAPTER 3. FRAMEWORK CONCEPT 59

import KeywordDrivenParser
import TestLog
import TestLibrary

testData = KeywordDrivenParser . parse (’ t e s tda ta . t sv ’)
l ogLeve l = testData . g e tS e t t i ng (’ Log Leve l ’ , ’ i n f o ’)
l o gF i l e = testData . g e tS e t t i ng (’ Log F i l e ’ , ’ t e s t l o g . l og ’)
TestLog . i n i t i a l i z e (l o gF i l e , l ogLeve l)
l o gg e r = TestLog . getLogger ()

def executeKeyword (keyword) :
name = keyword . getName ()
i f keyword . getType () == ’ user ’

l o gg e r . debug (’ Executing user keyword %s ’ % name)
for subKeyword in keyword . getKeywords () :

executeKeyword (keyword)
else :

l o g g e r . debug (’ Executing base keyword %s ’ % name)
handlerName = name . lower () . r ep l a c e (’ ’ , ’ ’) + ’ Handler ’
i f not hasa t t r (TestLibrary , handlerName) :

raise Exception , ’No handler f o r keyword %s ’ % name
handler = g e t a t t r (TestLibrary , handlerName)
args = keyword . getArgs ()
handler (∗ args)

Main loop
for t e s tCase in testData . getTestCases () :

l o gg e r . i n f o (’ Executing t e s t case %s (%s) ’ % (tes tCase . getName () ,
t e s tCase . getDoc ()))

keywords = tes tCase . getKeywords ()
l o gg e r . debug (’ Test case has %d keywords ’ % len (keywords))

for keyword in keywords :
try :

executeKeyword (keyword)
except :

. . .
Catch p o s s i b l e except ions , a s s i gn t e s t s t a tu s e s , e t c .

Listing 3.4: Using keyword-driven test data

import TestLog

class TestLibrary :

def i n i t (s e l f , name) :
s e l f . l o gg e r = TestLog . getLogger (name)

def logHandler (s e l f , message , l e v e l=’ i n f o ’) :
s e l f . l o gg e r . wr i t e (message , l e v e l)

def inputHandler (s e l f , f i e l d I d , t ex t) :
Somehow input the g iven t e x t to f i e l d with g iven id

def checkre su l tHand l e r (s e l f , expected) :
Check t ha t r e s u l t matches expec ted r e s u l t s

Listing 3.5: Very simple test library

CHAPTER 3. FRAMEWORK CONCEPT 60

Test Data Container

The same test data container which is used by the data-driven parser can be used
also by the keyword-driven parser. In both cases the test data container contains
test cases and settings and has methods for querying them.

Test Case Container

Test case containers used by different parsers differ but they both have methods for
getting the name and documentation. The keyword-driven version does not have
any test data itself. Instead it has a list of keyword containers and a getKeywords

method for getting them.

Keyword Container

There are two types of keywords so there must also be two different keyword con-
tainers. Both of these have a name and a type which can be queried with getName

and getType methods. User keyword containers also have a list of keywords and
getKeywords method similarly as test case containers. Base keyword containers
carry the actual test data, keyword’s arguments, and provide access to them with
getArgs method.

The method executeKeyword in Listing 3.4 shows a simple pattern how keywords
can be executed. The first part is figuring out whether the given keyword is of base
or user keyword type using the getType method. User keywords are handled simply
by recursively calling executeKeyword again for all its sub keywords. Handling
base keywords is also surprisingly easy. First the name of the hander method is
needed and that is got by lowercasing keyword’s name, removing all spaces from it
and adding text “Handler” at the end. That way for example keywords Input and
Check Result get handlers inputHandler and checkresultHandler, respectively.
When the name of the handler is known standard Python functions hasattr and
getattr are used to first check that handler exists and then to get a reference to
it (most modern programming languages have similar dynamic features). Last part
of the execution is getting arguments specified in the data and calling the handler
method with them.

CHAPTER 3. FRAMEWORK CONCEPT 61

Summary of Container Objects and Methods

Table 3.2 summarizes explained test data containers and their methods. Similarly as
with data-driven testing it is possible to add more features to containers if needed.

Test Data Container getTestCases()

getSetting(name, default)

(default is optional)

Test Case Container getName()

getDoc()

getKeywords()

User Keyword Container getName()

getType()

getKeywords()

Base Keyword Container getName()

getType()

getArgs()

Table 3.2: Test data containers and methods needed in keyword-driven testing

3.4 Chapter Summary

This chapter has introduced a high-level concept for data-driven and keyword-driven
frameworks that consists of test design, monitoring and execution systems. The first
two systems are used by for designing test cases and controlling and monitoring
their execution. The test execution system, the core of the framework, is used only
indirectly through the test monitoring system.

After explaining the framework structure this chapter discussed how the data-driven
and keyword-driven test data can be presented to users and processed by the frame-
work. Both presenting and processing the data-driven test data is pretty straight-
forward but achieving the greater flexibility of keyword-driven requires more from
the framework.

In the next chapter a pilot is conducted to verify whether the presented framework
concept is usable in real testing.

Chapter 4

Implementation and Pilot

Previous chapter suggested a concept for large scale test automation frameworks.
The concept includes a layout describing what components are needed and an expla-
nation of how data-driven and keyword-driven test data can be presented to users
and processed by the framework. This chapter continues from that and describes
how prototypes of the needed key components were implemented and how they
were used to test two different software systems. The framework concept is then
evaluated based on the pilot experiences in the next chapter.

4.1 Implementation Decisions

4.1.1 Technical Decisions

Storing Test Data

First decision to make was how to edit and store the test data. Building a special test
design tool would have been a really big task so, as Section 2.4.2 suggests, I decided
to use a spreadsheet program. Because I wanted to avoid problems with TSV and
CSV file formats I needed to parse the programs native file format. I had two options
to choose from: Microsoft Excel and OpenOffice Spreadsheet. OpenOffice’s greater
platform coverage and open, standardized file format were such huge pluses that the
final decision was pretty easy.

62

CHAPTER 4. IMPLEMENTATION AND PILOT 63

Implementation Language

Next decision was to select the implementation language. I know Java, Perl and
Python fairly well so it needed to be one of them. As discussed in Section 2.6.1,
scripting languages are most often good for this kind of work so I dropped Java.
Based on my earlier experience I chose Python mainly because I feel that code
written with it is generally clearer and easier to maintain than Perl code. I also find
Python’s object oriented features better.

After selecting Python I needed to make one more choice: should I write the code so
that it is Jython compatible or not. Jython is a Java implementation of Python and
it integrates seamlessly with Java. Since it can interact directly with Java APIs it is
an excellent tool for testing Java applications and also for testing using Java tools
like HTTPUnit. Only problem with Jython is that it is a bit behind the standard
Python in versions and latest Python features do not work in Jython. I felt having
Jython compatibility so important that I decided to stick with Jython compatible
Python features.

4.1.2 Decisions Regarding the Pilot

Systems Under Test

Unfortunately during the thesis writing process I did not have a possibility to test
the framework concept in a real project. To make up that shortcoming and to get
a broader view about framework’s capabilities and shortcoming I decided to use it
for testing two different systems.

The first tested system I selected was a Windows application, represented by the
standard Windows Calculator seen in Figure 4.1. If testing Calculator succeeds,
testing other Windows applications ought to be possible also.

The second system under test was web sites in general. I decided to make a
Google search—everyone’s favorite web testing example—to test filling and sub-
mitting forms and use web pages of Helsinki University of Technology to verify that
basic navigation works. I was sure that if these tests are easy to implement testing
more complex web sites and applications would also be possible.

CHAPTER 4. IMPLEMENTATION AND PILOT 64

Figure 4.1: Standard Windows Calculator

Testing Approaches

Since the framework can be used both for data-driven and keyword-driven testing
I wanted to test both of these testing methods. However, I did not believe testing
both of the selected systems using both approached was worth the effort and decided
to drop one of the four possibilities. The one I excluded was data-driven web testing.
The main reason was that it did not suit well for that kinds of tests I had planned,
but I had also started to feel that keyword-driven testing is the more interesting
approach and wanted to use it with both systems.

In the end I had selected following three combinations for the pilot.

• Data-driven Windows application testing
• Keyword-driven Windows application testing
• Keyword-driven web testing

4.2 Implementing Reusable Framework Components

This section explains in detail what reusable framework components were imple-
mented and why. How the components were implemented is also discussed briefly.

4.2.1 Test Data Parser

The framework concept relies heavily on reusable components. The most important
component is the test data parser which consists of multiple subcomponents. First
of all it comes in two flavors but it also includes different test data containers.

CHAPTER 4. IMPLEMENTATION AND PILOT 65

I built both data-driven and keyword-driven parsers and implemented all the ba-
sic features discussed in Section 3.2 and Section 3.3, respectively. Adding more
capabilities to parsers and test data containers would be easy.

OpenOffice Parser and Raw Data Containers

Parsing the test data was implemented so that it happens in two phases. In the
first phase the data is simply read from the media where it is stored and in the
second it is processed further by the data-driven or keyword-driven parser. This
means that there must be a separate parser to take care of the first phase and also
an intermediate containers for the raw test data. Handling parsing in two phases
makes it easy to change the format where the test data is stored as the only new
component needed is a parser for that media.

I had already decided to use OpenOffice spreadsheet so I needed to write a parser
for it. I also needed raw data containers where the OpenOffice parser can store
the data. I implemented many of the parsing features, e.g. removing comments, in
raw data containers because they are more reusable than the parser for OpenOffice
format. I also tried to make it as convenient as possible for the data-driven and
keyword-driven parsers to get the raw data. In the end raw data containers grew in
importance and also in size.

Data-Driven Parser

Data-driven parser gets the raw test data from OpenOffice parser. It then processes
the data and stores the outcome to relevant test data containers. Finally test data
containers are returned to the calling driver script. Because the data-driven parser
gets the data in easy to use raw data containers the processing task is pretty simple.

Keyword-Driven Parser

Keyword-driven parser does exactly the same as its data-driven counterpart but for
keyword-driven test data. Keyword-driven test data of course has more to process
because it contains both test cases and created user keywords.

Constructing user keywords was the hardest part to implement and getting them
working required few attempts and to get the code somewhat organized required few
more refactorings. In the end much of the logic regarding user keywords actually
went to relevant test data containers and left the parser itself pretty simple.

CHAPTER 4. IMPLEMENTATION AND PILOT 66

Test Data Containers

Test data containers include test data, test case and keyword containers. Different
containers and their features are explained in the previous chapter. While imple-
menting the keyword-driven parser these containers got a bit more functionality as
they became partly responsible for creating user keywords.

Common Utilities

Some common utilities were needed by different parsers. A small amount of extra
code was also needed to make parsers Jython compatible.

4.2.2 Logger

Besides test data parsers only a logger component was needed for evaluating the
framework concept. For example a report generator is not really needed because it
is always possible to create test reports based on the test logs and that does not
have anything to do with the overall concept.

Table 4.1 lists implemented logging functionalities and shows that they cover most
of the requirements defined in Section 2.2.7. Logging must first be initialized in the
driver script which can also change the logging level later. Components that want
to log something can get a logger and use its logging methods which map to logging
levels presented in Table 2.2. Note that the methods for levels pass and fail are
called passed and failed, respectively, because pass is a reserved work in Python
and should not be used.

Test Log Module initialize(logFile, logLevel)

setLevel(logLevel)

getLogger(name)

Logger Component failed(msg) warning(msg)

passed(msg) info(msg)

fatal(msg) debug(msg)

error(msg) trace(msg)

failure(msg)

Table 4.1: Implemented logging functionality

CHAPTER 4. IMPLEMENTATION AND PILOT 67

4.2.3 Summary

Implementing needed reusable framework components was not too big a task. With
all the rewrites and refactorings it took about two weeks. In calendar time it of
course took a bit more as it was implemented at the same time as I designed the
framework itself. Current implementation is also just a pilot and does not have all
the features needed in real large scale testing. It should, however, be good enough
to test whether the framework concept is functional or not.

Table 4.2 lists sizes of implemented components in lines of code so that empty and
comment lines are excluded. The most interesting finding from the table is that
the whole parser module is less than 500 lines in size even though it contains both
the data-driven and keyword-driven parser and everything they need. In general
all the reusable components are very small and total lines of code is clearly below
600. That is a very small amount of code, especially when compared to sizes of the
systems which can potentially be tested with the framework.

Test Data Parser 479

OpenOffice Parser 88

Raw Data Containers 102

Data-Driven Parser 22

Keyword-Driven Parser 64

Test Data Containers 136

Common Utilities 67

Logger 82

TOTAL 562

Table 4.2: Sizes of reusable framework components

CHAPTER 4. IMPLEMENTATION AND PILOT 68

4.3 Data-Driven Windows Application Testing

4.3.1 Test Data

The test data used in Calculator pilot is shown in Figure 4.2 and it is the exactly
same data as in Figure 3.3 earlier. In real testing this small number of test cases
would of course not be enough but it ought to be enough for a pilot.

4.3.2 Driver Script

The driver script controlling the test executing is shown in Listing 4.1. It is some-
what different from the earlier data-driven example shown in Listing 3.2. There
the test library had a test function which took care of the whole test but now the
driver uses smaller functions to interact with the tested system. Another difference
is that in earlier example the test library returned test status explicitly but now
the status is communicated with exceptions. No exceptions means that test passed,
AssertionError tells that some verification has failed and all other exceptions de-
note unexpected errors in test execution.

Figure 4.2: Test data for data-driven Calculator pilot

CHAPTER 4. IMPLEMENTATION AND PILOT 69

import sys
from TestDataParser import DataDrivenParser
from TestLibrary import Calcu la to rL ib ra ry
import TestLog

Check t ha t name of the data f i l e i s g iven as an argument
i f l en (sys . argv) != 2 :

print ”Give name o f the t e s t data f i l e as an argument”
sys . e x i t (1)

Parse t e s t data and ge t t e s t cases
dataF i l e = sys . argv [1]
testData = DataDrivenParser . parse (da taF i l e)
t e s tCase s = testData . getTestCases ()

I n i t i a l i z e l ogg ing , ge t a l o g g e r and l o g a s t a r t i n g message
l o gF i l e = testData . g e tS e t t i ng (”Log F i l e ”)
l ogLeve l = testData . g e tS e t t i ng (”Log Leve l ”)
TestLog . i n i t i a l i z e (l o gF i l e , l ogLeve l)
l o gg e r = TestLog . getLogger (”Driver ”)
l o gg e r . i n f o (”Executing t e s t ca s e s from f i l e %s ” % (dataF i l e))

Variab l e s to ho ld s t a t i s t i c s
passed = executed = 0
t o t a l = len (t e s tCase s)

Main t e s t execu t ion loop
for tc in t e s tCase s :

executed += 1
i n f o = ”%s (%s) ” % (tc . getName () , tc . getDoc ())
l o gg e r . i n f o (’%s : S ta r t i ng : %d/%d ’ % (in fo , executed , t o t a l))

Get t e s t data from the t e s t case conta iner
number1 = tc . getData (”Number 1”)
number2 = tc . getData (”Number 2”)
operator = tc . getData (”Operator ”)
expected = tc . getData (”Expected”)
l o gg e r . debug (” Ca l cu l a t i on : %s %s %s = %s” % (number1 , operator ,

number2 , expected))
I n i t i a l i z e t e s t l i b r a r y and use i t to lauch the Ca l cu la tor
l i b r a r y = Ca l cu la to rL ib ra ry (tc . getName ())
l i b r a r y . l aunchCa lcu la tor ()

Run t e s t . I f no excep t ion i s ra i s ed the t e s t passes .
try :

l i b r a r y . input (number1)
l i b r a r y . c l i c k (operator)
l i b r a r y . input (number2)
l i b r a r y . c l i c k (”=”)
l i b r a r y . check (expected)
l o gg e r . passed (i n f o)
passed += 1

Asser t ionErrors are ra i s ed i f v e r i f i c a t i o n s f a i l in t e s t s
except Asser t ionError , ae :

l o gg e r . f a i l e d (”%s : V e r i f i c a t i o n f a i l e d : %s ” % (in fo , ae))
Other excep t i ons mean unexpected er ror s in t e s t execu t ion
except Exception , e :

l o gg e r . f a i l e d (”%s : Error in t e s t execut ion : %s ” % (in fo , e))

l i b r a r y . c l o s eCa l c u l a t o r ()

Fina l l y l o g and pr in t summary o f the t e s t execu t ion
summary = ”%d/%d t e s t s run , %d/%d passed , %d/%d f a i l e d ” % \

(executed , t o ta l , passed , executed , executed−passed , executed)
l o gg e r . i n f o (summary)
print summary
print ”More d e t a i l e d t e s t l og in %s ” % (l o gF i l e)

Listing 4.1: Driver script for data-driven Calculator pilot

CHAPTER 4. IMPLEMENTATION AND PILOT 70

import win32api , win32com . c l i e n t , win32c l ipboard
import TestLog

class Calcu la to rL ib ra ry : :

I n i t i a l i z e the t e s t l i b r a r y
def i n i t (s e l f , name) :

s e l f . l o gg e r = TestLog . getLogger (name)
s e l f . s h e l l = win32com . c l i e n t . Dispatch (”WScript . Sh e l l ”)

Launch the c a l c u l a t o r − run be fo r e ac tua l t e s t execu t ion
def l aunchCa lcu la tor (s e l f) :

s e l f . s h e l l .Run(” c a l c ” , 1)
s e l f . l o gg e r . debug (” Ca l cu la to r s t a r t ed ”)
s e l f . de lay ()

Close the c a l c u l a t o r a f t e r t e s t s by sending i t Alt−F4
def c l o s eCa l c u l a t o r (s e l f) :

s e l f . s h e l l . AppActivate (” Ca l cu la to r ”)
s e l f . s h e l l . SendKeys (”%{F4}”)
s e l f . l o gg e r . debug (” Ca l cu la to r c l o s ed ”)

Cl ick Ca l cu la tor ’ s bu t tons
def c l i c k (s e l f , key) :

s e l f . s h e l l . AppActivate (” Ca l cu la to r ”)
Escape SendKeys s p e c i a l charac t e r s with { and }
i f key in [”+” , ”ˆ” , ”%” , ”˜”] :

key = ”{” + key + ”}”
s e l f . s h e l l . SendKeys (key)
s e l f . l o gg e r . debug (” Cl icked key ’%s ’ ” % (key))
s e l f . de lay ()

Input numbers to Ca l cu la tor
def input (s e l f , num) :

negat ive = False
Handle nega t i v e numbers
i f num [0] == ”−” :

negat ive = True
num = num [1 :]

for n in num:
s e l f . c l i c k (n)

i f negat ive :
s e l f . c l i c k (”{F9}”) # F9 i s the ’+/−’ key

Check t ha t the r e s u l t i s expec ted
def check (s e l f , expected) :

s e l f . s h e l l . AppActivate (” Ca l cu la to r ”)
Copy r e s u l t to c l i p boa rd with c t r l−c
s e l f . c l i c k (”ˆc”)
s e l f . de lay ()
Get r e s u l t from c l i p boa rd
win32c l ipboard . OpenClipboard ()
ac tua l = win32c l ipboard . GetClipboardData ()
win32c l ipboard . CloseCl ipboard ()
s e l f . l o gg e r . debug (”Expected : ’%s ’ , Actual : ’%s ’ ” % (expected , a c tua l))
i f expected != ac tua l :

raise Asser t ionError , ”Checking r e s u l t s f a i l e d : ” \
+ expected + ” != ” + actua l

Give the SUT time to reac t a f t e r i n t e r a c t i o n s
def delay (s e l f , ms=100):

win32api . S leep (ms)

Listing 4.2: Test library for data-driven Calculator pilot

CHAPTER 4. IMPLEMENTATION AND PILOT 71

Sat Jul 16 21:34:31 2005 | Driver | INFO | Executing test cases from file TestData.sxc

Sat Jul 16 21:34:31 2005 | Driver | INFO | Add 01 (1 + 2 = 3) : Starting : 1/8

Sat Jul 16 21:34:32 2005 | Driver | PASS | Add 01 (1 + 2 = 3)

Sat Jul 16 21:34:32 2005 | Driver | INFO | Add 02 (1 + -2 = -1) : Starting : 2/8

Sat Jul 16 21:34:33 2005 | Driver | PASS | Add 02 (1 + -2 = -1)

Sat Jul 16 21:34:33 2005 | Driver | INFO | Sub 01 (1 - 2 = -1) : Starting : 3/8

Sat Jul 16 21:34:34 2005 | Driver | PASS | Sub 01 (1 - 2 = -1)

Sat Jul 16 21:34:34 2005 | Driver | INFO | Sub 02 (1 - -2 = 3) : Starting : 4/8

Sat Jul 16 21:34:35 2005 | Driver | PASS | Sub 02 (1 - -2 = 3)

Sat Jul 16 21:34:35 2005 | Driver | INFO | Mul 01 (1 * 2 = 2) : Starting : 5/8

Sat Jul 16 21:34:35 2005 | Driver | PASS | Mul 01 (1 * 2 = 2)

Sat Jul 16 21:34:35 2005 | Driver | INFO | Mul 02 (1 * -2 = -2) : Starting : 6/8

Sat Jul 16 21:34:36 2005 | Driver | PASS | Mul 02 (1 * -2 = -2)

Sat Jul 16 21:34:36 2005 | Driver | INFO | Div 01 (2 / 1 = 2) : Starting : 7/8

Sat Jul 16 21:34:37 2005 | Driver | PASS | Div 01 (2 / 1 = 2)

Sat Jul 16 21:34:37 2005 | Driver | INFO | Div 02 (2 / -2 != 42) : Starting : 8/8

Sat Jul 16 21:34:38 2005 | Driver | FAIL | Div 02 (2 / -2 != 42) : Verification failed :

42 != -1

Sat Jul 16 21:34:38 2005 | Driver | INFO | 8/8 tests run, 7/8 passed, 1/8 failed

Figure 4.3: Test log from data-driven Calculator pilot

4.3.3 Test Library

The test library which handles interacting with the tested system is shown in List-
ing 4.1. Calculator is used by sending it keyboard events using SendKeys method
from the Windows Script Host, which can be accessed from a Python code using
Python’s Win32 modules. Checking the result is implemented so that first the re-
sult is send to clipboard (using ctrl-c), then clipboard contents are get with Win32
modules and finally expected and actual results are compared and AssertionError

raised if comparison fails.

4.3.4 Test Log

The driver script is run from the command line and the name of the test data file
is given it as an argument. After tests have been executed a summary is printed to
screen along with the name of the created test log. The test log contains full test
execution trace and the level of detail in the log depends on the specified logging
level. The test log created in this pilot, using logging level info, is seen in Figure 4.3.

4.3.5 Summary

Implementing the driver script and the test library for data-driven Calculator pilot
was a fairly easy task. That can be easily seen from the presented code and also
from Table 4.3 which lists component sizes in lines of code (empty and comment
lines excluded again). In total all the code for data-driven Calculator testing is less

CHAPTER 4. IMPLEMENTATION AND PILOT 72

than hundred lines which is not bad at all. The current implementation is of course
limited only to certain kinds of tests but writing similar driver scripts and adding
new functionality to the test library is easy, especially when a base implementation
is available. It would thus be possible to test Calculator, or some other Windows
application, thoroughly with the framework.

My impression is that the data-driven side of the presented framework concept works
very well. More experience from the framework—especially from its keyword-driven
capabilities—is of course needed before the framework can be really evaluated.

Driver Script 51

Test Library 42

TOTAL 93

Table 4.3: Components sizes in data-driven Calculator pilot

4.4 Keyword-Driven Windows Application Testing

4.4.1 Test Data

Test cases created in this pilot is shown are Figure 4.4 and constructed user keywords
in Figure 4.5. Overall the test data is very similar to earlier keyword-driven testing
examples in the previous chapter but has more keywords and different kinds of tests.

4.4.2 Driver Script

The driver script used to control the keyword-driven test execution, shown in List-
ing 4.3, looks pretty familiar after the data-driven driver script. Many tasks, for
example parsing the test data and collecting statistics, are implemented similarly
but actual test execution is naturally different. The difference is that in the data-
driven version the driver script has hard coded list of actions to take (input-click-
input-click-check) but now actions are specified as keywords in the test data. The
driver-scripts runs specified keywords using executeKeyword method (copied from
Listing 3.4) and if they all execute without problems the test case passes. The test
status is communicated using exceptions similarly as in the data-driven version.

CHAPTER 4. IMPLEMENTATION AND PILOT 73

Figure 4.4: Test cases for keyword-driven Calculator pilot

CHAPTER 4. IMPLEMENTATION AND PILOT 74

Figure 4.5: User keywords for keyword-driven Calculator pilot

CHAPTER 4. IMPLEMENTATION AND PILOT 75

import sys
from TestDataParser import KeywordDrivenParser
from Calcu la to rL ib ra ry import Calcu la to rL ib ra ry
import TestLog

i f l en (sys . argv) != 2 :
print ”Give name o f the t e s t data f i l e as an argument”
sys . e x i t (1)

da taF i l e = sys . argv [1]
testData = KeywordDrivenParser . parse (da taF i l e)
t e s tCase s = testData . getTestCases ()

l o gF i l e = testData . g e tS e t t i ng (’ Log F i l e ’ , ’ Ca l cu la to r . l og ’)
l ogLeve l = testData . g e tS e t t i ng (’ Log Leve l ’ , ’ debug ’)
TestLog . i n i t i a l i z e (l o gF i l e , l ogLeve l)
l o gg e r = TestLog . getLogger (’ Dr iver ’)
l o gg e r . i n f o (’ Executing t e s t ca s e s from f i l e %s ’ % (dataF i l e))

passed = 0
executed = 0
t o t a l = len (t e s tCase s)

def executeKeyword (keyword , l i b r a r y) :
name = keyword . getName ()
i f keyword . getType () == ’ user ’

l o gg e r . debug (’ Executing user keyword %s ’ % name)
for subKeyword in keyword . getKeywords () :

executeKeyword (keyword , l i b r a r y)
else :

l o g g e r . debug (’ Executing base keyword %s ’ % name)
handlerName = name . lower () . r ep l a c e (’ ’ , ’ ’) + ’ Handler ’
i f not hasa t t r (l i b r a r y , handlerName) :

raise Exception , ’No handler f o r keyword %s ’ % name
handler = g e t a t t r (l i b r a ry , handlerName)
args = keyword . getArgs ()
handler (∗ args)

Main t e s t execu t ion loop
for tc in t e s tCase s :

executed += 1
i n f o = ’%s (%s) ’ % (tc . getName () , tc . getDoc ())
l o gg e r . i n f o (’%s : S ta r t i ng : %d/%d ’ % (in fo , executed , t o t a l))
l i b r a r y = Ca l cu la to rL ib ra ry (tc . getName ())
l i b r a r y . setUp ()
try :

for keyword in tc . getKeywords () :
executeKeyword (keyword , l i b r a r y)

l o gg e r . passed (i n f o)
passed += 1

except Asser t ionError , e r r :
l o gg e r . f a i l e d (’%s : V e r i f i c a t i o n f a i l e d : %s ’ % (in fo , e r r))

except Exception , e r r :
l o gg e r . f a i l e d (’%s : Error in t e s t execut ion : %s ’ % (in fo , e r r))

l i b r a r y . tearDown ()

summary = ’%d/%d t e s t s run , %d/%d passed , %d/%d f a i l e d ’ % \
(executed , t o ta l , passed , executed , executed−passed , executed)

l o gg e r . i n f o (summary)
print summary
print ’More d e t a i l e d t e s t l og in %s ’ % (l o gF i l e)

Listing 4.3: Driver script for keyword-driven Calculator pilot

CHAPTER 4. IMPLEMENTATION AND PILOT 76

4.4.3 Test Library

This pilot demonstrates how the framework can be used to test Windows appli-
cations in keyword-driven style. That is why I wanted to implement a reusable
test library for Windows testing and not include any Calculator specific features
in it. The Windows library is seen in Listing 4.4. It should of course have more
functionality to be generally reusable but in pilot use no more features were needed.

Calculator specific features were then put into a Calculator test library shown in
Listing 4.5. It extends the WindowsLibrary so it has all the functionality imple-
mented there but it also adds some Calculator specific functionality.

The two test libraries contain pretty much the same functionality as the test library
used earlier in data-driven testing. Also the interaction with the tested system is
implemented similarly using SendKeys methods.

Keyword-driven test libraries provide their functionality mainly through handlers.
Only non-handler methods called externally are setUp and tearDown, which are
used to put the test environment to a known state before and after each test case.

One more thing to note in the Windows library is that most of its handlers do not
have much functionality themselves but instead they use internal helper methods.
An example of this is the launchHandler which uses launch method. This arrange-
ment helps reusing code as the helper methods can be called by other methods also.
For example Calculator library’s setUp and tearDown methods use them to launch
and close Calculator.

4.4.4 Test Log

Test logs were created similarly in keyword-driven and data-driven pilots. Thus the
test log in Figure 4.6 is also nearly identical to the earlier test log. To make logs a
bit different the logging level is now debug.

4.4.5 Summary

Testing Calculator with the keyword-driven approach proved out to be at least as
easy as testing it with the data-driven style. This is actually no surprise as all the
required framework components were ready for both. Comparing component sizes
in Table 4.3 and Table 4.4 reveals that keyword-driven implementation is slightly
bigger (105 vs. 89 lines) but this difference is insignificant. An interesting thing to

CHAPTER 4. IMPLEMENTATION AND PILOT 77

import win32api , win32com . c l i e n t , win32c l ipboard

class WindowsLibrary :

def i n i t (s e l f , name) :
BaseTestLibrary . i n i t (s e l f , name)
s e l f . s h e l l = win32com . c l i e n t . Dispatch (”WScript . Sh e l l ”)

Keyword hand lers

def launchHandler (s e l f , app) :
s e l f . launch (app)

def sendHandler (s e l f , keys) :
s e l f . send (keys)

def act iva teHand l e r (s e l f , app) :
s e l f . a c t i v a t e (app)

def checkc l ipboardHandler (s e l f , expected) :
win32c l ipboard . OpenClipboard ()
ac tua l = win32c l ipboard . GetClipboardData ()
win32c l ipboard . CloseCl ipboard ()
i f expected != ac tua l :

raise Asser t ionError , ”Cl ipboard v e r i f i c a t i o n f a i l e d : ” \
+ expected + ” != ” + actua l

s e l f . l o gg e r . debug (”Clipboard v e r i f i c a t i o n succeeded (%s) ” % actua l)

def delayHandler (s e l f , seconds) :
seconds = in t (seconds . r ep l a c e (” , ” , ” . ”))
s e l f . de lay (seconds ∗ 1000)

Helper func t i on s

def launch (s e l f , app) :
rc = s e l f . s h e l l .Run(app , 1)
i f rc != 0 :

s e l f . f a i l (”Launcing app l i c a t i on ’%s ’ f a i l e d with RC %d” % (app , rc))
s e l f . l o gg e r . t r a c e (” App l i ca t ion ’%s ’ launched” % (app))
s e l f . de lay ()

def send (s e l f , keys) :
i f keys in [”+” , ”ˆ” , ”%” , ”˜”] :

keys = ”{” + keys + ”}”
s e l f . s h e l l . SendKeys (keys)
s e l f . l o gg e r . t r a c e (”Key(s) ’%s ’ sent ” % (keys))
s e l f . de lay ()

def a c t i v a t e (s e l f , app) :
s t a tu s = s e l f . s h e l l . AppActivate (app)
i f s t a tu s != True :

s e l f . f a i l (” Act ivat ing app l i c a t i on ’%s ’ f a i l e d ” % (app))
s e l f . l o gg e r . t r a c e (”App ’%s ’ a c t i va t ed ” % (app))

def delay (s e l f , ms=100):
s e l f . l o gg e r . t r a c e (” S l e ep ing %d ms” % (ms))
win32api . S leep (ms)

Listing 4.4: Generic Windows test library

CHAPTER 4. IMPLEMENTATION AND PILOT 78

from WindowsLibrary import WindowsLibrary

class Calcu la to rL ib ra ry (WindowsLibrary) :

def i n i t (s e l f , name) :
WindowsLibrary . i n i t (s e l f , name)

def setUp (s e l f) :
s e l f . launch (” c a l c ”)
s e l f . de lay ()
s e l f . l o gg e r . t r a c e (” Set up done”)

def tearDown (s e l f) :
s e l f . a c t i v a t e (” Ca l cu la to r ”)
s e l f . de lay ()
s e l f . send (”%{F4}”)
s e l f . l o gg e r . t r a c e (”Tear down done”)

def inputHandler (s e l f , nuumber) :
i f number [0] == ”−” :

s e l f . send (number [1 :])
s e l f . send (”{F9}”) # F9 i s the ’+/−’ key

else :
s e l f . send (num)

Listing 4.5: Calculator specific test library

Sat Jul 16 20:53:06 2005 | Driver | INFO | Executing test cases from file TestData.sxc

Sat Jul 16 20:53:06 2005 | Driver | INFO | Basic (1 = 1) : Starting : 1/5

Sat Jul 16 20:53:07 2005 | Basic | DEBUG | Clipboard verification succeeded (1)

Sat Jul 16 20:53:07 2005 | Driver | PASS | Basic (1 = 1)

Sat Jul 16 20:53:07 2005 | Driver | INFO | Simple (1 + 2 = 3) : Starting : 2/5

Sat Jul 16 20:53:08 2005 | Simple | DEBUG | Clipboard verification succeeded (3)

Sat Jul 16 20:53:08 2005 | Driver | PASS | Simple (1 + 2 = 3)

Sat Jul 16 20:53:08 2005 | Driver | INFO | Longer (25 * 4 + -16 / 2 = 42) : Starting :

3/5

Sat Jul 16 20:53:09 2005 | Longer | DEBUG | Clipboard verification succeeded (42)

Sat Jul 16 20:53:09 2005 | Driver | PASS | Longer (25 * 4 + -16 / 2 = 42)

Sat Jul 16 20:53:09 2005 | Driver | INFO | PlusMinus (Test +/- button) : Starting :

4/5

Sat Jul 16 20:53:10 2005 | PlusMinus | DEBUG | Clipboard verification succeeded (-2)

Sat Jul 16 20:53:10 2005 | PlusMinus | DEBUG | Clipboard verification succeeded (2)

Sat Jul 16 20:53:10 2005 | Driver | PASS | PlusMinus (Test +/- button)

Sat Jul 16 20:53:10 2005 | Driver | INFO | Fails (1 + 1 != 3) : Starting : 5/5

Sat Jul 16 20:53:11 2005 | Driver | FAIL | Fails (1 + 1 != 3) : Verification failed :

3 != 2

Sat Jul 16 20:53:11 2005 | Driver | INFO | 5/5 tests run, 4/5 passed, 1/5 failed

Figure 4.6: Test log from keyword-driven Calculator pilot

CHAPTER 4. IMPLEMENTATION AND PILOT 79

notice is how small set of base keywords is needed when higher level keywords can
be created as user keywords. For example calculations (Add, Multiply, etc.) need
no additional code in the test library.

This pilot also proves how flexible keyword-driven testing is compared to data-driven
testing. This difference has been pointed out several times before but it can be truly
understood only after seeing it in real situation testing the same application. In the
data-driven pilot’s summary I wrote that thorough testing of Calculator would only
require few more driver scripts and a bit of new functionality in the test library. It
is a huge difference to be able to conclude that thorough testing could be achieved
simply by designing more test cases.

Driver Script 57

Windows Library 41

Calculator Library 19

TOTAL 117

Table 4.4: Component sizes in keyword-driven Calculator pilot

4.5 Keyword-Driven Web Testing

4.5.1 Test Data

The test data used in this pilot is presented in Figure 4.7. These test cases are not
too good as tests—they do not really test much—but that is ok as their main task
is helping to find out how well the keyword-driven approach suits for web testing.

One thing to note from the test data is how user keywords make test cases shorter.
Four lines in the test case Google 1 are equivalent to the one Search Google line
in the test case Google 2. User keywords make it possible to have short test which
actually do plenty of tasks behind the scenes.

4.5.2 Driver Script

The driver script implemented for keyword-driven web pilot is shown in Listing 4.6.
It is nearly identical with the keyword-driven driver script used with Calculator.
The first of the two differences is that because the test library uses jWebUnit, web

CHAPTER 4. IMPLEMENTATION AND PILOT 80

Figure 4.7: Test cases and user keywords for keyword-driven web pilot

CHAPTER 4. IMPLEMENTATION AND PILOT 81

testing tool implemented with Java and using JUnit internally, JUnit’s assertions
and all possible Java exceptions needed to be caught. The second difference is that
this time no set up or tear down is needed and the driver script does not need to
call library methods implementing them.

Similarities in two different driver scripts raise interesting questions about being
able to make them more generic. A trivial change into better direction is taking
executeKeyword method out and placing it into a separate reusable module but
similarities do not end there. Only real differences between the two drivers are test
libraries they use and different ways to set up the test environment and also these
tasks could be done in a more generic manner. How that is possible and what
benefits it would bring are discussed further when pilot results are evaluated in the
next chapter.

4.5.3 Test Library

The test library handling actual web testing is shown in Listing 4.7. The biggest
task in implementing it was finding a suitable web testing tool. After evaluating few
alternatives I selected jWebUnit, which is a wrapper for better known HTTPUnit,
which in turn is build on top of JUnit. The fact that jWebUnit is implemented with
Java was not a problem because the framework had been designed to be Jython
compatible from the beginning.

As it can be seen from the code, the actual implementation of the test library was
a very simple task. That is mainly due to jWebUnit being a really good tool and
extremely easy to embed. The whole test library is basically just a thin wrapper
around jWebUnit’s WebTester class.

4.5.4 Test Log

The test log produced by this pilot is seen in Figure 4.8. This time the logging
level is trace, lowest possible, so that all logging from various components is shown.
Going through the log gives a good insight of how the framework works.

4.5.5 Summary

As I was equipped with the experience from previous pilots, implementing needed
components for keyword-driven web pilot was very easy. I could reuse the previous

CHAPTER 4. IMPLEMENTATION AND PILOT 82

import sys
import java . lang . Exception
import j u n i t . framework . As s e r t i onFa i l edEr ro r
from TestDataParser import KeywordDrivenParser
from WebLibrary import WebLibrary
import TestLog

i f l en (sys . argv) != 2 :
print ”Give name o f the t e s t data f i l e as an argument”
sys . e x i t (1)

da taF i l e = sys . argv [1]
testData = KeywordDrivenParser . parse (da taF i l e)
t e s tCase s = testData . getTestCases ()

l o gF i l e = testData . g e tS e t t i ng (”Log F i l e ” , ”WebTest . l og ”)
l ogLeve l = testData . g e tS e t t i ng (”Log Leve l ” , ” t r a c e ”)
TestLog . i n i t i a l i z e (l o gF i l e , l ogLeve l)
l o gg e r = TestLog . getLogger (”Driver ”)
l o gg e r . i n f o (”Executing t e s t ca s e s from f i l e %s ” % (dataF i l e))

passed = executed = 0
t o t a l = len (t e s tCase s)

def executeKeyword (keyword , l i b r a r y) :
name = keyword . getName ()
i f keyword . getType () == ’ user ’

l o gg e r . debug (’ Executing user keyword %s ’ % name)
for subKeyword in keyword . getKeywords () :

executeKeyword (keyword , l i b r a r y)
else :

l o g g e r . debug (’ Executing base keyword %s ’ % name)
handlerName = name . lower () . r ep l a c e (’ ’ , ’ ’) + ’ Handler ’
i f not hasa t t r (l i b r a r y , handlerName) :

raise Exception , ’No handler f o r keyword %s ’ % name
handler = g e t a t t r (l i b r a ry , handlerName)
args = keyword . getArgs ()
handler (∗ args)

Main t e s t execu t ion loop
for tc in t e s tCase s :

executed += 1
i n f o = ”%s (%s) ” % (tc . getName () , tc . getDoc ())
l o gg e r . i n f o (’%s : S ta r t i ng : %d/%d ’ % (in fo , executed , t o t a l))
l i b r a r y = WebLibrary (tc . getName ())
try :

for keyword in tc . getKeywords () :
executeKeyword (keyword , l i b r a r y)

l o gg e r . passed (i n f o)
passed += 1

Both PyUnit and JUnit based a s s e r t i on s are f a i l u r e s
except (Asser t ionError , j u n i t . framework . As s e r t i onFa i l edEr ro r) , e r r :

l o gg e r . f a i l e d (”%s : V e r i f i c a t i o n f a i l e d : %s ” % (in fo , e r r))
Rest except ions , both Python and Java based , are er ror s
except (Exception , java . lang . Exception) , e r r :

l o gg e r . f a i l e d (”%s : Error in t e s t execut ion : %s ” % (in fo , e r r))

summary = ”%d/%d t e s t s run , %d/%d passed , %d/%d f a i l e d ” % \
(executed , t o ta l , passed , executed , executed−passed , executed)

l o gg e r . i n f o (summary)
print summary
print ”More d e t a i l e d t e s t l og in %s ” % (l o gF i l e)

Listing 4.6: Driver script for keyword-driven web pilot

CHAPTER 4. IMPLEMENTATION AND PILOT 83

from net . s ou r c e f o r g e . jwebunit import WebTester

class WebLibrary :

def i n i t (s e l f , name) :
BaseTestLibrary . i n i t (s e l f , name)
s e l f . t e s t e r = WebTester ()

def launchHandler (s e l f , u r l) :
s e l f . t e s t e r . getTestContext () . se tBaseUr l (u r l)
s e l f . t e s t e r . beginAt (”/”)
s e l f . l o gg e r . t r a c e (”Launched ’%s ’ ” % (u r l))

def che ck t i t l eHand l e r (s e l f , expected) :
s e l f . t e s t e r . a s s e r tT i t l eEqua l s (expected)
s e l f . l o gg e r . debug (” Ve r i f y i ng t i t l e succeeded (%s) ” % (expected))

def inputHandler (s e l f , f i e l d I d , t ex t) :
s e l f . t e s t e r . setFormElement (f i e l d I d , t ext)
s e l f . l o gg e r . t r a c e (”Text ’%s ’ wr i t t en to ’%s ’ ” % (text , f i e l d I d))

def c l i ckbuttonHand le r (s e l f , buttonId) :
s e l f . t e s t e r . c l i ckButton (buttonId)
s e l f . l o gg e r . t r a c e (” Cl icked button ’%s ’ ” % (buttonId))

def submitHandler (s e l f , buttonId) :
s e l f . t e s t e r . submit (buttonId)
s e l f . l o gg e r . t r a c e (”Submitted ’%s ’ ” % (buttonId))

def c l i c k l i n kHand l e r (s e l f , l i n k I d) :
s e l f . t e s t e r . c l i c kL ink (l i n k I d)
s e l f . l o gg e r . t r a c e (” Cl icked l i n k ’%s ’ ” % (l i n k I d))

def c l i c k l i nkw i th t e x tHand l e r (s e l f , t ex t) :
s e l f . t e s t e r . c l ickLinkWithText (t ex t)
s e l f . l o gg e r . t r a c e (” Cl icked l i n k with text ’%s ’ ” % (text))

def c l i ck l i nkwi th imageHand l e r (s e l f , s r c) :
s e l f . t e s t e r . c l ickLinkWithImage (s r c)
s e l f . l o gg e r . t r a c e (” Cl icked l i n k with image ’%s ’ ” % (s r c))

Listing 4.7: Test library for keyword-driven web pilot

CHAPTER 4. IMPLEMENTATION AND PILOT 84

2005-07-17 02:44:09 | Driver | INFO | Executing test cases from file TestData.sxc

2005-07-17 02:44:09 | Driver | INFO | Google 1 (Simple Google search) : Starting : 1/3

2005-07-17 02:44:09 | Google 1 | TRACE | Executing framework keyword ’Launch’

2005-07-17 02:44:11 | Google 1 | TRACE | Launched ’http://www.google.com’

2005-07-17 02:44:12 | Google 1 | TRACE | Keyword ’Launch’ executed

2005-07-17 02:44:12 | Google 1 | TRACE | Executing framework keyword ’Input’

2005-07-17 02:44:12 | Google 1 | TRACE | Text ’keyword-driven test automation’ written to ’q’

2005-07-17 02:44:12 | Google 1 | TRACE | Keyword ’Input’ executed

2005-07-17 02:44:12 | Google 1 | TRACE | Executing framework keyword ’Submit’

2005-07-17 02:44:12 | Google 1 | TRACE | Submitted ’btnG’

2005-07-17 02:44:12 | Google 1 | TRACE | Keyword ’Submit’ executed

2005-07-17 02:44:13 | Google 1 | TRACE | Executing framework keyword ’Check Title’

2005-07-17 02:44:13 | Google 1 | DEBUG | Verifying title succeeded (Google-haku: keyword-d...

2005-07-17 02:44:13 | Google 1 | TRACE | Keyword ’Check Title’ executed

2005-07-17 02:44:13 | Driver | PASS | Google 1 (Simple Google search)

2005-07-17 02:44:13 | Driver | INFO | Google 2 (Search and follow a link) : Starting : 2/3

2005-07-17 02:44:13 | Google 2 | TRACE | Executing user keyword ’Search Google’

2005-07-17 02:44:13 | Google 2 | TRACE | Executing framework keyword ’Launch’

2005-07-17 02:44:14 | Google 2 | TRACE | Launched ’http://www.google.com’

2005-07-17 02:44:14 | Google 2 | TRACE | Keyword ’Launch’ executed

2005-07-17 02:44:14 | Google 2 | TRACE | Executing framework keyword ’Input’

2005-07-17 02:44:14 | Google 2 | TRACE | Text ’data-driven test automation’ written to ’q’

2005-07-17 02:44:14 | Google 2 | TRACE | Keyword ’Input’ executed

2005-07-17 02:44:14 | Google 2 | TRACE | Executing framework keyword ’Submit’

2005-07-17 02:44:15 | Google 2 | TRACE | Submitted ’btnG’

2005-07-17 02:44:15 | Google 2 | TRACE | Keyword ’Submit’ executed

2005-07-17 02:44:15 | Google 2 | TRACE | Executing framework keyword ’Check Title’

2005-07-17 02:44:15 | Google 2 | DEBUG | Verifying title succeeded (Google-haku: data-driv...

2005-07-17 02:44:15 | Google 2 | TRACE | Keyword ’Check Title’ executed

2005-07-17 02:44:15 | Google 2 | TRACE | Keyword ’Search Google’ executed

2005-07-17 02:44:15 | Google 2 | TRACE | Executing framework keyword ’Click Link With Text’

2005-07-17 02:44:21 | Google 2 | TRACE | Clicked link with text ’Data Driven Test Automati...

2005-07-17 02:44:21 | Google 2 | TRACE | Keyword ’Click Link With Text’ executed

2005-07-17 02:44:22 | Google 2 | TRACE | Executing framework keyword ’Check Title’

2005-07-17 02:44:22 | Google 2 | DEBUG | Verifying title succeeded (Data Driven Test Autot...

2005-07-17 02:44:22 | Google 2 | TRACE | Keyword ’Check Title’ executed

2005-07-17 02:44:22 | Driver | PASS | Google 2 (Search and follow a link)

2005-07-17 02:44:22 | Driver | INFO | HUT (Navigate from HUT to SoberIT) : Starting : 3/3

2005-07-17 02:44:22 | HUT | TRACE | Executing framework keyword ’Launch’

2005-07-17 02:44:23 | HUT | TRACE | Launched ’http://www.hut.fi’

2005-07-17 02:44:23 | HUT | TRACE | Keyword ’Launch’ executed

2005-07-17 02:44:23 | HUT | TRACE | Executing framework keyword ’Check Title’

2005-07-17 02:44:23 | HUT | DEBUG | Verifying title succeeded (Teknillinen korkeakoul...

2005-07-17 02:44:23 | HUT | TRACE | Keyword ’Check Title’ executed

2005-07-17 02:44:23 | HUT | TRACE | Executing framework keyword ’Click Link With Image’

2005-07-17 02:44:23 | HUT | TRACE | Clicked link with image ’/img/tutkimus_m.gif’

2005-07-17 02:44:23 | HUT | TRACE | Keyword ’Click Link With Image’ executed

2005-07-17 02:44:23 | HUT | TRACE | Executing framework keyword ’Check Title’

2005-07-17 02:44:23 | HUT | DEBUG | Verifying title succeeded (Tutkimus)

2005-07-17 02:44:23 | HUT | TRACE | Keyword ’Check Title’ executed

2005-07-17 02:44:23 | HUT | TRACE | Executing framework keyword ’Click Link With Text’

2005-07-17 02:44:24 | HUT | TRACE | Clicked link with text ’Osastot’

2005-07-17 02:44:24 | HUT | TRACE | Keyword ’Click Link With Text’ executed

2005-07-17 02:44:24 | HUT | TRACE | Executing framework keyword ’Check Title’

2005-07-17 02:44:24 | HUT | DEBUG | Verifying title succeeded (TKK-Yksiköt-Osastot)

2005-07-17 02:44:24 | HUT | TRACE | Keyword ’Check Title’ executed

2005-07-17 02:44:24 | HUT | TRACE | Executing framework keyword ’Click Link With Text’

2005-07-17 02:44:25 | HUT | TRACE | Clicked link with text ’Ohjelmistoliiketoiminnan ...

2005-07-17 02:44:25 | HUT | TRACE | Keyword ’Click Link With Text’ executed

2005-07-17 02:44:25 | HUT | TRACE | Executing framework keyword ’Check Title’

2005-07-17 02:44:25 | HUT | DEBUG | Verifying title succeeded (SoberIT-Software Busin...

2005-07-17 02:44:25 | HUT | TRACE | Keyword ’Check Title’ executed

2005-07-17 02:44:25 | Driver | PASS | HUT (Navigate from HUT to SoberIT)

2005-07-17 02:44:25 | Driver | INFO | 3/3 tests run, 3/3 passed, 0/3 failed

Figure 4.8: Test log from keyword-driven web pilot

CHAPTER 4. IMPLEMENTATION AND PILOT 85

driver script and jWebUnit made implementing the test library trivial. The amount
of new code is thus much more smaller than Table 4.5 tells.

An interesting finding was that the driver scripts used in different keyword-driven
pilots were very similar and they could easily be made more generic. If it was
possible to have only one generic driver script it would fasten implementation and
significantly decrease the amount of code to maintain. This important issue is
discussed more thoroughly in next chapter when results of these pilots are evaluated.

Driver Script 61

Web Library 30

TOTAL 91

Table 4.5: Component sizes in keyword-driven wed testing

4.6 Chapter Summary

Implementing needed framework and test specific components to the three pilots
succeeded well. The hardest task was designing and implementing the parser com-
ponents and after they were ready everything else was relatively easy. Most notable,
writing test libraries turned out to be very simple. Table 4.6 lists sizes off all im-
plemented components and reveals that total amount of code was clearly below one
thousand lines.

Next chapter will continue from here by collecting pilot experiences together. Based
on the results the overall feasibility of the framework can be evaluated and possible
changes suggested.

Test Data Parser 479

Logger 82

Data-Driven Calculator Testing 93

Keyword-Driven Calculator Testing 117

Keyword-Driven Web Testing 91

TOTAL 862

Table 4.6: Sizes of all components implemented in the pilot

Chapter 5

Results

In this chapter it is time to evaluate the feasibility of the framework concept that has
been presented in Chapter 3 based on the experiences from the pilot in Chapter 4.
Another objective is adapting the requirement set that has been defined in Chapter 2
based on the new knowledge gained in the pilot.

5.1 Feasibility of the Framework Concept

The first implementation task of the pilot was creating prototypes of the reusable
framework components (Section 4.2). The main outcome was a parser that reads
data from OpenOffice spreadsheet files and is capable to process both data-driven
and keyword-driven test data. In addition to that also simple logger was imple-
mented. Few internal design changes and rewrites were needed but otherwise im-
plementation succeeded without any bigger problems.

Next tasks were implementing automated tests for Windows Calculator using both
the data-driven (Section 4.3) and keyword-driven approaches (Section 4.4) and using
latter also for web testing (Section 4.5). Implementing needed driver scripts and test
libraries proceeded without any surprises and in the end automated tests could be
executed for all tested systems. Interestingly only about hundred lines of code per
one tested system was needed.

The overall feasibility of the framework is evaluated in Table 5.1 against the three
high level requirements presented originally in Table 2.1. The evaluation is of course
based on a quite small pilot and it also likely to be biased since it is done by the
same person who has designed and implemented the framework itself. It is certain,

86

CHAPTER 5. RESULTS 87

Automatic Test Execution The prototype implemented had only those features
that were absolutely needed but even with them test
execution, analyzing the outcome and reporting results
could be automated fairly easily.

Ease of Use Usability is always a subjective matter but creating test
cases with the framework proved to be easy both for
me and also for those people I introduced the proto-
type. Even creating user keywords was considered fairly
straightforward.

Maintainability The prototype framework itself was surprisingly small
which suggests that it ought to be pretty easily main-
tainable. For anyone using the framework that is not
the important issue since they see it mainly as a black
box. The much more important thing is that the test
libraries and driver scripts required for each pilot were
both very small and relatively easy to read which makes
them easy to maintain. Based on the pilots it also
seemed that separating the test data from the automa-
tion code really eased maintainability of both the code
and test cases constructed in the data.

Table 5.1: Evaluating the framework against high level requirements

however, that the framework works well at least in similar contexts as in the pilot.
Proving that it works in general in system and component level acceptance testing
would require a larger study but there does not seem to be any problems preventing
it. Based on the positive experiences and good results it can be asserted that the
framework concept presented in this thesis is valid.

5.2 Changes to the Framework and Requirements

5.2.1 Using Only Keyword-Driven Approach

While implementing the prototype framework and using it in pilots I started to like
keyword-driven technique more and more. The only place where I thought data-
driven technique performed better was presenting multiple similar test cases with
differences only in the data. For example test cases created in the data-driven pilot
are presented a lot more compact way in Figure 4.2 than corresponding keyword-
driven test cases in Figure 4.4. Of course latter format can be used for running
different kinds of tests—main benefit of keyword-driven testing—but the former is

CHAPTER 5. RESULTS 88

Figure 5.1: Keyword-driven technique used as data-driven technique

clearly much better suited for presenting simple variations in the test data.

While I was experimenting with keyword-driven parts of the implemented framework
I noticed that it was possible to achieve the same terse presentation that the data-
driven approach provided with user keywords. For example test cases in Figure 4.2
can be implemented with keyword-driven approach as shown in Figure 5.1. Created
user keyword Two number calculation actually does all the same testing tasks as the
data-driven driver script in Listing 4.1 but it is of course a lot easier to understand
and maintain. As it can be seen from the example, creating similar user keyword for
a longer test is also a trivial tasks and leaves very little extra to maintain—something
that cannot be said about creating a new driver script.

CHAPTER 5. RESULTS 89

Based on these findings I conclude that only the keyword-driven part of the presented
framework is actually needed. That is not because the data-driven technique would
not work but just because the keyword-driven technique works so much better and,
as just demonstrated, it can be used in a data-driven way if needed. Having only
one way of working also makes learning the framework easier and smaller code base
to maintain in the framework is always a plus.

I still believe pure data-driven frameworks have their uses in situations where larger
frameworks are not needed or are not adequate. As we can remember from List-
ing 2.1, creating a simple data-driven parser is a very easy task and some kind of
a framework can be easily implemented around it. When building a larger frame-
work, like the one presented in this thesis, the added complexity of implementing a
keyword-driven system is worth the effort.

5.2.2 Set Up and Tear Down

One thing limiting the flexibility of the keyword-driven pilots was that setting up
the test environment needed to be handled separately. In Windows Calculator pilot
(Section 4.4) it was done having special setUp and tearDown methods in the test
library and calling them from the driver script. In web testing pilot (Section 4.5) no
set up was needed as all test cases simply had Launch as their first keyword. The
problem with the former method is that changing setUp and tearDown methods
requires editing code which is against the idea of giving test designers free hands
to construct test cases using only the test data. The latter approach works ok in
this case but if same set up steps were needed for all test cases repeating them
is not such a good idea. More importantly, using last keyword for cleaning the
environment does not work since if the test fails it may never be executed.

These same problems exists also on unit level and there xUnit frameworks have
solved them cleverly by allowing test designers to create separate set up and tear
down functions for a group of test cases. These frameworks also make sure that set
up and tear down are executed for each test before and after the test regardless the
test status. Similarly a keyword-driven framework could let test designers specify
in the test data what keywords to execute as set up and tear down. The framework
would then take care of executing set up and tear down keywords and make sure that
tear down is always executed. This addition would not change the high level layout
of the framework but would of course require some changes to the keyword-driven
parser.

CHAPTER 5. RESULTS 90

5.2.3 Test Suites

Another feature from xUnit frameworks that I started to miss while working with
the framework is grouping related test cases together into test suites. I realized that
when the number of test cases grows large it gets important to be able run selected
tests, for example all smoke or regression tests, easily. Another use for test suites is
creating larger test case collections by grouping suites together. That kind of usage
of course requires that suites can contain other suites and it would be convenient
that suites also had their own set up and tear down functionalities.

5.2.4 Generic Driver Script

In Section 4.5.5 it was already mentioned that driver scripts for both keyword-driven
pilots (Listings 4.3 and 4.6) are very similar. Only real differences between the two
are test libraries they use and different ways to set up the test environment. Both
of these tasks could, however, be done in a more generic manner. The possibility
to set up and tear down the test environment with keywords was already discussed
in Section 5.2.2. Selecting what test libraries to use is even easier than that—they
could be simply specified along the test data similarly as settings like logging level.

Not needing system specific driver scripts is a very big improvement because there
would be a lot less code to implement and maintain. Only things needed when
automating tests for a new system would be test libraries and the test data. Since
test libraries can also be reusable with similar systems (e.g. different web sites can
be tested with the same web testing library) in many cases just designing new test
cases would be enough. I do not believe test automation can get much easier than
that.

Since driver script is not too descriptive name for a generic code running all tests
I prefer calling it a test runner instead. This name change can be seen also in
Figure 5.2 that shows a revised version of the detailed framework view originally
presented in Figure 3.2. The new version also has test libraries taken out of the test
execution system which points out that the core of the framework is totally generic
and it communicates with test libraries over a clear, defined interface.

CHAPTER 5. RESULTS 91

Figure 5.2: A revised detailed view of the framework

5.3 Revised List of Requirements

The changes suggested in this chapter have some effects to the requirements specified
in Chapter 2. High level requirements are not affected but some of the detailed
requirements need to be updated. The updated list of requirements is presented in
Table 5.2.

5.4 Chapter Summary

This chapter evaluated the feasibility of the presented test automation framework
concept based on the pilot experiences. The overall assessment was positive and the
framework was declared valid.

Even though the framework in general functioned well some changes to it were
deemed necessary. The biggest change is suggesting that using only the keyword-
driven approach is enough because with user keywords it can, when needed, be used
also in a data-driven manner. Other suggested changes include implementing set
ups and tear downs as well as test suites, and using a generic test runner instead
of system specific driver scripts. These of course affected the list of requirements
specified in Chapter 2 and an adapted list is presented in Table 5.2.

In the next chapter it is time for conclusions and closing words.

CHAPTER 5. RESULTS 92

High Level
Requirements

The framework MUST execute test cases automatically. That
includes also for example verifying results, handling errors and
reporting results.

The framework MUST be easy to use without programming
skills.

The framework MUST be easily maintainable.

Automatic Test
Execution

The framework MUST be able to execute tests unattended.

It MUST be possible to start and stop test execution manually.

It SHOULD be possible to start test execution automatically at
predefined time.

It SHOULD be possible to start test execution automatically
after certain events.

Non-fatal errors caused by the SUT or the test environment
MUST be handled gracefully without stopping test execution.

Test results MUST be verified.

Every executed test case MUST be assigned either Pass or Fail
status and failed test cases SHOULD have a short error
message explaining the failure.

Framework SHOULD differentiate expected failures caused by
known problems from new failures.

Test execution MUST be logged.

Test execution SHOULD be logged using different, configurable
logging levels.

Test report MUST be created automatically.

Test report SHOULD be published automatically.

Ease of Use The framework MUST use keyword-driven approach.

The framework MUST support creating user keywords.

The framework SHOULD support specifying common set up
and tear down functionality for test cases.

The framework SHOULD support grouping related test cases
into test suites.

Maintainability The framework MUST be modular.

The framework SHOULD be implemented using high level
scripting languages.

The testware in the framework MUST be under version control.

The framework MUST have coding and naming conventions.

The testware MUST be adequately documented.

Testability of the tested system MUST be increased as much as
possible.

Clear roles MUST be assigned.

Table 5.2: Revised requirements for a large scale test automation framework

Chapter 6

Conclusions

The main objective of this chapter is to look back into the requirements that were
set for this thesis in the first chapter and evaluate how well they have been met.
Besides that also future of the presented framework is briefly discussed before the
final words.

If there is one single thing I would like a casual reader to remember from this thesis
it is that test automation is a very large and non-trivial subject. As Section 1.2
points out, there are countless possible approaches and they suite differently into
different contexts. While this thesis only concentrates on large scale test-automation
frameworks for test execution and reporting, other approaches are also important.

The requirements for this thesis were specified in Section 1.5 and Table 6.1 lists what
has been done to achieve them. As it can be seen all four requirements have been
clearly fulfilled. Based on that I conclude that this thesis meets its requirements.

Writing this thesis has been a big but rewarding task. My knowledge about test
automation in general and data-driven and keyword-driven frameworks in particular
has increased enormously while studying all the material and implementing and
using the framework prototype. That can be seen for example from the fact that
after the pilots I realized that keyword-driven approach alone is a sufficient base for
large scale frameworks.

After the prototype had been implemented but before finishing the thesis the frame-
work has been rewritten in a project based on the revised requirements in Table 5.2.
It has also been taken into a real use and so far the overall feedback has been mostly
positive. It thus seems that the benefits promised in this thesis really are valid also
in a real life project.

93

CHAPTER 6. CONCLUSIONS 94

My hope is that some time in the near future the framework can also be released as
open source in one format or another. That way ideas presented in this thesis would
be easily available in a functional format for everyone and other people could extend
the framework into new directions. While waiting for that to happen, however, it is
time to write the final period of this thesis.

Define requirements for
large scale test automation
frameworks.

Chapter 2 defined a set of requirements a large scale
test automation framework ought to meet. High level
requirements were listed in the beginning of the chap-
ter in Table 2.1 and included automatic test execution,
ease of use and maintainability. High level requirements
were broken down into set of more detailed and concrete
requirements and listed in Table 2.3.

Design a framework
meeting these
requirements.

A framework concept was designed in Chapter 3 based
on the requirements gathered in Chapter 2. Using data-
driven and keyword-driven approaches were considered
most important lower level requirements in terms of
ease-of-use and maintainability and the presented con-
cept naturally had these capabilities.

Test the designed
framework against the
defined requirements in a
pilot.

The framework concept was piloted in Chapter 4 where
a prototype was implemented and automated tests cre-
ated for two different systems using it. In the data-
driven pilot everything went pretty much as expected—
the approach worked very well and proved to be useful.
Keyword-driven pilots proceeded without problems as
well and results were even better than anticipated.

Collect results from the
pilot and validate the
feasibility of the
framework based on them.
Adapt requirements based
on the new information.

Pilot experiences were collected together in Chapter 5
and based on them the overall framework was declared
feasible. Some changes to the framework were also sug-
gested, the biggest one being the decision to use only
the keyword-driven approach. Changes affected also
detailed requirements specified earlier and a revised re-
quirement set was presented.

Table 6.1: Evaluating the thesis against its requirements

Bibliography

J. Bach. Agile test automation, 2003. URL http://www.satisfice.com/

agileauto-paper.pdf. April 11, 2005.

A. Bagnasco, M. Chirico, A. M. Scapolla, and E. Amodei. XML data representation
for testing automation. In IEEE AUTOTESTCON Proceedings, pages 577–584.
IEEE Computer Society, 2002.

K. Beck. Simple Smalltalk testing: With patterns, 1994. URL http://www.

xprogramming.com/testfram.htm. April 13, 2005.

K. Beck. Test-Driven Development By Example. Addison-Wesley, 2003.

K. Beck and E. Gamma. Test infected: Programmers love writing tests. Java Report,
3(7):37–50, July 1998.

C. Bird and A. Sermon. An XML-based approach to automated software testing.
ACM SIGSOFT Software Engineering Notes, 26(2):64–65, March 2001.

BS 7925-1. Glossary of terms used in software testing. British Computer Society,
1998.

I. Burnstein. Practical Software Testing. Springer, 2003.

H. Buwalda, D. Janssen, and I. Pinkster. Integrated Test Design and Automation:
Using the Testframe Method. Addison-Wesley, 2002.

R. Craig and S. Jaskiel. Systematic Software Testing. Artech House Publishers,
2002.

S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and
B. M. Horowitz. Model-based testing in practice. In ICSE ’99: Proceedings of
the 21st international conference on Software engineering, pages 285–294. IEEE
Computer Society Press, 1999.

95

http://www.satisfice.com/agileauto-paper.pdf
http://www.satisfice.com/agileauto-paper.pdf
http://www.xprogramming.com/testfram.htm
http://www.xprogramming.com/testfram.htm

BIBLIOGRAPHY 96

E. Dustin, J. Rashka, and J. Paul. Automated Software Testing. Addison-Wesley,
1999.

M. Fewster and D. Graham. Software Test Automation. Addison-Wesley, 1999.

M. Fowler. Separating user interface code. IEEE Software, 18(2):96–97, March 2001.

A. Geras, M. Smith, and J. Miller. A prototype empirical evaluation of test driven
development. In METRICS ’04: Proceedings of the Software Metrics, 10th Inter-
national Symposium on (METRICS’04), pages 405–416. IEEE Computer Society,
2004.

P. Hamill. Unit Test Frameworks. O’Reilly, 2004.

A. R. Hevner, S. T. March, J. Park, and S. Ram. Design science in information
systems research. MIS Quarterly, 28(1):75–105, March 2004.

IEEE Std 610.12-1990. IEEE standard glossary of software engineering terminology.
Institute of Electrical and Electronics Engineers, Inc., 1990.

R. Johnson and B. Foote. Designing reusable classes. Journal of Object-Oriented
Programming, 1(2):22–35, June 1988.

C. Kaner. Pitfalls and strategies in automated testing. IEEE Computer, 30(4):
114–116, April 1997.

C. Kaner, J. Bach, and B. Pettichord. Lessons Learned in Software Testing: A
Context-Driven Approach. John Wiley & Sons, Inc., 2001.

M. Kelly. Choosing a test automation framework, July 2003. URL http://www-106.

ibm.com/developerworks/rational/library/591.html. April 30, 2005.

E. Kit. Integrated, effective test design and automation. Software Development,
pages 27–41, February 1999.

M. Last, M. Friedman, and A. Kandel. The data mining approach to automated
software testing. In KDD ’03: Proceedings of the ninth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 388–396. ACM
Press, 2003.

B. Marick. Bypassing the GUI. Software Testing & Quality Engineering, 4(5):41–47,
September 2002.

http://www-106.ibm.com/developerworks/rational/library/591.html
http://www-106.ibm.com/developerworks/rational/library/591.html

BIBLIOGRAPHY 97

B. Marick. Classic testing mistakes, 1997. URL http://www.testing.com/

writings/classic/mistakes.html. April 30, 2005.

E. M. Maximilien and L. Williams. Assessing test-driven development at IBM. In
Proceedings of the 25th International Conference on Software Engineering, pages
564–569. IEEE Computer Society, 2003.

A. M. Memon, M. E. Pollack, and M. L. Soffa. Using a goal-driven approach to gen-
erate test cases for GUIs. In ICSE ’99: Proceedings of the 21st international con-
ference on Software engineering, pages 257–266. IEEE Computer Society Press,
1999.

A. M. Memon, M. E. Pollack, and M. L. Soffa. Automated test oracles for GUIs.
In SIGSOFT ’00/FSE-8: Proceedings of the 8th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 30–39. ACM Press,
2000.

G. Meszaros. Agile regression testing using record & playback. In OOPSLA ’03:
Companion of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 353–360. ACM Press,
2003.

D. Mosley and B. Posey. Just Enough Software Test Automation. Prentice Hall
PTR, 2002.

R. Mugridge and W. Cunningham. Fit for Developing Software. Prentice Hall PTR,
2005.

C. Nagle. Test automation frameworks, 2000. URL http://safsdev.sourceforge.

net/DataDrivenTestAutomationFrameworks.htm. February 20, 2005.

J. Ousterhout. Scripting: higher level programming for the 21st century. IEEE
Computer, 31(3):23–30, March 1998.

B. Pettichord. Deconstructing GUI test automation. Software Testing & Quality
Engineering, 5(1):28–32, January 2003.

B. Pettichord. Seven stepts to test automation success. In Proceedings of the Soft-
ware Testing, Analysis & Review Conference (STAR) West 1999. Software Qual-
ity Engineering, 1999.

http://www.testing.com/writings/classic/mistakes.html
http://www.testing.com/writings/classic/mistakes.html
http://safsdev.sourceforge.net/DataDrivenTestAutomationFrameworks.htm
http://safsdev.sourceforge.net/DataDrivenTestAutomationFrameworks.htm

BIBLIOGRAPHY 98

B. Pettichord. Design for testability. In Proceedings of The 20th Annual Pacific
Northwest Software Quality Conference, pages 243–270. Pacific Northwest Soft-
ware Quality Conference, 2002.

B. Pettichord. Hey vendors, give us real scripting languages. StickyMinds, February
2001.

R. W. Rice. Surviving the top ten challenges of software test automation. In
Proceedings of the Software Testing, Analysis & Review Conference (STAR) East
2003. Software Quality Engineering, 2003.

D. J. Richardson, S. L. Aha, and T. O. O’Malley. Specification-based test oracles for
reactive systems. In ICSE ’92: Proceedings of the 14th international conference
on Software engineering, pages 105–118. ACM Press, 1992.

H. Robinson. Intelligent test automation. Software Testing & Quality Engineering,
2(5):24–32, September 2000.

M. Shaw. What makes good research in software engineering? International Journal
on Software Tools for Technology Transfer, 4(1):1–7, October 2002.

R. Strang. Data driven testing for client/server applications. In Proceedings of
the Fifth International Conference of Software Testing, Analysis & Review, pages
389–400. Software Quality Engineering, 1996.

L. H. Tahat, B. Vaysburg, B. Korel, and A. J. Bader. Requirement-based automated
black-box test generation. In Proceedings of the 25th Annual International Com-
puter Software and Applications Conference, 2001, pages 489–495. IEEE Com-
puter Society Press, 2001.

K. Zallar. Are you ready for the test automation game? Software Testing & Quality
Engineering, 3(6):22–26, November 2001.

K. Zambelich. Totally data-driven automated testing, 1998. URL http://www.

sqa-test.com/w paper1.html. February 20, 2005.

http://www.sqa-test.com/w_paper1.html
http://www.sqa-test.com/w_paper1.html

	Terms
	Introduction
	Promises and Problems of Test Automation
	Different Test Automation Approaches
	Dynamic vs. Static Testing
	Functional vs. Non-Functional Testing
	Granularity of the Tested System
	Testing Activities
	Small Scale vs. Large Scale Test Automation

	Scope
	Methodology
	Goals
	Structure

	Requirements for Test Automation Frameworks
	High Level Requirements
	Framework Capabilities
	Executing Tests Unattended
	Starting and Stopping Test Execution
	Handling Errors
	Verifying Test Results
	Assigning Test Status
	Handling Expected Failures
	Detailed Logging
	Automatic Reporting

	Modularity
	Linear Test Scripts
	Test Libraries and Driver Scripts
	Promises and Problems

	Data-Driven Testing
	Introduction
	Editing and Storing Test Data
	Processing Test Data
	Promises and Problems

	Keyword-Driven Testing
	Introduction
	Editing and Storing Test Data
	Processing Test Data
	Keywords in Different Levels
	Promises and Problems

	Other Implementation Issues
	Implementation Language
	Implementation Technique
	Testware Architecture

	Testability
	Control
	Visibility

	Roles
	Test Automation Manager
	Test Automation Architect
	Test Automator
	Test Designer

	Detailed Requirements
	Chapter Summary

	Concept for Large Scale Test Automation Frameworks
	Framework Structure
	Test Design System
	Test Monitoring System
	Test Execution System

	Presenting and Processing Data-Driven Test Data
	Presenting Test Cases
	Using Test Data
	Example

	Presenting and Processing Keyword-Driven Test Data
	Presenting Test Cases
	Presenting User Keywords
	Using Test Data

	Chapter Summary

	Implementation and Pilot
	Implementation Decisions
	Technical Decisions
	Decisions Regarding the Pilot

	Implementing Reusable Framework Components
	Test Data Parser
	Logger
	Summary

	Data-Driven Windows Application Testing
	Test Data
	Driver Script
	Test Library
	Test Log
	Summary

	Keyword-Driven Windows Application Testing
	Test Data
	Driver Script
	Test Library
	Test Log
	Summary

	Keyword-Driven Web Testing
	Test Data
	Driver Script
	Test Library
	Test Log
	Summary

	Chapter Summary

	Results
	Feasibility of the Framework Concept
	Changes to the Framework and Requirements
	Using Only Keyword-Driven Approach
	Set Up and Tear Down
	Test Suites
	Generic Driver Script

	Revised List of Requirements
	Chapter Summary

	Conclusions
	Bibliography

