Data-driven methods: Video \& Texture

(C) A.A. Efros

CS194: Intro to Computer Vision \& Comp. Photography Alexei Efros, UC Berkeley, Fall 2020

Michel Gondry train video

http://www.youtube.com/watch?v=0S43IwBF0uM

Class Choice award!

Weather Forecasting for Dummies ${ }^{\text {TM }}$

Let's predict weather:

- Given today's weather only, we want to know tomorrow's
- Suppose weather can only be \{Sunny, Cloudy, Raining\}

The "Weather Channel" algorithm:

- Over a long period of time, record:
- How often S followed by R
- How often S followed by S
- Etc.
- Compute percentages for each state:
- $P(R \mid S), P(S \mid S)$, etc.
- Predict the state with highest probability!
- It's a Markov Chain

Markov Chain

What if we know today and yestarday's weather?

Text Synthesis

[Shannon,'48] proposed a way to generate English-looking text using N-grams:

- Assume a generalized Markov model
- Use a large text to compute prob. distributions of each letter given N-1 previous letters
- Starting from a seed repeatedly sample this Markov chain to generate new letters
- Also works for whole words

Mark V. Shaney (Bell Labs)

Results (using alt.singles corpus):

- "As I've commented before, really relating to someone involves standing next to impossible."
- "One morning I shot an elephant in my arms and kissed him."
- "I spent an interesting evening recently with a grain of salt"

Video Textures

Arno Schödl

Richard Szeliski

David Salesin

 Irfan EssaMicrosoft Research. Georoia Tech

Still photos

Video clips

I

Video textures

Problem statement

video clip

video texture

Our approach

- How do we find good transitions?

Finding good transitions

- Compute L_{2} distance $D_{i, j}$ between all frames

Similar frames make good transitions

Markov chain representation

Similar frames make good transitions

Transition costs

- Transition from i to j if successor of i is similar to j
- Cost function: $C_{i \rightarrow j}=D_{i+1, j}$

Transition probabilities

-Probability for transition $\mathrm{P}_{\mathrm{i} \rightarrow \mathrm{j}}$ inversely related to cost:

$$
\bullet P_{i \rightarrow j} \sim \exp \left(-C_{i \rightarrow j} / \sigma^{2}\right)
$$

high σ
low σ

Preserving dynamics

Preserving dynamics

Preserving dynamics

- Cost for transition $i \rightarrow j$

$$
C_{i \rightarrow j}=\sum_{k=-\mathrm{N}}^{\mathrm{N}-1} w_{k} D_{i+k+1, j+k}
$$

Preserving dynamics - effect

- Cost for transition $i \rightarrow j$

$$
C_{i \rightarrow j}=\sum_{k=-N}^{N-1} W_{k} D_{i+k+1, j+k}
$$

Dead ends

- No good transition at the end of sequence

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost
- $F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}$

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost
- $F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}$

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost
- $F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}$

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost
- $F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}$

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost
- $F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}$

Q-learning

Final result

Finding good loops

- Alternative to random transitions
- Precompute set of loops up front

Video portrait

- c.f. Harry Potter

Region-based analysis

- Divide video up into regions

- Generate a video texture for each region

User-controlled video textures

slow

variable

fast

User selects target frame range

Video-based animation

- Like sprites computer games
- Extract sprites from real video
- Interactively control desired motion

Video sprite extraction

> blue screen matting and velocity estimation

Video sprite control

- Augmented transition cost:

vector to mouse pointer

Control term

Video sprite control

- Need future cost computation
- Precompute future costs for a few angles.
- Switch between precomputed angles according to user input
- [GIT-GVU-00-11]

Interactive fish

Summary / Discussion

- Some things are relatively easy

Discussion

- Some are hard

"Amateur" by Lasse Gjertsen

http://www.youtube.com/watch?v=JzqumbhfxRo
similar idea:
http://www.youtube.com/watch?v=MsBMGp1HDM\&feature=share\&list=PLFFD733D0FF425290

Hyperlapse Videos

https://www.youtube.com/watch?v=Wt Y04xn84M
"Do As I Do" (ICCV 2003)

https://youtu.be/UMJcpLIAwKg

Efros, Berg, Mori, Malik, "Recognizing Action at a Distance", ICCV 2003

Texture

- Texture depicts spatially repeating patterns
- Many natural phenomena are textures

radishes

rocks

yogurt

Texture Synthesis

- Goal of Texture Synthesis: create new samples of a given texture
- Many applications: virtual environments, holefilling, texturing surfaces

The Challenge

- Need to model the whole spectrum: from repeated to stochastic texture

repeated

stochastic

Both?

Efros \& Leung Algorithm

Input image

Synthesizing a pixel

- Assuming Markov property, compute P(p|N(p))
- Building explicit probability tables infeasible
- Instead, we search the input image for all similar neighborhoods - that's our pdf for \mathbf{p}
- To sample from this pdf, just pick one match at random

Some Details

- Growing is in "onion skin" order
- Within each "layer", pixels with most neighbors are synthesized first
- If no close match can be found, the pixel is not synthesized until the end
- Using Gaussian-weighted SSD is very important
- to make sure the new pixel agrees with its closest neighbors
- Approximates reduction to a smaller neighborhood window if data is too sparse

Neighborhood Window

Varying Window Size

Increasing window size

Synthesis Results

french canvas

rafia weave

\square

More Results

white bread

\pm

Homage to Shannon
 oning in une unsenseruou

r Dick Gephardt was fai rful riff on the looming nly asked, "What's your tions?" A heartfelt sigh story about the emergen es against Clinton. "Boy 5 people about continuin ardtbegan, patiently obs ; that the legal system r
co with this latest tanser
thaim. them " "Whephartfe lartifelintomimen el ck Clirtioout omaim thartfelinsuf aut sanento the ry onst wartfe lck Gephtoomimeationl sigab Cliooufit Clinut Cll riff on. hat's yo'dn, parut tly ons yoontonsteht wasked, paim t sahe loo riff on nskoneploourtfeas leıl A nst Clit, "Wheontongal K Cirtioouirtfepe.ong pme abegal fartfenstemem tiensteneltorydt telemephinsverdt was agemer ff ons artientont Cling peme asırtfe atith, "Boui s hal s fartfelt sig pedrtlodt ske abounutie aboutioo tfeonewas yous abownthardt thatins fain, ped, ains. them, pabout wasy arfint countly d, $\ln \mathrm{A} h$ ble emthringbooneme agas fa bontinsyst Clinut ory about continst Clipeouinst Clone agatiff out 0 stome ainemen tly ardt beorabol n, therly as $t ~ G$ cons faimeme Diontont wat coutlyohgans as fan ien, phrtfaul, "Wbout cout congagal comininga: mifmst Cliny abon al coountha.emungairt tf oun The looorystan loontieph. intly on, theoplegatick ul tatieeontly atie Diontiomt wal s f tbegae ener mothaheat'senenhimas fan. "intchthoryahonsw

Hole Filling

Extrapolation

Summary

- The Efros \& Leung algorithm
- Very simple
- Surprisingly good results
- Synthesis is easier than analysis!
- ...but very slow

Image Quilting [Efros \& Freeman]

Input image

Synthesizing a block

- Observation: neighbor pixels are highly correlated Idea: unit of synthesis = block
- Exactly the same but now we want $P(B \mid N(B))$
- Much faster: synthesize all pixels in a block at once
- Not the same as multi-scale!

Random placement of blocks

Neighboring blocks constrained by overlap

Minimal error boundary cut

Minimal error boundary

overlapping blocks

vertical boundary

min. error boundary

Our Philosophy

- The "Corrupt Professor's Algorithm":
- Plagiarize as much of the source image as you can
- Then try to cover up the evidence
- Rationale:
- Texture blocks are by definition correct samples of texture so problem only connecting them together

Failures (Chernobyl Harvest)

ciu of a visural corincan ineurun-ine in describing the response of that neuro ht as a function of position-is perhap functional description of that neuron. seek a single conceptual and mathem. scribe the wealth of simple-cell recep d neurophysiologically ${ }^{1-3}$ and inferred especially if such a framework has the it helps us to understand the functio leeper way. Whereas no generic mod ussians (DOG), difference of offset ivative of a Gaussian, higher derivati function, and so on-can be expecto imple-cell receptive field, we noneth

input image

 v, 4all :

Portilla \& Simoncelli

colcs cat es ennce, ${ }^{5}$, acy rapars ${ }^{5}$ esoeao so ecreecd rep ines so. in. euogrs e-ri-c6siave at ${ }_{\text {ro }}^{\text {ro }}$ in mmn fy a-icciarcmesencrise mce dstone neisntn- eice ${ }^{56 C l} \mathrm{~mm}_{31}$ eisncrhats
 nse onorass ${ }^{26}$ if emn .
5 hal dell eseucoronn fitilymer thon ${ }_{n}$ cingarelrnaciscer thrienoes fulssind
 e mp $"$ cassa-iss runnl. re , fll cos n si omtooesl-a ncre inaeice ne wer tunnting ftped ole-can usinsnnjm nf

des and mâthem? ht aple-cell recep th d so sloisn functic es? ${ }^{2 s}$ pecially if suc ussiansonal $\mathrm{d} \xi^{25 c r i b e}$ di helps us to uirivative singlet neur eeeper way. Wi function, cen
it assians (DOG) imole-cell ight at neur eepe ${ }^{\text {ci }} \quad . \quad$ unset Cus $_{a^{\prime}}$ visam is perh , igher derivatiri fiel ${ }^{\mathrm{Hg}}$ neuror ussiçcription of thatti fher $\mathrm{an}_{\text {mather }}$ ivat conceptual and hin seêk cell rec funialth of simple-c implologically ${ }^{1-3}$ an position--isthat ne

Xu, Guo \& Shum

sition-is perk a single conceptual and of that neuribe the wealth of simpleual and matheurophysiologically ${ }^{1-3}$ and simple-cell necially if such a framewor y^{1-3} and inferilps us to understand th mework has perhay. Whereas no ge and the fumeurorDOG), difference o no generic a single conceptual and m rence of offse the wealth of simple-ce higher deriescribing the response of -can be expes a function of positionhelps us to understand tription of th per way. Whereas no gonceptual an sians (DOG), differencealth of simple

Application: Texture Transfer

- Try to explain one object with bits and pieces of another object:

Texture Transfer

Constraint

Texture sample

Texture Transfer

- Take the texture from one image and "paint" it onto another object

Same as texture synthesis, except an additional constraint:

1. Consistency of texture
2. Similarity to the image being "explained"

Image Analogies

Aaron Hertzmann ${ }^{1,2}$
Chuck Jacobs ${ }^{2}$
Nuria Oliver ${ }^{2}$

Brian Curless ${ }^{3}$
David Salesin ${ }^{2,3}$
${ }^{1}$ New York University
${ }^{2}$ Microsoft Research
3University of Washington

Image Analogies

A

B

A'

B'

Image Analogies

Goal: Process an image by example

Hertzmann et al. SIGGRAPH 2001

Non-parametric sampling

B
B'

Blur Filter

Edge Filter

Artistic Filters

A

B

A'

B^{\prime}

Colorization

Texture-by-numbers

A

B'

Super-resolution

A

A^{\prime}

Super-resolution (result!)

B

B'

