Data Engineering in Healthcare: progress and remaining challenges

Roberto A. Rocha, MD, PhD, FACMI

Managing Director Semedy, Inc. Assistant Professor of Medicine Division of General Internal Medicine and Primary Care Brigham and Women's Hospital, Harvard Medical School

1st International Conference on AI in Healthcare (ICAIH): March, 2018

Disclosures

- Salary support from Semedy, Inc.
- Salary support from Wolters Kluwer Health (spouse)

Overview

- Motivation
- Background
- Interoperability
- Information models
- Conclusions

MOTIVATION

Data comparability and consistency

- "Progress on the road toward integrating big data both high-volume genomic findings and heterogeneous clinical observations — into practical clinical protocols and standard healthcare delivery requires that providers, HIT vendors, federated knowledge resources, and patients can ultimately depend upon those data being comparable and consistent."
 - "Absent comparability, the data are more or less by definition not able to support inferencing of any scalable kind ..."
 - "Without consistency, users of complex biomedical data will have to spend added resources transforming the data into usable and predictable formats ..."

Chute CG, Ullman-Cullere M, Wood GM, Lin SM, He M, Pathak J. Some experiences and opportunities for big data in translational research. *Genet Med.* 2013 October ; 15(10): 802–809

Challenges for AI

- "There is a **great deal of interest** in the potential of using the vast data sets represented in electronic health records (EHRs), in combination with AI algorithms ..."
 - "... AI can perform with great accuracy when the relationship between diagnostic data and the diagnosis is well defined, when the relationship between the data and the diagnosis suffers from error, variability or difficulty in discrimination, AI algorithms also perform less well."
- **"Extreme care is needed** in using EHRs as training sets for AI, where outputs may be **useless or misleading** if the training sets contain incorrect information or information with unexpected internal correlations."

Relevance of data engineering

- ".. two viable solutions to address heterogeneous data:
 - defining a "common representation" and transforming all data into that common interlingua, or
 - adopting standards at the point of data generation to obviate the costs and confusion that often emerge from data transformation."
- "... inferences will have hugely **more power and accuracy** if we aim big data methods at information that shares names and values"
 - "we do not want to waste analytic resources "discovering" that renal cancer behaves similarly to kidney cancer""

Chute CG, Ullman-Cullere M, Wood GM, Lin SM, He M, Pathak J. Some experiences and opportunities for big data in translational research. *Genet Med.* 2013 October ; 15(10): 802–809

Promising preliminary results

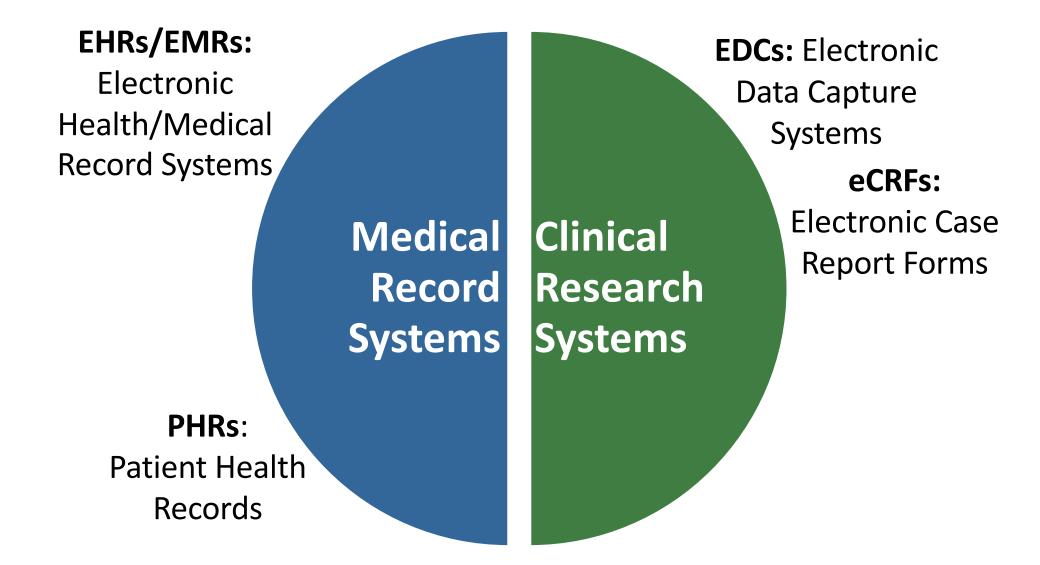
- "Low-volume, structured clinical data contain sufficient information to train classifiers to perform near physician-level."
 - 799 cases independently validated by more than 2 medical professionals (medical students and physicians)
- "Collecting such data is possible through human computation that is independently useful to clinicians."

W Scott, Lin I, Komarneni J, Nundy S. Machine Classifier Trained on Low-Volume, Structured Data Predicts Diagnoses Near Physician-Level: Chest Pain Case Study. *39th Annual Meeting of the Society for Medical Decision Making*. October 2017.

BACKGROUND

Data engineering?

• "The design, implementation, modeling, theory and application of database systems and their technology." (IEEE TCDE)


 Purposeful design and implementation of models and related artifacts to ensure consistent, extensible, and interoperable data representation

Akin to knowledge and terminology engineering

Clinical data

- Highly complex
 - Diverse types of data
 - structured and unstructured, images, sounds, etc.
 - Dynamic (changing) nature
 - flexible and extensible underlying models
- Large quantities
 - High performance database environment
 - response time is the critical factor
- Confidentiality and privacy (security)

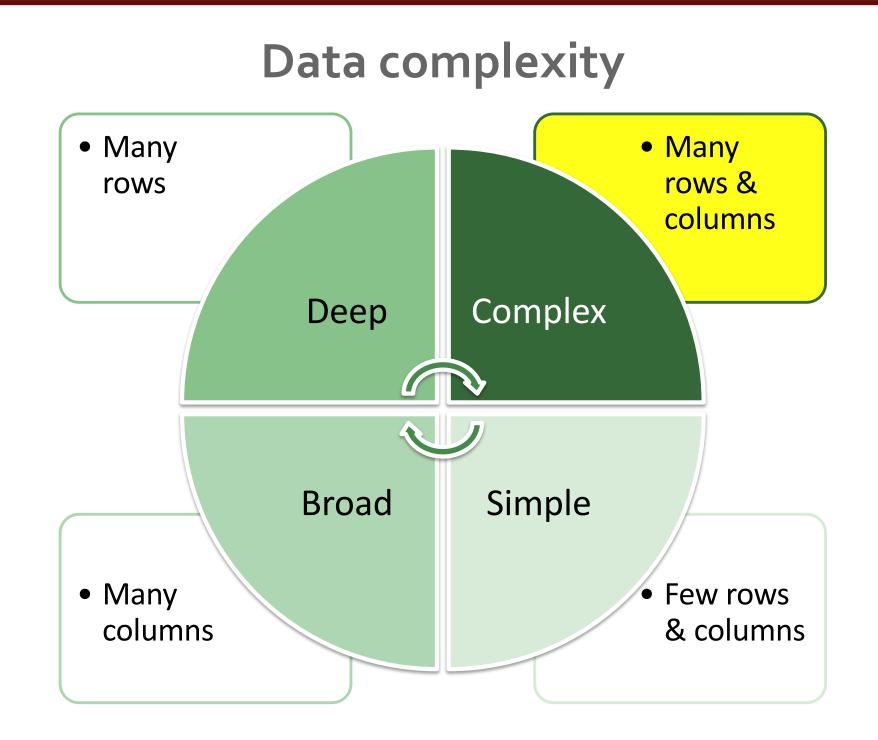
Clinical systems (data) dichotomy

EHR systems

- Electronic Health Record (EHR)
 - "electronic version of a patients medical history, ... maintained by the provider over time, ... clinical data relevant to that persons care ... including demographics, progress notes, problems, medications, vital signs, past medical history, immunizations, laboratory ... radiology" (CMS definition)
- US market
 - Commercial EHRs dominate; small number of vendors
 - Designed for **data storage** & **communication**: human users
 - High tolerance for **incomplete**, **incorrect**, **ambiguous data**
 - Limited capability for computer-assisted decision making
 - Recent emphasis on data sharing (government incentives)

Types of clinical data

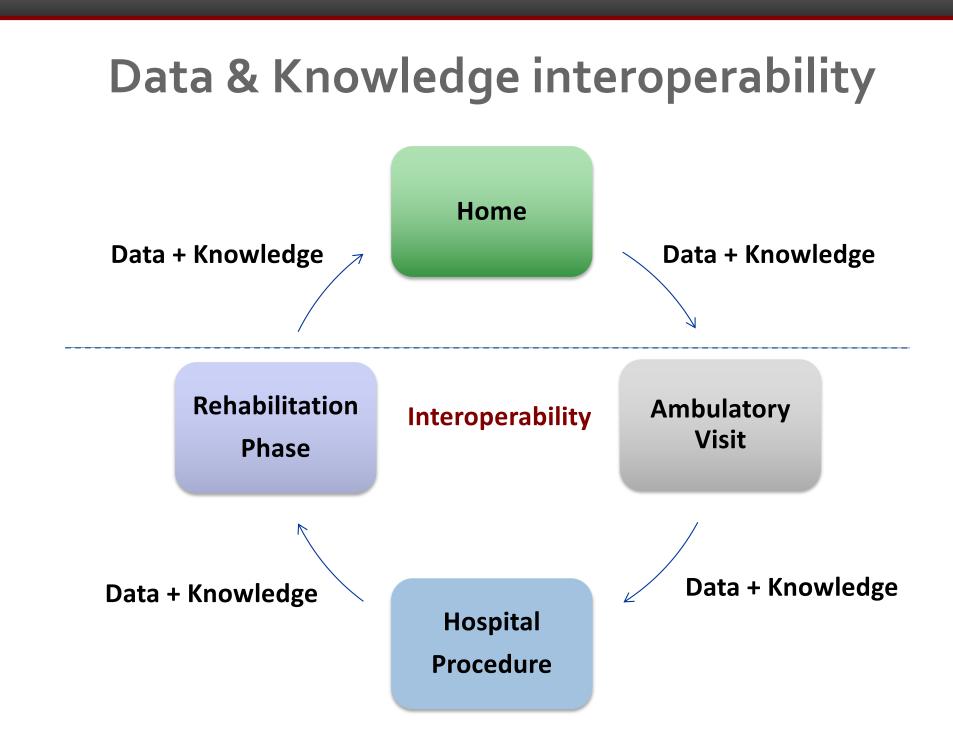
- Unstructured
 - "Mr. Jones has Appendicitis"
 - No structure or codes
- Structured
 - Diagnosis: "Appendicitis"
 - <u>Ouestion</u> is defined (coded) but <u>answer</u> (value) is free-text
- Structured & Coded
 - Diagnosis: K35 (Appendicitis)
 - Question & answer are defined (coded)


Unstructured (narrative) data

- Significant portion of the medical record is available as narrative data (**70-95%**)
 - medical history, physical exam, progress notes, discharge summary, radiology reports, operative notes
 - *advantages*: widespread, comprehensive, convenient, **expressive**, **natural**
 - *disadvantages*: ambiguous, complex, different styles, redundant, embedded errors, loose structure

Clinical phenotyping data

- "Intrinsically complex, fraught with heterogeneity, and amply having the potential for enormous depth (*many records*)."
- "A single patient may have many thousands of unique attributes, each of which may have arbitrarily repeated measures."


Chute CG, Ullman-Cullere M, Wood GM, Lin SM, He M, Pathak J. Some experiences and opportunities for big data in translational research. *Genet Med.* 2013 October ; 15(10): 802–809

Why Data Engineering?

- Opportunity
 - Data defined with standard reference models consistency, completeness, and interoperability
 - Sustainable process new domains, single electronic record for all settings and disciplines
- Challenges
 - Data definitions **not shared** across EHR modules or settings similar data stored and encoded **differently**
 - Large libraries of definitions promote inconsistency, distinctions not documented, overlapping domains/topics
 - Manual verification constantly evolving data collection tools (e.g. forms, flowsheets, templates, macros, etc.)

INTEROPERABILITY

Clinical data representation: design/modeling

Define "data points" (elements and values) using available standards

Define logical **models** that combine **data points** and provide meaningful clinical **information**

> Obtain detailed **provenance** to understand **how** and **when** data was created, and also **who** provided the data

> > Represent **semantic** and **temporal linkages** between data instances

Clinical data: standards

- Data elements and data values
 - Available: reference terminologies and ontologies
- Information models
 - Work in progress: isolated efforts and collections
 - Available: clinical documents (multiple types)
- Provenance models
 - *Work in progress*: competing models
- Semantic and temporal linkages
 - Preliminary work

Additional work is needed \rightarrow opportunities

Development of standards

- SDO: Standards Developing Organization
- Many national and international organizations
 - Interdependencies and overlapping efforts
- Several with specific focus on Healthcare
 - Examples: HL7, IHE, DICOM, CDISC, ...

LOINC

- Logical Observation Identifiers Names and Codes
- Organization: LOINC Committee
- Purpose: identification of laboratory and clinical observations (HL7 messages)
- Content: laboratory tests, clinical measurements, documents, etc.
- Information:
 - http://loinc.org

From Regenstrief				搜索	搜索		
LOINC	详称	成分	属性	时间	体系	精度	
<u>24372-5</u>	Peak systolic blood pressureduring right ventricular septal defect maximum velocity measurement	血管内心脏收缩期高峰^在右心室间隔缺损最大速度测 量过程中	压力或压强	时间点	动脉系统.XXX	定量型	
<u>75997-7</u>	Systolic blood pressure by Continuous non-invasive monitoring	血管内心脏收缩期	压力或压强	时间点	动脉系统	定量型	
<u>11378-7</u>	Systolic blood pressure at First encounter	血管内心脏收缩期	压力或压强	就医过程 持续时间 ^第一	动脉系统	定量型	
<u>20185-5</u>	End systolic blood pressure by US	血管内心脏收缩期末期.XXX	压力或压强	时间点	循环系统.XXX	定量型	
<u>20186-3</u>	Peak systolic blood pressure by US	血管内心脏收缩期高峰.XXX	压力或压强	时间点	循环系统.XXX	定量型	
<u>24370-9</u>	Peak systolic blood pressureduring mitral regurgitation maximum velocity measurement	血管内心脏收缩期高峰^在二尖瓣反流最大速度测量过 程中	压力或压强	时间点	动脉系统.XXX	定量型	
<u>24371-7</u>	Peak systolic blood pressureduring aorta stenosis maximum velocity measurement	血管内心脏收缩期高峰^在主动脉狭窄最大速度测量过 程中	压力或压强	时间点	动脉系统.XXX	定量型	
<u>45372-0</u>	Blood pressure systolic and diastolicpost phlebotomy	收缩期与舒张期血压^在静脉采血之后	压力或压强	时间点	动脉系统	定量型	
<u>50402-7</u>	Blood pressure systolic and diastolicafter transfusion	收缩期与舒张期血压^在输血之后	压力或压强	时间点	动脉系统	定量型	
<u>50403-5</u>	Blood pressure systolic and diastolicbefore transfusion	收缩期与舒张期血压^在输血之前	压力或压强	时间点	动脉系统	定量型	

https://search.loinc.org

SNOMED CT

- Systematized Nomenclature of Medicine Clinical Terms
- *Organization*: International Health Terminology Standards Development Organisation (**IHTSDO**)
 - SNOMED Terminology Solutions College of American Pathologists
- Purpose: Encoding of multiple clinical domains
- Content: Comprehensive (diseases, signs, symptoms, living organisms, chemicals, body parts, morphology, occupations, modifiers, etc.)
- Information:
 - <u>https://www.snomed.org</u>

International Health Terminology Standards Development Organisation

	?	browser.ihtsdotools.org			
	ihtsdo.org -		SNOMED CT - Chest pain (finding)		
IHTSDO SNOMED CT Brow	wser	Release: International Edit	tion 20160131 - Perspective: Full - Feedback About -		
IHTSDO 2016 v1.33					
axonomy Search Favorit	Search Favorites Refset		Concept Details		
Search		©	Concept Details		
otions	Type at least 3 characters ✔ 🗈	ample: shou fra	Summary Details Diagram Expression Refsets		
	chest pain		Members References		
Search Mode: Partial matching search mode -	79 matches found in 0.804 secon	ids.	Stated In		
Status: Active components only	Chest pain	Chest pain (finding)	Parents		
-	Dull chest pain	Dull chest pain (finding)	Finding of region of thorax (finding)		
Group by concept	Chest wall pain	Chest wall pain (finding)	Pain of truncal structure (finding)		
Filter results by Language	Acute chest pain	Acute chest pain (finding)	Chest ☆ .■ Finding site → Thoracic		
english 79	Upper chest pain	Upper chest pain (finding)	E Chest ☆ ▲ Finding site → Thoracic structure		
	Chest pain rating	Chest pain rating (staging scale)	SCTID: 29857009		
Filter results by Semantic	Cardiac chest pain	Cardiac chest pain (finding)	29857009 Chest pain (finding)		
Tag	Central chest pain	Central chest pain (finding)	Chest pain Chest pain (finding)		
finding 68	Chest pain at rest	Chest pain at rest (finding)			
procedure 6	Ischemic chest pain	Ischemic chest pain (finding)	Children (30) Acute chest pain (finding)		
staging scale 2	Crushing chest pain	Crushing chest pain (finding)	Atypical chest pain (finding) English Español		
situation 2	Atypical chest pain	Atypical chest pain (finding)	- Cardiac chest pain (finding)		

http://browser.ihtsdotools.org

Many others (incomplete list)

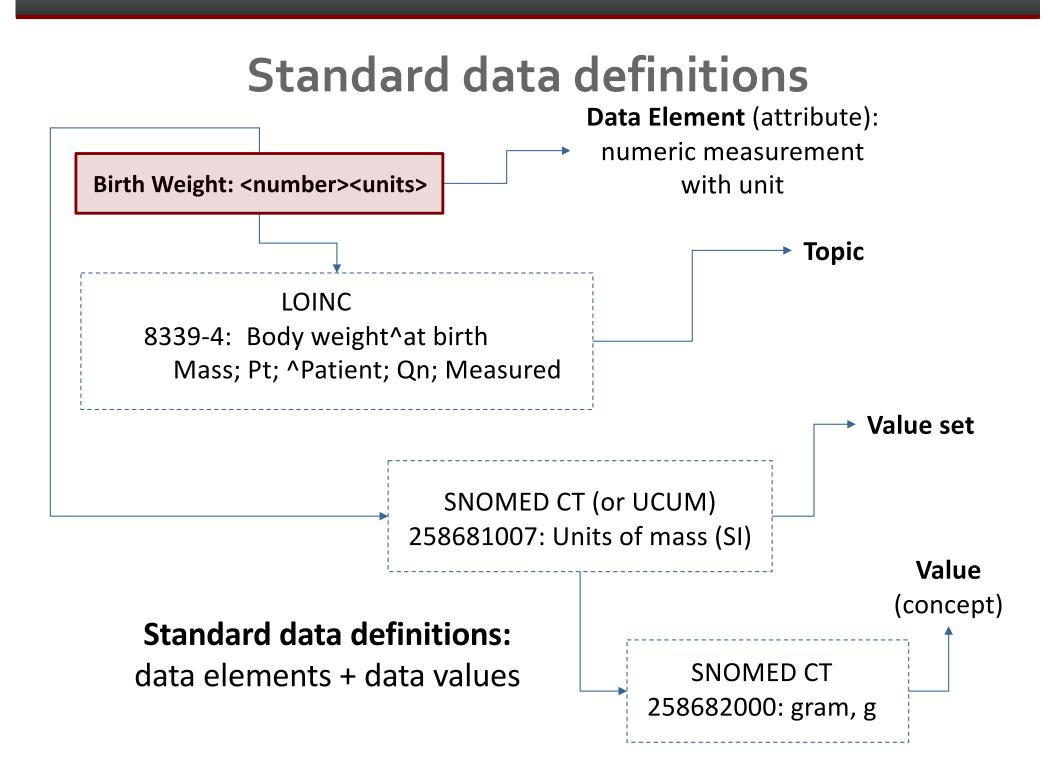
- RxNorm: clinical drugs and drug delivery devices (NLM) <u>https://www.nlm.nih.gov/research/umls/rxnorm/</u>
- NDF-RT: National Drug File Reference Terminology (VA) <u>http://evs.nci.nih.gov/ftp1/NDF-RT/</u>
- IIS: Vaccination code sets (CDC)
 <u>http://www.cdc.gov/vaccines/programs/iis/code-sets.html</u>
- HL7 Vocabulary domains (messaging, documents, services)

http://www.hl7.org/documentcenter/public_temp_1A973D1B-1C23-BA17oCCBD68843B23790/standards/vocabulary/vocabulary_tables/infrastructure/vocabulary y/vocabulary.html

Document standards

- Clinical Document Architecture (CDA)
- Organization: HL7 International
- Purpose: document markup standard that specifies the structure and semantics of "clinical documents" for the purpose of exchange between healthcare providers and patients
- Content:
 - Continuity of care, procedure note, patient assessments, etc.
 - Clinical oncology treatment plan, PHR plans, genetic testing reports, public cancer registries, etc.
 - Data Provenance
- Information:
 - <u>http://www.hl7.org/implement/standards/product_brief.cfm?product_id=7</u>

Information models


- Clinical Information Modeling Initiative (CIMI)
- Organization: HL7 International
- Purpose: Improve the interoperability of healthcare systems through shared implementable clinical information models a single curated collection with bindings to reference terminologies
- Content: laboratory test results, vital signs, diagnoses, procedures, patient measures, etc.
- Information:
 - <u>http://www.hl7.org/Special/Committees/cimi/index.cfm</u>
 - <u>http://www.opencimi.org</u>

INFORMATION MODELS

Data Element Data Ty	pe Value	Set List
SET: Pain Assessment (ALWAYS ING		
Pain Episode Duration	Numeric	NA
•	al	
Pain Episode Duration Time unit	Time	Seconds Minutes Hours Days Weeks Months Years
	with unit	
Pain Location	Category	abdomen achilles ankle arm axilla back breast
		buttocks calf chest chin coccyx ear elbow eye
		face finger flank foot forehead groin gum hand
		head heel hip iliac crest ischial tuberosity jaw knee
		labia leg lip lumbar malleolus mouth mucous
		membrane nail nare neck nose occipital region
		parietal region pelvic region penis perineum peri-
		rectum rectum sacrum scalp scapula scrotum
		shoulder sternum suprapubic region temporal region
		thigh toe tongue trochanter umbilicus vagina wrist
		Bladder Clavicle Epigastrium Generalized Gluteal
		Mediastinum Orbital region Rib cage Teeth Thoracic
		spine Throat Uterine
Pain Location Qualifier	Category	Right Left Dorsal Ventral Anterior Posterior
		Bilateral Distal Proximal Lower Upper
Pain Quality	Category	Ache Bloated Colicky Cramping Crushing Cutting
		Deep Diffuse Dull Electrical Gnawing Heavy pressure
		Heightened sensitivity Incisional Itching Numbness
		Phantom Pain Piercing Pinching Pins and needles
		sensation Pleuritic Pressure Prickling Pulsing Sharp
		Shifting Shooting Sore Spasmodic Squeezing
		Stabbing Stinging Throbbing Tingling Burning Jabbing
		Patient unable to describe Pounding Tender Tightness
Relative Temporal Context	Category	Post-operative/procedure Pre-operative/procedure
		During procedure During activity At rest
Pain Assessment Severity Scale	Category	List of validated scales:
Selection for Cascade		Numeric 0-10 Pain Scale Baker-Wong Scale Verbal Descriptor Pain Scale Functional Pain Scale CCPOT Scale
		Adult NonVerbal Pain Scale PAINAD Scale rFLACC Scale
		NPASS Scale NIPS Scale PIPP Scale FPS-R Scale
		Nocioceptive Score Simple Descriptive
Pain Soverity Score Lucing	Catagony	Use Numeric 0-10 Scale Scores:
Pain Severity Score [using validated scale]	Category	0 1 2 3 4 5 6 7 8 9 10
vanuateu statej		unless other scale from list below is required for patient
		population: [Baker-Wong Scale Verbal Descriptor Pain
		Scale Functional Pain Scale CCPOT Scale Adult
		NonVerbal Pain Scale PAINAD Scale rFLACC Scale
		NPASS Scale NIPS Scale PIPP Scale FPS-R Scale
		Nocioceptive Score Simple Descriptive]
Is Pain Relief Acceptable?	Boolean	Yes No

Collins SA, Bavuso K, Swenson M, Suchecki C, Mar P, Rocha RA. **Evolution of an Implementation-Ready Interprofessional Pain Assessment Reference Model**. *AMIA Annu Symp Proc*. 2017:605-14.

Coded data: variation

Attribute	Value
Problem	Severe Pain

Attribute	Value
Pain	Severe

Attribute	Value
Severe Pain	Yes

Attribute	Value
Severe Pain	02-01-2001

Attribute	Value
Finding	Elevated Sys BP

Attribute	Value
Sys BP	180 mmHg

Attribute	Value
Sys BP	Elevated

Attribute	Value
Sys BP	Abnormal

What information needs to be modeled?

- <u>All</u> clinical information within an EHR:
 - Allergies
 - Problems
 - Orders
 - Test results
 - Medication administration
 - Physical exam and clinical measurements
 - Signs, symptoms, diagnoses
 - Procedures
 - Family history, medical history, and review of systems
 - Clinical documents

Complexity

Focus on relevant clinical topics

Figure 1. Criteria to Prioritize Clinical Topic Refinement

Collins SA, Gesner E, Mar PL, Colburn DM, Rocha RA. **Prioritization and Refinement of Clinical Data Elements within EHR Systems**. *AMIA Annu Symp Proc.* 2016:421-430

Acute Care Documentation (1/3)

• Publication:

- Collins SA, Bavuso K, Zuccotti G, Rocha RA. Lessons
 learned for collaborative clinical content development.
 Appl Clin Inform. 2013 Jun 26;4(2):304-16
- Context:
 - Large strategic initiative back in 2007 to develop
 standardized acute care documentation (*bedside*) across
 two major academic medical centers: Brigham and
 Women's Hospital and Massachusetts General Hospital

Acute Care Documentation (2/3)

- Goals:
 - Highly structured documentation to fulfill clinical needs, regulatory reporting, and data reuse
 - All clinical disciplines (e.g. nursing, medicine, social work, physical therapy, nutrition, occupational therapy)
 - Proactive data standardization in an effort to avoid ambiguity and duplication – e.g. naming convention for data elements, reuse of value sets, etc.
- Results:
 - Over 11,000 data elements defined, used in over 1,000
 documentation templates e.g. initial patient assessments,
 progress notes, procedure and perioperative notes, event notes,
 transfer notes, discharge notes, assessment scales, flowsheets, etc.
 - Bedside documentation system was <u>not</u> implemented

Acute Care Documentation (3/3)

- Challenges:
 - **Clinical** requirements **well understood** by stakeholder groups easily gained traction when cited as a rationale for content development requirements
 - **Data engineering** requirements **not well understood** formal processes to garner support and adherence
 - Limited resources, **expertise**, and competing priorities
- Lessons learned:
 - Assess **knowledge needs** and set **expectations** at the start of the project
 - Define an accountable **decision-making process**
 - Increase team **meeting moderation** skills
 - Ensure adequate resources and competency training with online collaborative tools
 - Develop **goal-oriented** teams and consultative **service-based** teams

Large-scale EHR implementation (1/4)

• Publications:

- Collins SA, Gesner E, Morgan S, Mar P, Maviglia S, Colburn D, Tierney D, Rocha R. A Practical Approach to Governance and Optimization of Structured Data Elements. Stud Health Technol Inform. 2015;216:7-11
- 2. Gesner E, Collins SA, Rocha R. **Pain Documentation: Validation of a Reference Model**. *Stud Health Technol Inform*. 2015;216:805-9
- 3. Collins SA, Gesner E, Mar PL, Colburn DM, Rocha RA. **Prioritization and Refinement of Clinical Data Elements within EHR Systems**. *AMIA Annu Symp Proc*. 2016:421-430
- Bavuso KM, Mar PL, Rocha RA, Collins SA. Gap Analysis and Refinement
 Recommendations of Skin Alteration and Pressure Ulcer Enterprise Reference Models
 against Nursing Flowsheet Data Elements. AMIA Annu Symp Proc. 2017:421-9
- Collins SA, Bavuso K, Swenson M, Suchecki C, Mar P, Rocha RA. Evolution of an Implementation-Ready Interprofessional Pain Assessment Reference Model. AMIA Annu Symp Proc. 2017:605-14
- 6. Zhou L, Collins S, Morgan SJ, Zafar N, Gesner EJ, Fehrenbach M, Rocha RA. A Decade of Experience in Creating and Maintaining Data Elements for Structured Clinical Documentation in EHRs. AMIA Annu Symp Proc.2016:1293-1302

Large-scale EHR implementation (2/4)

- Context:
 - System-wide vendor EHR implementation (2012-2017) replace existing clinical systems
- Goals:
 - Minimize (*resolve*) inconsistent data definitions across
 EHR applications and clinical settings, enabling and promoting data reuse and interoperability
 - Practical (*pragmatic*) approach to governance and implementation of structured data elements and reference models
 - Factors: resource allocation, implementation timeline, content refactoring, vendor best-practices, EHR limitations, etc.

Large-scale EHR implementation (3/4)

- Process:
 - **1.** Identify clinical topics align with strategic goals of the organization
 - 2. Create <u>draft</u> reference model(s) find/consolidate/reuse models
 - **3. Quantify downstream data needs** reporting, regulatory requirements, clinical decision support, accurate billing, etc.
 - 4. **Prioritize clinical topics** focus on high-value topics
 - 5. Validate reference model(s) clinically accurate and complete
 - 6. Quantify gap with EHR content prioritize revision/refactoring
 - 7. Disseminate <u>validated</u> model(s) guide new content or revisions
 - 8. Request revisions to EHR content change management process
 - **9.** Assess reference model utilization implementation and compliance
 - **10. Monitor for new evidence** revisions to reference model (*evergreen*)

Large-scale EHR implementation (4/4)

• Results:

- Data elements: +15,000 (forms) and +45,000 (flowsheets)
- Dedicated workgroup: +5 reference models (*discontinued*)
 - Pain Assessment: 47 data elements organized into 9 data groups
- EHR system successfully implemented at all sites

• Challenges:

- Implementation timeline incompatible with the development of detailed reference models
- EHR processes and tools not designed to promote detailed, consistent, and reusable data definitions <u>across</u> applications and modules
- EHR content & data refactoring is an iterative process that requires expertise and motivated individuals

CONCLUSIONS

Challenges (1/3)

- Cost-effective semantic interoperability
 - Existing standards make data exchange possible, but not simple or efficient (projects take *months* or *years*)
 - Data exchanged in a structured and coded format still represents a small portion of the electronic record

Challenges (2/3)

- Clinical systems that can seamlessly represent and process a complete electronic patient care record
 - Current systems frequently rely on legacy data architectures that limit the use of clinical models
 - Slow adoption of new technologies that can overcome the current data representation limitations

Challenges (3/3)

- Clinical models with proper domain coverage and extensibility
 - Existing methods and tools to use clinical models and ontologies are not accessible to typical clinicians

Opportunities

- Government providing **exceptional incentives** for Healthcare IT adoption
 - IT identified as a key enabler of a more effective healthcare system
- Proposed healthcare delivery models require high levels of **integration** within and across institutions
 - Moving towards seamless collaboration where patients are active contributors
- Opportunity for a **new generation of clinical systems** beyond efficient record storage and communication
 - New paradigm with pervasive computerized data analysis and decision support
 - Widespread use of interoperable services and data, with advanced functions that enable team-based care

Conclusions: implementation

- Early engagement of clinical leaders to set expectations of <u>technical</u> process, dependencies, and requirements
- Provision of formal training about informatics standards and governance processes
- Establish a data engineering team with proper authority and robust toolset – guide implementation and ensure compliance with processes and standards

Conclusions: data engineering

- Establish governance for essential clinical domains
- Seek alignment with **standards**, maximizing interoperability and external collaborations
- Define and optimize **processes** (*lifecycle*)
 - Implement software platform integrated with knowledge sources and consumers
- Monitor & evaluate processes and resulting models
- **Collaborate** with other institutions to help amortize operational **costs** and promote **innovation**

Participate!

- Understand the scope and applicability of existing standards
 - Gain **access** to available standards
 - Confirm how each standard **applies** to your organization
- Contribute to and influence the development of standards
 - Bring your **specific needs** and discuss implementation options
 - Seek information from other stakeholders to make **informed decisions**
 - Most SDOs welcome open and **broad** participation
 - Healthcare providers, government stakeholders, payers, pharmaceutical companies, system vendors, consultants
- Achieve industry leadership by demonstrating interoperability
 - Learn about industry **best practices**
 - Understand implementation timeline and costs
 - Improve the **quality** and **sustainability** of your local systems

Acknowledgements

Saverio Maviglia Sarah Collins Karen Bavuso Perry Mar Li Zhou Margarita Sordo Members of the **Semedy** team

> Beatriz Rocha Stanley Huff

Thank you!

Roberto A. Rocha, MD, PhD

rarocha@bwh.harvard.edu http://scholar.harvard.edu/rarocha

This work by Roberto A. Rocha is licensed under a <u>Creative Commons Attribution-</u> <u>NonCommercial-ShareAlike 4.0 International License</u>