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Abstract—With increasing exposure to software-based sensing
and control, Photovoltaic (PV) systems are facing higher risks
of cyber attacks. To ensure the system stability and minimize
potential economic losses, it is imperative to monitor operating
states and detect attacks at the early stage. To meet this
demand, Micro-Phasor Measurement Units (µPMU) are increas-
ingly popular in monitoring distribution networks. However, due
to the relatively low sampling rate, µPMU has not yet been
used to detect and classify cyber-attacks in power electronics
enabled smart grid. To our knowledge, this is one of the first
attempts to use µPMU to detect cyber attacks that degrade the
performance of power electronics systems. We propose to apply
data-driven methods on micro-PMU data to implement attack
detection. We have evaluated data-driven methods, including
decision tree (DT), K-nearest neighbor (KNN), support vector
machine (SVM), artificial neural network (ANN), long short-term
memory (LSTM) and convolutional neural network (CNN). The
proposed CNN model achieves the required performances with
the highest 99.23% accuracy and 0.9963 F1 score.

Index Terms—PV systems, Cyber physical security, Data-
driven models

I. INTRODUCTION

As a promising alternative power resource, Photovoltaic
(PV) systems are increasingly deployed in recent years to
meet the growing demand for electricity [1]. With the advent
of the Internet of Things (IoT) era, PV systems have been
exposed to cyber/physical attacks That are more likely to occur
than before [2]. To ensure the PV system’s normal operation
and maximum output power, effective and quick detection
of potential attacks is critical. Some literature discussed the
impact of cyber attack drive, electronics, and electric vehicles
[3]–[6]. However, most current works focus on fault detection
and diagnosis [7]. The only relevant work is cyber-physical
attack detection and diagnosis in PV farms via analyzing
electrical waveform data [8]. As electrical waveform data may
not be available in the actual power grid, phasor measurement
units (PMUs) are most commonly used in monitoring today’s
power grid characteristics (magnitude, frequency, and phase
angle of an electrical quantity) [9], [10].

The advent of PMU in the power system has revolutionized
the way the electric power grid is monitored and controlled [9].
Thanks to the synchronization achieved by GPS, PMU can
provide positive sequence voltage and current measurements
synchronized within a microsecond, which allows the moni-

toring of dynamic phenomena. For the past few years, with
higher accuracy and higher sampling rate (120Hz), micro-
PMUs (µPMU) have been introduced as new sensor tech-
nologies with the goal of enhancing real-time monitoring in
power distribution systems [11]. However, compared with the
electrical waveform data with a sampling rate higher than
1kHz, the feasibility of using µPMU for cyber-attack detection
of power electronics systems needs to be studied. This is
because the potential cyber-attacks could bring some high-
frequency components that might be neglected by µPMU.

Here, we propose modern data-driven methods to analyze
µPMU data for cyber-attack detection in the PV systems.
Compared with traditional methods, data-driven methods [12],
[13] have the advantage of better feature extraction. They
do not need to consider explicit mathematical models of
various attacks, as it is tough to describe the different types
of attacks in a specific model. The data-driven methods that
we choose are as follows: Decision Tree (DT), K-nearest
neighbor (KNN), Support Vector Machine (SVM), Artificial
Neural Network (ANN), Long short-term memory (LSTM)
and Convolutional Neural Network (CNN) [14], [15], which
cover classic machine learning and deep learning models. We
try to find out which fits better with µPMU data.

In this paper, we first built a solar farm model using
MATLAB Simulink, simulating the attack scenarios on the
solar farm and generating the µPMU sample data. Secondly,
we implement attack detection experiments in data-driven
methods mentioned above. Lastly, we analyzed the experi-
mental results and verified the feasibility of µPMU in attack
detection for the PV system of a solar farm.

II. PV FARM MODEL AND µPMU DATASET

A. Cyber attack model for PV farm

The proposed data-driven evaluation methods are applied
to a grid-connected PV farm [8]. Fig. 1 shows the schematic
diagram and topology of our solar farm Simulink model,
which consists of solar panels, first stage DC/DC converter,
second stage DC/AC inverter, and the transformer. The main
power grid is modeled as an ideal voltage source with a linear
load. One rate voltage of 260V /25kV , 400kVA, transformer
connects the PV farm, which includes four DC/DC converters
and one DC/AC inverter, to the power grid.



Fig. 1: Schematic diagram of the solar farm Simulink model. An attacker
could use the cyber connection between the controller and DC/DC converter
or DC/AC inverter to launch cyber attacks. The PMU is installed between
DC/AC inverter and the transformer, which records the µPMU data.

In this paper, the cyber attacks we simulate are data integrity
attacks, which are designed for compromising the DC/DC
converter and DC/AC inverter sensors. To demonstrate cyber
attacks on the sensor, the measurement and fake measurement
are modeled as y, ŷ, respectively. Then, the cyber attack that
changes sensor feedback can be expressed as,

ŷ(t) = αy(t− tdelay), t ∈ Tattack, (1)

where, α is greater or smaller than 1, tdelay is the time dalay
injection, Tattack = [T0, T0 + T ].

We considered the following three scenarios: 1) Normal
with different output power levels. 2) False data injection
attack on the DC/DC converter. This attack maliciously mod-
ifies the sensor/feedback data of the DC/DC converter. 3)
Delay attack on DC/AC converter. This attack introduces
delays in the feedback of the DC/AC inverter, which leads to
degraded controller performance. For the DC/DC controller,
cyber attacks on its sensor only change the voltage and
current of the PV panel. The αV and αI represent fake
measurement coefficient of voltage and current in the PV
panel. (αV , αI) ∈ [(0, 0), (2, 3), (2, 0.3), (0.5, 3), (0.5, 0.3)].
For the DC/AC controller, the cyber attacks would inject a
time delay into the feedback signal of the sensor, tdelay ∈
[0, 4ms, 6ms, 8ms, 10ms, 12ms, 14ms]. To consider the un-
certainty of cyber attacks, the attacks happened at different
time are also simulated in our model, such as phase angles
0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦. In addition, to improve the
robustness of the data-driven models by feeding in training
data under different conditions, we also consider the radiation
impact on power generation. The radiation on the PV panel
varies in range of 900, 941, 967, 988, 1000 w/m2. In this case,
more than 3,900 training samples are simulated. The sampling
frequency of raw waveform data is 1 kHz, and 0.7 seconds(s)
data are captured for each scenario. After converting to µPMU
data by PMU, each training sample has 84 sample points.

B. µPMU Dataset

Fig. 2 shows an example of a voltage µPMU data sample
when there is no attack. The upper left picture shows the raw

waveform data. Although the sampling rate of µPMU data
is much less compared to the original waveform, the three
features of the magnitude, frequency, and phase angle of the
waveform are directly obtained from the hardware calculation
of PMU device.

Fig. 2: An example of a µPMU voltage data sample (normal). The upper
left depicts the raw waveform data, and the rest represent its corresponding
µPMU data.

As discussed above, the µPMU data are collected from the
PMU device annotated in Fig. 1. At each sampling time, an 18-
dimensional µPMU data vector is obtained. We denote three-
phase (a, b, c) voltage (V ) µPMU data (θ, F , M represent
phase angle, frequency and magnitude, respectively) as: θVa

,
FVa

, MVa
, θVb

, FVb
, MVb

, θVc
, FVc

, MVc
and three-phase

current (I) µPMU data as: θIa , FIa , MIa , θIb , FIb , MIb , θIc ,
FIc , MIc .

All the data at each time point constitute a µPMU data
sample, which can be represented as a 1-D time sequence:

X = (XµPMU
1 , XµPMU

2 , ..., XµPMU
t ), (2)

where XµPMU
t represents the µPMU data sampled at time t.

The equation

XµPMU
t = (θtVa

, F tVa
,M t

Va
..., θtIc , F

t
Ic ,M

t
Ic), (3)

shows the features that µPMU sample data have (18 features
in total).

III. DATA-DRIVEN METHODS

In order to extensively verify the feasibility of using µPMU
data for data-driven based attack detection, we have selected
and implemented 6 different kinds of popular supervised data-
driven methods, including both machine learning and deep
learning multiclass classification algorithms [14]–[16]. They
are Decision Tree (DT), K-Nearest Neighbor (KNN), Support
Vector Machine (SVM), Neural Network (NN), Long Short-
Term Memory (LSTM) and Convolutional Neural Networks
(CNNs). According to the inherent complexity of the model,
Each method has different processing capabilities to handle
the problem. Through comparison and evaluation, we can find
the most suitable solution for us.



A. Machine Learning

1) Decision Tree: The DT is a tree-like structure in which
each internal node represents a decision or selection on a
feature. Each leaf node represents a class label (decision
made after considering all features), and branches represent
conjunctions of features that lead to the class labels. The paths
from the root to the leaf represent classification rules. It has
advantages like no assumptions about the shape of the data
and fasts for inference. But it also easily get overfit.

2) K-Nearest Neighbor: As can be seen from its name,
the KNN algorithm assumes that similar things exist in close
proximity. It is based on the principle that the value of the label
of an unclassified instance can be determined by observing
the class of its nearest neighbors. Known for its intuitive and
simple, it is often used as a benchmark for more complex
classifiers. KNN is a non-parametric algorithm, which means
there are also no assumptions to be met, so it is straightforward
to implement for multiclass classification problems. However,
as the dataset grows, the efficiency of the algorithm declines
very fast. It does not perform well on imbalanced data, which
means that different classes of data in the dataset are relatively
uneven. The key to good performance is to choose an optimal
number of neighbors to be considered while classifying the
new data entry, which is tricky.

3) Support Vector Machine: The basic idea is to create
a boundary or a hyperplane which separates the data into
classes. Intuitively, the further from the hyperplane data points
lie, the more confident we are that they have been correctly
classified. In general, it’s not easy to have a directly separable
set of training data. That is where the kernel trick comes in,
whose idea is mapping the non-linear separable dataset into a
higher dimensional space where we could find a hyperplane to
separate the data. In fact, we don’t have to explicitly calculate
the coordinates of the data points in the new space. We just
need to compute the distance between data points in that space
using a kernel function, which is typically crafted by hand
rather than learned from data. SVM exhibited state-of-the-
art performance on simple classification problems [16], and
the theory behind makes it well understood and interpretable.
However, SVM does not perform well for large datasets such
as image classification, and the training time is much higher.

4) Neural Network: To avoid misunderstanding, NN in our
paper refers specifically to a fully-connected neural network.
As the basis of deep learning, NN is flexible and can be
used for both regression and classification problems. Any data
which can be made numeric could be used in NN. It is good
to model with nonlinear data with a large number of inputs.
NN performs well when the problem is simple; however, as
the problem gets complicated, it is usually used as the output
layer of a more complex network.

B. Deep Learning

1) Long short-term memory: LSTM is a variant of the
recurrent neural network(RNN). It was developed to solve
the vanishing gradient problem of RNN by adding a way
to carry the past information across the time steps. In this

case, information is saved for later, thus preventing older data
from gradually vanishing during training. LSTM is versatile
which can process not only single data points but also entire
sequences of data, especially time series data. It shows pow-
erful capability when handling scenarios like natural language
processing (NLP), speech recognition. To increase the network
capacity, the classic way is to stack multiple LSTM layers
together, called Deep LSTM. In this paper, we implemented
a two stack-layer LSTM network.

2) Convolutional Neural Network: Thanks to its hierar-
chical structure and powerful feature extraction capabilities,
CNN has shown its promising performance to deal with image
classification and object detection problems. Similarly, It also
has the potential to handle time series data with its highly
noise-resistant property and capacity to extract informative,
deep features. By converting a window-length time series
data sample into a matrix, we can feed it into the CNN
like an image. Fig. 3 shows a simple architecture of CNN
for classification, including the primary operations: 1) con-
volutional layer, whose main purpose is to extract features
from the input data sample. 2) ReLU, whose main purpose
is to introduce non-linearity in the network. 3) Pooling, also
called subsampling or downsampling, whose main purpose is
to reduce the dimensionality of each feature map but keep the
most critical information. 4) Fully Connected Layer, whose
main purpose is to use features from previous layers for
classifying the input into various categories.

Fig. 3: An example CNN with two convolutional layers, two pooling layers,
and a fully connected layer which decides the final classification of the image
into one of several classes.

IV. EXPERIMENT AND EVALUATION

A. Experiment Setting

The proposed data-driven evaluation methods are applied
to the solar farm benchmark model described in Fig. 1.
We implemented them through Pytorch (1.3.1) and Sklearn
(0.22.1) [17], [18] on a Ubuntu 16.04 server (CPU: i7-
6850K, 3.60GHz; Memory: 64GB) armed with GPU (GeForce
GTX 1080 Ti) for training. For the simulation, 3,939 training
samples of 3 types of states (normal state, false data injection
attack on the DC/DC converter, and delay attack on DC/AC
converter, respectively) are generated by our solar farm model,
whose simulation duration is 0.7 seconds, and the attack
happens at 0.45 seconds. To evaluate the performance of those
data-driven models, we use accuracy (ACC), precision (Prec),
recall (Rec), and F1-score (F1) [19], [20] as metrics, which are



frequently used in the evaluation of multiclass classification
defined as follows:

Prec =
TP

TP + FP
, (4)

Rec =
TP

TP + FN
, (5)

F1 =
2× TP

2× TP + FP + FN
, (6)

Acc =
TN + TP

TN + TP + FP + FN
, (7)

where true positive (TP) denotes the rate of actual attack is
correctly predicted as attack, true negative (TN) denotes the
rate of actual normal is correctly predicted as normal, false
positive (FP) denotes the rate of actual attack is wrongly
predicted as normal, false negative (FN) denotes the rate of ac-
tual normal is wrongly predicted as normal. All those metrics
above are expected to be as high as possible, where F1 takes
both the Prec and Rec into consideration [21]. To eliminate
the imbalance of the dataset, we calculated these metrics
considering the weight of different states [22]. Besides, we
also concern the Receiver operating characteristic (ROC) curve
and Area Under Curve (AUC) (the area under ROC curve)
[22], which are performance measurements for classification
problem that usually appears in pairs. They tell how much the
model could distinguish between classes. Higher the AUC, the
better the model is.

B. Data Preprocessing

As the very first step of the data-driven approach, data
preprocessing usually transforms raw data into a more under-
standable format. In our case, we first removed the unexpected
distortion at the beginning of the data sample caused by
Simulink simulation, which would lead to incorrect results.
Then, according to the attack type, we labeled every data
sample for training. Lastly, before training the models, due
to the large different value range of different features, we
applied data normalization using the Z-Score method [23] as
a preprocessing on each feature of the µPMU data separately
so that it had a standard deviation of 1 and a mean of 0. For
example, the normalized θVa

can be obtained by:

Ph∗tVa
=
PhtVa

− PhVa

σ
, (8)

where θVa
and σ are the mean value and standard deviation of

the feature θVa
during entire time range. Similarly, we can also

get other normalized features. For every µPMU data sample,
we constructed a normalized high-dimensional matrix Xt×s,
where t represents the length of the sample sequence and s
represents the number of features. So in our case, t = 85 (120
Hz sampling rate in 0.7 seconds) and s = 18 (18 features in
total), respectively. Eventually, each sample data to be input
to the models denote by the matrix X84×18.

For the CNN model, we treat every input matrix X84×18

as a pixel matrix, just like CNN usually does for image
classification. The width of the matrix represents the time
steps, and the length of the matrix represents the normalized
features at each time point. For the LSTM model, we treat
every row (features at every time point) of X84×18 as the input
of every time step, and the time sequence length of LSTM is
the width of X84×18, namely 84. For other models, the input
matrix is directly flattened into a one-dimensional vector with
84× 18 elements.

C. Machine Learning Model Training

After a large number of trials and tuning, to achieve the
tradeoff between convergence speed and performance, the
hyperparameters of the six data-driven methods are decided
as follows: 1) For CNN, we set the batch size 32, two
convolutional layers (kernel size is 5, the activation function is
ReLu, input channel and output channel are 1, 16, respectively,
the stride is set at 1, and padding equals to 2), one max pooling
layer. The output of convolutional layers directly connected
one fully-connected layer that outputs the result. 2) For LSTM,
the batch size is 32, the number of hidden states is 32, two
stack layer, one fully-connected layer. To get more power to
learn the latent information, we stack the extra lstm layer. 3)
For ANN, the batch size is set at 32, and three fully-connected
layers are deployed to make it comparable with the other
two deep learning methods. 4) For SVM, we implemented
using the SVC function from sklearn [17]. The sigmoid kernel
function is adopted, and the regularization parameter equals to
1. 5) For DT, max depth is set to 2. 6) For KNN, the number
of neighbors is set to 45. To achieve more reliable results, we
adopt the 10-fold cross validation, which splits the available
data into 10 partitions, instantiating 10 identical models, and
training each one on 9 partitions while evaluating on the
remaining partition. The validation metrics for the model used
is the average of the 10 validation obtained.

Fig. 4: The overall block diagram showing the workflow of the proposed
data-driven evaluation methods.



The overall block diagram is shown in Fig. 4, which
describes the workflow of the proposed data-driven evaluation
method: 1) Firstly, the µPMU data are loaded from the
database. 2)Then data preprocessing are applied, consisting
of labeling data, cleaning the data by removing the useless
data points, and normalize the data. 3) Next, data partitioning
is used to split the data into training data and test data. It is
noted that we used 10 fold cross validation, so we have 10
different randomly divided data partitions. 4) Once the model
is trained using training data, we do the model inference with
testing data, calculating the metrics. Repeat step (3) and (4)
10 times, the final evaluation results are the average values of
metrics in each model inference.

Fig. 5: Loss curve which depicts the training and testing loss curves of two
deep learning models and ANN.

Fig. 6: ROC curve which depicts the ROC curves of all data-driven models
and their corresponding AUC.

D. Evaluation

The experiment results are presented below after we con-
ducted a 10-fold cross-validation [24]. Figs. 5 and 6 show the
loss curve of two deep learning based methods with ANN and
their ROC curve. Fig. 7 shows the confusion matrix of all six
models. In the loss curve, it doesn’t take many epochs for the
three models to converge, and they all show promising results
after around 12th epoch. Meanwhile, this fast convergence
rate indicates that the dataset is not so complicated ,and
models could learn to classify them quickly. In addition, it
also proves that the µPMU data contains the key features
to distinguish different attack scenarios, though its sampling
rate is way lower than the raw waveform. From the ROC
curve, we can tell all models show ideal performance. But
the deep learning methods are still better than the others. As

the scenarios become more complicated, the gap between them
will become larger. It should be noted that LSTM is known
for its superior memory capacity to deal with time series data.
But interestingly, ANN is better than LSTM in both stability
and performance. This may be because the time series is
relatively too simple for LSTM to show its advantage [12].
Even though LSTM still achieved a very good performance
(96.62% accuracy).

Fig. 7: Confusion matrix of six models, where the x-axis represents predicted
label, and the y-axis represents ground truth.

From Table I, in comparison, CNN outperforms all other
models in all metrics (99.23% accuracy). We contribute this to
its powerful capability of extracting features and latent infor-
mation; moreover, it’s indeed possible to visually distinguish
a part of µPMU data. This means that CNN not only has
outstanding capability in dealing with the image but also has
the potential to process time series data. As for other models,
it makes sense that SVM is better than KNN and DT when
there are not many data samples. It is worth mentioning that
during training, SVM takes much more time than KNN and
DT. In short, the proposed data-driven methods all perform
well in the attack detection for our solar farm power system,
which shows the potential for µPMU data to be used in the
security area of the power system.

Table I: Quantitative evaluation metrics of different data-driven methods

Model\Metrics Acc Prec Rec F1 AUC

DT 0.9390 0.9816 0.9313 0.9542 0.9485
KNN 0.9671 0.9694 0.9626 0.9642 0.9719
SVM 0.9631 0.9721 0.9641 0.9660 0.9731

LSTM 0.9662 0.9719 0.9685 0.9692 0.9764
ANN 0.9894 0.9879 0.9871 0.9857 0.9904
CNN 0.9923 0.9966 0.9964 0.9963 0.9973

V. FUTURE WORKS

For our future research, we will use µPMU data for a variety
of attack detection in power electronics enabled smart grids.
We will also consider testing our method by implementing it in
the real system. The heavy training tasks can be handed over



to the data center or central server. Once the training is done,
the trained model will be put into some lightweight and low-
power light IoT devices such as Raspberry Pi. Then they will
be deployed in the power system. As long as the IoT devices
could receive µPMU data, they could easily do the attack
detection, because the computational cost of model inference
is much lower than training. Once an attack is detected, the
alarm will be sent to the user or operators.

VI. CONCLUSIONS

This paper proposes implementing modern data-driven
methods to validate the possibility of using µPMU data to
detect and diagnose the potential attacks simulated in our PV
system model of the solar farm. In conclusion, the contribu-
tions of this paper are as follows: 1) A PV power system model
of a solar farm is built, which could simulate various cyber
or physical attacks. Based on this model, six different data-
driven methods are applied to the µPMU data for detecting
cyber-attacks on the DC/DC converter and DC/AC inverter. 2)
Experiment results are analyzed, and they indicate the µPMU
data can be used by data-driven methods to successfully detect
the attacks on the PV system model with high accuracy. Our
work shows the µPMU data have the potential to be used in
modern data-driven methods to solve the security problems in
nowadays power system.
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