

ibm.com/redbooks

Front cover

Data Integrity with
DB2 for z/OS

Paolo Bruni
John Iczkovits
Rama Naidoo

Fabricio Pimentel
Suresh Sane

Assert information integrity by
exploiting DB2 functions

Understand constraints,
referential integrity, and triggers

Review recovery-related
functions

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Data Integrity with DB2 for z/OS

July 2006

SG24-7111-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (July 2006)

This edition applies to Version 8 of IBM Database 2 Universal Database for z/OS (DB2 UDB for z/OS),
program number 5625-DB2.

Note: Before using this information and the product it supports, read the information in “Notices” on
page xv.

© Copyright IBM Corp. 2006. All rights reserved. iii

Contents

Figures . ix

Examples . xi

Tables . xiii

Notices .xv
Trademarks . xvi

Preface . xvii
The team that wrote this redbook. xvii
Become a published author . xix
Comments welcome. xix

Chapter 1. Introduction. 1
1.1 Host platform. 3

1.1.1 z/OS and OS/390 system integrity . 4
1.1.2 System-level security . 5
1.1.3 Transaction-level security . 7
1.1.4 zSeries cryptography . 8
1.1.5 System z integrity features . 9
1.1.6 The zIIP. 10
1.1.7 VSAM share options . 11
1.1.8 Data sharing integrity . 12
1.1.9 Global resource serialization. 12
1.1.10 DB2 controls . 12
1.1.11 Auditing your DB2 applications . 15
1.1.12 Other security enhancements . 20
1.1.13 DB2 column level encryption. 22
1.1.14 IBM Data Encryption for IMS and DB2 Databases . 24

1.2 Information integrity. 25
1.3 DB2 and data integrity. 29

1.3.1 Entity integrity . 30
1.3.2 Semantic integrity . 30
1.3.3 Referential integrity . 31
1.3.4 Domain integrity . 32

1.4 Example of integrity needed across applications . 32
1.4.1 Customer names and addresses across applications. 33

Chapter 2. Semantic integrity . 35
2.1 Constraints . 36

2.1.1 Data constraint . 36
2.1.2 NOT NULL constraints . 37
2.1.3 Unique constraint . 37
2.1.4 Check constraints . 39

2.2 Distinct types. 42
2.2.1 Why distinct types . 42
2.2.2 Creating a distinct type . 43
2.2.3 Generated cast functions . 43

iv Data Integrity with DB2 for z/OS

2.2.4 Comparing distinct types. 44
2.2.5 Assigning a distinct type . 44
2.2.6 Invoking routines with distinct types . 46
2.2.7 Errors with comparisons across distinct types . 46
2.2.8 Summary and usage recommendations . 47

Chapter 3. Referential integrity . 49
3.1 Referential constraints . 50
3.2 RI in the relational model . 51

3.2.1 RI concepts . 51
3.2.2 RI rules and options . 56

3.3 RI in DB2. 57
3.3.1 Additional DB2 terminology. 58
3.3.2 Data definitions for RI . 62
3.3.3 Plan, package, and trigger considerations . 69
3.3.4 Maintaining RI when using data encryption . 70
3.3.5 Informational referential constraint . 70

3.4 Functional implications . 71
3.4.1 DELETE rule for self-referencing tables . 71
3.4.2 DELETE with RESTRICT . 72
3.4.3 DELETE with SET NULL. 72
3.4.4 Cycles should not cause a table to be delete-connected to itself 73
3.4.5 Table delete-connections through multiple paths . 75
3.4.6 INSERT. 78
3.4.7 UPDATE . 79
3.4.8 DELETE . 80

3.5 Summary of design recommendations . 82
3.5.1 Primary key . 82
3.5.2 Foreign keys . 83
3.5.3 Circumventing DML restrictions . 84

3.6 Code and look-up tables . 84
3.6.1 Code table alternatives . 86

3.7 DB2 versus application RI . 86
3.8 REPORT utility . 87
3.9 CHECK utility . 89

3.9.1 CHECK DATA. 89
3.9.2 CHECK INDEX . 92

3.10 LOAD utility . 94
3.10.1 Loading tables involved in cycles . 94

3.11 Performance . 96
3.12 Migrating applications to RI . 97

3.12.1 Planning considerations . 97
3.12.2 Application implementation considerations. 98

3.13 DB2 catalog information and queries . 99
3.13.1 DB2 catalog extensions . 99
3.13.2 Sample catalog queries . 107
3.13.3 Constraints and multilevel security . 112

Chapter 4. Triggers . 113
4.1 Why use triggers for data integrity . 114
4.2 Trigger terminology . 114
4.3 Extending triggers with UDFs and stored procedures. 114

4.3.1 Data validation . 114

 Contents v

4.3.2 Data propagation . 115
4.4 Invoking UDFs and stored procedures . 116

4.4.1 Using the VALUES statement . 116
4.4.2 Using the SELECT statement . 117
4.4.3 Using the CALL statement . 117

4.5 Passing parameters to UDFs and stored procedures . 117
4.5.1 Using transition variables . 118
4.5.2 Using transition tables. 119

4.6 Raising error conditions . 120
4.7 Handling errors during execution . 122
4.8 Auditing versus mass replication. 122
4.9 Impact of LOAD utility . 122
4.10 DB2-enforced RI versus triggers . 123
4.11 Execution sequence of multiple triggers . 125
4.12 Trigger cascading . 127

4.12.1 Triggers at the same level. 127
4.12.2 Triggers at different levels. 128

4.13 Interactions among triggers and other integrity checks. 130
4.14 Creating triggers to obtain consistent results . 131

4.14.1 Effect of an uncorrelated subquery . 131
4.14.2 Effect of row processing order . 133
4.14.3 Effect of set update with row triggers . 134

4.15 Common business scenarios . 137
4.15.1 Data validation . 137
4.15.2 Complex data validation with a UDF. 138
4.15.3 Maintaining redundant data . 139
4.15.4 Complex redundant data maintenance with a stored procedure. 141
4.15.5 Bidirectional data maintenance. 141
4.15.6 Maintaining summary data . 142
4.15.7 Maintaining existence flags. 144
4.15.8 Enforcing multiple parent RI . 146
4.15.9 Enforcing “Empty-nest-last-child-gone” rule . 148
4.15.10 Generating alerts . 150
4.15.11 Writing an MQ message . 150
4.15.12 Auditing . 152

Chapter 5. Other integrity features . 153
5.1 Data structure validation . 154

5.1.1 DSN1COPY with CHECK option. 154
5.1.2 DSN1PRNT with FORMAT option . 154
5.1.3 COPY with CHECKPAGE option . 155

5.2 Insert within select. 156
5.2.1 Generated values example . 156
5.2.2 Multiple-row inserts example. 157
5.2.3 Trigger example . 158

5.3 Atomic versus not atomic on multi-row insert and update. 159
5.4 Sequence objects . 159

5.4.1 Generated values may have gaps . 160
5.4.2 Generated values may not be in strict sequential order 160

5.5 Informational RI . 161
5.5.1 What is informational RI . 161
5.5.2 Impact on utilities . 162
5.5.3 Impact on MQT usage . 164

vi Data Integrity with DB2 for z/OS

5.5.4 Usage recommendations . 167
5.6 Locking . 167

5.6.1 Data sharing implications . 168
5.6.2 Locking protocol level 2 . 170

Chapter 6. Recovery . 175
6.1 DB2 attachment facilities. 176
6.2 DB2 commit process . 178
6.3 Unit of recovery . 179

6.3.1 Commit processing for TSO applications . 180
6.3.2 Commit processing for CICS, IMS, or RRSAF applications 181
6.3.3 Consistency across multiple DBMSs . 183

6.4 Unit of work . 184
6.4.1 Commit . 185
6.4.2 Commit frequency. 187
6.4.3 Cursors WITH HOLD . 187
6.4.4 Savepoints . 189
6.4.5 More on read only COMMIT . 190

6.5 Data integrity . 191
6.5.1 Concurrent update . 192
6.5.2 Last update column. 193
6.5.3 Work-in-progress tables . 196
6.5.4 Restricting other applications’ data access . 197
6.5.5 Applications to switch between isolation levels. 198
6.5.6 Error handling control table . 199
6.5.7 Restart using sequential input and output files . 201
6.5.8 Restart using DB2 tables for input and output files . 203

6.6 Scrollable cursors . 203
6.6.1 Static scrollable cursors . 204
6.6.2 Dynamic scrollable cursors . 205
6.6.3 FETCHing options for scrollable cursors. 206
6.6.4 Updating using scrollable cursors . 208
6.6.5 Change of underlying data for scrollable cursors . 209
6.6.6 Using multi-row FETCH with scrollable cursors . 209
6.6.7 SQLCODEs for scrollable cursors. 210
6.6.8 Summary on scrollable cursors. 210

6.7 DB2 subsystem restart after abend. 211
6.8 Recovery of objects in error . 212

6.8.1 LPL recovery. 212
6.8.2 CHECK-pending . 214
6.8.3 Write Error Page Range recovery . 215
6.8.4 COPY utility. 215

6.9 Application recovery process . 217
6.9.1 Rolling back work . 218

6.10 Preparing to recover to a point of consistency . 219
6.10.1 Copying the data. 222
6.10.2 Recovery of the data to the previous point of consistency 227
6.10.3 Restore data to previous point in time. 234
6.10.4 New utilities in DB2 V8 for online backup and point in time recovery 235

Related publications . 239
IBM Redbooks . 239
Other publications . 239

 Contents vii

Online resources . 240
How to get IBM Redbooks . 240
Help from IBM . 240

Abbreviations and acronyms . 241

Index . 245

viii Data Integrity with DB2 for z/OS

© Copyright IBM Corp. 2006. All rights reserved. ix

Figures

1-1 IBM System z9-109 . 10
1-2 Mainframe specialty engines . 11
1-3 Information integration framework . 27
3-1 RI terminology . 52
3-2 Primary and unique keys being parent keys . 54
3-3 Sample application with only DELETE rules shown . 58
3-4 Delete-connected table . 61
3-5 Department table with self reference . 72
3-6 Valid DB2 cycle structure. 73
3-7 Invalid DB2 cycle structure . 74
3-8 Anomaly with table T3 that is delete-connected to itself . 74
3-9 Valid delete-connect DB2 referential structure . 76
3-10 Invalid delete-connect DB2 structure . 76
3-11 Delete-connect with different rules. 77
3-12 Multi-row insert with self-relationship . 78
3-13 Employee table . 79
3-14 Possible invalid deletes with subqueries . 81
3-15 Delete-connect sample . 82
3-16 Look-up tables . 84
3-17 Generic code table. 85
3-18 CHECK INDEX - SHRLEVEL REFERENCE and CHANGE 93
3-19 Load tables involved in a cycle . 94
3-20 DB2 catalog tables affected by RI . 100
4-1 Data validation using a trigger and a UDF. 115
4-2 Data propagation using a trigger and a stored procedure . 116
4-3 Example one: Triggers at same level. 127
4-4 Example two: Triggers at the same level . 128
4-5 Example one: Triggers at different levels. 128
4-6 Example two: Triggers at different levels . 129
4-7 Interaction between triggers and other integrity checks. 131
4-8 Maintaining redundant data . 139
4-9 Maintaining summary data. 143
4-10 Maintaining existence flags . 145
4-11 Maintaining multiple parent RI . 147
4-12 Enforcing “empty-nest” last-child-gone rule . 149
5-1 Access path without informational RI. 165
5-2 Access path with informational RI . 166
5-3 DB2 and coupling facility . 168
6-1 Basic data flow in a DB2 subsystem from z/OS and distributed environments 178
6-2 DB2 as Coordinator: TSO Application . 180
6-3 Illustration of two-phase commit . 182
6-4 DB2’s role as participant and coordinator . 183
6-5 Logical units of work and DB2 units of recovery . 185
6-6 Rollback to a savepoint . 189
6-7 Concurrently updating processes . 192
6-8 Coding for online concurrency . 193
6-9 Work-in-progress table. 196
6-10 Program logic for commit and restart. 201

x Data Integrity with DB2 for z/OS

6-11 Sequential output files . 202
6-12 Temporary result set for static scrollable cursors . 204
6-13 Unit of recovery (rollback) . 218
6-14 Recovery of table spaces TOLOGPOINT . 228
6-15 Compressed table space and log records . 231

© Copyright IBM Corp. 2006. All rights reserved. xi

Examples

1-1 DB2 data encryption . 22
1-2 Referential integrity . 31
2-1 Unique clause besides column definition. 38
2-2 Unique clause at the end of column definition . 38
2-3 Adding a unique constraint . 39
2-4 Employee table with check constraint . 40
2-5 CURRENT RULES - STD . 41
2-6 CURRENT RULES - DB2 . 41
2-7 Tables with different currency . 42
2-8 Comparing two different data types . 47
2-9 Incompatible data types. 47
3-1 CREATE and ALTER statements with primary keys . 65
3-2 CREATE, ALTER, and DROP statements with foreign keys 68
3-3 CREATE and ALTER with NOT ENFORCED . 71
3-4 REPORT TABLESPACESET output . 88
3-5 Exception table . 90
3-6 Output for CHECK DATA. 91
3-7 Output CHECK DATA with DELETE NO . 91
3-8 Output CHECK DATA with DELETE YES . 92
3-9 Exception table for DEPT. 92
4-1 Using the VALUES statement . 116
4-2 Using the SELECT statement . 117
4-3 Using the CALL statement . 117
4-4 Trigger with before and after values . 118
4-5 Trigger with transition tables . 119
4-6 Declaring input variables for table locators . 119
4-7 Declaring table locators . 120
4-8 Declaring a cursor . 120
4-9 Setting values of table locators . 120
4-10 Accessing the transition tables . 120
4-11 Generating error messages in a trigger body . 121
4-12 Generating error messages in a trigger after calling a UDF 121
4-13 User-defined SQLSTATE and error message . 122
4-14 Table and index definition for test scenario . 123
4-15 Trigger definition for insert verification . 124
4-16 UDF for insert verification . 124
4-17 Execution sequence of triggers . 126
4-18 Before triggers do not support cascading . 129
4-19 Trigger for data validation . 137
4-20 Trigger for complex data validation (with UDF) . 138
4-21 Triggers for maintaining redundant data . 140
4-22 Trigger for complex redundant data maintenance (with stored procedure) 141
4-23 Triggers for maintaining summary data . 143
4-24 Triggers for maintaining existence flags . 145
4-25 Triggers for multiple parent RI . 147
4-26 Triggers for “Last-child-gone” rule . 149
4-27 Trigger for generating an e-mail. 150
4-28 Trigger to write calling a stored procedure for an MQ message 151

xii Data Integrity with DB2 for z/OS

4-29 Using MQSEND. 151
4-30 Using MQPUBLISH . 152
4-31 Trigger for auditing. 152
5-1 Sample -DISPLAY GROUP output . 172
6-1 CICS command-level services used with the CICS attachment facility 176
6-2 DDL for table T1. 193
6-3 Update using optimistic locking . 194
6-4 Concurrent update on independent columns. 195
6-5 Concurrent update on dependent columns . 195
6-6 Logical locking table. 197
6-7 BIND PACKAGE statements . 198
6-8 Host variables for SET CURRENT PACKAGESET. 198
6-9 Setting CURRENT PACKAGESET . 199
6-10 Error handling table . 200
6-11 Eliminating duplicate records using DFSORT . 203
6-12 Declaring a SENSITIVE DYNAMIC scrollable cursor . 206
6-13 DB2 MSTR address space . 211
6-14 Sample LISTDEF, COPY, and QUIESCE . 219
6-15 REPORT with TABLESPACESET option . 220
6-16 QUIESCE with TABLESPACESET option . 220
6-17 Sample LISTDEF with RI, COPY, and QUIESCE . 221
6-18 LISTDEF list passed through OPTIONS utility. 222
6-19 Archive log command . 224
6-20 BSDS listing of archive log command . 224
6-21 Recommendations from the DB2 Administration Tool . 226
6-22 Sample BSDS listing . 228
6-23 Extracting information from the recovery log with an available BSDS. 229
6-24 Recover to a log point created by QUIESCE utility . 229
6-25 SYSCOPY listing after recovery to log point . 230

© Copyright IBM Corp. 2006. All rights reserved. xiii

Tables

1-1 Information integration dimensions . 26
2-1 Numeric data types - Contain digits . 36
2-2 String data types - Contain alphanumeric characters . 37
2-3 Date and time data types - Contain dates and times. 37
3-1 Keys and constraints . 59
3-2 Plan validation adding primary key and foreign key. 69
3-3 Package validation adding primary key and foreign key . 70
3-4 SYSIBM.SYSCHECKS . 100
3-5 SYSIBM.SYSCHECKS2 . 101
3-6 SYSIBM.SYSCHECKDEP . 101
3-7 SYSIBM.SYSCOLUMNS columns affected by RI . 102
3-8 SYSIBM.SYSCOPY columns affected by RI . 102
3-9 SYSIBM.SYSFOREIGNKEYS columns affected by RI . 102
3-10 SYSIBM.SYSINDEXES column affected by RI . 103
3-11 SYSIBM.SYSRELS columns affected by RI . 103
3-12 SYSIBM.SYSTABCONST columns affected by RI . 105
3-13 SYSIBM.SYSTABLEPART columns affected by RI. 105
3-14 SYSIBM.SYSTABLES columns affected by RI . 106
3-15 SYSIBM.SYSTABLESPACE column affected by RI . 107
4-1 Allowable combination of attributes in a trigger definition . 118
4-2 DB2 RI versus triggers, UDFs, and stored procedures enforcement. 125
5-1 Sequence objects: Impact of caching on order . 161
6-1 Termination of a unit of recovery . 187
6-2 Option Value Lock Mode . 196
6-3 Error handling parameters . 199
6-4 Dependencies on DECLARE and FETCH statements for scrollable cursors 206
6-5 FETCH orientation keywords for scrollable cursors. 207
6-6 Comparing scrollable cursors . 207
6-7 SQLCODEs for scrollable cursors . 210
6-8 DB2 object status from DISPLAY command . 216

xiv Data Integrity with DB2 for z/OS

© Copyright IBM Corp. 2006. All rights reserved. xv

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the products and/or the programs described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.

xvi Data Integrity with DB2 for z/OS

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Redbooks (logo) ™
eServer™
z/OS®
z/VM®
zSeries®
z9™
AIX®
CICS®
Database 2™
Domino®
DB2®

DFSMSdss™
DFSMShsm™
DFSORT™
DRDA®
Enterprise Storage Server®
FlashCopy®
Geographically Dispersed Parallel

Sysplex™
GDPS®
IBM®
IMS™
MVS™

OS/390®
Parallel Sysplex®
PR/SM™
QMF™
Redbooks™
RACF®
S/390®
SecureWay®
System z™
System z9™
System/390®
WebSphere®

The following terms are trademarks of other companies:

EJB, Java, Java Naming and Directory Interface, JDBC, JVM, J2EE, and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2006. All rights reserved. xvii

Preface

DB2® provides functions to guarantee integrity at the system level and at the application
level.

From the system point of view, DB2's integration with zSeries® and disk storage architecture
is the cornerstone for data integrity. Logging functionality and COPY and RECOVER utilities
are the building blocks for bringing the table space back to a current or consistent status in
case of hardware or software failures or when application events need to be rerun.

From the application point of view, DB2 supports locking and commit at the transaction level,
and general data integrity (at entity and semantic level) and a set of referential constraint
rules for each parent/dependent table relationship. The tables linked by referential integrity
are recognized during the execution of the QUIESCE utility. Other logical relations across
tables, necessary to support business rules, are implemented via constraints, triggers, user
defined functions, and user defined tables.

Informational constraints also exist, they are not enforced by the database manager, they are
used to improve query performance.

In this IBM® Redbook, we briefly describe the integration of DB2 for z/OS® with System z™
architecture, we then explore the data integrity options and utilize the standard recovery
functions for application-related issues.

The redbook is structured as follows:

� Chapter 1, “Introduction” on page 1
� Chapter 2, “Semantic integrity” on page 35
� Chapter 3, “Referential integrity” on page 49
� Chapter 4, “Triggers” on page 113
� Chapter 5, “Other integrity features” on page 153
� Chapter 6, “Recovery” on page 175

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, San Jose Center.

Paolo Bruni is a DB2 Information Management Project Leader at the ITSO, San Jose Center.
He has authored several Redbooks about DB2 for z/OS and related tools, and has conducted
workshops and seminars worldwide. During Paolo’s many years with IBM, previously as an
employee and now as a contractor, his work has been mostly related to database systems.

John Iczkovits is a Consulting IT Specialist with IBM Advanced Technical Support (Dallas
Systems Center) Americas. He provides DB2 for z/OS technical support and consulting
services. His areas of expertise include DB2 data sharing, performance, and availability. His
work in IBM includes experience supporting DB2 as a Systems Engineer, Database
Administrator, IT Specialist, Consultant, and project lead. He has an operations background
and 21 years of IT experience, ranging from database products such as DB2 and IMS™ to
MVS™ systems support, including storage management. He has also co-authored IBM
redbooks, white papers, and presented at SHARE, the DB2 Tech Conference, and local DB2
users groups.

xviii Data Integrity with DB2 for z/OS

Rama Naidoo is a Certified IT Specialist in Data/Content Management - Services from
Australia. He has over 32 years of experience in data management and worked on several
non-IBM database management systems before joining IBM in 1989. Rama co-authored the
redbooks, DB2 for OS/390 and Data Compression, SG24-5261, and DB2 for z/OS and
OS/390 Version 7 Using the Utilities Suite, SG24-6289. Rama holds a postgraduate degree in
information technology from Monash University in Melbourne, Australia. His areas of
expertise include data modeling, scientific numeric modeling, and project management.

Fabricio Pimentel is a Database Administrator for IBM in São Paulo, Brazil, supporting
several very large installations in the US for the IBM DBA Service Center. He has worked with
DB2 as a System Analyst and DBA as a customer before joining IBM. His areas of expertise
include database administration and design. He holds a bachelor’s degree in Computer
Science from Pontificia Universidade Catolica de São Paulo.

Suresh Sane is a Database Architect with DST Systems in Kansas City, Missouri, USA. He
co-authored the redbooks, Squeezing the Most Out of Dynamic SQL, SG24-6418, and DB2
for z/OS Stored Procedures: Through the CALL and Beyond, SG24-7083. He is actively
involved with the International DB2 Users Group (IDUG) with numerous presentations and
educational seminars in the US, Canada, and Australia as well as articles in the IDUG
Solutions Journal. He has worked with DB2 since Version 1. He holds a bachelor’s degree in
Electrical Engineering from Indian Institute of Technology, Mumbai, India, and an MBA from
Indian Institute of Management, Kolkutta, India.

A photo of the team is in Figure 1.

Figure 1 Left to right: Suresh, John, Fabricio, Rama and Paolo (photo courtesy of Sangam Racherla)

Thanks to the following people for their contributions to this project:

 Preface xix

Rich Conway
Emma Jacobs
Bob Haimowitz
Leslie Parham
Sangam Racherla
International Technical Support Organization

Jeff Berger
John Campbell
Julie Chen
Steve Chen
James Guo
Claire McFeely
Roger Miller
Mary Petras
Akira Shibamiya
Jim Teng
Jay Yothers
IBM Silicon Valley Laboratory

Rick Butler
BMO Financial Group, Toronto, Canada

Randy Corum
DST Systems, Kansas City

Bart Steegmans
IBM Belgium

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll team with IBM technical professionals, Business Partners and/or
customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus,
you'll develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

xx Data Integrity with DB2 for z/OS

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

http://www.redbooks.ibm.com/contacts.html

© Copyright IBM Corp. 2006. All rights reserved. 1

Chapter 1. Introduction

The issues related to data integrity include a large variety of cases. Considering that your
data is not usually in one place only, but exists as copies, and it is not always at rest, it could
be useful to explore some of the following:

� Examples of controls in place in a production environment to protect the integrity of the
data

– Firewalls

– Segregation of duties

– Regular review of privileges held

– A process to ensure a user's privileges are revoked when they change jobs or leave the
company

– High level recommendations on when to use encryption

– A process to validate special requests for pulling data from production

– An established Information Security policy

– The use of ENABLE/DISABLE bind parameters to control the allowable system
connection types

– Use of GROUPS, such as RACF®, to distribute privileges (as opposed to granting
directly to userids)

� The role of a data steward

� How to maintain data integrity when data is in transit between the production database
and the business user's PC

� Controls to prevent corruption of data, either in a malicious manner or to benefit from fraud

� Controls which can be implemented to ensure that data is not shared within an
organization

� Examples of controls in place in a development environment since production data is
sometimes copied to development

– Increased risk for this data in the development environment

1

2 Data Integrity with DB2 for z/OS

� Compliance items

– Recording for what purpose data was collected and ensuring that it is only used for that
purpose.

– The Hippocratic Database (HDB) Compliance Auditing application, called Eunomia
(formerly known as PACT), enables companies to verify compliance with data
disclosure laws, company policies, and customer preferences.

� Recovery flexibility and performance

� The role of an architect in establishing which source is the reference or book of record

� What to consider when using offshore resources to do development and production
support

– Possible increased risks
– Differences in the legal system

In this chapter, we briefly review the functionalities offered by the host environment that can
help in some of the issues above, and by DB2 in satisfying the more specific application data
integrity requirements.

In the chapters that follow, we will go into more details of the functions that DB2 offers for
application data integrity and recovery.

Chapter 1. Introduction 3

1.1 Host platform
The System z environment, the current evolution of S/390® and including zSeries, maintains
its benchmark position as a flexible, efficient, and responsive platform for highly complex,
integrated environments running a wide range of critical workloads.

System z and the new System z9™, z/OS, and DB2 have a unique partnership in the
database industry, one which is key to IBM today and in the future. Nothing beats the
availability of DB2 on System z hardware and software.

In this section, we discuss the System z hardware and some of the software features which
DB2 uses to achieve synergy with the platform.

The foundation for the traditional strengths for data serving on the mainframe lies with the
tight integration that System z and z/OS share with DB2 for z/OS. DB2 for z/OS is written to
exploit the System z platform and as a result can offer advanced features and function. IBM
DB2 for z/OS delivers rich function for highly scalable, industry-leading, high availability, IT
infrastructure for your enterprise data and on demand business applications. The combined
power and capacity of IBM System z with the high performance and availability of the z/OS
operating system and the strength of the DB2 for z/OS data server can expand and extend
your IT infrastructure and the business value of your data.

The combination of DB2 and System z provides a unique competitive advantage for on
demand environments by providing a flexible, cost-effective and optimized foundation for
Information on demand. This foundation allows you to better manage risk, supports your
efforts to demonstrate compliance with policies and standards, and helps to simplify
management of your information infrastructure. These capabilities are important to enable
customers to use their core business data to drive insight and gain competitive advantage.

Synergy with the z/OS operating system and the System z hardware positions DB2 to keep
your data available. This is different from other platforms and databases, which are focused
on recovering quickly. The ability to recover quickly is an important attribute, however, your
business goals are better achieved with a solution that focuses on data integrity and the
elimination of outages, planned or unplanned. This design point difference characterizes your
business applications and maintenance processes, and therefore your ability to meet
business goals and service-level agreements.

Parallel Sysplex® and DB2 data sharing implementation offer DB2 applications and
administrators the highest potential availability when implementing maintenance or applying a
version upgrade allowing you to meet your customers’ expectations.

DB2's online schema evolution allows structural changes to occur without drop and create,
providing increased availability for your data and your business.

Key platform synergy items drive business resiliency and reduce cost of ownership to levels
beyond any other offerings:

� Special engines for Linux®, Java™, and DB2

� Hardware assistance for compression, encryption, sorting, and Unicode conversion

� Exploitation of 64-bit memory addressability

� Exceptional workload management support, governing the priorities of processes running
on z/OS, and balancing connections from distributed platforms

� Full utilization of the Parallel Sysplex architecture, enabling a scalable, clustered, and
incremental growth architecture

� Support for new workloads, using specialized processors for Java and Linux workloads

4 Data Integrity with DB2 for z/OS

� Integration with other core z/OS components, such as those for disk storage management,
access control, UNIX® system services, and failover

� Tooling and instrumentation for diagnosis and manageability

� Integration and synergy with the disk storage architecture

1.1.1 z/OS and OS/390 system integrity
The zSeries, S/390, z/OS, and OS/390® commitment to system integrity means that
unauthorized users and programs cannot bypass the hardware isolation functions that protect
other users or programs, cannot obtain control in an authorized execution status, and cannot
bypass the system-level security functions provided by the SecureWay® Security Server for
OS/390 and z/OS. IBM has had a formal commitment to system integrity since 1973. IBM
continues this commitment with each new generation of zSeries, z/OS, S/390, and OS/390.
The S/390 Division backs up this commitment through the proactive efforts of the System
Integrity Competency Center. In addition, IBM will investigate, accept, process, and resolve,
as a high-severity problem, any report (APAR) for a z/OS or OS/390 system integrity
exposure found by our customers.

zSeries and S/390 hardware isolation functions
The IBM zSeries and S/390 enterprise servers provide two kinds of hardware isolation
functions that create a strong foundation for security. Basic isolation functions, such as
storage protection keys, multiple address spaces, and program execution status provide
mandatory separation of users and applications from each other and from the system. This
guarantees that applications and users cannot affect other users or the system itself, except
in appropriate, authorized ways. In addition, PR/SM™ provides an advanced isolation
function in which you can run multiple copies of z/OS, z/VM®, OS/390, Linux, and other
operating systems on the same processor, each fully isolated in its usage of the processor,
storage, and I/O subsystem.

This allows you to implement concurrent production and test system images on the same
hardware. It also allows implementation of multiple isolated production environments, such as
you might want in a service bureau environment, or more importantly on the Internet, where
you might want a strong guarantee that malicious users of the network cannot affect your
main production system. For this case, you could have a production environment that
communicates directly with the Internet, and one isolated from such direct contact, both
running concurrently on the same hardware platform. IBM's PR/SM support has received an
E4 security certification under the United Kingdom IT Security Evaluation and Certification
Scheme, the first general purpose product to receive this high level of certification.

The basic isolation functions segregate users from each other and from the operating system
running on the hardware. z/OS and OS/390 take full advantage of these functions to help
ensure the integrity of the system and your data. The functions include:

Storage protection keys
The hardware provides 16 protection keys that the system can assign to running programs
and to areas of storage with options that can require that a program's key match the storage
area's key before the program can write into the storage, or optionally, before the program can
even read from the storage. Using keys prevents user programs from tampering with storage
owned by the system and can also lead to improved integrity by minimizing the errors that

Note: For more information, see Disk storage access with DB2 for z/OS,
REDP-4187-00.

Chapter 1. Introduction 5

could occur if system code accidentally tried to write into the wrong area of user (or system)
storage.

Authorized versus unauthorized execution states
The hardware provides capabilities to allow a program to run in either an authorized or
unauthorized execution state. Authorized programs run in either "supervisor" status or in a
"system" storage protection key with a value between zero and seven. Unauthorized
programs run in "problem program" status and with a storage protection key of 8 through 15.
In addition, a "semi-privileged" status can allow problem-status programs, in controlled
situations, to gain access to supervisor status functions or a system storage key. z/OS
zSeries, S/390 Hardware Isolation Functions, and OS/390 also support a controlled
mechanism (Authorized Program Facility (APF)) by which a problem-status program can
switch to an authorized status or key.

An unauthorized program cannot issue privileged system instructions (such as instructions to
change the status of the system or to initiate I/O), nor can it become authorized except
through controlled system hardware or software interfaces. Thus, it cannot interfere with the
operating system nor with other users' programs.

Multiple address spaces
In addition to the isolation provided by storage protection keys and execution states, the
hardware and software further isolate user (and system) programs into different "address
spaces." Each address space has the ability to read common system storage but it can
neither read nor write the non-shared storage belonging to another address space unless
allowed to do so by an authorized program. Thus, unauthorized user programs cannot
interfere with programs in another address space. Where programs in different address
spaces must share data, the operating system provides mechanisms to allow such sharing in
a controlled, safe way.

1.1.2 System-level security
System-level security provides the ability to identify and authenticate users of the system,
control their access to system resources (databases, other data, transactions, programs, and
so on), and audit their use of those resources.

The use of small computers and data processing have increased the need for data security.
z/OS incorporates the SecureWay Security Server, which provides a platform that gives you
solid security for your entire enterprise, including support for the latest technologies. A feature
of z/OS, the SecureWay Security Server comes with these major components:

� Resource Access Control Facility (RACF) is the primary component of the SecureWay
Security Server for z/OS. With RACF, the Security Server is able to incorporate additional
components that aid in securing your system as you make your business data and
applications accessible by your intranet, extranets, or the Internet.

� DCE Security Server provides user and server authentication for applications using the
client server communications technology contained in the Distributed Computing
Environment for OS/390. Beginning with OS/390 Security Server Version 2 Release 5, the
DCE Security Server can interoperate with users and servers that make use of the
Kerberos V5 technology.

Integrated with RACF, OS/390 DCE support allows RACF-authenticated OS/390 users to
access DCE-based resources and application servers without further authentications. In
addition, DCE application servers can convert a DCE-authenticated user identity into an
RACF identity and gain full RACF access control to z/OS resources.

6 Data Integrity with DB2 for z/OS

� Communications Server for z/OS and OS/390 together with the Security Server provide
basic firewall capabilities on the OS/390 platform to reduce or eliminate the need for
non-OS/390 platform firewalls in many customer installations. The Communications
Server provides the firewall functions of IP packet filtering, IP security (VPN or tunnels),
and Network Address Translation (NAT).

The Security Server provides the firewall functions of FTP proxy support, SOCKS daemon
support, logging, configuration, and administration.

� LDAP Server provides secure access from applications and systems on the network to
directory information held on OS/390 using the Lightweight Directory Access Protocol.

OS/390 includes the SecureWay Security Server for OS/390 to provide comprehensive,
centralized, and integrated system-security functions for the system and the applications
running on it. Unlike some platforms where the applications must perform a large part of the
security processing, with z/OS or OS/390 and the SecureWay Security Server, applications
often do not need to perform any separate security processing at all. Where they do need to
provide some security processing, they can make use of the system's centralized security
interfaces to minimize the application specific programming and to guarantee compatible
security decisions and auditing with the rest of the system.

z/OS and OS/390 provide security functions for traditional batch and online applications
(based in TSO/ E, CICS®, IMS, and so on) as well as applications running in the UNIX
System Services environment. UNIX applications running in either single-user or multi-user
(client server) mode have full access to the centralized security capabilities provided by the
system.

z/OS and OS/390 can identify and authenticate users before they access the system, using a
variety of mechanisms including:

� User ID and password, or user ID and PassTicket with applications such as IBM's Global
Sign-On product

� OSF Distributed Computing Environment (DCE) credentials or Kerberos Version 5
credentials

� Industry-standard X.509 digital certificates with applications such as DominoGo
Webserver

At your option, you can also allow access to selected system resources by unauthenticated
(anonymous, or public) users. Note, however, that OS/390 eliminates some "security holes"
contained in other UNIX systems, such as allowing assignment of an "authenticated" user ID
for an rlogin session based on the host name or address of the connecting machine, without
requiring a password or other means of truly authenticating the connecting user.

You may also assign surrogate or public IDs to authenticated users to change their access
privileges when using programs such as Domino® Go Webserver, or you may grant access to
resources based on the application program or server chosen by the user. These capabilities
allow a high degree of control and System-Level Security for z/OS and OS/390 customization
of your security environment, all with as much or as little auditing of system and resource
access as you desire.

Then, with strong security at the system level, you have a good security foundation both for
local work and for processing of network (Internet, intranet, extranet) work.

S/390 and OS/390 and their predecessors have provided inherent, robust security for
decades, with security providing a key design point for hardware, operating system,
subsystems, and applications. Security requirements have changed over time from the earlier
days when system-level security would suffice, to today's environment, which requires

Chapter 1. Introduction 7

comprehensive network- and transaction-level security. S/390 and OS/390 have evolved to
support these newer requirements, and that evolution will continue to provide both enhanced
functionality and the enhanced security you need to manage it.

The OS/390 platform is at the cutting edge of emerging technology. Products now available
for OS/390 allow an enterprise to use the system in many ways. In addition to the traditional
batch and transaction-based workloads that OS/390 supports with DB2, CICS, and IMS,
recent additions, in the form of z/OS and OS/390 Firewall Technologies, WebSphere®
Application Server, and WebSphere Commerce Suite, have made it easy for you to expand
access to your business data to include the wider audience of the Internet, with appropriate
security controls to ensure safety both for you and for your customers.

IBM will expand the capabilities of that LDAP server in the future to provide a generic,
standard access point for all security and directory information on OS/390. This "secure
directory" facility will allow you to have a central repository for security and directory
information within your enterprise.

1.1.3 Transaction-level security
Transaction-level security allows two entities on the Internet to conduct a transaction privately
and with authentication. It would allow a consumer to transact business with a merchant, for
example, or a merchant to transact business with a supplier or bank. This level of security
provides a basis to enable the payment for goods and services to occur with privacy and with
assurance that each party knows the identity of the other parties that participate in the
transaction.

Two leading technologies provide transaction-level security today:

� SSL (Secure Socket Layer), a de facto standard developed by Netscape Communications
Corporation and generally used by Web browsers and servers, provides a private channel
between the client and server that ensures privacy of the data, authentication of the
session partners, and data integrity for the messages. SSL involves the use of both public-
and private-key-based encryption.

� SET (Secure Electronic Transaction) is an open standard, multi-party protocol used for
conducting secure bank card payments over the Internet. SET also provides
authentication, data integrity, and data privacy, again through the use of encryption
technology.

The hardware and software features of the zSeries and S/390 enterprise servers, together
with the z/OS and OS/390 operating systems, provide an ideal platform for your applications
that need transaction-level security, allowing you to conduct business safely over the Internet:

� Integrated cryptography provides the fundamental encryption and decryption operations
required for SSL and SET requests and allows implementation of the Virtual Private
Network (VPN) connections provided by z/OS and OS/390 Firewall Technologies for
network-level security.

� The HTTP Server component of the IBM WebSphere Application Server for z/OS and
OS/390 provides a Web server integrated with the operating system and supporting SSL
version 3.0. Additionally, the HTTP Server makes full use of the functions of the
SecureWay Security Server when running transactions on the system, allowing the
transactions to run with a local authenticated identity based on an X.509 digital certificate
provided by the client user and allowing access to local data based either on the client
identity or a surrogate identity assigned by your administrators.

� IBM CommercePOINT Payment provides the first suite of end-to-end solutions to enable
quick, easy, and highly secure credit card commerce on the Internet. This suite integrates
the SET protocol 1.0 into appropriate stages of the commerce life cycle using digital

8 Data Integrity with DB2 for z/OS

certificate technology. CommercePOINT Payment supplies a Wallet for client payment
information, an eTill allowing merchants to accept various payment schemes, a Gateway
providing a link to financial institutions, and a Registry for SET to issue and manage the
digital certifications that underlie all SET transactions.

1.1.4 zSeries cryptography
The best way to secure information over the Internet is to encrypt it. IBM System z provides
exceptional performance and function via cryptography coprocessors and accelerators that
are individually specialized to address various encryption needs. The z/OS operating system
provides the infrastructure to exploit the strengths of each cryptographic feature. The
performance advantages of hardware-assisted cryptography are readily available to
applications, such as banking and finance, via the cryptography interfaces of z/OS.

Cryptographic features
New features are available on System z (z9 EC, z9 BC, z990, z890).

A third generation cryptographic feature, the Crypto Express2, combines the functions of the
PCICA and the PCIXCC in a single feature that is expected to provide improved secure key
and system throughput. The Crypto Express2 feature supports a mixture of both secure and
clear key applications. Crypto Express2 also offers CVV generation and verification services
for 19-digit PANs providing advanced anti-fraud security. In addition, it supports applications
that require clear key RSA operations using fewer than 512-bits. This capability is designed to
enable easier migration of some additional cryptographic applications to System z servers
without requiring you to rewrite the applications.

The CP Assist for Cryptographic Function (CPACF) is incorporated into every central
processor that ships with the IBM System server families. The CPACF feature delivers
cryptographic support on every Central Processor (CP) with Data Encryption Standard (DES)
and Triple DES (TDES) data encryption/decryption along with SHA-1 hashing. The CPACF
integrated in every central processor of System z9 EC and z9 BC enhances cryptography by
providing support for the Advanced Encryption Standard (AES) and SHA-256 hashing
algorithm. Because these cryptographic functions are implemented in each central processor
(CP), the potential throughput scales with the number of processor units (PUs) ordered with
each system.

The PCIX Cryptographic Coprocessor (PCIXCC) is a replacement for the PCICC and the
CMOS Cryptographic Coprocessor Facility that were originally available for zSeries
processors. PCIXCC provides support for all of the security-related cryptographic functions
available with its predecessor cryptograpic coprocessor features. In addition, PCIXCC also
supports use of encrypted key values and user-defined extensions (UDX).

Optional cryptographic hardware features for zSeries servers include the zSeries PCI
Cryptographic Coprocessor (PCICC) feature which has a tamper-proof design and supports
symmetrical encryption, as well as Public Key encryption. The PCI Cryptographic
Coprocessor is scalable and programmable. PCICC is used throughout the financial sector.

The zSeries PCI Cryptographic Accelerator (PCICA) feature was designed to perform the
computationally intensive public key cryptographic operations in hardware. Its aim was to
provide cryptographic support for e-business. The PCI Cryptographic Accelerator Feature is
available on z990 and supported on z900 servers. It may be carried forward on upgrades from
z900 to z990 servers.

Secure Sockets Layer (SSL) or Transport Layer Security (TLS) protocols are public key
cryptography-based extensions to TCP/IP networking. SSL /TLS helps to ensure private
communications between parties on the Internet with the intent of allowing information such

Chapter 1. Introduction 9

as the credit card number to be passed from customer to marketing application without the
threat of interception.

System z servers provide the performance and scale you need to handle security-rich Web
transactions. System z has focused on improving SSL/TLS encryption performance, and it
shows. For example, z990 servers offer speed, with capabilities of greater than 11,000 SSL
handshakes/second with z/OS 1.4 measured on a z990 with 16 CPs and 6 PCICA features.
(To put that into some perspective, as recently as 1998, zSeries SSL performance was
approximately 13 SSLs/second.) This ultra-fast and security-rich SSL comes courtesy of
special hardware in the optional Crypto Express2 feature (when one or both of the two PCI-X
adapters are configured as an accelerator) and the PCI Cryptographic Accelerator (PCICA)
features.

1.1.5 System z integrity features
Most z/OS customers have business requirements for continuous system availability. System
downtime or unplanned outages, even of short duration, can cost millions of dollars in lost
revenue or other significant negative business impact. Thus, z/OS customers do not think
about availability in terms of minimizing the time of an outage; they think in terms of
minimizing outages. From the beginning, for z/OS as well as its predecessors, a basic
assumption has been that hundreds or even thousands of users would depend on it. In fact,
the anticipated mean time between failures of IBM z900 systems approaches 30 years.

z/OS has a long history, so do its users' suites of applications. z/OS customers have millions
of dollars invested in business-critical applications that have been operating and evolving on
z/OS and its predecessors for 20 years or more. Ensuring that this customer investment is
preserved requires each z/OS release to maintain compatibility with prior releases,
regardless of the complexities involved. It presents challenges when architectural changes
are implemented, but application compatibility is expected for every z/OS release.

An operating system must maintain data integrity. A system that is up but quietly corrupting
data is worse than one that is down. z/OS address spaces separate applications from each
other to minimize the risk of one program corrupting another program's private storage or
data area. Storage-protect keys prevent user programs from altering system storage.
Extensive system locking and serialization techniques coordinate system events and actions.
Data integrity is a core attribute of z/OS. And the z in zSeries and z9 System stands for zero
down time.

The IBM System z9-109 servers, see Figure 1-1, have availability designs that have been
carried forward from zSeries machines and several new ones. They are described in IBM
System z9 109 Configuration Setup, SG24-7203, and IBM System z9 109 Technical Guide,
SG24-7124.

10 Data Integrity with DB2 for z/OS

Figure 1-1 IBM System z9-109

The z/OS mainframe operating system and its predecessors have been part of commercial
computing for decades. z/OS includes characteristics on which FORTUNE 500 companies
rely, such as highly usable capacity, strong concurrency, consistent application compatibility,
pervasive real-time recovery, and robust data integrity.

1.1.6 The zIIP
The zSeries platform maintains its place as the main choice for mission critical systems.
Recent announcements by IBM ensure that the System z9 platform maintains this key role,
but it can also accept new workloads at the right cost. The new System z9 Integrated
Information Processor (zIIP) is designed to run specific database workloads. Following on the
success of the Internal Coupling Facility engine for Sysplex environments, the Integrated
Facility for Linux (IFL), and the System z9 Application Assist Processor (zAAP) for Java
workloads, the zIIP is designed to help improve resource optimization and lower the cost of
eligible workloads, enhancing the role of the mainframe as the data hub of the enterprise.

Customers using zIIP processors can free up capacity in their System z9 general computing
resources by moving some database-oriented workloads onto the dedicated zIIP engines
instead of running on the main System z9 processors. See Figure 1-2.

DB2 for z/OS Version 8 is the first IBM software fully capable of exploiting zIIP for workloads
such as those of distributed environments, star-schema executions, and functions of DB2
utilities related to index management. In the future, IBM plans to offer additional zIIP
exploitation by other IBM subsystems. In addition, key new DB2 9 for z/OS functions have
been announced that will support data serving on System z, including enabling high volume
transaction processing for the next wave of Web applications, strengthening the security
features within the product, and improving performance in the data warehousing arena, and
new DB2 functions that will support DB2 scan acceleration via the DS8000.

Chapter 1. Introduction 11

Figure 1-2 Mainframe specialty engines

1.1.7 VSAM share options
When allocating a VSAM file, you have the ability to use any of four options for cross region
integrity and two options for cross system integrity. IDCAMS allocations allow you to define
these options by using the SHAREOPTIONS keyword.

DB2 defined data sets are created automatically with SHAREOPTIONS of (3,3). What these
options mean is:

� The data set can be fully shared by any number of users.

� The user is responsible for maintaining both read and write integrity for the data the
program accesses.

User defined data sets are generally created with the same attributes.

Although this may sound like users are on their own and have no protection, we do have
some fail-safe mechanisms:

� IRLM controls locking issues inside of DB2. In data sharing, further protection is provided
through the locking portion of the coupling facility. DB2 assures that no double updates are
occurring.

� RACF should be set up to protect DB2 data sets, since it is possible to load data into DB2
objects outside of DB2, thereby bypassing the integrity provided by IRLM. You can
accomplish this in a variety of ways, including using the offline utility DSN1COPY and user
programs outside of DB2. You must take special care when loading or modifying data
outside of the control of DB2. RACF should be employed to protect DB2 data sets from
being updated by unauthorized programs and individuals.

Internal Coupling
Facility (ICF) 1997

Integrated Facility
for Linux® (IFL)
2001

IBM System z9 Integrated
Information Processor (IBM
zIIP) planned for 2006

System z9 Application
Assist Processor (zAAP)
2004

Building on a strong track record of technology
innovation with specialty engines, IBM intends to
introduce the System z9 Integrated Information
Processor

Support for new
workloads and
open standards

Designed to help
improve resource
optimization for
eligible data
workloads within
the enterprise

Centralized data
sharing across
mainframes

Incorporation of
Java™ into existing
mainframe
solutions

Technology Evolution with Mainframe Specialty Engines

12 Data Integrity with DB2 for z/OS

1.1.8 Data sharing integrity
Data sharing delivers availability, workload balancing, and flexible growth benefits, and,
through use of the coupling facility (CF), can also avoid the high overheads of frequent disk
I/O and intersystem message passing. Both interquery and intraquery parallelism also use
this architecture.

DB2 has been extended from its single-system initial structure to implement data sharing
using the CF for global locking and intersystem buffer coherency. Use of the CF is the key
factor, allowing multisystem data sharing with good performance characteristics. In addition,
several optimizations have further reduced the overhead for data sharing, global locking, and
buffer coherency. Most recent are the CF request batching and Locking protocol level 2
introduced by DB2 V8 (see Chapter 8 of the DB2 UDB for z/OS Version 8 Performance
Topics, SG24-6465).

DB2's implementation of retained locks, recovery logging, and CF failure recovery ensures
that data integrity is maintained across the failure of any hardware or software element in the
sysplex. DB2's robust design for data sharing builds on the strengths of the S/390 Parallel
Sysplex to provide DB2 users with unprecedented levels of capacity, availability, and
parallelism.

1.1.9 Global resource serialization
In a multitasking, multiprocessing environment, resource serialization is the technique used to
coordinate access to resources that are used by more than one program. When multiple
users share data, a way to control access to that data is necessary. Users, who update data,
for example, need exclusive access to that data. If several users try to update the same data
at the same time, the result can be data that is incorrect or corrupted. In contrast, users, who
only read data, can safely access the same data at the same time.

Global resource serialization (GRS) offers the control needed to ensure the integrity of
resources in a multisystem environment. Combining the systems that access shared
resources into a global resource serialization complex enables you to serialize resources
across multiple systems. In a global resource serialization complex, programs can serialize
access to data sets on shared disk volumes at the data set level rather than at the disk
volume level. A program on one system can access one data set on a shared volume while
other programs on any system can access other data sets on the volume. Because GRS
enables jobs to serialize resources at the data set level, it can reduce contention for these
resources and minimize the chance of an interlock occurring between systems.

You can request access to a resource as exclusive or shared. When GRS grants shared
access to a resource, no exclusive users are granted access to the resource simultaneously.
Likewise, when GRS grants exclusive access to a resource, all other requestors for the
resource wait until the exclusive requestor frees the resource.

1.1.10 DB2 controls
DB2 has strong and granular access control. It controls access to its objects by a set of
privileges. Default access is none. Until access is granted, nothing can be accessed. This is
called discretionary access control (DAC).

DB2 has extensive auditing features. For example, you can answer questions such as “Who is
privileged to access what objects?” and “Who has actually accessed the data?”.

The catalog tables describe the DB2 objects, such as tables, views, table spaces, packages,
and plans. Other catalog tables hold records of every granted privilege or authority. Every

Chapter 1. Introduction 13

catalog record of a grant contains information such as name of the object, type of privilege,
IDs that receive the privilege, ID that grants the privilege, and time of the grant.

The audit trace records changes in authorization IDs, changes to the structure of data,
changes to values (updates, deletes, and inserts), access attempts by unauthorized IDs,
results of GRANT and REVOKE statements, and other activities which are of interest to
auditors.

You can use the z/OS Security Server, previously named Resource Access Control Facility
(RACF), to:

� Control access to the DB2 environment
� Facilitate granting and revoking to groups of users
� Ease the implementation of multilevel security in DB2
� Fully control all access to data objects in DB2

DB2 defines sets of related privileges, called administrative authorities. You can effectively
grant many privileges by granting one administrative authority.

Security-related events and auditing records from RACF and DB2 can be loaded into DB2
databases for analysis. The DB2 Instrumentation Facility Component can also provide
accounting and performance-related data. This kind of data can be readily loaded into a
standard set of DB2 tables (definitions are provided). Security and auditing specialists can
easily query this data to review all security events.

DB2 and multilevel security
A multilevel security (MLS) system is a security environment. It allows the protection of data
based on both traditional discretionary access controls, and controls that check the sensitivity
of the data itself through mandatory access controls.

These mandatory access controls are at the heart of an MLS environment. They prevent
unauthorized users from accessing information at a classification to which they are not
authorized. They also prevent users from changing the classification of information to which
they do have access. These mandatory access controls provide a way to segregate users
and their data from other users and their data regardless of the discretionary access they are
given though access lists.

To create an MLS environment, you must have a combination of software and hardware
components that enforce the security requirements needed for such a system. The security
relevant portion of software and hardware components that make up this system is also
known as the Trusted Computing Base.

Why multilevel security
The primary arena where MLS is valuable is governmental agencies that need a security
environment that keeps information classified and compartmentalized between users. In
addition to the fundamental identification and authentication of users, auditing and
accountability of the actions by authenticated users on these systems is provided by the
security environment.

In such highly secure environments, to manage the compartmentalization of information
between users, each compartment is on its own system. This makes it difficult for classified
information to spill from one system to another, since the connections between systems can
be highly controlled. With MLS, these systems can be consolidated onto a single system, with
each compartment independent of the other, so that no transfer of data can occur between
compartments within that system. This takes advantage of the cost savings of not having to
manage multiple systems, but only a few, or one system.

14 Data Integrity with DB2 for z/OS

Commercial clients may also find some features of MLS useful, such as to separate sensitive
customer information from the general populace or from other users. New governmental
regulations, such as HIPAA (see the following list), or corporate mergers are examples where
security of information based on the information itself is important in the commercial world.

MLS is implemented at the operating system level. DB2 Version 8 participates in this scheme
and provides MLS security to the row level.

This additional mandatory access control feature helps your business address the most
common security issues. It does this along with the rock solid z/OS partition separation,
certification for common criteria, improved DB2 encryption features, and the new DB2 and
IMS encryption tool. Together these features also help your business comply with existing and
new regulations such as:

� Health Insurance Portability and Accountability Act of 1996 (HIPAA) in the U.S.A. for
health care

� Gramm-Leach-Bliley Act of 1999 (GLBA) in the U.S.A. for financial services

� Sarbanes-Oxley, an act which aims to protect investors by improving the accuracy and
reliability of corporate disclosures

� Personal Information and Electronic Documents (PIPEDA) Act in Canada

� United Kingdom Data Protection Act (Oct 1998)

� European Union Data Protection Directive 95/46/EC

Multilevel security concepts
Mandatory access control (MAC) imposes additional restrictions upon users. Now users
access data based on a comparison of the classification of the user and the classification of
the data as well as the standard discretionary access control (DAC) checking. This additional
security check verifies that users can access only data and resources that their classification
allows them to. This happens regardless of whether they have discretionary access to such
data or resources. Mandatory means that subjects cannot control or bypass the access.

An MLS system is a security environment that allows the protection of data. It is based on
both traditional discretionary access controls and controls that check the sensitivity of data
itself through mandatory access controls. Using MLS allows you to classify objects and users
with security labels that are based on hierarchical security levels and non-hierarchical
security categories.

You can implement MAC via RACF at the operating system level. The key advantage is that
MAC security can be integrated across the platform with the same security for files, print, and
DB2.

RACF has several options that you can turn on and off to manipulate different aspects of an
MLS environment. It is possible to have some features of multilevel security on at one time
(creating a partial MLS environment). Because of this, commercial customers may find this
type of environment useful to meet these needs as opposed to running a complete multilevel
security environment.

Using MLS, you can define security for DB2 objects by assigning security labels to your DB2
objects. You can define a hierarchy between those objects. MLS then restricts access to the
object based on the security level of that object.

Row level security as a subset of multilevel security
In today’s complex world, organizations may have considerable needs to restrict access to
data in their database applications. Privacy and data protection legislation, antitrust

Chapter 1. Introduction 15

legislation, and considerations of national security are a few of the reasons why organizations
need to ensure that people in one part of the business do not know and cannot determine
what is happening in another part.

Companies may lose business if they cannot demonstrate to security-conscious potential
customers that data relating to them is strictly protected from unauthorized access.
Regulatory authorities may require that computer systems be separately maintained if it
cannot be shown that the different divisions of a company are prevented from accessing
details of the other divisions’ operations.

In an increasingly interconnected era, organizations may want to offer limited access to their
operational systems to the clients, suppliers, and trading partners. They may not want to give
those people freedom to roam through data pertaining to their competitors.

You can summarize the requirement as follows, using a customer order database as an
example. It must include:

� A means of marking a customer as being in a set of protected customers

� A means of propagating such markings to related data after the customer marking is made

� A means of marking new data for such customers and transient data relating to such
customers with the security markings of the customer

� The restriction of access to data based on such markings

� A means of ensuring that the security markings of the data are not changed other than by
authorized users and processes

You can give a group of people access to a table and limit each user to only a subset of the
data based on the particular individual’s MLS definition. And you can do this without creating
views or placing extra predicates in the SQL. Instead, you place a security label on the data
row and then associate the security label with each of the users. The Data Manager layer
knows how to compare these security labels and can see whether a particular user is allowed
to access a row. It is flexible in terms of having one set of tables and many different ways of
accessing the data or providing a subset of the data.

z/OS is designed to meet the stringent security requirements of multi-agency access to data.
This solution leverages zSeries leadership in scale, high availability, and self managing
capabilities for highly secure single-database hosting.

1.1.11 Auditing your DB2 applications
DB2 provides many controls that you can apply to data entry and update. Some of the
controls are automatic; some are optional. All of the controls prohibit certain operations and
provide error or warning messages if those operations are attempted.

Here we describe typical concerns for ensuring data accuracy and consistency. This section
is not exhaustive, other combinations of techniques are possible. For example, you can use
table check constraints or a view with the check option to ensure that data values are
members of a certain set. Or you can set up a master table and define referential constraints.
You can also enforce the controls through application programs and restrict the INSERT and
UPDATE privileges only to those programs.

To ensure that the required data is present, define columns with the NOT NULL clause. You
can also control the type of data by assigning column data types and lengths. For example,
alphabetic data cannot be entered into a column with one of the numeric data types. Data that
is inserted into a DATE column or a TIME column must have an acceptable format, and so on.

16 Data Integrity with DB2 for z/OS

For suggestions about assigning column data types and the NOT NULL attribute, see DB2
UDB for z/OS Version 8 SQL Reference, SC18-7426-03.

In some cases, you must ensure that the data in a column or a set of columns is unique. The
preferred method for ensuring that data values are unique is to create a unique index on a
column or set of columns. See The Official Introduction to DB2 UDB for z/OS by Susan
Graziano Sloan, IBM Press, Prentice Hall, for suggestions about indexes.

Triggers and table check constraints enhance the ability to control data integrity. Triggers are
very powerful for defining and enforcing rules that involve different states of DB2 data. For
example, a rule can prevent a salary column from more than a ten percent increase. A trigger
can enforce this rule and provide the value of the salary before and after the increase for
comparison. See Chapter 5 of DB2 UDB for z/OS Version 8 SQL Reference, SC18-7426-03,
for information about using the CREATE TRIGGER statement to create a trigger. A check
constraint designates the values that specific columns of a base table can contain. A check
constraint can express simple constraints, such as a required pattern or a specific range, and
rules that refer to other columns of the same table.

You might need to check that the table definition expresses required constraints on column
values as table check constraints. For a full description of the rules for those constraints, see
the CREATE TABLE information in Chapter 5 of DB2 UDB for z/OS Version 8 SQL Reference,
SC18-7426-03. An alternative technique is to create a view with the check option, and then
insert or update values only through that view. For example, suppose that, in table T, data in
column C1 must be a number between 10 and 20. Suppose also that data in column C2 is an
alphanumeric code that must begin with A or B. Create view V1 with the following statement:

CREATE VIEW V1 AS SELECT * FROM T WHERE C1 BETWEEN 10 AND 20 AND (C2 LIKE’A%’ OR C2 LIKE
’B%’) WITH CHECK OPTION;

Because of the CHECK OPTION, view V1 allows only data that satisfies the WHERE clause.
You cannot use the LOAD utility with a view, but that restriction does not apply to user-written
exit routines.

Several types of user-written routines are pertinent here:

� Validation routines

You can use validation routines to validate data values. Validation routines access an
entire row of data, check the current plan name, and return a nonzero code to DB2 to
indicate an invalid row.

� Edit routines

Edit routines have the same access as validation routines and can also change the row
that is to be inserted. Auditors typically use edit routines to encrypt data and to substitute
codes for lengthy fields. However, edit routines can also validate data and return nonzero
codes.

� Field procedures

Field procedures access data that is intended for a single column; they apply only to
short-string columns. However, they accept input parameters, so generalized procedures
are possible. A column that is defined with a field procedure can be compared only to
another column that uses the same procedure.

Referential integrity ensures that data is consistent across tables
When you define primary and foreign keys, DB2 automatically enforces referential integrity.
Therefore, every value of a foreign key in a dependent table must be a value of a primary key
in the appropriate parent table. Use referential integrity to ensure that a column allows only
specific values. Set up a master table of allowable values and define its primary key. Define

Chapter 1. Introduction 17

foreign keys in other tables that must have matching values in their columns. In most cases,
you should use the SET NULL delete rule. DB2 does not enforce informational referential
constraints across subsystems. For information about the means, implications, and limitations
of enforcing referential integrity, see DB2 UDB for z/OS Version 8 Application Programming
and SQL Guide, SC18-7415-03.

Triggers offer an efficient means of maintaining an audit trail. You can define a trigger to
activate in response to certain DELETE, INSERT, or UPDATE statements that change data.
You can qualify a trigger by providing a list of column names when you define the trigger. The
qualified trigger is activated only when one of the named columns is changed. A trigger that
performs validation for changes that are made in an UPDATE operation must access column
values both before and after the update. Transition variables (available only to row triggers)
contain the column values of the row change that activated the trigger. The old column values
and the column values from after the triggering operation are both available. See DB2 UDB
for z/OS Version 8 SQL Reference, SC18-7426-03, for information about when to use
triggers.

Locks can ensure that data remains consistent, even when multiple users try to access the
same data at the same time. From an auditing standpoint, you can use locks to ensure that
only one user is privileged to change data at a given time. You can also ensure that no users
are privileged to access uncommitted data. If you use repeatable read (RR), read stability
(RS), or cursor stability (CS) as your isolation level, DB2 automatically controls access to data
by using locks. However, if you use uncommitted read (UR) as your isolation level, users can
access uncommitted data and introduce inconsistent data. Auditors must know which
applications use UR isolation, and they must know whether these applications can introduce
inconsistent data or create security risks. For static SQL, you can determine which plans and
packages use UR isolation by querying the catalog.

For static SQL statements, use the following query to determine which plans use UR
isolation:

SELECT DISTINCT Y.PLNAME FROM SYSIBM.SYSPLAN X, SYSIBM.SYSSTMT Y
WHERE (X.NAME = Y.PLNAME AND X.ISOLATION = ’U’) OR Y.ISOLATION = ’U’ ORDER BY Y.PLNAME;

For static SQL statements, use the following query to determine which packages use UR
isolation:

SELECT DISTINCT Y.COLLID, Y.NAME, Y.VERSION FROM SYSIBM.SYSPACKAGE X, SYSIBM.SYSPACKSTMT Y
WHERE (X.LOCATION = Y.LOCATION AND X.LOCATION = ’ ’ AND X.COLLID = Y.COLLID AND X.NAME =
Y.NAME AND X.VERSION = Y.VERSION AND X.ISOLATION = ’U’) OR Y.ISOLATION = ’U’
ORDER BY Y.COLLID, Y.NAME, Y.VERSION;

For dynamic SQL statements, turn on performance trace class 3 to determine which plans
and packages use UR isolation.

Consistency between systems
When an application program writes data to both DB2 and IMS, or to both DB2 and CICS, the
subsystems prevent concurrent use of data until the program declares a point of consistency.

Database balancing is a technique that can alert you to lost and incomplete transactions.
Database balancing determines, for each set of data, whether the opening balance, the
control totals, and the processed transactions equal the closing balance and control totals.
DB2 has no automatic mechanism to calculate control totals and column balances and
compare them with transaction counts and field totals. Therefore, to use database balancing,
you must design these mechanisms into the application program.

18 Data Integrity with DB2 for z/OS

Use your application program to maintain a control table. The control table contains
information to balance the control totals and field balances for update transactions against a
user view. The control table might contain these columns:

� View name

� Authorization ID

� Number of logical rows in the view (not the same as the number of physical rows in the
table)

� Number of insert transactions and update transactions

� Opening balances

� Totals of insert transaction amounts and update transaction amounts

� Relevant audit trail information, such as date, time, workstation ID, and job name

The program updates the transaction counts and amounts in the control table each time it
completes an insert or update to the view. To maintain coordination during recovery, the
program commits the work only after it updates the control table. After the application
processes all transactions, the application writes a report that verifies the control total and
balancing information.

When you control data entry, you perform only part of a complete security and auditing policy.

You must also verify the results when data is accessed and changed. The following are
methods for determining whether your data is consistent:

� Automatically checking the consistency of data

Whenever an operation changes the contents of a data page or an index page, DB2
verifies that the modifications do not produce inconsistent data. Additionally, you can run
the DSN1CHKR utility to verify the integrity of the DB2 catalog and the directory table
spaces. You can also run this utility to scan the specified table space for broken links,
damaged hash chains, or orphan entries. For more information, see Part 3 of DB2 UDB for
z/OS Version 8 Utility Guide and Reference, SC18-7427-03.

� Submitting SQL queries to check data consistency

If you suspect that a table contains inconsistent data, you can submit an SQL query to
search for a specific type of error. For example, a view allows an insert or update to table
T1 only if the value in column C1 is between 10 and 20 and if the value in C2 begins with
A or B. To check that the control has not been bypassed, issue the following statement:

SELECT * FROM T1 WHERE NOT (C1 BETWEEN 10 AND 20 AND (C2 LIKE ’A%’ OR C2 LIKE
’B%’));

If the control has not been bypassed, DB2 returns no rows and thereby confirms that the
contents of the view are valid. You can also use SQL statements to get information from
the DB2 catalog about referential constraints that exist. For several examples, see DB2
UDB for z/OS Version 8 SQL Reference, SC18-7426-03.

� Checking data consistency with the CHECK utility

The CHECK utility helps to ensure data consistency in the following ways:

– CHECK INDEX

The CHECK INDEX utility checks the consistency of indexes with the data to which the
indexes point. It determines whether each index pointer points to a data row with the
same value as the index key. If an index key points to a LOB, the CHECK INDEX utility
determines whether the index key points to the correct LOB.

Chapter 1. Introduction 19

– CHECK DATA

The CHECK DATA utility checks referential constraints (but not informational referential
constraints). It determines whether each foreign key value in each row is a value of the
primary key in the appropriate parent table. The CHECK DATA utility also checks table
check constraints and checks the consistency between a base table space and any
associated LOB table spaces. It determines whether each value in a row is within the
range that was specified for that column when the table was created.

– CHECK LOB

The CHECK LOB utility checks the consistency of a LOB table space. It determines
whether any LOBs in the LOB table space are invalid.

See DB2 UDB for z/OS Version 8 Utility Guide and Reference, SC18-7427-03, for more
information about the CHECK utility.

� Checking data consistency with the DISPLAY DATABASE command

You can check data consistency with the DISPLAY DATABASE command. If you allow a
table to be loaded without enforcing referential constraints on its foreign key columns, the
table might contain data that violates the constraints. DB2 places the table space that
contains the table in the CHECK-pending status. You can determine which table spaces
are in CHECK-pending status by using the command:

DISPLAY DATABASE RESTRICT

You can also use the DISPLAY DATABASE command to display table spaces with invalid
LOBs. See Chapter 2 of DB2 UDB for z/OS Version 8 Command Reference,
SC18-7416-03, for information about using this command.

� Checking data consistency with the REPORT utility

You can use the REPORT utility to determine:

– Which table spaces contain a set of tables that are interconnected by referential
constraints

– Which LOB table spaces are associated with which base tables

See DB2 UDB for z/OS Version 8 Utility Guide and Reference, SC18-7427-03, for
information about using the REPORT utility.

� Checking data consistency with the operation log

You can use the operation log to verify that DB2 is operated reliably and to reveal
unauthorized operations and overrides. The operation log consists of an automated log of
DB2 operator commands (such as those that start or stop the subsystem or its databases)
and any abend of DB2. The operation log records the following information:

– Command or condition type
– Date and time when the command was issued
– Authorization ID that issued the command

You can obtain database connection code information from the system log (SYSLOG), the
SMF data set, or the automated job scheduling system. To obtain the information, use
SMF reporting, job-scheduler reporting, or a user-developed program. You should review
the log report daily and keep a history file for comparison. Because abnormal DB2
termination can indicate integrity problems, you should implement an immediate
notification procedure to alert the appropriate personnel (DBA, systems supervisor, and
so on) of abnormal DB2 terminations.

� Using internal integrity reports to check data consistency

You can generate internal integrity reports for application programs and for utilities. For
application programs, you should record any DB2 return codes that indicate possible data

20 Data Integrity with DB2 for z/OS

integrity problems, such as inconsistency between index and table information, physical
errors on database disk, and so on. All programs must check the SQLCODE or the
SQLSTATE for the return code that is issued after an SQL statement is run. DB2 records,
on SMF, the occurrence (but not the cause) of physical disk errors and application
program abends. The program can retrieve and report this information; the system log
(SYSLOG) and the DB2 job output also have this information. However, in some cases,
only the program can provide enough detail to identify the exact nature of problem.

You can incorporate these integrity reports into application programs, or you can use them
separately as part of an interface. The integrity report records the incident in a history file
and writes a message to the operator's console, a database administrator's TSO terminal,
or a dedicated printer for certain codes. The recorded information includes:

– Date
– Time
– Authorization ID
– Terminal ID or job name
– Application
– Affected view or affected table
– Error code
– Error description

When a DB2 utility reorganizes or reconstructs data in the database, it produces statistics
to verify record counts and to report errors. The LOAD and REORG utilities produce data
record counts and index counts to verify that no records were lost. In addition to that, keep
a history log of any DB2 utility that updates data, particularly REPAIR. Regularly produce
and review these reports, which you can obtain through SMF customized reporting or a
user-developed program.

1.1.12 Other security enhancements
While DB2 for z/OS V8 provides many enhancements for security, there is more to come.
Roles will be used in the recently announced DB2 9 for z/OS to provide a more flexible
technique than groups or users in assigning and controlling authorization, while improving
consistency with the industry.

� A network trusted context provides a technique to work with other environments more
easily, improving flexibility.

� The instead of trigger is an SQL technique that allows a trigger to be used in place of a
view, with the possibility of updates, consistent with DB2 for LUW.

� Improved audit selectivity is necessary to verify that security is functioning.

� Secure Socket Layer (SSL) implementation provides encryption of data on the wire.

� DB2 allows encryption for the key disk resources used by DB2 (tables, LOBs, indexes,
image copies, logs and archive logs).

Keep in mind that DB2 and z/OS strive to provide Regulatory Compliance and to get
Common Criteria security certification. z/OS V1.7 has been Security Certified at EAL4+ for
CAPP and LSPP. One year after receiving Common Criteria Security Certification of EAL3+,
z/OS V1.7 with the RACF optional feature has achieved EAL4+ for Controlled Access
Protection Profile (CAPP) and Labeled Security Protection Profile (LSPP) in March 2006.
This certification assures customers that z/OS V1.7 has gone through a long and rigorous
testing process and conforms to standards sanctioned by the International Standards
Organization. Achieving EAL4+ certification will further enable z/OS to be adopted by
governments and governmental agencies for mission-critical and command-and-control
operations.

Chapter 1. Introduction 21

Roles
The database ROLE is a “virtual authid” assigned via TRUSTED CONTEXT. It provides
additional privileges only when in a trusted environment using existing primary AUTHID. It
can optionally be the OWNER of DB2 objects. The definition is:

CREATE ROLE PROD_DBA;
GRANT DBADM … TO PROD_DBA;
CREATE TRUSTED CONTEXT DBA1 …
DEFAULT ROLE PROD_DBA OWNER(ROLE);

DB2 privileges are assigned to the defined role. The role exists as an object independent of
its creator, so creation of the role does not produce a dependency on its creator.

This capability can allow a DBA to have privileges to create objects and manage them for a
time, even though ownership belongs to another id.

The role can be assigned and removed from individuals via the trusted authorization context
as necessary. This allows a DBA to perform object maintenance during a change control
window on a Saturday night, for example. But when Monday arrives, the same DBA does not
have the authority to do this same work.

Audit trails of the work completed during the maintenance window are available for verification
by a security administrator or auditor.

Examples of database roles are:

� Dynamic SQL access to DB2 tables using JDBC™ or CLI, but only when running on a
specific server.

� DBA can be temporarily assigned a DBA ROLE for weekend production table admin work
with no table access at other times.

� DBA uses a ROLE for CREATE statements, so that the ROLE owns the objects that the
DBA creates.

� Project librarian is assigned a BIND ROLE only when running on the production code
library server and cannot BIND from any other server.

Trusted security context
Today, you have the option to set a system parameter, which indicates to DB2 that all
connections are to be trusted. It is unlikely that all connection types, such as DRDA®, RRS,
TSO, and batch, from all sources fit into this category. It is likely that only a subset of
connection requests for any type and source may be trusted or that you want to restrict
trusted connections to a specific server. More granular flexibility allows for the definition of
trusted connection objects. For instance, a user connecting from home may have fewer
privileges than when connected via a trusted security context, such as a campus.

Once defined, connections from specific users via defined attachments and source servers
allow trusted connections to DB2. The users defined in this context can also be defined to
obtain a database role.

Trusted security context:

� Identifies “trusted” DDF, RRS Attach, or DSN application servers
� Allows selected DB2 authids on connections without passwords
� Reduces complexity of password management
� Reduces the need for an all-inclusive “system authid” in application servers
� Provides more visibility and auditability regarding which user is currently running
� Enables mixed security capabilities from a single application server

22 Data Integrity with DB2 for z/OS

A WebSphere example of Trusted Security Context/ROLE:

� WebSphere connection pool can be created with one DB2 AUTHID

� WebSphere can reuse pooled connections to DB2 with different AUTHIDs

� DB2 AUTHIDs can be given privileges that are only available when executing in
WebSphere:

– Dynamic SQL access for JDBC only when using WebSphere

1.1.13 DB2 column level encryption
DB2 Version 8 ships a number of built-in functions which allow you to encrypt data at the cell
level. These functions are ENCRYPT_TDES (or ENCRYPT), DECRYPT_BIN,
DECRYPT_CHAR, and GETHINT.

Create and Insert
The SET ENCRYPTION PASSWORD statement allows you to specify a password as a key to
encryption. In Example 1-1, the EMPNO in EMPL is encrypted with a password.

Example 1-1 DB2 data encryption

CREATE TABLE EMPL
 (EMPNO VARCHAR(64) FOR BIT DATA,
 EMPNAME CHAR(20),
 CITY CHAR(20) NOT NULL DEFAULT 'KANSAS CITY',
 SALARY DECIMAL(9,2))
 IN DSNDB04.RAMATEST ;
COMMIT ;

SET ENCRYPTION PASSWORD = 'PEEKAY' WITH HINT 'ROTTIE' ;

INSERT INTO EMPL(EMPNO,EMPNAME, SALARY)
VALUES (ENCRYPT('12346'),'PAOLO BRUNI',20000.00) ;

INSERT INTO EMPL(EMPNO,EMPNAME, SALARY)
VALUES (ENCRYPT('12347'),'RAMA NAIDOO',20000.00) ;

When creating a column for data encryption, you must define it as VARCHAR. The length of
the VARCHAR depends on the password and the password hint. Assuming EMPNO is
VARCHAR(6) before encryption, you can compute the final length of VARCHAR as follows:

Maximum length of non-encrypted data 6 bytes
Number of bytes to the next multiple of 8 2 bytes
24 bytes for encryption key 24 bytes
Encrypted data column length 32 bytes

Therefore, define the column for encrypted data as VARCHAR(32) FOR BIT DATA. If you use
a password hint, DB2 requires an additional 32 bytes to store the hint. You must define the
EMPNO column as VARCHAR(64) FOR BIT DATA as in Example 1-1.

You are responsible for managing all these keys. Make sure you have a mechanism in place
to manage the passwords that are used to encrypt the data. Use the password hint to
“remember” the password. The GETHINT function returns the password hint for every row in
the table.

SELECT GETHINT(EMPNO) FROM EMPL ;

Chapter 1. Introduction 23

---------+---------+---------+---------+
HINT
---------+---------+---------+---------+
ROTTIE
ROTTIE
DSNE610I NUMBER OF ROWS DISPLAYED IS 2

Without the password, there is no way to decrypt the data. These encryption functions use
the Triple Data Encryption Standard (DES) to perform the encryption.

Select
In order to retrieve the data, the DECRYPT_CHAR function must be applied to EMPNO as:

SET ENCRYPTION PASSWORD = 'PEEKAY' ;
SELECT SUBSTR(DECRYPT_CHAR(EMPNO),1,6) AS EMPNO,
 EMPNAME,CITY,SALARY
 FROM EMPL ;

which decrypt the EMPNO based on the password:

---------+---------+---------+---------+---------+---------+----
EMPNO EMPNAME CITY SALARY
---------+---------+---------+---------+---------+---------+----
12346 PAOLO BRUNI KANSAS CITY 20000.00
12347 RAMA NAIDOO KANSAS CITY 20000.00
DSNE610I NUMBER OF ROWS DISPLAYED IS 2

Insert
Data is inserted into EMPL, and values for EMPNO are encrypted with the ENCRYPT
function.

Because you can specify a different password for every row that you insert, you can encrypt
data at the cell level in your tables.

SET ENCRYPTION PASSWORD = 'ITSOSJ' WITH HINT 'SANJOSE' ;
INSERT INTO EMPL(EMPNO,EMPNAME, SALARY)
VALUES (ENCRYPT('12346'),'PAOLO BRUNI',20000.00) ;

SET ENCRYPTION PASSWORD = 'NAIDOO' WITH HINT 'ROWVILLE' ;
INSERT INTO EMPL(EMPNO,EMPNAME, SALARY)
VALUES (ENCRYPT('12347'),'RAMA NAIDOO',20000.00) ;

In this case, the GETHINT function returns:

SELECT GETHINT(EMPNO) FROM EMPL ;

---------+---------+---------+---------+
HINT
---------+---------+---------+---------+
SAN JOSE
ROWVILLE
DSNE610I NUMBER OF ROWS DISPLAYED IS 2

Requirements
The DB2 built-in encryption functions require:

� DB2 V8.
� Integrated Cryptographic Service Facility (ICSF).
� On z990, CPACF is required (PCIXCC card is not, unless DRDA encryption is necessary).
� Pre-z990, cryptographic coprocessor is required.

24 Data Integrity with DB2 for z/OS

Each CP on the z990 and later models has an assist processor on the chip in support of
cryptography. This feature provides for hardware encryption and decryption support. PCIXCC
provides a cryptographic environment with added function. To learn more about PCIXCC,
refer to IBM Eserver zSeries 990 (z990) Cryptography Implementation, SG24-7070.

Applications that need to implement DB2 encryption must apply the DB2 encrypt and decrypt
built-in functions to each column to be encrypted or decrypted. All encrypted columns must
be declared “for bit data”. Unchanged read-applications see data in encrypted form.
Applications may apply a different key for each column, but may also supply the key in a
special register. We strongly recommend, for performance, that you specify the key in the
special register.

The LOAD and UNLOAD utilities do not support the DB2 built-in encryption functions, but do
handle broader encryption. SQL-based programs such as DSNTIAUL do support encryption.
Encryption of numeric fields is not supported. The length of encrypted columns must allow for
an additional 24 bytes, rounded up to a double-word boundary, for storing the encryption key.
Space usage may be a concern if you plan to use DB2 to encrypt small columns.

Indexes are also encrypted. Predicates that depend on the collating sequence of encrypted
columns (for example, range predicates) may produce wrong results (unless modified to use
built-in functions correctly).

For example, the following statement produces the wrong results.

SELECT COUNT(*) WHERE COL =:HV;

The following statement produces the correct results with almost no impact to performance.

SELECT COUNT(*) WHERE COL = ENCRYPT_TDES(:HV);

The following statement produces the wrong results.

SELECT COUNT(*) WHERE COL < ENCRYPT_TDES(:HV);

The next statement produces the correct results with a large impact on performance.

SELECT COUNT(*) WHERE DECRYPT_CHAR(COL) <:HV;

1.1.14 IBM Data Encryption for IMS and DB2 Databases
IBM Data Encryption for IMS and DB2 Databases is the tool that provides you with a data
encryption tool for both IMS and DB2 for z/OS databases in a single product. It enables you to
protect your sensitive and private data for IMS at the segment level and for DB2 at the table
level.

This tool performs row level encryption using EDITPROCs. Unlike the DB2 encryption
functions shipped with DB2, the Data Encryption Tool uses different keys to encrypt different
tables. The encryption keys can be either clear, such as the DB2 encryption functions, or
secure. Plus they are managed through ICSF. Clear keys generally perform better. The tool
also supports single, double, or triple DES. Again, refer to IBM Eserver zSeries 990 (z990)
Cryptography Implementation, SG24-7070, to learn more about the clear and secure keys.

Customization consists of:

� Building a user exit routine (DB2 EDITPROC exit)
� Putting the user-specified encryption key label in the exit routine

The tool provides sample jobs to help you build the user exit (DB2 EDITPROC exit) and
specify the encryption key label. Alternatively, the ISPF screen can be used to build the exit.

Chapter 1. Introduction 25

You can find more information about the IBM Data Encryption for IMS and DB2 Databases by
visiting the Web at:

http://www.ibm.com/software/data/db2imstools/db2tools/ibmencrypt.html

The IBM Data Encryption for IMS and DB2 Databases tool supports all versions of DB2, and
it encrypts only the whole row. No application changes are required. However you can include
the EDITPROC only at the CREATE time of a table. Drop, create, runstats, and bind are
necessary for adding the EDITPROC to an existing table. The applications do not need to be
aware of encryption keys.

1.2 Information integrity
Leading-edge organizations have already switched from the data age to the information age,
where their data is a critical resource capable of generating information that enables them to
stay ahead of the competition. In the era of on demand information, more data than ever is
generated, updated, managed, and exchanged. Data sits at the bottom of the information
hierarchy, and without investing in its quality, no matter how good the tools and techniques,
effective information will remain elusive, and if the competition has mastered the data
foundations, they will take the lead.

Information integrity is the result of people, processes, and technology. Often data corruption
issues arise from sources other than technology. A good data foundation requires a
systematic, integrated approach to build an environment of people, processes, and
technology that will foster sustainable information integrity.

Information integrity is the effectiveness of data needed to support the organization’s strategic
objectives, such as the ability to manage its assets and conduct its core operations. The level
of information integrity required to effectively support operations varies by product line or
functional area, depending on their unique information requirements. For example, a finance
department will require high-quality data, while a marketing database may be able to achieve
its objectives with less stringent information integrity requirements.

Information integrity can be measured across multiple dimensions, each of which is used to
gauge how well a data element meets a company’s information integrity goals, and ultimately,
its information needs. These dimensions are summarized in Table 1-1.

http://www.ibm.com/software/data/db2imstools/db2tools/ibmencrypt.html

26 Data Integrity with DB2 for z/OS

Table 1-1 Information integration dimensions

Information integrity issues increase with the organization’s dependence on data. Imbalances
in the interrelationship between people, processes, and technology are exposed by corporate
initiatives such as:

� Customer relationship management (CRM) and Enterprise Resource Planning (ERP)
implementations

� Outsourcing

� New compliance requirements, such as Sarbanes-Oxley, Basel II, and the U.S.A.
PATRIOT Act

� Business intelligence and data warehousing

� Performance improvement

� New delivery channels (such as self-service)

� System upgrades

� Cost reduction

� Joint ventures, mergers, acquisitions, and divestitures

Dimension Description An example of lack of information
integrity

Completeness The data element is populated
when required.

Customer’s first name is missing.

Validity The data element contains a valid
data format or domain value.

State code is “ZZ”.

Consistency The data element is consistent
with other related data or business
rules.

Client’s birth date is 01/01/1990 and
retirement date is 01/01/2005.

Uniqueness The data element is unique —
there are no duplicate values.

Customer number is used twice in
information file.

Accuracy
(electronic)

The data element agrees with
validated data from another
source.

Address does not match with post office
database.

Accuracy (real) The data reflects the real-world
object, event, or transaction.

Address does not match client’s application
form.

Precision The data element holds data at
sufficient granularity.

Product costs are stored as dollars, not
dollars and cents.

Accessibility The data element is accessible
when required.

Birth date is in a source system, but not in
the centralized customer information file.

Timeliness The data element is available
when it is required.

Data uploaded to data warehouse monthly,
not daily.

Clarity The data element is clearly
defined and understood.

Customer record has free-text “order
status” field, so the field cannot be
analyzed.

Sufficiency The data element contents are
sufficient without making
assumptions.

Order status “delayed” is used to identify
out-of-stock items (because it is assumed
that all delayed items are out of stock).

Chapter 1. Introduction 27

The tangible benefits of data quality are reflected in cost reductions and improved business
metrics. There are less-tangible costs associated with poor information integrity that require
more effort to identify, quantify, and monitor, but the deteriorating quality of the information will
ultimately affect the bottom line. Harvesting information integrity benefits requires an
investment in an enterprise information integrity framework. The return on investment is high
compared to the direct and indirect costs related to poor data quality. An initial investment in
an enterprise information integrity framework can be leveraged across multiple systems,
processes, and organizational units, further compounding the initial return on investment.

IBM Business Consulting Services can help organizations achieve information integrity
through established best practices, proven through numerous successful customer
engagements. The IBM enterprise information integrity framework highlights areas that must
be managed to achieve information integrity. The IBM enterprise information integrity
methodology captures the process for designing and implementing the IBM enterprise
information integrity framework.

The information integrity framework highlights the various areas that must be managed in
order to achieve sustainable information integrity. The framework, shown in Figure 1-3, is
used to describe what a business environment looks like, but does not identify how the
framework is developed or how an organization would make the transition to a new
environment described in a framework. The information integrity methodology describes how
you can tailor and implement the framework to help achieve and sustain information integrity.

Figure 1-3 Information integration framework

An information integrity policy helps an enterprise to develop a strategic direction for the
governance of its information assets, and directs, standardizes, and safeguards the
corporation’s information assets. An information integrity policy enables an organization to
recognize that corporate data is a critical resource and to articulate corporate objectives with
respect to information integrity.

28 Data Integrity with DB2 for z/OS

Information organization focuses on empowering employees and defining:

� Roles and responsibilities — Data steward, information integrity governance council, chief
information integrity officer, data architect, data administrator, database administrator,
business expert, business user, and information integrity analyst

� Structure and work group design — Allocation of work activities, reporting relationships
and the combination of resources needed to meet information integrity goals

� Job design — Assignment of groups of related tasks, activities, and procedures to specific
roles

� Skills and behavior development — Development of skill sets and behaviors required to
support new processes at the individual and group levels

� Performance management — Development and tracking of key success indicators for
individuals, groups, and the overall business with respect to information integrity

� Communication — Education of everyone in the organization about the importance of
information integrity, and creation of an awareness and understanding of the impact
individuals have in the data value chain.

Information integrity data administration
Information integrity needs a clear understanding within an organization of the meaning and
usage of data elements, as well as their of standardization. Information integrity data
administration involves envisioning a data administration framework that is applied
consistently across the organization, verifying that data is standardized and that all
stakeholders can readily access information about the current meaning and use of the data.
The key to successful information integrity administration is the design of organizational
structure and processes. Organizational structure and processes help ensure that business
events, which cause changes to reference data, can be proactively captured, documented,
and distributed. The key elements of information integrity administration are the metadata
model, business rules, and the data model.

� Metadata — Documenting definitions for data elements helps build a solid foundation for
the enterprise-wide metadata strategy. Valid domains for each key data element that
identify the value ranges and types must also be defined.

� Business rules — Business rules are policies governing business actions. A business rule
describes how to make a transition from one state to another or how to prohibit such a
transition. Business rules govern updating, creating, or deleting objects and generally
result in constraints or integrity parameters on data relationships or values. Since they
tend to be volatile or subject to frequent change, there must be a single source where
business rules are documented and distribution is controlled. This helps prevent different
business areas or application development teams from creating inconsistent business
rules that govern the same activity.

� Data model — Data design calls for understanding the business requirements and
translating them into a data model. While a conceptual data model captures the business
at a very high level, it provides an overview of the business entities in the scope of any
system. A logical data model captures the entities and their relationships and cardinality,
as well as rules governing the establishment of relationships. The business rules recorded
in the logical data model and supporting documentation need to be incorporated into the
physical designs (that is the physical data model and the physical database design). Lack
of attention to the business rules results in an inability to meet business requirements and
could potentially cause information integrity issues. The physical data model addresses
the alignment of the data with the metadata model by implementing data type constraints,
domain rules, and business rules within the data administration framework.

Chapter 1. Introduction 29

Information integrity architecture
The information integrity architecture component of the framework is composed of data
architecture, technology, and infrastructure, and it is closely linked to information integrity
administration. It includes key information integrity best practices, such as verifying that:

� Data is electronically validated at all entry points.

� Systems sharing common data elements are linked so that they always share the most
current view of those data elements.

� All data is held in a staging area where information integrity processes can be applied to it
before it is populated into operating systems.

� Data redundancies are eliminated or streamlined through good architecture.

� Systems development methodologies incorporate data quality best practices.

Strong data architecture results from robust data design practices and enforcement of
standards. This contributes significantly to the overall improvement of information integrity
across the enterprise, meeting the core objective of the framework. As with information
integrity administration, it is vital to link information integrity architecture directly to the change
management process.

Information integrity framework compliance
The interrelationships between organization, process, and technology are continually evolving
and can cause the information integrity framework components to become outdated if a
strong change management process is not present. For example, new errors can be caused
by changes in data interfaces, staff, new business policies, and regulatory requirements. If
existing processes and systems do not detect the errors, an enterprise will not be aware of
the loss in data. To mitigate this risk, the framework compliance component of the information
integrity framework assesses the information integrity program within an organization by
evaluating the effectiveness of the integrated framework in sustaining data quality. The results
of the framework compliance can then be used to certify systems, procedures, and business
units to meet the standards set out in the information integrity policies and to identify areas
where the framework elements need to be strengthened due to a change in circumstances.
The process for executing information integrity framework compliance represents a
condensed version of the methodology used to design and implement an information integrity
assessment.

1.3 DB2 and data integrity
The SQL statements INSERT, UPDATE, and DELETE, as well as DB2 utilities, modify data in
an existing database. Whenever you modify existing data, the logical integrity of the data can
be affected. For example, an order for a nonexistent product could be entered into the orders
table, a customer with outstanding orders could be deleted from the customer table, or the
order number could be updated in the orders table and not in the items table. In each of these
cases, the integrity of the stored data is lost.

Data integrity is actually a combination of:

� Entity integrity

Each row of a table has a unique identifier.

� Semantic integrity

The data in the columns properly reflects the types of information the column was
designed to hold.

30 Data Integrity with DB2 for z/OS

� Referential integrity

The relationships between tables are enforced.

� Domain integrity

Domain integrity applies to every column for which a domain is associated. A domain
defines a pool of all values that are valid for a column associated with this domain.

If different columns draw their values from the same domain, then it makes sense to do
comparisons of the columns, because you would be comparing compatible columns. In
particular, if domains were implemented, it would be possible to enforce a constraint that
the domain of the foreign key must belong to the same domain (or subset) of the parent
key it references.

Well designed databases incorporate these principles so that when you modify data, the
database itself prevents you from doing anything that might harm the data integrity.

In this section, we briefly introduce each of the functions. For more information about DB2
data integrity, refer to Chapter 10, “Using constraints to maintain data integrity”, of DB2 UDB
for z/OS Version 8 Application Programming and SQL Guide, SC18-7415.

1.3.1 Entity integrity
An entity is any person, place, or thing to be recorded in a database. Each table represents
an entity, and each row of a table represents an instance of that entity. For example, if an
order is an entity, the ORDERS table represents it and each row in the table is an instance of
a specific order.

To identify each row in a table, the table must have a primary key. The primary key is a unique
value that identifies each row. This requirement is called the entity integrity constraint.

For example, the ORDERS table primary key is ORDER_NUM. The ORDER_NUM column
holds a unique system-generated order number for each row in the table. To access a row of
data in the ORDERS table, you can use the following SELECT statement:

SELECT * FROM ORDERS WHERE ORDER_NUM = 90090

Using the order number in the WHERE clause of this statement enables you to localize a row
easily because the order number uniquely identifies that row. If the index allowed duplicate
order numbers, it would be almost impossible to access one single row, because all other
columns of this table allow duplicate values.

1.3.2 Semantic integrity
Semantic integrity ensures that data entered into a row reflects an allowable value definition
for that row. The value must be within the column-specific properties, or allowable set of
values, for that column. For example, the QUANTITY column of the ITEMS table permits only
numbers. If a value outside the column-specific properties can be entered into a column, the
semantic integrity of the data is violated.

Semantic integrity is enforced using the following constraints:

� Data type

The data type defines the types of values that you can store in a column. For example, the
data type SMALLINT allows you to enter values from -32,767 to 32,767 into a column.

Chapter 1. Introduction 31

� Default value

The default value is the value inserted into the column when an explicit value is not
specified. For example, the USER_ID column of the CUST_CALLS table defaults to the
login name of the user if no name is entered.

� Check constraint

The check constraint specifies conditions on data inserted into a column. Each row
inserted into a table must meet these conditions. For example, the quantity column of the
items table might check for quantities greater than or equal to one.

1.3.3 Referential integrity
Referential integrity refers to the relationship between tables. Because each table in a
database must have a primary key, this primary key can appear in other tables because of its
relationship to data within those tables. When a primary key from one table appears in
another table, it is called a foreign key.

Primary and foreign keys are the important and basic components on which the relational
theory is based. Primary keys enforce entity integrity by uniquely identifying entity instances.
Foreign keys enforce referential integrity by completing an association between two entities.
The primary key of a relational table uniquely identifies each record in the table. The primary
key of a relational table can be a normal attribute that is guaranteed to be unique (such as
EMPNO in EMPLOYEE table) or it can be generated by the DBMS (such as the IDENTITY
column in DB2).

Foreign keys logically join tables and establish dependencies between tables. Tables can
form a hierarchy of dependencies in such a way that if you change or delete a row in one
table, you destroy the meaning of rows in other tables. For example, the CUSTOMER_NUM
column of the CUSTOMER table is a primary key for that table and a foreign key in the
ORDERS and CUST_CALL tables. If a CUSTOMER_NUM is deleted from the CUSTOMER
table, the logical link across the three tables and this particular customer is destroyed.

When you delete a row that contains a primary key or update it with a different primary key,
you destroy the meaning of any rows that contain that value as a foreign key. Referential
integrity is the logical dependency of a foreign key on a primary key. The integrity of a row that
contains a foreign key depends on the integrity of the row that it references, that is the row
that contains the matching primary key.

If the referential integrity is implemented in the database, by default, the database does not
allow you to violate referential integrity and gives you an error message if you attempt to
delete rows from the parent table before you delete rows from the child table. You can,
however, use the ON DELETE CASCADE option to cause deletes from a parent table to
trigger deletes on child tables.

To define primary and foreign keys, and the relationship between them, you use options of the
CREATE TABLE and ALTER TABLE statements.

For instance, an EMPLOYEE table and a DEPARTMENT table can be defined as shown in
Example 1-2.

Example 1-2 Referential integrity

CREATE TABLE EMPLOYEE (
EMPNO INTEGER NOT NULL PRIMARY KEY,
NAME CHAR(30) NOT NULL,
SALARY DECIMAL(7,2) NOT NULL,
WORKDEPT SMALLINT);

32 Data Integrity with DB2 for z/OS

CREATE TABLE DEPARTMENT (
DEPTNO SMALLINT NOT NULL PRIMARY KEY,
DEPTNAME VARCHAR(30),
MGRNO INTEGER NOT NULL, CONSTRAINT REF_EMPNO FOREIGN KEY (MGRNO) REFERENCES EMPLOYEE
(EMPNO) ON DELETE RESTRICT);

The primary key of the EMPLOYEE table is the EMPNO column. The foreign key of the
DEPARTMENT table, the MGRNO column, reflects values from EMPNO. We specify a
constraint name for the foreign key, REF-EMPNO. This name is used in error messages,
queries to the catalog, and DROP FOREIGN KEY statements.

The delete rule applies when a row of the EMPLOYEE table is deleted and that row has
dependents in the DEPARTMENT table. Since we have chosen RESTRICT, upon such
deletion, an error occurs and no rows are deleted.

1.3.4 Domain integrity
A domain is basically the set of valid values that a column or data type can assume. Check
constraints can provide functions similar to the relational concept of a domain. Check
constraints can impose restrictions on the data values of a column through the specification of
Boolean expressions. The expression is explicitly defined in the table DDL and is formulated
in a way similar to the SQL WHERE clause. Updates and inserts to the data in the column
trigger the evaluation of the expression and the update is either allowed or rejected for
constraint violation.

However, there is more to domain integrity than what check constraint can provide, such as
user-defined data types with strong type checking. This is how the function avoids problems
such as adding U.S. dollars and Euros. To provide this extra function, use DB2 distinct types.

1.4 Example of integrity needed across applications
Suppose application A is being enhanced to provide a sales rollup report for the entire
company and that a company wide organization hierarchy table already exists in application B
as B.ORG.

Because this organizational info is needed to produce the required content by the developers
supporting application A, they decide to join data from application A with the B.ORG table in
application B.

Application A code changes are delivered to production.

On Monday night, the first batch run (with the enhancement) for application A works
successfully. A few days later, it is discovered that the results from the first batch run are
incorrect, some input was missing. So the plan is to restore the tables in Application A and
rerun the "Monday" batch run.

Now if application A can be rerun and can use the current contents of B.ORG, all is fine.

If application A needs to use the exact contents of B.ORG as it was when the first run took
place, there is a problem.

One approach is to request that application B temporarily restores the contents of B.ORG to
the appropriate point in time on Monday before the first batch run. This may not be possible

Chapter 1. Introduction 33

for application B because it is a 24/7 application or there may not be a usable quiesce point to
which to go back.

An alternative could be to create a clone of B.ORG, and, assuming that a backup was
available, restore the data to the clone and then point the code in application A to the clone,
possibly using an alias.

If many applications need this core organization data, then consider establishing a Master
table and let all the applications which need such information copy the data from the Master
version into their database. Another possibility is to maintain organization history in a central
Master table using an effective business date to represent how the organization has evolved.

This illustrates some points to consider when deciding to reuse another application's data.

Another approach would be to create an A.ORG table, and populate from B.ORG before the
batch run and also include this A.ORG table in application A's referential structure.

1.4.1 Customer names and addresses across applications
Companies typically run many applications and some of these may use DB2 for z/OS.

Some of these applications are new and some have been in place for a long time.
Applications are also purchased and acquired through mergers. Within those applications
dealing with customer information, it is not surprising to see different formats for names and
addresses as well as different levels of quality in the data.

In a financial institution, for example, a customer may purchase different products and have
the customer’s name and address stored in different systems, such as Mortgage, Loan,
Credit Card, and Retail Banking. Maintaining the integrity of a customer's name and address
in different systems can be a challenge.

One alternative is to designate a master reference and propagate changes to other systems
which could be DB2, other DBMSs, or flat files.

In other cases, information can be consolidated in a warehouse where the customer's
complete portfolio is captured and where the name and address information is matched and
"conformed."

IBM provides a solution in this area, it is IBM Master Data Management (MDM).

IBM defines MDM as the set of disciplines, technologies, and solutions used to create and
maintain consistent, complete, contextual, and accurate business data for all stakeholders.
MDM is an approach to control the proliferation and inconstancy of vital data. IBM Master
Data Management is SOA-based middleware designed to provide organizations the most
flexible framework to support enterprise structured and unstructured data and business
services, aligned with key business processes. IBM brings together all the key core
components required for a successful enterprise MDM strategy: information integration,
content management, business intelligence, and master data management for specific data
objects – including product, customer, and supplier – and master data solutions for specific
industries.

34 Data Integrity with DB2 for z/OS

© Copyright IBM Corp. 2006. All rights reserved. 35

Chapter 2. Semantic integrity

In this chapter, we describe two sets of DB2 functions which help control the integrity of your
DB2 data: constraints and distinct types.

Constraints are rules that limit, restrict, and regulate the values that you can use to define,
add, or modify a table. They help toward domain support. The first step to ensure the integrity
of your data is choosing the right data type for each attribute of your tables. This way, you can
avoid character strings in a numeric field or non-date values in a date field.

Distinct types augment the basic column-level integrity DB2 provides. They are user-defined
data types that share their internal representation with a built-in data type, but are considered
a separate and incompatible data type for SQL.

2

36 Data Integrity with DB2 for z/OS

2.1 Constraints
Constraints enable enhanced data integrity without requiring procedural logic (such as in
stored procedures and triggers). Check constraints are written using SQL syntax. They are
easy to implement and consist of two components: a constraint name and a check condition.

The constraint name is an SQL identifier and is used to reference the constraint. If a
constraint name is not explicitly coded, the DBMS typically creates a unique name
automatically for the constraint.

The check condition defines the actual constraint logic defined by specifying basic predicates
(>, <, =, <>, <=, >=), BETWEEN, IN, LIKE, and NULL. Furthermore, AND and OR can be
used to string conditions together.

In this section, we describe the following types of constraints:

� Data constraint
� NOT NULL constraints
� Unique constraint
� Check constraints

2.1.1 Data constraint
DB2 currently provides 19 different built-in data types classified according to the type of the
data:

� Numeric
� Strings
� Date and time
� Large objec

Common built-in data types
In the following tables, we show the common built-in data types.

The numeric data types are listed in Table 2-1.

Table 2-1 Numeric data types - Contain digits

The character data types are listed in Table 2-2.

Data type Description

SMALLINT For small integers. The range is -32,768 to 32,767.

INTEGER For large integers. The range is -2,147,483,648 to 2,147,483,647

DECIMAL(p,s) For numbers that have both whole and fractional parts. p is the whole or precision
and s is the fractional or scale.

REAL The single precision floating-point number is a short (32 bit) floating-point
number with the range of -7.2E+75 to 7.2E+75.

FLOAT
(or DOUBLE)

The double precision floating-point number is a long (64 bit) floating-point
number with the range of -7.2E+75 to 7.2E+75.

Chapter 2. Semantic integrity 37

Table 2-2 String data types - Contain alphanumeric characters

The date and time data types are listed in Table 2-3.

Table 2-3 Date and time data types - Contain dates and times

From a user perspective, the date and time values appear to be character strings; however,
they are physically stored as binary packed strings.

As an example, the following three columns defined in the EMPLOYEE table have the three
data types mentioned:

� EMPNO CHAR(6) NOT NULL

Employee identification number. It can use alphanumeric characters.

� HIREDATE DATE

Date of hire. Using this built-in data, you will avoid non-date values in this field.

� SALARY DECIMAL(9,2)

Annual salary in dollars.

2.1.2 NOT NULL constraints
We use the NULL values to represent unknown or missing data. But sometimes the business
rules declare a null value unacceptable. For instance, in the EMPLOYEE table, each
EMPLOYEE must have an identification number. In this case, you can use the NOT NULL
constraint to ensure that this specific column will always have data on it.

There are situations where you do not want NULL values, you have a default value defined by
your business rules, in cases such as hire date. You can always put a system date if hire date
was not provided.

2.1.3 Unique constraint
By default, a unique constraint is an SQL rule that ensures that no two values in the same
column or in a specific group of columns are the same (entity integrity). For instance, in an

Data type Description

CHAR For fixed-length character string. The length is between 1 to 254 characters.

VARCHAR For varying-length character string. The length is up to 32,672 characters.

GRAPHIC For double-byte character set (DBCS) strings up to 127 bytes in length.

Data type Description

DATE Dates with three-part value that represent year, month, and day.

TIME Times with three-part value that represent hour, minute, and second.

TIMESTAMP Timestamps with seven-part value that represents date and time by year, month,
day, hour, minute, second, and microsecond.

Note: NULL value is not the same as blank strings or zeros. NULL values are considered,
but they are not included in the results of aggregate functions, such as MIN, MAX, AVG,
and SUM.

38 Data Integrity with DB2 for z/OS

employee table, the ID column must be unique because it represents one and only one
employee. Enforcing the unique constraint in the EMPLOYEE table helps accesses and
avoids insertion of a new employee using the same ID.

A unique constraint can be established using the clauses PRIMARY KEY (see 3.5.1, “Primary
key” on page 82) or UNIQUE in the CREATE TABLE or ALTER TABLE. The columns specified
in a unique constraint must be defined as NOT NULL or NOT NULL WITH DEFAULT and the
data type cannot be LOB or ROWID (including a distinct type that is based on a ROWID data
type).

A unique index enforces the uniqueness of the key during changes to the columns of the
unique constraint. For each unique constraint, an unique index must be created. If the unique
index already exists for the same set of columns, it will assume this index as the unique
constraint rule to enforce integrity.

CREATE TABLE with UNIQUE constraint
There are two places where you can define the unique clause in the CREATE statement:

� In the column definition, as shown in Example 2-1.

Example 2-1 Unique clause besides column definition

CREATE TABLE SAMPLE.EMP
(EMPNO CHAR(6) NOT NULL UNIQUE,
NAME VARCHAR(60) NOT NULL,
WORKDEPT CHAR(3),
) IN DATAINT.EMPTS
--
CREATE TABLE SAMPLE.EMP
(EMPNO CHAR(6) NOT NULL CONSTRAINT EMPNO UNIQUE,
NAME VARCHAR(60) NOT NULL,
WORKDEPT CHAR(3),
) IN DATAINT.EMPTS

� At the end of column definition, as shown in Example 2-2. With this option, you can refer to
more than one column in the same unique constraint clause.

Example 2-2 Unique clause at the end of column definition

CREATE TABLE SAMPLE.EMP
(EMPNO CHAR(6) NOT NULL UNIQUE,
NAME VARCHAR(60) NOT NULL,
WORKDEPT CHAR(3),
CONSTRAINT EMPNO_NAME UNIQUE (EMPNO, NAME)
) IN DATAINT.EMPTS

The table definition is incomplete at this point. As unique constraint is enforced by a unique
index, you must create a unique index with the same columns of the unique constraint.

Note: DB2 implicitly creates an index to enforce the uniqueness of the primary key and the
table definition is considered complete only if the CREATE statement is processed by the
schema processor. For information about the schema processor (DSNHSP batch job with
sample JCL provided in member DSNTEJ1S of the SDSNSAMP library), refer toDB2 UDB
for z/OS Version 8 Administration Guide, SC18-7413.

Chapter 2. Semantic integrity 39

ALTER TABLE to add a UNIQUE constraint
In Example 2-3, we show an example of using ALTER to add a unique constraint. The table
must have a unique index with a key that is identical to the unique key. The keys are identical
only if they have the same number of columns and the nth column name of one is the same
as the nth column name of the other.

Example 2-3 Adding a unique constraint

ALTER TABLE SAMPLE.EMP
ADD UNIQUE(EMPNO);

--
ALTER TABLE SAMPLE.EMP

ADD CONSTRAINT EMPNO UNIQUE(EMPNO);
--
ALTER TABLE SAMPLE.EMP

ADD CONSTRAINT EMPNO UNIQUE(EMPNO, NAME);

Considerations on constraints
Use the following considerations on constraints:

� If you need to add a constraint in a table (ALTER TABLE), the unique index must be
already created.

� You cannot drop an index if it is the index to ensure the unique constraint rule. First, you
need to drop the constraint using the ALTER TABLE statement.

� There is no limit to how many unique constraints a table can have, but a table cannot have
more than one unique constraint defined on the same set of columns.

� Because unique constraints are enforced by indexes, all the limitations that apply to
indexes apply to unique constraints.

� You can always define a name for your unique constraint. If the CONSTRAINT clause is
omitted, DB2 assigns an internally generated name based on the column name.

� DB2 SYSIBM.SYSTABCONST catalog table has information on the unique constraints
(see “SYSIBM.SYSTABCONST” on page 104).

Why use unique constraint
Although a unique, system-required index is used to enforce a unique constraint, there is a
distinction between defining a unique constraint and creating a unique index. Although both
enforce uniqueness, a unique index allows nullable columns. So, unique index without a
unique constraint cannot be used in a referential constraint. For a referential constrain, the
parent table must have a defined primary key or a defined unique constraint.

2.1.4 Check constraints
Check constraints designate the set of values that specific columns of a base table can
contain. The designated values are explicitly defined, through a Boolean expression, in the
table DDL and formulated as SQL WHERE clauses. The check constraint is enforced every
time a column is inserted or updated. If the modification does not comply with the Boolean
expression, the statement fails with a specific SQL code constraint violation.

For example, if you want to make sure that no salary can be below 15,000 dollars, you can
create the following check constraint:

CREATE TABLE EMPSAL (ID INTEGER NOT NULL, SALARY INTEGER CHECK (SALARY >= 15000));

40 Data Integrity with DB2 for z/OS

Check constraints provide a very powerful way to support business rules in the database.
Because check constraints cannot be bypassed, they provide better data integrity than
equivalent logic programmed into the application.We recommend to use check constraints to
support data integrity, domains, and business rules in your applications.

Using check constraints makes your programming task easier, because you do not need to
code them in the application programs or with a validation routine. It makes your system more
robust and consistent because they are implemented once, in the table DDL, and each
constraint is always enforced. Constraints written in application logic, on the other hand, must
be executed by each program that modifies the data to which the constraint applies. This can
cause code duplication and inconsistent maintenance resulting in inaccurate business rule
support. Another important benefit of check constraints is that plans and packages do not
need to be rebound after check constraints are defined on or removed from a table. However,
the program should be coded to report the constraint’s name on which inserts are failing.

The catalog tables used with check constraint definitions are shown in 3.13.1, “DB2 catalog
extensions” on page 99.

Creating tables with check constraint
The check condition defines the actual constraint logic. The check condition can be defined
using any of the basic predicates (>, <, =, <>, <=, >=), as well as BETWEEN, IN, LIKE, and
NULL. You can use AND and OR to string conditions together. The syntax is checked at
definition time.

Example 2-4 shows how to create a table with the following restrictions:

� Annual salary column (SALARY) cannot be less than 15000.
� The sex of the employee column (SEX) is “M” or “F”.
� The employee bonus (BONUS) cannot be higher than the commission (COMM).

Example 2-4 Employee table with check constraint

CREATE TABLE EMPLOYEE (
 EMPNO CHAR(6) NOT NULL
, SEX CHAR(1) CONSTRAINT SEX_GENDER CHECK (SEX IN ('M', 'F'))
 , BIRTHDATE DATE
 , SALARY DECIMAL(9,2) NOT NULL
 , BONUS DECIMAL(9,2) NOT NULL
 , COMM DECIMAL(9,2)
 , CONSTRAINT MIN_SAL CHECK (SALARY >= 15000)
 , CONSTRAINT BONUS_COMM CHECK (BONUS <= COMM)
)
IN FABRICIO.FABTS1

There are two ways to define the check constraint:

� Column level:

SEX CHAR(1) CONSTRAINT SEX_GENDER CHECK (SEX IN ('M', 'F'))

� Table level:

CONSTRAINT MIN_SAL CHECK (SALARY >= 15000)

If a constraint name is not specified, DB2 provides a unique constraint name based on the
first column referenced in the check condition.

DB2 checks the syntax of the check constraint but not the semantic. You must make sure you
do not define constraints that contradict another one.

Chapter 2. Semantic integrity 41

Some examples of contradictory constraints:

� A self-contradictory check constraint:

CHECK (SALARY > 50000 AND SALARY < 49999)

� Two check constraints that contradict each other:

CHECK (BONUS > 30000) CHECK (BONUS < 2000)

� Two check constraints, one of which is redundant:

CHECK (COMM > 1000) CHECK (COMM >= 1000)

� A check constraint that contradicts the column definition:

BONUS DECIMAL (9,2) NOT NULL CHECK (BONUS IS NULL)

� A check constraint that repeats the column definition:

COMM DECIMAL (9,2) NOT NULL CHECK (COMM IS NOT NULL)

There are check constraint restrictions that you cannot include in the definition:

� Subselects, column functions, host variables, parameter markers, special registers, and
columns defined with field procedures

� Columns from other tables

� The NOT logical operator

A check constraint is not checked for consistency with other types of constraints. For
example, a column in a dependent table can have a referential constraint with a delete rule of
SET NULL. You can also define a check constraint that prohibits nulls in the column. As a
result, an attempt to delete a parent row fails, because setting the dependent row to null
violates the check constraint.

Adding check constraint
The options of the CURRENT RULES statement decide if an additional check constraint can
be successfully added (ALTER TABLE) to a table already populated:

� STD

An error occurs if a row does not satisfy the check constraint rule (see Example 2-5.)

Example 2-5 CURRENT RULES - STD

SET CURRENT RULES = ‘STD’
ALTER TABLE EMPLOYEE2
 ADD CONSTRAINT SEX CHECK(SEX IN ('M','F'))
---------+---------+---------+---------+---------+---------+---------+---------+
DSNT408I SQLCODE = -544, ERROR: THE CHECK CONSTRAINT SPECIFIED IN THE ALTER
 TABLE STATEMENT CANNOT BE ADDED BECAUSE AN EXISTING ROW VIOLATES THE
 CHECK CONSTRAINT

� DB2

The check constraint is added, but the table space that holds the altered table is placed in
CHECK-pending status (see Example 2-6.)

Example 2-6 CURRENT RULES - DB2

SET CURRENT RULES = 'DB2';
ALTER TABLE EMPLOYEE2
 ADD CONSTRAINT SEX CHECK(SEX IN ('M','F'))
---------+---------+---------+---------+---------+---------+---------+---------+
DSNT404I SQLCODE = 162, WARNING: TABLE SPACE FABRICIO.FABTS2 HAS BEEN PLACED
 IN CHECK PENDING

42 Data Integrity with DB2 for z/OS

CHECK-pending
When a table space is placed in CHECK-pending, you are not be able to SELECT, INSERT
and UPDATE, or DELETE from any table in the table space. The only statement that you will
be able to execute is a drop table. The CHECK-pending status indicates that the object might
be inconsistent.

Beside the common case when you add a check constraint, there are other cases that the
table space can be placed in CHECK-pending status:

� The LOAD utility is run with CONSTRAINTS NO, and check constraints are defined on the
table.

� CHECK DATA is run on a table that contains violations of check constraints.

� A point in time RECOVER introduces violations of check constraints.

Resetting the CHECK-pending status
You can read a discussion of how to reset the CHECK-pending status at 3.9.1, “CHECK
DATA” on page 89.

2.2 Distinct types
This section describes how distinct types augment the basic column-level integrity DB2
provides.

In this chapter, we discuss the following topics:

� Why distinct types
� Creating a distinct type
� Generated cast functions
� Comparing distinct types
� Assigning a distinct type
� Invoking routines with distinct types
� Errors with comparisons across distinct types
� Summary and usage recommendations

2.2.1 Why distinct types
A distinct type is a user-defined data type that shares its internal representation with a built-in
data type (its source type) but is considered to be a separate and incompatible data type for
most operations.

Consider the following example. You have created three tables using the statements listed in
Example 2-7.

Example 2-7 Tables with different currency

CREATE TABLE EMP1
(EMP_NO CHAR(6) NOT NULL,
SALARY_USD DECIMAL(9,2));

CREATE TABLE EMP2
(EMP_NO CHAR(6) NOT NULL,

Note: Distinct types are referred to as “user-defined types” (UDTs) in some literature. In
DB2 UDB for z/OS, the term “distinct type” is used instead.

Chapter 2. Semantic integrity 43

SALARY_EURO DECIMAL(9,2));

CREATE TABLE EMP3
(EMP_NO CHAR(6) NOT NULL,
SALARY_YEN DECIMAL(9,2));

Since the three columns SALARY_USD, SALARY_EURO, and SALARY_YEN are defined
with compatible data types, DB2 allows a comparison among these columns. Such
comparisons, while syntactically valid, are semantically incorrect. Comparisons make
business sense in this case only after the proper exchange rate has been applied.

Another example is one where two columns, both defined as BLOBs, contain audio and video
data. Comparisons between such columns, once again, are syntactically correct but
semantically meaningless.

Distinct types provide a means to impose strong typing which enforces data integrity by
ensuring that only valid comparisons are allowed. In addition, it ensures that functions that
require an input of a certain type (such as USD or audio) are able to validate that the input is
of the valid type. In this chapter, we explore this issue in some detail.

2.2.2 Creating a distinct type
The CREATE DISTINCT TYPE statement defines a distinct type, which is a data type that a
user defines. A distinct type must be based on one of the built-in data types. For a detailed
discussion of the authorization required and the syntax of the statement, see “CREATE
DISTINCT TYPE” in DB2 UDB for z/OS Version 8 SQL Reference, SC18-7426.

Example 1: Create a distinct type named SALARY_USD that is based on a decimal data type
with a precision and scale of 9 and 2 respectively.

CREATE DISTINCT TYPE SALARY_USD AS DECIMAL(9,2);

Example 2: Create distinct types named MPH and KPH that are based on an integer data
type.

CREATE DISTINCT TYPE MPH AS INTEGER;

CREATE DISTINCT TYPE KPH AS INTEGER;

2.2.3 Generated cast functions
Successful execution of the CREATE DISTINCT TYPE statement also generates the
following functions:

� A function to cast between the distinct type and its source type
� A function to cast between the source type and its distinct type

The statement:

CREATE DISTINCT TYPE SALARY_USD AS DECIMAL(9,2);

generates the following two functions:

SALARY_USD (accepts DECIMAL as input) and
DECIMAL (accepts SALARY_USD as input)

In addition, the WITH COMPARISONS clause can be specified during the CREATE.

CREATE DISTINCT TYPE MPH AS INTEGER WITH COMPARISONS;

44 Data Integrity with DB2 for z/OS

Note that the WITH COMPARISONS clause is required for compatibility with other members
of the DB2 family. It cannot be used when the source data type is BLOB, CLOB, or DBCLOB.
In DB2 z/OS, the clause has no effect when specified.

2.2.4 Comparing distinct types
The basic rule for comparisons is that data types of the operands must be compatible. For
example, all numeric data types (SMALLINT, INTEGER, FLOAT, and DECIMAL) are
compatible. This allows you to compare an INTEGER value with one defined as FLOAT.

However, you cannot compare an object of a distinct type to an object of a different type. You
can compare an object with a distinct type only to an object with exactly the same distinct
type. Similarly, you also cannot compare a distinct type directly to its source type. You can do
so only by using a cast function. We illustrate this with an example.

You have created a distinct type with a statement like this:

CREATE DISTINCT TYPE SALARY_USD AS DECIMAL(9,2);

You have also created a table using a statement like this:

CREATE TABLE EMP1
(EMP_NO CHAR(6) NOT NULL,
SALARY SALARY_USD);

To retrieve all employees with a salary greater than 10,000 USD, you cannot specify a
predicate like this:

WHERE SALARY > 10000

Instead you must use one of the two cast functions automatically created (as discussed in
2.2.3, “Generated cast functions” on page 43):

WHERE SALARY > SALARY_USD(10000)

or

WHERE DECIMAL(SALARY) > 10000

This casting satisfies the requirement that the compared data types are identical.

When using dynamic SQL, parameter markers (identified as question mark “?”) replace host
variables. In this case, you must use one of these two alternatives:

WHERE SALARY > CAST (? AS SALARY_USD)

or

WHERE CAST(SALARY AS DECIMAL) >?

2.2.5 Assigning a distinct type
For assignments from columns to columns or from constants to columns of distinct types, the
type of that value to be assigned must match the type of the object to which the value is
assigned, or you must be able to cast one type to another.

We consider the three different types of assignments in the following three sections.
.

Important: The rules for assigning distinct types to host variables to columns of distinct
types differ from the rules for constants and columns.

Chapter 2. Semantic integrity 45

Column to host variable
You can assign a column value of a distinct type to a host variable if you can assign a column
value of the distinct type’s source type to that host variable. For example, with the following
definitions of the distinct type and the table using it:

CREATE DISTINCT TYPE SALARY_USD AS DECIMAL(9,2);

and

CREATE TABLE EMP1
(EMP_NO CHAR(6) NOT NULL,
SALARY SALARY_USD);

the values of the column SALARY can be retrieved into any host variable that is compatible
with the DECIMAL data type.

Host variable or constant to column
When you assign a value in a host variable to a column with a distinct type, the type of the
host variable or constant must be able to cast to the distinct type. For a table of base data
types and the base data types to which they can be cast, see “Promotion of Data Types” in
the DB2 UDB for z/OS Version 8 Application Programming and SQL Guide, SC18-7415.

In the example we described in “Column to host variable” on page 45, any data type that is
compatible with the DECIMAL data type is an acceptable host variable for assignment to the
SALARY column.

Column to column
DB2 does not let you assign the values of a column to another when they are of different
distinct types. In this case, a function must exist that converts the value from one type to
another. Since DB2 provides the cast functions only between a distinct type and its source
type, you must write the function to convert from one distinct type to another. We illustrate this
with an example.

You have created distinct types with a statements below:

CREATE DISTINCT TYPE SALARY_USD AS DECIMAL(9,2);
CREATE DISTINCT TYPE SALARY_EURO AS DECIMAL(9,2);

You have also created tables using statements below:

CREATE TABLE EMP1
(EMP_NO CHAR(6) NOT NULL,
SALARY SALARY_USD);

CREATE TABLE EMP2
(EMP_NO CHAR(6) NOT NULL,
SALARY SALARY_EURO);

To insert all rows from EMP2 to EMP1, the following statement causes a type mismatch and
will not work:

INSERT INTO EMP1
SELECT EMP_NO, SALARY

FROM EMP2

You must first write a user defined function that accepts SALARY_EURO as input and returns
SALARY_USD. This looks something like this:

CREATE FUNCTION EURO_TO_DOLLAR(SALARY_EURO)...

46 Data Integrity with DB2 for z/OS

This function is an external user defined function (UDF) written in a host language such as C
or COBOL. See “Create Function” in the DB2 UDB for z/OS Version 8 SQL Reference,
SC18-7426, for further information about this topic.

Once the user defined function is available, you can then issue:

INSERT INTO EMP1
SELECT EMP_NO, EURO_TO_DOLLAR(SALARY)

FROM EMP2

2.2.6 Invoking routines with distinct types
DB2 enforces strong typing when you pass arguments to a routine (stored procedure or a
user defined function). This means that you can pass arguments that have distinct types to a
routine if either one of the following conditions is true:

� A version of the routine that accepts those distinct types is defined (Note: this applies to
infix operators - you must create a function for handling CONCAT, +, -, *, and /).

� You can cast your distinct types to the argument types of the routine.

Assume you have created a distinct type as shown below:

CREATE DISTINCT TYPE FLIGHT_TIME AS TIME;

You have also created a table using the distinct type as shown below:

CREATE TABLE FLIGHTS
(FLIGHT_NO SMALLINT NOT NULL,
 HOW_LONG FLIGHT_TIME);

If you want to invoke the built-in HOUR function that accepts only the TIME or TIMESTAMP
data type as an argument, you must do one of two things, you cast it as:

SELECT FLIGHT_NO, HOUR(TIME(HOW_LONG)
FROM FLIGHTS;

Alternatively, you create a UDF as shown:

CREATE FUNCTION HOUR(FLIGHT_TIME)
RETURNS INTEGER
SOURCE SYSIBM.HOUR(TIME)

and then issue:

SELECT FLIGHT_NO, HOUR(HOW_LONG)
FROM FLIGHTS;

By creating a sourced function HOUR on this distinct type, you are telling DB2 to process it
just like the built-in HOUR function. This must be done explicitly, that is, built-in functions are
not automatically available to distinct types.

2.2.7 Errors with comparisons across distinct types
Suppose you have created distinct types with the statements:

CREATE DISTINCT TYPE SALARY_USD AS DECIMAL(9,2);
CREATE DISTINCT TYPE SALARY_EURO AS DECIMAL(9,2);

You have also created tables using statements below:

CREATE TABLE EMP1
(EMP_NO CHAR(6) NOT NULL,

Chapter 2. Semantic integrity 47

SALARY SALARY_USD);

CREATE TABLE EMP2
(EMP_NO CHAR(6) NOT NULL,
SALARY SALARY_EURO);

You now try to compare the two SALARY columns with different distinct types associated with
them as shown in Example 2-8.

Example 2-8 Comparing two different data types

-- Show all European employees who earn more than employee 123456.
SELECT E2.EMP_NO,

E2.SALARY,
FROM EMP1 E1,

EMP2 E2
WHERE E1.EMP_NO = ‘123456’
AND E2.SALARY > E1.SALARY;

This comparison results in the error reported in Example 2-9.

Example 2-9 Incompatible data types

DSNT408I SQLCODE = -401, ERROR: THE OPERANDS OF AN ARITHMETIC OR COMPARISON
 OPERATION ARE NOT COMPARABLE
DSNT418I SQLSTATE = 42818 SQLSTATE RETURN CODE
DSNT415I SQLERRP = DSNXOBFB SQL PROCEDURE DETECTING ERROR
DSNT416I SQLERRD = 920 0 0 -1 0 0 SQL DIAGNOSTIC INFORMATION
DSNT416I SQLERRD = X'00000398' X'00000000' X'00000000' X'FFFFFFFF'
 X'00000000' X'00000000' SQL DIAGNOSTIC INFORMATION

This message is the same one you receive when you attempt to compare incompatible base
data types; for example, a numeric column to a character column. The presence of the user
defined type is not explicit in the message.

2.2.8 Summary and usage recommendations
We have seen that distinct types provide a means to impose strong typing which enforces
data integrity by ensuring that only valid comparisons are allowed and that functions requiring
input of a certain type are properly invoked.

This integrity, however, comes at a price. Besides the need to create additional conversion
functions when necessary, they make access to the underlying data more complex and add
overhead when an external user defined function must be called for conversion. Distinct types
prevent an ad hoc user from adding, for example, USD and Euro amounts together which
would otherwise produce a meaningless result. In general, their use is justified when integrity
is of great importance and ad hoc data access by users, who are only partially cognizant of
the data types, is common. In such cases, distinct types can help prevent accidental loss of
integrity.

You should consider the trade-offs carefully before deciding to use distinct types. For new
application systems with ad hoc access, they provide a definite value but retrofitting into an
existing application may make application development more complex.

48 Data Integrity with DB2 for z/OS

© Copyright IBM Corp. 2006. All rights reserved. 49

Chapter 3. Referential integrity

Referential integrity (RI) is the status of a logical database in which all values of all foreign
keys are valid. DB2-enforced RI is implemented by referential constraints. The definition of
referential constraint is the requirement that non-null values of a designated foreign key are
valid only if they equal values of the parent key of a designated table. For details, see DB2
UDB for z/OS Version 8 SQL Reference, SC18-7426.

Maintaining RI requires the enforcement of referential constraints on all operations that
change the data in a table on which the referential constraints are defined.

In this chapter, we discuss the following topics:

� Referential constraints
� RI in the relational model
� RI in DB2
� Functional implications
� Summary of design recommendations
� DB2 versus application RI
� REPORT utility
� CHECK utility
� LOAD utility
� Performance
� Migrating applications to RI
� DB2 catalog information and queries

3

50 Data Integrity with DB2 for z/OS

3.1 Referential constraints
RI requires the enforcement of referential constraints on all LOAD, INSERT, UPDATE, and
DELETE operations on the data in a table on which the referential constraints are defined.

The DB2 referential constraints are:

� Primary or unique key
� Foreign key with the specific delete rule

The DB2 RI DELETE rules are:

� CASCADE
� RESTRICT
� SET NULL
� NO ACTION

The referential constraints are enforced for all the following cases:

� INSERT: Check the validity of the primary key and in the dependent tables check if there is
a primary key in the parent table.

� UPDATE: The update rule is always RESTRICT.

� DELETE: The effects of a delete depend on the delete rule specified.

� LOAD utility without ENFORCE NO.

� CHECK DATA utility.

A referential constraint is a rule about values in one or more columns in one or more tables.
For example, a set of tables shares information about a corporation’s suppliers. Occasionally,
a supplier’s ID changes. You can define a referential constraint stating that the ID of the
supplier in the table must match a supplier ID in the supplier information. This constraint
prevents insert, update, or delete operations that would otherwise result in missing or
incorrect supplier information.

A referential constraint is the rule that the non-null values of a foreign key are valid only if they
also appear as values of its parent key. The table that contains the parent key is called the
parent table of the referential constraint, and the table that contains the foreign key is a
dependent of that table.

Referential constraints are optional and can be defined using CREATE TABLE or ALTER
TABLE statements.

Referential constraints between base tables are also an important factor in determining
whether a materialized query table can be used for a query. For instance, in a data
warehouse environment, data is usually extracted from other sources, transformed, and
loaded into data warehouse tables. In such an environment, the RI constraints can be
maintained and enforced by other means than the database manager to avoid the overhead
of enforcing them by DB2. However, referential constraints between base tables in
materialized query table definitions are important in a query rewrite to determine whether or
not a materialized query table can be used in answering a query. In such cases, you can use
informational referential constraints to declare a referential constraint to be true to allow DB2
to take advantage of the referential constraints in the query rewrite. DB2 allows the user
application to enforce informational referential constraints, while it ignores the informational
referential constraints for inserting, updating, deleting, and using the LOAD and CHECK
DATA utilities. Thus, the overhead of DB2 enforcement of RI is avoided and more queries can
qualify for automatic query rewrite using materialized query tables.

Chapter 3. Referential integrity 51

DB2 enforces referential constraints when:

� An INSERT statement is applied to a dependent table.

� An UPDATE statement is applied to a foreign key of a dependent table.

� An UPDATE statement is applied to the parent key of a parent table.

� A DELETE statement is applied to a parent table. All affected referential constraints and all
delete rules of all affected relationships must be satisfied in order for the delete operation
to succeed.

� The LOAD utility with the ENFORCE CONSTRAINTS option is run on a dependent table.

� The CHECK DATA utility is run.

The order in which referential constraints are enforced is undefined. To ensure that the order
does not affect the result of the operation, there are restrictions on the definition of delete
rules and on the use of certain statements. The restrictions are specified in the descriptions of
the SQL statements CREATE TABLE, ALTER TABLE, INSERT, UPDATE, and DELETE.

3.2 RI in the relational model
RI has been defined rigorously in numerous documents, articles, and papers. In this redbook,
we define RI using examples to explain the concept and terminology involved.

RI is a method, a database concept that ensures consistency between table relationships.
These relationships are based on the definition of a primary key and a foreign key.

Several terms are used to explain the concept of RI, the most important are:

� Entity integrity
� Candidate keys
� Unique key
� Primary key
� Alternate key
� Foreign key
� Parent key
� Parent table
� Dependent table
� Independent table
� Parent row
� Dependent row
� Referentia constraint

We define these terms in this section.

3.2.1 RI concepts
Figure 3-1 on page 52 illustrates concepts behind RI and the use of RI terminology.

52 Data Integrity with DB2 for z/OS

Figure 3-1 RI terminology

Candidate key
A candidate key is an attribute, or a combination of attributes, of a table that uniquely
identifies a row in a table. The primary key is selected from the pool of candidate keys.

In Figure 3-1 on page 52, EMPNO, SOCSECNO, and DRIVLICNO are the candidate keys in
the EMPLOYEE table, because we assume that each is unique (at least within a country and
state).

However, neither SOCSECNO nor DRIVLICNO is persistent, because it is possible that an
employee does not have a social security number or a driver’s license when joining an
organization.

Unique keys
A unique key is a key that is constrained (by a unique index) so that no two of its values are
equal. The columns of a unique key cannot contain null values. A unique key can be defined
using the UNIQUE clause of the CREATE TABLE or ALTER TABLE statement. When a
unique key is defined in a CREATE TABLE DB2 concepts statement, the table is marked
unavailable until the unique index is created by the user. However, if the CREATE TABLE
statement is processed by the schema processor, DB2 automatically creates the unique
index. When a unique key is defined in an ALTER TABLE statement, a unique index must
already exist on the columns of that unique key. DB2 enforces the constraint during the
execution of the LOAD utility and the SQL INSERT and UPDATE statements.

Candidate keys are:
EMPNO
SOCSECNO
DRIVLICNO

EMPNO WORKDEPT EMPNAME SOCSECNO DRIVLICNO

001
006
007
086
000

A00

M05
ZZZ
ZZZ

BLOGS
ABLE
BOND

SMART
CHIEF

5556279321
4398872234
3234242764

_1ABX46
3JCY26

PEANUTS

Alternate keys are:
SOCSECNO
DRIVLICNO

DEPARTMENT Table
Primary Key

PROJECTS Table
Primary Key

DEPTNO DEPTNAME

A00
B01
C01
M05
ZZZ

SPIFFY
JELLO
MUSH
HMSS

CONTROL

PRO-JNO PROJNAME

P01
P05
P07

COTTLE
VENUS

COYOTE

EMPLOYEE Table
Primary Key Foreign Key

Chapter 3. Referential integrity 53

Primary key
The criteria for selecting a primary key from a pool of candidate keys should be:

� Persistence of the key. In other words, the key must always be present for a row.

� Ability to update the key. In other words, you should not be able to update the primary key
to another value.

Some people argue that you should never be able to update the primary key to another
value. If the primary key value needs to be updated, they recommend that you delete the
row with the old value of the primary key and reinsert a row with the new value of the
primary key.

A primary key has the following characteristics:

� Table can have exactly one primary key.
� Can be made up of one or more columns of a table.
� Each column must have the NOT NULL attribute.

In the EMPLOYEE table, EMPNO is the primary key because neither SOCSECNO nor
DRIVLICNO is persistent, because it is possible that an employee does not have a social
security number or a driver’s license when joining an organization.

EMPNO is designated as the primary key because:

� EMPNO is an employee number that is automatically assigned when a person joins an
organization and cannot be NULL.

� Once an employee number is assigned, generally, it is not changed for as long as an
employee remains with the organization. Therefore, it is not updated.

The primary keys for each table in Figure 3-1 on page 52 are:

� DEPTNO for the DEPARTMENT table
� EMPNO for the EMPLOYEE table

Alternate keys
Alternate keys are the remaining list or candidate keys after excluding the primary key.

In Figure 3-1 on page 52, SOCSECNO and DRIVLICNO are alternate keys of the
EMPLOYEE table.

Foreign key
A foreign key is a key that is specified in the definition of a referential constraint using the
CREATE or ALTER statement. A foreign key refers to or is related to a specific parent key.
There cannot be unmatched foreign key values. A table can have zero or more foreign keys.
The value of a composite foreign key is null if any component of the value is null. A foreign key
references a primary key or a unique key in the same table or another table and has the
following characteristics:

� Table can have any number of foreign keys; from zero to ‘n’

� Can be made up of one or more columns of a table, but must match one for one (data type
and column sequence) with the primary key it references.

� Columns may or may not be NULL. Any or all of these columns may be defined with the
NULL attribute.

In Figure 3-1 on page 52, WORKDEPT is the foreign key in the EMPLOYEE table that
references the primary key DEPTNO in the DEPARTMENT table.

54 Data Integrity with DB2 for z/OS

Parent key
A unique constraint that is referenced by the foreign key of a referential constraint is called the
parent key. A parent key is either a primary key or a unique key in the parent table of a
referential constraint. The values of a parent key determine the valid values of the foreign key
in the constraint.

Parent table
A parent table is a table that has a parent key that is referenced by one or more foreign keys
in the same table or another table.

In Figure 3-1 on page 52:

� DEPARTMENT table is a parent table, because it has a primary key, DEPTNO, which is
referenced by the foreign key WORKDEPT in the EMPLOYEE table.

� PROJECTS table has a primary key PROJNO, but because no foreign keys reference this
table, the PROJECTS table is not a parent table.

A parent table sometimes is referred to as the referenced table.

Note that we are mostly considering foreign keys referencing primary key, however foreign
key can also reference unique keys. Both primary and unique keys can be parent keys. In
Figure 3-2, we show a simple example of foreign keys referencing both a primary and a
unique key.

Figure 3-2 Primary and unique keys being parent keys

Dependent table
A dependent table is a table that has one or more foreign keys defined.

Generally, you may not have a primary key, but a dependent table can also be a parent table.

Rama347-56-48944

John782-45-11315

Fabricio752-34-09353

Suresh431-22-45602

Paolo 123-87-84591

NAMESSNEMPID

EMP

01/01/2006

01/01/2002

01/01/2001

01/01/2002

01/01/2001

REVIEW_
DATE

2240.00752-34-0935

4570.00752-34-0935

1570.00752-34-0935

2200.00123-87-8459

1000.00123-87-8459

SALARYSSN

SALHIST

1004

8674

9233

9114

8672

4561

1001

PROJIDEMPID

PROJECTS

Chapter 3. Referential integrity 55

In Figure 3-1 on page 52, the EMPLOYEE table is a dependent table because it contains a
foreign key WORKDEPT that references the DEPARTMENT table.

A dependent table sometimes is referred to as the referencing table.

Independent table
An independent table is a table that is neither a parent table nor a dependent table, such as
the PROJECTS table in Figure 3-1.

Parent row
A parent row is a row of a parent table whose parent key value matches a foreign key value in
the same table or in a dependent table.

A row in a parent table is not necessarily a parent row.

In Figure 3-1 on page 52:

� Rows with department names SPIFFY, HMSS, and CONTROL in the DEPARTMENT table
are parent rows because they are referenced by rows BLOGS, BOND, SMART, and
CHIEF in the EMPLOYEE table.

� Rows with department names JELLO and MUSH in the DEPARTMENT table are not
parent rows, because they are not referenced by any row in the EMPLOYEE table.

Dependent row
A dependent row is a row in a dependent table with at least one foreign key value that is not
NULL.

The row is a dependent row of the parent row.

A row in a dependent table is not necessarily a dependent row.

Because a table can be a dependent of more than one parent table, a row in a dependent
table can be a dependent row of more than one parent row in one or more parent tables.

In Figure 3-1 on page 52, rows with employee names BLOGS, BOND, SMART, and CHIEF in
the EMPLOYEE table are dependent rows, because the foreign key WORKDEPT value is not
NULL and references a parent row in the DEPARTMENT table. The row with employee name
ABLE in the EMPLOYEE table is NOT a dependent row, because its foreign key WORKDEPT
value is NULL.

Entity integrity
The requirement that a primary key value must be UNIQUE and not NULL is known as the
Entity Integrity rule.

In Figure 3-1 on page 52, the values of the primary keys DEPTNO in the DEPARTMENT
table, PROJNO in the PROJECTS table, and EMPNO in the EMPLOYEE table obey the
Entity Integrity rule.

Referential constraint
All non-NULL values of a foreign key in a dependent table must match the values of the
primary key in the parent table that the foreign key references. The time of consistency is not
defined.

This requirement was originally known as Integrity of Reference or RI.

56 Data Integrity with DB2 for z/OS

The term relationship is also used synonymously with referential constraint.

In Figure 3-1 on page 52, the constraint on the values of the foreign key WORKDEPT in the
EMPLOYEE table is known as a referential constraint, because the non-NULL values of the
foreign key WORKDEPT all reference a primary key DEPTNO value in the DEPARTMENT
table.

General integrity
This extends referential integrity rules and is often confused with referential integrity. It applies
to cases such as a parent in at least one of a number of tables or only unique across some
tables or match on some function or combination (such as substring of a column and a hash
of another).

3.2.2 RI rules and options
The relational model supports a set of rules that govern insert, update, and delete operations
on tables. These rules are known as:

� INSERT rule
� DELETE rule
� UPDATE rule

INSERT rule
The INSERT rule is an implicit rule, which means that it is automatic and not explicitly
specifiable on the foreign key declaration, such as the UPDATE and DELETE rules are.

This rule states that any row, inserted into a dependent table, must have its foreign key value
as either:

� NULL, if NULLs are permitted for the columns in the foreign key, or
� Equal to the value of a parent key in the parent table that it references

Because there can be many foreign keys in a dependent table that can reference many
parent tables, each inserted row must not violate the INSERT rule for any of the foreign keys.

In Figure 3-1 on page 52, all non-NULL values of the foreign key WORKDEPT in the
EMPLOYEE table are equal to a primary key DEPTNO value in the DEPARTMENT table that
it references.

DELETE rule
The DELETE rule is explicitly specified for each foreign key defined in a table. This rule states
the requirements to be met when a row in a parent table is deleted.

The DELETE rule has three options:

� RESTRICT

– A row of a parent table cannot be deleted if rows exist in the dependent tables with
foreign key values equal to the parent key value of this row.

� CASCADE

– All rows in the dependent tables with a foreign key value equal to the parent key value
of this row also are deleted.

– The delete is propagated to the dependents of the dependent tables.

– If any of the deletes fail, the whole delete operation fails.

Chapter 3. Referential integrity 57

� SET NULL

– All rows in the dependent tables with a foreign key value equal to the parent key value
of this row have their foreign key values changed to NULL.

Each foreign key is associated with its own DELETE rule. All applicable DELETE rules are
used to determine whether or not a delete is done. Therefore, a row in a parent table cannot
be deleted if:

� One or more dependent rows have a DELETE rule of RESTRICT, or

� The deletion CASCADEs to any of its dependent rows, which are also parent rows that
have dependent rows with a DELETE rule of RESTRICT.

UPDATE rule
Like the DELETE rule, the UPDATE rule is explicitly specified for each foreign key defined in a
table. This rule states the requirements to be met when the:

� Foreign key value of a row in a dependent table is updated.

This rule is a corollary of the INSERT rule in “INSERT rule” on page 56 and is also not
explicitly specifiable. This rule states that the foreign key of a row in a dependent table can
be updated to a value that is NULL, if NULLs are permitted for the columns in the foreign
key, or equal to the value of a parent key in the parent table that it references.

� Parent key value of a row in a parent table is updated.

Like the DELETE rule, the UPDATE rule has three options:

� RESTRICT rule

The parent key value of a row of a parent table cannot be updated if rows in the dependent
tables exist with foreign key values equal to the parent key value of this row.

� CASCADE

If the parent key value of a row of a parent table is updated, then all rows in the dependent
tables with a foreign key value equal to the parent key value of this row are also updated to
the new value of the parent key.

� SET NULL

If the parent key value of a row of a parent table is updated, then all rows in the dependent
tables with a foreign key value equal to the parent key value of this row have their foreign
key value updated to NULL.

Each foreign key is associated with its own UPDATE rule. All applicable UPDATE rules are
used to determine whether or not the update will be done. Therefore, the parent key value of
a row in a parent table cannot be updated if it has one or more dependent rows that have an
UPDATE rule of RESTRICT.

3.3 RI in DB2
In this section, we introduce the DB2 implementation of RI by describing:

� Additional DB2 terminology
� Data definitions for RI
� Plan, package, and trigger considerations
� Maintaining RI when using data encryption
� Informational RI

58 Data Integrity with DB2 for z/OS

3.3.1 Additional DB2 terminology
The DB2 implementation of RI introduces a few terms in addition to the ones described in
Figure 3-1 on page 52. These terms are:

� Parent table space
� Dependent table space
� Independent table
� Independent row
� Self-referencing tables
� Self-referencing constraints
� Self-referencing row
� Delete-connected tables
� Descendent table
� Cycles
� Referential structure
� Table space set

Figure 3-3 shows the application extracted from the sample tables provided with DB2 that we
used to define the additional terms. Details of the sample application, including the DDL for
the tables, can be found in Appendix A. “DB2 sample tables” of DB2 UDB for z/OS Version 8
Application Programming and SQL Guide, SC18-7415. A more complete listing, including the
index definition, is in the installation sample job DSNTEJ1.

Note that in all the figures shown in this redbook, the connecting arrows between the tables
point to the dependent table from the parent table.

Figure 3-3 Sample application with only DELETE rules shown

Table 3-1 shows for each table its primary key, foreign keys if any, referenced table (parent),
and referential constraint name. The numbers in Table 3-1 and Figure 3-3 help to map the
defined constraint.

1

2

3

Chapter 3. Referential integrity 59

Table 3-1 Keys and constraints

Parent table space
A table space containing a parent table.

Dependent table space
A table space containing a dependent table.

Independent table
A table that is neither a parent table nor a dependent table.

Independent row
All rows in an Independent table. In addition, it can be a row in a parent table or dependent
table that is neither a parent row nor a dependent row.

Self-referencing tables
A table that is a parent and a dependent in the same relationship.

In Figure 3-3, tables DEPT and PROJ are self-referencing tables.

Self-referencing constraints
The referential constraint of a self-referencing table.

In Figure 3-3, the CASCADE delete rules on tables DEPT and PROJ are the self-referencing
constraints.

Table name Primary key Foreign key Referenced
table

Constraint
name

DEPT DEPTNO ADMRDEPT DEPT ADMRDEPT (1)

MGRNO EMP MGRNO (2)

EMP EMPNO WORKDEPT DEPT WORKDEPT (3)

PROJ PROJNO DEPTNO DEPT DEPTNO

RESPEMP EMP RESPEMP

MAJPROJ PROJ MAJPROJ

ACT ACTNO - - -

PROJACT PROJNO PROJNO PROJ PROJNO

ACTNO ACTNO ACT ACTNO

ACSTDATE

EMPPROJACT EMPNO EMPNO EMP EMPNO

PROJNO PROJNO PROJACT PROJNO

ACTNO ACTNO PROJACT PROJNO

EMSTDATE EMSTDATE PROJACT PROJNO

60 Data Integrity with DB2 for z/OS

Self-referencing row
A row of a self-referencing table in which one of the foreign key values in the row is the same
as the primary key value of itself.

Delete-connected tables
A table T2 is said to be "delete-connected" to another table T1 if a delete of rows in table T1
can involve table T2. The following conditions determine whether tables are considered
delete-connected:

� A self-referencing table is delete-connected to itself.

In Figure 3-3, tables DEPT and PROJ are delete-connected to themselves.

� Dependent tables are always delete-connected to their parents irrespective of the delete
rule. In Figure 3-3:

– Table EMP is delete-connected to table DEPT.
– Table DEPT is delete-connected to table EMP and to itself.
– Table PROJ is delete-connected to tables EMP and DEPT and to itself.
– Table PROJACT is delete-connected to tables PROJ and ACT.
– Table EMPPROJACT is delete-connected to tables PROJACT and EMP.

� A table is delete-connected to its grandparents and great grandparents when the delete
rules between the parent, grandparents, and great grandparents use the CASCADE
option.

Figure 3-3 does not have an example or this. An example of a table that is
delete-connected to its grandparent is shown in Figure 3-4.

Table BENEFIT is delete-connected to its grandparent, table EMPLOYEE, because the
delete rule on the table EMPLOYEE and DEPENDENT relationship is CASCADE. The
delete rule between tables DEPENDENT and BENEFIT is irrelevant. The definitions of the
required unique indexes for tables EMPLOYEE and DEPENDENT are not shown.

Chapter 3. Referential integrity 61

Figure 3-4 Delete-connected table

A table is not delete-connected to its grandparents when the delete rule between the parent
and grandparents is RESTRICT or SET NULL.

In Figure 3-3 on page 58:

� Table PROJACT is not delete-connected to tables EMP or DEPT because of the
RESTRICT delete rules on the EMP-PROJ relationship and the DEPT-PROJ relationship.

� Table EMPPROJACT is not delete-connected to tables PROJ, ACT, or DEPT because
EMP is a parent of PROJ just as DEPT is a parent of PROJ.

Descendent table
A table Tn is a descendent of another table T1, if it is a dependent of a dependent of table T1.
The intervening DELETE, UPDATE, and implicit rules are not relevant to the definition of a
descendent table. A table can be a dependent of itself and also a descendent.

In Figure 3-3 on page 58:

� Table PROJ is a descendent and dependent of table DEPT.
� Table PROJACT is a descendent of tables EMP and DEPT.
� Table EMPPROJACT is a descendent of tables PROJ, EMP. DEPT, and ACT.
� Table PROJ is a dependent and descendent of table PROJ.
� Table DEPT is a dependent and descendent of table DEPT.

CASCADE

EMPLOYEE

DEPENDENT

BENEFIT

?

CREATE TABLE EMPLOYEE (
 EMPNO CHAR (5) NOT NULL PRIMARY KEY,
 DEPTNO CHAR(5),
 EMP_NAME VARCHAR(100)
) IN SAMPLE.TS_EMP

CREATE TABLE BENEFIT (
 BNFNO CHAR (5) NOT NULL,
 DNTNO CHAR(5) NOT NULL,
 BNF_DESCRIPTION VARCHAR(100),
 CONSTRAINT PK_BNF
 PRIMARY KEY(BNFNO, DNTNO),
 CONSTRAINT DNT_BNF
 FOREIGN KEY (DNTNO)
 REFERENCES DEPENDENT (DNTNO)
) IN SAMPLE.TS EMP

CREATE TABLE DEPENDENT (
 DNTNO CHAR (5) NOT NULL PRIMARY KEY,
 EMPNO CHAR(5) NOT NULL,
 DNT_NAME VARCHAR(100),
 CONSTRAINT EMP_DNT
 FOREIGN KEY (EMPNO)
 REFERENCES EMPLOYEE (EMPNO
) IN SAMPLE.TS_DNT

62 Data Integrity with DB2 for z/OS

Cycle
A cycle is a path that connects a table to itself. The arrows in the path should all flow in the
same direction. The intervening DELETE, UPDATE, and implicit rules are irrelevant.

Three cycles are shown in the sample application in Figure 3-3 on page 58:

� Two of these cycIes, DEPT and PROJ, are the results of self-referencing constraints.
� The other one is the cycle between DEPT and EMP.

if the arrow for the relationship between DEPT and PROJ were in the opposite direction, then
there would be a third cycle for DEPT, a cycle for EMP, and a second cycle for PROJ.

Referential structure
A referential structure is a set of tables and relationships in which each table in the set is a
parent or dependent of itself or some other table in the set. A referential structure contains
descendents when there are more than two tables in the structure. Every table that is a parent
or dependent is part of exactly one referential structure. Figure 3-3 on page 58 represents a
single referential structure. Referential structures do not have names and are not referenced
in any statement. The concept is introduced to help explain terms that are used in the rules of
RI.

Table space set
A table space set is the set of table spaces that contains the tables of a single referential
structure. If two tables that belong to different referential structures share the same table
space, the table space set is the union of the table spaces that are part of the two referential
structures.

From the perspective of DB2 utilities, a table space set is a set of table spaces and partitions
that should be recovered together for one or both of these reasons:

� Each of them contains a table that is a parent or descendent of a table in one of the others.
� The set contains a base table and associated auxiliary tables.

Table space sets do not have names, however, because a table space cannot be a member
of more than one table space set. A table space set is uniquely identified by identifying any
member of the set. The only way that DB2 identifies the table spaces and tables within a table
space set is to specify it in the control statement of the REPORT utility, as described in
“REPORT utility” on page 87. Table space sets also have these characteristics:

� Like referential structures, table space sets may include cycles. A table space cycle exists
when a table space contains tables that are descendents of itself. This can affect the use
of the LOAD utility as explained in “Loading tables involved in cycles” on page 94.

� A table space set is a unit of consistency with respect to RI as described in 6.7, “DB2
subsystem restart after abend” on page 211.

3.3.2 Data definitions for RI
This section describes:

� DDL extensions

� Restrictions of defining referential structures and recommendations about circumventing
these restrictions

Chapter 3. Referential integrity 63

DDL extensions
The DDL extensions to DB2 for RI support define:

� Primary key
� Foreign keys and the associated DELETE rules
� Foreign keys and the associated UPDATE rules

The rules that govern these definitions are documented along with some considerations and
examples of their use. The sample application, shown in Figure 3-3 on page 58, is used in
some of the examples.

DB2 can dynamically add and drop a primary key and referential constraints on tables without
dropping and recreating the tables.

The ALTER TABLE SQL statement has been enhanced to provide this support. The syntax
for both the CREATE and ALTER statements is not provided here but can be found in DB2
UDB for z/OS Version 8 SQL Reference, SC18-7426.

Primary key
The primary key in DB2 has the following characteristics:

� It is optional. A dependent or independent table may or may not have a primary key
defined. A table can have only one primary key.

� It obeys the same rule as index keys (except for the NOT NULL attribute).

Therefore:

– The key can include no more than 64 columns.
– No column can be named twice.
– The sum of the column length attributes cannot be greater than 2000.

� The columns that form part of a primary key must be defined as NOT NULL or NOT NULL
WITH DEFAULT.

� A primary key can have more columns than are necessary to achieve uniqueness, but this
is not generally recommended because these additional columns would have to be
reflected in the foreign key of the dependent tables.

� A unique index must be defined on ONLY the columns of the primary key. Also, the
sequence of columns in this index must be the same as that of the primary key definition.
This unique index will be the primary index.

A primary key may be defined in a CREATE TABLE statement or an ALTER TABLE
statement. Primary key characteristics are:

� If the primary key is defined in the CREATE TABLE statement, the table is said to have an
incomplete definition until the unique index has been defined on the columns of the
primary key. DB2 catalog table SYSIBM.SYSTABLES shows in the STATUS column “I” for
incomplete definitions and the column TABLESTATUS shows the reason with the value “P”
(the table lacks a primary index). Also the UNIQUERULE column value of
SYSIBM.SYSINDEXES has the value “P”, which represents the primary index.

Use of a table with an incomplete definition is severely restricted: you can drop the table,
create the primary index, and drop or create other indexes; you cannot load the table,
insert data, retrieve data, update data, delete data, or create foreign keys that reference
the primary key.

The primary index should generally be created as soon as the table is created.

64 Data Integrity with DB2 for z/OS

� If a primary key is defined using ALTER TABLE:

– The unique index must already exist.

If more than one unique index is on those columns, DB2 chooses one arbitrarily to be
the primary index.

– In some cases, plans, packages, and triggers referencing that table are invalidated.
Check the “Plan, package, and trigger considerations” on page 69 for more details.

� A table can have only one primary index.

� If a table has more than one unique index on the columns of the primary key, then only one
of those indexes is a primary index.

If a primary key was defined in a CREATE TABLE statement, the primary index is the first
unique index that was created on the columns of that primary key and in the same
sequence as the primary key columns.

� The primary index may be ascending or descending.

� A table is defined as a parent table if it contains a parent key, which can be a primary index
or a unique index.

ALTER or REFERENCES authority on the parent table must be granted to all users who
need to define that table as a parent in a foreign key.

The impact of dropping a primary key or primary index is:

� When the definition of the primary key of a table is dropped using the ALTER statement, all
referential constraints in which that table is a parent also are dropped. However, the
primary index is not dropped and it remains as a unique index. The UNIQUERULE column
value of SYSIBM.SYSINDEXES is changed to ‘U’ to indicate that it is now only a unique
index.

In Figure 3-3 on page 58, dropping the primary key of the DEPT table will:

– Drop the referential constraints ADMRDEPT, WORKDEPT, and DEPTNO
– Designate the index on column DEPTNO of the DEPT table as a unique index in

SYSIBM.SYSINDEXES

� The ALTER privilege is required on all the dependent tables in order to drop a primary key
from a parent table. The ALTER authority cannot be REVOKEd from a user who has
already created a foreign key referencing this table based on the authority granted to him
earlier.

� If a primary index is dropped, the definition of its table is changed to incomplete,
irrespective of whether another unique index exists on the columns of the primary key.

The only way to complete the definition of the table again is to create another unique index
on the columns of the primary key. Note that dropping the primary index does not cause
the referential constraints to be dropped.

In Figure 3-3 on page 58, dropping the primary index on column DEPTNO of the DEPT
table will:

– Not drop the referential constraints ADMRDEPT, WORKDEPT, and DEPTNO
– Put the DEPT table into an incomplete status.

Note: The REFERENCES privilege does not replace the ALTER privilege. It was added
to conform to the SQL standard. To define a foreign key that references a parent table,
you must have either the REFERENCES or the ALTER privilege, or both.

Chapter 3. Referential integrity 65

Some considerations in defining primary keys are:

� Each entity should have a primary key according to relational theory. While this rule is not
enforced in DB2, the recommendation is to create a primary key for every table that data
analysis has identified as having an entity key.

However, because a primary key requires a unique index to be defined, the index
maintenance overhead associated with defining a primary key may not be acceptable.

In the case of private data, it seems unnecessary to define a primary key for the tables if
no referential constraints are defined.

� Choose a primary key that cannot be updated. Besides avoiding the UPDATE rule
restrictions, it enforces the good practice of having unique identifiers that remain the same
for the lifetime of the entity occurrence.

� NOT NULL WITH DEFAULT generally is not recommended for primary key columns
unless they have the TIMESTAMP attribute.

� The IDENTITY clause is allowed in the columns of a primary key. However, the CYCLE
and MAXVALUE options can restrict the total rows of the tables. Once the MAXVALUE is
reached, DB2 recycles the identity column and it is a duplicate column. Choose the
minimum number of columns to ensure uniqueness of the primary key.

More than the minimum number may be preferred for performance reasons. Using the
“data in index” technique, an access to the index can retrieve all the desired information
without accessing the data. This also incurs the overhead of more columns in the foreign
keys of the dependent tables.

� A view that can be updated that is defined on a table with a primary key should include all
columns of the key. Although this is necessary only if the view is used for inserts, the
unique identification of rows can be useful if the view is used for update, delete, or select.

Example 3-1 shows examples of creating and dropping primary keys for some of the tables in
the sample application in Figure 3-3 on page 58.

Example 3-1 CREATE and ALTER statements with primary keys

Create primary' key on table EMP

CREATE TABLE EMP
(PRIMARY KEY (EMPNO),
EMPNO CHAR(6) NOT NULL,
...

The definition of the table is incomplete until the unique index is defined.

The primary key requires a unique index to be defined on it

CREATE UNIQUE INDEX XEMPI
ON EMP(EMPNO)
...

This makes the definition of the EMP table complete.

A primary key also can be defined for table DEPT by the ALTER TABLE statement, after the
table has been created.

ALTER TABLE DEPT
 ADD PRIMARY KEY (DEPTNO)

A unique index on DEPTNO must already exist for this statement to execute successfully.

ALTER TABLE also can be used to drop the definition of the primary key of table DEPT

ALTER TABLE DSN82l0.DEPT
DROP PRIMARY KEY

66 Data Integrity with DB2 for z/OS

For more considerations about primary keys, see 1.1.4 “Key design” and 2.6.5 “Column
sequence in a multi-column index” of DB2 UDB for z/OS: Design Guidelines for High
Performance and Availability, SG24-7134.

Foreign keys
Foreign keys in DB2 have the following characteristics:

� A table can have any number of foreign keys defined; from zero to ‘n’.

The DELETE rule is specified as part of the foreign key definition. The UPDATE rule
cannot be specified, because the UPDATE RESTRICT rule is only supported implicitly.

� Can be NULL. A multi-column foreign key is considered NULL if at least one of the
columns is NULL.

� The columns of a foreign key can be part of the columns of the primary key of this table.

� A column in a table can be a part of more than one foreign key.

� Each foreign key relationship defined can be assigned a user-defined constraint name.
This constraint name must be unique for all referential, check, primary key, or unique key
constraints previously specified on a particular table. Figure 3-3 on page 58 shows the
constraint names of the referential constraints defined in the sample application.

Every referential constraint is uniquely identified by the combination of a table name and a
constraint name.

Referential constraints are identified by name in:

– Error messages, and
– DROP FOREIGN KEY clause of the ALTER TABLE statement

A foreign key may be defined in a CREATE TABLE statement or an ALTER TABLE statement.
To create a foreign key on a table referencing a parent table, the following conditions must be
satisfied:

� The parent table must not be a DB2 catalog table.

� The parent table must exist.

Therefore, some referential constraints can only be defined by the ALTER TABLE
statement because the parent table identified in a FOREIGN KEY clause must already be
described in the DB2 catalog. For example, a self-referencing constraint must be defined
by a CREATE TABLE statement followed by an ALTER TABLE statement to add the
referential constraint.

� The definition of the parent table must be complete. It must have a unique index, which is
defined on the columns, that forms the primary key. Thus, the existing restrictions on index
keys also apply by implication to foreign keys.

� The creator of the foreign key must have ALTER authority on the parent tables.

� The foreign key must have the:

– Same number of columns as the primary key of the parent table, and

– Description of the nth column of the foreign key must be identical to the description of
the nth column of the primary key.

However, the column names, default values, and null attributes may be different. If an
index is defined on the foreign key columns, the index columns may be ascending or
descending, which may be different from the ascending or descending attribute of the
corresponding primary index.

� A foreign key cannot reference a view.

Chapter 3. Referential integrity 67

� The DELETE rules can be specified for each foreign key definition as RESTRICT,
CASCADE, SET NULL, or NO ACTION. The SET NULL option can be specified only if at
least one of the columns of the foreign key is NULLable.

If the value of the register is “DB2”, the delete rule defaults to RESTRICT; if the value is
“SQL”, the delete rule defaults to NO ACTION.

The DELETE rules apply only to the DML, not to the DDL. Therefore, a DROP TABLE
statement is not influenced by the DELETE rules of the foreign key.

� When ALTER TABLE is used to add a foreign key to a table:

– If the table is populated, its table space is put into CHECK-pending.

See “Resetting the CHECK-pending status” on page 90 for more details.

– In some cases, plans, packages, and triggers referencing that table are invalidated.
Check the “Plan, package, and trigger considerations” on page 69 for more details.

The impact of dropping foreign keys is:

� When all the foreign keys in a dependent table are dropped, any CHECK-pending status
on the table space in which the table resides is reset. This assumes that the table space
only contains one table. If any other table resides in the table space, the CHECK-pending
status on the table space is not reset.

� To DROP FOREIGN KEY, the ALTER authority is required on both the table containing the
foreign key and the parent table that it is referencing.

Some considerations involving foreign keys are:

� When a row is inserted into a dependent table, each non-null foreign key insert value must
match some value of the primary key of the parent table of the relationship.

For multi-column foreign keys, the INSERT rule is verified only when all the columns are
not NULL. If one of the columns is NULL, DB2 does not verify the values in the other
columns.

If any referential constraint is violated by an INSERT operation, an error occurs and no
rows are inserted.

� When any column of a foreign key is updated, and the new value of the foreign key is not
NULL, the new value of the foreign key must match some value of the primary key in the
parent table of the relationship. If any referential constraint is violated by an UPDATE
operation, an error occurs and no rows are updated.

� A self-referencing row is never a violation of a self-referencing constraint. The following
rules apply to the processing of self-referencing rows:

– They can be inserted.
– They can be deleted.
– The primary key value cannot be updated. If you want to update the primary key, then

you must write at least two SQL calls to:

• Delete the row and reinsert it with the new primary and foreign key values, or

• Update the foreign key value to another value or NULL (if permitted), and then
update the primary key value.

– The foreign key value can be updated only if it references a valid primary key value.

� INSERT and UPDATE operations using a view are subject to the same referential
constraints as its base table. Likewise, if the base table of a view is a parent, DELETE
operations using that view are subject to the same rules as DELETE operations on that
base table.

� A referential constraint is implicitly dropped when the:

68 Data Integrity with DB2 for z/OS

– Parent or dependent table of the relationship is dropped.
– Definition of the primary key of the parent table is dropped.

� SET NULL must not be specified if any nullable column of the foreign key is a column of
the key of a partitioning index.

Example 3-2 shows the statement for creating and dropping foreign keys for some of the
tables of the sample application.

Example 3-2 CREATE, ALTER, and DROP statements with foreign keys

WORKDEPT column of table EMP is defined as a foreign key whose parent table is DEPT.
CREATE TABLE EMP(
 EMPNO CHAR(6) NOT NULL,
 WORKDEPT CHAR(5),
 PRIMARY KEY (EMPNO),
 FOREIGN KEY (WORKDEPT) REFERENCES DEPT ON DELETE SET NULL
)
DELETE rule of this foreign key constraint is SET NULL
Referential constraints also can be defined by the ALTER table statement after a table
is created:
ALTER TABLE EMP
 ADD FOREIGN KEY (WORKDEPT) REFERENCES DEPT ON DELETE SET NULL;

Creating the self-referencing constraint on the DEPT table
1) CREATE TABLE DEPT(
 DEPTNO CHAR(3) NOT NULL,
 ADMRDEPT CHAR(3),
 PRIMARY KEY (DEPTNO)
)
2) CREATE UNIQUE INDEX IXDEPT
 ON DEPT
 (DEPTNO ASC) ...
3) ALTER TABLE DEPT
 ADD FOREIGN KEY (ADMRDEPT) REFERENCES DEPT ON DELETE CASCADE;

Dropping foreign key of EMP table
ALTER TABLE EMP
 DROP FOREIGN KEY WORKDEPT

Indexes on foreign keys
An index on a foreign key is not required but is strongly recommended if rows of the parent
table are often deleted. The validity of the delete statement and its possible effect on the
dependent table, can be checked through the index.

To let an index on the foreign key be used on the dependent table for a delete operation on a
parent table, the columns of the index on the foreign key must be identical to and in the same
order as the columns in the foreign key.

A foreign key can also be the primary key; then, the primary index is also a unique index on
the foreign key. In that case, every row of the parent table has at most one dependent row.
The dependent table might be used to hold information that pertains to only a few of the
occurrences of the entity described by the parent table.

The primary key can share columns of the foreign key if the first n columns of the foreign key
are the same as the primary key’s columns.

Chapter 3. Referential integrity 69

3.3.3 Plan, package, and trigger considerations
Adding or dropping referential constraints can change the validation of plans, packages, and
trigger packages.

For these tests, some programs were created and packages and plans bound with DBRMs.

Programs
� PGM001:

SELECT * FROM EMP

� PGM002:

SELECT * FROM EMP DELETE FROM DEPT WHERE EMP = :HOST

� PGM003:

SELECT * FROM DEPT

� PGM004:

SELECT * FROM DEPT DELETE FROM EMP WHERE DEPT := HOST

Packages
� PKG001, PKG002, PKG003, PGK004:

BIND PACKAGE(PKG001) MEMBER(PGM001) ...
BIND PACKAGE(PKG002) MEMBER(PGM002) ...
BIND PACKAGE(PKG003) MEMBER(PGM003) ...
BIND PACKAGE(PKG004) MEMBER(PGM004) ...

Plans
� PLN001:

BIND PLAN(PLN001) MEMBER(PLN001) ...
BIND PLAN(PLN002) MEMBER(PLN002) ...
BIND PLAN(PLN003) MEMBER(PLN003) ...
BIND PLAN(PLN004) MEMBER(PLN004) ...

Trigger packages
� INS_EMP:

CREATE TRIGGER INS_EMP
 AFTER INSERT ON EMP
 REFERENCING NEW AS NEMP
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 UPDATE DEPT
 SET TOT_EMP= TOT_EMP + 1
 WHERE DEPT.DEPT = NEMP.DEPT ;
 END ?

Table 3-2 shows what can happen with plans.

Table 3-2 Plan validation adding primary key and foreign key

Plan ADD
PK EMP

ADD
PK DEPT

FK DEPT
CASCADE

FK DEPT
RESTRICT

FK DEPT
SET NULL

FK DEPT
NO ACTION

PLN001 H Y A A A A

PLN002 H H N A N A

70 Data Integrity with DB2 for z/OS

Table 3-3 shows the packages’ behavior.

Table 3-3 Package validation adding primary key and foreign key

3.3.4 Maintaining RI when using data encryption
If you use encrypted data in a referential constraint, the primary key of the parent table and
the foreign key of the dependent table must have the same encrypted value. The encrypted
value should be extracted from the parent table (the primary key) and used for the dependent
table (the foreign key). You can do this in one of the following two ways:

� Use the FINAL TABLE (INSERT statement) clause on a SELECT statement.

� Use the ENCRYPT_TDES function to encrypt the foreign key using the same password as
the primary key. The encrypted value of the foreign key will be the same as the encrypted
value of the primary key.

Similar considerations apply for the self-referencing row scenario.

The SET ENCRYPTION PASSWORD statement sets the password to use for the
ENCRYPT_TDES function. See DB2 UDB for z/OS Version 8 SQL Reference, SC18-7426,
for more information about the SET ENCRYPTION PASSWORD statement and the
ENCRYPT_TDES statement.

3.3.5 Informational referential constraint
An informational referential constraint is a referential constraint that is not enforced by DB2
during normal operations. DB2 ignores informational referential constraints during insert,
update, and delete operations. Some utilities ignore these constraints; other utilities recognize

PLN003 Y H N Y N Y

PLN004 H H N A N A

Notes:
Y: Plan is valid.
N: Plan is invalid.
A: Table descriptions changed, but plan is still valid.
H: Table descriptions changed. Plan is invalid for DB2 releases prior to V5.

Package ADD
PK EMP

ADD
PK DEPT

FK DEPT
CASCADE

FK DEPT
RESTRICT

FK DEPT
SET NULL

FK DEPT
NO ACTION

PKG001 H Y A A A A

PKG002 H H N A N A

PKG003 Y H N Y N Y

PKG004 H H N A N A

INS_EMP Y H N Y N Y

Notes:
Y: Package is valid.
N: Package is invalid.
A: Table descriptions changed, but package is still valid.
H: Table descriptions changed. Package is invalid for DB2 releases prior to V5.

Plan ADD
PK EMP

ADD
PK DEPT

FK DEPT
CASCADE

FK DEPT
RESTRICT

FK DEPT
SET NULL

FK DEPT
NO ACTION

Chapter 3. Referential integrity 71

them. For example, CHECK DATA and LOAD ignore these constraints. QUIESCE
TABLESPACESET recognizes these constraints by quiescing all table spaces related to the
specified table space set whether through enforced RI or informational RI.

You should use this type of referential constraint only when an application process verifies the
data in a RI relationship. For example, when inserting a row in a dependent table, the
application should verify that a foreign key exists as a primary or unique key in the parent
table. To define an informational referential constraint, use the NOT ENFORCED option of the
referential constraint definition in a CREATE TABLE or ALTER TABLE statement. For more
information about the NOT ENFORCED option, see Chapter 5 of DB2 UDB for z/OS Version
8 SQL Reference, SC18-7426.

Example 3-3 CREATE and ALTER with NOT ENFORCED

Creating an informational referential constraint:
CREATE TABLE EMP(
 EMPNO CHAR(6) NOT NULL,
 WORKDEPT CHAR(5),
 PRIMARY KEY (EMPNO),
 FOREIGN KEY (WORKDEPT) REFERENCES DEPT NOT ENFORCED
)

Altering a table to include an informational referential foreign key
ALTER TABLE EMP
 ADD FOREIGN KEY (WORKDEPT) REFERENCES DEPT NOT ENFORCED;

3.4 Functional implications
In order to provide good performance and satisfy the access path independence
requirements, some restrictions of RI are implemented in DB2:

� The DELETE rule of a self-referencing constraint must be CASCADE or NO ACTION.

� A cycle involving two or more tables must not cause a table to be delete-connected to
itself.

� If table T1 is delete-connected to table T2 through multiple paths, those relationships in
which T1 is a dependent table and which form all or parts of those paths:

– Must have the same delete rule.
– Also, the delete rule must not be SET NULL.

� The CASCADE, SET NULL, and NO ACTION options on the UPDATE rule are not
supported.

� INSERT, DELETE, and UPDATE restrictions.

3.4.1 DELETE rule for self-referencing tables
The restriction is that the DELETE rule of a self-referencing constraint must be CASCADE or
NO ACTION.

Figure 3-5 shows the potential problem with a DELETE rule of RESTRICT or SET NULL for
self-referencing constraints.

72 Data Integrity with DB2 for z/OS

Figure 3-5 Department table with self reference

3.4.2 DELETE with RESTRICT
Statement:

DELETE FROM DEPT WHERE DEPTNO >= B01

The order in which rows are deleted is decided by the optimizer.

If the implementation deletes rows in the sequence of D03, C02, and B01, then the delete is
successful. Any other sequence causes the statement to fail.

3.4.3 DELETE with SET NULL
Statement:

DELETE FROM DEPT WHERE ADMINDNO IS NULL

The result depends upon the sequence in which DB2 accesses table DEPARTMENT.

If DB2 accesses table DEPT in the sequence of rows D03, C02, B01, and A00, then the
delete deletes only row A00.

If DB2 accesses table DEPT in the sequence of rows A00, B01, C02, and D03, then the
delete deletes all rows in the table.

Circumvention recommendations
For applications that require the implementation of a DELETE RESTRICT or DELETE SET
NULL type of function with self-referencing tables, two choices exist:

� Specify DELETE CASCADE rule on the relationship and implement the RESTRICT or the
SET NULL rule through user code.

� Specify no rule at all and implement the RESTRICT or SET NULL rule through user code.

DELETE rule
is RESTRICT
 or SET NULL

DEPTNO ADMINDNO

A00
B01
C02
D03

A00
B01
C02

Foreign KeyPrimary Key

Note: The difference between NO ACTION and RESTRICT is when the referential
constraint is enforced. RESTRICT (IBM SQL rules) enforces the rule immediately, and NO
ACTION (SQL standard rules) enforces the rule at the end of the statement.

Chapter 3. Referential integrity 73

The recommendation is to specify the DELETE CASCADE rule on the relationship and
implement the RESTRICT or SET NULL rule through user code if the following considerations
are acceptable:

� DB2 can enforce the implicit insert rule when rows are being inserted.

� DB2 can enforce the update restrict rule if the application needs to implement such a
function for this relationship.

� The CHECK utility can be run to verify that no rows in this table violate referential
constraints, because the CHECK utility can only verify referential constraints defined in the
DB2 catalog.

The following precautions must be taken when implementing the DELETE RESTRICT or SET
NULL rule for this relationship through user code:

� All deletes to this table must be permitted only through user-written programs.

� Deletes should be inhibited through ad hoc environments such as QMF™ and SPUFI.

� Deletes should not be allowed to cascade to this table from other tables if the DELETE
CASCADE option is chosen.

� For all programs that require the deletion of a row in this table, all deletes should be
processed by a common single routine.

The appropriate SQL statements must be issued and the proper locks taken so that data
integrity is not compromised.

3.4.4 Cycles should not cause a table to be delete-connected to itself
The restriction prevents a cycle involving two or more tables to cause a table to be
delete-connected to itself. This means:

� In a two table cycle, neither delete rule can be CASCADE.

� In a cycle involving more than two tables, two or more delete rules must not be CASCADE.

Figure 3-6 shows a valid DB2 cycle structure; the arrows point from parent to dependent.

Figure 3-6 Valid DB2 cycle structure

Figure 3-7 shows an invalid DB2 cycle structure.

CASCADE

T3

RESTRICT

T2 SET
NULL

T1

74 Data Integrity with DB2 for z/OS

Figure 3-7 Invalid DB2 cycle structure

Figure 3-8 shows an example of a potential problem with a table that is delete-connected to
itself.

Figure 3-8 Anomaly with table T3 that is delete-connected to itself

The delete rule of CASCADE on the table T1 and table T2 relationship causes table T3 to be
delete-connected to itself. Statement:

DELETE FROM T3 WHERE FKT2 IS NULL

T1

CASCADE

T3

CASCADE

T2 SET
NULL

Table T1

PKT1 FKT3

T1A
T1B
T1C
T1D

T3A
T3B
T3C

Table T2

CASCADECASCADE

SET NULL

PKT2 FKT1

T2A
T2B
T2C
T2D

T1A
T1B
T1C
T1D

Table T3

PKT3 FKT2

T3A
T3B
T3C
T3D

T2B
T2C
T2D

Chapter 3. Referential integrity 75

The result depends upon the sequence in which DB2 accesses table T3:

� If DB2 accesses table T3 in the sequence of rows T3D, T3C, T3B, and T3A, only row T3A
would qualify for the delete.

� If DB2 accesses table T3 in the sequence of rows T3A, T3B, T3C, and T3D, all four rows
T3A, T3B, T3C, and T3D would qualify for the delete.

Circumvention recommendations
For any applications that cause a referential structure to be delete-connected to itself, the
user must:

� Specify a DELETE RESTRICT or SET NULL rule on at least two of the relationships, so
that a table does not delete-connect to itself.

� Write user code to satisfy the required functions.

Figure 3-6 on page 73 shows how a DELETE RESTRICT rule on the table T1 and T2
relationship and DELETE SET NULL on the table T2 and T3 relationship prevent table T3
from being delete-connected to itself. The recommendation is:

� Specify a DELETE RESTRICT rule rather than a SET NULL on one of the relationships.
An accidental delete of a row with dependent rows will be inhibited with the RESTRICT
option. The SET NULL option would cause the delete operation to complete successfully
by changing the foreign key values to NULL. The DELETE SET NULL may be
unacceptable, especially if deletes are permitted through a client environment.

� Simulate the DELETE CASCADE operation through user code by issuing the appropriate
SQL statements and taking the proper locks so that data integrity is not compromised.

3.4.5 Table delete-connections through multiple paths
The restriction is that if a table T1 is delete-connected to table T2 through multiple paths,
those relationships in which T1 is a dependent table and which form all or parts of those
paths:

� Must have the same delete rule.
� The delete rule must not be SET NULL.

Figure 3-9 shows a valid delete-connect DB2 referential structure.

76 Data Integrity with DB2 for z/OS

Figure 3-9 Valid delete-connect DB2 referential structure

Figure 3-10 shows an invalid delete-connect DB2 referential structure.

Figure 3-10 Invalid delete-connect DB2 structure

CASCADECASCADE

T2

CASCADECASCADE

T1

T4T3

CASCADE

T2

RESTRICT

T1

T3 RESTRICT

CASCADECASCADE

T2

SET NULLSET NULL

T1

T4T3

CASCADE

T2

CASCADE

T1

T3 RESTRICT

T1

RESTRICTCASCADE

T2

Chapter 3. Referential integrity 77

Figure 3-11 shows an example of a potential problem with a table that is delete-connected to
another table through multiple paths with a delete rule that is not the same.

Figure 3-11 Delete-connect with different rules

Table T1 is delete-connected to table T2 through multiple paths with different delete rules.
The delete rule of CASCADE on the table T1 and table T3 relationship is different from the
delete rule of RESTRICT on the table T1 and table T2 relationship.

For the statement:

DELETE FROM T2 WHERE PKT2 = 'T2A'

The result depends upon the sequence in which DB2 accesses table T1 and T3:

� If DB2 accesses table T3 first, the SQL operation will be successful because rows T3A,
T1A, and T2A will be deleted before the RESTRICT rule is checked on the table T2 and
table T1 relationship.

� If DB2 accesses table T1 first, the SQL operation fails, because row T1A violates the
RESTRICT rule for the table T1 and table T2 relationship.

Table T2

PKT2

T2A
T2B
T2C
T2D

PKT1 FKT3 PKT2

T1A
T1B
T1C

T3A
T3B
T3C

T2A
T2B
T2C

Table T1

PKT3 FKT2

T3A
T3B
T3C
T3D

T2A
T2B
T2C
T2D

Table T3

CASCADE
RESTRICT

CASCADE

78 Data Integrity with DB2 for z/OS

Circumvention recommendations
For any applications that cause a referential structure to violate this restriction, you must:

� Specify a DELETE RESTRICT or CASCADE rule on the relationships so that a table has
the same<: delete rule when connected through multiple paths.

� Write user code to satisfy the required functions.

The recommendation is:

� Specify DELETE RESTRICT rule on both relationships, rather than CASCADE. An
accidental delete of a row with dependent rows is inhibited with the RESTRICT option
while the CASCADE option would cause the delete operation to complete successfully.
The DELETE CASCADE option is likely to be unacceptable if deIetions are permitted
through an ad hoc environment, such as QMF, SPUFI, or AS.

� Simulate the DELETE CASCADE or SET NULL operation through user code by issuing
the appropriate SQL statements and taking the proper locks so that data integrity is not
compromised.

3.4.6 INSERT
If a self-referencing table is the object of an insert statement with a subquery, the subquery
must not return more than one row; otherwise, the statement fails.

This violation is detected at runtime.

Figure 3-12 is used to show an example of a potential problem with a self-referencing table
and an insert with subquery.

Figure 3-12 Multi-row insert with self-relationship

DEPT is a self-referencing table. SIMILARDEPARTMENT is a table that is identical to the
DEPT table. Statement:

INSERT INTO DEPARTMENT
 SELECT * FROM SIMILARDEPARTMENT

The result depends upon the sequence in which DB2 accesses the SIMlLARDEPARTMENT
table:

� If the row with DNO of “2” is accessed first, the insert fails.
� If the row with DNO of “1” is accessed first, the insert succeeds.

D E P T N O AD M IN D N O

 D E P AR T M E N T Tab le S im ilar D E P AR T M E N T Tab le

D N O AD N O

2
1

1
--

Chapter 3. Referential integrity 79

If you have an application that requires this function, you might consider using the ALTER
statement and CHECK utilities as follows:

1. Drop the self-referencing constraint using ALTER TABLE DROP FOREIGN KEY.

2. Issue the INSERT with SUBSELECT statement, which should execute successfully.

3. Recreate the self-referencing constraint. This puts the table space into a CHECK-pending
status.

4. Run CHECK to determine if any referential constraint violations exist.

3.4.7 UPDATE
The restriction is that the CASCADE, SET NULL, and NO ACTION options on the UPDATE
rule are unsupported. This restriction does not have anything to do with access path
independence considerations.

The reason for this restriction is philosophical. Some people argue that by its very definition, a
primary key value does not change. Once a primary key value is assigned, it remains the
same for the lifetime of the entity occurrence.

Therefore, the application of the UPDATE CASCADE rule or UPDATE SET NULL rule does
not make sense. However, if the application requires an update of a primary key value, then
the recommendation is to delete the entity occurrence and all its dependents, then reinsert
them with the new value of the primary key.

DB2 permits UPDATE RESTRICT so that data entry types of mistakes can be corrected.

The recommendation for applications that need to implement the UPDATE CASCADE or SET
NULL rule is to do so with user written code.

When the columns of a primary key are updated, the update statement should not apply to
more than one row. Although DB2 allows massive update of the primary key, the update is
access path dependent.

Figure 3-13 is used to explain a potential problem with an massive update of primary key.

Figure 3-13 Employee table

EMPNO is the primary key of the EMPLOYEE table. We issue the statement:

UPDATE EMPLOYEE SET EMPNO = EMPNO + 1
WHERE EMPNO =< 5

E M P N O E M P N A M E W O R K D E P T

0 0 1
0 0 2
0 0 4
0 0 5

E L O G S
A B L E
B O N D
S M A R T

A 0 0
- - - - -
M 0 5
Z Z Z

E m p l o y e e T a b l e

80 Data Integrity with DB2 for z/OS

The result depends upon the sequence in which DB2 accesses the EMPLOYEE table:

� If DB2 accesses the table in the sequence of rows 005, 004, 002, and 001, the update
would succeed.

� If DB2 accesses the table in the sequence of rows 001, 002, 004, and 005, the update
would fail because the first update of 001 would fail with a duplicate on row 002.

3.4.8 DELETE
A DELETE statement which has a subquery referencing a table that can be affected by the
deletion of rows from the target table is not permitted. Sometimes, a subquery with a
correlated reference is executed once for each row. Because of this, the result of the deletion
is access path dependent. This violation is detected at BIND time.

Figure 3-14 shows potential problems with DELETE with subquery. T2 denotes the object
table of a DELETE statement and T1 denotes a table that is referenced in the FROM clause
of a subquery of that statement. T1 must not be a table that can be affected by the DELETE
on T2. Thus, the following rules apply:

� T1 and T2 must not be the same table.

� T1 must not be a dependent of T2 in a relationship with a delete rule of CASCADE or SET
NULL, unless the result of the subquery is materialized before the DELETE action is
executed.

� T1 must not be a dependent of T3 in a relationship with a delete rule of CASCADE or SET
NULL if deletes of T2 cascade to T3.

Chapter 3. Referential integrity 81

Figure 3-14 Possible invalid deletes with subqueries

Figure 3-15 shows a relationship with tables EMPLOYEE and DEPARTMENT that could have
problems with a DELETE with subquery.

T2

1. DELETE FROM T2 WHERE T2COLA IN
 (SELECT T2COLB FROM T2

 WHERE T2COLC = '111')

2. DELETE FROM T2 WHERE T2COLA IN
 (SELECT T1COLB FROM T1

 WHERE T1COLC = '222')

T1

3. DELETE FROM T2 WHERE T2COLA IN
 (SELECT T1COLB FROM T1

 WHERE T1COLC = '222')

 CASCADE or SET NULL

T2

T3

 CASCADE or SET NULL

 CASCADE or SET NULL

T1

T2

82 Data Integrity with DB2 for z/OS

Figure 3-15 Delete-connect sample

This relationship shows to which department the employee reports, which can differ from the
one in which the employee works.

The statement below is trying to delete all departments that do not have any employees
reporting to them.

DELETE FROM DEPARTMENT
WHERE DEPTNO NOT IN (SELECT REPORTS FROM EMPLOYEE
WHERE EMPLOYEE.REPORTS = DEPARTMENT.DEPTNO)

The result depends upon the sequence in which rows in the DEPARTMENT table are
accessed:

� If department “A” is accessed first:

– The NOT IN clause is true; therefore, department “A” is deleted. This cascades
resulting in employees “1” and “2” also being deleted.

– Next, department “B” is accessed, and the NOT IN clause is again true because
employees 1 and 2 have been deleted. Therefore, department “B” is now deleted,
which results in employee “3” being deleted.

– Finally, “C” is accessed and deleted.

� If department “B” is accessed first, the NOT IN clause is false and department “B” is not
deleted. Similarly, department “C” is not deleted if it is accessed first. “A”, however, is
always deleted no matter what the order.

3.5 Summary of design recommendations
In this section we summarize considerations and recommendations.

3.5.1 Primary key
� Assign a primary key for every table if the index overhead and the restriction on multi-row

update of primary key columns is acceptable.

Works
In

EMPNO WORKS REPORTS

1
2
3

A
A
B

B
B
C

DEPTNO

A
B
C

DEPARTMENT

EMPLOYEE

CASCADE CASCADE

Reports
To

Chapter 3. Referential integrity 83

� Choose a primary key that cannot be updated.

� Primary key columns should be NOT NULL WITH DEFAULT only if the TIMESTAMP
attribute is chosen.

� Choose a minimum number of columns to enforce uniqueness of the primary key.

� Recommend that all views include the primary key.

3.5.2 Foreign keys
� Consider carefully the semantics of columns that are part of foreign keys. Pay special

attention to multi-column foreign keys, columns shared between multiple foreign keys, and
columns shared with the primary key.

� Always supply a constraint name when defining a foreign key, and ensure that constraint
names are easy to identify. A good naming standard for the objects defined will help
identify parent and dependent quickly by just looking at the error message.

 Cycle considerations
A cycle involving two or more tables must not cause a table to be delete-connected to itself.
Thus, if the relationship would form a cycle:

� The referential constraint cannot be defined if each of the existing relationships that would
be part of the cycle have a delete rule of CASCADE.

� CASCADE must not be specified if T2 is delete-connected to T1.

If T1 is delete-connected to T2 through multiple paths, those relationships in which T1 is a
dependent and which form all or part of those paths must have the same delete rule and it
must not be SET NULL. For example, assume that T1 is a dependent of T3 in a relationship
with a delete rule of r and that one of the following is true:

� T2 and T3 are the same table.

� T2 is a descendent of T3 and the deletion of rows from T3 cascades to T2.

� T2 and T3 are both descendents of the same table and the deletion of rows from that table
cascades to both T2 and T3.

In this case, the referential constraint cannot be defined when r is SET NULL. When r is other
than SET NULL, the referential constraint can be defined, but the delete rule that is implicitly
or explicitly specified in the FOREIGN KEY clause must be the same as r.

If cycles are present in the referential structure, ensure that at least one of the foreign keys
involved in the cycle is defined as being NULLable; otherwise the only way to insert data into
the cycle is to use the LOAD utility.

A cycle with DELETE rules of RESTRICT can prevent delete operations, unless at least one
of the foreign keys is defined as being NULLable.

Do not use referential constraints to maintain a one-to-one correspondence between the rows
of the tables.

Keep the number of table spaces in a table space set reasonable. A group of 200 related
tables is still reasonable, but 20,000 related tables is becoming no longer reasonable.

84 Data Integrity with DB2 for z/OS

3.5.3 Circumventing DML restrictions
� To support RESTRICT or SET NULL options on the DELETE rule of self-referencing

tables, we recommend you specify the DELETE CASCADE rule on the relationship and
implement the RESTRICT or SET NULL rule through user code with some caveats.

� For any relationships that cause a referential structure to be delete-connected to itself, we
recommend you specify a DELETE RESTRICT, SET NULL, or NO ACTION on at least two
of the relationships, so that a table does not delete-connect to itself. Write user code to
satisfy the required functions.

� For any applications that cause a referential structure to violate the restriction of a table
being delete-connected through different paths with different DELETE rules or being SET
NULL, we recommend you specify a DELETE RESTRICT rule on the relationships, so that
a table has the same delete rule when connected through multiple paths. Write user code
to satisfy the required functions.

� The UPDATE rule of RESTRICT can only be circumvented by user code that issues the
appropriate SQL statements and takes the proper locks so that data integrity is not
compromised.

� INSERT restrictions should be circumvented by using the ALTER statement and CHECK
utility.

You can easily circumvent the DML restrictions by using SQL calls that only operate on one
row at a time.

3.6 Code and look-up tables
A code table is a table where the domain of code columns is defined and the coded
information is described. A look-up table is a type of code table that is used to replace one or
more column values with a key or code that can be stored on the data table. The benefit of a
look-up table is typically a reduction in space in the data table and the ability to update values
in the look-up table without having to update each referencing row in the data table. In this
section when we discuss “code tables”, we are referring to both variations collectively.

Samples of coding tables are shown in Figure 3-16.

Figure 3-16 Look-up tables

M
F

Male
Female

GENDER
1
2
3

Manager
DBA
AD

JOB ROLE

1
2
3
4

Home
Work
CELL
Fax

PHONE TYPE

CODE/Look-Up Tables

Chapter 3. Referential integrity 85

A typical logical model might have numerous code tables that are used to defined the valid
range of values that are allowed in a column on a data table. Implementing each different
code table into the physical model with their own table, table space, and index may not be the
most efficient approach. A very small code table with a unique index requires at least two
physical data sets and three pages, since the index structure always begins with two levels.

Implemented individually, these code tables would require a minimum of six data sets and
nine pages. Even if all three tables were placed into a segmented table space, they would
require four data sets (one for data and three for indexes) and the same nine pages. By
combining the three code tables into a single table as shown in Figure 3-17, we can store all
of the code table data in two data sets and three pages.

Figure 3-17 Generic code table

This approach would prevent database-enforced RI from being implemented between the
code table and the data table. However, this is not a disadvantage because our
recommendation is to not implement database-enforced RI on code tables.

In many relational database implementations, the number of accesses to code tables may
equal or even exceed the number of accesses to the operational data tables. When RI is used
to enforce relationships between code tables and data tables, a single insert into the data
table may require accesses to multiple code tables. In addition, code tables are often
accessed by applications performing edits or populating pick-lists or drop-down menus.

Because these tables are small and heavily accessed, they typically stay resident in the buffer
pool, which should prevent I/O costs from becoming an issue. However, there is still a cost
associated with every access to these tables, so options to reduce these costs should be
considered.

In any case, the cost of the accesses to the code tables is not the only headache they cause.
The problems are generally caused when RI to the code tables is enforced in the database.

RI considerations
Whenever database-enforced RI is used, we recommend you index the foreign key columns
on the dependent table. When relationships exist between code tables and operational data
tables, the cardinality of the foreign key columns is typically very low relative to the cardinality
of the table. Any index defined only on the foreign key would therefore provide very little
filtering and would be of almost no use from a performance perspective, unless the
application has access requirements using the foreign key and additional columns that can be
added to the index to make it more unique.

CODE TYPE_CODE DESCRIPTION

01
02
03
04
05
06
07
08
09

GEN
GEN
JOB
JOB
JOB
PHO
PHO
PHO
PHO

Male Gender
Female Gender
Manager
DBA
AD
Home
W ork
CELL
Fax

Generic Code Table

86 Data Integrity with DB2 for z/OS

Indexing the foreign keys of tables dependent on code tables might also make the
performance of insert and delete activity on the dependent table too expensive because of
the additional index maintenance.

A foreign key index will be used to identify dependent rows when a parent is deleted.
However, this access path does not show up in the PLAN_TABLE when explaining the delete.

Finally, a load replace of a code table could result in multiple large operational tables being
placed into CHECK-pending status. This may present an unacceptable risk to the availability
of your database.

3.6.1 Code table alternatives
There are several alternatives that can be considered when implementing code tables:

� Check constraints can be used to enforce the domain of the foreign key in the database
without accessing the code table.

� Code table values can be built into copybooks that can be included in programs that
perform application-enforced RI checking or require look-up values.

� Batch programs can read code table values into working storage tables once and then use
the values repeatedly.

� Code table values can be read from DB2 loaded into in-memory tables, such as CICS data
tables, once and then used repeatedly to provide RI enforcement or look-up values.

� Denormalizing data to avoid accessing the lookup tables.

� Look-up table data that rarely or never changes can be stored redundantly on the data row
to eliminate the need to access the look-up table.

With any of these alternatives, we recommend that you still implement the code tables as
physical DB2 tables, and that these DB2 tables serve as the master copy of all allowed
values.

3.7 DB2 versus application RI
In general, DB2-enforced RI is more efficient than application-enforced RI, because it can be
performed at the time of the insert or delete without an additional trip to and from DB2.
Therefore, our general recommendation is to use DB2-enforced RI wherever possible.

However, there are some factors that might result in DB2-enforced RI being less efficient than
application-enforced RI.

� When multiple dependent rows are being inserted for a single parent, application-enforced
RI can perform a single check, but DB2 will check for each dependent.

� DB2 RI checking cannot take advantage of index look-aside or sequential detection. If the
access to the parent for RI checking is heavy and sequential, application-enforced RI,
which can take advantage of both of these efficiency techniques, may be faster.

� If the foreign key of a partitioned table is indexed using a DPSI, DB2-enforced RI will
require a probe into each partition looking for a dependent row when a parent row is
deleted.

If the partitioning key is derived from the foreign key so that the application can specify it in
the WHERE clause, partition pruning can result in fewer partitions being probed.

Chapter 3. Referential integrity 87

There are also several circumstances under which DB2-enforced RI cannot be used, typically
as a result of denormalization:

� DB2-enforced RI cannot be used if the entire primary key of the parent is not contained in
the dependent table.

� For example, if a parent table contains a date component to allow the storage of history,
and the date component was omitted from the dependent tables.

� DB2-enforced RI cannot be used if the foreign key of the dependent table can reference
more than one parent, in an exclusive or relationship.

Application-enforced RI recommendations
When performing application-enforced RI, either by choice or by necessity, consider the
following recommendations:

� When inserting into a dependent table, be sure that the parent row is locked when the
insert occurs.

If the application reads the parent table using a singleton select and an isolation of CS, it is
likely that no lock will be taken on the parent row or page. In this case, it is possible that
another transaction can change or delete the parent row before the insert of the
dependent row.

Even with a cursor on the parent row, lock avoidance may leave the parent row exposed to
deletion by other application processes.

Be sure to read the parent with an isolation level that guarantees a lock. For more
information about locking and isolation levels, see Chapter 12 of DB2 UDB for z/OS:
Design Guidelines for High Performance and Availability, SG24-7134.

� When inserting multiple dependent rows for a single parent row, read the parent once and
hold the lock on the parent until all dependent inserts are complete.

Avoiding redundant checks on the parent table is one of the ways that application-enforced
RI can outperform DB2-enforced RI.

� When inserting multiple dependent rows, try to insert them in the order of the parent table.

If application-enforced RI checks on the parent occur in a sequential manner, you can use
index look-aside and sequential detection to reduce getpages and I/O.

� Even when rows are not ordered by the parent, consider the possibility that the foreign key
has not changed.

When inserting rows that have foreign keys to code or look-up tables, consider the
possibility that multiple rows in sequence have the same value in the foreign key. A simple
IF statement check comparing the current value to the previous value is cheaper than a
database access or even the search of an in-memory table if the value is the same.

� Use informational referential constraints to let DB2 know that you are enforcing RI when
accessing MQTs.

3.8 REPORT utility
The REPORT utility provides information about table spaces. There are two kinds of
REPORT utility: REPORT TABLESPACESET and REPORT RECOVERY. In this chapter, we
discuss the REPORT TABLESPACESET. For details, check DB2 UDB for z/OS Version 8
Utility Guide and Reference, SC18-7427.

Use REPORT TABLESPACESET to find the names of all the table spaces and tables in a
table space set, including LOB table spaces.

88 Data Integrity with DB2 for z/OS

The output from REPORT TABLESPACESET consists of the names of all table spaces in the
table space set that you specify. It also lists all tables in the table spaces and all tables that
are dependent on those tables.

Let’s assume SAMP as the database name and TSDEPT as the table space name for table
DEPT.

Example 3-4 shows the output for the statement:

REPORT TABLESPACESET SAMP.TSDEPT

We see that TSEMP holds the EMP table and table space TSPROJ contains three other
tables belonging to the referential structure. Test is the owner of the objects.

Example 3-4 REPORT TABLESPACESET output

DSNU050I DSNUGUTC - REPORT TABLESPACESET SAMP.TSDEPT
DSNU587I -DB8A DSNUPSET - REPORT TABLESPACE SET WITH TABLESPACE SAMP.TSDEPT

TABLESPACE SET REPORT:

TABLESPACE : SAMP.TSDEPT

 TABLE : TEST.DEPT
 INDEXSPACE : SAMP.XDEPT1
 INDEX : TEST.XDEPT1
 INDEXSPACE : SAMP.XDEPT2
 INDEX : TEST.XDEPT2
 INDEXSPACE : SAMP.XDEPT3
 INDEX : TEST.XDEPT3
 DEP TABLE : TEST.EMP
 TEST.PROJ

TABLESPACE : SAMP.TSEMP

 TABLE : TEST.EMP
 INDEXSPACE : SAMP.XEMP1
 INDEX : TEST.XEMP1
 INDEXSPACE : SAMP.XEMP2
 INDEX : TEST.XEMP2
 DEP TABLE : TEST.EMPPROJACT
 TEST.PROJ

TABLESPACE : SAMP.TSPROJ

 TABLE : TEST.ACT
 INDEXSPACE : SAMP.XACT1
 INDEX : TEST.XACT1
 INDEXSPACE : SAMP.XACT2
 INDEX : TEST.XACT2
 DEP TABLE : TEST.PROJACT

 TABLE : TEST.EMPPROJACT
 INDEXSPACE : SAMP.XEMPPROJ
 INDEX : TEST.XEMPPROJACT1
 INDEXSPACE : SAMP.XEMP13ZK
 INDEX : TEST.XEMPPROJACT2

 TABLE : TEST.PROJ

Chapter 3. Referential integrity 89

 INDEXSPACE : SAMP.XPROJ1
 INDEX : TEST.XPROJ1
 INDEXSPACE : SAMP.XPROJ2
 INDEX : TEST.XPROJ2
 DEP TABLE : TEST.PROJACT

 TABLE : TEST.PROJACT
 INDEXSPACE : SAMP.XPROJAC1
 INDEX : TEST.XPROJAC1
 DEP TABLE : TEST.EMPPROJACT
DSNU580I DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

3.9 CHECK utility
When adding a referential constraint, unique constraint, or check constraint to a table, the
table space of this dependent table is put in CHECK-pending status. For details, see “Altering
a table for referential integrity” in the DB2 UDB for z/OS Version 8 Administration Guide,
SC18-7413. This status is independent of the values within the table. There are three possible
ways to resolve the CHKPEND status:

� DROP the constraint.
� Run the REPAIR utility with NOCHECKPEND.
� Run CHECK utilities.

Running the REPAIR utility can cause inconsistent data in the tables. The typical and most
recommended way is to run the CHECK utility.

There are two types of CHECK:

� CHECK DATA
� CHECK INDEX

Before running CHECK DATA, you should run CHECK INDEX on primary key indexes and
foreign key indexes to ensure that the indexes that CHECK DATA uses are valid. This action is
especially important before using CHECK DATA with the DELETE YES or PART options.

You can add a foreign key with the NOT ENFORCED option to create an informational
referential constraint. This action does not leave the table space in CHECK-pending status,
and you do not need to execute CHECK DATA.

3.9.1 CHECK DATA
The CHECK DATA utility checks table spaces for violations of referential and table check
constraints and reports information about violations that it detects. CHECK DATA also checks
for consistency between a base table space and the corresponding LOB table space.

CHECK DATA optionally deletes rows that violate referential or table check constraints.
CHECK DATA copies each row that violates one or more constraints to an exception table.

If a row violates two or more constraints, the row is copied only once. If the utility finds any
violation of constraints, CHECK DATA puts the table space that it is checking in the
CHECK-pending status.

Important: The utility does not check informational referential constraints.

90 Data Integrity with DB2 for z/OS

You can specify that the CHECK-pending status is to be reset when CHECK DATA execution
completes.

To avoid problems, you should run CHECK DATA with DELETE NO to detect the violations,
before you attempt to correct the errors. If required, use DELETE YES after you analyze the
output and understand the errors.

You can automatically delete rows that violate referential or table check constraints by
specifying CHECK DATA with DELETE YES. However, you should be aware of the following
possible challenges:

� The violation might be created by a non-RI error. For example, the indexes on a table
might be inconsistent with the data in a table.

� Deleting a row might cause a cascade of secondary deletes in dependent tables. The
cascade of deletes might be especially inconvenient within RI cycles.

� The error might be in the parent table.

CHECK DATA uses the primary key index and all indexes that exactly match a foreign key.
Therefore, before running CHECK DATA, ensure that the indexes are consistent with the data
by using the CHECK INDEX utility.

Resetting the CHECK-pending status
CHECK DATA offers two ways to reset the CHECK-pending status:

� DELETE NO, when no tables contain rows that violate any kind of constraints (referential,
unique, or check).

� DELETE YES to remove all rows that violate the constraints.

Exception table
When using the DELETE YES option, an exception table for each dependent table or each
table with table constraints that will be checked must be created. An exception table is a
user-defined table with the same structure of a dependent table. The CHECK DATA with
DELETE YES utility copies the violated rows to the the exception table and deletes them from
the original table.

You can also include columns that identify the RID and the starting timestamp of the CHECK
DATA. This is optional.

Example 3-5 shows how to create an exception table for the table DEPT shown in Figure 3-3
on page 58.

Example 3-5 Exception table

Create the exception table for DEPT

CREATE EXP_DEPT LIKE DEPT IN SAMPLE.EXP_TBSP;

Adding the column that identifies the RID of the invalid row:
ALTER TABLE EXP_DEPT

ADD RID CHAR(4);

Adding the column that shows the starting DATE AND time of the CHECK DATA:
ALTER TABLE EXP_DEPT

ADD TIME_DATE TIMESTAMP NOT NULL WITH DEFAULT;

Chapter 3. Referential integrity 91

You have the capability to correct the data in the exception table using the update statement
and reinsert the data into the original table using the insert statement.

CHECK DATA output
CHECK DATA issues a message for every row that contains a referential or table check
constraint violation. The violation is identified by:

� The RID of the row
� The name of the table that contains the row
� The name of the constraint that is being violated

Example 3-6 shows output for CHECK DATA for table DEPT. The DEPT is in CHECK-pending
status, because of the addition of the foreign keys ADMRDEPT and MGRNO.

Input:

CHECK DATA TABLESPACE SAMPLE.TSDEPT

Example 3-6 Output for CHECK DATA

DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = CHKDEPT
DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNUGUTC - CHECK DATA TABLESPACE SAMPLE.TSDEPT SORTDEVT SYSDA SORTNUM 4
DSNUKDST - CHECKING TABLE TEST.DEPT
DSNUKDAT - CHECK TABLE SAMPLE.DEPT COMPLETE, ELAPSED TIME=00:00:00
DSNUK001 - CHECK DATA COMPLETE,ELAPSED TIME=00:00:00
DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

This case resets the CHECK-pending status.

Example 3-7 shows the output of the same utility on a copy of the table after an insertion of
rows.

Example 3-7 Output CHECK DATA with DELETE NO

 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = PAOLOR3.PAOLOR3C
 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
 DSNUGUTC - CHECK DATA TABLESPACE FABRICIO.TSDEPT SORTDEVT SYSDA SORTNUM 4
 DSNUKDST - CHECKING TABLE PAOLOR3.DEPT
 DSNUGSOR - SORT PHASE STATISTICS -
 NUMBER OF RECORDS=7
 ELAPSED TIME=00:00:00
 DSNUKERK - ROW (RID=X'000000020F') HAS NO PARENT FOR PAOLOR3.DEPT.MGRNO
 DSNUKERK - ROW (RID=X'000000020F') HAS NO PARENT FOR PAOLOR3.DEPT.ADMRDEPT
 DSNUKERK - ROW (RID=X'0000000210') HAS NO PARENT FOR PAOLOR3.DEPT.MGRNO
 DSNUKERK - ROW (RID=X'0000000210') HAS NO PARENT FOR PAOLOR3.DEPT.ADMRDEPT
 DSNUKERK - ROW (RID=X'0000000211') HAS NO PARENT FOR PAOLOR3.DEPT.MGRNO
 DSNUKERK - ROW (RID=X'0000000212') HAS NO PARENT FOR PAOLOR3.DEPT.ADMRDEPT
 DSNUKERK - ROW (RID=X'0000000212') HAS NO PARENT FOR PAOLOR3.DEPT.MGRNO
 DSNUKDAT - CHECK TABLE PAOLOR3.DEPT COMPLETE, ELAPSED TIME=00:00:00
DB8A DSNUGSRX - TABLESPACE FABRICIO.TSDEPT IS IN CHECK PENDING
 DSNUK001 - CHECK DATA COMPLETE,ELAPSED TIME=00:00:00
 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=4

The table space FABRICIO.TSDEPT is still in CHECK-pending status. To remove the status,
you can run the CHECK DATA utility with DELETE YES.

CHECK DATA TABLESPACE FABRICIO.TSDEPT
 FOR EXCEPTION IN DEPT USE EXP_DEPT
 DELETE YES

92 Data Integrity with DB2 for z/OS

 SORTDEVT SYSDA SORTNUM 4

This utility deletes the invalid rows from the DEPT table and inserts them in the EXP_DEPT
(exception) table. Example 3-8 shows the output for this case.

Example 3-8 Output CHECK DATA with DELETE YES

 DSNUKDST - CHECKING TABLE PAOLOR3.DEPT
 DSNUGSOR - SORT PHASE STATISTICS -
 NUMBER OF RECORDS=7
 ELAPSED TIME=00:00:00
 DSNUKERK - ROW (RID=X'000000020F') HAS NO PARENT FOR PAOLOR3.DEPT.MGRNO
 DSNUKERK - ROW (RID=X'000000020F') HAS NO PARENT FOR PAOLOR3.DEPT.ADMRDEPT
 DSNUKERK - ROW (RID=X'0000000210') HAS NO PARENT FOR PAOLOR3.DEPT.MGRNO
 DSNUKERK - ROW (RID=X'0000000210') HAS NO PARENT FOR PAOLOR3.DEPT.ADMRDEPT
 DSNUKERK - ROW (RID=X'0000000211') HAS NO PARENT FOR PAOLOR3.DEPT.MGRNO
 DSNUKERK - ROW (RID=X'0000000212') HAS NO PARENT FOR PAOLOR3.DEPT.ADMRDEPT
 DSNUKERK - ROW (RID=X'0000000212') HAS NO PARENT FOR PAOLOR3.DEPT.MGRNO
 DSNUKDAT - CHECK TABLE PAOLOR3.DEPT COMPLETE, ELAPSED TIME=00:00:00
DB8A DSNUKRDY - 4 ROWS DELETED FROM TABLE PAOLOR3.DEPT
 DSNUK001 - CHECK DATA COMPLETE,ELAPSED TIME=00:00:01
 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=4

The CHECK DATA utility resets the CHECK-pending status.

Example 3-9 shows the contents of the exception table.

Example 3-9 Exception table for DEPT

SELECT DEPTNO, DEPTNAME, MGRNO, ADMRDEPT, LOCATION, HEX(RID), TIME_DATE
FROM EXP_DEPT;

Result

DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION HEX(RID) TIME_DATE
---- -------- ------ -------- -------- -------- --------------------------
K01 DB2 12345 X01 - 0000020F 2005-10-26-14.57.13.329972
K02 IMS 23451 X32 - 00000210 2005-10-26-14.57.13.329972
K04 CICS 12345 D01 - 00000211 2005-10-26-14.57.13.329972
K03 MVS 00010 L01 - 00000212 2005-10-26-14.57.13.329972

3.9.2 CHECK INDEX
The CHECK INDEX online utility tests whether indexes are consistent with the data that they
index and issues warning messages when it finds an inconsistency. We recommend you run
CHECK INDEX before CHECK DATA, especially if you have specified DELETE YES. Running
CHECK INDEX before CHECK DATA ensures that the indexes that CHECK DATA uses are
valid.

With DB2 V8, CHECK INDEX now has two options:

� Read-only behavior as SHRLEVEL REFERENCE
� The new SHRLEVEL CHANGE

SHRLEVEL CHANGE allows you to have longer read-write access to applications during
CHECK INDEX and reduces the read-only time for users. It satisfies the requirement of users
with large tables who cannot afford outages caused by the read-only time of the normal
CHECK INDEX SHRLEVEL REFERENCE. Add this new capability by applying APARs
PQ92749 (PTF UK04683) and PQ96956 (UK08561) to DB2 V8.

Chapter 3. Referential integrity 93

If you specify SHRLEVEL REFERENCE, the default, the application can read from but cannot
write to the index, table space, or partition that is to be checked. See Figure 3-18.

Figure 3-18 CHECK INDEX - SHRLEVEL REFERENCE and CHANGE

If you specify SHRLEVEL CHANGE, the applications can read from and write to the index,
table space, or partition that is being checked. The phases differ. In the case of SHRLEVEL
REFERENCE, DB2 unloads the index entries, sorts the index entries, and scans the data to
validate index entries. Alternatively, SHRLEVEL CHANGE first goes to the table space data
set, unloads the data, sorts the index keys and merges them (if the index is non-partitioned),
and then scans the index to validate.

In addition, CHECK INDEX provides a parallel processing structure similar to REBUILD
INDEX.

When you specify SHRLEVEL CHANGE, DB2 performs the following actions:

� Drains all writers and forces the buffers to disk for the specified object and all of its indexes
� Invokes DFSMSdss™ to copy the specified object and all of its indexes to shadow data

sets
� Enables read-write access for the specified object and all of its indexes
� Runs CHECK INDEX on the shadow data sets

DFSMSdss uses FlashCopy® Version 2, if available, to build the shadow data sets, reducing
the unavailability to just the time to establish the relationship between the source and target
copy.

Furthermore, SHRLEVEL CHANGE uses parallel tasks. With PI, the UNLOAD, SORT, and
CHECKIDX tasks are processed in parallel on each partition of the TS. With NPI, the
UNLOAD and SORT tasks are processed in parallel, just as with PI, but the CHECKIDX and
MERGE phases are not.

SHRLEVEL CHANGE also provides extra checking of the index tree structure.

CHKIDX
phase
Scan tablespace
data to validate

 indexes

 tablespacesSORT
phase
Sort index
entries

UNLOAD
phase
unload index
entries

CHECK INDEX SHRLEVEL CHANGE

SNAPSHOT COPY (e.g., FlashCopy 2)

CHKIDX
phase
Scan index
to validate

 indexes

tablespaces

tablespaces

 tablespaces SORT
phase
Sort index
keys

UNLOAD
phase
unload from
table space
to workfile

Temporary work datasets

 tablespaces

 indexes

MERGE
phase
Merge index
keys (only
in NPI)

Shadow dataset Shadow dataset

CHECK INDEX SHRLEVEL REFERENCE

 Temporary work datasets

94 Data Integrity with DB2 for z/OS

3.10 LOAD utility
By default, LOAD enforces referential constraints, except for informational referential
constraints, which LOAD ignores. By enforcing referential constraints, LOAD provides you
with several possibilities for error:

� Records that are to be loaded might have duplicate values of a primary key.

� Records that are to be loaded might have invalid foreign-key values, which are not values
of the primary key of the corresponding parent table.

� The loaded table might lack primary key values that are values of foreign keys in
dependent tables.

If you use the ENFORCE NO option, you tell LOAD not to enforce referential constraints.
Sometimes you have good reasons for doing that, but the result is that the loaded table space
might violate the constraints. Hence, LOAD places the loaded table space in CHECK-pending
status. If you use REPLACE, all table spaces that contain any dependent tables of the tables
that were loaded are also placed in CHECK-pending status. You must reset the status of each
table before you can use any of the table spaces.

For more details about the LOAD utility, refer to DB2 UDB for z/OS Version 8 Utility Guide and
Reference, SC18-7427.

3.10.1 Loading tables involved in cycles
As a simple example, Figure 3-19 on page 94 shows the challenge of loading tables involved
in cycles. In this example, each table resides in a separate table space.

Figure 3-19 Load tables involved in a cycle

TABLE A PK_A
FK_C

PK_B
FK_A

CASCADE

RESTRICT

PK_C
FK_B

TABLE B

TABLE C

SET NULL

Chapter 3. Referential integrity 95

Challenge of loading cycles
The challenges with loading cycles are:

� To load a table with ENFORCE CONSTRAINTS, the parent table must already have been
loaded.

In a cycle, this is not possible.

� If a table is loaded with ENFORCE NO, its table space is put in CHECK-pending status.

� When a table is in CHECK-pending status, it is impossible to read or update using normal
SQL. Therefore, correcting errors is difficult.

� CHECK with DELETE(YES) always cascade deletes. In a cycle, this option could remove
a lot of data which would have to be reinserted.

There are a number of ways to load cycles, we look at three options.

The first option
If all the three tables involved in the cycle reside in the same table space, then all the tables
can be loaded in a single load utility execution with ENFORCE CONSTRAINTS. This is
possible because DB2 first loads all the input data in the RELOAD phase of the LOAD utility
and verifies referential constraints in the ENFORCE phase.

The size of the tables in the referential structure and the availability of the new segmented
table space organization may make this option a viable alternative. However, if there are
many referential constraint violations in the data, many of the loaded rows will be deleted in
the ENFORCE phase.

The second option
If the three tables involved in the cycle reside in different table spaces:

1. Load all the tables in the referential structure, with ENFORCE NO. This results in all the
table spaces being put into a CHECK-pending status.

2. Remove the CHECK-pending status of these table spaces as documented in “Resetting
the CHECK-pending status” on page 90.

The third option
� Allow all loading to be done with ENFORCE CONSTRAINTS.
� Ensure that a table does not have to be corrected when it is in CHECK-pending status.
� Ensure that no tables have to be reloaded.

This can be achieved by using the following technique:

1. Preprocess the input data to remove all the errors, if possible.

2. Remove one of the constraints so that the referential structure no longer has a cycle.

This is done by dropping one of the foreign keys. Drop one of the foreign keys from the
table with the fewest number of rows, so that the later phases have as little to do as
possible.

In Figure 3-19 on page 94, assume that table A has the fewest number of rows, and
therefore, the foreign key from table A to table C is dropped:

ALTER TABLE A
DROP FOREIGN KEY FK_C

96 Data Integrity with DB2 for z/OS

3. Load the data.

The tables are now not in a cycle and can be loaded with ENFORCE YES in the following
sequence:

a. Table A is loaded first.
b. Table B is loaded next.
c. Finally, table C is loaded.

This sequence ensures that the parent table rows are loaded first, so that dependent rows
are not rejected due to the corresponding parent rows being absent.

4. Recreate the missing constraint so that the cycle is recreated.

The foreign key between table A and table C can be recreated with statements as shown
in Example 3-2 on page 68.

This puts table A into CHECK-pending status.

5. Run the CHECK utility on the table spaces in CHECK-pending. Remove errors or reset the
CHECK-pending status using the REPAIR utility if you are sure that no referential
constraint violations actually exist in the data.

Run CHECK utility with DELETE NO on table A.

If there are no errors, then the load is completed.

If there are errors, do the following:

a. Break the cycle by dropping the foreign key FK-C again. This resets the
CHECK-pending status on table A.

b. Correct errors by modifying the foreign keys in table A or inserting corresponding
parent rows in table C.

c. Recreate the cycle, and then run CHECK utility to detect errors.

d. Loop back to break the cycle until no more errors are detected.

The third option is preferable to the second option, because it potentially limits the amount of
checking to be done by the CHECK utility to only one dependent table space. This is usually
more efficient than loading all tables with no referential constraint enforcement followed by a
CHECK utility execution against all the dependent table spaces.

3.11 Performance
As mentioned in “DB2 versus application RI” on page 86, most of the time, DB2-enforced RI
performs better than an application-enforced RI. In “Triggers” on page 113, there are samples
comparing insert and delete programs that use referential constraint, a trigger to enforce RI,
and stored procedures. The results are generally much better using referential constraint.

But in fact, there are instances where application-enforced RI performs better, such as:

� Code tables

Because these tables are small and heavily accessed, the cost associated with every
access to these tables should be considered.

� Mass insert

Application-enforced RI can check only once at the break of the parent table.
DB2-enforced RI will check for each dependent row inserted.

Chapter 3. Referential integrity 97

� Mass delete

With DB2-enforced RI, the advantage of mass delete performance with segmented table
spaces is not available when all the rows in a parent table are deleted via a mass delete
statement, such as:

DELETE FROM T1

Our recommendation is to use DB2-enforced RI, wherever it is possible.

3.12 Migrating applications to RI
This section describes the considerations in migrating applications with application-enforced
RI to DB2-enforced RI. This section is organized as follows:

� Planning considerations
� Application implementation considerations

3.12.1 Planning considerations
Migration of an existing application that has implemented application-enforced RI to
DB2-enforced RI is a non-trivial task.

However, there are a number of reasons why the people in an installation may want to migrate
an existing application to take advantage of DB2-enforced RI, such as:

� New application extensions are planned for the application, and both performance and
application productivity improvements are expected.

� Updates are desirable from an ad hoc environment, such as QMF, SPUFI, or client tools.

� Maintenance costs are expected to be lower with DB2-enforced RI.

� Greater integrity of DB2 data with DB2-enforced RI.

� Increased automation of operations.

The DB2-enforced RI factors that should be taken into account when migrating existing
applications are:

� DB2 restrictions implementing RI as described in 3.5.3, “Circumventing DML restrictions”
on page 84

� Locking implications

� New SQL codes returned to applications on referential constraint violations

� Utility and operations impact

All these factors have a significant contribution in how easy or difficult it is for an application to
be migrated to DB2-enforced RI.

Besides the DB2 considerations and the installation decision makers’ desire to move to
DB2-enforced RI, you must consider other factors, as follows:

� Does the migration process have to be phased over time or does it require being cut over
in one step?

A phased migration process is a process where some of the data and application
programs are migrated to DB2-enforced RI, while other tables and application programs
in the same application are not migrated. This is a very complex task because of the
DB2-enforced RI considerations described earlier.

98 Data Integrity with DB2 for z/OS

With a mix of DB2-enforced RI and application-enforced RI, care must be taken when
backing up and restoring tables because DB2 is aware of a referential structure while the
“application” reflects another.

A phased migration might be possible, but it is likely to take a significant portion of time
compared to a migration in a single step.

� In addition, the installation must:

– Understand how the existing applications are written, in particular the updating aspects
which affect referential constraint. For example:

• Does the current implementation enforce RI effectively?

• Are all the updates in subroutines or spread throughout the code?

• Would any of the statements violate DB2 restrictions?

• How are unexpected SQLCODEs handled?

This process will help define the amount of work necessary to migrate the application
to DB2-enforced RI.

– Understand how operations ensure RI for the existing application, such as:

• How are tables loaded and RI-checked?

• Are there any consistency check processes?

• How is backup and recovery controlled across related tables?

This process should highlight areas of concern when moving operations to
DB2-enforced RI.

3.12.2 Application implementation considerations
The following is a checklist of the steps that must be taken in order to migrate an existing
application to DB2-enforced RI in one procedure:

1. Revisit the conceptual model for the application and ensure that all the relevant RI-related
information is included.

2. Design the DB2 referential structure.

3. On the basis of the existing DB2 implementation, if required, modify the DB2 referential
structure designed in the previous step.

– If the existing DB2 implementation structure is markedly different from the DB2
referential structure, a design compromise has to be made regarding which structure to
choose.

– If the existing structure is chosen, the performance of the migrated application could be
affected.

– If the DB2 referential structure is chosen, the migration process could become very
complex.

4. Test the extended DDL on test tables to ensure that the referential constraints do not
violate the DB2 restrictions.

5. REVOKE some of the authorities that were required with application-enforced RI, but are
no longer required for DB2-enforced RI.

6. The privilege set must include a GRANT ALTER authority or the REFERENCES privilege
on the columns of the parent key to creators of foreign keys.

7. ALTER TABLE to add unique key and primary key definitions, if needed.

Chapter 3. Referential integrity 99

8. ALTER TABLE ADD FOREIGN KEY for all the relationships of a dependent table. This will
put the table space into CHECK-pending. This process could be done for all table spaces
at once or a table space at a time. The choice depends on the complexity of the
application and the level of confidence in the planning process. Choose useful names for
the referential constraints.

9. Add FK index definitions to help when deleting parent rows. Note that these FK indexes
are not shown in the PLAN_TABLE.

10.Run the CHECK utility. If it fails, drop the constraint and find out why the data is
inconsistent. Make the necessary corrections and rerun the CHECK utility until no more
errors are found.

11.Upgrade the LOAD, RECOVER, COPY, and CHECK jobs to use the facilities of DB2 and
do a backup.

12.In the programs, modify the SQL statements that affect referential constraints, such as
INSERT, UPDATE, and DELETE. Provide these SQL statements so people are aware of
the constraint names and the related error message handling.

13. Rebind all plans.

You must do this with care to ensure that locking and back out considerations are not
compromised.

3.13 DB2 catalog information and queries
This section highlights the information in the DB2 catalog to support RI and suggests some
queries that you might use to obtain useful information for managing the RI environment.

This section is organized as follows:

� DB2 catalog extensions

The extensions to specific tables in the DB2 catalog are described briefly.

� Sample catalog queries

Some queries that might be useful in managing the RI environment are provided. These
are sample queries. You are expected to build and extend upon the base provided to suit
your environment.

3.13.1 DB2 catalog extensions
DB2 catalog tables are used specifically to support RI and constraint definitions, as well as
existing tables impacted by such definitions and usage, are shown in Figure 3-20 and listed
here:

� SYSIBM.SYSCHECKDEP
� SYSIBM.SYSCHECKS/SYSCHECKS2
� SYSIBM.SYSCOLUMNS
� SYSIBM.SYSCOPY
� SYSIBM.SYSFOREIGNKEYS
� SYSIBM.SYSINDEXES
� SYSIBM.SYSKEYS
� SYSIBM.SYSRELS
� SYSIBM.SYSTABLEPART
� SYSIBM.SYSTABLES
� SYSIBM.SYSTABLESPACE

100 Data Integrity with DB2 for z/OS

Figure 3-20 DB2 catalog tables affected by RI

The catalog tables used for check constraint definitions are listed here for completeness.

SYSIBM.SYSCHECKS
SYSIBM.SYSCHECKS contains one row for each check constraint defined on a table. See
Table 3-4.

Table 3-4 SYSIBM.SYSCHECKS

SYSTABLESPACE

SYSTABLES

SYSRELS

SYSFOREIGNKEYS

SYSCOPY

SYSTABLEPART

SYSINDEXES SYSCOLUMNS

SYSCHECKS2

SYSCHECKS

SYSCHECKDEP

Column name Data type Description

TBOWNER VARCHAR(128)
NOT NULL

Authorization ID of the owner of the table on which the check constraint
is defined.

CREATOR VARCHAR(128)
NOT NULL

Authorization ID of the creator of the check constraint.

DBID SMALLINTNOT
NULL

Internal identifier of the database for the check constraint.

OBID SMALLINTNOT
NULL

Internal identifier of the check constraint.

TIMESTAMP TIMESTAMP NOT
NULL

Name of column.

RBA CHAR(6) FOR BIT
DATA NOT NULL
WITH DEFAULT

The log RBA when the check constraint was created.

Chapter 3. Referential integrity 101

SYSIBM.SYSCHECKS2
SYSIBM.SYSCHECKS2 contains one row for each table check constraint for catalog tables
created in or after Version 7. Check constraints for catalog tables created before Version 7 are
not included in this table. See Table 3-5.

Table 3-5 SYSIBM.SYSCHECKS2

SYSIBM.SYSCHECKDEP
SYSIBM.SYSCHECKDEP contains one row for each reference to a column in a check
constraint. See Table 3-6.

Table 3-6 SYSIBM.SYSCHECKDEP

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape.

TBNAME VARCHAR(128)
NOT NULL

Name of the table on which the check constraint is defined.

CHECKNAME VARCHAR(128)
NOT NULL

Table check constraint name.

CHECKCONDITION VARCHAR(7400)
NOT NULL

Text of the table check constraint.

Column name Data type Description

Columns name Data type Description

TBOWNER VARCHAR(128)
NOT NULL

Authorization ID of the owner of the table on which the check constraint
is defined.

TBNAME VARCHAR(128)
NOT NULL

Name of the table on which the check constraint is defined.

CHECKNAME VARCHAR(128)
NOT NULL

Table check constraint name.

PATHSCHEMAS VARCHAR(2048)
NOT NULL

SQL path at the time the check constraint was created. The path is
used to resolve unqualified cast function names that are used in the
constraint definition.

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape.

Column name Data type Description

TBOWNER VARCHAR(128)
NOT NULL

Authorization ID of the owner of the table on which the
check constraint is defined.

TBNAME VARCHAR(128)
NOT NULL

Name of the table on which the check constraint is
defined.

CHECKNAME VARCHAR(128)
NOT NULL

Check constraint name.

102 Data Integrity with DB2 for z/OS

The catalog columns used to support RI.

SYSIBM.SYSCOLUMNS
SYSIBM.SYSCOLUMNS has two columns that pertain to RI. In the description of these
columns in Table 3-7, C denotes a column described by a row of SYSCOLUMNS.

Table 3-7 SYSIBM.SYSCOLUMNS columns affected by RI

SYSIBM.SYSCOPY
SYSIBM.SYSCOPY has two existing columns that are used for RI, see Table 3-8.

Table 3-8 SYSIBM.SYSCOPY columns affected by RI

SYSIBM.SYSFOREIGNKEYS
SYSIBM.SYSFOREIGNKEYS contains one row for every column of every foreign key. See
Table 3-9. The foreign key of SYSFOREIGNKEY is (CREATOR, TBNAME, RELNAME) and
its values match the primary key of SYSRELS. Table 3-11 shows the columns of SYSRELS.

Table 3-9 SYSIBM.SYSFOREIGNKEYS columns affected by RI

COLNAME VARCHAR(128)
NOT NULL

Name of column to which the check constraint refers.

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape.

Column name Data type Description

KEYSEQ SMALLINT
NOT NULL

The ordinality of C within the primary key of its table. Zero if C is
not part of a primary key.

Column
name

Data type Description

ICTYPE CHAR(1)
NOT NULL

If ICTYPE is Q, the row contains information about an invocation of
the QUIESCE utility.

TIMESTAMP TIMESTAMP The date and time when the row was inserted. This is the date and
time recorded in ICDATE and ICTIME. The use of TIMESTAMP is
recommended over that of ICDATE and ICTIME, because the latter
two columns may not be supported in later DB2 releases. For the
COPYTOCOPY utility, this value is the date and time when the row
was inserted for the primary local site or primary recovery site copy.

Columns
name

Data type Description

CREATOR VARCHAR(
128)
NOT NULL

Authorization ID of the owner of the table that contains the column.

Column name Data type Description

Chapter 3. Referential integrity 103

SYSIBM.SYSINDEXES
SYSIBM.SYSINDEXES has one column that is used for RI, see Table 3-10.

Table 3-10 SYSIBM.SYSINDEXES column affected by RI

SYSIBM.SYSRELS
SYSIBM.SYSRELS has a row for every defined relationship. The primary key of SYSRELS is
(CREATOR, TBNAME, RELNAME). The foreign keys of SYSRELS are (CREATOR,
TBNAME) and (REFTBCREATOR, REFTBNAME). Both foreign keys reference the primary
key of SYSTABLES which is (CREATOR, NAME). See Table 3-11.

Table 3-11 SYSIBM.SYSRELS columns affected by RI

TBNAME VARCHAR(
128)
NOT NULL

Name of the table that contains the column.

RELNAME VARCHAR(
128)
NOT NULL

Constraint name for the constraint for which the column is part of the
foreign key.

COLNAME VARCHAR(
128)
NOT NULL

Name of column.

COLNO SMALLINT
NOT NULL

Numeric place of the column in its table.

COLSEQ SMALLINT
NOT NULL

Numeric place of the column in the foreign key.

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape.

Column name Data type Description

UNIQUERULE CHAR(1) NOT NULL P: Yes, and it is a primary index (As in prior releases of
DB2, a value of P is used for primary keys that are used to
enforce a referential constraint.)
R: A non-PK unique key used as a parent key.

Column name Data type Description

CREATOR VARCHAR(128)
NOT NULL

Authorization ID of the owner of the dependent table of
the referential constraint.

TBNAME VARCHAR(128)
NOT NULL

Name of the dependent table of the referential constraint.

RELNAME VARCHAR(128)
NOT NULL

Constraint name.

REFTBNAME VARCHAR(128)
NOT NULL

Name of the parent table of the referential constraint.

Columns
name

Data type Description

104 Data Integrity with DB2 for z/OS

DSNDLX01 is an index on SYSLINKS that is not used by DB2 and is not required for RI.
However, RI does require an index on SYSRELS. Thus, DSNDLX01 is redefined as an index
on SYSRELS (REFTBCREATOR, REFTBNAME). This is a non-cluster, non-unique index
with generic clustering on REFTBCREATOR. It is used by DB2 to determine all relationships
in which a table is a parent. Furthermore, since it is an index on the foreign key of the
relationship that is added to the catalog, it also used to cascade delete rows of SYSRELS
when a parent table is dropped.

SYSIBM.SYSTABCONST
SYSIBM.SYSTABCONST contains one row for each unique constraint (primary key or unique
key) created in DB2 for OS/390 Version 7 or later. See Table 3-12.

REFTBCREATOR VARCHAR(128)
NOT NULL

Authorization ID of the owner of the parent table.

COLCOUNT SMALLINT
NOT NULL

Number of columns in the foreign key.

DELETERULE CHAR(1)
NOT NULL

Type of delete rule for the referential constraint:
A NO ACTION
C CASCADE
N SET NULL
R RESTRICT

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape.

RELOBID1 SMALLINT
NOT NULL
WITH DEFAULT

Internal identifier of the constraint with respect to the
database that contains the parent table.

RELOBID2 SMALLINT
NOT NULL
WITH DEFAULT

Internal identifier of the constraint with respect to the
database that contains the dependent table.

TIMESTAMP TIMESTAMP
NOT NULL
WITH DEFAULT

Date and time the constraint was defined. If the constraint
is between catalog tables prior to DB2 Version 2 Release
3, the value is 1985-04-01-00.00.00.000000.

IXOWNER VARCHAR(128)
NOT NULL

Owner of unique non-primary index used for the parent
key. The values is 99999999 if the enforcing index has
been dropped. Blank if the enforcing index is a primary
index.

IXNAME VARCHAR(128)
NOT NULL

Name of unique non-primary index used for a parent key.
The value is 99999999 if the enforcing index has been
dropped. Blank if the enforcing index is a primary index.

ENFORCED CHAR(1) NOT
NULL WITH
DEFAULT

Enforced by the system or not:
Y Enforced by the system
N Not enforced by the system (trusted)

CHECKEXISTING
DATA

CHAR(1) NOT
NULL WITH
DEFAULT

Option for checking existing data: I, Immediately check
existing data. If ENFORCED = Y, this column will have a
value of I. N, Never check existing data. If ENFORCED =
N, this column will have a value of N.

Column name Data type Description

Chapter 3. Referential integrity 105

Table 3-12 SYSIBM.SYSTABCONST columns affected by RI

SYSIBM.SYSTABLEPART
SYSIBM.SYSTABLEPART has two columns that are used for RI. See Table 3-13.

Table 3-13 SYSIBM.SYSTABLEPART columns affected by RI

Column name Data type Description

CONSTNAME VARCHAR(128)
NOT NULL

Name of the constraint.

TBCREATOR VARCHAR(128)
NOT NULL

Authorization ID of the owner of the dependent table on
which the constraint is defined.

TBNAME VARCHAR(128)
NOT NULL

Name of the dependent table on which the constraint is
defined.

CREATOR VARCHAR(128)
NOT NULL

Authorization ID under which the constraint was created.

TYPE CHAR(1)
NOT NULL

Type of constraint:
P Primary key
U Unique key

IXOWNER VARCHAR(128)
NOT NULL

Owner of unique non-primary index used for the parent
key. The value is 99999999 if the enforcing index has
been dropped. Blank if the enforcing index is a primary
index.

IXNAME VARCHAR(128)
NOT NULL

Name of unique non-primary index used for a parent key.
The value is 99999999 if the enforcing index has been
dropped. Blank if the enforcing index is a primary index.

CREATEDTS TIMESTAMP
NOT NULL

Time when the statement to create the constraint was
executed.

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape.

COLCOUNT SMALLINT
NOT NULL

Number of columns in the constraint.

Column name Data type Description

CHECKFLAG CHAR(1) NOT
NULL WITH
DEFAULT

C .The table space partition is in a CHECK-pending status
and there are rows in the table that can violate referential
constraints, check constraints, or both.
Blank. The table space is not a partition or does not
contain rows that may violate referential constraints,
check constraints, or both.

CHECKRID5B CHAR(5) NOT
NULL WITH
DEFAULT FOR
BIT DATA

Blank. if the table or partition is not in a CHECK-pending
status (CHECKFLAG is blank), or if the table space is not
partitioned. Otherwise it is the RID of the first row of the
table space partition that can violate referential
constraints, check constraints, or both; or the value is
X’0000000000’, indicating that any row can violate
referential constraints.

106 Data Integrity with DB2 for z/OS

SYSIBM.SYSTABLES
SYSIBM.SYSTABLES has seven columns that pertain to RI. These columns apply only to
tables and contain non-null default values in rows that describe views. See Table 3-14.

Table 3-14 SYSIBM.SYSTABLES columns affected by RI

Column name Data type Description

PARENTS SMALLINT
NOT NULL

Number of relationships in which the table is a dependent.
The value is 0 if the row describes a view, an alias, a
created temporary table, or a materialized query table.

CHILDREN SMALLINT
NOT NULL

Number of relationships in which the table is a parent. The
value is 0 if the row describes a view, an alias, a created
temporary table, or a materialized query table.

KEYCOLUMNS SMALLINT
NOT NULL

Number of columns in the table’s primary key. The value
is 0 if the row describes a view, an alias, or a created
temporary table.

STATUS CHAR(1)
NOT NULL

Indicates the status of the table definition:
I .The definition of the table is incomplete. The
TABLESTATUS column indicates the reason why the table
definition is incomplete.
X. The table has a primary index and the table definition
is complete.
Blank. The table has no primary index, the table is a
catalog table, or the row describes a view or alias. The
definition of the table, view, or alias is complete.

KEYOBID SMALLINT
NOT NULL

Internal DB2 identifier of the index that enforces
uniqueness of the table’s primary key; 0 if not applicable.

CHECKFLAG CHAR(1)
NOT NULL WITH
DEFAULT

C. The table space that contains the table is in a
CHECK-pending status because there are rows in the
table that violate referential constraints, table check
constraints, or both.

CHECKRID5B CHAR(5)
NOT NULL WITH
DEFAULT FOR
BIT DATA

Blank. if the table or partition is not in a CHECK-pending
status (CHECKFLAG is blank), if the table space is not
partitioned, or if the table is a created temporary table.
Otherwise it is the RID of the first row of the table space
partition that can violate referential constraints, check
constraints, or both; or the value is X’0000000000’,
indicating that any row can violate referential constraints.

TABLESTATUS SMALLINT
NOT NULL

Indicates the reason for an incomplete table definition:
P. Definition is incomplete because the table lacks a
primary index.

Chapter 3. Referential integrity 107

SYSIBM.SYSTABLESPACE
SYSIBM.SYSTABLESPACE has one existing column that is used for RI. See Table 3-15.

Table 3-15 SYSIBM.SYSTABLESPACE column affected by RI

3.13.2 Sample catalog queries
In this section, we show a set of sample queries. They are provided with the objective to help
you check out the referential structures. They are meant to list:

� Tables without a primary key
� Tables by creator without a foreign key
� Dependent tables of a specific table by creator
� Parent tables of a specific table by creator
� All the foreign key columns for a specific creator
� Is the index a foreign key index?
� Foreign keys without indexes
� Columns in a foreign key without index
� Columns participating in primary key and foreign keys
� What are the quiesce points for the given table spaces?
� What is the scope of CHECK-pending for the tables in a table space?
� Which tables are the ancestors?
� Which tables are the descendents?
� The whole family

Many more queries can be identified to manage and control the RI environment, which are
not described here, but you can expand on the basic queries given here to suit your own
environment. In some cases, it becomes necessary to run the REPORT or CHANGE LOG
INVENTORY utility to obtain information that is not readily or easily accessible from the DB2
catalog. For instance, SYSLGRNG entries for a table space can only be obtained by running
the REPORT utility for a table space.

Tables without a primary key
SELECT CREATOR. NAME
FROM SYSIBM.SYSTABLES
WHERE TYPE = 'T' AND
STATUS = ‘ ‘
ORDER BY NAME

Tables by creator without a foreign key
SELECT CREATOR, NAME, DBNAME
FROM SYSIBM.SYSTABLES
WHERE CREATOR = &creator
AND TYPE = 'T'
AND CREATOR ||NAME
NOT IN (SELECT DISTINCT CREATOR || TBNAME
FROM SYSIBM.SYSRELS)
ORDER BY NAME

Column name Data type Description

STATUS CHAR(1)
NOT NULL

Availability status of the table space:
A Available
P Table space is in a CHECK-pending status.
S Table space is in a CHECK-pending status with the
scope less than the entire table space.

108 Data Integrity with DB2 for z/OS

Dependent tables of a specific table by creator
SELECT CREATOR, TBNAME, RELNAME
FROM SYSIBM.SYSRELS
WHERE REFTBCREATOR = &creator
AND REFTBNAME = &tablename
ORDER BY CREATOR, TBNAME, RELNAME

This example shows how to get a list of dependent tables. Use this when considering a
change to a table that could affect any children.

Parent tables of a specific table by creator
SELECT REFTBCREATOR. REFTBNAME. RELNAME. DELETERULE
FROM SYSIBM.SYSRELS
WHERE CREATOR = &creator
AND TBNAME = &tablename
ORDER BY REFTBCREATOR, REFTBNAME, RELNAME

This example shows how to get a list of parent tables. Use this when considering a change to
a table that could affect its parents.

All the foreign key columns for a specific creator
SELECT F.CREATOR, F.TBNAME, F.COLNAME, F.RELNAME,
R.REFTBCREATOR, R.REFTBNAME, C.NAME
FROM
SYSIBM.SYSFOREIGNKEYS F,
SYSIBM.SYSRELS R,
SYSIBM.SYSCOLUMNS C
WHERE
F.CREATOR = &creator
AND F.CREATOR = R.CREATOR
AND F.TBNAME = R.TBNAME
AND F.RELNAHE = R.RELNAME
AND R.REFTBCREATOR = C.TBCREATOR
AND R. REFTBNAME = C. TBNAME
AND F.COLSEQ = C.KEYSEQ
ORDER BY F.CREATOR, F.TBNAME, F.RELNAME, C.NAME

This example lists the columns of each of the foreign keys in the dependent table and their
corresponding primary key in the parent table. This query could be useful when developing
complex queries joining various tables.

Is the index a foreign key index?
SELECT I.NAME, R.CREATOR, R.TBNAME, R.RELNAME, R.COLCOUNT
FROM

SYSIBM.SYSFOREIGNKEYS F,
SYSIBM.SYSRELS R,
SYSIBM.SYSINDEXES I,
SYSIBM.SYSKEYS K

WHERE
 F.CREATOR = &creator

AND F.CREATOR = R.CREATOR
AND F.TBNAME = R.TBNAME
AND F.RELNAME = R.RELNAME
AND R.CREATOR = I.TBCREATOR
AND R.TBNAME = I.TBNAME
AND R.COLCOUNT <= I.COLCOUNT
AND I.CREATOR = K.IXCREATOR
AND I.NAME = K.IXNAME

Chapter 3. Referential integrity 109

AND K.COLNAME = F.COLNAME
AND K.COLSEQ = F.COLSEQ

GROUP BY I.NAME, R.CREATOR, R.TBNAME, R.RETNAME, R.COLCOUNT
HAVING COUNT(*) = R.COLCOUNT
ORDER BY I.NAME, R.CREATOR, R.TBNAME, R.RELNAME

An index is an index on a foreign key if the foreign key has ‘n’ columns and the first ‘n’
columns of the index map onto the same columns of the table as the foreign key and in the
same order.

The comparisons K.COLNO to F.COLNO and K.COLSEQ to F.COLSEQ ensure that the
columns of the index map onto the columns of the foreign key.

The HAVING clause ensures that all the columns map.

The comparison R.COLCOUNT < = X.COLCOUNT is not necessary to get the correct answer
but avoids checks of relationships that cannot qualify.

Foreign keys without indexes
SELECT REL.CREATOR, REL.TBNAME, REL.RELNAME

FROM
SYSIBM.SYSRELS REL

WHERE
 REL.CREATOR = &creator
AND REL.CREATOR ||REL.TBNAME || REL.RELNAME NOT IN

(SELECT R.CREATOR || R.TBNAME || R.RELNAME
FROM

SYSIBM.SYSFOREIGNKEYS F,
SYSIBM.SYSRELS R,
SYSIBM.SYSINDEXES I,
SYSIBM.SYSKEYS K

WHERE
 F.CREATOR = R.CREATOR

AND F.TBNAME = R.TBNAME
AND F.RELNAME = R.RELNAME
AND R.CREATOR = I.TBCREATOR
AND R.TBNAME = I.TBNAME
AND R.COLCOUNT <= I.COLCOUNT
AND I.CREATOR = K.IXCREATOR
AND I.NAME = K.IXNAME
AND K.COLNAME = F.COLNAME
AND K.COLSEQ = F.COLSEQ

GROUP BY I.NAME, R.CREATOR, R.TBNAME, R.RELNAME, R.COLCOUNT
HAVING COUNT(*) = R.COlCOUNT)

ORDER BY REL.CREATOR, REL.TBNAME, REL.RELNAME

Columns in a foreign key without index
SELECT MISSINGIX.THE_TABLE AS THE_TABLE
 , MISSINGIX.THE_RELNAME AS THE_RELNAME
 , FKDETAIL.COLSEQ AS COLSEQ
 , FKDETAIL.COLNAME AS COLNAME
 , MISSINGIX.THE_COUNT
FROM
 (SELECT FKCOUNT.THE_RELNAME
 , FKCOUNT.THE_TABLE
 , FKCOUNT.THE_COUNT
 FROM
 (SELECT FK.RELNAME AS THE_RELNAME
 , FK.TBNAME AS THE_TABLE

110 Data Integrity with DB2 for z/OS

 , COUNT(*) AS THE_COUNT
 FROM SYSIBM.SYSFOREIGNKEYS FK
 WHERE FK.CREATOR = '&creator'
 GROUP BY FK.RELNAME, FK.TBNAME
) AS FKCOUNT
 WHERE THE_RELNAME||THE_TABLE||CHAR(THE_COUNT) NOT IN
 (SELECT THE_RELNAME||THE_TABLE||CHAR(THE_COUNT) FROM
 (SELECT FK.RELNAME AS THE_RELNAME
 , FK.TBNAME AS THE_TABLE
 , IX.NAME
 , COUNT(*) AS THE_COUNT
 FROM SYSIBM.SYSINDEXES IX
 , SYSIBM.SYSKEYS KY
 , SYSIBM.SYSFOREIGNKEYS FK
 WHERE IX.CREATOR = '&creator'
 AND KY.IXCREATOR = '&creator'
 AND FK.CREATOR = '&creator'
 AND IX.NAME = KY.IXNAME
 AND IX.TBNAME = FK.TBNAME
 AND KY.COLNO = FK.COLNO
 AND KY.COLSEQ = FK.COLSEQ
 GROUP BY FK.RELNAME, FK.TBNAME, IX.NAME
) AS IXCOUNT
 WHERE FKCOUNT.THE_RELNAME = IXCOUNT.THE_RELNAME
 AND FKCOUNT.THE_TABLE = IXCOUNT.THE_TABLE
 AND FKCOUNT.THE_COUNT = IXCOUNT.THE_COUNT
)
) AS MISSINGIX
 , SYSIBM.SYSFOREIGNKEYS FKDETAIL
WHERE FKDETAIL.CREATOR = '&creator'
AND FKDETAIL.TBNAME = MISSINGIX.THE_TABLE
AND FKDETAIL.RELNAME = MISSINGIX.THE_RELNAME
ORDER BY
 MISSINGIX.THE_TABLE
 , MISSINGIX.THE_RELNAME
 , FKDETAIL.COLSEQ
 , FKDETAIL.COLNAME

Columns participating in primary key and foreign keys
SELECT C.TBNAME, C.NAME, R.REFTBNAME, R.RELNAME
FROM

SYSIBM.SYSCOLUMNS C,
SYSIBM.SYSRELS R,
SYSIBM.SYSFOREIGNKEYS F

WHERE
 C.TBCREATOR = &creator

AND F.CREATOR = C.TBCREATOR
AND F.TBNAME = C.TBNAME
AND F.COLNAME = C.NAME
AND F.CREATOR = R.CREATOR
AND F.TBNAME = R.TBNAME
AND F.RELNAME = R.RELNAME
AND C.KEYSEQ > 0

ORDER BY C.TBNAME, C.NAME

What are the quiesce points for the given table spaces?
SELECT TIMESTAMP

FROM SYSIBM.SYSCOPY
WHERE ICTYPE = 'Q'

Chapter 3. Referential integrity 111

AND
(DBNAME = &dbnamel
AND TSNAME IN (&tsname11, &tsname12, &tsname13, ...)
OR

 DBNAME = &dbname2
AND TSNAME IN C(&tsname21, &tsname22, &tsname23, ...)
)

GROUP BY TIMESTAMP
ORDER BY TIMESTAMP

In this example, the query has a list of databases (dbname) and a list of table spaces for each
of the databases (&tsname1, &tsname2, &tsname3, and so forth). The assumption is that
these lists make up a complete table space set.

The query produces a list of timestamps of quiesce points that include all the table spaces of
the set.

What is the scope of CHECK-pending for the tables in a table space?
SELECT NAME. CHECKFLAG. HEX(CHECK5RID)
FROM SYSIBM.SYSTABLES
WHERE TSNAME = table space name
ORDER BY NAME

This example gives a list of all the tables in a table space with their CHECK-pending scope.

Which tables are the ancestors?
This example gives the parents and the parent’s parents for a specific table. Expect the
response time to be dependent on the complexity of the RI structure.

 WITH RISET (LEVEL, TBNAME, REFTBNAME, ENFORCED) AS
 (
 SELECT 1, ROOT.TBNAME, ROOT.REFTBNAME, ROOT.ENFORCED
 FROM SYSIBM.SYSRELS ROOT
 WHERE ROOT.TBNAME = &yourtable
 AND ROOT.ENFORCED IN ('Y','N')
 UNION ALL
 SELECT PARENT.LEVEL + 1, CHILD.TBNAME, CHILD.REFTBNAME,
 PARENT.ENFORCED
 FROM RISET PARENT, SYSIBM.SYSRELS CHILD
 WHERE PARENT.REFTBNAME = CHILD.TBNAME
 AND PARENT.ENFORCED IN ('Y','N')
 AND PARENT.LEVEL < 15
)
SELECT DISTINCT REFTBNAME AS PARENT , LEVEL, TBNAME AS CHILD
FROM RISET

Which tables are the descendents?
This example gives the children and the child’s children for a specific table.

WITH RISET (LEVEL, REFTBNAME, TBNAME, ENFORCED) AS
 (
 SELECT 1, ROOT.REFTBNAME, ROOT.TBNAME, ROOT.ENFORCED
 FROM SYSIBM.SYSRELS ROOT
 WHERE ROOT.REFTBNAME = &yourtable
 AND ROOT.ENFORCED IN ('Y','N')
 UNION ALL
 SELECT PARENT.LEVEL + 1, CHILD.REFTBNAME, CHILD.TBNAME,
 PARENT.ENFORCED
 FROM RISET PARENT, SYSIBM.SYSRELS CHILD

112 Data Integrity with DB2 for z/OS

 WHERE PARENT.TBNAME = CHILD.REFTBNAME
 AND PARENT.ENFORCED IN ('Y','N')
 AND PARENT.LEVEL < 15
)
SELECT DISTINCT TBNAME AS CHILD, LEVEL, REFTBNAME AS PARENT
FROM RISET

The whole family
This example gives the parents and the parent’s parent, and the child and child’s child for a
specific table. Expect the response time to be dependent on the complexity of the RI
structure.

WITH RISET (LEVEL, REFTBNAME, TBNAME, ENFORCED) AS
 (
 SELECT 1, ROOT.REFTBNAME, ROOT.TBNAME, ROOT.ENFORCED
 FROM SYSIBM.SYSRELS ROOT
 WHERE ROOT.REFTBNAME = 'T16'
 AND ROOT.ENFORCED IN ('Y','N')
 UNION ALL
 SELECT 1, ROOT.TBNAME, ROOT.REFTBNAME, ROOT.ENFORCED
 FROM SYSIBM.SYSRELS ROOT
 WHERE ROOT.REFTBNAME = &table
 AND ROOT.ENFORCED IN ('Y','N')
 UNION ALL
 SELECT PARENT.LEVEL + 1, CHILD.REFTBNAME, CHILD.TBNAME,
 PARENT.ENFORCED
 FROM RISET PARENT, SYSIBM.SYSRELS CHILD
 WHERE PARENT.TBNAME = CHILD.REFTBNAME
 AND PARENT.ENFORCED IN ('Y','N')
 AND PARENT.LEVEL < &level
 UNION ALL
 SELECT PARENT.LEVEL + 1, CHILD.TBNAME, CHILD.REFTBNAME,
 PARENT.ENFORCED
 FROM RISET PARENT, SYSIBM.SYSRELS CHILD
 WHERE PARENT.REFTBNAME = CHILD.TBNAME
 AND PARENT.ENFORCED IN ('Y','N')
 AND PARENT.LEVEL < &level
)
SELECT DISTINCT REFTBNAME AS PARENT, LEVEL, TBNAME AS CHILD
FROM RISET

3.13.3 Constraints and multilevel security
Constraints operate in an multilevel-secure environment in the following ways:

� A unique constraint is allowed on a security label column.
� A referential constraint is not allowed on a security label column.
� A check constraint is not allowed on a security label column.

Multilevel security with row-level checking is not enforced when DB2 checks a referential
constraint. Although a referential constraint is not allowed for the security label column, DB2
enforces referential constraints for other columns in the table that are not defined with a
security label.

© Copyright IBM Corp. 2006. All rights reserved. 113

Chapter 4. Triggers

Triggers provide a very flexible and powerful mechanism for ensuring data integrity. In
general, triggers provide everything that constraints, views with check option, and RI provide
and much more. They are also generally more expensive.

If you are thoroughly familiar with the process of creating and maintaining triggers but are
looking for some templates that may fit your business needs, 4.15, “Common business
scenarios” on page 137 should be of special interest to you.

In this chapter, we discuss the following topics:

� Why use triggers for data integrity
� Trigger terminology
� Extending trigger functionality with UDFs and stored procedures
� Invoking UDFs and stored procedures
� Passing parameters to UDFs and stored procedures
� Raising error conditions
� Handling errors during execution
� Auditing versus mass replication
� Impact of LOAD utility
� Declarative RI versus triggers
� Execution sequence of multiple triggers
� Trigger cascading
� Interactions between triggers and other integrity checks
� Creating triggers to obtain consistent results
� Common business scenarios

4

114 Data Integrity with DB2 for z/OS

4.1 Why use triggers for data integrity
Triggers are sets of SQL statements that execute when a certain event occurs in a DB2 table.
Like constraints, triggers can be used to control changes in DB2 tables. However, they are
more powerful because they can monitor a broader range of actions than constraints can.

Let us consider an example. A constraint can disallow an update to the salary column of the
employee table if the new value exceeds a certain pre-specified amount. A trigger can
monitor the amount by which the salary changes, as well as the salary value. It can do so
conditionally depending on the value of a performance rating stored in another table. In
addition, it can call user programs (stored procedures and user defined functions) that take
additional action or modify the data before the initial update occurs. See “Extending triggers
with UDFs and stored procedures” on page 114 for details.

4.2 Trigger terminology
In this section, we provide a quick brief summary of various terms related to triggers that are
used in this chapter.

Trigger A set of SQL statements that are stored in a DB2 database and
executed when a certain event occurs in a DB2 table.

Trigger activation time

An indication in the trigger definition of whether the trigger should be
activated before or after the triggered event.

Trigger body The set of SQL statements that is executed when a trigger is activated
and its triggered action condition is true.

Triggered action The SQL logic that is performed when a trigger is activated.

Triggered action condition

An optional part of the triggered action, it appears as a WHEN clause.

Trigger granularity Determines whether the trigger is activated once per statement or
once per row that is affected by that statement.

Triggering event The specified operation in a trigger definition that causes the activation
of that trigger. It is either INSERT, UPDATE, or DELETE.

Transition variable A variable that contains a column value of the affected row. This can
reference the set of old values or new values.

Transition table A temporary table that contains all the affected rows of the subject
table. These can reference the set of old values or new values.

4.3 Extending triggers with UDFs and stored procedures
There are two common uses of triggers:

� Data validation
� Data propagation

4.3.1 Data validation
Data validation deals with invoking complex business logic to determine whether a certain
action (INSERT, UPDATE, or DELETE) should be permitted.

Chapter 4. Triggers 115

This is typically achieved with a user defined function (UDF) invoked by a before trigger.

Figure 4-1 shows how a UDF can be used for data validation.

Figure 4-1 Data validation using a trigger and a UDF

4.3.2 Data propagation
Data propagation deals with invoking complex business logic after a certain action has taken
place. The most efficient technique for data propagation is to use the log or check constraints,
if they can do the job.

In the case where triggers are suitable, typically the solution is a stored procedure invoked by
an after trigger.

Figure 4-2 shows how a stored procedure can be used for data propagation.

Important: For data validation, the trigger must act on the return code set by the invoked
routine. This is not possible with stored procedures but only with UDFs.

DB2
Table

Insert
Update
Delete

Data validation using a trigger and a user defined function

Before
Trigger

User Defined
Function

DB2 Table

- - - - - -

Sequential
File

VSAM

IMS/DB

MQSeries

- - - - - - CICS

 IMS/TM

116 Data Integrity with DB2 for z/OS

Figure 4-2 Data propagation using a trigger and a stored procedure

4.4 Invoking UDFs and stored procedures
In the context of data integrity, you can call UDFs and stored procedures for complex data
validation. There are two means of invoking a UDF and only one way of invoking a stored
procedure from within a trigger body. We discuss these ways in this section.

4.4.1 Using the VALUES statement
Example 4-1 shows how the VALUES statement invokes a UDF.

Example 4-1 Using the VALUES statement

CREATE TRIGGER TRIGTEST NO CASCADE
BEFORE UPDATE ON EMPLOYEE
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 VALUES(VALSAL(O.EMP_NO,O.SALARY,N.SALARY));
END #

Data propagation using a trigger and a stored procedure

DB2
Table

Insert
Update
Delete

After
Trigger

Stored
Procedure

DB2 Table

- - - - - -

Sequential
File

VSAM

IMS/db

MQSeries

- - - - - - CICS

 IMS/tm

Chapter 4. Triggers 117

When specifying a UDF as part of a VALUES expression, the UDF is invoked. However, if a
negative SQLCODE is returned (from the UDF), DB2 stops executing the trigger and rolls
back any triggered actions that were performed.

4.4.2 Using the SELECT statement
Example 4-2 shows how the SELECT statement invokes a UDF.

Example 4-2 Using the SELECT statement

CREATE TRIGGER TRIGTEST NO CASCADE
BEFORE UPDATE ON EMPLOYEE
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 SELECT
 CASE
WHEN VALSAL(N.EMP_NO,O.SALARY,N.SALARY) = '1'
 THEN COALESCE(RAISE_ERROR
 ('75001','SOME MESSAGE1'),' ')
....
 END
 FROM SYSIBM.SYSDUMMY1;
END #
.

Using the SELECT, you can also access the return codes and display the appropriate error
message, as shown in 4.6, “Raising error conditions” on page 120. This type of conditional
processing is impossible with VALUES.

4.4.3 Using the CALL statement
Example 4-3 shows how the CALL statement invokes a stored procedure.

Example 4-3 Using the CALL statement

CREATE TRIGGER DEVL7111.EMPTRIG1
AFTER UPDATE OF SALARY ON DEVL7111.EMP
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW
MODE DB2SQL
WHEN ((N.SALARY - O.SALARY) > O.SALARY * 0.10)
BEGIN ATOMIC
 CALL DEVL7111.EMPAUDTS(N.EMPNO,O.SALARY,N.SALARY);
END#

4.5 Passing parameters to UDFs and stored procedures
The triggered action (stored procedure or UDF) can refer to the values in the set of affected
rows. This is supported through the use of transition variables and transition tables. Transition
variables refer to the values of a single row, and this is discussed in 4.5.1, “Using transition
variables” on page 118. Transition tables refer to the complete set of values of all affected
rows, and this is discussed in 4.5.2, “Using transition tables” on page 119.

118 Data Integrity with DB2 for z/OS

Table 4-1 summarizes the allowable combinations of transition variables and transition tables
that you can specify for the various trigger types.

Table 4-1 Allowable combination of attributes in a trigger definition

4.5.1 Using transition variables
Transition variables are similar to host variables in their behavior. A transition variable can be
referenced in the search-condition of a triggered SQL statement of the triggered action
wherever a host variable is allowed in the statement if the statement was issued outside the
body of a trigger. They use the names of the columns in the subject table qualified by a
specific name that identifies whether the reference is to the old value (before the update) or to
the new value (after the update). In Example 4-4, we use “O” and “N” as the qualifiers to
designate the before and after values.

Example 4-4 Trigger with before and after values

CREATE TRIGGER DEVL7111.EMPTRIG1
AFTER UPDATE OF SALARY ON DEVL7111.EMP
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW
MODE DB2SQL
WHEN ((N.SALARY - O.SALARY) > O.SALARY * 0.10)
BEGIN ATOMIC
 CALL DEVL7111.EMPAUDTS(N.EMPNO,O.SALARY,N.SALARY);
END#

The list of parameters must be compatible with the parameter list defined in the linkage
section of the stored procedure and the procedure division statement. For the sample stored
procedure EMPAUDTS, the linkage section looks like this in COBOL:

LINKAGE SECTION.

Granularity Activation time Triggering
SQL operation

Transition
variables
allowed

Transition
tables allowed

FOR EACH ROW BEFORE INSERT NEW -

UPDATE OLD, NEW

DELETE OLD -

AFTER INSERT NEW NEW TABLE

UPDATE OLD, NEW OLD TABLE,
NEW TABLE

DELETE OLD OLD TABLE

FOR EACH
STATEMENT

BEFORE INSERT - -

UPDATE - -

DELETE - -

AFTER INSERT - NEW TABLE

UPDATE - OLD TABLE,
NEW TABLE

DELETE - OLD TABLE

Chapter 4. Triggers 119

01 PEMPNO PIC X(6).
01 POLDSALARY PIC S9(7)V9(2) COMP-3.
01 PNEWSALARY PIC S9(7)V9(2) COMP-3.

The procedure division for the stored procedure looks like this in COBOL:

PROCEDURE DIVISION USING PEMPNO, POLDSALARY, PNEWSALARY.

4.5.2 Using transition tables
Transition tales are also similar to host variables in their behavior. The name of the transition
table can be referenced in a triggered SQL statement of the triggered action wherever a table
name is allowed in the statement if the statement was issued outside the body of a trigger.
The name of the table can be specified in the search condition of a triggered SQL statement
of the triggered action wherever a column name is allowed in the statement if the statement
was issued outside the body of a trigger.

Transition tables are read-only. Like transition variables, transition tables also use the names
of the columns of the subject table, but have a name specified that allows the complete set of
affected rows to be treated as a table.

In Example 4-5, we use “OT” and “NT” as the qualifiers to designate the before and after table
values.

Example 4-5 Trigger with transition tables

CREATE TRIGGER DEVL7111.EMPTRIG3
AFTER UPDATE OF SALARY ON DEVL7111.EMP
REFERENCING OLD TABLE AS OT
 NEW TABLE AS NT
FOR EACH ROW
MODE DB2SQL
BEGIN ATOMIC
 CALL DEVL7111.EMPPROPS(TABLE OT,TABLE NT);
END#

We now describe how to access transition tables in a stored procedure, but the same applies
to a UDF.

To access transition tables in a stored procedure, use table locators which are pointers to the
transition tables. You declare table locators as input parameters in the CREATE
PROCEDURE statement using the TABLE LIKE table-name AS LOCATOR clause. See
Chapter 5 of DB2 UDB for z/OS Version 8 SQL Reference, SC18-7426, for more information.

The five basic steps to accessing transition tables in a stored procedure are:

1. Declare input parameters to receive table locators. You must define each parameter that
receives a table locator as an unsigned 4-byte integer. This is shown in Example 4-6 for
COBOL. This step is optional and it is required only if you plan to use the locator later in
the program and need to save it. In general, for COBOL you can use the locators from the
LINKAGE SECTION directly.

Example 4-6 Declaring input variables for table locators

01 WS-TRIG-TBL-ID-OLD SQL TYPE IS TABLE LIKE EMP AS LOCATOR.

2. Declare table locators. The syntax varies with the application language. See Chapter 9,
“Embedding SQL statements in host languages” of the DB2 UDB for z/OS Version 8
Application Programming and SQL Guide, SC18-7415, for information about the syntax for

120 Data Integrity with DB2 for z/OS

C, C++, COBOL, and PL/I. See Chapter 6 of DB2 UDB for z/OS Version 8 SQL Reference,
SC18-7426, for information about the syntax for SQL procedures. This is shown in
Example 4-7.

Example 4-7 Declaring table locators

LINKAGE SECTION.
01 TRIG-TBL-ID-OLD SQL TYPE IS TABLE LIKE EMP AS LOCATOR.
01 TRIG-TBL-ID-NEW SQL TYPE IS TABLE LIKE EMP AS LOCATOR.

3. Declare a cursor to access the rows in each transition table. This is shown in Example 4-8.

Example 4-8 Declaring a cursor

**** CURSOR FOR RETRIEVING “BEFORE” AND “AFTER” IMAGES
 EXEC SQL DECLARE C1
 CURSOR FOR
 SELECT
 OLDTAB.EMPNO
 , OLDTAB.SALARY
 , NEWTAB.SALARY
 FROM TABLE(:TRIG-TBL-ID-OLD LIKE EMP) AS OLDTAB
 , TABLE(:TRIG-TBL-ID-NEW LIKE EMP) AS NEWTAB
 ORDER BY EMPNO
 END-EXEC.

4. Assign the input parameter values to the table locators. This is shown in Example 4-9.

Example 4-9 Setting values of table locators

PROCEDURE DIVISION USING TRIG-TBL-ID-OLD, TRIG-TBL-ID-NEW.

5. Access rows from the transition tables using the cursors that are declared for the transition
tables. This is shown in Example 4-10.

Example 4-10 Accessing the transition tables

EXEC SQL
 OPEN C1
END-EXEC.
...
EXEC SQL
 FETCH C1
 INTO :WS-EMPNO
 , :WS-OLDSALARY
 , :WS-NEWSALARY
END-EXEC.
...
EXEC SQL
 CLOSE C1
END-EXEC.

4.6 Raising error conditions
You can return different SQLSTATEs and error messages to the calling application by using
the RAISE_ERROR statement. This is done in the trigger body as shown in Example 4-11.

Chapter 4. Triggers 121

Example 4-11 Generating error messages in a trigger body

CREATE TRIGGER TRIGTEST NO CASCADE
BEFORE UPDATE ON EMPLOYEE
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW MODE DB2SQL
 WHEN (N.SALARY > O.SALARY *
 (SELECT MAX_RAISE
 FROM DEPT D
 WHERE D.DEPT_NO = O.DEPT_NO))
BEGIN ATOMIC
 SIGNAL SQLSTATE '75001' ('CANNOT EXCEED DEPT LIMIT')
;
END

Example 4-12 shows how you can use the result of a UDF to return different error messages
to the calling application.

Example 4-12 Generating error messages in a trigger after calling a UDF

CREATE TRIGGER DEVL7111.EMPTRIG2 NO CASCADE
BEFORE UPDATE OF SALARY ON DEVL7111.EMP
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW
MODE DB2SQL
BEGIN ATOMIC
SELECT
 CASE
 WHEN DEVL7111.EMPAUDTU(N.EMPNO,O.SALARY,N.SALARY)
 = '1' THEN COALESCE(RAISE_ERROR('75001','some message1'),' ')
 WHEN DEVL7111.EMPAUDTU(N.EMPNO,O.SALARY,N.SALARY)
 = '2' THEN COALESCE(RAISE_ERROR('75002','some message2'),' ')
 WHEN DEVL7111.EMPAUDTU(N.EMPNO,O.SALARY,N.SALARY)
 = '3' THEN COALESCE(RAISE_ERROR('75003','some message3'),' ')
 WHEN DEVL7111.EMPAUDTU(N.EMPNO,O.SALARY,N.SALARY)
 = '4' THEN COALESCE(RAISE_ERROR('75004','some message4'),' ')
 END
FROM SYSIBM.SYSDUMMY1;

END#

The SQLSTATE value specified in the SIGNAL SQLSTATE statement must conform to the
following rules:

� Each character must be numeric (0 through 9) or uppercase alphabetic (A through Z).

� The SQLSTATE class (first two characters) cannot be 00, 01, or 02, because these are not
error classes.

� If the SQLSTATE class starts with 0 through 6, or A through H, then the subclass (last
three characters) must start with a letter in the range I through Z.

� If the SLQSTATE class starts with 7 through 9, or I through Z, then the subclass (last three
characters) can be any of 0 through 9, or A through Z.

Note that while the SQLSTATE is user-defined, the SQLCODE returned to the applications is
always -438 as shown in Example 4-13.

122 Data Integrity with DB2 for z/OS

Example 4-13 User-defined SQLSTATE and error message

DSNT408I SQLCODE = -438, ERROR: APPLICATION RAISED ERROR WITH DIAGNOSTIC
 TEXT: TRIGGER4 DEPT NAME UPDATE NOT ALLOWED
DSNT418I SQLSTATE = 7TR04 SQLSTATE RETURN CODE
DSNT415I SQLERRP = DSNXRTYP SQL PROCEDURE DETECTING ERROR
DSNT416I SQLERRD = 1 0 0 -1 0 0 SQL DIAGNOSTIC INFORMATION
DSNT416I SQLERRD = X'00000001' X'00000000' X'00000000' X'FFFFFFFF'
 X'00000000' X'00000000' SQL DIAGNOSTIC INFORMATION

4.7 Handling errors during execution
Severe errors that occur during the execution of a trigger SQL statement are returned with
SQLCODE -901, -906, -911, and -913 (along with the corresponding SQLSTATEs).
Non-severe errors raised by a triggered SQL statement through the SIGNAL SQLSTATE
statement or an SQL statement containing a RAISE_ERROR function are returned with the
specified SQLSTATE, and the SQLCODE is always -438. Other non-severe errors are
returned with an SQLCODE -723 and SQLSTATE 09000. Warnings are not returned.

The ability to handle errors in a trigger is severely limited, especially when it calls a stored
procedure. For this reason, you must decide carefully whether you use a stored procedure or
a UDF. This has been discussed in 4.3, “Extending triggers with UDFs and stored
procedures” on page 114.

4.8 Auditing versus mass replication
For auditing changes to sensitive data, the main options are audit traces and the use of the
log data.

Triggers can be used effectively since they are fired regardless of the invoking application
(that is, ad hoc updates are captured as well).

However, when the amount of data to be replicated is large, replication is generally the best
way to address this need. The cost of capturing the change then becomes asynchronous (as
opposed to triggers that are synchronous), since it is performed by the capture program. The
subsequent invocation of the receiving process can be achieved by opting for the MQ-based
replication architecture. Using the MQ-based configuration capture performs the put of the
changes upon processing of the commit. Refer to Q Replication manuals and WebSphere
Information Integrator Q Replication: Fast Track Implementation Scenarios, SG24-6487, for
information.

4.9 Impact of LOAD utility
The impact of running a LOAD utility against a table with triggers defined on it depends on the
SHRLEVEL parameter of the utility. SHRLEVEL NONE (the default and most commonly used
option) does not activate any triggers defined on the table. SHRLEVEL CHANGE load utility
functions like a mass INSERT SQL operation. All triggers (before and after, row and
statement) are activated when using this option.

You must be aware of how triggers and referential constraints interact since they impact the
order of processing. See 4.13, “Interactions among triggers and other integrity checks” on
page 130 for details.

Chapter 4. Triggers 123

4.10 DB2-enforced RI versus triggers
If you want to enforce RI in DB2, the most efficient means of doing so is by using the
DB2-enforced declarative RI which is discussed in detail in Chapter 3, “Referential integrity”
on page 49. You should consider using triggers for this purpose only if the straightforward
means of doing so does not meet your business needs. For example, to implement an
“either-or” relationship where the foreign key value must exist on at least one of a set of
parent tables (see 4.15.8, “Enforcing multiple parent RI” on page 146), you must use triggers
since the foreign key can reference a single parent table only. Triggers add complexity and
should be used only when necessary for this purpose. In addition, they also add overhead
compared to declarative RI.

In order to compare the performance of DB2-enforced RI, triggers, stored procedures, and
UDFs, we create a test scenario. We create two tables and related indexes as shown in
Example 4-14.

Example 4-14 Table and index definition for test scenario

CREATE TABLE BENDEPT
 (DEPTID SMALLINT NOT NULL PRIMARY KEY,
 DEPTNAME CHAR(30),
 OTHERDATA1 CHAR(250),
 OTHERDATA2 CHAR(250))
IN DSNDB04.BENDEPT #

CREATE TABLE BENEMPL
 (EMPLID INTEGER NOT NULL,
 DEPTID SMALLINT,
 EMPLNAME CHAR(30),
 OTHERDATA1 CHAR(250),
 OTHERDATA2 CHAR(250))
 IN DSNDB04.BENEMPL #

CREATE UNIQUE INDEX BENDEPTK0
 ON BENDEPT
 (DEPTID ASC)
...

CREATE UNIQUE INDEX BENEMPLK0
 ON BENEMPL
 (EMPLID ASC)
...

CREATE INDEX BENEMPLK1
 ON BENEMPL
 (DEPTID ASC)

We populated the BENDEPT table with 1,000 departments and the BENEMPL with 500
employees in each department. We tested the insert to the child table (BENEMPL) and the
the delete from the parent table (BENDEPT) under the following three cases:

� Using DB2-enforced RI
� Using a trigger to enforce the RI
� Using a trigger and a UDF or stored procedure to enforce the RI

The trigger DDL for verification during insert to the child table is shown in Example 4-15.

124 Data Integrity with DB2 for z/OS

Example 4-15 Trigger definition for insert verification

CREATE TRIGGER TR2A NO CASCADE
BEFORE INSERT ON BENEMPL
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN (0 = (SELECT COUNT(*)
 FROM BENDEPT
 WHERE DEPTID = N.DEPTID))
BEGIN ATOMIC
 SIGNAL SQLSTATE '7TR2A'
 ('TR2A VALID DEPT IS REQUIRED');
END #

When the same verification is made in a UDF, the DDL for the trigger and UDF is shown in
Example 4-16.

Example 4-16 UDF for insert verification

CREATE TRIGGER TR3A NO CASCADE
BEFORE INSERT ON BENEMPL
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 SELECT
 CASE
 WHEN UDFA(N.DEPTID) = 'E'
 THEN COALESCE(RAISE_ERROR
 ('75001','DEPT DOES NOT EXIST'),' ')
 END
 FROM SYSIBM.SYSDUMMY1;
END #

CREATE FUNCTION UDFA (SMALLINT)
RETURNS CHAR(1)
EXTERNAL NAME UDFA
LANGUAGE COBOL
PARAMETER STYLE DB2SQL
NO DBINFO
COLLID PAOLOR4
WLM ENVIRONMENT DB8AWLM1 #

Similarly, for the delete from parent table, the trigger DDL is:

CREATE TRIGGER TR2C
AFTER DELETE ON BENDEPT
REFERENCING OLD AS O
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 DELETE FROM BENEMPL
 WHERE DEPTID = O.DEPTID ;
END #

When the same cascading is done via a stored procedure, the DDL for the trigger and stored
procedure is:

CREATE TRIGGER TR3C
AFTER DELETE ON BENDEPT
REFERENCING OLD AS O
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

Chapter 4. Triggers 125

 CALL SPC(O.DEPTID);
END #

CREATE PROCEDURE SPC
(
 IN PDEPTID SMALLINT
)
DYNAMIC RESULT SETS 0
EXTERNAL NAME SPC
LANGUAGE COBOL
PARAMETER STYLE GENERAL
MODIFIES SQL DATA
NO DBINFO
COLLID PAOLOR4
WLM ENVIRONMENT DB8AWLM1 #

The results of the benchmarks are summarized in Table 4-2.

Table 4-2 DB2 RI versus triggers, UDFs, and stored procedures enforcement

As is evident from this table, RI implementation via triggers is more expensive than DB2 RI
and invocation of UDFs or stored procedures for this purpose degrades the performance
further. Triggers, UDFs, or stored procedures should therefore be chosen only if standard
DB2 RI cannot meet the business needs.

4.11 Execution sequence of multiple triggers
You can create multiple triggers for the same subject table, event, and activation time. The
order in which those triggers are activated is the order in which the triggers were created.
DB2 records the timestamp when each CREATE TRIGGER statement executes and DB2
uses this timestamp to determine which trigger to activate first.

DB2 always activates all before triggers that are defined on the table before the after triggers
that are defined on that table, but the activation order is by timestamp within each set of
before triggers followed by timestamp within each set of after triggers.

In several cases the order may not matter, but, as this example shows, the results can be
quite different depending on the order.

Suppose you have created an EMPL table and a DEPT table, such as:

CREATE TABLE EMPL
 (EMPLID CHAR(6) NOT NULL,
 DEPTID CHAR(3),
 SALARY DECIMAL(9,2),

Case
#

Description Enforcement
method

CPU (sec.) Elapsed (sec.)

1 Insert 500 rows in the
BENEMPL table for each of
500 departments

DB2 RI 3.07 28.80

Trigger 6.07 30.00

Trigger + UDF 37.36 450.00

2 Successful delete of 500
rows from BENDEPT table
each cascading to 500
BENEMPL table rows

DB2 RI 0.02 3.00

Trigger 2.29 26.40

Trigger + SP 2.62 24.00

126 Data Integrity with DB2 for z/OS

 COMMISION DECIMAL(9,2))
 IN DSNDB04.TRIGTEST #

CREATE TABLE DEPT
 (DEPTID CHAR(3) NOT NULL,
 DEPTNAME CHAR(30),
 BUDGET DECIMAL(9,2))
 IN DSNDB04.TRIGTEST #

Consider the two triggers TRIGGER1 and TRIGGER2 defined on the EMPL table, shown in
Example 4-17. Notice that both of them have the same triggering event (INSERT), the same
subject table (EMP), and the same activation time (AFTER).

Example 4-17 Execution sequence of triggers

CREATE TRIGGER TRIGGER1
AFTER INSERT ON EMPL
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 UPDATE EMPL
 SET COMMISION = SALARY * 0.10
 WHERE EMPLID = N.EMPLID;
END #

CREATE TRIGGER TRIGGER2
AFTER INSERT ON EMPL
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 UPDATE DEPT
 SET BUDGET = BUDGET +
 (SELECT SALARY + COMMISION
 FROM EMPL
 WHERE EMPLID = N.EMPLID)
 WHERE DEPTID = N.DEPTID;
END #

Let us assume we insert a new employee row with a salary of 10,000. If TRIGGER1 is
activated first, the employee commission is set to 1,000 and when TRIGGER2 is activated,
the department’s budget is incremented by 10,000 + 1,000 = 11,000. On the other hand, if
TRIGGER2 is activated first, it is incremented by 10,000 only.

Another important thing to note is that when multiple rows are updated in one statement,
TRIGGER1 is executed for all affected rows followed by TRIGGER2 for all affected rows.
Even though the triggers are defined as row level, the sequence of execution is NOT
TRIGGER1 followed by TRIGGER2 for each row. This is explored in more detail in 4.3,
“Extending triggers with UDFs and stored procedures” on page 114.

Tip: Consider having only one trigger with the same triggering event and trigger activation
time on a table (for example, only one after UPDATE trigger on a table). Alternatively,
always drop and recreate all such triggers when maintaining any one of them.

Chapter 4. Triggers 127

4.12 Trigger cascading
An SQL statement that a trigger executes might modify the subject table or other tables with
triggers, so DB2 also activates those triggers. A trigger that is activated as the result of
another trigger can be activated at the same level as the original trigger or at a different level.
We illustrate this concept with examples.

4.12.1 Triggers at the same level

Example 1
Table X has two triggers defined on it: a before trigger A and an after trigger B. An update to
table X causes both triggers A and B to activate. This is shown in Example 4-3.

Figure 4-3 Example one: Triggers at same level

Example two
An update to table W activates after trigger A. Trigger A updates table X, which has a
referential constraint with table Y, which has trigger B defined on it. The referential constraint
causes table Y to be updated, which activates trigger B. This is shown in Example 4-4.

Table X

Update Action

Before
Trigger

A

After
Trigger

B

128 Data Integrity with DB2 for z/OS

Figure 4-4 Example two: Triggers at the same level

4.12.2 Triggers at different levels

Example one
Trigger A is defined on table X, and trigger B is defined on table Y. Trigger B is an UPDATE
trigger. An update to table X activates trigger A, which contains an UPDATE statement on
table Y in its trigger body. This UPDATE statement activates trigger B. This is shown in
Example 4-5.

Figure 4-5 Example one: Triggers at different levels

Update Action

Trigger
B

Table Y

Table XTable W

After
Trigger

A Update

RI

Update Action

Trigger
B

Table YTable X

Trigger
A

Update

Chapter 4. Triggers 129

Example two
Trigger A on table W calls a stored procedure S. The stored procedure contains an INSERT
statement for table X, which has an insert trigger B defined on it. When the INSERT
statement on table X executes, trigger B is activated. This is shown in Example 4-6.

Figure 4-6 Example two: Triggers at different levels

When triggers are activated as different levels, it is called trigger cascading. Trigger
cascading can occur only for after triggers because DB2 does not support cascading of
before triggers as shown in Example 4-18.

Example 4-18 Before triggers do not support cascading

CREATE TRIGGER TRIGTEST NO CASCADE
BEFORE UPDATE ON EMPLOYEE
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW MODE DB2SQL
 WHEN (N.SALARY > O.SALARY *
 (SELECT MAX_RAISE
 FROM DEPT D
 WHERE D.DEPT_NO = O.DEPT_NO))
BEGIN ATOMIC
 SIGNAL SQLSTATE '75001' ('CANNOT EXCEED DEPT LIMIT')
;
END

To prevent the possibility of an endless loop resulting from trigger cascading, DB2 supports
only 16 levels of cascading. This includes triggers, stored procedures, and UDFs. If a trigger,
stored procedure, or UDF at the 17th level is activated, DB2 returns SQLSTATE 54038
(SQLCODE -724) and rollbacks all SQL changes in the 16 levels of cascading. The error
message is:

Update Action

Table W

Trigger
B

Stored
Procedure

S

Table X

Trigger
A

Call

Insert

130 Data Integrity with DB2 for z/OS

DSNT408I SQLCODE = -724, ERROR: THE ACTIVATION OF THE TRIGGER OBJECT
 TRIGGER17 WOULD EXCEED THE MAXIMUM LEVEL OF INDIRECT SQL CASCADING
DSNT418I SQLSTATE = 54038 SQLSTATE RETURN CODE
DSNT415I SQLERRP = DSNXESTS SQL PROCEDURE DETECTING ERROR
DSNT416I SQLERRD = -724 0 0 -1 0 0 SQL DIAGNOSTIC INFORMATION
DSNT416I SQLERRD = X'FFFFFD2C' X'00000000' X'00000000' X'FFFFFFFF'
 X'00000000' X'00000000' SQL DIAGNOSTIC INFORMATION

4.13 Interactions among triggers and other integrity checks
When you create triggers, you need to understand the interactions among the triggers and
constraints on your tables, and the effect that the order of processing of those constraints and
triggers can have on the results.

In general, the following steps occur when triggering SQL statement S1 performs an insert,
update, or delete operation on table T1:

1. DB2 determines the rows of T1 to modify. We designate this set M1. The contents of M1
depend on the SQL operation:

– For a delete operation, all rows that satisfy the search condition of the statement for a
searched delete operation, or the current row for a positioned delete operation

– For an insert operation, the row identified by the VALUES clause, or the rows identified
by the result table of a SELECT clause within the INSERT statement

– For an update operation, all rows that satisfy the search condition of the statement for a
searched update operation, or the current row for a positioned update operation

2. DB2 processes all before triggers that are defined on T1 in order of creation. Each before
trigger executes the triggered action once for each row of M1. If M1 is empty, the triggered
action does not execute.

If an error occurs when the triggered action executes, DB2 rolls back all changes that are
made by S1.

3. DB2 makes the changes that are specified in statement S1 to table T1. If an error occurs,
DB2 rolls back all changes that are made by S1.

4. If M1 is not empty, DB2 applies all the following constraints and checks that are defined on
table T1:

– Referential constraints

– Check constraints

– Checks that are due to updates of the table through view defined with the WITH
CHECK OPTION clause

Application of referential constraints with rules of DELETE CASCADE or DELETE SET
NULL is activated before delete triggers or before update triggers on the dependent
tables.

If any constraint is violated, DB2 rolls back all changes that are made by constraint actions
or by statement S1.

5. DB2 processes all after triggers that are defined on table T1 and all after triggers on tables
that are modified as the result of referential constraint actions, in the order of creation.

Each after row trigger executes the triggered action once for each row of M1. If M1 is
empty, the triggered action does not execute.

Each after statement trigger executes the triggered action once for each execution of S1,
even if M1 is empty.

Chapter 4. Triggers 131

If any triggered actions contain SQL insert, update, or delete operations, DB2 repeats steps 1
through 5 for each operation.

This is summarized in Figure 4-7.

Figure 4-7 Interaction between triggers and other integrity checks

4.14 Creating triggers to obtain consistent results
When you create triggers and write SQL statements that activate those triggers, you need to
ensure that executing those statements on the same set of data always produces the same
results. In this section, we discuss three common business scenarios where this does not
hold true.

4.14.1 Effect of an uncorrelated subquery
DB2 evaluates an uncorrelated subquery only once per execution of the statement. This fact
can create some undesirable effects when the table being updated has a trigger that modifies
a table that is accessed in the subquery. The following example illustrates this case.

Interactions between triggers and other integrity checks

Process all
AFTER triggers

Determine rows
to modify

Process all
BEFORE triggers

For each modified row

Check constraint

View Check

RI

Modify rows

132 Data Integrity with DB2 for z/OS

You have created a RESERVATION table and a SEATS table, such as:

CREATE TABLE RESERVATION
 (REQUESTNO INTEGER NOT NULL,
 SEATNO CHAR(4),
 CONFIRMFLAG CHAR(1))
 IN DSNDB04.TRIGTEST ;

CREATE TABLE SEATS
 (SEATNO CHAR(4) NOT NULL,
 AVAILFLAG CHAR(1))
 IN DSNDB04.TRIGTEST ;

You have also created a trigger on the RESERVATION table to mark the seat as unavailable
once the reservation request has been processed, as follows:

CREATE TRIGGER TRIGGER1
AFTER UPDATE ON RESERVATION
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 UPDATE SEATS
 SET AVAILFLAG = 'N'
 WHERE SEATNO = N.SEATNO ;
END #

Now an application processes the reservation requests one at a time and updates the
CONFIRMFLAG to Y to indicate that the seat has been reserved. The cursor declaration for
this process looks similar to this:

DECLARE C1 CURSOR FOR
SELECT * FROM RESERVATION
WHERE SEATNO IN
 (SELECT SEATNO
 FROM SEATS
 WHERE AVAILFLAG = 'Y') ;

Since DB2 evaluates an uncorrelated subquery only once, the results of the trigger are not
known as we process through each row of the cursor after it is fetched. This means that a
second request for the same seat will also be processed and two passengers will be assigned
the same seat. You should be aware of this fact and change the application to use a correlated
subselect, which looks like this:

SELECT * FROM RESERVATION R
WHERE EXISTS
 (SELECT 1
 FROM SEATS
 WHERE SEATNO = R.SEATNO
 AND AVAILFLAG = 'Y') ;

While it is true that this effect of uncorrelated subqueries is not specific to triggers (for
example, if the application updates the rows as it processes the cursor, the same issue
arises), what is important to remember with triggers is that the application may not be aware
of the underlying processing, which makes it more error-prone.

Chapter 4. Triggers 133

4.14.2 Effect of row processing order
The order of processing can change the outcome of an after row trigger when the trigger logic
includes set-oriented operations. The following example illustrates this case.

Tables T1, T2, and T3 look like this:

You create the following trigger on T1:

CREATE TRIGGER TRIGGER1
AFTER UPDATE ON T1
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 INSERT INTO T2 VALUES(N.A1);
 INSERT INTO T3 (SELECT B1 FROM T2);
END #

Now, assume that the program executes the following update statement:

UPDATE T1 SET A1 = A1 + 1;

The contents of tables T2 and T3, after the update statement executes, depend on the order
in which DB2 updates the rows of T1.

If DB2 updates the rows of T1 first, after the update statement and the trigger execute for the
first time, the values in the three tables are:

After the second row of T1 is updated, the values in the three tables are:

T1 T2 T3

A1 B1 C1

1

2

T1 T2 T3

A1 B1 C1

2 2 2

2

T1 T2 T3

A1 B1 C1

2 2 2

3 3 2

134 Data Integrity with DB2 for z/OS

However, if DB2 updates the second row of T1 first, after the update statement and trigger
execute for the first time, the values in the three tables are:

After the first row of T1 is updated, the values in the three tables are:

The simple example shows how the order of processing can affect the final result. You should
be aware of this fact. When designing multiple triggers on a table, avoid set-oriented
operations in any of the triggers that can cause this order dependency.

4.14.3 Effect of set update with row triggers
In 4.13, “Interactions among triggers and other integrity checks” on page 130, we discussed
the fact that DB2 makes the changes that are specified in the statement (step 3) and then
DB2 processes all after triggers that are defined on the table (step 5). Since the processing
does not occur one row at a time (update followed by the after trigger), some undesirable
results can occur. The following example illustrates this case.

Assume you have created a TRANSACTION table and a BALANCE table, such as:

CREATE TABLE TRANSACTION
 (ACCTNO INTEGER NOT NULL,
 TRANNO SMALLINT NOT NULL,
 AMOUNT DECIMAL(7,2))
 IN DSNDB04.TRIGTEST ;

CREATE TABLE BALANCE
 (ACCTNO INTEGER NOT NULL,
 CURRBAL DECIMAL(9,2))
 IN DSNDB04.TRIGTEST ;

3

T1 T2 T3

A1 B1 C1

1 3 3

3

T1 T2 T3

A1 B1 C1

2 3 3

3 2 3

2

T1 T2 T3

A1 B1 C1

Chapter 4. Triggers 135

You have also created a trigger on the TRANSACTION table to process any updates so that a
difference in amounts is reflected in the current balance on the BALANCE table as follows.

CREATE TRIGGER TRIGGER1
AFTER UPDATE ON TRANSACTION
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 UPDATE BALANCE
 SET CURRBAL = CURRBAL + (N.AMOUNT - O.AMOUNT)
 WHERE ACCTNO = O.ACCTNO ;
END #

In order to prevent a direct update to the BALANCE table, you also create another trigger to
block any updates where the balance amount is not in sync. See 4.15.6, “Maintaining
summary data” on page 142 for further discussion about this topic.

CREATE TRIGGER TRIGGER2 NO CASCADE
BEFORE UPDATE ON BALANCE
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN (N.CURRBAL <>
 (SELECT SUM(AMOUNT)
 FROM TRANSACTION T
 WHERE T.ACCTNO = O.ACCTNO))
BEGIN ATOMIC
 SIGNAL SQLSTATE '75001' ('BALANCE DOES NOT MATCH') ;
END #

Assume the TRANSACTION table looks like this:

The BALANCE table looks like this:

ACCTNO TRANNO AMOUNT

100 1 1000

100 2 2000

100 3 3000

200 1 500

200 2 400

ACCTNO CURRBAL

100 6000

200 900

136 Data Integrity with DB2 for z/OS

You execute the following update statements one at a time:

UPDATE TRANSACTION
 SET AMOUNT = AMOUNT + 10
 WHERE ACCTNO = 100
 AND TRANNO = 1 ;
UPDATE TRANSACTION
 SET AMOUNT = AMOUNT + 10
 WHERE ACCTNO = 100
 AND TRANNO = 2 ;
UPDATE TRANSACTION
 SET AMOUNT = AMOUNT + 10
 WHERE ACCTNO = 100
 AND TRANNO = 3 ;

For each row, DB2 executes TRIGGER1 to update the BALANCE table. Since TRIGGER2
exists on the BALANCE table, DB2 executes and verifies that the balance is in sync. The
TRANSACTION table now looks like this:

The BALANCE table now looks like this:

Instead, you execute the following update statement that updates all three rows in one
statement.

UPDATE TRANSACTION
 SET AMOUNT = AMOUNT + 10
 WHERE ACCTNO = 100 ;

When DB2 processes the first rows (after all updates to TRANSACTION have been applied)
in TRIGGER1, DB2 attempts to set the balance amount to 6010, which is different from the
sum as of now since the second and third rows have already been updated by DB2. This
results in an error message:

DSNT408I SQLCODE = -438, ERROR: APPLICATION RAISED ERROR WITH DIAGNOSTIC
 TEXT: BALANCE DOES NOT MATCH
DSNT418I SQLSTATE = 75001 SQLSTATE RETURN CODE
DSNT415I SQLERRP = DSNXRTYP SQL PROCEDURE DETECTING ERROR
DSNT416I SQLERRD = 1 0 0 -1 0 0 SQL DIAGNOSTIC INFORMATION
DSNT416I SQLERRD = X'00000001' X'00000000' X'00000000' X'FFFFFFFF'
 X'00000000' X'00000000' SQL DIAGNOSTIC INFORMATION

ACCTNO TRANNO AMOUNT

100 1 1010

100 2 2010

100 3 3010

200 1 500

200 2 400

ACCTNO CURRBAL

100 6030

200 900

Chapter 4. Triggers 137

4.15 Common business scenarios
In this section, we provide practical examples of how to use triggers (possibly in combination
with stored procedures or UDFs) to ensure data integrity. We begin with a description of the
business problem and provide a solution.

4.15.1 Data validation
Before allowing data to be inserted or updated to a table, you may want to impose strict
business rules on the data. We illustrate how triggers can be used for this purpose with an
example.

Assume you have created an EMPLOYEE table and a DEPT table, such as:

CREATE TABLE EMPLOYEE
 (EMP_NO CHAR(6) NOT NULL,
 DEPT_NO CHAR(3),
 SALARY DECIMAL(9,2)) IN DSNDB04.TRIGTEST ;

CREATE TABLE DEPT
 (DEPT_NO CHAR(3) NOT NULL,
 DEPT_NAME CHAR(30),
 MAX_RAISE DECIMAL(9,2)) IN DSNDB04.TRIGTEST ;

A trigger can be used to verify, before adjusting an employee’s salary, that the percentage
increase does not exceed a limit set for the department (on a different table, which is
something check constraints or view cannot do). This is shown in Example 4-19.

Example 4-19 Trigger for data validation

CREATE TRIGGER TRIGTEST NO CASCADE
BEFORE UPDATE ON EMPLOYEE
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW MODE DB2SQL
 WHEN (N.SALARY > O.SALARY *
 (SELECT MAX_RAISE
 FROM DEPT D
 WHERE D.DEPT_NO = O.DEPT_NO))
BEGIN ATOMIC
 SIGNAL SQLSTATE '75001' ('CANNOT EXCEED DEPT LIMIT')
;
END

Important: Note that several scenarios require a combination of triggers. For example,
when maintaining redundant data, it is not sufficient to correctly populate the changes. It is
also mandatory that you prohibit independent changes to the replicated data.

Business requirements: Verify that the raise given to an employee does not exceed the
department’s maximum.

138 Data Integrity with DB2 for z/OS

4.15.2 Complex data validation with a UDF
We discussed how strict business rules can be imposed on the data in 4.15.1, “Data
validation” on page 137. When these rules are complex or require access to non-DB2
resources, you must invoke an external UDF first.

Suppose you have created an employee table:

CREATE TABLE EMPLOYEE
 (EMP_NO CHAR(6) NOT NULL,
 DEPT_NO CHAR(3),
 SALARY DECIMAL(9,2)) IN DSNDB04.TRIGTEST ;

You have also created an external UDF for validating updates to the salary as follows. This
function accepts the employee number, old salary, and new salary and returns an error code
with a value of 1, 2, 3, or 4 if it detects an error. If no error is found, it returns a blank return
code. You also have to code this external function in a host language of your choosing, for
example, COBOL, compile, link, and bind it.

CREATE FUNCTION VALSAL (CHAR(6),DEC(9,2),DEC(9,2))
RETURNS CHAR(1)
EXTERNAL NAME VALSAL
LANGUAGE COBOL
PARAMETER STYLE DB2SQL
NO DBINFO
COLLID PAOLOR4
WLM ENVIRONMENT DB8AWLM1

We illustrate how triggers can be used for this purpose with Example 4-20.

Example 4-20 Trigger for complex data validation (with UDF)

CREATE TRIGGER TRIGTEST NO CASCADE
BEFORE UPDATE ON EMPLOYEE
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 SELECT
 CASE
WHEN VALSAL(N.EMP_NO,O.SALARY,N.SALARY) = '1'
 THEN COALESCE(RAISE_ERROR
 ('75001','SOME MESSAGE1'),' ')
 WHEN VALSAL(N.EMP_NO,O.SALARY,N.SALARY) = '2'
 THEN COALESCE(RAISE_ERROR
 ('75002','SOME MESSAGE2'),' ')
 WHEN VALSAL(N.EMP_NO,O.SALARY,N.SALARY) = '3'
 THEN COALESCE(RAISE_ERROR
 ('75003','SOME MESSAGE3'),' ')
 WHEN VALSAL(N.EMP_NO,O.SALARY,N.SALARY) = '4'
 THEN COALESCE(RAISE_ERROR
 ('75004','SOME MESSAGE4'),' ')
 END
 FROM SYSIBM.SYSDUMMY1;
END #

Business requirements: Verify that the raise given to an employee follows the policy laid out
by the Human Resources department. This involves access to VSAM files, IMS databases, and
has complex business logic.

Chapter 4. Triggers 139

4.15.3 Maintaining redundant data
Your database may contain data stored redundantly. In several cases, you may design a
denormalized database for performance reasons. Keeping the redundant data in sync with
the base table is a challenge that triggers can meet efficiently.

On the surface, this may appear to be a scenario similar to auditing discussed in 4.15.12,
“Auditing” on page 152. However, it is more complex than that. We also need to make sure
that this redundant data is not updated independently. Simply preventing updates to the
redundant data is insufficient. This will block the updates issued by the trigger on the source
table itself.

In Figure 4-8, we show the combination of triggers that is necessary to maintain data integrity.

Figure 4-8 Maintaining redundant data

Suppose you have created an EMPL table and a DEPT table, such as:

CREATE TABLE EMPL
 (EMPLID CHAR(6) NOT NULL,
 DEPTID CHAR(3),
 DEPTNAME CHAR(30))
 IN DSNDB04.TRIGTEST ;

CREATE TABLE DEPT
 (DEPTID CHAR(3) NOT NULL,
 DEPTNAME CHAR(30)) IN DSNDB04.TRIGTEST ;

We illustrate how triggers can be used for this purpose with Example 4-21. Trigger1
automatically updates all employees in the department name when the department name
changes. Trigger2 ensures that only the correct department name is inserted and Trigger3
ensures this on an update. Trigger4 prevents a direct update to the employee table with an
incorrect value. Stopping all updates will cause Trigger1, Trigger2, and Trigger3 to fail (since
we have no means of allowing DB2-generated updates, but prevent user-generated updates).

Business requirements: Ensure the data integrity of the department name, stored redundantly
on the employee table.

TR01

DEPTID

DEPTNAME

TR02 EMPLID

DEPTID

DEPTNAME

FK

DEPT EMPL

PK

Before
Update TR04After

Update

After
Insert

STOP

After
Update

TR03

140 Data Integrity with DB2 for z/OS

Example 4-21 Triggers for maintaining redundant data

-- Trigger1 - AFTER UPDATE ON DEPT
CREATE TRIGGER TRIGGER1
AFTER UPDATE OF DEPTNAME ON DEPT
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 UPDATE EMPL
 SET DEPTNAME = N.DEPTNAME
 WHERE DEPTID = O.DEPTID;
END #

-- Trigger2 - AFTER INSERT ON EMPL

CREATE TRIGGER TRIGGER2
AFTER INSERT ON EMPL
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 UPDATE EMPL
 SET DEPTNAME =
 (SELECT DEPTNAME
 FROM DEPT
 WHERE DEPTID = N.DEPTID)
 WHERE EMPLID = N.EMPLID;
END #

-- Trigger3 - AFTER UPDATE ON EMPL

CREATE TRIGGER TRIGGER3
AFTER UPDATE OF DEPTID ON EMPL
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 UPDATE EMPL
 SET DEPTNAME =
 (SELECT DEPTNAME
 FROM DEPT
 WHERE DEPTID = N.DEPTID)
 WHERE EMPLID = O.EMPLID;
END #

-- Trigger4 - BEFORE UPDATE ON EMPL

CREATE TRIGGER TRIGGER4 NO CASCADE
BEFORE UPDATE OF DEPTNAME ON EMPL
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN (N.DEPTNAME <>
 (SELECT DEPTNAME
 FROM DEPT
 WHERE DEPTID = O.DEPTID))
BEGIN ATOMIC
 SIGNAL SQLSTATE '7TR04'
 ('TRIGGER4 DEPT NAME UPDATE NOT ALLOWED');
END #

Chapter 4. Triggers 141

4.15.4 Complex redundant data maintenance with a stored procedure
When converting a large application from existing structures to new structures, it is common
to have a stop-gap “bridging” solution in which programs are changed to access the new
structures one at a time rather than as a complete rewrite. When the existing data resides in
non-DB2 resources which are not accessible by the trigger, calling a stored procedures
extends the trigger functionality and allows the data to be kept in sync. We illustrate how to
use triggers for this purpose with Example 4-22.

Suppose you have created an EMPLOYEE and a SALARY_AUDIT table, such as:

CREATE TABLE EMPLOYEE
 (EMP_NO CHAR(6) NOT NULL,
 SALARY DECIMAL(9,2)) IN DSNDB04.TRIGTEST #
COMMIT #
CREATE TABLE SALARY_AUDIT
 (EMP_NO CHAR(6) NOT NULL,
 OLD_SALARY DECIMAL(9,2),
 NEW_SALARY DECIMAL(9,2)) IN DSNDB04.TRIGTEST #

You have also created a stored procedure. You also have to code this external function in a
host language of your choosing, for example, COBOL, compile, link, and bind it:

CREATE PROCEDURE AUDSAL
(
 IN PEMPNO CHAR(6)
,IN POLDSALARY DEC(9,2)
,IN PNEWSALARY DEC(9,2)
)
DYNAMIC RESULT SETS 0
EXTERNAL NAME AUDSAL
LANGUAGE COBOL
PARAMETER STYLE GENERAL
MODIFIES SQL DATA
NO DBINFO
COLLID PAOLOR4
WLM ENVIRONMENT DB8AWLM1 ;

You can use the trigger created in Example 4-22 for this purpose.

Example 4-22 Trigger for complex redundant data maintenance (with stored procedure)

CREATE TRIGGER TRIGTEST
AFTER UPDATE ON EMPLOYEE
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 CALL AUDSAL(O.EMP_NO, O.SALARY, N.SALARY);
END #

4.15.5 Bidirectional data maintenance
When converting a large application from existing structures to new structures, it is common
to have a stop-gap “bridging” solution in which programs are changed to access the new

Business requirements: Every update to the employee table should create an audit trail,
provided various other complex business conditions are met. This may include access to
VSAM files, IMS databases, and other logic.

142 Data Integrity with DB2 for z/OS

structures one at a time rather than as a complete rewrite. In these cases, updates to old DB2
tables as well as new DB2 tables are possible, and there is a business need to keep these in
sync. This bidirectional data maintenance presents special challenges that we discuss here.

INSERT
As long as the key values generated on each side are know to be unique, all inserts can be
safely propagated to the other side. Collisions can occur; however, and you must deal with
these by deciding which transaction is processed and which transaction is treated as an error.
One method for resolving conflicts is to use the timestamp of the transaction, allowing the first
one to process.

UPDATE
Conflict resolution in this case is especially challenging, since, in theory, each transaction
may change values for different columns. In general, the second transaction will override the
effects of the first transaction. You must have adequate controls in place to make sure this
does not cause undesirable effects, for example, the employee’s address is changed by the
existing HR system and the salary is changed by the new payroll system.

DELETE
This is relatively straightforward, but you must deal with an attempt to delete a row that has
already been deleted.

In all these cases, you must be aware of the dependencies among the values. For example,
the salary of an employee may be adjusted to a value based on the current performance
rating. If the performance rating is later modified by the other application system, the salary
needs to be reevaluated.

Keep in mind that when the amount of data to be replicated is large, replication is generally
the best way to address this need. We discussed this in 4.8, “Auditing versus mass
replication” on page 122.

4.15.6 Maintaining summary data
Summary data is a special form of redundant data discussed in 4.15.3, “Maintaining
redundant data” on page 139.

In Figure 4-9, we show the combination of triggers that are necessary to maintain data
integrity.

Business requirements: Ensure the data integrity of the total salary for the department is
stored redundantly.

Chapter 4. Triggers 143

Figure 4-9 Maintaining summary data

Suppose you have created an EMPL table and a DEPT table, such as:

CREATE TABLE EMPL
 (EMPLID CHAR(6) NOT NULL,
 DEPTID CHAR(3),
 SALARY DECIMAL(9,2))
 IN DSNDB04.TRIGTEST #

CREATE TABLE DEPT
 (DEPTID CHAR(3) NOT NULL,
 DEPTNAME CHAR(30),
 TOTSALARY DECIMAL(15,2))
IN DSNDB04.TRIGTEST #

We illustrate this with Example 4-23.

Example 4-23 Triggers for maintaining summary data

-- Trigger1 - AFTER INSERT ON EMPL

CREATE TRIGGER TRIGGER1
AFTER INSERT ON EMPL
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 UPDATE DEPT
 SET TOTSALARY =
 (SELECT SUM(SALARY)
 FROM EMPL
 WHERE DEPTID = N.DEPTID)
 WHERE DEPTID = N.DEPTID;
END #

-- Trigger2 - AFTER UPDATE ON EMPL

DEPTID

TOTSALARY

EMPLID

DEPTID

SALARY

DEPT EMPL

TRIGGER 3
After Delete

TRIGGER 1
After Insert

TRIGGER 4
Before Update

Adjust

TRIGGER 2
After Update

STOP

144 Data Integrity with DB2 for z/OS

CREATE TRIGGER TRIGGER2
AFTER UPDATE OF SALARY ON EMPL
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 UPDATE DEPT
 SET TOTSALARY =
 (SELECT SUM(SALARY)
 FROM EMPL
 WHERE DEPTID = N.DEPTID)
 WHERE DEPTID = N.DEPTID;
END #

-- Trigger3 - AFTER DELETE ON EMPL

CREATE TRIGGER TRIGGER3
AFTER DELETE ON EMPL
REFERENCING OLD AS O
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 UPDATE DEPT
 SET TOTSALARY =
 (SELECT SUM(SALARY)
 FROM EMPL
 WHERE DEPTID = O.DEPTID)
 WHERE DEPTID = O.DEPTID;
END #

-- Trigger4 - BEFORE UPDATE ON DEPT

CREATE TRIGGER TRIGGER4 NO CASCADE
BEFORE UPDATE OF TOTSALARY ON DEPT
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN (N.TOTSALARY <>
 (SELECT SUM(SALARY)
 FROM EMPL
 WHERE DEPTID = O.DEPTID))
BEGIN ATOMIC
 SIGNAL SQLSTATE '7TR04'
 ('TRIGGER4 UPDATE OF TOTAL SALARY NOT ALLOWED');
END #

4.15.7 Maintaining existence flags
Existence flags are another special form of redundant data that is discussed in 4.15.3,
“Maintaining redundant data” on page 139.

In Figure 4-10, we show the combination of triggers that are necessary to maintain data
integrity.

Business requirements: Ensure the data integrity of the existence flag on the employee table.

Chapter 4. Triggers 145

Figure 4-10 Maintaining existence flags

Suppose you have created an employee table EMPL and a dependent table DEP, such as:

CREATE TABLE EMPL
 (EMPLID CHAR(6) NOT NULL,
 DEPFLAG CHAR(1))
 IN DSNDB04.TRIGTEST #

CREATE TABLE DEP
 (EMPLID CHAR(6) NOT NULL,
 SEQNO SMALLINT,
 DEPNAME CHAR(30))
IN DSNDB04.TRIGTEST #

We illustrate this with Example 4-24.

Example 4-24 Triggers for maintaining existence flags

-- Trigger1 - AFTER INSERT ON DEP
CREATE TRIGGER TRIGGER1
AFTER INSERT ON DEP
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 UPDATE EMPL
 SET DEPFLAG = 'Y'
 WHERE EMPLID = N.EMPLID;
END #

-- Trigger2 - AFTER DELETE ON DEP

CREATE TRIGGER TRIGGER2
AFTER DELETE ON DEP
REFERENCING OLD AS O
FOR EACH ROW MODE DB2SQL

EMPLID
SEQNO

DEPNAME

EMPL DEP

TRIGGER 1
After Insert

TRIGGER 4
Before Update

Adjust

TRIGGER 2
After Delete

Adjust

TRIGGER 3
Before Insert

EMPLID

DEPFLAG

STOP

STOP

146 Data Integrity with DB2 for z/OS

BEGIN ATOMIC
 UPDATE EMPL
 SET DEPFLAG =
 (SELECT
 CASE COUNT(*)
 WHEN 0 THEN 'N'
 ELSE 'Y'
 END
 FROM DEP
 WHERE EMPLID = O.EMPLID)
 WHERE EMPLID = O.EMPLID;
END #

-- Trigger3 - BEFORE INSERT ON EMPL

CREATE TRIGGER TRIGGER3 NO CASCADE
BEFORE INSERT ON EMPL
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN (N.DEPFLAG <> 'N')
BEGIN ATOMIC
 SIGNAL SQLSTATE '7TR03'
 ('TRIGGER3 DEP FLAG MUST BE N ON INSERT');
END #

-- Trigger4 - BEFORE UPDATE ON EMPL

CREATE TRIGGER TRIGGER4 NO CASCADE
BEFORE UPDATE OF DEPFLAG ON EMPL
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN ((0 < (SELECT COUNT(*)
 FROM DEP
WHERE EMPLID = O.EMPLID)
 AND N.DEPFLAG <> 'Y')

OR
 (0 = (SELECT COUNT(*)
 FROM DEP
 WHERE EMPLID = O.EMPLID)
 AND N.DEPFLAG <> 'N'))
BEGIN ATOMIC
 SIGNAL SQLSTATE '7TR04'
 ('TRIGGER4 UPDATE OF DEP FLAG NOT ALLOWED');
END #

4.15.8 Enforcing multiple parent RI
Declarative RI, discussed in Chapter 3, “Referential integrity” on page 49, allows the foreign
key to reference only one parent. In some situations you may have a need to reference more
than one parent. Existence of the foreign key in any one of the parent tables is sufficient,
which is termed a “mom-or-dad” trigger since a permission slip from either one is OK.

Business requirements: Ensure the data integrity of the employee table, which must contain a
valid department or a valid plant.

Chapter 4. Triggers 147

In Figure 4-11, we show the combination of triggers that are necessary to maintain data
integrity.

Figure 4-11 Maintaining multiple parent RI

Suppose you have created EMPL, DEPT, and PLANT tables, such as:

CREATE TABLE EMPL
 (EMPLID CHAR(6) NOT NULL,
 DEPTID CHAR(3),
 PLANTID CHAR(3))
 IN DSNDB04.TRIGTEST ;

CREATE TABLE DEPT
 (DEPTID CHAR(3) NOT NULL,
 DEPTNAME CHAR(30)) IN DSNDB04.TRIGTEST ;

CREATE TABLE PLANT
 (PLANTID CHAR(3) NOT NULL,
 PLANTNAME CHAR(30)) IN DSNDB04.TRIGTEST ;

We illustrate this with Example 4-25.

Example 4-25 Triggers for multiple parent RI

-- Trigger5 - BEFORE INSERT ON EMPL
CREATE TRIGGER TRIGGER5 NO CASCADE
BEFORE INSERT ON EMPL
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN (0 = (SELECT COUNT(*)
 FROM DEPT

TR06

DEPTID

TR05

DEPT

EMPLID

DEPTID

PLNTID

EMPL
DEPT?

Before
InsertPLNTID

PLANT

Before
Update

Plant?

148 Data Integrity with DB2 for z/OS

 WHERE DEPTID = N.DEPTID)
 AND
 0 = (SELECT COUNT(*)
 FROM PLANT
 WHERE PLANTID = N.PLANTID))
BEGIN ATOMIC
 SIGNAL SQLSTATE '7TR05'
 ('TRIGGER5 VALID DEPT OR PLANT IS REQUIRED');
END #

-- Trigger6 - BEFORE UPDATE ON EMPL

CREATE TRIGGER TRIGGER6 NO CASCADE
BEFORE UPDATE ON EMPL
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN (0 = (SELECT COUNT(*)
 FROM DEPT
 WHERE DEPTID = N.DEPTID)
 AND
 0 = (SELECT COUNT(*)
 FROM PLANT
 WHERE PLANTID = N.PLANTID))
BEGIN ATOMIC
 SIGNAL SQLSTATE '7TR06'
 ('TRIGGER6 VALID DEPT OR PLANT IS REQUIRED');
END #

4.15.9 Enforcing “Empty-nest-last-child-gone” rule
In some applications, you may need to extend the declarative RI discussed in Chapter 3,
“Referential integrity” on page 49. While declarative RI allows you to specify the action to take
when the parent row is deleted, it does not allow you specify any action on the deletion of the
child row. When the last order for a customer is deleted; for example, you may wish to delete
the customer also (this will make sure they never buy from you again).

In Figure 4-12, we show the combination of triggers that are necessary to maintain data
integrity.

Business requirements: When a department has no employees in it, delete it.

Chapter 4. Triggers 149

Figure 4-12 Enforcing “empty-nest” last-child-gone rule

Suppose you have created EMPL and DEPT tables, such as:

CREATE TABLE EMPL
 (EMPLID CHAR(6) NOT NULL,
 DEPTID CHAR(3))
IN DSNDB04.TRIGTEST ;

CREATE TABLE DEPT
 (DEPTID CHAR(3) NOT NULL,
 DEPTNAME CHAR(30))
IN DSNDB04.TRIGTEST ;

We illustrate this with Example 4-26.

Example 4-26 Triggers for “Last-child-gone” rule

-- Trigger7 - AFTER UPDATE ON EMPL
CREATE TRIGGER TRIGGER7
AFTER UPDATE OF DEPTID ON EMPL
REFERENCING OLD AS O
FOR EACH ROW MODE DB2SQL
WHEN (0 = (SELECT COUNT(*)
 FROM EMPL
 WHERE DEPTID = O.DEPTID))
BEGIN ATOMIC
 DELETE FROM DEPT
 WHERE DEPTID = O.DEPTID;
END #

-- Trigger8 - AFTER DELETE ON EMPL

DEPTID

TR07

DEPT EMPL

After
Update

After
Delete

Delete?

EMPLID

DEPTID

TR08

150 Data Integrity with DB2 for z/OS

CREATE TRIGGER TRIGGER8
AFTER DELETE ON EMPL
REFERENCING OLD AS O
FOR EACH ROW MODE DB2SQL
WHEN (0 = (SELECT COUNT(*)
 FROM EMPL
 WHERE DEPTID = O.DEPTID))
BEGIN ATOMIC
 DELETE FROM DEPT
 WHERE DEPTID = O.DEPTID;
END #

4.15.10 Generating alerts
If you want to be notified via an alert (a page, e-mail, and so forth) when a certain critical
condition occurs on a table, you can do so by using triggers that call a stored procedure.

Since the trigger body can include only SQL statements, you must call a stored procedure as
shown in the following examples. You can code the stored procedure to invoke a program that
interfaces with your e-mail system. Since this depends on your installation, we provide no
examples of the installation-specific programs used.

We illustrate this with Example 4-27.

Example 4-27 Trigger for generating an e-mail

CREATE TRIGGER EMPTRIG1
AFTER UPDATE OF SALARY ON EMPL
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW
MODE DB2SQL
WHEN ((N.SALARY - O.SALARY) > O.SALARY * 0.20)
BEGIN ATOMIC
 CALL EMPAUDTS(N.EMPLID,O.SALARY,N.SALARY);
-- this stored procedure generates the e-mail--
END#

4.15.11 Writing an MQ message
If you want to write an MQ message when a certain condition occurs on a table, you can use
Q replication or Q publish/subscribe. An alternative is do so by using triggers. Depending on
your installation, you can do so directly in the trigger or call a stored procedure.

Business requirements: When someone increases the salary of any employee by more than
20%, send an e-mail to the HR director.

Business requirements: When someone makes any changes to the employee table, generate
an MQ message so that the changes can be replicated on the shadow system later.

Chapter 4. Triggers 151

As before, you can call a stored procedure from the trigger for this purpose, as shown in
Example 4-28.

Example 4-28 Trigger to write calling a stored procedure for an MQ message

CREATE TRIGGER EMPTRIG1
AFTER UPDATE OF SALARY ON EMPL
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW
MODE DB2SQL
WHEN (N.SALARY >< O.SALARY)
BEGIN ATOMIC
 CALL EMPAUDTS(N.EMPNO,O.SALARY,N.SALARY);
-- this stored procedure writes the MQ message--
END#

The Application Messaging Interface (AMI) is a commonly used application programming
interface (API) for WebSphere MQ that is available in various high-level languages. In addition
to the AMI, DB2 provides its own API to the WebSphere MQ message handling system
through a set of external user-defined functions. Using these functions in SQL statements
allows you to combine DB2 database access with WebSphere MQ message handling. For
further information, see Chapter 33, “Using WebSphere MQ with DB2” of the DB2 UDB for
z/OS Version 8 Application Programming and SQL Guide, SC18-7415.

You can use one of the two external UDFs, MQSEND and MQPUBLISH, for this purpose,
which we discuss in this section. The examples use the DB2MQ2C schema for two-phase
commit, with the default service DB2.DEFAULT.SERVICE and the default policy
DB2.DEFAULT.POLICY.

Using MQSEND
Example 4-29 shows how you can use MQSEND.

Example 4-29 Using MQSEND

CREATE TRIGGER EMPTRIG1
AFTER UPDATE OF SALARY ON EMPL
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW
MODE DB2SQL
WHEN ((N.SALARY - O.SALARY) > O.SALARY * 0.20)
BEGIN ATOMIC
SELECT DB2MQ2C.MQSEND(N.EMPLID CONCAT ' ' CONCAT
 DIGITS(O.SALARY) CONCAT ' 'CONCAT
 DIGITS(N.SALARY))
FROM SYSIBM.SYSDUMMY1;
END#

Using MQPUBLISH
Example 4-30 shows how you can use MQPUBLISH. Any users or applications that
subscribe to the HR_INFO_PUB service with a registered interest in the SAL_CHANGE topic
will receive a message that contains the date, employee number, old salary, and new salary
when rows are updated in the employee table.

152 Data Integrity with DB2 for z/OS

Example 4-30 Using MQPUBLISH

CREATE TRIGGER EMPTRIG2
AFTER UPDATE OF SALARY ON EMPL
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW
MODE DB2SQL
WHEN ((N.SALARY - O.SALARY) > O.SALARY * 0.20)
BEGIN ATOMIC
SELECT DB2MQ2C.MQPUBLISH('HR_INFO_PUB',
CHAR(CURRENT DATE) CONCAT N.EMPLID
CONCAT DIGITS(O.SALARY) CONCAT DIGITS(N.SALARY), 'SAL_CHANGE')
FROM SYSIBM.SYSDUMMY1;
END#

4.15.12 Auditing
For some applications, you are required to create an audit trail for any changes to sensitive
data. We illustrate how triggers can meet the need with an example.

Suppose you have created an EMPLOYEE table and a table SALARY_AUDIT to audit all
updates made to the salary.

CREATE TABLE EMPLOYEE
 (EMP_NO CHAR(6) NOT NULL,
 SALARY DECIMAL(9,2)) IN DSNDB04.TRIGTEST ;

CREATE TABLE SALARY_AUDIT
 (EMP_NO CHAR(6) NOT NULL,
 OLD_SALARY DECIMAL(9,2),
 NEW_SALARY DECIMAL(9,2)

SALTIST TIMESTAMP NOT NULL WITH DEFAULT) IN DSNDB04.TRIGTEST ;

The trigger shown in Example 4-31 can be used for this purpose. Every update to the
employee table automatically creates an audit trail showing the old salary, new salary, and
timestamp. You can create similar triggers for insert and delete as well.

Example 4-31 Trigger for auditing

CREATE TRIGGER TRIGTEST
AFTER UPDATE ON EMPLOYEE
REFERENCING OLD AS O
 NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 INSERT INTO SALARY_AUDIT
 VALUES (O.EMP_NO, O.SALARY, N.SALARY)
;
END

Business requirements: Every update to the employee table should create an audit trail.

© Copyright IBM Corp. 2006. All rights reserved. 153

Chapter 5. Other integrity features

Besides the CHECK DATA utilities that DB2 offers for validating referential integrity and check
constraints, DB2 has also functions that check the physical page structure.

Furthermore, DB2 for z/OS V8 provides several new features that help with data integrity from
the application’s point of view. In this chapter, we focus on these new functions.

This chapter contains the following:

� Data structure validation
� Insert within select
� Atomic versus not atomic on multi-row insert and update
� Sequence objects
� Informational RI
� Locking

5

154 Data Integrity with DB2 for z/OS

5.1 Data structure validation
We have seen in 3.9, “CHECK utility” on page 89, the CHECK INDEX and CHECK DATA
utilities that DB2 offers for validating referential integrity and check constraints. DB2 also has
some built-in functions that automatically check the physical page structure on a page by
page basis. This structure checking is also provided by:

� DSN1COPY with CHECK option
� DSN1PRNT with FORMAT option
� COPY with CHECKPAGE option

5.1.1 DSN1COPY with CHECK option
With the DSN1COPY standalone utility, you can copy:

� DB2 VSAM data sets to sequential data sets
� DSN1COPY sequential data sets to DB2 VSAM data sets
� DB2 image copy data sets to DB2 VSAM data sets
� DB2 VSAM data sets to other DB2 VSAM data sets
� DSN1COPY sequential data sets to other sequential data sets

Using DSN1COPY, you can also:

� Print hexadecimal dumps of DB2 data sets and databases.

� Check the validity of data or index pages (including dictionary pages for compressed
data).

� Translate database object identifiers (OBIDs) to enable moving data sets between different
systems.

� Reset to 0 the log RBA that is recorded in each index page or data page.

DSN1COPY is compatible with LOB table spaces when you specify the LOB keyword and
omit the SEGMENT and INLCOPY keywords.

The CHECK option of DSN1COPY checks each page from the SYSUT1 data set for validity.
The validity checking operates on one page at a time and does not include any cross-page
checking. If an error is found, a message is issued describing the type of error, and a dump of
the page is sent to the SYSPRINT data set. If you do not receive any messages, no errors
were found. If more than one error exists in a given page, the check identifies only the first of
the errors. However, the entire page is dumped. DSN1COPY does not check system pages for
validity.

The OBIDXLAT option specifies that OBID translation must be done before the DB2 data set
is copied. This parameter requires additional input from the SYSXLAT file by using the DD
statements. DSN1COPY can translate only up to 1000 (increased from 500 with APAR
PK05758) record OBIDs. If you specify OBIDXLAT, CHECK processing is performed,
regardless of whether you specify the CHECK option.

5.1.2 DSN1PRNT with FORMAT option
With the DSN1PRNT standalone utility, you can print:

� DB2 VSAM data sets that contain table spaces or index spaces (including dictionary
pages for compressed data)

� Image copy data sets

� Sequential data sets that contain DB2 table spaces or index spaces

Chapter 5. Other integrity features 155

Using DSN1PRNT, you can print hexadecimal dumps of DB2 data sets and databases. If you
specify the FORMAT option, DSN1PRNT formats the data and indexes for any page that does
not contain an error that would prevent formatting. If DSN1PRNT detects such an error, it
prints an error message just before the page and dumps the page without formatting.
Formatting resumes with the next page. Compressed records are printed in compressed
format. DSN1PRNT is especially useful when you want to identify the contents of a table
space or index. You can run DSN1PRNT on image copy data sets as well as table spaces and
indexes. DSN1PRNT accepts an index image copy as input when you specify the FULLCOPY
option. You cannot run DSN1PRNT on concurrent copies.

DSN1PRNT is compatible with LOB table spaces when you specify the LOB keyword and
omit the INLCOPY keyword.

The FORMAT option causes the printed output to be formatted. Page control fields are
identified, and individual records are printed. Empty fields are not displayed.

� EXPAND specifies that the data is compressed and causes DSN1PRNT to expand it
before formatting. This option is intended to be used only under the direction of your IBM
Support Center. SWONLY causes DSN1PRNT to use software to expand the compressed
data, even when the compression hardware is available. This option is intended to be used
only under the direction of your IBM Software Support.

� NODATA suppresses printing of table row data. The row headers are formatted and
printed. This keyword is ignored for indexes. Specify NODATA to reduce the volume of the
output when the content of the rows is not important.

� NODATPGS suppresses all data pages of a table space. This keyword is ignored for
indexes. Specify NODATPGS to format and print only non-data pages to reduce the
volume of output when only certain page types are of interest (for example, LOB space
map pages). Alternatively, you can specify NODHDR.

DSN1PRNT cannot format a leaf or nonleaf page for an index page set that contains keys
with altered columns. When it encounters this situation, DSN1PRNT generates the following
message:

KEY WITH ALTERED COLUMN HAS BEEN DETECTED-UNABLE TO FORMAT PAGE

DSN1PRNT generates unformatted output for the page. FORMAT might generate
unformatted output for certain system pages.

5.1.3 COPY with CHECKPAGE option
The COPY utility is used to take secure images of table spaces and index spaces to allow for
the recovery of data in the event of data loss or corruption.

The COPY utility also checks the integrity of data pages as it is copying the table space or
index space. Before V6, any additional checking had to be undertaken using DSN1COPY
with the CHECK option specified.

Starting with V6, additional checking can be undertaken using the CHECKPAGE option of the
COPY utility. This option is equivalent to the checking undertaken by DSN1COPY with
CHECK. By specifying this option, DB2 will validate each page of the table space or index
page as it is processed.

CHECKPAGE option indicates that each page in the table space or index space is to be
checked for validity. The validity checking operates on one page at a time and does not
include any cross-page checking. If it finds an error, COPY issues a message that describes
the type of error. If more than one error exists in a given page, only the first error is identified.

156 Data Integrity with DB2 for z/OS

COPY continues checking the remaining pages in the table space or index space after it finds
an error.

The benefit of using this option is that any errors in the pages are reported at the time that the
backup is taken and not when the image copy is required by the RECOVER utility. The risk of
any errors existing when taking the image is low, but the impact of finding out at recover time
is high.

Without the CHECKPAGE option, a rare but possible hardware error could cause defective
image copies that are invalid for recovery. A periodic COPY with the CHECKPAGE option
would report the error and then create an opportunity to rectify the error, either using REPAIR
or recovery back to a valid image copy. After repairing the error, a new valid image copy
should then be taken.

5.2 Insert within select
The INSERT within SELECT (also called the SELECT FROM INSERT) feature provides you
the ability to:

� Find the values of automatically generated columns.
� Retrieve the default values for columns.
� Retrieve column values changed by a BEFORE INSERT trigger.
� Retrieve all values for an inserted row without specifying individual column names.
� Retrieve all values inserted through a multiple-row INSERT.

With the new syntax of having an INSERT statement within the SELECT statement, the rows
inserted into the table are considered to be a result table. The select list of the query can
reference all columns in this result table. The keywords FINAL TABLE refer to the result table
of the INSERT statement.

The result table contains all of the rows inserted and includes all of the columns requested in
the SELECT list. Triggers, constraints, and values generated by DB2 affect the result table in
the following ways:

� If the INSERT activates a before trigger, the values in the result table include any changes
that are made by the trigger. After triggers do not affect the values in the result table.

� DB2 verifies check constraints, unique index constraints, and RI constraints before
generating the result table and issuing error messages on violations.

� The result table includes generated values for identity columns, ROWID columns, and
columns based on expressions.

DB2 enforces check constraints, unique index constraints, and RI constraints before it
generates the result table.

See Chapter 5 of DB2 UDB for z/OS Version 8 SQL Reference, SC18-7426, for more
information.

We provide examples of how you can use this feature.

5.2.1 Generated values example
Suppose you have created a table EMPL, as shown below:

CREATE TABLE EMPL
 (EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
 EMPNAME CHAR(20),

Chapter 5. Other integrity features 157

 CITY CHAR(20) NOT NULL DEFAULT 'KANSAS CITY',
 SALARY DECIMAL(9,2))
 IN DSNDB04.TRIGTEST #

Notice that column EMPNO is an identity column (value to be generated by DB2) and the
CITY column has a default value of Kansas City.

If you run the following SQL:

SELECT * FROM FINAL TABLE
(INSERT INTO EMPL(EMPNAME, SALARY)
VALUES ('SURESH SANE',10000.00))

The result will be similar to this:

---------+---------+---------+---------+---------+---------+---------
 EMPNO EMPNAME CITY SALARY
---------+---------+---------+---------+---------+---------+---------
 1 SURESH SANE KANSAS CITY 10000.00

Notice the values assigned to the columns EMPNO and CITY are included.

Instead, if you supply a value for CITY by issuing this:

SELECT * FROM FINAL TABLE
(INSERT INTO EMPL(EMPNAME, CITY, SALARY)
VALUES ('PAOLO BRUNI','SAN JOSE', 20000.00)) ;

This would result in the following:

---------+---------+---------+---------+---------+---------+---------
 EMPNO EMPNAME CITY SALARY
---------+---------+---------+---------+---------+---------+---------
 1 PAOLO BRUNI SAN JOSE 20000.00

5.2.2 Multiple-row inserts example
You can also use the INSERT within SELECT when you insert multiple rows.

Suppose you have created tables EMPL and NEWHIRE as shown below:

CREATE TABLE EMPL
 (EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
 EMPNAME CHAR(20),
 CITY CHAR(20) NOT NULL DEFAULT 'KANSAS CITY',
 SALARY DECIMAL(9,2))
 IN DSNDB04.TRIGTEST ;

and

CREATE TABLE NEWHIRE
 (EMPNAME CHAR(20) NOT NULL,
 SALARY DECIMAL(9,2))
 IN DSNDB04.TRIGTEST ;

Assume you have populated NEWHIRE with the data shown:

---------+---------+---------+----
EMPNAME SALARY
---------+---------+---------+----
SURESH SANE 10000.00
PAOLO BRUNI 20000.00

158 Data Integrity with DB2 for z/OS

Issuing the following statement:

SELECT * FROM FINAL TABLE
(INSERT INTO EMPL(EMPNAME, SALARY)
SELECT * FROM NEWHIRE)

results in the following:

---+---------+---------+---------+---------+---------+---------
EMPNO EMPNAME CITY SALARY
---+---------+---------+---------+---------+---------+---------
 1 SURESH SANE KANSAS CITY 10000.00
 2 PAOLO BRUNI KANSAS CITY 20000.00

Notice the values assigned to the EMPNO and CITY columns for each of the two rows
inserted. This example of multiple-row insert uses another table (NEWHIRE), but the results
would be identical if a host variable array is used instead.

5.2.3 Trigger example
When you use the INSERT within SELECT, the values in the result table include changes
made by a before trigger.

Suppose you have created tables EMPL and NEWHIRE as shown below:

CREATE TABLE EMPL
 (EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
 EMPNAME CHAR(20),
 DEPT CHAR(4),
 SALARY DECIMAL(9,2))
 IN DSNDB04.TRIGTEST ;

and

CREATE TABLE NEWHIRE
 (EMPNAME CHAR(20) NOT NULL,
 DEPT CHAR(4),
 SALARY DECIMAL(9,2))
 IN DSNDB04.TRIGTEST #

Suppose you have populated NEWHIRE with the data shown below:

---+---------+---------+---------+---------+---
EMPNO EMPNAME DEPT SALARY
---+---------+---------+---------+---------+---
 1 SURESH SANE ARCH 10000.00
 2 PAOLO BRUNI ITSO 20000.00

You have also created a trigger on the EMPL table that increases the salary of anyone in the
ARCH department by 5000 as follows:

CREATE TRIGGER TRIGGER1 NO CASCADE
BEFORE INSERT ON EMPL
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN (N.DEPT = 'ARCH')
BEGIN ATOMIC
 SET N.SALARY = N.SALARY + 5000;
END #

Issuing the following query:

SELECT * FROM FINAL TABLE

Chapter 5. Other integrity features 159

(INSERT INTO EMPL(EMPNAME, DEPT, SALARY)
SELECT * FROM NEWHIRE) ;

results in:

---+---------+---------+---------+---------+---
EMPNO EMPNAME DEPT SALARY
---+---------+---------+---------+---------+---
 1 SURESH SANE ARCH 15000.00
 2 PAOLO BRUNI ITSO 20000.00

Notice the salary is increased by 5000 for EMPNO 1 in department ARCH.

5.3 Atomic versus not atomic on multi-row insert and update
The ATOMIC or NOT ATOMIC CONTINUE ON SQLEXCEPTION clause of multiple-row insert
allows you to specify whether you want the multiple-row insert to succeed or fail as a unit, or if
you want DB2 to proceed despite a partial failure of one or more rows.

� ATOMIC

Specifies that if the insert of any row fails, all changes made to the database by any of the
inserts of this statement, including changes made by successful inserts, are undone. This
is the default and provides a “all-or-nothing” capability, which is easier to restart or
reposition.

� NOT ATOMIC CONTINUE ON SQLEXCEPTION

Specifies that regardless of the failure of any particular insert of a row, the insert statement
will not undo any changes made to the database by the successful inserts of other rows.
The clause can be specified for static SQL only and cannot be used with the INSERT
within SELECT (discussed in 5.2, “Insert within select” on page 156).

An important consideration of this clause is its effect on triggers when triggers are
processed with a multiple row insert statement.

� ATOMIC

The inserts are processed as a single statement. Any statement level triggers are invoked
once for the statement and transition tables include all of the rows inserted.

� NOT ATOMIC CONTINUE ON SQLEXCEPTION

The inserts are processed separately. Any statement level triggers are processed for each
inserted row, and transition tables include the individual row inserted. When errors are
encountered, processing continues, and some of the specified rows may not get inserted.
If an insert trigger is defined on the underlying base table, the trigger transition table
includes only rows that are successfully inserted.

5.4 Sequence objects
Sequences are completely standalone objects and have no connection to a table. They can
be used by multiple applications in different ways. A sequence is a stored object that simply
generates the next ascending or descending value when requested by an application. They
provide an excellent way for an application to obtain unique values for use in key structures.

Attention: PTF UK05890 for APAR PQ96775 fixes a problem of incorrect output when
using NOT ATOMIC multi-row insert SQL with triggers.

160 Data Integrity with DB2 for z/OS

There are two important considerations when using sequence objects: They may have gaps,
and, in a data sharing environment, they may not be in strict sequential order. We discuss
these next. These considerations also apply to identity columns.

5.4.1 Generated values may have gaps
There are various reasons why an application requesting a sequence number may not obtain
the next sequential number. These are:

� Transaction advances sequence and then rolls back.

� SQL statement leading to generation of next value fails after the value is generated.

� NEXTVAL used in SELECT statement of cursor in DRDA where client uses block-fetch
and not all retrieved rows are FETCHed.

� Sequence (or identity column) associated with sequence is altered and then ALTER rolled
back.

� Sequence (or identity column) table DROPped and then DROP rolled back.

� SYSIBM.SYSSEQ table space is stopped, leading to loss of unused cache values.

� DB2 system failure or shut-down leading to loss of unassigned cache values causing gap
in sequence.

You need to be aware of these possibilities, which are possible in any environment (data
sharing or otherwise).

5.4.2 Generated values may not be in strict sequential order
In a data sharing environment, strict sequential order cannot be guaranteed when sequence
numbers are cached on multiple members.

Before explaining how this is possible, we discuss two keywords: CACHE/NO CACHE and
ORDER/NO ORDER that impact how the sequence object behaves:

� CACHE/NO CACHE

The CACHE/NO CACHE keywords specify whether or not sequenced values will be
preallocated in memory. In a data sharing environment, each member has its own cache.

� ORDER/NO ORDER

The ORDER/NO ORDER keywords specify whether or not the sequence numbers must
be generated in order of request.

Impact of caching in a data sharing environment
Note that each member has its own cache and there is only one SYSIBM.SYSSEQUENCES
table from which to request values. Assume an application is on two members of a 2-way data
sharing system at the same time. If caching is active, each application can alternately request
a sequence on each member and the sequence would be satisfied from that member’s set of
cached sequence numbers. For example, if CACHE is set to 20, each member would have a
set of 20 cached values: member 1 could have cached 1 through 20 and member 2 could
have cached 21 through 40. If the application alternated between members, the sequence
order would be 1, 21, 2, 22, 3, 23, 4, and so forth. These numbers are clearly not in
sequence.

Summary and recommendations
Table 5-1 summarizes the previous discussion and offers recommendations.

Chapter 5. Other integrity features 161

Table 5-1 Sequence objects: Impact of caching on order

5.5 Informational RI
Informational RI constraints are constraints that are ignored by some aspects of DB2 and
recognized by others. We discuss this in 5.5.1, “What is informational RI” on page 161. In
5.5.2, “Impact on utilities” on page 162, we discuss how each utility is affected by
informational RI, and, in 5.5.3, “Impact on MQT usage” on page 164, we offer
recommendations about the appropriate use of informational RI.

5.5.1 What is informational RI
An informational referential constraint is a referential constraint that is not enforced by DB2
during SQL operations: insert, update, and delete. Some utilities ignore these constraints
(those that verify integrity) while other utilities recognize them (those that report only).

This example shows how an informational RI constraint is created. Suppose you have created
a DEPT and EMPL tables, as follows:

CREATE TABLE DEPT
 (DEPTID CHAR(3) NOT NULL PRIMARY KEY,
 DEPTNAME CHAR(30))
IN DSNDB04.RIDEPT ;

and

CREATE TABLE EMPL
 (EMPLID CHAR(6) NOT NULL,
 DEPTID CHAR(3) NOT NULL,
 EMPLNAME CHAR(30))
 IN DSNDB04.RIEMPL ;

Data Sharing
Environment?

ORDER
keyword

CACHE
keyword

Impact

Data Sharing ORDER CACHE Order is assured, but it may disable the caching of
values (OK with single application process).

NO
CACHE

Order assured.

NO
ORDER

CACHE Order not assured (application must be able to
tolerate), good performance.

NO
CACHE

Order not assured (application must be able to
tolerate), no reason to choose since performance
improvement possible.

Non-Data
Sharing

ORDER CACHE DB2 changes CACHE to NO CACHE.

NO
CACHE

Order is assured and integrity dictates that you
sacrifice performance.

NO
ORDER

CACHE Order not assured (application must be able to
tolerate), good performance.

NO
CACHE

Order not assured (application must be able to
tolerate), no reason to choose since performance
improvement possible with CACHE.

162 Data Integrity with DB2 for z/OS

You have also created an index on the DEPT table to support the primary key as shown
below:

CREATE UNIQUE INDEX DEPTK0
 ON DEPT
 (DEPTID ASC)
 USING STOGROUP SG247111
 PRIQTY 48 SECQTY 48
 ERASE YES
 FREEPAGE 10 PCTFREE 10
 GBPCACHE CHANGED
 NOT CLUSTER
 BUFFERPOOL BP0
 CLOSE YES
 COPY NO
 PIECESIZE 2 G ;

To create a foreign key where DB2 enforces the RI constraints, you use:

ALTER TABLE EMPL
 ADD FOREIGN KEY (DEPTID) REFERENCES DEPT ON DELETE RESTRICT;

However, to create the same constraint as an informational constraint, you issue:

ALTER TABLE EMPL
 ADD FOREIGN KEY (DEPTID) REFERENCES DEPT NOT ENFORCED ;

Informational RI could be useful in a phased migration approach. For example, a LISTDEF
with keyword RI could help in the scenario described at 3.12.1, “Planning considerations” on
page 97.

5.5.2 Impact on utilities
As mentioned earlier, some utilities ignore informational RI constraints while others recognize
them. We discuss the details, with examples, below.

� LOAD and CHECK DATA do not enforce informational RI constraints.

� REPORT TABLESPACESET also reports all tables spaces related to the named table
space through informational RI constraints.

Here is an example of REPORT TABLESPACESET.

REPORT TABLESPACESET DSNDB04.RIDEPT

produces the following:

DSNU050I DSNUGUTC - REPORT TABLESPACESET DSNDB04.RIDEPT
DSNU587I -DB8A DSNUPSET - REPORT TABLESPACE SET WITH TABLESPACE DSNDB04.RIDEPT

TABLESPACE SET REPORT:

TABLESPACE : DSNDB04.RIDEPT

 TABLE : PAOLOR4.DEPT
 INDEXSPACE : DSNDB04.DEPTK0
 INDEX : PAOLOR4.DEPTK0
 DEP TABLE : PAOLOR4.EMPL

TABLESPACE : DSNDB04.RIEMPL

 TABLE : PAOLOR4.EMPL
DSNU580I DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00

Chapter 5. Other integrity features 163

DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

which includes the EMPL related via an informational RI constraint.

� QUIESCE TABLESPACESET also reports all tables spaces related to the named table
space through informational RI constraints.

An example of QUIESCE TABLESPACESET is shown below:

QUIESCE TABLESPACESET DSNDB04.RIDEPT

produces the following:

DSNU050I DSNUGUTC - QUIESCE TABLESPACESET DSNDB04.RIDEPT
DSNU477I -DB8A DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACESET DSNDB04.RIDEPT
DSNU477I -DB8A DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSNDB04.RIDEPT
DSNU477I -DB8A DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSNDB04.RIEMPL
DSNU474I -DB8A DSNUQUIA - QUIESCE AT RBA 0002105DA1DF AND AT LRSN 0002105DA1DF
DSNU475I DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= 00:00:00
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

which includes the EMPL related via an informational RI constraint.

� LISTDEF also includes all table spaces related through informational RI constraints when
the keyword RI is specified.

A LISTDEF example is shown below:

OPTIONS PREVIEW
LISTDEF MYTABLES INCLUDE TABLESPACE DSNDB04.RIDEPT RI

produces:

DSNU1000I DSNUGUTC - PROCESSING CONTROL STATEMENTS IN PREVIEW MODE
DSNU1035I DSNUILDR - OPTIONS STATEMENT PROCESSED SUCCESSFULLY
DSNU050I DSNUGUTC - LISTDEF MYTABLES INCLUDE TABLESPACE DSNDB04.RIDEPT RI
DSNU1035I DSNUILDR - LISTDEF STATEMENT PROCESSED SUCCESSFULLY
DSNU1020I -DB8A DSNUILSA - EXPANDING LISTDEF MYTABLES
DSNU1021I -DB8A DSNUILSA - PROCESSING INCLUDE CLAUSE TABLESPACE DSNDB04.RIDEPT
DSNU1022I -DB8A DSNUILSA - CLAUSE IDENTIFIES 2 OBJECTS
DSNU1023I -DB8A DSNUILSA - LISTDEF MYTABLES CONTAINS 2 OBJECTS
DSNU1010I DSNUGPVV - LISTDEF MYTABLES EXPANDS TO THE FOLLOWING OBJECTS:
 LISTDEF MYTABLES -- 00000002 OBJECTS
 INCLUDE TABLESPACE DSNDB04.RIDEPT
 INCLUDE TABLESPACE DSNDB04.RIEMPL
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

which includes the EMPL related via an informational RI constraint.

Alternatively, you can use the LISTDEF utility to generate the control cards needed for
another utility, such as QUIESCE. An example is shown below:

LISTDEF MYTABLES INCLUDE TABLESPACE DSNDB04.RIDEPT RI
QUIESCE LIST MYTABLES

produces:

DSNU050I DSNUGUTC - LISTDEF MYTABLES INCLUDE TABLESPACE DSNDB04.RIDEPT RI
DSNU1035I DSNUILDR - LISTDEF STATEMENT PROCESSED SUCCESSFULLY
DSNU050I DSNUGUTC - QUIESCE LIST MYTABLES
DSNU477I -DB8A DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSNDB04.RIDEPT
DSNU477I -DB8A DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSNDB04.RIEMPL
DSNU474I -DB8A DSNUQUIA - QUIESCE AT RBA 000210C7F8BE AND AT LRSN 000210C7F8BE
DSNU475I DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= 00:00:00
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

which includes the EMPL related via an informational RI constraint.

164 Data Integrity with DB2 for z/OS

The list generated by LISTDEF can be saved for later use. This is illustrated in
Example 6-18 on page 222.

5.5.3 Impact on MQT usage
Automatic query rewrite is a general process within DB2 where a query is evaluated and
possibly rewritten for optimization purposes. For MQTs, the process examines a submitted
query that references source tables and, if appropriate, rewrites the query so that
performance is optimized by accessing MQTs. This process uses informational RI constraints
to determine whether or not it can use a materialized query table and can result in significant
reduction in query runtime, especially for decision-support queries that operate over huge
amounts of data.

This example shows how an original query is rewritten.

Suppose you have created tables DEPT, EMPL, and EMPLHIST as shown:

CREATE TABLE DEPT
 (DEPTID SMALLINT NOT NULL PRIMARY KEY,
 DEPTNAME CHAR(30))
IN DSNDB04.DEPT ;

CREATE TABLE EMPL
 (EMPLID INTEGER NOT NULL PRIMARY KEY,
 DEPTID SMALLINT NOT NULL,
 EMPLNAME CHAR(30))
 IN DSNDB04.EMPL ;

CREATE TABLE SALHIST
 (EMPLID INTEGER NOT NULL,
 SEQNO SMALLINT NOT NULL,
 RAISE DECIMAL(7,2))
 IN DSNDB04.SALHIST ;

In addition, you have created the indexes to support the primary and implied foreign keys as
follows:

CREATE UNIQUE INDEX DEPTK0
 ON DEPT
 (DEPTID ASC)
...

and

CREATE UNIQUE INDEX EMPLK0
 ON EMPL
 (EMPLID ASC)
...

You have created a materialized query table that contains the department summary as
shown:

CREATE TABLE DEPTSUM AS
 (SELECT D.DEPTID AS SUMDEPT,
 SUM(S.RAISE) AS TOTRAISE
 FROM DEPT D,
 EMPL E,
 SALHIST S
 WHERE D.DEPTID = E.DEPTID
 AND E.EMPLID = S.EMPLID
 GROUP BY D.DEPTID)

Chapter 5. Other integrity features 165

DATA INITIALLY DEFERRED REFRESH DEFERRED ;

Notice that the MQT is a join among three tables.

Now, you run the following query:

SELECT E.DEPTID,
 SUM(S.RAISE)
FROM EMPL E,
 SALHIST S
WHERE E.EMPLID = S.EMPLID
GROUP BY E.DEPTID
ORDER BY E.DEPTID ;

The resulting access path displayed by Visual Explain, shown in Figure 5-1, indicates that
both base tables are accessed.

Figure 5-1 Access path without informational RI

166 Data Integrity with DB2 for z/OS

Now suppose you create an informational RI between the DEPT and EMPL table as shown:

ALTER TABLE EMPL
 ADD FOREIGN KEY (DEPTID) REFERENCES DEPT NOT ENFORCED

This lets DB2 know that the definition of the MQT, which contains the DEPT table, in addition
to the EMPL and SALHIST tables, can be used to satisfy this query since the join to DEPT is
a “lossless” join. This means no rows are eliminated by including the DEPT table. Since the
MQT is substantially smaller than the base tables (10 rows versus 80,000 and 240,000 rows
for the base tables in our study), DB2 chooses to use the MQT instead. The resulting access
path displayed by Visual Explain is shown in Figure 5-2. Needless to say, this performs
substantially better.

Figure 5-2 Access path with informational RI

Chapter 5. Other integrity features 167

In this example, we created EMPL table as follows:

CREATE TABLE EMPL
 (EMPLID INTEGER NOT NULL PRIMARY KEY,
 DEPTID SMALLINT NOT NULL,
 EMPLNAME CHAR(30))
RI IN DSNDB04.EMPL ;

If we created the DEPTID to allow nulls, the join is NOT “lossless” and an MQT will not be
considered.

5.5.4 Usage recommendations
These are some of the business scenarios where informational RI constraints may be useful:

� Application-enforced RI is in effect.

While you do not want to have DB2 enforce the rules, you can still take advantage of
utilities like REPORT TABLESPACESET and QUIESCE TABLESPACESET which allow
you to identify a set of application-related objects and to create a consistency point among
objects that are linked via application-enforced RI. The DB2 catalog also provides a
means of documenting these rules.

� Enforcement may be unnecessary in a data warehouse.

Typically, data in a data warehouse environment has been extracted from other sources
and cleansed. RI may already be guaranteed. In this case, informational RI constraints
can be safely used as a means of documenting the business rules.

� To encourage automatic query rewrite.

Automatic query rewrite is a process that examines a submitted query that references
source tables and, if appropriate, rewrites the query so that it executes against a
materialized query table. We discussed this in 5.5.3, “Impact on MQT usage” on page 164.

5.6 Locking
The term locking refers to the collective set of serialization techniques used by DB2 to ensure
the integrity of data in the database. It is important for the application developer to understand
the impact of locking on concurrent accesses to D2 data. This topic is covered in detail in
Chapter 12, “What you need to know about locking” in the redbook, DB2 UDB for z/OS:
Design Guidelines for High Performance and Availability, SG24-7134. In this chapter, we only
provide some further information related to data sharing.

Important: Keep in mind that, for the join to be “lossless”, the definition of the column must
not allow NULLs. In addition, you must issue (or set the proper option in Visual Explain) as
follows:

SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION = ALL ;

and

SET CURRENT REFRESH AGE = ANY ;

168 Data Integrity with DB2 for z/OS

5.6.1 Data sharing implications
DB2 data sharing introduces additional locks to manage the data concurrency and data
integrity when more than one member of the data sharing group post interest in the same
DB2 object. We briefly outline the concepts and usage of local, global, logical, physical, and
parent and child locks. Figure 5-3 shows the usage of the coupling facility by DB2 and the
three structures. The lock structure is the repository of the global locks and it is the
communication area for all the members to get information and negotiate global locks. We do
not discuss these locks in detail but just refresh the terminology for the description of protocol
level (2) locking in 5.6.2, “Locking protocol level 2” on page 170.

Figure 5-3 DB2 and coupling facility

Refer to 11.1 of DB2 UDB for z/OS Version 8: Everything You Ever Wanted to Know, ... and
More, SG24-6079, for a general review of locking in a data sharing environment.

These are the types of locks:

� Local locks

These are locks that we get in non-data sharing subsystems that we continue to get in
data sharing groups.

� Global locks

A global lock is a lock that the DB2 subsystems in a data sharing group have to make
known to other member subsystems in the group. The lock structure in the coupling facility,
part of the Parallel Sysplex, is the communication agent for the global locks. The DB2
member requesting the global lock sends the request to the DB2 lock structure. All other
members in the data sharing group automatically have access to the information. The
global lock communication is also referred to as global lock propagation.

� Logical locks (L-Locks)

Logical locks are also referred to as transaction locks. L-Locks are used to serialize
access to data to ensure data consistency.

DB2A

Local
Buffer
Pools

IRLM

DB2B

Local
Buffer
Pools

IRLM

DB2 Usage of the Coupling Facility

BPn BPn

Group Buffer Pools

Lock
Structure

SCA

GBPn

Chapter 5. Other integrity features 169

L-Locks are owned by a transaction, and the lock duration is controlled by the transaction.
For example, the lock is generally held from the time the application issues an update until
the time it issues a commit. (Exceptions are share locks associated with cursors defined
WITH HOLD and table space and partition locks acquired by SQL associated with plans
and packages bound using RELEASE(DEALLOCATE).) The locks are controlled locally
per member by each member’s IRLM.

� Parent lock and child lock

Parent locks and child locks refer to the L-Locks hierarchy. The parent locks are at table
space and partition level while child locks are at page and row level. Parent locks are
propagated to global lock structure. The child lock propagation to global structure is
determined by the parent lock’s conflict.

� Physical locks (P-Locks):

Physical locks are used to do many things. We discuss the two most commonly used
P-Locks: page set P-Locks and page P-Locks. Other types of P-Locks include DBD,
castout, GBP structure, index tree, and repeatable read tracking P-Locks.

– Page set physical locks:

Page set P-Locks are used to track inter-DB2 read-write interest, therefore,
determining when a page set has to become GBP-dependent.

When a DB2 member requires access to a page set or partition, a page set P-Lock is
taken. This lock is always propagated to the lock table in the coupling facility and is
owned by the member. No matter how many times the resource is accessed through
the member, there will always be only one page set P-Lock for that resource for a
particular member. This lock will have different modes depending on the level (read or
write) of interest the member has in the resource.

The first member to acquire a page set P-Lock on a resource takes the most restrictive
mode of lock possible, that is, an S page set P-Lock for read or an X page set P-Lock
for write interest. An X page set P-Lock indicates that the member is the only member
with interest (read/write) in the resource. Once another member becomes interested in
the resource, the page set P-Lock mode can be negotiated; that is, it can be made less
restrictive if the existing page set P-Lock is incompatible with the new page set P-Lock
request.

The negotiation always allows the new page set P-Lock request to be granted, except
when there is a retained X page set P-Lock. A retained P-Lock cannot be negotiated.
(Retained locks are locks that must be kept to protect possibly uncommitted data left by
a failed DB2 member.) Page set P-Lock negotiation signifies the start of GBP
dependence for the resource.

Although it may seem strange that a lock mode can be negotiated, remember that
page set P-Locks do not serialize access to a resource; they are used to track which
members have interest in a resource and to determine when a resource must become
GBP-dependent.

Page set P-Locks are released when a page set or partition data set is closed. The
mode of page set P-Locks is downgraded from R/W to R/O when the page set or
partition is not updated within an installation-specified time period or a number of
system checkpoints. When page set P-Locks are released or downgraded, GBP
dependency is reevaluated.

– Page physical locks:

170 Data Integrity with DB2 for z/OS

Page P-Locks are used to ensure the physical consistency of a page across members
of a data sharing group in much the same manner as latches do in a non-data sharing
environment. A page P-Lock protects the page while the structure is being modified.
Page P-Locks are used when row locking is in effect, or when changes are being made
to GBP-dependent space map pages. Page physical locks are also used to read and
update index pages.

The lock information for P-Locks and L-Locks is stored in the same places: the IRLM, XES,
and the coupling facility.

Explicit hierarchical locking
Conceptually, all locks taken in a data sharing environment are global locks; that is, they are
effective group-wide, even though all locks do not have to be propagated to the lock structure
in the coupling facility.

DB2 data sharing has introduced the concept of explicit hierarchical locking to reduce the
number of locks that must be propagated to the coupling facility.

Within IRLM, a hierarchy exists between certain types of L-Locks, where a parent L-Lock is
the lock on a page set (table space or partition) and a child L-Lock is the lock held on either
the table, data page, or row within that page set. For partitioned table spaces, if you use
LOCKPART YES in DB2 V7, each locked partition is a parent of the child locks held for that
partition. If you use LOCKPART NO (the default in V7), the last data partition is the parent
lock for all child locks.

By using explicit hierarchical locking, DB2 is able to reduce the number of locks that must be
propagated to the lock structure in the coupling facility. The number of locks propagated to the
lock structure for a page set or partition is determined by the number of DB2 members
interested in the page set and whether their interest is read or write. Wherever possible, locks
are granted locally and not propagated to the coupling facility.

If an L-Lock has already been propagated to XES, protecting a particular resource for this
member, subsequent lock requests for the same lock do not have to be sent to XES by the
same member for the same resource. They can be serviced locally. In addition, a parent
L-Lock is propagated only if it is more restrictive than the current status that XES knows about
for this resource from this member.

Parent L-Locks are released either when the transaction commits, or when the thread
terminates, depending on the value you have specified for the RELEASE parameter on the
bind. Child L-Locks are propagated to the lock table in the coupling facility only when there is
inter-DB2 interest for the page set.

Child L-Locks (page and row locks) are propagated to XES and the coupling facility based on
inter-DB2 interest on the parent (table space or partition) lock. If all the table space locks are
IS, then no child locks are propagated. If there is a parent S lock on the table space or
partition, then all the child locks must be propagated. If there is a parent X lock on the table
space or partition, then only the X child locks must be propagated.

5.6.2 Locking protocol level 2
Locking protocol level 2 remaps parent IX L-Locks from XES-X to XES-S locks. Data sharing
locking performance benefits because this allows IX and IS parent global L-Locks to be
granted without invoking global lock contention processing to determine that the new IX or IS
lock is compatible with existing IX or IS locks.

Chapter 5. Other integrity features 171

The purpose of this enhancement is to avoid the cost of global contention processing
whenever possible. It will also improve availability due to a reduction in retained locks
following a DB2 subsystem or MVS system failure.

XES contention caused by parent L-Locks is reasonably common in a data sharing
environment. On page set open (an initial open or open after a pseudo close), DB2 normally
tries to open the table space in RW. (DB2 rarely opens a table space in RO.) To do this, DB2
must ask for an L-Lock. This L-Lock is normally an IS or IX L-Lock, depending on whether or
not a SELECT or UPDATEable SQL statement caused the table space to open. If any other
DB2 member already has the table space open for RW, global lock contention generally
occurs.

DB2 V8 attempts to reduce this global contention by remapping parent IX L-Locks from
XES-X to XES-S locks. Data sharing locking performance benefits because parent IX and IS
L-Locks are now both mapped to XES-S locks and are therefore compatible and can now be
granted locally by XES. DB2 no longer needs to wait for global lock contention processing to
determine that a new parent IX or IS L-Lock is compatible with existing parent IX or IS
L-Locks.

The majority of parent L-Lock contention occurs when the table space is opened by at least
one DB2 member in RW:

� IS-IS: No contention. We want to execute some read-only SQL against a table space and
there are some other members who currently have some read-only SQL active against the
same table space.

� IS-IX: We want to execute some read-only SQL against a table space and there are some
other members who currently have some update SQL active against the same table
space.

� IX-IS: We want to execute some update SQL against a table space and there are some
other members who currently have some read-only SQL active against the same table
space.

� IX- IX: We want to execute some update SQL against a table space and there are some
other members who currently have some update SQL active against the same table
space.

Parent lock contention with parent S L-Locks is less frequent than checking for contention
with parent IS and IX L-Locks. Parent S L-Locks are only acquired when DB2 is about to
issue read-only SQL against a table space opened for RO.

To ensure that parent IX L-Locks remain incompatible with parent S L-Locks, S table and
table space L-Locks are remapped to XES-X locks. This means that additional global
contention processing will now be done to verify that an S L-Lock is compatible with another S
L-Lock, but this is a relatively rare case (executing read-only SQL against a table space,
where at least one other DB2 member has the table space open in RO and currently has
some read-only SQL active against the same table space).

Another impact of this change is that child L-Locks are no longer propagated based on the
parent L-Lock. Instead, child L-Locks are propagated based on the held status of the table
space P-Lock. If the table space P-Lock is negotiated from X to SIX or IX, then child L-Locks
must be propagated.

It may be that some child L-Locks are acquired before the page set P-Lock is obtained. In this
case, child L-Locks will automatically be propagated. This situation occurs because DB2
always acquires locks before accessing the data. In this case, DB2 acquires that L-Lock
before opening the table space to read the data. It can also happen during DB2 restart.

172 Data Integrity with DB2 for z/OS

An implication of this change is that child L-Locks will be propagated for longer than they are
needed; however, this should not be a concern. There will be a short period from the time
where there is no intersystem read/write interest until the table space becomes
non-GBP-dependent, that is, before the page set P-Lock reverts to X. During this time, child
L-Locks will be propagated unnecessarily.

It is now important that L-Locks and P-Locks are maintained at the same level of granularity.
Remember that page set P-Locks now determine when child L-Locks must be propagated to
XES.

For partitioned table spaces defined with LOCKPART NO, prior versions of DB2 lock only the
last partition to indicate we have a lock on the whole table space. There are no L-Locks held
on each of the partition page sets. So, when should we propagate the child L-Locks for the
various partitions that are being used? We cannot tell by looking at the table space parent
L-Locks that we need to propagate the child locks since there no longer is a lock contention
conflict that can trigger child lock propagation, and we cannot determine how each partition
page set is being used by looking at the page set P-Locks that are held at the partition level,
while the parent L-Lock is at the table space level with LOCKPART NO.

To overcome this problem, DB2 V8 obtains locks at the part level. LOCKPART NO behaves
the same as LOCKPART YES.

In addition, LOCKPART YES is not compatible with LOCKSIZE TABLESPACE. However, if
LOCKPART NO and LOCKSIZE TABLESPACE are specified, then we will lock every partition,
just as every partition is locked today when LOCKPART YES is used with
ACQUIRE(ALLOCATE). With this change, you may see additional locks being acquired on
individual partitions even though LOCKPART(NO) is specified.

This change to the LOCKPART parameter behavior applies to both data sharing and non-data
sharing environments.

Since the new locking protocol cannot coexist with the old, the new protocol will only take
effect after the first group-wide shutdown and restart after the data sharing group is in
new-function mode (NFM). You do not have to delete the lock structure from the coupling
facility prior to restarting DB2 in order to trigger DB2 on group restart to build a new lock
structure. In addition, Protocol Level 2 will not be enabled if you merely ask DB2 to rebuild the
lock structure while any DB2 member remains active.

The new mapping takes effect after the restart of the first member, after successful quiesce
of all members in the DB2 data sharing group. So, a group-wide outage is required to enable
this feature.

No other changes are required to take advantage of this enhancement.

You can use the -DISPLAY GROUP command to check whether the new locking protocol is
used (mapping IX IRLM L-Locks to an S XES lock). Example 5-1 shows the output from a
-DISPLAY GROUP command which shows Protocol Level 2 is active.

Example 5-1 Sample -DISPLAY GROUP output

DSN7100I -DT21 DSN7GCMD
 *** BEGIN DISPLAY OF GROUP(DSNT2) GROUP LEVEL(810) MODE(N)
 PROTOCOL LEVEL(2) GROUP ATTACH NAME(DT2G)
 --
 DB2 DB2 SYSTEM IRLM
 MEMBER ID SUBSYS CMDPREF STATUS LVL NAME SUBSYS IRLMPROC
 -------- --- ---- -------- -------- --- -------- ---- --------
 DT21 1 DT21 -DT21 ACTIVE 810 STLABB9 IT21 DT21IRLM

Chapter 5. Other integrity features 173

 DT22 3 DT22 -DT22 FAILED 810 STLABB6 IT22 DT22IRLM

The use of locking Protocol Level 2 requires that the PTFs for the following APARs are
applied: PQ87756, PQ87168, and PQ86904 (IRLM).

See DB2 UDB for z/OS Version 8 Performance Topics, SG24-6465, for the performance
advantages of Protocol Level 2 locking.

174 Data Integrity with DB2 for z/OS

© Copyright IBM Corp. 2006. All rights reserved. 175

Chapter 6. Recovery

In this chapter, we look at the characteristics of recoverability of DB2 applications by
analyzing the DB2 recoverability functions.

We begin with the basic concepts of the DB2 subsystem structure and the definitions needed
to understand DB2’s unit of recovery. We then look at the recovery of transaction data by the
DB2 subsystem and when the subsystem restarts after an abnormal failure. We also look at
the recovery of application data after an I/O subsystem failure. In the rest of the chapter, we
discuss the processes involved in ensuring the recovery of application data by application
programmers and DBAs.

This chapter contains the following:

� DB2 attachment facilities
� DB2 commit process
� Unit of work
� Data integrity
� Scrollable cursors
� DB2 subsystem restart after abend
� Recovery of objects in error
� Application recovery process
� Preparing to recover to a point of consistency

We do not provide here disaster recovery considerations. For details about recovering DB2
subsystems and user data, refer to Disaster Recovery with DB2 UDB for z/OS, SG24-6370.

6

176 Data Integrity with DB2 for z/OS

6.1 DB2 attachment facilities
An attachment facility can be thought of as a required portal or gateway when a user request
to connect to a DB2 subsystem originates from certain environments. In order to
communicate with DB2 for z/OS from a Customer Information Control System (CICS),
Information Management System (IMS), Time Sharing Option (TSO), batch or WebSphere
(when using RRS) environment, a DB2 attachment facility is required to establish a session.
Attachment facilities are subcomponents of DB2 that run in the user’s address space.

CICS
The CICS attachment facility, language interface module DSNCLI, is provided by the CICS
product. It receives CICS application requests and passes them to DB2. Example 6-1 shows
the standard CICS command-level services that you can use.

Example 6-1 CICS command-level services used with the CICS attachment facility

EXEC CICS WAIT
EXEC CICS ABEND

By issuing DB2 commands, an authorized CICS terminal operator is able to control and
monitor DB2 and the attachment facility.

IMS
The IMS attachment facility, program interface DFSLI000, is required to access DB2 from an
IMS environment. It receives and interprets requests for access to DB2 databases using exits
provided by IMS subsystems. The IMS attachment facility also allows an authorized IMS
terminal operator the ability to issue DB2 commands such as starting and stopping DB2
databases.

TSO
The TSO attachment facility offers unique functionality. It is required for binding application
plans and packages and executing online DB2 functions. In fact, the CICS and IMS
attachment facilities depend on the TSO attachment facility for these functions.

Access to DB2 in the foreground through a TSO terminal or in batch mode through the TSO
terminal monitor program (TMP) can be accomplished with the TSO attachment facility. In
addition, two command processors are provided:

� DSN command processor: Primarily used for batch jobs, uses the TSO attachment facility
and runs as a TSO command processor

� DB2 Interactive (DB2I): An interactive connection to DB2 allowing users to run SQL
statements, issue DB2 commands, and run DB2 utilities using Interactive System
Productivity Facility (ISPF) panels

With the TSO attachment facility, load module DSNELI, access to DB2 is fairly simple. On the
other hand, this also means that an application has less control over the status of the
connections and, when using DSN services, applications running under the control of DSN.

Call attachment facility (CAF)
As the alternative attachment facility for TSO and batch applications, CAF supplies additional
connection functionality and greater control over the execution environment including:

� Explicit control over the status of the connection to DB2.

� Used with or without TSO TMP.

Chapter 6. Recovery 177

� DB2 version verification.

� Translation of DB2 reason codes, return codes, and abend codes into customized
messages.

� Establish an implicit connection to DB2 (with a default subsystem identifier and a default
plan name) by using SQL statements or instrumentation facility interface (IFI) calls without
first calling CAF (available in all currently supported DB2 versions).

CAF uses language interface module DSNALI.

Resource Recovery Services (RRS)
RRS is a component of the z/OS operating system that provides system-wide coordination of
commit processing (including two-phase commit) over the life of a transaction. With the
additional functionality included in z/OS RRS, the RRS attachment facility (RRSAF) has
become the “successor” to CAF. With RRSAF, it is possible to:

� Coordinate DB2 updates with updates made by all other resource managers that also use
z/OS RRS in an z/OS system.

� Establish an implicit connection to DB2 (with a default subsystem identifier and a default
plan name) by using SQL statements or instrumentation facility interface (IFI) calls without
first calling RRSAF (in DB2 V8).

z/OS RRS is a started task that can be started and stopped independently of DB2. RRS must
be started before application programs using RRSAF connect to DB2. Applications must load
the RRSAF language interface module DSNRLI. An application can connect to DB2 using
RRSAF in two ways:

� Implicitly, by SQL statements or IFI calls
� Explicitly, by using CALL DSNRLI statement to invoke RRSAF functions

To use RRSAF, load module DSNRLI provided by DB2 must be available, and the z/OS
RRS component must be started.

Programming information for RRSAF can be found at:

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db2.doc.aps
g/bjnqmstr632.htm

and in Part 6 of DB2 UDB for z/OS Version 8 Application Programming and SQL Guide,
SC18-7415.

Figure 6-1 illustrates the logical flow of data when a request is made from a z/OS or
distributed environment. Depending on the originating environment, a z/OS request uses the
associated attachment facility to establish communication with the DB2 for z/OS subsystem.
For example, a CICS request would use the CICS attachment facility to establish a
connection. Once the connection is established, the general flow of data begins in the MSTR
address space. This is where the request is initially validated and the necessary output
messages, if any, are generated. Once the MSTR address space declares the request to be
valid, data flow continues to the DBM1 address space. The DBM1 address space does much
of the legwork. However, the IRLM address space must provide the necessary locking before
and data is ultimately passed back to the requester to insure data integrity. Once the locks
have been acquired, the data is retrieved and passed back to the requester.

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db2.doc.apsg/bjnqmstr632.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db2.doc.apsg/bjnqmstr632.htm

178 Data Integrity with DB2 for z/OS

Figure 6-1 Basic data flow in a DB2 subsystem from z/OS and distributed environments

A request from a distributed environment is very similar to the data flow originating from within
a z/OS environment (local attachment). The significant difference is using the DDF address
space to establish a connection as opposed to an attachment facility.

This is also the case when using JDBC Type 4 connectivity provided by the IBM DB2
Universal JDBC Driver to connect to a DB2 for z/OS subsystem. In this scenario, the
Universal Driver is acting as a DRDA application requester to establish a connection into the
DDF address space (acting as a DRDA application server) of the DB2 for z/OS subsystem.

Commands can connect to DB2 in all of these environments and more. Stored procedures
can be local or remote. Utilities use another connection and can also run as stored
procedures.

6.2 DB2 commit process
Before we begin looking at the unit of work (UOW) and unit of recovery (UR), we briefly
discuss the DB2 commit process in terms of subcomponent interactions and explain when
recovery information is written to the log media. An understanding of the status of the system
is useful if the system terminates abnormally.

We discuss the DB2 commit process as shown on Figure 6-2 and the role of DB2 as a
coordinator and participant in the single-phase and two-phase commit processes.

Refer to chapter 19, “Maintaining consistency across multiple systems”, DB2 UDB for z/OS
Version 8 Administration Guide, SC18-7413, for details.

TSO
attachment facility

IMS
attachment facility

CICS
attachment facility

CAF

RRSAF

 z/OS
environment

 Distributed
environment

DDF
address space

MSTR
address space

DBM1
address space

IRLM
address space

DB2 for z/OS subsystem

Chapter 6. Recovery 179

An application using DB2 notifies that it has reached a point of consistency using a commit
point. DB2 does not proceed beyond a commit point until it has ensured that all work done
before the commit point is fully protected against loss or invalidation.

� TSO applications notify a commit point using SQL COMMIT statement.

� IMS and CICS applications establish a sync point to establish a point of consistency.

� To commit work in RRSAF applications, you can use the CPIC SRRCMIT function or the
DB2 COMMIT statement. To roll back work, you use the CPIC SRRBACK function or the
DB2 ROLLBACK statement. See DB2 UDB for z/OS Version 8 Application Programming
and SQL Guide, SC18-7415-03.

� All applications can use the rollback function to intentionally back out all data changes
since the last commit point or application savepoint.

When DB2 restarts after an abnormal termination (see also 6.7, “DB2 subsystem restart after
abend” on page 211):

� IN DOUBT threads are resolved.

� All uncommitted database changes are backed out.

� Committed changes that might not have been applied to disk are reapplied to ensure
consistency of data.

� All committed database changes cannot be backed out.

6.3 Unit of recovery
A unit of recovery is the work, done by a single DB2 DBMS for an application, that changes
DB2 data from one point of consistency to another. A unit of recovery begins with the first
change to the data after the beginning of the job or following the last point of consistency and
ends at a later point of consistency.

Unit of recovery (UR) is the information required for DB2 to backout all the application
database changes since the last commit point. DB2 records all recovery information in a DB2
recovery log, which is made up of the active log and the archive log. These logs contain
chronological entries that record significant DB2 activities of all users and jobs. The only
exceptions are database changes done by utilities with LOG NO where the backup copies
done with the COPY utility are absolutely essential for recovery to a consistency point prior to
the execution of the utility.

Dual active logs and dual archive logs are strongly recommended to avoid recovery failures
due to media failures. Changes are not updated to disk but queued in the log buffer until either
commit or a buffer pool write threshold has been reached. If the same disk record is updated
before the media is updated, the buffer is altered to reflect both changes. The archive logs are
recorded in the bootstrap data set (BSDS). The total number of BSDS archive log entries is
limited by the DSNZPARM parameter MAXARCH. Other DSNZPARM parameters related to
active and archive logs are TWOACTV and TWOARCH.

In the data sharing environment, DB2 uses “a force-at-commit” policy for updates against
page sets that are dependent on group buffer pool GBP. See 5.6.1, “Data sharing
implications” on page 168 for the DB2 structures in the coupling facility. GBP caches data and
maintains data consistency for group members.

DB2’s role in a commit process as coordinator or participant is determined by the application:

� In TSO applications, DB2 acts as the commit coordinator, see 6.3.1, “Commit processing
for TSO applications” on page 180.

180 Data Integrity with DB2 for z/OS

� In a CICS and IMS commit process, DB2 is the participant and CICS or IMS is the
coordinator. See 6.3.2, “Commit processing for CICS, IMS, or RRSAF applications” on
page 181.

� In commit processing for RRSAF applications, DB2 is the participant and RRS is the
coordinator.

� DB2 takes on the role of both coordinator and participant in environments where there are
more than two systems.

6.3.1 Commit processing for TSO applications
In a TSO application, DB2 is the commit coordinator. The commit process goes through the
following phases. Refer to Figure 6-2.

Figure 6-2 DB2 as Coordinator: TSO Application

� The unit of recovery begins with begin-UR log record.

� All application updates (INSERT, DELETE, and UPDATE) log records are queued and
written to the log media immediately or later.

� The application reaches a point of consistency (POC) and issues a SQL COMMIT or
normal termination.

� DB2 polls each resource manager involved in the commit process, and each responds
about its ability to commit.

Case one: Normal commit process
� All resource managers reply affirmatively.

� A phase 1-phase 2 transition record is queued to be written to the recovery log.

� DB2 waits for all of the queued output log records to be written to the log media.

� When all the resource managers have completed their commit processing:

– An end-phase-2 record is queued for writing to the log.

– All locks held on database objects are released except where the cursor is defined as
WITH HOLD.

Time
Line

SQL Updates
Deletes, Inserts

Log
Records

Begin UR

Write Log Records

Application
POC
SQL

Commit

Previous
POC

Resource Managers
Complete
Commits

D
B

2
 C

oo
rd

in
at

or

All resource
managers in
commit process

Locks
released

Phase 1 - Phase 2
Records written to Log

End
Phase 2

UR

Chapter 6. Recovery 181

� If DB2 abends before completing the commit process, then log records for unit of recovery
are redone when DB2 restarts, see 6.7, “DB2 subsystem restart after abend” on page 211
for details.

Case two: Abnormal commit process
� If one or more of the resource managers fail in its commit process, then DB2 converts the

commit operation into an abort (“undo”) operation.

� DB2 initiates a ROLLBACK and undoes all updates to the last point of consistency.

� If DB2 abends before completing the remainder of the commit process, then log records
for unit of recovery are redone when DB2 restarts. See 6.7, “DB2 subsystem restart after
abend” on page 211 for details.

6.3.2 Commit processing for CICS, IMS, or RRSAF applications
DB2 acts as the participant when CICS, IMS, or RRS is the coordinator in the commit
processing. The unit of recovery begins with begin-UR record and the subsequent log records
are queued for writing onto the log media.

Single-phase commits
� DB2 is the only resource manager that updates and creates log records.

� DB2 communicates with the coordinator CICS or IMS, and the coordinator, CICS or IMS,
does no update logging.

� If the coordinator is RRS and DB2 is the only recoverable resource manager that is
holding updates in the unit of recovery.

Two-phase commits
� More than one resource manager communicates with IMS, CICS, or RRS in the same unit

of work.

� DB2 updates and write log records.

� There is at least another resource manager that updates and writes log records.

Read-only commits
� More than one resource manager communicates with CICS or RRS in the same unit of

work.

� DB2 access is read-only.

� There is another resource manager that updates.

For a brief description of two-phase commit, see Figure 6-3. This figure illustrates a
two-phase commit process where the coordinator is CICS, IMS, RRS, or even DB2 (DDF
communication). The coordinator’s role is in the upper line and the participant’s role is in the
lower line. The numbers in the following discussion are keyed to those in the figure.

182 Data Integrity with DB2 for z/OS

Figure 6-3 Illustration of two-phase commit

1. The data in the coordinator is at point of consistency (POC).

2. The application program in the coordinator calls the participants to update data by
executing SQL statements.

3. The participants commence the unit of recovery. DB2 writes a begin-UR log record.

4. Processing continues in the coordinator until the application program reaches an
application synchronization point.

5. The coordinator starts the commit processing. CICS uses SYNCPOINT. DB2 applications
use SQL COMMIT statement or normal termination. Phase 1 of commit processing
begins.

6. The coordinator informs the participants that it is prepared to commit. The participants
begin phase 1 processing.

7. Participants successfully complete phase 1, update their log records, and notify the
coordinator.

8. Coordinator receives the notification from participants.

9. Coordinator successfully completes phase 1 processing and records the instant of commit
in its log. Phase 2 processing starts the actual commitment.

10.Coordinator notifies the participants to begin phase 2.

11.Participants log the start of phase 2 in their log.

12.Participants complete phase 2, establish a new point of consistency, and notify coordinator
that they are finished with phase 2.

Chapter 6. Recovery 183

13.Coordinator finishes its phase 2 processing. The data controlled by all participants and
coordinators is now available to other applications.

Figure 6-3 also describes what happens to the data when a DB2 failure occurs during a
particular period.

6.3.3 Consistency across multiple DBMSs
The principles and methods for maintaining consistency across more than two systems are
similar to those used to ensure consistency across two systems. The main difference involves
a system’s role as coordinator or participant when a unit of work spans multiple systems.

The coordinator of a unit of work that involves two or more other DBMSs must ensure that all
systems remain consistent. After the first phase of the two-phase commit process, the DB2
coordinator waits for the other participants to indicate that they can commit the unit of work. If
all systems are able, the DB2 coordinator sends the commit decision and each system
commits the unit of work.

If even one system indicates that it cannot commit, then the DB2 coordinator sends out the
decision to roll back the unit of work at all systems. This process ensures that data among
multiple DBMSs remains consistent. When DB2 is the participant, it follows the decision of the
coordinator, whether the coordinator is another DB2 or another DBMS.

DB2 can play the role of participant and the coordinator in a unit of recovery where more than
two subsystems are involved. DB2 is the participant for CICS, IMS, and RRS coordinators. It
becomes the coordinator for other DBMSs or DB2 subsystems in the same unit of work.
Consider DB2A in Figure 6-4. DB2A is the participant and CICS or IMS is the coordinator, but
DB2A becomes the coordinator for the two database servers (AS1 and AS2), DB2B, and its
respective DB2 servers (DB2C, DB2D, and DB2E).

Figure 6-4 DB2’s role as participant and coordinator

If the connection goes down between DB2A and the coordinating CICS or IMS system, with
pending commit, the connection becomes an indoubt thread. However, DB2A’s connections
to the other systems are still waiting and are not considered indoubt. Wait for automatic
recovery to occur to resolve the indoubt thread. When the thread is recovered, the unit of
work commits or rolls back and this action is propagated to the other systems involved in the
unit of work.

184 Data Integrity with DB2 for z/OS

Refer to Chapter 19, “Maintaining consistency across multiple systems”, DB2 UDB for z/OS
Version 8 Administration Guide, SC18-7413, for details.

6.4 Unit of work
A logical unit of work in an application is a set of SQL statements that makes up a business
process. At any point during the logical unit of work, a failure will require the rollback of all
previous updates in that logical unit of work in order to keep the database in a status that is
consistent with the business rules. At the end of the logical unit of work, the data manipulated
by the business process should be in a status that is consistent with the business rules.

In DB2, a unit of recovery is the set of UPDATE, DELETE, and/or INSERT statements that are
performed from one point of consistency to another by a single application process. A unit of
recovery begins with the first change to the data after the beginning of the job or following the
last point of consistency and ends at a commit point.

In order to ensure that the data in a database remains in a status that is consistent with the
business rules, the logical unit of work should be no larger than the DB2 unit of recovery.
However, in some cases the logical unit of work cannot be completed within a single DB2 unit
of recovery. An example would be a process that requires three online transactions to
complete a business function that is considered a single logical unit of work. Because each
online transaction ends with a commit, the rows that have been added or altered in the first
transaction are exposed to other processes without being locked. This may also be the case
when multiple batch job steps or even multiple batch jobs are required to complete a logical
unit of work. In either of these cases, there is also the dilemma of how to handle an abend in
a subsequent unit of recovery after previous units of recovery have already been committed.

One way of solving the problem is by adding application-managed locking information to the
table which indicates that the current data is inconsistent. This solution has two
disadvantages:

� Every SQL statement that uses the table must verify the status of the application lock even
when just retrieving the data.

� It does not solve the problem of the abend situation, because you do not have a before
image of the data.

A better solution is to use the techniques described in 6.5.3, “Work-in-progress tables” on
page 196 and 6.5.4, “Restricting other applications’ data access” on page 197 to control
access to the data until the logical unit of work completes.

For best performance, it may be advisable to group multiple logical units of work into a single
DB2 unit of recovery. When this is done, savepoints (which are discussed in 6.4.4,
“Savepoints” on page 189) can be used to allow the application to roll back a single logical
unit of work.

The diagram in Figure 6-5 shows the relationship between a DB2 unit of recovery and a
logical unit of work.

Chapter 6. Recovery 185

Figure 6-5 Logical units of work and DB2 units of recovery

6.4.1 Commit
All batch application processes, as well as any other application processes that acquire locks
and run for more than a few seconds, should perform commits periodically. We discuss
commit frequency in 6.4.2, “Commit frequency” on page 187. The following points summarize
the reasons for performing commits:

� Any processes that are updating DB2 are acquiring locks on objects that may prevent
other processes from accessing these objects. If these locks are held for an unnecessarily
long period of time, concurrency will suffer. Excessive long lock duration leads to deadlock
and timeout.

� Any processes that are accessing DB2, including read-only applications, are acquiring
claims on objects that may prevent drains from completing. Drains are typically issued by
utilities that must be run on the database objects in order to keep them continuously
available.

� In a well designed environment, most read-only applications will not acquire any page or
row level locks because of lock avoidance. An increase in the number or duration of X
locks on pages and rows in the system will reduce the amount of lock avoidance.
Acquiring additional locks will add to the elapsed time of read-only transactions and
increase the workload in the IRLM address space leading to overall system performance
degradation.

� Whenever a batch program abends or a system failure occurs, DB2 backs out data
changes that have not been committed. If no commits are taken then the amount of data
to be backed out may be large and may take a long time. In addition, upon restart the

logical
unit of work

logical
unit of work

logical
unit of work

logical
unit of work

Time
Line

I
N
S
E
R
T

I
N
S
E
R
T

I
N
S
E
R
T

U
P
D
A
T
E

I
N
S
E
R
T

I
N
S
E
R
T

I
N
S
E
R
T

U
P
D
A
T
E

Unit of recovery

(point of
consistency)

Application Process

Unit of recovery

S
A
V
E
P
0
I
N
T
(*)

C
O
M
M
I
T

I
N
S
E
R
T

I
N
S
E
R
T

I
N
S
E
R
T

U
P
D
A
T
E

I
N
S
E
R
T

I
N
S
E
R
T

I
N
S
E
R
T

U
P
D
A
T
E

(point of
consistency)

S
A
V
E
P
0
I
N
T
(*)

C
O
M
M
I
T

(*) Optional

186 Data Integrity with DB2 for z/OS

program will have to reapply all of the updates. More frequent commits reduce the amount
of data that must be rolled back and then reapplied on restart.

Committing in a batch process requires that the application be designed for restart. See
6.5.7, “Restart using sequential input and output files” on page 201 for detailed
information regarding how to design an application for restart.

� When updating a table space that has a LOCKMAX other than 0 specified, it is important
to commit before reaching the maximum number of locks on the table space to avoid lock
escalation. You also want to commit before reaching the NUMLKUS threshold, which is
the maximum number of locks per user.

Issuing a COMMIT statement ends a unit of recovery and commits all database updates that
were made in that unit of recovery. DB2 performs the following functions when a commit
occurs:

� All page and row locks are released, except those held by an open cursor that was
declared WITH HOLD.

� If the RELEASE(COMMIT) bind option was specified, all table, table space, and partition
locks will be released, except for those held by an open cursor that was declared WITH
HOLD (depending also on RELCURHL).

� All claims are released, except those held by an open cursor that was declared WITH
HOLD.

� If the RELEASE(COMMIT) bind option was specified, the statistics used by the index
look-aside and sequential detection processes are discarded.

� If the RELEASE(COMMIT) bind option was specified, any IPROCs or UPROCs that had
been created by the thread are discarded. For information about IPROCs and UPROCs,
see Appendix A of DB2 UDB for z/OS: Design Guidelines for High Performance and
Availability, SG24-7134.

� A write is forced out of the log buffer to both active logs.

The length of time required for the immediate write of the log buffers depends upon the
amount of data that has been updated since the last write of the log buffer. Spreading
updates throughout a unit of recovery increases the chances that your log data has been
already written before you commit.

� In data sharing, all changed pages are forced to the global buffer pool (GBP) at commit.

For more information on the effect of the use of cursors defined WITH HOLD on locking, see
6.4.3, “Cursors WITH HOLD” on page 187.

The major cost component of a commit is two synchronous I/O operations for the write of the
log buffer to both copies of the active log. In addition, commit may destroy any IPROCs or
UPROCs that were built to improve application performance within the unit of recovery and
throw away the information used for index look-aside and sequential detection.

DB2 commits updates when a COMMIT is issued either explicitly or implicitly as a result of a
termination of a unit of work. The type of DB2 attachment influences when a unit of work is
terminated. See Table 6-1.

Note: While saving all update, insert, and delete activity until right before you commit
can reduce lock duration. It can also increase the amount of log data that must be
written at commit and therefore may cause the commit to take longer.

Chapter 6. Recovery 187

Table 6-1 Termination of a unit of recovery

When designing an application that is going to issue COMMIT statements, be sure to place
the COMMIT in the program that controls the logical unit of work. Issuing a COMMIT
statement in a subprogram may lead to inadvertently committing in the middle of a logical unit
of work. If data access modules are used, the COMMIT statement can be placed in a module
that only performs the COMMIT statement, and it should be called only by the program that
controls the scope of the logical unit of work.

6.4.2 Commit frequency
The commit frequency of an application is different depending upon the purpose of the
commits. We do not advise setting the commit frequency of all applications to a single value,
because the commit frequency that satisfies the requirements of the most highly accessed
and critical DB2 objects is probably too frequent for the majority of other processes.

The primary reason for read-only programs to commit is to release the claims that may
prevent utilities from draining. The maximum time that a utility will wait for a claim is calculated
by multiplying the IRLMRWT DSNZPARM value times the UTIMOUT DSNZPARM value. An
appropriate commit frequency for these processes would be half of that time.

For update processes that need to allow concurrent read activity at the row or page level, a
general commit frequency would be 25% of the IRLMRWT DSNZPARM value. However, for
update processes that access critical, highly accessed rows or pages, a lower commit
frequency might be required.

For information about how to design your application to have variable commit frequencies,
see 6.5.6, “Error handling control table” on page 199.

6.4.3 Cursors WITH HOLD
The WITH HOLD clause of a DECLARE CURSOR statement allows the cursor to remain
open across commit boundaries. From an application’s point of view, this option simplifies the

Attachment Termination of a unit of recovery

CAF The program issues a COMMIT/ROLLBACK SQL statement.
The program terminates.

RRSAF The program issues a SRRCMIT/SRRBACK statement or COMMIT or
ROLLBACK.
The program terminates.

IMS The program issues a CKPT, ROLB, or SYNC call.
The program issues a GU for the I/O PCB for single-mode transactions.
The program terminates.

CICS The program issues a CICS SYNCPOINT command explicitly.
The program terminates signaled by CICS RETURN.
The program issues a DL/I checkpoint or TERM call command.

Recommendation: When determining your application’s commit frequency, take into
consideration the IRLMRWT timeout value and the ability of concurrent processes to wait.

A general rule is to start by committing no more than three times a second, but at least
every 3-5 seconds. Then commit less often if there is no contention, more if contention is
high.

188 Data Integrity with DB2 for z/OS

use of commits since cursor repositioning is not necessary. However, as mentioned, using
WITH HOLD may prevent locks and claims from being released at commit.

Whether or not the page or row locks of a cursor defined WITH HOLD are held across a
commit is controlled by the RELCURHL DSNZPARM. If a value of “YES” is specified, then the
lock on the currently positioned row is released at commit. If a value of “NO” is specified, then
the lock on the currently positioned row is held across commit. However, if the lock held on
the currently positioned row is an X or U lock, the lock is demoted to an S lock.

While either value of RELCURHL may be acceptable to achieve application concurrency and
batch restartability, neither option will affect the releasing of claims held by the cursor.
However, whether or not the cursor materializes will affect the releasing of claims held by the
cursor.

The effect of materialization on cursors WITH HOLD
If the cursor does not materialize, the claims on the base DB2 objects held by the cursor
WITH HOLD will be held until the first commit after the cursor is closed.

If the cursor does materialize, the claims on the base DB2 objects held by the cursor WITH
HOLD will be released by the first commit following materialization (OPEN CURSOR). This is
because the data from the base DB2 objects is read into a work file when the OPEN
CURSOR is executed. The cursor will continue to hold claims on the work file, but all locks
and claims on the base objects are released. Since we never run utilities on the work files,
these claims do not threaten our concurrency and availability requirements.

To hold or not to hold
The following criteria should be used to decide when it is appropriate to code WITH HOLD on
a cursor:

� If you are certain that the cursor will always materialize, you should leave the WITH HOLD
clause on the cursor.

By definition, the materialized cursor has already read all of the qualifying rows and placed
them in a work table. Removing the WITH HOLD clause and reopening the cursor after
each commit would result in the unnecessary overhead of repeatedly materializing all or
part of the results set.

If you want to guarantee materialization, you might consider the use of a static scrollable
cursor. However, in most cases it is not possible to materialize very large result sets
because of work file storage limitations.

� If the cursor does not materialize and is easy and inexpensive to reposition, you should
consider removing the WITH HOLD from the cursor and reopening it after each commit.

� If the cursor does not materialize, but the repositioning logic is expensive, consider the
following techniques to improve the performance of the repositioning so that the WITH
HOLD clause can be removed.

The typical cause of poor performance in the repositioning of a non-materialized cursor is
a high number of columns used in the ORDER BY to uniquely identify each row and a low
number of matching columns (usually one matching column) on the index.

The first technique to improve repositioning performance is to create a separate cursor for
each subset of rows that can be returned. The number of cursors required will be equal to
the number of columns used in the ORDER BY to uniquely identify a row in the results set.

Another option to improve repositioning performance is to commit only after a change in
the value of the high order column in the index. This will improve the performance of the
repositioning because the values in the non-high order repositioning columns should be

Chapter 6. Recovery 189

blank, and the first row qualified through the index should be the first row processed on
restart.

We only recommend this technique if the maximum number of qualifying rows for each
value of the high order column can be processed within a reasonable commit scope.

� If the cost of the cursor repositioning cannot be reduced to an acceptable level the WITH
HOLD should be left on the cursor to maintain position.

Be aware of the effect of the WITH HOLD clause on lock and claim retention and schedule
the process at a time when it will not be in contention with utilities that require drains or
other applications.

� In a distributed environment, using a WITH HOLD cursor will prevent DB2 from separating
the connection from the DBAT at COMMIT time when using CMTSTAT=INACTIVE. This
will prevent efficient thread pooling in a distributed environment.

6.4.4 Savepoints
A savepoint represents the status of data at some point in time during a unit of work.
Savepoints are set by the application through the use of the SAVEPOINT statement. If
subsequent logic dictates that only a portion of the unit of recovery should be rolled back, the
application can perform a rollback to the savepoint. Figure 6-6 illustrates the concept of rolling
back to a savepoint. In this example, all DB2 changes made between time T2 and time T4
would be rolled back.

Figure 6-6 Rollback to a savepoint

Savepoints provide applications with a tool to achieve a more granular level of data
recoverability without the expense of frequent commits. Issuing a SAVEPOINT command is

logical
unit of work

logical
unit of work

logical
unit of work

logical
unit of work

Time
Line

I
N
S
E
R
T

I
N
S
E
R
T

I
N
S
E
R
T

U
P
D
A
T
E

I
N
S
E
R
T

I
N
S
E
R
T

I
N
S
E
R
T

U
P
D
A
T
E

Application Process

S
A
V
E
P
O
I
N
T

A

S
A
V
E
P
O
I
N
T

B

I
N
S
E
R
T

I
N
S
E
R
T

I
N
S
E
R
T

U
P
D
A
T
E

I
N
S
E
R
T

I
N
S
E
R
T

I
N
S
E
R
T

U
P
D
A
T
E

S
A
V
E
P
O
I
N
T

C

R
O
L
L
B
A
C
K

T
O

B

T1 T2 T3 T4

190 Data Integrity with DB2 for z/OS

much less expensive than issuing a COMMIT because there is no forced write of the log
buffer.

The ROLLBACK TO SAVEPOINT command performs a partial rollback of the unit of recovery.
If a savepoint name is not specified, rollback is to the last active savepoint. If a rollback to a
named savepoint occurs, all savepoints set after the named savepoint are released. The
savepoint to which rollback is performed is not released.

A rollback to a specific savepoint backs out all DB2 changes that were made after the
savepoint was set. Changes that were made to created temporary tables are not logged and
are not backed out, but changes to declared temporary tables are logged and rolled back. A
rollback to savepoint has no effect on the opening or closing of cursors, cursor positioning, the
acquisition or release of any locks or claims, and the caching of SQL statements.

Use SAVEPOINT rather than COMMIT to create a point to which your application can roll
back for logic purposes. However, be aware that neither SAVEPOINT nor ROLLBACK TO
SAVEPOINT end a unit of recovery. All locks and claims that are acquired during the unit of
recovery are held until commit.

6.4.5 More on read only COMMIT
Many application programmers and DBAs have often wondered, “Why do I need to
COMMIT?” for a read only application. We recommend you COMMIT (see “Commit
frequency” on page 187) even for a “dirty read” with ISOLATION UR. Isolation Uncommitted
Reads (UR) do take a MASS DELETE lock on a table if a mass delete is involved. An IX lock
is taken if work file database (ORDER BY, GROUP BY) is involved. The most “destructive” of
them all is the CLAIM on the object. We review a few cases where read only COMMIT can
improve concurrency.

Utilities
The CLAIM on the tablespace or partition is only released when the thread terminates or
when a COMMIT is issued. A parallel running utility, such as REORG, requires DRAIN locks
on the object for its last log apply and switch phases. The REORG utility will wait for the drain
of all claims on the object until it succeeds, controlled by DRAIN WAIT and RETRY options of
REORG, and will abend if the utility timeout limits are reached. The CLAIM and DRAIN
requirements of the REORG utility can cause other jobs to fail with a “resource unavailable”
error.

Consider the following scenario:

� Job 1 running program A with ISOLATION UR enters the job queue and holds claim on an
object.

� Job 2 running REORG utility enters the job queue after job 1 and issues a drain on the
object and waits.

� Job 3 running program C enters the job queue and wants to access data from the same
object. Since there is a drain on the object by the REORG utility, it has to wait.

� Eventually program C in job 3 will fail with TIMEOUT -904 SQLCODE - resource
unavailable.

Restriction: A rollback to a SAVEPOINT only backs out changes made to DB2 objects. It
has no effect on changes made to data in any other databases or file management
systems, such as VSAM, MQ queues, or flat files.

Chapter 6. Recovery 191

The FASTSWITCH YES, DRAIN WAIT, and RETRY options of REORG utility can be used to
prevent the REORG from timing out. Job 3 can time out if the DRAIN Wait is shorter than the
DB2 IRLM timeout value. Nevertheless, using COMMIT more frequently at logical unit of work
in read-only programs will improve concurrency and availability.

Auto REBIND
A package can be invalid if an index used by the package is dropped and recreated. The
package is automatically rebound on first reference if the DSNZPARM parameter ABIND is
set to YES. Consider the following simple case:

Program A uses package A and calls program B which uses package B. Package B is invalid
when an index was dropped but the usually capable DBA has failed to perform a manual
REBIND. Programs A and B are read-only programs.

Now program A executes and calls program B. AUTO REBIND binds package B. The
execution continues in program B but fails with -911. Although program B did not perform any
updates to application data, the AUTO REBIND updates the catalog. Due to the -911 error a
rollback was done and the package B is reset to invalid.

One possible solution to avoid an AUTO REBIND on subsequent executions of program B is
to issue a COMMIT as the first executable statement in program B. This will commit all the
catalog updates, including those of the prior program A, and set the VALID and OPERATIVE
values of SYSIBM.SYSPACKAGE to “Y”.

In a complex environment, we recommend you do manual, planned REBINDs.

Temporary table
The created temporary table (CTT) is created in the work database DSNDB07. The work
database DSNDB07 is also used to sort work files, sort out files, and, when necessary, view
materialization. The space in DSNDB07 is almost static and the work files can extend to get
additional disk space if they are defined with non-zero secondary extent by the system
programmer. The declared temporary table is defined in the TEMP database.

CTTs are deallocated according to the value of the BIND RELEASE parameter. A value of
COMMIT releases the CTT and the space in DSNDB07 when the program COMMITs. CTTs
are released by an explicit DROP TABLE statement.

ISOLATION RR and RS
Plans or packages that are bound with ISOLATION RR or RS obtain S lock on the page or
row, depending on the LOCKSIZE, release these locks on COMMIT or at the termination of
the thread. Resources taken to manage these locks in the Internal Resource Lock Manager
(IRLM) V2 include 540 bytes per lock (254 bytes per lock with IRLM V1) and are also released
at COMMIT point. A long running read only application without a COMMIT can exhaust the
IRLM resource and therefore can cause other parallel applications to fail. Alternatively, a lock
escalation to the next level can lock the whole table, tablespace, or partition and therefore
denying access to other applications requiring the same object by failing with -911.

6.5 Data integrity
As numbers of concurrent users and parallel transactions increase over time, it is even more
important to ensure data integrity even when different applications and transactions
manipulate the same data. In the following sections, we describe how to make sure your data

192 Data Integrity with DB2 for z/OS

does not enter an inconsistent status by concurrently running applications, regardless of
accessing data online or batch.

To guarantee data consistency, you should consider the following in your application design:

� Protect the same data being updated by concurrently running processes (see 6.5.1,
“Concurrent update” on page 192).

� Roll back the data to a point where the data is consistent when an abnormal termination
occurs.

� COMMIT even in read-only applications to avoid rollback of parallel running applications or
utilities due to timeout on lock waits and DRAIN failures in utilities.

6.5.1 Concurrent update
When running applications concurrently, it is even more important to make sure those
applications follow basic concurrency rules when accessing the same data. In the worst
cases, updates can get lost by applications by violating integrity rules across multiple columns
or rows.

In Figure 6-7, we describe a scenario of two online updating processes running concurrently.
Both applications have read CUSTNO 18 at nearly the same time, so the represented data is
consistent and still the same.

Figure 6-7 Concurrently updating processes

Assume that the UPDATE statements in the applications are coded as shown, the data in
DB2 depends on the user who first saves his changes, to be more specific on the elapsed
time between both select and update statements. The second update will be the update you
can find in the database, since the first update is only visible between both updates.

In the following sections, we describe how you can prepare your applications for concurrency
and easily prevent these problems.

SELECT * FROM T1
WHERE CUSTNO = 18

UPDATE T1
SET NAME = 'SMITH'

WHERE CUSTNO = 18

COMMIT

SELECT * FROM T1
WHERE CUSTNO = 18

COMMIT

UPDATE T1
SET NAME = LUERS'

WHERE CUSTNO = 18

Chapter 6. Recovery 193

6.5.2 Last update column
A common approach to dealing with concurrent updates for certain rows is to add a
timestamp column to a table which contains the timestamp when a certain row has been last
updated. The idea is to reference the previously read value in your UPDATE statement.

See Example 6-2 for the DDL we assume in Figure 6-8, containing a unique index on
CUSTNO.

Example 6-2 DDL for table T1

CREATE TABLE QUALIFIER.T1
(CUSTNO DECIMAL(10,0) NOT NULL
, NAME CHAR(32) NOT NULL WITH DEFAULT
, COLa CHAR(10) NOT NULL WITH DEFAULT
,
, TS_LAST_CH TIMESTAMP NOT NULL) -- Timestamp of last update
 IN DBNAME.TSNAME;

For a visual explanation of application programming techniques for ensuring concurrency, see
Figure 6-8.

Figure 6-8 Coding for online concurrency

Right at the beginning of the business case, the application reads data for CUSTNO 18 and
displays it on the screen while the timestamp when the data was read is stored in
host-variable TS-LAST-CH-1. After an unspecified amount of time, the user changes the data
and sends it back to the application. To ensure no concurrent process has updated the data,
include the previously retrieved value for TS-LAST-CH-1 in the WHERE clause of your
UPDATE statement.

To provide the previously read timestamp to the updating transaction, you can consider two
techniques:

� Timestamp becomes an additional output parameter for read-transactions and an
input-parameter for updating transactions.

SELECT TS_LAST_CH, NAME
FROM T1

WHERE CUSTNO = 18

Data change by User

UPDATE T1
 SET NAME = :HV-NAME
WHERE CUSTNO = 18
 AND TS_LAST_CH = TS-L-CH -1

 SQLCODE

START

0

100 Prompt:
Data has changed

END

194 Data Integrity with DB2 for z/OS

� Timestamp is kept in temporary storage among transactions.

– Scratch pad area for IMS transactions
– Transient data queue for CICS transactions

In case you use a change logging table and have no plans to keep the timestamp of most
recent data changes in the same table as your operational data, you can consider using
change logging tables and perform the check if a change has occurred on the change logging
table.

If available, storing values as user-identification, terminal-number, table name, key values of
affected rows, and type of DML (insert, update, or delete) can help you in error situations
because they can provide information about who has changed a certain value in the
database.

However, if you implement change logging tables, keep in mind that additional tables in your
transaction increase elapsed time, the amount of I/Os, and CPU consumption for each
executed transaction.

Pessimistic locking
In case of a high probability of previously read rows being updated by concurrently running
processes, you can flag the previously read rows as “update pending” using application logic.
Concurrent processes are not allowed to update these rows. Be aware that using this
technique enormously decreases the availability of your data.

Normally, a record lock is taken on a read and this lock is only released when the application
code has finished with the record and releases the lock. This form of locking is known as
pessimistic locking because your application assumes that previously accessed data will
change during processing time.

Optimistic locking
Applications using optimistic locking expect successful updates and no concurrent data
updates during processing time. The approach of optimistic locking compares previously
read column values to actual column values in the WHERE clause of your UPDATE
statement. Assume you are going to update COLb of table T1 WHERE COLa = 10 and the
old value of COLb is stored in host-variable HV-COLb-OLD. To ensure that no concurrent
application has already updated the value of COLb, you can code the update as shown in
Example 6-3.

Example 6-3 Update using optimistic locking

UPDATE T1
SET COLb = :HV-COLb-NEW

,COLc = :HV-COLc-NEW
,COLd = :HV-COLd-NEW

WHERE COLa = 10
AND COLb = :HV-COLb-OLD
AND COLc = :HV-COLc-OLD
AND COLd = :HV-COLd-OLD;

Unless you do not list all old column values in your WHERE clause, the context in which an
update is applied might have changed. It depends on your business process if concurrent
updates on different columns of one single row are allowed or not. Assuming COLa is unique,
Example 6-4 shows two update statements, both of them affecting the same row,
manipulating different columns. If values for COLb and COLc depend on each other, the old
values for those columns have to be included in the WHERE clause, too.

Chapter 6. Recovery 195

Example 6-4 Concurrent update on independent columns

Transaction 1:

UPDATE T1
SET COLb = 20

WHERE COLa = 10
AND COLb = 15;

Transaction 2:

UPDATE T1
SET COLc = 30

WHERE COLa = 10
AND COLc = 25;

If all previous column values are checked in a WHERE clause as shown in Example 6-5, the
first update statement will succeed, while the second statement will receive SQLCODE 100
since COLb or COLc has changed.

Example 6-5 Concurrent update on dependent columns

Transaction 1:

UPDATE T1
SET COLb = 20

WHERE COLa = 10
AND COLb = 15
AND COLc = 25;

Transaction 2:

UPDATE T1
SET COLc = 30

WHERE COLa = 10
AND COLb = 15
AND COLc = 25;

You can consider the technique mentioned above using a TS-LAST-CH instead of providing
old column values as a special case of optimistic locking.

USE AND KEEP ... LOCKS options of the WITH clause
If you use the WITH RR or WITH RS clause, you can use the USE AND KEEP EXCLUSIVE
LOCKS, USE AND KEEP UPDATE LOCKS, and USE AND KEEP SHARE LOCKS options in
SELECT and SELECT INTO statements.

They are specified as shown in the following example:

SELECT ... WITH RS USE KEEP UPDATE LOCKS;

By using one of these options, you tell DB2 to acquire and hold a specific mode of lock on all
the qualified pages or rows. The table shows which mode of lock is held on rows or pages
when you specify the SELECT using the WITH RS or WITH RR isolation clause.

Note: DB2 V9 for z/OS introduces enhancements to optimistic locking. It provides an
easier and more efficient approach for detecting a change of a row. An application does not
need to know all the old values which are marked for update.

196 Data Integrity with DB2 for z/OS

Table 6-2 shows which mode of lock is held on rows or pages when you specify the SELECT
using the WITH RS or WITH RR isolation clause Option Value Lock Mode.

Table 6-2 Option Value Lock Mode

6.5.3 Work-in-progress tables
Work-in-progress tables are considered if you have to package more than a single unit of
work from a DB2 point of view together in one business unit of work by “tying” different DB2
units of work together. If you apply data changes after every single unit of work to your
operational data other applications can read data that might be inconsistent. An additional
issue is the case of an abend. How do you undo the changes made by the first two
transactions if the third fails? See Figure 6-9 for a visual explanation of work-in-progress
tables.

Figure 6-9 Work-in-progress table

Upon invocation of the first unit of work, the information that is subject to change is copied
from the actual table into a work table, and a logical application lock is taken in the actual
table to signal this event to other transactions that also want to update the same information.
The other transactions that are part of the same application logical unit of work interact with
the information in the work-in-progress table. Once the application logical unit of work

Statement Lock mode Lock type

USE AND KEEP EXCLUSIVE LOCKS X

USE AND KEEP UPDATE LOCKS U

USE AND KEEP SHARE LOCKS S

WIP Table

 Row 1 - New

 Row 2 - New

 Row 3 - New

T1

Row 1 - New

Row 2 - New

Row 3 - New

4

1

2

3

WIP TableT1

Row 1

Row 2

Row 3

Row 1 - New

Row 2 - New

Row 3 - New

 LUOW 1

 LUOW 2

 LUOW 3

 L

U
O

W
 4

Business process = (LUOW 1 + LUOW2 + LUOW3)

Chapter 6. Recovery 197

completes, the updated information from the work-in-progress table can be stored in the
actual table. This process is within the scope of a DB2 logical unit of work, so DB2 locking
mechanisms can be used to guarantee consistency.

A business process requiring multiple transactions can be implemented by tying transactions
together using artificial keys: A logical transaction identifier can be passed from the front end
(which is aware of a logical unit of work containing n physical units of work) to application
processes in the back end.

The work-in-progress table solves the consistency issues of the application but might create
another challenge if multiple transactions running in parallel use the same table. The
work-in-progress table becomes a hot spot.

There are several ways we can deal with the hot spot. Using UR isolation can be a solution for
those statements that retrieve data. UR isolation does not, however, provide a solution for
UPDATE and DELETE. The use of row locking is appropriate unless this table is used in a
data sharing environment. In a data sharing environment, consider using MAXROWS 1.

To remove any contention problem, it is best to add a column that uniquely identifies your
application logical unit of work. Adding this column to all WHERE clauses guarantees that you
do not really need UR, although there might be a performance benefit, provided that the
additional column is a matching predicate in the index.

A work-in-progress table can vary in size dramatically, starting with zero rows, growing during
the day, and containing again zero rows at the end of the day (assuming your business cases
are finished during online hours). This makes it even harder to collect proper statistics to
ensure appropriate access paths. Consider using the “VOLATILE” attribute for a
work-in-progress table to guarantee index access even if no column statistics are available.
Also try to keep a minimum number of indexes (one if possible) on a work-in-progress table.

6.5.4 Restricting other applications’ data access
If your application needs to protect data from being accessed by other applications, consider
locking tables or sets of tables using logical application locking. In this context, when we talk
about logical application locking we assume a control table containing different rows for
critical tables as mentioned earlier. In case a table is not allowed to be updated by other
processes, the control table contains at least one entry per affected table (or set of tables).
Example 6-6 shows table T1 is not allowed to be updated by other applications and table T2
is not allowed to be read by other applications.

Example 6-6 Logical locking table

TABLE_NAME JOB_NAME TIMESTAMP LOCK_TYPE
---------- -------- -------------------------- ---------
T1 JOB1 2005-07-12-22.29.41.362282 UPDATE
T2 JOB2 2005-07-13-08.14.20.825462 READ

Using this method implicitly forces applications accessing tables contained as rows in a
control table to read this table first to access the operational data. If no row can be found, all
access is granted. Depending on the lock type, only reads or updates are currently allowed on
the specified table.

This technique might only be used for critical tables where retrieval of inconsistent data
cannot be tolerated (for example, as a result of application problems) or exclusive access is
needed to ensure data consistency during data updates (for example, job step scope unit of
work). You can also use logical application locking in case you encounter application

198 Data Integrity with DB2 for z/OS

problems corrupting your data and you decide not to allow users to update but to only view
data any longer until the problem is fixed.

Note that locks taken by DB2 do not survive the end of a thread, and most of them do not
survive even at COMMIT.

6.5.5 Applications to switch between isolation levels
In the following paragraphs, we describe a technique an application can use to switch
between more than one isolation level without affecting the program logic. A common use
might be dynamically switching between using isolation levels CS and UR. See Example 6-7
for the required BIND PACKAGE statements for the application.

Example 6-7 BIND PACKAGE statements

BIND PACKAGE (COLLI001) -
MEM (PGM1) -
QUALIFIER (QUALI001) -
ACT (REP) -
CURRENTDATA (NO) -
ISOLATION (CS) -
RELEASE (COMMIT) -
VALIDATE (BIND) -
EXPLAIN (YES) -

BIND PACKAGE (COLLU001) -
MEM (PGM1) -
QUALIFIER (QUALI001) -
ACT (REP) -
CURRENTDATA (NO) -
ISOLATION (UR) -
RELEASE (COMMIT) -
VALIDATE (BIND) -
EXPLAIN (YES) -

END

The only difference between both BIND PACKAGE statements shown is the name of the
collection and the isolation level. You can use the special register CURRENT PACKAGESET
to switch between both packages, both accessing the same tables. The necessary variable
declarations needed for package switching are shown in Example 6-8.

Example 6-8 Host variables for SET CURRENT PACKAGESET

01 PARM-PACKAGESET PIC X(18) VALUE 'COLLx001'.
01 FILLER REDEFINES PARM-PACKAGESET.
05 FILLER PIC X(4).
05 PARM-PACK-ISL PIC X(1).
05 FILLER PIC X(3).

01 PACKAGE-OF-CALLER PIC X(18).

A change of special register CURRENT PACKAGESET is necessary to get advantage from
switching isolation levels from within the application. It has to be set before your first data
access using SQL inside your application. You only need to change the special register if it
differs from the CURRENT PACKAGESET which is already used. Only in this case, you have
to switch it back at the end of your program. See Example 6-9 for a short pseudo-code
description of when to set CURRENT PACKAGESET.

Chapter 6. Recovery 199

Example 6-9 Setting CURRENT PACKAGESET

Program entry:

EXEC SQL
SET :PACKAGE-OF-CALLER = CURRENT PACKAGESET

END-EXEC

For ISOLATION (CS): MOVE ‘I’ TO PARM-PACK-ISL

For ISOLATION (UR): MOVE ‘U’ TO PARM-PACK-ISL

IF PARM-PACKAGESET NOT = PACKAGE-OF-CALLER THEN
EXEC SQL
SET CURRENT PACKAGESET = :PARM-PACKAGESET

END-EXEC
END-IF

Program exit:

IF PARM-PACKAGESET NOT = PACKAGE-OF-CALLER THEN
EXEC SQL
SET CURRENT PACKAGESET = :PACKAGE-OF-CALLER

END-EXEC
END-IF

The host-variable for assigning the new value for CURRENT PACKAGESET must use the
same format as the register itself which is CHAR(18).

The information regarding which isolation level you have to use can be retrieved from the
application that calls your module.

6.5.6 Error handling control table
An error handling control table (EHCT) can be used for applications to determine their own
correct commit frequencies and behavior on exception situations depending on various
parameters. In Table 6-3, we provide you with an idea of possible attributes of an EHCT.

Table 6-3 Error handling parameters

Important: If you change special register CURRENT PACKAGESET, either make sure all
other programs involved in a certain thread support the same collection or reset
CURRENT PACKAGESET before exiting your program. Otherwise, DB2 issues SQLCODE
-805 at the time when the next SQL is invoked inside your thread.

If you change CURRENT PACKAGESET special register, ensure that PKLIST entries in
your BIND PLAN statement support the used packages.

Attribute Content

APPLICATION_NAME Error handling instructions for named application

START_TIME Starting time for described behavior

END_TIME Ending time for described behavior

COMMIT_FREQUENCY Commit every n logical units of work or number of
rows or elapsed time

200 Data Integrity with DB2 for z/OS

Table 6-3 gives you ideas which parameters you can use to determine how to force the
correct behavior for your applications.

Example 6-10 gives you an idea of possible descriptions for an application.

Example 6-10 Error handling table

APPLICATION_NAME START_TIME END_TIME COMMIT#ROWS COMMIT#SECS SQLCODE NUMBER_RETRIES
---------------- ---------- -------- ----------- ----------- ------- --------------
APP1 05:00:00 20:29:59 50 3 NULL NULL
APP1 05:00:00 20:29:59 NULL NULL -904 0
APP1 05:00:00 20:29:59 NULL NULL -911 1
APP1 20:30:00 04:59:59 1000 8 NULL NULL
APP1 20:30:00 04:59:59 NULL NULL -904 5
APP1 20:30:00 04:59:59 NULL -911 5

As shown in the example, application APP1 is forced to behave differently during online and
batch times regarding commit frequency and the number of possible retries in certain
exception situations caused by unexpected SQLCODEs.

Application APP1 has to COMMIT after manipulating 50 rows or at least every three seconds
during online hours, whatever comes first. The number of retries for SQLCODE -904 is zero.
The minimum checking for SQLCODE -911 and -913 is to check the reason code. If it is a
deadlock, do not retry, since that just elongates the problem. During batch hours, APP1
commits every 1000 rows or 8 seconds. The number of retries for each SQLCODE -904 and
-911 is five.

The table should just give you an idea of how to set up an error handling table. Of course,
table design can be different. For example, you can also consider using a column for
904#RETRIES instead of using different rows.

Keep in mind that SQLCODE -911 includes a rollback to solve the deadlock situation and
issuing the failing statement again is probably not the solution you might want. In this case,
the rolled back unit of work from a DB2 point of view has to be completely repeated usually
requiring more application logic to handle this situation automatically using an error handling
table.

Independent from using an error handling control table, make sure you provide all necessary
information you need to solve the problem in SYSOUT. Always use DSNTIAR and consider
using GET DIAGNOSTICS for cases where you need the full explanation for the received
SQLCODE.

For online environments, avoid abends in online transactions after receiving exceptional
SQLCODEs whenever possible.

In some designs, the application itself can heuristically determine the commit frequency
based on the activity in the system.

SQLCODE SQLCODE requiring special handling

NUMBER_RETRIES Number of retries for SQLCODE

Attribute Content

Chapter 6. Recovery 201

6.5.7 Restart using sequential input and output files
An important factor to consider when designing a time-consuming batch application is the
time required for the backout and restart operation in case of abnormal termination. The
application should be composed of many units of work. COMMIT should be performed
frequently with respect to both application logic and performance. Checkpoint interval is
important in determining the time for restart. Commit interval should be shorter than
checkpoint interval.

If you use WITH HOLD, there is no need to reposition after each COMMIT. However, if a job is
restarted, you always need to reposition. In general, you need special application logic to
handle cursor repositioning and restart situations including file repositioning to the last
commit point. When designing your batch application, you should favor accessing data in
clustering order so you can be sure to benefit from sequential prefetch algorithms as well as
from proper indexing in the case of repositioning your cursor during restart. For repositioning,
save the last key before committing your changes as you do on all needed variables. You can
externalize those values in a DB2 table or use external files. See Figure 6-10 for a brief
overview looking at restart implementations.

Figure 6-10 Program logic for commit and restart

In the following sections, we provide checkpoint and restart considerations concerning
sequential input/output files.

Different types of sequential files are commonly used as input/output files in DB2 batch
programs. The common file types used are:

� QSAM files are the most commonly used sequential files. QSAM manages all aspects of
I/O buffering automatically. This is convenient for application development but implies
more logic in case of restarts.

Save all needed counters
and variables for restart

WITH HOLD
cursor ?

At Commit

Save the last used key

COMMIT

Reposition cursors

Restore all needed counters
and variables for restart

At Restart

Restore the last used key

Reposition sequential file

Reposition cursorsYes

No

202 Data Integrity with DB2 for z/OS

� Basic sequential access method (BSAM) files require the program to manage its own input
and output buffers. It must pass a buffer address to the READ macro and fill its own output
buffer before issuing a WRITE macro. BSAM is usually used for specific requirements and
may take advantage of the NOTE and POINT macro statements for repositioning. BSAM is
more complex to handle than QSAM.

� GSAM files are part of IMS and therefore require the existence of IMS/DB. They may be
used in IMS batch and BMP jobs. Because of the two-phase commit protocol implemented
between DB2 and IMS, the commitment of updates is synchronized in both systems. Also,
running the job under BMP batch allows the use of the IMS checkpoint and restart facility,
in which case GSAM files can be automatically repositioned at restart time. There are
special considerations for repositioning GSAM files.

� Recoverable VSAM using RRS (recoverable resource services) manages backouts on
behalf of DB2. RRS uses a two-phase commit mechanism to ensure that all updates to all
resources are committed.

When dealing with sequential files, techniques must be implemented to:

� Control the buffer management of output files and synchronize it with DB2 commit phases
� Reposition the input/output files when restarting
� Handle potential duplicate output records as a result of restart

Figure 6-11 illustrates the need for repositioning sequential files unaffected by COMMIT and
ROLLBACK.

Figure 6-11 Sequential output files

The application program issues two COMMIT statements and writes sequential data to
QSAM files. All DB2 changes up to these points in time are externalized to the DB2 log. The
QSAM buffers are not externalized at the same point in time, depending on your buffer
management. For this instance, it is most likely in abend scenarios that your QSAM data does
not correspond with your DB2 data. Therefore, QSAM files can contain data which is
associated to DB2 rows affected by ROLLBACK. A QSAM file might not contain all data up to
the last commit point if an abend has occurred directly after a COMMIT.

Sequential
Output File

R
6
9

R R R R R R R
7 7 7 7 7 7 7
0 1 2 3 4 5 6

BUFFER n

1 2

COMMIT 1 COMMIT 2

BUFFER n+1

ABEND
Time

Logging

DB2
LOG

Chapter 6. Recovery 203

Besides closing and reopening the data set (which consumes lots of elapsed time for the
unlikely event of an abend, decreasing your performance dramatically) to ensure
externalization of your allocated QSAM buffers, you can think of ESTAE (Extended Specify
Task Abnormal Exit) routines to clean up your environment (for example, closing files to force
buffer externalization) in case of an abnormal termination.

If your application abends with abend code B37 (not enough space available), you can lose
your output buffers, regardless of an established ESTAE routine.

You will need to talk to your z/OS systems programmer to implement ESTAE routines.

Instead of repositioning on your output data sets, you can consider using GDG (generation
data group) data sets. At each restart, you create a new generation of the GDG. When you
are concerned about eliminating duplicate records in sequential data sets as a result of a
restart, the elimination of those records can be postponed until the end of all application
phases by running an additional DFSORT™ for suppressing records with duplicate control
fields, thus involving all created generations. Example 6-11 shows the required DFSORT
statement.

Example 6-11 Eliminating duplicate records using DFSORT

SORT FIELDS=(1,3,CH,A)
SUM FIELDS=NONE

6.5.8 Restart using DB2 tables for input and output files
Since sequential file handling during restart operations can be challenging, data consistency
can be guaranteed if you use the following technique:

1. LOAD your input files into DB2 table A without indexes.

2. Read your input data from DB2 table A using a FOR UPDATE OF cursor.

3. Write your output records to DB2 table B.

4. Delete rows you have already processed from table A using WHERE CURRENT OF
CURSOR.

In case of a restart, your cursor can simply reposition on table A since only non-processed
rows are in the table.

There will be an additional overhead of doing INSERTS to a DB2 table instead of writing to a
sequential file, but the special checkpoint and restart considerations for sequential files will be
eliminated. To reduce overhead for round-trips to DB2 for each insert statement, consider
using multi-row insert if your commit frequency contains a reasonable number of output
records. Often an application does one write to a sequential file after having executed several
SQL statements. The overhead of the INSERTs may then be small.

6.6 Scrollable cursors
Scrollable cursors were initially introduced in DB2 V7. They provide support for:

� Fetching a cursor result set in backward and forward directions
� Using a relative number to fetch forward or backward
� Using an absolute number to fetch forward or backward

The technique used in DB2 V7 is based on declared temporary tables automatically created
by DB2 at runtime. The actual database and table space for the DTT are created by the user,

204 Data Integrity with DB2 for z/OS

however DB2 will create the DTT. Copying rows to declared temporary tables means that
those rows are not sensitive to subsequent inserts which qualify for the result set. DB2 V8 has
introduced dynamic scrollable cursors. They operate directly on the base tables and allow you
to view inserts of concurrently running processes.

6.6.1 Static scrollable cursors
Prior to DB2 V8, you could declare a scrollable cursor using the following keywords:

� INSENSITIVE, causing the result set to be static. The cursor is read only and is not
sensitive (insensitive) to updates, deletes, and inserts to the base table.

� SENSITIVE STATIC, causing the result set not to be static during scrolling the result set.
The behavior of the cursor depends on the FETCH statement. You can specify on the
FETCH statement either:

– INSENSITIVE, meaning that its own changes are visible to the cursor. They are visible
to the application because DB2 updates both the base table and the result table when
a positioned update or delete is issued by the application.

– SENSITIVE, which is the default for cursors declared as SENSITIVE STATIC. Its own
changes are visible to the cursor. Furthermore, committed deletes and updates from
other applications are also visible. However, as part of a SENSITIVE FETCH, the row
is verified against the underlying table to make sure it still exists and qualifies. Inserts
are not visible for the cursor.

– Inserts are never visible when using any form of static scrollable cursors.

All scrollable cursors mentioned above use a declared temporary table which is populated at
OPEN CURSOR time. You can refer to those cursors as static scrollable cursors. See
Figure 6-12 for a visual explanation of result sets for static scrollable cursors.

Figure 6-12 Temporary result set for static scrollable cursors

Base Table
DB2 Table

Result Table
DB2 Declared Temp Table

Accessed by many

Base Table &
Result Table
are kept in
sync as each
row is
fetched if
sensitive

SCROLL

Exclusive access by agent

Fixed number of rows

Goes away at Close Cursor

Requires declared TEMP database
and predefined table spaces

Chapter 6. Recovery 205

6.6.2 Dynamic scrollable cursors
This functionality was enhanced in DB2 V8, allowing scrollable cursors to view inserts of
concurrently running processes, using SENSITIVE DYNAMIC SCROLL keywords.

A dynamic scrollable cursor does not materialize the result table at any time. Instead, it scrolls
directly on the base table and is therefore sensitive to all committed INSERTs, UPDATEs, and
DELETEs. Dynamic scrollable cursors can use index scan and table space scan access
paths. Since DB2 supports backwards index scan, there is no need for creating indexes in an
inverted order to support backwards scrolling.

Dynamic scrollable cursors also support multi-row fetch.

Two new keywords were introduced in DB2 V8:

� ASENSITIVE, which is the default

DB2 determines the sensitivity of the cursor. If the cursor is not read-only, SENSITIVE
DYNAMIC is used for maximum sensitivity.

Using the keyword ASENSITIVE allows DB2 to decide whether a cursor is either
INSENSITIVE or SENSITIVE DYNAMIC, bearing in mind that the cursor should always be
as sensitive as possible. A cursor meeting the following criteria is considered to be a
read-only cursor having an effective sensitivity of INSENSITIVE; otherwise, the effective
sensitivity is SENSITIVE DYNAMIC:

– The first FROM clause identifies or contains:

• More than one table or view
• A catalog table with no updatable columns
• A read-only view
• A nested table expression
• A table function
• A system-maintained materialized query table (MQT)

– The first SELECT clause specifies the keyword DISTINCT, contains an aggregate
function, or uses both.

– The SELECT statement of the cursor contains an INSERT statement.

– The outer subselect contains a GROUP BY clause, a HAVING clause, or both clauses.

– It contains a subquery where the base object of the outer subselect and of the outer
subquery is the same table.

– Any of the following operators or clauses are specified:

• A UNION or UNION ALL operator

• An ORDER BY clause (except when the cursor is declared as SENSITIVE STATIC
scrollable)

• A FOR READ ONLY clause

– It is executed with isolation level UR and a FOR UPDATE is not specified.

The cursor is implicitly going to be INSENSITIVE if the SELECT does not allow it to be
sensitive (for example, if UNION, UNION ALL, FOR FETCH ONLY, or FOR READ ONLY is
used).

Note: Scrollable cursors support large objects (LOBs), but no temporary LOB table space
is created. Data consistency is ensured by storing the LOB descriptor in the result table;
therefore, the associated row in the LOB base table cannot be deleted.

206 Data Integrity with DB2 for z/OS

� SENSITIVE DYNAMIC

Specifies that the size of the result table is not fixed at OPEN cursor time. This is different
for static scrollable cursors because inserts are not visible, hence the maximum amount of
rows are known at Open cursor time. A FETCH statement is always executed against the
base table since no temporary result set is created at OPEN time. Therefore, the cursor
has complete visibility of changes:

– All committed inserts, updates, and deletes by other application processes

– All positioned updates and deletes within cursor

– All inserts, updates, and deletes by the same application process, but outside of the
cursor

The declaration of a SENSITIVE DYNAMIC scrollable cursor is shown in Example 6-12.

Example 6-12 Declaring a SENSITIVE DYNAMIC scrollable cursor

DELCARE C1 SENSITIVE DYNAMIC SCROLL CURSOR FOR
SELECT COLa, COLb, COLc
FROM T1
WHERE COLa > 10;

For maximum concurrency, we recommend using ISOLATION(CS). Note that the isolation
level is promoted to CS even if you use BIND option ISOLATION(UR) and the SELECT
statement contains the FOR UPDATE OF clause.

Benefits of dynamic scrollable cursors are:

� Ability to view inserted data
� No temp table and work file
� Enhances usability of SQL
� Enhances portability
� Conforms to SQL standards

6.6.3 FETCHing options for scrollable cursors
In general, the sensitivity to changes can be specified in two ways: on DECLARE CURSOR
statements and on FETCH statements.

Depending on your cursor definition, there can be several implications for your FETCH syntax
on SENSITIVE DYNAMIC scrollable cursor. Table 6-4 lists the dependencies on DECLARE
and FETCH statements for scrollable cursors.

Table 6-4 Dependencies on DECLARE and FETCH statements for scrollable cursors

Specification on
DECLARE

Specification on
FETCH

Comment Visibility of changes

INSENSITIVE INSENSITIVE Default INSENSITIVE None

INSENSITIVE SENSITIVE Not allowed

SENSITIVE INSENSITIVE Allowed See own updates and
deletes

SENSITIVE SENSITIVE Default SENSITIVE See own changes and
others’ committed
updates and deletes

Chapter 6. Recovery 207

You can fetch data from your current positioning using the FETCH orientation keywords as
shown find in Table 6-5:

Table 6-5 FETCH orientation keywords for scrollable cursors

For further details about fetch orientation keywords, refer to DB2 for z/OS Version 8 SQL
Reference, SC18-7426.

Table 6-6 compares different kinds of scrollable cursors looking at change-visibility and
materialization of the result table.

Table 6-6 Comparing scrollable cursors

SENSITIVE DYNAMIC INSENSITIVE Not allowed, even if
ASENSITIVE and DB2
decides for
SENSITIVE DYNAMIC

SENSITIVE DYNAMIC SENSITIVE See own and others’
committed changes,
including inserts

Keyword in FETCH statement Cursor position when FETCH is executed

BEFORE Before the first row

FIRST or ABSOLUTE +1 On the first row

LAST or ABSOLUTE -1 On the last row

AFTER After the last row

ABSOLUTE On an absolute row number, from before the first
row forward or from after the last row backward

RELATIVE On the row that is forward or backward a relative
number of rows from the current row

CURRENT On the current row

PRIOR or RELATIVE -1 On the previous row

NEXT On the next row (default)

Cursor type Result table Visibility of own
changes

Visibility of
others’ changes

Updatability

Non-scrollable
(SQL contains a
join or sort, etc.)

Fixed, work file No No No

Non-scrollable No work file, base
table access

Yes Yes Yes

INSENSITIVE
SCROLL

Fixed, declared
temp table

No No No

SENSITIVE
STATIC SCROLL

Fixed, declared
temp table

Yes (INSERTs
not allowed)

Yes (no
INSERTs)

Yes

Specification on
DECLARE

Specification on
FETCH

Comment Visibility of changes

208 Data Integrity with DB2 for z/OS

6.6.4 Updating using scrollable cursors
In general, positioned updates and deletes using scrollable cursors are possible and are
based on the temporary result table for static scrollable cursors and on the underlying base
table for dynamic scrollable cursors. A positioned UPDATE or DELETE is always allowed if
the cursor is not read-only and the page or row lock was acquired successfully.

But how does DB2 perform updates and deletes? Let’s look at DB2’s processing.

For packages and plans containing updatable static scrollable cursors, ISOLATION (CS) lets
DB2 use optimistic locking. DB2 can use optimistic concurrency control to shorten the
amount of time that locks are held in the following situations:

� Between consecutive FETCH operations
� Between FETCH operations and subsequent positioned UPDATE or DELETE statements

Optimistic locking consists of the following steps:

� When the application opens the static scrollable cursor, DB2 fetches the qualifying rows
into the DTT. When doing so, DB2 will try to use lock avoidance to minimize the amount of
locking required.

� When the application requests a positioned UPDATE or DELETE operation on a row, DB2
finds and locks the corresponding base table row and reevaluates the predicate to verify
that the row still satisfies the search condition.

� For columns that are in the result table, compares current values in the row to the values
of the row when the result table was built. DB2 performs the positioned update or delete
operation only if the values match.

� An UPDATE or DELETE is disallowed if either the row fails to qualify the WHERE clause,
or the values do not match.

If the row passes the above two conditions, the following actions are performed for UPDATE
statements:

� Update the base table.
� Re-FETCH from the base table to reevaluate the predicate.
� Update the result table.

– If the search condition fails, mark row as an update hole.
– If the search condition satisfies, update row with latest values.

For DELETE statements, DB2 performs the following actions:

� Delete the base table row.
� Update the result table.

– Mark row as a delete hole.

However, optimistic locking cannot be used for dynamic scrollable cursors. For dynamic
scrollable cursors, each lock is acquired on the underlying base table while fetching, similar to
non-scrollable cursors.

SENSITIVE
DYNAMIC
SCROLL

No declared temp
table, base table
access

Yes Yes Yes

Cursor type Result table Visibility of own
changes

Visibility of
others’ changes

Updatability

Chapter 6. Recovery 209

6.6.5 Change of underlying data for scrollable cursors
In general, when your application scrolls on a result set and not on the underlying table, data
in the base table can be changed by concurrent application processes. You can refer to these
data changes as update or delete holes in the context of scrollable cursors.

Static scrollable cursors declared as SENSITIVE have created the necessity for detecting
update and delete holes. Changes performed by others are only visible if your FETCH
statement uses SENSITIVE keyword:

� DELETE HOLE

A delete hole is created when the underlying base table row has been deleted. Delete
holes are not prefetched.

It is possible to undo a delete hole by using savepoints and rollbacks.

� UPDATE HOLE

An update hole is created when the corresponding base table row has been modified such
that the values of the rows do not qualify the row for the query any longer. Every
SENSITIVE FETCH reevaluates the row against the predicate. If the evaluation fails, the
row is marked as an update hole and a SQLCODE +222 is returned.

An update hole can turn into a row again on a subsequent FETCH SENSITIVE of an
update hole only if a process reverses the update and returns the values as prior to the
update.

Since cursors declared with SENSITIVE DYNAMIC scroll directly on the base table, in
general no update or delete holes might occur. The only special case is if an application
issues a FETCH CURRENT or FETCH RELATIVE +0 statement to fetch the previously
fetched row again, but the row was deleted or updated so that it no longer satisfies your
WHERE clause, DB2 returns SQLCODE +231. For example, this can occur if you use lock
avoidance or uncommitted read, and so no lock is taken for a row your application retrieves.

Note that the order of your result set is always maintained. If a column for an ORDER BY
clause is updated, then the next FETCH statement behaves as if the updated row was
deleted and reinserted into the result table at its correct location. At the time of a positioned
update, the cursor is positioned before the next row of the original location and there is no
current row, making the row appear to have moved.

6.6.6 Using multi-row FETCH with scrollable cursors
A new value of -3 for an indicator variable indicates that values were not returned for the row
because a hole was detected. The value of -3 is only used for multiple-row FETCH
statements. You need to provide an indicator variable array for at least one column, even if
there are no nullable columns in the result table. If multiple indicator variable arrays are
provided, then the indication of the hole is reflected in each indicator array.

The purpose of an indicator variable is to indicate when the associated value is the null value,
or that values were not returned because a hole was detected. The value is:

� -1, if the value selected was the null value, as in prior versions.

� -2, if the null value was returned due to a numeric conversion or arithmetic expression
error that occurred in the SELECT list of an outer SELECT statement, as in prior versions.

� -3, if the null value was returned because a hole was detected for the row on a multiple
row FETCH, and values were not returned for the row. In cases where -3 is set to indicate
a hole, SQLSTATE 02502, SQLCODE +222, is also returned for that row.

210 Data Integrity with DB2 for z/OS

If no indicator variable arrays are provided for a multiple-row FETCH statement, and a hole is
detected, an error is returned (SQLSTATE 24519, SQLCODE -247).

6.6.7 SQLCODEs for scrollable cursors
DB2 issues the SQLCODEs listed in Table 6-7 when your application deals with scrollable
cursors:

Table 6-7 SQLCODEs for scrollable cursors

6.6.8 Summary on scrollable cursors
Scrollable cursors are not going to work in IMS environments (except for BMPs), because
IMS transactions implicitly force a DB2 thread to end after the transaction completes. In CICS
environments, you may keep affected threads alive using conversational transactions over
several scroll up and down operations, which is usually not the case. The reason is that if the
thread ends, DB2 cleans up the temporary tables being used to hold the entire result set and
loses cursor positions as well for dynamic scrollable cursors.

If you have no need to scroll backwards, choose forward only cursors. If you have to maintain
your cursor position to go back and forth, choose scrollable cursors in non-CICS and non-IMS
environments. If you only need a snapshot of data in your tables, use INSENSITIVE cursors.
In case you need actual data, choose the SENSITIVE DYNAMIC option for your scrollable
cursor to receive the most actual data.

Whenever you need a scrollable cursor to scroll backwards, provide an ORDER BY that
exactly matches the reverse sequence of the available index to use backward index scan and
avoid sort.

SQLCODE Description

+222 Update or delete hole detected.

+231 Cursor position invalid.

-222 Update or delete attempted against an update or
delete hole.

-224 Result table does not agree with base table.

-225 FETCH statement incompatible with non-scrollable
cursor.

-228 FOR UPDATE OF clause specified for read-only
cursor.

-243 Sensitive Cursor cannot be defined for specific
SELECT statements.

-244 Sensitivity option specified on FETCH conflicts with
the sensitivity option in effect for your cursor.

Note: The prerequisite of scrollable cursors is keeping a thread alive for maintaining the
current cursor position. As soon as a thread terminates (which is the case for most IMS
and CICS transactions), cursor position is lost and the application has to reposition.

Chapter 6. Recovery 211

6.7 DB2 subsystem restart after abend
DB2 subsystem can abend due to different factors, the most frequent are software bugs in the
DB2 code or other dependent software such as the operating system, I/O subsystem, third
party software, power failure, operator error, and others. In every instant, all units of work that
are in progress at the time of the abend can be in any status of completion.

When DB2 is restarted either manually by the operator or by any automation tool such as
Automation Restart Manager (ARM), DB2 determines the status of all units of recovery (UR)
and takes the appropriate action to recover the inflight transactions. There are a number of
DSNZPARM parameters that determine how and when the URs should be recovered. For a
detailed discussion of DB2 subsystem restart and recovery, refer to 3.1, “Improving Recovery
and Restart” in DB2 UDB for OS/390 and Continuous Availability, SG24-5486, and Chapter
22, “Validation and performance”, of the more recent Disaster Recovery with DB2 UDB for
z/OS, SG24-6370.

In Example 6-13, we show a sample DB2 subsystem restart after an abnormal termination. It
provides a count of URs in each category and briefly lists the details of the URs that are
inflight. In this particular case, we have a utility in COMMIT status. DB2 COMMITs the utility
and resets all the status to 0. The message DSNR002I indicates the completion of the restart
process.

Example 6-13 DB2 MSTR address space

DSNR001I -DB2H RESTART INITIATED
DSNR003I -DB2H RESTART...PRIOR CHECKPOINT RBA=B055F92C7A0B
DSNR004I -DB2H RESTART...UR STATUS COUNTS 081
IN COMMIT=1, INDOUBT=0, INFLIGHT=0, IN ABORT=0, POSTPONED ABORT=0
DSNR007I -DB2H RESTART...STATUS TABLE 082
T CON-ID CORR-ID AUTHID PLAN S URID DAY TIME
- -------- ------------ -------- -------- - ------------ --- --------
B UTILITY DSNTEJ1A DB2ADM DSNUTIL C B055F94DEB58 277 14:13:12
DSNR005I -DB2H RESTART...COUNTS AFTER FORWARD 090
RECOVERY
IN COMMIT=0, INDOUBT=0
DSNR006I -DB2H RESTART...COUNTS AFTER BACKWARD 091
RECOVERY
INFLIGHT=0, IN ABORT=0, POSTPONED ABORT=0
DSNR002I -DB2H RESTART COMPLETED
-DB2HRECOVER POSTPONED

The status of a unit of recovery after a termination or failure depends upon the moment at
which the incident occurred as listed here and referencing Figure 6-3 on page 182:

� Inflight

The participant or coordinator failed before finishing phase 1 (period a or b); during restart,
both systems back out the updates.

� Indoubt

The participant failed after finishing phase 1 and before starting phase 2 (period c); only
the coordinator knows whether the failure happened before or after the commit (point 9). If
it happened before, the participant must back out its changes; if it happened afterward, it
must make its changes and commit them. After restart, the participant waits for
information from the coordinator before processing this unit of recovery.

� In-commit

The participant failed after it began its own phase 2 processing (period d); it makes
committed changes.

212 Data Integrity with DB2 for z/OS

� In-abort

The participant or coordinator failed after a unit of recovery began to be rolled back, but
before the process was complete (not shown in Figure 6-3). The operational system rolls
back the changes; the failed system continues to back out the changes after restart.

� Postponed abort

If LIMIT BACKOUT installation option is set to YES or AUTO, any backout not completed
during restart is postponed. The status of the incomplete URs is changed from inflight or
in-abort to postponed abort.

The DSNZPARM parameter LBACKOUT is set by the DB2 system programmer. It has three
possible values, NO, YES, and AUTO (default). If the value is NO, then the Unit of Recovery
URs will not be postponed and DB2 processes the backouts. A value of YES will postpone the
backouts of some unit of work until the command RECOVER POSTPONED is explicitly
issued by the DBA. With YES or AUTO, backout processing runs concurrently with new work.
Page sets or partitions with backout work pending are unavailable until their backout work is
complete.

The DSNZPARM parameter BACKODUR is set to a value that indicates how many log
records are to be read during restart’s backward log scan. The BACKOUT DURATION field is
a multiplier of the value you specify for the number of log records or the time interval of the
checkpoint frequency (panel DSNTIPN of the installation).

For detailed description of recovery in each status category, refer to Chapter 18, “Restarting
DB2 after termination”, DB2 UDB for z/OS Version 8 Administration Guide, SC18-7413.

6.8 Recovery of objects in error
The following command can be used to list all objects that are in restrict mode.

-DISPLAY DB(*) SPACE(*) LIMIT(*) RESTRICT

This command lists all objects that are in restrict mode including COPY, LPL, WEPR, and
GRECP. For more information about the DISPLAY DATABASE command, Chapter 22 of DB2
UDB for z/OS Version 8 Command Reference, SC18-7416, lists of all restrictive states of
objects.

The command:

-DISPLAY DB(*) SPACE(*) LIMIT(*) ADVISORY

will show the objects that are in advisory status ICOPY, AUXW, and AREO*. The objects in
this status do not require immediate attention, since all accesses are still permitted on these
objects.

We discuss several types of status that are common for application recovery. For full details of
the status and the recovery processes, refer to Appendix C. “Advisory or restrictive states”, in
the DB2 UDB for z/OS Version 8 Utility Guide and Reference, SC18-7427.

6.8.1 LPL recovery
A page can be in Logical page list (LPL) if its problem can be fixed without redefining new disk
tracks and volumes. This generally occurs when DB2 loses connectivity to the disk while
trying to write a page to the disk. This page is marked as logically in error and placed in LPL.

Chapter 6. Recovery 213

The command:

-DISPLAY DB(*) SPACE(*) LPL ONLY

lists all table spaces and index spaces that are in LPL with the page ranges.

DB2 V8 will try to recover LPL pages automatically. If the automatic LPL recovery fails, DB2
V8 issues message DSNI005I to indicate the failure of the automatic LPL recovery. A new
message, DSNB357I, is issued to inform you about the fact that pages have been added to
LPL, which might not be automatically recovered.

If the automatic recovery is unsuccessful, then a manual recovery is required. Pages in LPL
can be recovered either with the -START DATABASE command or the RECOVER utility. The
error message DSNB250E has been enhanced to indicate the reasons that pages are added
to the LPL.

If LPL entries exist, you need to manually issue the START DATABASE command with the
SPACENAM option to initiate LPL recovery, for example:

-DB1G STA DB(db) SPACENAM(ts) ACCESS(RW)

DB2 will then read the DB2 log and apply any changes to the page set. Prior to V8, the DB2
-START DATABASE command drains the entire page set or partition, therefore, making the
entire page set or partition unavailable for the duration of the LPL recovery process, even if
only one page is in the LPL for that page set or partition. The "drain" means that the
command must wait until all current users of the table space or partition reach their next
commit point.

The RECOVER and LOAD utilities can also be used to recover LPL pages. If the START
DATABASE command fails to successfully recover the LPL pages, you are forced to recover
the whole page set using the RECOVER utility.

All users requesting new access to the table space or partition are also suspended and must
wait until the recovery completes (or until the user times out). Therefore, the drain operation
can be very disruptive to other work that is running in the system, especially in the case
where only one or a few pages are in LPL.

In DB2 V8, the locking and serialization schemes in the -START DATABASE command have
changed when doing the LPL recovery. In prior versions of DB2, the -START DATABASE
command acquires a DRAIN ALL lock on the table space or partition when doing the LPL
recovery. DB2 V8 makes a WRITE CLAIM on the table space or partition. By acquiring a
WRITE CLAIM instead of a DRAIN ALL, the “good” pages can still be accessed by SQL while
the -START DATABASE is recovering the LPL pages. A new "LPL recovery” lock type is also
introduced to enforce that only one LPL recovery process is running at a time for a given table
space or partition.

This less disruptive locking strategy potentially enhances both the performance and
availability of your applications, as more data can potentially be available to the application
while the pages in the LPL are being recovered.

DB2 V8 also automatically attempts to recover pages that are added to the LPL at the time
they are added to the LPL, if DB2 determines that automatic recovery has a reasonable
chance of success. Automatic LPL recovery is not initiated by DB2 in the following situations:

� Disk I/O error
� During DB2 restart or end of start time
� GBP structure failure
� GBP 100% loss of connectivity

214 Data Integrity with DB2 for z/OS

Automatic LPL recovery improves the availability of your applications, because the pages in
the LPL can be recovered sooner. In many cases, you do not have to issue the -START
DATABASE commands yourself to recover LPL pages.

In addition, DB2 V8 provides more detailed information in message DSNB250E to explain
why a page has been added to the LPL. The different reason types are:

� Disk: DB2 encountered a disk I/O error when trying to read or write pages on disk.

� LOGAPPLY: DB2 cannot apply log records to the pages.

� GBP: DB2 cannot successfully read or write the pages from or to the group buffer pool due
to link or structure failure, GBP in rebuild, or GBP was disconnected.

� LOCK: DB2 cannot get the required page latch or page P-lock on the pages.

� CASTOUT: The DB2 castout processor cannot successfully cast out the pages.

� MASSDEL: DB2 encountered an error in the mass delete processor during phase 2 of
commit.

These extra diagnostics help you to quickly identify and hopefully resolve why pages are
being placed into the LPL, therefore, increasing the availability of your applications.

For additional information on LPL recovery, refer to 11.3 “Improved LPL Recovery”, DB2 UDB
for z/OS Version 8: Everything You Ever Wanted thing to Know, ... and More, SG24-6079.

Objects in LPL after a DB2 restart
As we indicated earlier, DB2 does not recover objects in LPL status when it is restarted after
an abnormal failure. This can cause unnecessary outage for applications which access the
object in LPL and will fail with -904, “resource unavailable” error. In order to prevent this
failure and improve availability, the -START DATABASE command can be issued by an
automation product, such as NETVIEW or an independent software vendor (ISV) product.
One such technique is to:

� Capture the DB2 normal start message DSN9022I.

� Issue a -DISPLAY DATABASE(*) SPACE(*) LPL ONLY command within a REXX exec and
scan for any objects in LPL.

� If objects are found in LPL, then issue the -START DB(db) SPACE(ts) ACCESS(RW).

� If the command is successful and the object is recovered by the -START command, then
the object becomes available to applications.

� If the command fails with DSNI005, then alert the DBA to take manual action.

Such a procedure can be invoked for both normal and abnormal starts of the DB2 subsystem.

6.8.2 CHECK-pending
The CHECK-pending (CHKP) restrictive status indicates that an object might be in an
inconsistent status and must be checked.

The following utilities set the CHECK-pending status on a table space if RI constraints are
encountered:

� LOAD with ENFORCE NO.

� RECOVER to a point in time.

� CHECK LOB CHECK-pending status can also affect a base table space or a LOB table
space.

Chapter 6. Recovery 215

DB2 ignores informational RI constraints and does not set CHECK-pending status for them.

Table spaces and base table spaces can be reset by using the CHECK DATA utility which
checks RI constraint failures and in the case of bad FKs, deletes the offending rows from the
table and stores them in an exception table. If a table space is in both REORG-pending and
CHECK-pending status (or auxiliary CHECK-pending status), run REORG first, and then use
CHECK DATA to clear the respective states.

A partitioning index, non-partitioning indexes, and indexes on the auxiliary tables can all be
placed in check pending status if they are recovered to a point in time - PIT (either RBA or
LRSN) and the logs have been applied but the corresponding table space is not recovered to
the same PIT. The same happens if the table space and the index space are not recovered to
the same QUIESCE point or COPY SHRLEVEL REFERENCE point. To reset the CHKP
status, you run the CHECK INDEX utility. If errors are found, then you can use the REBUILD
INDEX utility to rebuild the index.

For a LOB table space, run the CHECK LOB utility and if errors are found, then you can
correct the defects using the REPAIR utility. Rerun the CHECK LOB utility to reset the status.

6.8.3 Write Error Page Range recovery
A page is physically in error if there are physical errors caused by disk errors. The page is
then placed in 59B9E34, Write Error Page Range (WEPR). The range has low and high
pages, which are the same if only one page has errors. The command:

-DISPLAY DB(*) SPACE(*) WEPR ONLY

will list all table spaces and index spaces in physical error. Pages in WEPR can be recovered
with the RECOVER and LOAD utilities.

Applications attempting to access the pages in LPL or WEPR will receive an SQLCODE error
“resource unavailable.”

6.8.4 COPY utility
An object can be placed in COPY-pending status if:

� A LOAD or REORG utility with LOG NO is executed on the objects without the inline
COPYDDN option.

� A MODIFY is done resulting in zero entries in SYSIBM.SYSCOPY for the object.

� The object has been RECOVERed to current.

We strongly recommend that a backup of the object is made, either with the COPY utility or
the INLINE option of the REORG utility. We strongly discourage using the REPAIR utility with
SET table space spec NOCOPYPEND or -START DB(db) SPACE(ts) ACCESS(FORCE) to
maintain data integrity of the object.

Table 6-8 contains a list of all types of object status from a -DISPLAY DATABASE command.
Appendix C. “Advisory or restrictive states” in the DB2 for z/OS V8 Utility and Reference
Guide, SC18-7427, contains a list of the types of restrictive status and the required steps to
correct each status for a particular object.

216 Data Integrity with DB2 for z/OS

Table 6-8 DB2 object status from DISPLAY command

Status Description

AREO* The table space, index, or partition is in Advisory REORG-pending status.
The object should be reorganized to improve performance. This status is new as of
DB2 V8.

ACHKP When the LOB table space is recovered to any previous point in time, the base table
space is placed in auxiliary CHECK-pending (ACHKP) status, and the index space
containing an index on the auxiliary table is placed in REBUILD-pending (RBDP)
status.
Update or delete invalid LOBs using SQL.
Run the CHECK DATA utility with the appropriate SCOPE option to verify the validity
of LOBs and reset ACHKP status.

AREST The table space, index space, or partition is in Advisory Restart Pending status.
If backout activity against the object is not already underway, either issue the
RECOVER POSTPONED command or recycle the specifying LBACKOUT=AUTO.

AUXW Either the base table space or the LOB table space is in the Auxiliary Warning
status. This warning status indicates an error in the LOB column of the base table
space or an invalid LOB in the LOB table space.
Update or delete invalid LOBs using SQL.
For base table space, run CHECK DATA utility to verify the validity of LOBs and
reset AUXW status.
For LOB table space, run CHECK LOB utility to verify the validity of LOBs and reset
AUXW status.

CHKP The Check Pending status has been set for this table space or partition, index
(partition, non-partition, index on auxiliary table), or LOB table space.
Refer to 6.8.2, “CHECK-pending” on page 214 for reset of CHKP status.

COPY The COPY-pending flag has been set for this table space or partition.
Using the COPY utility, generate an image copy for the table space or partition.
Refer to 6.8.4, “COPY utility” on page 215.

DEFER Deferred restart is required for the object.

GRECP The table space, table space partition, index, index partition, or logical index
partition is in the group buffer pool Recovery Pending status.
Recover the object, or use START DATABASE to recover the object.

ICOPY The index is in Informational COPY-pending status.
Run COPY utility on the index.

INDBT In-doubt processing is required for the object.

LPL The table space, table space partition, index, index partition, or logical index
partition has logical page errors.
Refer to 6.8.1, “LPL recovery” on page 212.

LSTOP The logical partition of a non-partitioning index is stopped.

OPENF The table space, table space partition, index, index partition, or logical index
partition had an open data set failure.

PSRCP Indicates Page Set Recovery Pending status for an index (non-partitioning indexes).

RBDP The physical or logical index partition is in the REBUILD-pending status.

RBDP* The logical partition of a non-partitioning index is in the REBUILD-pending status,
and the entire index is inaccessible to SQL applications. However, only the logical
partition needs to be rebuilt.

Chapter 6. Recovery 217

6.9 Application recovery process
In this section, we concentrate on application recovery process only. The recovery of the
entire DB2 subsystem in a disaster recovery scenario is covered in the redbook, Disaster
Recovery with DB2 UDB for z/OS, SG24-6370.

DB2 logs all SQL updates to table spaces and index spaces in the active log. LOAD and
REORG utilities have the option not to log the changes with the LOG NO option. When these
utilities are run with LOG NO option, the table space is set to COPY-pending status. The
COPY-pending status must be reset in order to allow update activities on the table space.
Refer to 6.8.2, “CHECK-pending” on page 214 for details about resetting the status.

The active log is switched and copied to archive log when the active log becomes full. The
bootstrap data set (BSDS) records the current status of the active logs and records the data
set details of all archive logs with the START and END-RBA (LRSN in data sharing). The
maximum number of archive log entries in BSDS is limited by the DSNZPARM option
MAXARCH which can range from 10 to 10000 in DB2 V8. To understand more about the DB2
logging and archiving of logs environment, refer to Chapter 17, “Establishing the logging
environment”, in DB2 UDB for z/OS Version 8 Administration Guide, SC18-7413.

Expiry of archive logs
One of common problems encountered in many DB2 subsystem recovery processes is the
availability of the required archive logs. Although the archive logs are recorded in the BSDS,
the data set may be missing in the ICF catalog.

For tape-based archive log data sets, the problem is with the RETPD value for the archive log.
The storage system programmer configures the tape management system RMM or other
third-party product to retain the tapes for a limited period, which may override the DB2
DSNZPARM parameter ARCRETN. Either ARCRETN or the RETPD parameter can expire a
tape data set while it still exists in the BSDS repository. In such an environment, recovery of
the DB2 object will fail if no frequent image copies exist for the object.

RECP The Recover Pending flag has been set for this table space, table space partition,
index, index partition, or logical index partition.
A successful LOAD REPLACE or RECOVER will reset the status.

REFP The table space, index space, or index is in Refresh Pending status.
A successful LOAD REPLACE or RECOVER will reset the status.

RELDP The object has a release dependency.

REORP The data partition is in a REORG-pending status.
For reset of REORGP status, Refer to Table 171. Resetting REORG-pending
status, Appendix C. “Advisory or restrictive states”, DB2 UDB for z/OS Version 8
Utility Guide and Reference, SC18-7427.

RESTP The table space or index is in Restart Pending status. Restart processing has been
initiated for the table space, table space partition, index, index partition, or logical
index partition.

RO The table space, table space partition, index, index partition, or logical index
partition has been started for read-only processing.

RW The table space, table space partition, index, index partition, or logical index
partition has been started for read and write processing.

Status Description

218 Data Integrity with DB2 for z/OS

Similar problems may exist for disk-based archive logs which are SMS-managed and the
retention period of the data set is set in the management class. Based on the management
class rules, the disk data set can be migrated and deleted based on the creation date.

The reverse problem may exist where the physical archive log dataset exists in the z/OS
platform, but it is not longer listed in the BSDS. This may occur when there is a combination
of:

� Active log size is too small.
� High logging activity in the DB2 subsystem which triggers high archive logging.
� The MAXARCH value in DSNZPARM (DSNTIPA installation panel) is too low.

In all cases, the recovery of the table space and index space may be affected. Close
consultation with the storage administrators and DB2 system programmers will assist in
setting the DSNZPARM values and the storage data set expiry values. Note that in DB2 V8
new-function mode, you can increase the MAXARCH value to retain up to 10,000 archive log
entries in the BSDS.

6.9.1 Rolling back work
If failure occurs within a unit of recovery, DB2 backs out any changes to data, returning the
data to its status at the start of the unit of recovery; that is, DB2 undoes the work. The events
are shown in Figure 6-13. The SQL ROLLBACK statement, deadlocks, and timeouts
(reported as SQLCODE -911, SQLSTATE 40001) cause the same events.

The effects of inserts, updates, and deletes to large object (LOB) values are backed out along
with all the other changes made during the unit of work being rolled back, even if the LOB
values that were changed reside in a LOB table space with the LOG NO attribute.

An operator or an application can issue the CANCEL THREAD command with the
NOBACKOUT option to cancel long running threads without backing out data changes. DB2
backs out changes to catalog and directory tables regardless of the NOBACKOUT option. As
a result, DB2 does not read the log records and does not write or apply the compensation log
records. After CANCEL THREAD NOBACKOUT processing, DB2 marks all objects
associated with the thread as refresh pending (REFP) and puts the objects in a logical page
list (LPL). For information about how to reset the REFP status, see DB2 UDB for z/OS
Version 8 Utility Guide and Reference, SC18-7427.

Figure 6-13 Unit of recovery (rollback)

Chapter 6. Recovery 219

The NOBACKOUT request might fail for either of the following reasons:

� DB2 does not completely back out updates of the catalog or directory (message DSNI032I
with reason 00C900CC).

� The thread is part of a global transaction (message DSNV439I).

6.10 Preparing to recover to a point of consistency
Backups of the application-related objects must exist in a consistent status in order to recover
the objects to a point of consistency (POC) to overcome either application errors or physical
errors caused by I/O subsystems, software errors, and others. Prior to running the COPY
utility to back up the objects, use the DISPLAY DATABASE RESTRICT command to
determine whether the data is in an exception status. Refer to Table 6-8 on page 216 for
status and the reset process.

A method must be established to identify a group of related objects prior to the COPY utility
which does the backups and the QUIESCE utility to establish a point of consistency. The
same methodology can be used to recover the objects with the RECOVER utility.

Establishing naming standards
Design the application and establish a naming standard to identify related objects. As an
example, if the payroll application can be identified as PAY, then the databases naming
standard can include PAY in the database name, such as PAYDBnnn where nnn is a
sequence number; similarly, name the table spaces (PAYTSnnn), index spaces (PAYIXnnn),
and tables (PAYTBnnn). Then, using the LISTDEF utility statement, all table spaces and index
spaces belonging to the PAYROLL application can be obtained as:

LISTDEF PAYROLL INCLUDE table space PAYDB*.*

COPY and QUIECE utilities can utilize the list of objects generated by the LISTDEF utility to
create the backups and to establish a point of consistency as in Example 6-14.

Example 6-14 Sample LISTDEF, COPY, and QUIESCE

LISTDEF PAYROLL INCLUDE table space PAYDB*.*
TEMPLATE COPY1
TEMPLATE COPY2
COPY LIST PAYROLL SHRLEVEL CHANGE PARALLEL

COPYDDN COPY1
RECOVERYDDN COPY2

QUIESCE LIST PAYROLL

RI and table space set
Design the application and create RI between the tables. Refer to Chapter 3, “Referential
integrity” on page 49 for discussions about RI. The LISTDEF utility statement, REPORT utility,
and the QUIESCE utility can be used to generate all objects that are RI-related. The table
space set can be constructed from the job output of these utilities.

REPORT utility TABLESPACESET
The REPORT utility with TABLESPACESET option can be used to list all table spaces that are
RI-related and informational RI-related for table space RIDEPT. In Example 6-15, a table
space report lists RIDEPT, RIEMPL, and RIHIST that are RI-related. The report includes the
associated indexes and tables. The utility does not update any catalog tables.

220 Data Integrity with DB2 for z/OS

Example 6-15 REPORT with TABLESPACESET option

//*
//* GET A LIST OF TABLE SPACE SET
//*
//REPORT EXEC DSNUPROC,SYSTEM=DB8A,UID=PAOLOR1
//SYSIN DD *
 REPORT TABLESPACESET DSNDB04.RIDEPT

TABLESPACE SET REPORT:

TABLESPACE : DSNDB04.RIDEPT

 TABLE : PAOLOR4.DEPT
 INDEXSPACE : DSNDB04.DEPTK0
 INDEX : PAOLOR4.DEPTK0
 DEP TABLE : PAOLOR4.EMPL

TABLESPACE : DSNDB04.RIEMPL

 TABLE : PAOLOR4.EMPL
 INDEXSPACE : DSNDB04.EMPLK0
 INDEX : PAOLOR4.EMPLK0
 DEP TABLE : PAOLOR4.EMPHIST

TABLESPACE : DSNDB04.RIHIST

 TABLE : PAOLOR4.EMPHIST
DSNU580I DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

QUIESCE with TABLESPACESET
The QUIESCE utility can be used to obtain a list of all table spaces that are RI-related to a
single table space. In Example 6-16, the utility was run for RIDEPT table space. The job
output lists RIEMPL and RIHIST with RIDEPT. Note that the QUIESCE utility takes a quiesce
point and records the value in SYSCOPY.

Example 6-16 QUIESCE with TABLESPACESET option

//*
//* GET A LIST OF TABLE SPACE SET USING QUIESCE UTILITY
//*
//REPORT EXEC DSNUPROC,SYSTEM=DB8A,UID=PAOLOR1
//SYSIN DD *
 QUIESCE TABLESPACESET DSNDB04.RIDEPT
//
DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = PAOLOR1
DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I DSNUGUTC - QUIESCE TABLESPACESET DSNDB04.RIDEPT
DSNU477I -DB8A DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACESET DSNDB04.RIDEPT
DSNU477I -DB8A DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSNDB04.RIDEPT
DSNU477I -DB8A DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSNDB04.RIEMPL
DSNU477I -DB8A DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSNDB04.RIHIST
DSNU474I -DB8A DSNUQUIA - QUIESCE AT RBA 000212ED1A43 AND AT LRSN 000212ED1A43
DSNU475I DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= 00:00:00
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0
******************************** BOTTOM OF DATA ********************************

Chapter 6. Recovery 221

LISTDEF utility with RI option
The LISTDEF utility was introduced in DB2 V7 and can be used to generate table spaces and
index spaces with a wild card. The utility can also be used to generate objects that are
RI-related.

The command:

LISTDEF PAYROLL INCLUDE TABLESPACE DSNDB04.RIDEPT RI

generates a list of all table spaces that are RI-related to table space DSNDB04.RIDEPT. The
COPY and QUIESCE utilities can be set up in the same jobstep to back up and quiesce all
the table spaces in the list as in Example 6-17.

Example 6-17 Sample LISTDEF with RI, COPY, and QUIESCE

//*
//* LISTDEF, COPY AND QUIESCE UTILITY
//*
//COPY EXEC DSNUPROC,SYSTEM=DB8A,UID=PAOLO,
// LIB='DB8A8.SDSNLOAD'
//SYSIN DD *
 LISTDEF PAOLO
 INCLUDE TABLESPACE DSNDB04.RIDEPT RI
 TEMPLATE COPY1
 DSN(DB8ALDS.&DB..&TS..D&DATE..T&TIME.)
 DISP(NEW,CATLG,DELETE) UNIT SYSDA SPACE(10,5) TRK
 COPY LIST PAOLO
 SHRLEVEL CHANGE PARALLEL
 COPYDDN COPY1
 QUIESCE LIST PAOLO
//
Sample Job output
DSNU1038I DSNUGDYN - DATASET ALLOCATED. TEMPLATE=COPY1
 DDNAME=SYS00001
 DSN=DB8ALDS.DSNDB04.RIHIST.D2005298.T182326
DSNU1038I DSNUGDYN - DATASET ALLOCATED. TEMPLATE=COPY1
 DDNAME=SYS00002
 DSN=DB8ALDS.DSNDB04.RIEMPL.D2005298.T182326
DSNU1038I DSNUGDYN - DATASET ALLOCATED. TEMPLATE=COPY1
 DDNAME=SYS00003
 DSN=DB8ALDS.DSNDB04.RIDEPT.D2005298.T182326
DSNU400I DSNUBBID - COPY PROCESSED FOR TABLESPACE DSNDB04.RIHIST
 NUMBER OF PAGES=2
 AVERAGE PERCENT FREE SPACE PER PAGE = 0.00
 PERCENT OF CHANGED PAGES = 0.00
 ELAPSED TIME=00:00:00
DSNU428I DSNUBBID - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSNDB04.RIHIST
DSNU400I DSNUBBID - COPY PROCESSED FOR TABLESPACE DSNDB04.RIEMPL
 NUMBER OF PAGES=2
 AVERAGE PERCENT FREE SPACE PER PAGE = 0.00
 PERCENT OF CHANGED PAGES = 0.00
 ELAPSED TIME=00:00:00
DSNU428I DSNUBBID - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSNDB04.RIEMPL
DSNU400I DSNUBBID - COPY PROCESSED FOR TABLESPACE DSNDB04.RIDEPT
 NUMBER OF PAGES=2
 AVERAGE PERCENT FREE SPACE PER PAGE = 0.00
 PERCENT OF CHANGED PAGES = 0.00
 ELAPSED TIME=00:00:00
DSNU428I DSNUBBID - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSNDB04.RIDEPT
DSNU050I DSNUGUTC - QUIESCE LIST PAOLO
DSNU477I -DB8A DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSNDB04.RIDEPT

222 Data Integrity with DB2 for z/OS

DSNU477I -DB8A DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSNDB04.RIEMPL
DSNU477I -DB8A DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSNDB04.RIHIST
DSNU474I -DB8A DSNUQUIA - QUIESCE AT RBA 00021A65645F AND AT LRSN 00021A65645F
DSNU475I DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= 00:00:00
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Alternatively, the list can be passed in a data set which can be allocated using the OPTIONS
utility. In Example 6-18, the LISTDEF definition is saved in a dataset and passed to the
RUNSTATS and QUIESCE utilities with the OPTIONS LISTDEFDD option.

Example 6-18 LISTDEF list passed through OPTIONS utility

//*
//LISTDEF EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=PAOLOR1.PAOLO.LISTDEF,DISP=(,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1),RLSE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)
//SYSUT1 DD *
 LISTDEF PAOLO
 INCLUDE TABLESPACE DSNDB04.RIDEPT RI
//*
//* RUNSTATS UTILITY
//*
//LIST EXEC DSNUPROC,SYSTEM=DB8A,UID=PAOLO,
// LIB='DB8A8.SDSNLOAD'
//LISTLIB DD DSN=PAOLOR1.PAOLO.LISTDEF,DISP=(OLD,PASS)
//SYSIN DD *
 OPTIONS LISTDEFDD LISTLIB
 RUNSTATS TABLESPACE LIST PAOLO
 SHRLEVEL CHANGE
 UPDATE(ALL) HISTORY(ALL)
//*
//* QUIESCE UTILITY
//*
//QUIESCE EXEC DSNUPROC,SYSTEM=DB8A,UID=PAOLO,
// LIB='DB8A8.SDSNLOAD'
//LISTLIB DD DSN=PAOLOR1.PAOLO.LISTDEF,DISP=(OLD,DELETE)
//SYSIN DD *
 OPTIONS LISTDEFDD LISTLIB
 QUIESCE LIST PAOLO
//

We advise using the LISTDEF utility rather than the QUIESCE table space set option. The list
generated by LISTDEF can be passed to many other DB2 utilities in the same jobstep.

6.10.1 Copying the data
You can copy the data and also establish a point of consistency for a list of objects, in one
operation, by using the COPY utility with the option SHRLEVEL REFERENCE. That
operation allows read-only access to the data while it is copied. The data is consistent at the
moment when copying starts and remains consistent until copying ends. The advantage of
the method is that the data can be restarted at a point of consistency by restoring the copy
only, with no need to read log records. The disadvantage is that updates cannot be made
throughout the entire time that the data is being copied.

Chapter 6. Recovery 223

Copies of data created with COPY utility SHRLEVEL CHANGE do not provide a point of
consistency, since updates are allowed during the utility. The QUIESCE utility must be run
immediately after the COPY utility to establish the point of consistency. The RECOVER utility
will restore the backup copy and apply all log records to the point of consistency when
recovered with TORBA. The RBA (LRSN in data sharing) can be found in SYSCOPY,
ICTYPE=Q, and START_RBA.

Inline copies created with REORG utility SHRLEVEL CHANGE cannot be used to recover to
TOCOPY. Inline copies of REORG may have duplicates pages appended to the end of the
copy data set. These duplicate pages are created during the last log apply phase of REORG.
The inline copies can be used to recover to a RBA if the RBA is established with the
QUIESCE utility.

Frequency of image copies
Many factors influence the frequency of image copies. If the recovery of your application is at
near real time (within minutes or less than an hour), then consider “mirroring” all the DB2
objects at the remote site, using products such as XRC or PPRC. Refer to Disaster Recovery
with DB2 UDB for z/OS, SG24-6370, for details.

To recover from an “application disaster recovery”, image copies and the point of consistency
must be available prior to the application disaster. The frequency of image copies to recover
from an “application disaster recovery” is determined by:

� The elapsed time of recovery
� The elapsed time of COPY utility
� The characteristics for your active and archive logs
� The required DB2 restart time, including the recovery of data

Even if the organization has disaster recovery policies and processes in place, we still
recommend that frequent image copies of the application are taken at regular intervals for
application recovery. It will reduce the elapsed time of the recovery and obviously reduce the
application outage.

The DBA can use customer and application knowledge to determine the frequency of image
copies. Generally, application objects are image-copied at the end of an online session and
after a mass batch update. The trick is to find a “quiet” time to image copy with SHRLEVEL
REFERENCE and QUIESCE the objects. Alternatively, image copy with SHRLEVEL
CHANGE and QUIESCE the objects during the quiet window. DB2 tools, such as the Log
Analysis Tool, can be used to scan the log to identify a quiet time of the day to ensure that the
QUIESCE will complete successfully. You might also consider using incremental copies to
reduce the execution time.

QUIESCE utility
As discussed, the QUIESCE utility is used to obtain a point of consistency for an object or a
group of objects. Generally, the utility will succeed but in some cases it will not when it fails to
drain the writers within a specified time limit. For applications such as SAP and PeopleSoft,
which use large numbers of DB2 objects, it may not be practical to list all the objects for the
QUIESCE utility. There is an alternative method to obtain a system-wide quiesce point. The
command ARCHIVE LOG MODE(QUIESCE) has a wait parameter which can be used to
obtain a system-wide quiesce point. In Example 6-19, an ARCHIVE LOG command with
MODE(QUIESCE) was issued. The command waits for 600 seconds to drain all writers to
establish the system-wide quiesce point. It it fails after a 600 seconds wait, then a normal
ARCHIVE LOG command is issued to switch the active log and produce an archive log.

224 Data Integrity with DB2 for z/OS

Example 6-19 Archive log command

//*
//STEP001 EXEC DB2CMD,SYSTEM=DB2D
//SYSTSIN DD *
 DSN SYSTEM(DB2D)
 -ARCHIVE LOG MODE(QUIESCE) WAIT(YES) TIME(600)
 END
//*
// IF (RC > 4) THEN
//*
//**
//* SWITCH WITHOUT QUIESCE IF THE PRIVIOUS ATTEMPT FAILS.
//***
//*
//STEP002 EXEC DB2CMD,SYSTEM=DB2D
//SYSTSIN DD *
 DSN SYSTEM(DB2D)
 -ARCHIVE LOG
 END
/*
// ENDIF

A successful execution of the ARCHIVE LOG command registers an entry in the BSDS as in
Example 6-20. The MODE column indicates if the ARCHIVE LOG was successful with
MODE(QUIESCE). The BSDS can be listed using DSNJU004 utility.

Example 6-20 BSDS listing of archive log command

ARCHIVE LOG COMMAND HISTORY
 08:02:12 OCTOBER 19, 2005
 DATE TIME RBA MODE WAIT TIME
------------ ---------- ------------ ------- ---- -----
OCT 18, 2005 22:06:48.5 00D92360314A QUIESCE YES 600
OCT 17, 2005 22:02:35.0 00D91850DB14 QUIESCE YES 600
OCT 16, 2005 22:02:25.2 00D90ECD6EDC QUIESCE YES 600
OCT 15, 2005 22:02:35.0 00D903D69C53 QUIESCE YES 600
OCT 14, 2005 22:06:50.5 00D8FF2E8490 QUIESCE YES 600
OCT 13, 2005 22:02:31.8 00D8EFDEDA72 QUIESCE YES 600
OCT 12, 2005 22:08:45.1 00D8E508F984 QUIESCE YES 600
OCT 11, 2005 22:05:09.3 00D8DB3ACBB7 QUIESCE YES 600
OCT 10, 2005 22:04:59.1 00D8CFEF4CEB QUIESCE YES 600
OCT 09, 2005 22:02:00.9 00D8C7384EDC QUIESCE YES 600
OCT 08, 2005 22:02:37.9 00D8BC56C4EA QUIESCE YES 600
OCT 07, 2005 22:02:20.0 00D8B795CB20 QUIESCE YES 600

DB2 also provides assistance to the DBA in determining when to image copy. The statistics
generated by RUNSTATS utility, Real-Time Statistics (RTS), DB2 Administration tool, and
DB2 Automation Tool can assist the DBA in determining when image copies are required.
DB2 Automation Tool is the strategic tool for generating utilities.

RUNSTATS statistics
The RUNSTATS utility with HISTORY(YES) updates the SYSTABLEPART_HIST catalog
table. Table SYSTABLEPART_HIST has two fields, CARDF and SPACEF, which contain the
values for total number of rows and total amount of disk space allocated to the table space or
partition space respectively. Similar fields also exist for index space in
SYSINDEXPART_HIST. CARDF and SPACEF can be tracked regularly for space growth of an

Chapter 6. Recovery 225

object. Assuming constant growth over time, these numbers can be used to derive growth
trends to plan for future needs.

Consider the following sample SQL:

SELECT MAX(CARDF), MIN(CARDF), ((MAX(CARDF)-MIN(CARDF))*100)/MIN(CARDF),
(DAYS(MAX(STATSTIME))-DAYS(MIN(STATSTIME)))
FROM SYSIBM.SYSTABLEPART_HIST
WHERE DBNAME='DB' AND TSNAME='TS';

Assuming that the number of rows is constantly increasing, so that the highest number is the
latest, the query shows the percentage of rows added over a specific time period. This could
be extrapolated to scale on a monthly or yearly basis.

The space growth and SYSCOPY entries of a DB2 object can be used to determine the
requirement for an image copy. If the space growth is greater than a predetermined
percentage growth value since the last full image copy, then the COPY utility can be triggered
to take a full image copy of the object.

Real-Time Statistics (RTS)
The statistics are collected in real time, kept in memory, and periodically written to user
defined DB2 tables from which applications and tools can query the statistics.

Table definition
The statistics are contained within a user-created database called DSNRTSDB and a
segmented table space called DSNRTSTS. The RTS tables are:

� SYSIBM.SYSTABLESPACESTATS

It contains table space statistics, one row per table space or partition.

� SYSIBM.SYSINDEXSPACESTATS

It contains index space statistics, one row per index space or index partition.

� The tables must be defined with row level locking and CCSID EBCDIC. A dedicated buffer
pool will improve the efficiency while updating statistics. Refer to Appendix E, “Real-time
statistics tables”, in the DB2 UDB for z/OS Version 8 Utility Guide and Reference,
SC18-7427, for details.

DSNACCOR stored procedure
This stored procedure queries the new DB2 RTS tables to determine which DB2 objects
should be reorganized, should have their statistics updated, should be image-copied, have
exceeded number of extents, or are in a restricted status. The default scope for this stored
procedure is to scan "all" data in the RTS tables and provide recommendations for "any" of
the conditions mentioned.

For example, here is the formula that DSNACCOR uses to query the RTS tables to determine
if a full image copy should be run on a table space:

((QueryType='COPY' OR QueryType='ALL') AND
 (ObjectType='TS' OR ObjectType='ALL') AND
 ICType='F') AND
 (COPYLASTTIME IS NULL OR
 REORGLASTTIME>COPYLASTTIME OR LOADRLASTTIME>COPYLASTTIME OR
 (CURRENT DATE-COPYLASTTIME)>CRDaySncLastCopy OR
(COPYUPDATEDPAGES*100)/NACTIVE>CRUpdatedPagesPct OR
 (COPYCHANGES*100)/TOTALROWS>CRChangesPct)

� CRDaySncLastCopy has a default value of “7” (seven days since last copy).

226 Data Integrity with DB2 for z/OS

� CRUpdatedPagesPct has a default value of “20” (if the ratio of updated pages to
preformatted pages is at least 20%).

� CRChangesPct has a default value of 10 (if the ratio of the number of INSERTs,
UPDATEs, and DELETEs since the last image copy to the total number of rows or LOBs in
a table space or partition, expressed as a percentage, is greater than 10%).

Refer to Appendix B, “The DB2 real-time statistics stored procedure”, DB2 UDB for z/OS
Version 8 Utility Guide and Reference, SC18-7427, for details about this stored procedure.

DB2 Administration Tool
The DB2 Administration Tool can be used to query the catalog for table spaces that need to
be image-copied based on the CRDaySncLastCopy value of the DSNACCOR stored
procedure. Example 6-21 shows a sample of table spaces in DSNDB04 that require full
image copy with CRDaySncLastCopy = 1. The tool also recommends REORG and
RUNSTATS for the table spaces.

Example 6-21 Recommendations from the DB2 Administration Tool

DB2 Admin ---------- DB8A Table Space Maintenance ---------------- Row 1 of 19
Command ===> Scroll ===> CSR

Commands: C - Full Copy CI - Inc Copy O - Reorg R - Runstats
Line commands: C - Full Copy CI - Inc Copy O - Reorg R - Runstats
 AL - Resize
 Pct Num <---Recommendations--->
Sel TSname DBname Part Space(KB) Used Ext Copy Reorg Runst Resize
 * * * * * * * * * *
--- -------- -------- ------ ----------- ---- ------ ---- ----- ----- ------

 PLANRTAB DSNDB04 0 48 100 1 FUL YES YES NO
 PLAN1QDX DSNDB04 0 720 100 1 FUL YES YES NO
 ROAD DSNDB04 0 720 100 1 FUL YES YES NO
 TRIGTEST DSNDB04 0 23232 96 1 FUL YES YES NO
******************************* END OF DB2 DATA *******************************

REORG and LOAD utility
Both REORG and LOAD utilities can take an image copy of the table space if the COPYDDN
and RECOVERYDDN options are specified as part of the utility execution. The utilities also
write log records if the LOG YES option is specified. Generally, the utilities are run with LOG
NO for performance.

The object is placed in COPY status if the COPYDDN option is not coded as part of the utility
run. We strongly advise you to take an image copy of the object using the COPY utility,
SHRLRVEL REFERENCE or CHANGE immediately after the successful completion of the
utility. Resetting the table space status to RW with -START DB(db) SPACE(ts)
ACCESS(FORCE) or running REPAIR utility with SET NOCOPYPEND is strongly
discouraged for recoverability.

The inline image copies taken with REORG and LOAD utilities are not suitable for RECOVER
utility TOCOPY, TOLASTCOPY, or TOLASTFULLCOPY options.

MODIFY utility
The MODIFY utility with the RECOVERY option deletes records from the SYSIBM.SYSCOPY
catalog table, related log records from the SYSIBM.SYSLGRNX directory table, and entries
from the DBD, and recycles version numbers for reuse. The AGE or DATE options of the utility
can be used to selectively delete all rows from the catalog tables older than a certain number

Chapter 6. Recovery 227

of days or to a given date. The utility can delete all rows in the catalog tables if AGE(*) or
DATE(*) is specified. Both the later options will place the table space in COPY-pending status.

We advise you to run the MODIFY utility regularly to remove “old” entries from the catalog
tables, SYSCOPY and SYSLGRNX, for performance. A DB2 subsystem-wide policy may be
developed to maintain a limited number of rows in the catalog for each DB2 object.

6.10.2 Recovery of the data to the previous point of consistency
The RECOVER utility recovers table spaces and index spaces from the corresponding image
copies and log records. The REBUILD utility can be used to rebuild the indexes if the index is
not copied using the COPY utility. Standalone utilities, such as DSN1COPY and any similar
third-party vendor software, can be used to restore the table space data but the restore is
done outside of the control of DB2. You must take appropriate action to ensure that the data is
intact and consistent.

In this section, we discuss the recovery of table spaces that are logically related to a table
space set. For a complete description of the recovery process, refer to Chapter 20, DB2
Administration Guide, SC18-7413. The relationship between tables can be defined either
using the RI constraint of table definition, application programs, or a combination of both.
Similarly, a LOB table space and its associated base table space are also part of a table
space set. In all cases, the DBA must be able to identify the table space set for recovery.

You can use the REPORT table space set utility or the LISTDEF utility with RI option to
determine all the page sets that belong to a single table space set and then restore those
page sets that are related. Refer to the LISTDEF utility examples and discussion in
“Preparing to recover to a point of consistency” on page 219. However, if page sets are
logically related outside of DB2 in application programs, you are responsible for identifying all
the page sets on your own.

Obtain the point of consistency
A point of consistency can be obtained from:

� SYSCOPY
� BSDS
� DSN1LOGP standalone utility
� REPORT utility

SYSCOPY
The START_RBA attribute in SYSCOPY is assigned a 48-bit positive integer that contains the
LRSN of a point in the DB2 recovery log. The LRSN is the RBA equivalent in the data sharing
environment. A value for START_RBA is recorded in SYSCOPY whenever the COPY,
QUIESCE, LOAD, REORG, and RECOVER utilities are executed on table spaces and index
spaces. The value of the attribute START_RBA can be used to recover to a point in time if:

� The START_RBA is created with the QUIESCE utility (ICTYPE=Q).

� The COPY utility is run on the table space with SHRLEVEL REFERENCE (ICTYPE=F,
SHRLEVEL=R).

In both instances, the table space can be recovered with the RECOVER utility and to a
TOLOGPOINT. Although the table space may be consistent, there is no guarantee that the
table space set is consistent.

Consider an example where DEPT and EMP are part of a simple application. Figure 6-14
shows a timeline for the recovery of table spaces TOLOGPOINT. All image copies of DEPT
and EMP were done with SHRLEVEL REFERENCE. If DEPT is recovered at time T4 to the

228 Data Integrity with DB2 for z/OS

last image copy (with TOCOPY or TOLOGPOINT= R1) then all updates to DEPT will be lost
after time T1, although the recovery will succeed and DEPT will be at a point of consistency.
Unfortunately, both DEPT and EMP are a set and as a set, they will be inconsistent. If both
DEPT and EMP are recovered to log point R3 taken at time T3 with the QUIESCE utility, then
the table space set will be at a point of consistency.

Figure 6-14 Recovery of table spaces TOLOGPOINT

BSDS
The BSDS is the repository for DB2 to record control information. Sections of information that
are relevant for recovery are displayed in Example 6-22.

The log point X’18FE0AB8C’ was created with ARCHIVE LOG MODE(QUIESCE) command.
All recoveries to this log point will guarantee data consistency. Obviously all updates beyond
this log point are lost.

The “CHECKPOINT QUEUE” is created by DB2 based on the DSNZPARM value
“CHKFREQ”.

Example 6-22 Sample BSDS listing

ARCHIVE LOG COMMAND HISTORY
 17:27:59 OCTOBER 20, 2005
 DATE TIME RBA MODE WAIT TIME
------------ ---------- ------------ ------- ---- -----
OCT 20, 2005 17:27:43.3 00018FE0AB8C QUIESCE NO 5 D
AUG 12, 2005 06:57:12.3 000001C239C0

CHECKPOINT QUEUE
 17:27:59 OCTOBER 20, 2005
 TIME OF CHECKPOINT 17:27:43 OCTOBER 20, 2005
 BEGIN CHECKPOINT RBA 00018FE0CBBE
 END CHECKPOINT RBA 00018FE123DF
 TIME OF CHECKPOINT 17:00:05 OCTOBER 20, 2005
 BEGIN CHECKPOINT RBA 00018E5DAC57
 END CHECKPOINT RBA 00018E5E157D

ARCHIVE LOG COPY 1 DATA SETS
 START RBA/TIME END RBA/TIME DATE LTIME DATA SET INFORMATIO

Time
Line

SQL updates
to DEPT, EMP

SQL updates
to DEPT, EMP

COPY
DEPT

COPY
EMPL

QUIESCE
DEPT, EMPL

RECOVER
DEPT

RECOVER
DEPT, EMP

T1 T2 T3 T4

Log Point

Start_RBA R1 R2 R3 TOLOGPOINT=R1
Updates to DEPT
 after Time R1
 are lost

TOLOGPOINT=R3
DEPT, EMP
consistent

Chapter 6. Recovery 229

 -------------------- -------------------- -------- ----- -------------------
 0000934E4000 0000956A3FFF 2004.315 13:50 DSN=DB8AU.ARCHLOG1.A0000001
 2004.210 04:49:42.2 2004.251 14:53:26.5 PASSWORD=(NULL) VOL=SBOXEC
UNIT=3390
 CATALOGUED

DSN1LOGP utility
DSN1LOGP is a standalone utility that can be used to list the active or archive log to find a
point of recovery for a table space (identified by DBID and OBID) and specific unit of recovery.
Example 6-23 shows how to extract information from the recovery log when you have the
BSDS available. The extraction starts at the log RBA of X'AF000' and ends at the log RBA of
X'B3000'. The DSN1LOGP utility identifies the table or index space by the DBID of X'10A'
(266 decimal) and the OBID of X'1F' (31 decimal). Refer to DB2 UDB for z/OS Version 8 Utility
Guide and Reference, SC18-7427, for details about the DSN1LOGP utility.

Example 6-23 Extracting information from the recovery log with an available BSDS

//STEP1 EXEC PGM=DSN1LOGP
//STEPLIB DD DSN=DB8A8.SDSNLOAD
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//BSDS DD DSN=DB8AU.BSDS01,DISP=SHR
//SYSIN DD *
RBASTART (AF000) RBAEND (B3000) DBID (10A) OBID(1F)

REPORT utility
You can use the REPORT utility to plan for recovery. REPORT provides information
necessary for recovering a page set. REPORT displays:

� Recovery information from the SYSIBM.SYSCOPY catalog table
� Log ranges of the table space from the SYSIBM.SYSLGRNX directory
� Archive log data sets from the bootstrap data set
� The names of all members of a table space set

Details about the REPORT utility and examples showing the results obtained when using the
RECOVERY option are contained in Part 2 of DB2 UDB for z/OS Version 8 Utility Guide and
Reference, SC18-7427.

Recover table spaces
The Recover utility is executed at table space or partition level. It cannot recover individual
tables.

Once you have identified the recovery point and table space set to recover, use the
RECOVER utility to recover the objects. Example 6-24 has a sample JCL to recover all table
spaces in database DSN8D81L to a log point that was created by the QUIESCE utility. The
RECOVER of table spaces will place the index spaces in REBUILD-pending status (RBDP).
The subsequent REBUILD utility will the rebuild the indexes.

Example 6-24 Recover to a log point created by QUIESCE utility

//* RECOVER UTILITY
//*
//RECOVER EXEC DSNUPROC,SYSTEM=DB8A,UID=PAOLO,
// LIB='DB8A8.SDSNLOAD'
//DSNUPROC.SYSUT1 DD DSN=DB8ALDS.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(TRK,(10,5),RLSE),

230 Data Integrity with DB2 for z/OS

// UNIT=SYSDA
//DSNUPROC.SYSIN DD *
 LISTDEF PAOLO
 INCLUDE table space DSN8D81L.*
 RECOVER LIST PAOLO PARALLEL
 TOLOGPOINT X'0001900E13D7'
 REBUILD INDEX LIST PAOLO

DB2 inserts a row for each table space that was recovered to the log point. The attribute
PIT_RBA contains the RBA value of the recovery point as in Example 6-25 with ICTYPE=P.

Example 6-25 SYSCOPY listing after recovery to log point

SELECT DBNAME,TSNAME,ICTYPE,HEX(START_RBA) AS START_RBA, HEX(PIT_RBA) AS PIT_RBA
FROM SYSIBM.SYSCOPY WHERE TSNAME = ‘DSN8S81L’ AND DBNAME = ‘DSN8D81L’ ;

DBNAME TSNAME ICTYPE START_RBA PIT_RBA
* * * * *
-------- -------- ------ ------------ ------------
DSN8D81L DSN8S81L P 000190100701 0001900E13D7
DSN8D81L DSN8S81L Q 0001900E13D7 000000000000
DSN8D81L DSN8S81L F 0001900D23D6 000000000000

When you recover table spaces to a prior point of consistency, you need to consider how
partitioned table spaces, segmented table spaces, LOB tables spaces, and table space sets
can restrict recovery.

Recovering partitioned table spaces
You cannot recover a table space to a point in time prior to rotating partitions. After you rotate
a partition, you cannot recover the contents of that partition to a point in time prior to the
ROTATE.

If you recover to a point in time prior to the addition of a partition, DB2 cannot roll back the
definition of the partition. In such a recovery, DB2 clears all data from the partition, and the
partition remains part of the database.

If you recover a table space partition to a point in time before the table space partitions were
rebalanced, you must include all partitions that are affected by that rebalance in your recovery
list.

Refer to 3.13, “Partition Management”, DB2 UDB for z/OS Version 8: Everything You Ever
Wanted thing to Know, ... and More, SG24-6079, for adding and rotating partitions in DB2 V8.

Recovering segmented table spaces
When data is restored to a prior point in time on a segmented table space, information in the
current DBD for the table space might not match the restored table space. If you use the DB2
RECOVER utility, the database descriptor (DBD) is updated dynamically to match the
restored table space on the next non-index access of the table. The table space must be in
write access mode.

If you use a method outside of DB2’s control, such as DSN1COPY, to restore a table space to
a prior point in time, run the REPAIR utility with the LEVELID option to force DB2 to accept the
down-level data. Then, run the REORG utility on the table space to correct the DBD.

Chapter 6. Recovery 231

Recovering LOB table spaces
When you recover tables with LOB columns, recover the entire set of objects, including the
base table space, the LOB table spaces, and index spaces for the auxiliary indexes. If you use
the RECOVER utility to recover a LOB table space to a prior point of consistency, RECOVER
might place the table space in a pending status.

Compressed table spaces
The REORG and LOAD utility create the compression and decompression dictionary when
the utilities are run without the KEEPDICTIONARY option. These dictionary pages are stored
in the first 16 pages of the table space. The dictionary is loaded in the virtual buffer pool and
the data manager address when the table space is opened.

All log records for the table space are also compressed using the same dictionary. If a
REORG is run without the KEEPDICTIONARY option, then a new dictionary is created by
REORG and activated after the switch phase. All log records prior to the switch phase are
invalid.

In Figure 6-15, REORG was started for table space TS1 at time T2 with SHRLEVEL
CHANGE and without the KEEPDICTIONARY option. REORG uses the shadow data set for
its reorganization and it also builds the new dictionary. Between time T1 and T4, all update
logs for TS1 are compressed with “old” dictionary D1. When REORG completes the switch
phase, the new compression dictionary D2 is activated. A new inline image copy IM2 is also
created by REORG. All subsequent update logs to TS1 are compressed using dictionary D2.

At time T5, a recovery of TS1 to point in time T3 is initiated. Recovery of table space TS1 to
point in time T3 will restore image copy IM1 and apply all logs to T3. The decompression of
the logs is possible since the dictionary D1 was restored from image copy IM1. All logs
beyond time T4 are invalid.

Figure 6-15 Compressed table space and log records

Timeline
Application

Updates

REORG
SWITCH

Log
Records

Image Copy
IM2

Image Copy
IM1

Dictionary
D2

Dictionary
D1

Log Records

REORG Begins
SHRLEVEL

Change
Recover TS1

Tablespace
TS1

T1 T4T2 T3T0 T5

Log Records

Last Log
Apply

232 Data Integrity with DB2 for z/OS

Recovering tables that contain identify columns
The column attribute AS IDENTITY was introduced in the DB2 V6 refresh through APAR
PQ30652 and was delivered as part of DB2 V7. DB2 V8 enhances identity columns by
extending the ALTER COLUMN clause of the ALTER TABLE SQL statement to include the
identity column specification. In addition, there is a close tie between the enhancements to
identity columns and sequences. Refer to 4.12, “Identity column enhancements”, DB2 UDB
for z/OS Version 8: Everything You Ever Wanted thing to Know, ... and More, SG24-6079.

When recovering a table that has an identity column to a point in time, you can create a gap in
the identify column values. When you insert a row after this recovery, DB2 produces an
identity value for the row as if all previously added rows still existed.

Consider the following example.

� Create EMPL table.

CREATE TABLE EMPL
 (EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
 EMPNAME CHAR(20),
 CITY CHAR(20) NOT NULL DEFAULT 'KANSAS CITY',
 SALARY DECIMAL(9,2))
 IN DSNDB04.RAMATEST ;

� Insert three rows into the table.

INSERT INTO EMPL(EMPNAME, SALARY) VALUES ('Suresh Sane',10000.00) ;
INSERT INTO EMPL(EMPNAME, SALARY) VALUES ('Rama Naidoo',10000.00) ;
INSERT INTO EMPL(EMPNAME, SALARY) VALUES ('Paolo Bruni',10000.00) ;

� A SELECT * from EMPL will list three rows.

EMPNO EMPNAME CITY SALARY
---+---------+---------+---------+---------+---------+---------+
 1 SURESH SANE KANSAS CITY 10000.00
 2 RAMA NAIDOO KANSAS CITY 10000.00
 3 PAOLO BRUNI KANSAS CITY 10000.00

� Next take an image copy with SHRLEVEL REFERENCE.

� Insert three more rows into EMPL table to get EMPNO 4, 5, and 6.

EMPNO EMPNAME CITY SALARY
---+---------+---------+---------+---------+---------+---------+----
 1 SURESH SANE KANSAS CITY 10000.00
 2 RAMA NAIDOO KANSAS CITY 10000.00
 3 PAOLO BRUNI KANSAS CITY 10000.00
 4 NEVILLE HARLOCK KANSAS CITY 10000.00
 5 TONY GEORGE MELBOURNE 20000.00
 6 ELENA IDEL SYDNEY 20000.00

� Recover the table space to last image copy (TOLASTCOPY).

� Add the same three rows as above and list the rows.

EMPNO EMPNAME CITY SALARY
---+---------+---------+---------+---------+---------+---------+----
 1 SURESH SANE KANSAS CITY 10000.00
 2 RAMA NAIDOO KANSAS CITY 10000.00
 3 PAOLO BRUNI KANSAS CITY 10000.00
 7 NEVILLE HARLOCK KANSAS CITY 10000.00
 8 TONY GEORGE MELBOURNE 20000.00
 9 ELENA IDEL SYDNEY 20000.00

� Note that there is a gap in EMPNO (4, 5, and 6 missing). DB2 created the next sequence
number for insert at value 7, as if rows 4, 5, and 6 are still in existence.

Chapter 6. Recovery 233

� To prevent a gap in identity column values, starting with DB2 V8, you can use the following
ALTER TABLE statement to modify the attributes of the identity column before you insert
rows after the recovery:

ALTER TABLE EMPL
 ALTER COLUMN EMPNO
 RESTART WITH 4 ;
 COMMIT ;

� An insert of three more rows starts the EMPNO at value “4”.

---+---------+---------+---------+---------+---------+---------+-
EMPNO EMPNAME CITY SALARY
---+---------+---------+---------+---------+---------+---------+-
 1 NEVILLE HARLOCK KANSAS CITY 10000.00
 2 TONY GEORGE MELBOURNE 20000.00
 3 ELENA IDEL SYDNEY 20000.00
 4 SURESH SANE KANSAS CITY 10000.00
 5 PAOLO BRUNI SAN JOSE 20000.00
 6 QUYNH NGUYEN SYDNEY 20000.00

Active and archive logs
The number of active logs and the size of active logs can influence the elapsed time of
recovery. The active logs are always online and available to DB2. Archive logs which are
written to tape will require a tape mount. Generally reading log records from a tape media is
slower than a disk media. Archive logs that are written to disk may be migrated by HSM or
other products to conserve disk space. These migrated datasets need to be recalled prior to
accessing the log data.

The order of recovery from logs is from active logs followed by archive logs. If the active logs
are structured to hold a significant amount of log data (24, 48, or even 72 hours), then all
recovery and log applies will be from the active logs. DB2 V8 has increased the MAX number
of active logs for a DB2 subsystem from 31 to 93.

The active logs (also the archive logs) are a common resource for the whole DB2 subsystem.
This implies that it is difficult to isolate all log records for a particular set of table spaces. The
checkpoint taken by DB2 and recorded in BSDS based on the DSNZPARM parameter
CHKFREQ may not be suitable to recover a set of table spaces to a log point. Similarly, the
QUIESCE point recorded by the ARCHIVE LOG MODE(QUIESCE) is for the whole DB2
subsystem. Recovering a set of table spaces to the archive log quiesce point will retain data
integrity.

Recovering indexes
As in Example 6-24 on page 229, the recovery of table spaces to a log point places the
associated indexes in RDBP. The indexes must be recovered to the same consistency point.

� If the COPY YES is set for indexes and an image copy exist for the index, then use the
RECOVER utility.

� If indexes do not have an image copy, then use REBUILD INDEX to recreate the indexes
after the corresponding table space is recovered.

Tip: To determine the last value in an identity column, issue the MAX column function for
ascending sequences of identity column values or the MIN column function for descending
sequences of identity column values. This method works only if the identity column does
not use CYCLE.

234 Data Integrity with DB2 for z/OS

Rebuilding indexes on altered tables
When an index is altered with the following statements:

� ALTER INDEX PADDED

� ALTER INDEX NOT PADDED

� ALTER TABLE SET DATA TYPE on an indexed column for numeric data type changes

� ALTER TABLE ADD COLUMN and ALTER INDEX ADD COLUMN that are not issued in
the same commit scope

the index is placed in RDBP pending status. Indexes in REBUILD-pending status cannot be
recovered using the RECOVER utility. The indexes must be rebuilt with the REBUILD utility to
align them to the same point of consistency as the recovered table spaces.

Recovering indexes on tables in partitioned table spaces
The data partioned secondary index can be image-copied and recovered either entirely or by
partition. The following applies:

� If the COPY is at partition level, then RECOVER only the index partition.

� If the COPY is at partition level and a RECOVER of the entire index is attempted, an error
occurs.

� If the COPY is at index level, then the RECOVER of the individual partition or the entire
index is possible.

You cannot recover an index space to a point in time prior to rotating partitions. After you
rotate a partition, you cannot recover the contents of that partition to a point in time before the
rotation.

If you recover to a point in time prior to the addition of a partition, DB2 cannot roll back the
addition of that partition. In this type of a recovery, DB2 clears all data from the partition, and
it remains part of the database.

6.10.3 Restore data to previous point in time
Running RECOVER utility with TOCOPY, TOLASTCOPY, TOLASTFULLCOPY, and
TOLOGPOINT recovers the table space to a specific point in time.

RECOVER with TOCOPY requires the data set name of the image copy. The data set must
exist in SYSCOPY. If the data set is cataloged, then DB2 can identify and access the data set
for recovery from the ICF catalog. If the data set is not cataloged, then the volume serial can
be identified by using the TOVOLUME volser. RECOVER with TOLASTCOPY or
TOLASTFULLCOPY will scan catalog table SYSCOPY and select the data set for the latest
image copy. In all cases, if the image copy data set is not usable or not found, then
RECOVER will fall back to the previous image copy and apply log records up to the point at
which the specified image copy was taken.

RECOVER TABLESPACE DSN8D81L.DSN8S81L DSNUM ALL
TOCOPY DB8ALDS.DSN8D81L.DSN8S81L.D2005293
TOVOLUME CATALOG

RECOVER with TOLOGPOINT restores the most recent full image copy and the most recent
set of incremental copies that occur before the specified log point. The log and logged
changes are applied up to, and including, the record that contains the log point. If no full
image copy exists before the chosen log point, recovery is attempted entirely from the log.
The log is applied from the log point at which the page set was created or the last LOAD LOG

Chapter 6. Recovery 235

YES or REORG TABLESPACE utility was run to a log point that was specified. The log range
records must exist in SYSLGRNX for the log apply to succeed.

TOCOPY and TOLOGPOINT are viable alternatives in many situations in which recovery to
the current point in time is impossible or is not desirable. To make these options work best,
take periodic quiesce points at points of consistency that are appropriate to your applications.
Refer to 6.10.1, “Copying the data” on page 222, for discussion about copying the data to a
point of consistency.

Ensuring consistency
RECOVER TOLOGPOINT and RECOVER TOCOPY can be used on a single:

� Partition of a partitioned table space
� Partition of a partitioning index space
� Data set of a simple table space

All page sets must be restored to the same level; otherwise, the data is inconsistent. The
corresponding indexes must all be recovered to the same log point or REBUILD from the
table space. If the log point is a quiesce point or a common SHRLEVEL REFERENCE copy
point, then data integrity is ensured for the table space set. Refer to 6.10, “Preparing to
recover to a point of consistency” on page 219, for identifying a point of consistency.

Point in time recovery can cause table spaces to be placed in CHECK-pending status if they
have table check constraints or referential constraints defined on them. When recovering
tables that are involved in a referential constraint, you should recover all the table spaces that
hold all the tables that are part of the referential structure associated with the constraint. This
is the table space set. To avoid setting CHECK-pending status, you must perform both of the
following tasks:

� Recover the table space set to a quiesce point. If you do not recover each table space of
the table space set to the same quiesce point, and if any of the table spaces are part of a
RI structure:

– All dependent table spaces that are recovered are placed in CHECK-pending status
with the scope of the whole table space.

– All table spaces that are dependent on the table spaces that are recovered are placed
in CHECK-pending status with the scope of the specific dependent tables.

� Establish a quiesce point or take an image copy after you add check constraints or
referential constraints to a table.

If you recover each table space of a table space set to the same quiesce point, but referential
constraints were defined after the quiesce point, the CHECK-pending status is set for the
table space containing the table with the referential constraint.

6.10.4 New utilities in DB2 V8 for online backup and point in time recovery
For detailed information about disaster recovery in general and point in time recovery, refer to
Disaster Recovery with DB2 UDB for z/OS, SG24-6370. In this section, we provide only a
quick overview.

DB2 V8 provides an easier and less disruptive way for fast volume-level backup and recovery.
This utility greatly simplifies backing up systems, such as SAP, in which the high number of

Tip: Use the TOLOGPOINT keyword instead of the TORBA keyword. Although DB2 still
supports the TORBA option, the TOLOGPOINT option supports both data sharing and
non-data sharing environments and is used for both of these environments.

236 Data Integrity with DB2 for z/OS

database objects in use, as well as recovery requirements, makes volume-based backups the
most efficient option.

The total solution provided by this utility is dependent on the DFSMShsm™ in z/OS V1.5 and
a disk system that provides hardware-assisted volume-level copy. In order for the backup to
be registered, the disk system has to write to the DFSMShsm API. IBM ESS disk systems
using FlashCopy take full advantage of this solution. Even so, it is possible to take advantage
of some of its features with other disk models and fast copy solutions.

One of the challenges of the current online volume backup solutions is the need for
coordination between DB2, using the SET LOG SUSPEND command, and the mechanism
for triggering the FlashCopy. In DB2 V7, the physical copy is not registered in DB2, hence, it is
out of DB2’s control for later use as a recovery point or as a registered copy to be used in a
point in time recovery. The procedure for obtaining a system-level copy using FlashCopy must
ensure that all DB2 subsystem volumes are included and data consistency can be enforced.
The procedure for recovering a subsystem using the flashcopied backup must ensure that:

� All volumes are correctly restored.
� There is a process to identify which DB2 objects (pagesets) require recovery.
� There is a process for generating the recovery jobs.

In DB2 V8, the utilities BACKUP and RESTORE have been developed integrating DB2 and
the fast volume copy capability. Now system-level backups using the fast volume-level copy
are managed by DB2 and DFSMShsm, which work together to support a system-level point in
time recovery. Thus, suspending the DB2 log will no longer be necessary.

We now provide a brief description of the new DB2 utilities with special considerations for
data sharing:

� BACKUP SYSTEM
� RESTORE SYSTEM

BACKUP SYSTEM
This utility obtains a complete copy of a DB2 system. There are two kinds: DATAONLY and
FULL. DATAONLY is used to obtain a FlashCopy of the data objects, where FULL is used to
flashcopy data objects, DB2 logs, and BSDSs. FULL is designed to restore the whole DB2
environment to the backup copy.

This utility requires z/OS V1.5 support for HSM COPYPOOLS. A COPYPOOL is a new SMS
construct representing a set of SMS storage groups that are copied together in a single
DFSMShsm invocation. A COPYPOOL is limited to 256 SMS storage groups and can be
defined with a version attribute in order to keep up to 15 backup versions.

Each DB2 system or data sharing group has two SMS COPYPOOLs:

� DATA COPYPOOL (DSN$location_name$DB)
� LOG COPYPOOL (DSN$location_name$LG)

LOG COPYPOOL is not needed for BACKUP SYSTEM DATAONLY.

Each SMS storage group, including a COPYPOOL, must have a dedicated new type of
storage group: copypool backup storage group, which is used to hold volume copies of disk
defined in the COPYPOOL.

When the BACKUP SYSTEM utility is used, DB2:

� Suspends 32 KB writes for objects created before NFM.

� Suspends data set creation, deletion, rename, and extensions operations.

Chapter 6. Recovery 237

� Prevents data set from being pseudo-closed.

� Records the Recover Based Log Point (RBLP) in DBD01 with a logscan start point.

� Invokes DFSMShsm to take a FlashCopy of ‘DB’ COPYPOOL.

� Uses DSS COPY to copy the volumes in the COPYPOOL.

� A volume copy of the COPYPOOL is registered by DB2 in BSDSs and by HSM with an
associated RBLP inserted in DBD01.

� For BACKUP SYSTEM FULL, DB2 invokes DFSMShsm to take a FlashCopy of the “LG”
COPYPOOL.

� The Copy is registered in the BSDS of the submitting member.

� Resumes the quiesced activities.

RESTORE SYSTEM
This utility is needed to recover the system to an arbitrary point in time.

It may use, as input, copies from BACKUP SYSTEM FULL or DATAONLY. The recovery does
not require the restore of the log backup copies; it uses the DATAONLY option of this utility
and, if needed, applies the log records from the stopped system.

The RESTORE of a SYSTEM FULL is useful for cloning flashcopies of the whole subsystem,
data, and logs.

Recovery executes with two phases:

� RESTORE phase: Recover the data volumes from the latest backup version prior to the
arbitrary point in time.

� LOG APPLY phase: Apply log records to recover the database to that arbitrary point in
time.

When the recovery point in time, and therefore a target LRSN, has been determined, the first
thing to do is to deallocate the data sharing group structures in the coupling facility. Afterward,
the truncation target LRSN must be established on all active members using CRESTART
CREATE SYSPITR=end-lrsn.

� All members must be restarted.
� From one of the members, issue RESTORE SYSTEM.

When a single DB2 or a data sharing member is conditionally restarted using SYSPITR, the
system enters into a System Recover Pending mode. In this status, DB2 automatically uses
DEFER ALL, FORWARD = NO, and ACCESS(MAINT) when restarting. DB2 establishes
consistency during restart by using the log and recreating the data sharing group coupling
facility structures.

In order to reset the System Recover Pending status, you must first submit the RESTORE
SYSTEM utility, then restart DB2.

When it is issued, DB2 asks HSM for the COPYPOOL version that was taken by BACKUP
SYSTEM prior to the specified point in time recovery point. Subsequently, DB2 performs the
log apply function.

During log apply phase, DB2:

� Reads the DBD01 header page to retrieve RBLP and the log scan starting point.

� Applies log recovering objects in parallel and using Fast log apply (FLA).

238 Data Integrity with DB2 for z/OS

� Detects creates, drops, extends, and LOG NO events. Objects are marked in RECP or
RBDP status.

RESTORE SYSTEM can handle fast volume copies obtained with SET LOG SUSPEND and
without BACKUP SYSTEM starting in z/OS V1.3, but you need to manually restore the
backups. In this case, the LOGONLY option must be specified.

© Copyright IBM Corp. 2006. All rights reserved. 239

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 240.
Note that some of the documents referenced here may be available in softcopy only.

� DB2 UDB for z/OS: Design Guidelines for High Performance and Availability, SG24-7134

� DB2 UDB for z/OS Version 8 Performance Topics, SG24-6465

� Disk storage access with DB2 for z/OS, REDP-4187

� DB2 UDB for z/OS Version 8: Everything You Ever Wanted to Know, ... and More,
SG24-6079

� Disk storage access with DB2 for z/OS, REDP-4187-00

� DB2 for z/OS and OS/390 Version 7 Performance Topics, SG24-6129

� DB2 for z/OS Application Programming Topics, SG24-6300

� DB2 for z/OS Stored Procedures: Through the CALL and Beyond, SG24-7083

� WebSphere Information Integrator Q Replication: Fast Track Implementation Scenarios,
SG24-6487

� DB2 UDB for OS/390 and Continuous Availability, SG24-5486

� Disaster Recovery with DB2 UDB for z/OS, SG24-6370

� IBM System z9 109 Configuration Setup, SG24-7203

� IBM System z9 109 Technical Guide, SG24-7124

Other publications
These publications are also relevant as further information sources:

� The Official Introduction to DB2 UDB for z/OS by Susan Graziano Sloan, IBM Press,
Prentice Hall

� Transforming enterprise information integrity, white paper G510-3831-00 by Susanne
Ruschka-Taylor, available at:

http://www.ibm.com/services/us/bcs/pdf/g510-3831-transforming-enterprise-information-int
egrity.pdf

� DB2 UDB for z/OS Version 8 Administration Guide, SC18-7413-03

� DB2 UDB for z/OS Version 8 Application Programming and SQL Guide, SC18-7415-03

� DB2 UDB for z/OS Version 8 Application Programming Guide and Reference for Java,
SC18-7414-02

� DB2 UDB for z/OS Version 8 Command Reference, SC18-7416-03

� DB2 UDB for z/OS Version 8 Data Sharing: Planning and Administration, SC18-7417-03

http://www.ibm.com/services/us/bcs/pdf/g510-3831-transforming-enterprise-information-integrity.pdf

240 Data Integrity with DB2 for z/OS

� DB2 UDB for z/OS Version 8 Installation Guide, GC18-7418-04

� DB2 UDB for z/OS Version 8 Codes, GC18-9603-01

� DB2 UDB for z/OS Version 8 Messages, GC18-9602-01

� DB2 UDB for z/OS Version 8 SQL Reference, SC18-7426-03

� DB2 UDB for z/OS Version 8 Utility Guide and Reference, SC18-7427-03

� z/OS V1R6 Language Environment Debugging Guide, GA22-7560-05

� z/OS V1R6 Language Environment Customization Guide, SA22-7564-06

� DB2 UDB for z/OS Version 8 Diagnostics Guide and Reference, LY37-3201-02

This is licensed material of IBM.

Online resources
These Web sites and URLs are also relevant as further information sources:

� DB2 UDB for z/OS Version 8

http://www.ibm.com/software/data/db2/zos/db2zosv8.html

� The DB2 Information Management Software Information Center

http://publib.boulder.ibm.com/infocenter/dzichelp/index.jsp

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

http://www.ibm.com/software/data/db2/zos/db2zosv8.html
http://publib.boulder.ibm.com/infocenter/dzichelp/index.jsp
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

© Copyright IBM Corp. 2006. All rights reserved. 241

AC autonomic computing

ACS automatic class selection

AIX® Advanced Interactive eXecutive
from IBM

APAR authorized program analysis report

API application programming interface

AR application requester

ARM automatic restart manager

AS application server

ASCII American National Standard Code
for Information Interchange

B2B business-to-business

BCDS DFSMShsm backup control data
set

BCRS business continuity recovery
services

BI Business Intelligence

BLOB binary large objects

BPA buffer pool analysis

BSDS boot strap data set

CBU Capacity BackUp

CCA channel connection address

CCA client configuration assistant

CCP collect CPU parallel

CCSID coded character set identifier

CCW channel control word

CD compact disk

CDW central data warehouse

CEC central electronics complex

CF coupling facility

CFCC coupling facility control code

CFRM coupling facility resource
management

CI control interval

CICS Customer Information Control
System

CIDF control interval definition field

CLI call level interface

CLOB character large object

CLP command line processor

CMOS complementary metal oxide
semiconductor

Abbreviations and acronyms

CP central processor

CPU central processing unit

CRCR conditional restart control record

CRD collect report data

CRUD create, retrieve, update or delete

CSA common storage area

CSF Integrated Cryptographic Service
Facility

CTE common table expression

CTT created temporary table

CUoD Capacity Upgrade on Demand

DAC discretionary access control

DASD direct access storage device

DB database

DB2 Database 2™

DB2 PE DB2 Performance Expert

DBA database administrator

DBAT database access thread

DBCLOB double-byte character large object

DBCS double-byte character set

DBD database descriptor

DBID database identifier

DBM1 database master address space

DBRM database request module

DCL data control language

DDCS distributed database connection
services

DDF distributed data facility

DDL data definition language

DDL data definition language

DES Data Encryption Standard

DLL dynamic load library manipulation
language

DML data manipulation language

DDM disk drive module

DNS domain name server

DPSI data partitioning secondary index

DRDA Distributed Relational Data
Architecture

DSC dynamic statement cache, local or
global

242 Data Integrity with DB2 for z/OS

DSNZPARMs DB2’s system configuration
parameters

DSS decision support systems

DTT declared temporary tables

DWDM dense wavelength division
multiplexer

DWT deferred write threshold

EA extended addressability

EAI enterprise application integration

EAS Enterprise Application Solution

EBCDIC extended binary coded decimal
interchange code

ECS enhanced catalog sharing

ECSA extended common storage area

EDM environmental descriptor manager

EJB™ Enterprise JavaBean

ELB extended long busy

ENFM enable-new-function mode

ERP enterprise resource planning

ERP error recovery procedure

ESA Enterprise Systems Architecture

ESP Enterprise Solution Package

ESS Enterprise Storage Server®

ETR external throughput rate, an
elapsed time measure, focuses on
system capacity

EWLC Entry Workload License Charges

EWLM Enterprise Workload Manager

FIFO first in first out

FLA fast log apply

FTD functional track directory

FTP File Transfer Program

GB gigabyte (1,073,741,824 bytes)

GBP group buffer pool

GDPS® Geographically Dispersed Parallel
Sysplex™

GLBA Gramm-Leach-Bliley Act of 1999

GRS global resource serialization

GUI graphical user interface

HALDB High Availability Large Databases

HPJ high performance Java

HTTP Hypertext Transfer Protocol

HW hardware

I/O input/output

IBM International Business Machines
Corporation

ICF internal coupling facility

ICF integrated catalog facility

ICMF integrated coupling migration facility

ICSF Integrated Cryptographic Service
Facility

IDAW indirect address word

IDE integrated development
environments

IFCID instrumentation facility component
identifier

IFI Instrumentation Facility Interface

IFL Integrated Facility for Linux

IGS IBM Global Services

IMS Information Management System

IORP I/O Request Priority

IPLA IBM Program Licence Agreement

IRD Intelligent Resource Director

IRLM internal resource lock manager

IRWW IBM Relational Warehouse
Workload

ISPF interactive system productivity
facility

ISMF Interactive Storage Management
Facility)

ISV independent software vendor

IT information technology

ITR internal throughput rate, a
processor time measure, focuses
on processor capacity

ITSO International Technical Support
Organization

IVP installation verification process

J2EE™ Java 2 Enterprise Edition

JDBC Java Database Connectivity

JFS journaled file systems

JNDI Java Naming and Directory
Interface

JTA Java Transaction API

JTS Java Transaction Service

JVM™ Java Virtual Machine

KB kilobyte (1,024 bytes)

LCU Logical Control Unit

LDAP Lightweight Directory Access
Protocol

LOB large object

LPAR logical partition

LPL logical page list

 Abbreviations and acronyms 243

LRECL logical record length

LRSN log record sequence number

LRU least recently used

LSS logical subsystem

LUW logical unit of work

LVM logical volume manager

MAC mandatory access control

MB megabyte (1,048,576 bytes)

MBps megabytes per second

MIDAW modified indirect address word

MLS multi-level security

MQT materialized query table

MTBF mean time between failures

MVS Multiple Virtual Storage

NALC New Application License Charge

NFM new-function mode

NFS Network File System

NPI non-partitioning index

NPSI nonpartitioned secondary index

NVS non volatile storage

ODB object descriptor in DBD

ODBC Open Database Connectivity

ODS Operational Data Store

OLE Object Link Embedded

OLTP online transaction processing

OP Online performance

OS/390 Operating System/390®

OSC optimizer service center

PAV parallel access volume

PCICA Peripheral Component Interface
Cryptographic Accelerator

PCICC PCI Cryptographic Coprocessor

PDS partitioned data set

PIB parallel index build

PPRC Peer-to-Peer Remote Copy

PR/SM Processor Resource/System
Manager

PSID pageset identifier

PSP preventive service planning

PTF program temporary fix

PUNC possibly uncommitted

PWH Performance Warehouse

QA Quality Assurance

QMF Query Management Facility

QoS Quality of Service

QPP Quality Partnership Program

RACF Resource Access Control Facility

RAS reliability, availability and
serviceability

RBA relative byte address

RBLP recovery base log point

RDBMS relational database management
system

RDS relational data system

RECFM record format

RI Referential Integrity

RID record identifier

RMM removable (tape) media manager

ROI return on investment

RPO recovery point objective

RR repeatable read

RRS resource recovery services

RRSAF resource recovery services attach
facility

RS read stability

RTO recovery time objective

SAN storage area networks

SBCS store single byte character set

SCUBA self contained underwater
breathing apparatus

SDM System Data Mover

SDP Software Development Platform

SLA service-level agreement

SMIT System Management Interface Tool

SOA service-oriented architecture

SOAP Simple Object Access Protocol

SPL selective partition locking

SQL Structured Query Language

SQLJ Structured Query Language for
Java

SRM Service Request Manager

SSL Secure Sockets Layer

SU Service Unit

TCO total cost of ownership

TPF Transaction Processing Facility

UA Unit Addresses

UCB Unit Control Block

UDB Universal Database

UDF user-defined functions

244 Data Integrity with DB2 for z/OS

UDT user-defined data types

UOW unit of work

UR unit of recovery

USS UNIX System Services

vCF virtual coupling facility

VIPA Virtual IP Addressing

VLDB very large database

VM virtual machine

VVDS VSAM volume data set

WEPR write error page range

© Copyright IBM Corp. 2006. All rights reserved. 245

Index

Symbols
+222 209–210
+231 209–210

Numerics
-222 210
-224 210
-225 210
-228 210
-243 210
-244 210
32,672 37
-401 47
-438 122
-723 122
-901 122
-904 214
-906 122
-911 122
-913 122

A
absolute number 203
access path 71, 79, 165–166
accessing transition tables in a stored procedure 119
ACQUIRE 169, 172, 185
administrative authority 13
Advisory Reorg Pending 216
ALL 12–13, 21–22, 24–25, 39, 44–45, 47, 55–57, 59, 62,
64–65, 67, 71–73, 75, 79, 83, 85–87, 90, 93–94, 96–97,
104, 111–112, 114, 117, 122, 125–126, 129–130, 134,
139, 142, 156, 159, 162–163, 167–168, 172, 177,
179–180, 183–186, 188–190, 194, 197, 199–202,
204–206, 211–212, 215, 217, 221–223, 225–227,
229–233, 235–237
AND NOT 55, 160, 170, 209
application code 194
application logic 40, 194, 200–201
application messaging interface 151
application program 182, 202
architecture xvii, 3, 122
ASENSITIVE 205, 207
ATOMIC 69, 117–119, 121, 124, 126, 129, 132–133,
135, 137, 140–141, 143–146, 148–152, 158–159
attachment 176–178, 186
Audit trail 21
audit trail 152
authorization 13, 20, 43, 100–103, 105
Automatic LPL recovery 213
automatic query rewrite 50, 164, 167
auxiliary table 215–216

B
B37 203
BACKUP 98, 179, 215, 219, 221, 223, 235–238
backward index scan 210
base table 39, 67, 89, 139, 159, 204–208, 210, 214, 216,
227, 231

row 208
basic sequential access method 202
batch application 185, 201
batch job 184
batch program 185
before trigger 115, 127, 130, 158
BIND 21, 69, 80, 138, 141, 170, 186, 191, 198–199, 206
bind 21, 69, 186, 198
BIND PLAN 69
BOTH 11–14, 24, 36, 43, 67, 72, 78, 84, 86, 97, 103, 106,
126–127, 165, 171–172, 179, 186, 192, 194, 198,
201–202, 204–205, 213–215, 226–227, 235
buffer pool 85, 179, 214, 216, 225, 231
built-in functions 24

DECRYPT_BIN 22
DECRYPT_CHAR 22
ENCRYPT 22
ENCRYPT_TDES 22
GETHINT 22

business rule 40

C
CACHE 160–161
caching 160, 190
CAF 176–177, 187
Call attachment facility 176
candidate key 52
CARDINALITY 85
cardinality 85
CASCADE 56–57, 59–60, 67–75, 77–80, 90, 95, 104,
121, 124, 129–130, 135, 137–138, 140, 144, 146–147,
158
CAST function 44
casting 44
CASTOUT 214
catalog table 39, 63, 66, 106, 205, 224, 226, 229, 234
CATEGORY 21, 211–212
CCSID 225
CF 12
CF request batching 12
CHANGE LOG INVENTORY 107
Check Constraint 39, 89, 91
check constraint 39–41
CHECK DATA 71
CHECK option 154
check pending 41, 67, 79, 86, 95–96, 99, 105–106, 111,
214, 216
CHECK-pending 91

246 Data Integrity with DB2 for z/OS

CICS 86, 92, 176–177, 179–183, 187, 194, 210
CICS attachment facility 176
CLOB 44
CLUSTER 104, 162
Clustering 104, 201
CMTSTAT 189
code table 84, 86
code tables 84, 86
collating sequence 24
column value 45, 63–64, 114
COMMIT xvii, 22, 122, 141, 151, 169, 177–178, 180,
182–184, 186–191, 198–203, 211, 213–214, 233–234
commit frequency 185, 187, 200

recommendation 187
variable 187

compression xviii, 3, 231
compression dictionary 231
Concurrency 10, 168, 185, 188, 190, 192–193, 206, 208
concurrent updates 193–194
CONDITION 40, 114, 118, 130, 150, 208, 225
CONNECT 75–77, 82, 84, 176–178
connection 21, 176–178, 183, 189
constraint xvii, 30, 37–39, 50, 55, 58–59, 66–68, 71–72,
79, 83, 89, 91, 95–97, 99, 103–105, 114, 130, 161–163,
227, 235
constraints xvii
control table 197, 199–200
Coprocessor 23
COPY xvii, 86, 93, 102, 162, 179, 212, 215–217, 219,
221–222, 224–225, 227–228, 231–234, 236
COPY with CHECKPAGE 154–155
COUNT 24, 109, 124, 146–147, 149–150, 211
Coupling Facility 168, 170, 172
coupling facility 11–12, 168–170, 179, 237
CPU consumption 194
CREATE TABLE 22, 38–40, 42, 44–46, 50, 63–66, 68,
71, 123, 125, 132, 134, 138–139, 141, 143, 145, 147, 149,
152, 156–158, 161, 164, 167, 193, 232
created temporary tables 190
CS 87, 198–199, 206, 208
CTT 191
current date 152, 225
CURRENT PACKAGESET 198–199

new value 199
CURRENT RULES 41
CURRENTDATA 198
CURSOR WITH HOLD 188
CYCLE 62, 65, 71, 73–74, 83, 95–96, 233

D
DAC (discretionary access control) 12, 14
data access 47, 187, 197–198
data consistency 168, 179, 192, 197, 203, 205, 228, 236
Data Encryption Standard (DES) 23–24
Data Encryption Tool 24
data integrity xvii, 3, 9–10, 12, 43, 47, 73, 75, 78, 84, 114,
137, 139, 142, 144, 146, 148, 153, 168, 177, 191, 233,
235
Data Manager 15, 231
data page 170

data propagation 115
data row 15, 86
data set 11–12, 93, 169, 203, 216, 228, 231, 234–236
data sharing xvii, 11–12, 160–161, 168, 170–172, 179,
197, 217, 223, 235–237
data sharing group 168, 172, 237
Data sharing locking 170–171
data table 84

single insert 85
data type 35, 42, 44–46, 53, 102–103, 105–106, 234
data validation 114
DATE 37, 40, 87, 92, 102, 104, 151–152, 218, 221,
224–226, 228
date component 87
DB2

controls 12
multilevel security 13

DB2 attachments 187
DB2 Interactive 176
DB2 member 168–169, 171–172
DB2 point 196, 200
DB2 subsystem 171, 175–176, 178, 211, 214, 217, 227,
233, 236
DB2 table 114, 201, 203
DB2 tools 223
DBAT 189
DBCLOB 44
DBD 169, 226, 230
DBD01 237
DDF 21, 178, 181
DDL 39, 62–63, 67, 98, 123–124, 193
deadlock 185
deadlock situation 200
deadlocks 218
DECLARE 50, 119, 132, 204, 206
DECLARE CURSOR 187, 206
Declared temporary table 191
declared temporary table 204
default value 37, 157, 225
DELETE 41, 50, 56–57, 59–60, 65, 67–83, 86–87,
89–92, 95–96, 99, 104, 114, 118, 123–125, 130, 142,
144–145, 148–150, 152, 161–162, 172, 180, 184, 186,
190, 194, 197, 203–204, 208, 210, 214, 216, 221–222,
226, 229
delete 41, 51, 56–58, 60, 63, 66–69, 71–78, 80, 82–83,
90–91, 104, 114, 118, 124, 130, 142, 144–145, 148–150,
190, 208, 210, 216, 227
DELETE HOLE 209–210
delete hole 208–209
delete rule 56–57, 60, 67, 71, 73–75, 77, 80, 84
Denormalization 87
dependent row 41, 51, 55, 59, 68, 86–87

foreign key 55
dependent table xvii, 41, 51, 54–59, 67–68, 70–71, 75,
85, 87, 90, 96, 99, 103–105, 108, 145, 235

foreign key 51, 55
DEPT table 64, 68, 78, 92, 125, 137, 139, 143, 162, 166
DES (Data Encryption Standard) 23–24
DESCRIBE 12, 106, 119, 191–192, 198
DFSLI000 176

 Index 247

DFSORT 203
discretionary access control (DAC) 12, 14
disk space 191, 224, 233
DISTINCT 38, 42–47, 107, 111–112, 205
distinct type 42
domain 30, 84, 86
DPSI 86
drain 190, 192, 223
DRAIN ALL 213, 223
DRDA 21, 160, 178
DROP TABLE 42, 67, 191
DSN command processor 176
DSN1COPY 154
DSN1LOGP 229
DSN1PRNT 154
DSNALI 177
DSNB250E 213–214
DSNB357I 213
DSNCLI 176
DSNDB07 191
DSNELI 176
DSNI005I 213
DSNJU004 224
DSNRLI 177
DSNTIAUL 24
DSNZPARM 179, 187–188, 191

IRLMRWT 187
RELCURHL 188
UTIMOUT 187

DTT 191, 203, 208
duplicate output 202
dynamic scrollable cursor 205–206
Dynamic scrollable cursors 204–206, 208, 210
dynamic SQL xviii, 21–22, 44

E
EDITPROC 24
Elapsed time 89, 91–92, 162–163, 185, 192, 194, 203,
220–221, 223, 233
Employee Table 37, 52–53, 55, 79, 114, 125, 138–139,
141, 144, 146, 150–152
encryption

keys 24
Encryption functions 23
encryption functions 24
ENFORCED xvii, 50, 71–72, 85–87, 104, 111–112,
161–162, 166–167, 236
Entity integrity 51
Error handling 200
error handling control table 199
ESTAE 203
EXEC SQL 120, 199
EXISTS 21, 62, 64, 71, 132, 170, 204, 234
EXPLAIN 51, 62, 71, 79, 165–166, 178, 198
Explain 51, 198
Explicit hierarchical locking 170
expression 39, 205, 209
external 46–47, 124, 138, 141, 151, 201

function 138
extract 229

F
FETCH 120, 160, 203, 205–210
FETCH keywords 207
FETCH orientation 207
FETCH SENSITIVE 209
FOR BIT DATA 22, 24, 105–106
FOR FETCH ONLY 205
FOR READ ONLY 205
FOR UPDATE 187, 197, 205, 208, 210
FOR UPDATE OF 203, 206
forced write 190
foreign key 31, 50–51, 53, 55–58, 60, 63–64, 66–71, 75,
79, 83, 85–87, 89–90, 95–96, 99, 102–104, 108–109,
123, 146, 162, 166

definition 67, 71
non-null values 55
nullable column 68

FORMAT option 155
Free space 221
free space 221
FREEPAGE 162

G
GDG 203
GENERATED ALWAYS 156–158, 232
GET DIAGNOSTICS 200
Global lock contention 170–171
global locks 168, 170
global resource serialization 12
GRANT 13, 98
Granularity 118, 172
GRAPHIC 37
GROUP BY 109–110, 164, 190, 205
Group restart 172
GSAM files 202

H
hole 208–209
host variable 45, 118, 158
host variables 41, 44, 118
hot spot 197

I
ICSF 23
ICSF (Integrated Cryptographic Service Facility) 24
identity column 65, 157, 160, 232–233

when 232
identity columns 156, 232
IFI 177
IFL 10
image copy 216, 221, 223, 225–226, 231–234
IMS xvii, 14, 24, 92, 138, 141, 176, 179–181, 183, 187,
194, 202, 210
IMS attachment facility 176
In-abort 212
In-commit 211
Independent table 51
index access 197, 230

248 Data Integrity with DB2 for z/OS

index level 234
index look-aside 86–87, 186
index scan 205
indicator variable 209
Indoubt 211
Inflight 211
informational referential constraint 70, 87
informational referential constraints 50, 94
INSENSITIVE 204–207, 210
INSERT 22–23, 39, 42, 45, 50, 56–57, 63, 67, 69–71, 73,
78–79, 83, 85–87, 91–92, 99, 114, 118, 122–123,
125–126, 129–130, 133, 142–143, 145–147, 152,
156–159, 161, 180, 184, 186, 194, 203, 205, 232
INSERT statement 51, 78, 91, 129–130, 156, 159
insert trigger 129, 156, 159
Instrumentation facility interface 177
Integrated Cryptographic Service Facility 23
Integrated Cryptographic Service Facility (ICSF) 24
Inter-DB2 read-write interest 169
IPROC 186
IRLM 11, 169–170, 172–173, 177, 185, 191
IRLMRWT 187
IRLMRWT DSNZPARM

value 187
IS NULL 41, 55, 66–67, 72, 74, 225
ISOLATION 87, 190–191, 197–198, 205–206, 208
isolation level 87, 198–199, 206
ISOLATION UR 190

J
Java 3

K
KEEPDICTIONARY 231

L
large tables 92
latches 170
LEAST 55, 66–67, 75, 85, 123, 171, 181, 197, 200, 209,
226
LIKE 11, 40, 43–46, 56–57, 62, 90, 93, 114, 118–119,
122, 132, 135, 157, 167, 219
LIST 14, 53, 108, 111, 118, 156, 163, 194, 209, 212, 215,
218–219, 221–222, 230, 232
L-locks 168, 170–172
LOAD 11, 42, 50, 62–63, 71, 83, 86, 94–96, 99, 113, 122,
162, 176–177, 203, 213–214, 217, 226–227, 231, 234

SHRLEVEL CHANGE 122
LOAD utility 24, 51, 94–95, 122
LOB 38, 87, 89, 205, 214, 216, 218, 227, 230–231
lock 87, 168–172, 184–185, 188–191, 194, 196–197,
208–209, 213–214
lock avoidance 87, 185, 208
Lock contention 170–172
lock contention 171
lock duration 186
Lock escalation 191
lock escalation 186

lock mode 169
LOCK TABLE 169–170
Locking xvii, 9, 11–12, 87, 97, 99, 167–168, 170–173,
177, 186, 194, 197, 208, 213, 225
locking 11–12, 168, 170, 194, 197
locking information application managed 184
LOCKMAX 186
locks 12, 73, 75, 78, 84, 168, 170–172, 177, 180, 185,
188, 190–191, 198, 208
LOCKSIZE 172, 191
log 178–180, 182, 186, 190, 202, 212–215, 217, 222,
224, 226, 228, 230–231, 233–234, 236–238
log buffer

forced write 186
log records 180–182, 212, 218, 223, 231, 233, 237
Logical locks 168
logical model 85
logical unit 184, 187, 191, 196

previous updates 184
logical unit of work 184, 187, 197
look-up table 84, 86
LOOP 96, 129
LPL 214

M
MAC (mandatory access control) 14
mandatory access control (MAC) 14
matching column 188
materialize 188, 205
Materialized query table 50, 106, 164, 167, 205
materialized query table 50
materialized query tables 50
maximum length 22
maximum number 186, 189, 217
maximum number of locks 186
MAXROWS 1 197
memory 3, 86–87, 160, 225
METHOD 51, 125, 142, 197, 202, 219, 222, 230, 233
Migration 97–98
MLS (multilevel security) 13
MOST xviii, 14, 42, 68, 85, 89, 122, 169, 185, 187–188,
190, 194, 201–202, 211, 234
MQ 122, 150–151, 190
MQSEND 151
MQT 87, 164–167, 205
multilevel security (MLS) 13
multiple batch job steps 184
multiple DBMSs 183
multiple rows 87, 126, 157
Multi-row fetch 209
multi-row fetch 205
Multi-row INSERT 203
MVS system failure 171

N
next value 160
NO CACHE 160–161
Non-GBP-dependent 172
NOT ATOMIC CONTINUE ON SQLEXCEPTION 159

 Index 249

NOT IN 82, 96, 107, 109, 135, 160
NOT NULL WITH DEFAULT 38, 63, 65, 83, 90, 104–106,
193
NOT PADDED 234
NPI 93
null value 37, 209
NUMLKUS threshold 186

O
object

security for 14
ON DELETE SET NULL 68
OPEN CURSOR 186, 188, 204, 206
open cursor 186, 188
optimistic locking 194–195, 208
OR xvii, xix, 11–13, 15, 21–22, 24, 35, 40
ORDER 15, 23, 51, 64, 68, 71–72, 87, 107–111, 120,
122, 125, 130, 133–134, 148, 160–161, 165, 176,
184–185, 188, 190, 201, 205, 209, 214, 217, 219, 233,
236–237
ORDER BY 107, 109–110, 188, 205, 209
outer subselect 205

P
package 69, 191, 196, 198
PADDED 234
page level 187
Page P-locks 170
page P-locks 169–170
page set 169–172, 213, 216, 229, 234
Page set P-lock negotiation 169
Page set P-locks 169, 172
Parallel Sysplex

architecture 3
Availability 12

parallelism 12
parameter markers 41, 44
Parent lock contention 171
parent row 41, 51, 55, 59, 86–87, 148
parent table 39, 50–51, 54–59, 66–68, 70, 87, 90, 94–96,
103–104, 108, 123–124

parent key 51
redundant checks 87
unique key 71

PARTITION 86, 93, 105–106, 169–170, 172, 186,
190–191, 213, 216, 224, 226, 230, 234–235
partition

separation 14
Partition pruning 86
PARTITIONED 86, 93, 105–106, 170, 172, 230,
234–235
Partitioning 68, 86, 215–216, 235
partitioning 215
PATH 62, 71, 79, 165–166
PCTFREE 162
Physical locks 169
physical model 85
PIC X 198
PIECESIZE 162

PK05758 154
plan 24, 69–70, 119, 177, 199, 211, 225
P-lock 169, 171, 214
P-locks 169, 172
point-in-time 42, 235–237
point-in-time recovery 236
populate 137
portability 14, 206
POSITION 3, 159, 188, 207, 210
positioned UPDATE 130, 204, 208–209
Postponed abort 212
PQ86904 173
PQ87168 173
PQ87756 173
PQ92749 92
PQ96956 92
PRECISION 43
PREFETCH 201
PREPARE 192
primary key 30, 38–39, 51–53, 55, 57–58, 60, 64–71, 79,
82, 87, 89–90, 94, 98, 102–106, 108, 110, 123, 161, 164,
167

update 57
PRIQTY 162
privilege 12, 64
program logic 198
propagation 115–116, 168–169, 172

Q
QSAM file 202
QUALIFIER 193, 198
QUERY xvii, 13, 106, 108, 111, 156, 158, 164, 166–167,
205, 209, 225–226
QUIESCE 172
QUIESCE TABLESPACESET 71

R
R/O 169
R/W 169
RACF (Resource Access Control Facility) 13–14
range predicate 24
RBDP 216, 229, 238
read-only cursor 205, 210
read-only transactions 185
Real-time statistics 225–226
REBIND 191
REBUILD INDEX 93, 215, 230, 233
REBUILD-pending 229
received SQLCODE

full explanation 200
RECOVER xvii, 42, 99, 212–214, 216, 219, 223,
226–227, 229, 231–234, 237
recovery xvii, 3, 10, 87, 98, 102, 178, 180, 182–186,
189–190, 211–213, 217, 219, 223, 226–227, 230,
232–234, 236–237
Redbooks Web site 240

Contact us xix
Referentia constraint 51
referential constrain 70

250 Data Integrity with DB2 for z/OS

referential constraint 39, 41, 50, 56, 66–67, 79, 89, 96,
98, 103, 127, 130, 161, 235
referential integrity xvii, 55, 62, 70, 85, 90, 98, 102–105,
107, 113, 123, 156, 167, 214, 219, 227, 235
REGION 11
relational database 85
relative number 203, 207
RELEASE 9, 104, 170, 186, 190–191, 198, 217
RELEASE(DEALLOCATE) 169
REORG 190, 215, 217, 223, 226–227, 230, 235
repeatable read 169
REPORT 62, 87–89, 107, 161–162, 167, 219, 227, 229
repositioning 188, 201–202
RESET 42, 67, 90, 92, 94, 96, 191, 199, 215–219
Resource Access Control Facility (RACF) 13–14
resource manager 180–181
Resource recovery services 177
RESTART 159, 171–172, 185–186, 189, 201–203,
211–214, 216–217, 223, 233, 237
restart 172, 186, 201, 203, 211–212, 216–217
RESTORE 223, 227, 230, 234, 236–238
RESTRICT 14, 21, 35, 56–57, 61, 65, 67, 69–72, 75,
77–79, 83–84, 104, 162, 212, 219, 230
result set 203–204, 206, 209–210
result table 130, 156, 158, 204–209
Retained locks 169, 171
RI 56–57, 71, 86–87, 97–99, 102–103, 105–107, 113,
123, 125, 146–148, 161–163, 165–167, 219, 221–222,
227

DB2 enforced 86
RI support 63
RID 90, 105–106
RO 73, 171, 217
ROLLBACK 179, 181, 184, 187, 189–192, 200, 202, 218
ROLLBACK TO SAVEPOINT 190
row level 14, 24, 126, 169, 185, 225
row level security 14
row lock 208
row trigger 130, 133
ROWID 38, 156
RR 191
RRS 21, 176–177, 180–181, 183, 202
RRS attach 21
RRSAF 177, 181, 187
RTS 224–225
run time 78, 164
RUNSTATS 222, 224, 226

SAMPLE 225
RUNSTATS utility 222, 224

S
same data 12, 191–192
same table 53, 62, 80, 95, 171, 194, 205
same time 12, 160, 192
SAVEPOINT 189

restriction 190
savepoint 189
savepoint name 190
SAVEPOINT statement 189
savepoints 184, 189, 209

SCHEMA 38, 151
schema 38
SCROLL 205–207, 209–210, 226
scrollable cursor 188, 204–206, 208, 210

INSENSITIVE 204
locking 208
SENSITIVE 204, 206

scrollable cursors
updating 208

SECQTY 162
security

row level 14
security label 15
security level 14
segmented table space 85, 95, 225, 230
SELECT 23–24, 42, 45–46, 65, 69–70, 78, 82, 87, 92,
107–112, 120–121, 124, 126, 129–130, 132–133, 135,
137, 140, 143, 146–147, 149–152, 157–159, 164, 171,
192, 205–206, 209, 225, 230, 232, 234
SELECT FROM INSERT 156
SELECT statement 117, 156, 160, 205–206, 209
SENSITIVE DYNAMIC 205–209
SENSITIVE DYNAMIC SCROLL 205
SENSITIVE STATIC 204–205, 207
sequence 24, 53, 63, 72, 75, 77–78, 80, 82, 87, 96, 113,
125–126, 159–160, 219, 232
sequence number 160
Sequential detection 86–87, 186
sequential file 203
sequential number 160
SESSION 82, 176, 223
SET CURRENT PACKAGESET 198
SET NULL 41, 57, 61, 67–72, 75, 79–80, 84, 104, 130
SHARE xvii, 12, 62, 68, 169
SIGNAL SQLSTATE 121
single row 117, 194
single table 85, 220, 227
snapshot of data 210
sort 93, 191, 203, 207, 210
Special register 24, 198–199
special register 24, 199
SQL xviii, 15, 20–22, 24, 37, 39, 43–44, 46–47, 51, 58,
63, 67, 72–73, 75, 77–78, 84, 95, 97, 99, 114, 118–120,
122, 125, 127, 129–131, 136, 141, 150–151, 156, 159,
161, 169, 171, 176–177, 179, 182, 184, 187, 190,
198–199, 203, 206–207, 213, 216, 225, 232
SQL statement 119, 122, 130, 160

execution 122
SQLCODE 47, 121, 129, 136, 190, 195, 199–200, 209,
215, 218
SQLCODE -438 122
SQLSTATE 09000 122
SQLSTATE class 121
START DATABASE 213
START WITH 121
STATEMENT 22, 24, 38–39, 43, 45, 51, 62–66, 68, 72,
74, 77–80, 82, 87–88, 91, 105, 114, 116–122, 125–126,
128–131, 133–134, 136, 156, 158–159, 163, 171, 177,
179, 182, 184, 186–187, 189, 191, 193–194, 199–200,
203–204, 206–207, 209, 232–233

 Index 251

statement 24, 39, 42–43, 51, 62–66, 68, 72, 78–80, 91,
114, 116–118, 122, 127–130, 133, 156, 159, 163, 187,
195, 204–205, 209, 218
statement trigger 130
STATIC 159, 191, 204, 206–209
static scrollable cursor 188
Static scrollable cursors 204, 208
stored procedure 46, 115–119, 122–124, 129, 141,
150–151, 225–226
stored procedures xviii, 113–117, 123, 125, 129, 137,
141
strong typing 47
Subject 67, 114, 118, 125, 127, 196
Subquery 78, 80–81, 131–132, 205
subquery 78, 80, 131, 205
subselect 79, 132, 205
SUM 63, 135–136, 143, 164, 203
SYSCHECKDEP 101
SYSCOLUMNS 108, 110
SYSCOPY 110, 215, 220, 223, 225–226, 229–230, 234
SYSIBM 39, 46, 63–64, 107–112, 117, 121, 124, 138,
151–152, 160, 191, 215, 225–226, 229–230
SYSIBM.SYSCHECKS 100–101
SYSIBM.SYSCOLUMNS 102
SYSIBM.SYSCOPY 102
SYSIBM.SYSFOREIGNKEYS 102
SYSIBM.SYSINDEXES 63–64, 103, 108–109
SYSIBM.SYSRELS 103
SYSIBM.SYSSEQUENCES 160
SYSIBM.SYSTABCONST 104
SYSIBM.SYSTABLEPART 105
SYSIBM.SYSTABLES 106
SYSIBM.SYSTABLESPACE 107
SYSLGRNG 107

T
Table design 200
table function 205
table space scan 205
TEMP database 191
temporary table 106, 114, 191, 204
TEXT 122, 136
thread 170, 183, 186, 190–191, 198–199, 210, 218–219
thread pooling 189
timeouts 218
TIMESTAMP 37, 46, 65, 83, 90, 102, 104–105, 110, 125,
142, 193, 197
Transaction locks 168
transition table 114, 119–120, 159
transition tables

example 119
Transition variable 114
transition variable

example 118
Transition variables 117–118
transition variables and transition tables 118
trigger 20, 69, 113–120, 122–126, 128–134, 138–141,
143–145, 147, 149–152, 156, 158–159, 172

processing 133, 159
transition tables 118, 159

WHEN 114, 122, 124, 158
Trigger body 114, 116, 121, 128, 150
Trigger granularity 114
Triggered action 114
Triggering event 114
triggers xvii, 64, 67, 113–114, 122, 125–126, 128–132,
134, 137–139, 141–142, 144, 147–148, 150, 152, 156,
159, 218
Trusted Computing Base 13
TSO 21, 176, 179–180
TSO attachment facility 176
Two-phase commit 177–178, 202

U
UK04683 92
UK08561 92
uncommitted read 209
Unicode 3
UNION 14, 62, 111–112, 205
UNION ALL 111–112, 205
UNIQUE 3, 36–40, 52, 55, 63–66, 68, 85, 89–90,
104–105, 123, 142, 156, 159, 162, 164, 176, 193–194
unique constraint 37–39, 104
unique index 38–39, 63–66, 68, 104, 123, 164
uniqueness 38–39, 63, 65, 83, 106
unit of recovery 179, 181, 184, 186–187, 190, 212, 218
unit of work 178, 181, 183–184, 186–187, 189, 191,
196–197, 200, 211–212, 218
Universal Driver 178
UNLOAD 93
UNLOAD utility 24
UPDATE 12, 39, 42, 50, 56–57, 63, 65, 67, 69–71, 73,
79, 82, 84, 91, 95, 99, 114, 117–119, 121–122, 126,
128–130, 132–134, 136, 138–141, 143, 145–146,
148–152, 159, 161, 169–171, 180–182, 184, 186–187,
192–198, 203–205, 208–209, 216–217, 219, 222
update hole 209
UPDATE statement 51, 133, 193–194
UPROC 186
UR 178, 180–182, 190, 197–199, 205–206, 211
USER xvii, 9, 11, 14–15, 21, 24, 35, 42, 45–47, 50, 66,
72, 75, 78–79, 84, 90, 96–98, 113–117, 119, 121, 123,
125, 129, 137–139, 151, 176, 186, 192–194, 203, 213,
225, 227
user defined function 46–47, 115–117, 121–122, 124,
129, 138
user defined tables xvii

V
VALIDATE 43, 93, 198
VALUES INTO 86
VARCHAR 22, 37–38, 102–105
VARIABLE 45, 118, 193–194, 198–199, 209
VIEW xvii, 20, 66–67, 106, 130, 137, 187, 191, 204–206
view xvii, 65, 67, 106, 196, 198, 200, 205
Visual Explain 167
VOLATILE 197
VSAM share options 11

252 Data Integrity with DB2 for z/OS

W
WebSphere 22, 122, 151, 176
WebSphere MQ 151

message 151
WHERE clause 86, 193–194, 208
WHERE CURRENT OF 203
WITH HOLD 169, 180, 186–189

criteria to use 188
WLM 124, 138, 141
work file 188, 190, 206–207
Work-in-progress table 196–197

updated information 197
WRITE xix, 11, 45, 67, 75, 78, 84, 92–93, 131, 141–142,
150, 169–170, 172, 181, 186, 190, 202–203, 212, 214,
217–218, 226, 230, 236
WRITE CLAIM 213

X
XES 170–172
XES contention 171

Z
z/Architecture 3
z900 9
z990 23–24
zAAP 10
zSeries xvii, 3, 9, 24

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

Data Integrity w
ith DB2 for z/OS

Data Integrity w
ith DB2 for z/OS

Data Integrity w
ith DB2 for z/OS

Data Integrity w
ith DB2 for z/OS

Data Integrity w
ith DB2 for z/OS

Data Integrity w
ith DB2 for z/OS

®

SG24-7111-00 ISBN 0738495547

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Data Integrity with
DB2 for z/OS

Assert information
integrity by exploiting
DB2 functions

Understand
constraints,
referential integrity,
and triggers

Review
recovery-related
functions

DB2 provides functions to guarantee integrity at the system level
and at the application level.
From the system point of view, DB2's integration with zSeries
and disk storage architecture is the cornerstone for data integrity.
Logging functionality and COPY and RECOVER utilities are the
building blocks for bringing the table space back to a current or
consistent status in case of hardware or software failures or
when application events need to be rerun.
From the application point of view, DB2 supports locking and
commit at the transaction level, and general data integrity (at
entity and semantic level), and a set of referential constraint rules
for each parent/dependent table relationship. The tables linked
by referential integrity are recognized during the execution of the
QUIESCE utility. Other logical relations across tables, necessary
to support business rules, are implemented via constraints,
triggers, user defined functions, and user defined tables.
Informational constraints also exist, they are not enforced by the
database manager, they are used to improve query performance.
In this IBM Redbook, we briefly describe the integration of DB2 for
z/OS with System z architecture, we then explore the data
integrity options and utilize the standard recovery functions for
application-related issues.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Examples
	Tables
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 Host platform
	1.1.1 z/OS and OS/390 system integrity
	1.1.2 System-level security
	1.1.3 Transaction-level security
	1.1.4 zSeries cryptography
	1.1.5 System z integrity features
	1.1.6 The zIIP
	1.1.7 VSAM share options
	1.1.8 Data sharing integrity
	1.1.9 Global resource serialization
	1.1.10 DB2 controls
	1.1.11 Auditing your DB2 applications
	1.1.12 Other security enhancements
	1.1.13 DB2 column level encryption
	1.1.14 IBM Data Encryption for IMS and DB2 Databases

	1.2 Information integrity
	1.3 DB2 and data integrity
	1.3.1 Entity integrity
	1.3.2 Semantic integrity
	1.3.3 Referential integrity
	1.3.4 Domain integrity

	1.4 Example of integrity needed across applications
	1.4.1 Customer names and addresses across applications

	Chapter 2. Semantic integrity
	2.1 Constraints
	2.1.1 Data constraint
	2.1.2 NOT NULL constraints
	2.1.3 Unique constraint
	2.1.4 Check constraints

	2.2 Distinct types
	2.2.1 Why distinct types
	2.2.2 Creating a distinct type
	2.2.3 Generated cast functions
	2.2.4 Comparing distinct types
	2.2.5 Assigning a distinct type
	2.2.6 Invoking routines with distinct types
	2.2.7 Errors with comparisons across distinct types
	2.2.8 Summary and usage recommendations

	Chapter 3. Referential integrity
	3.1 Referential constraints
	3.2 RI in the relational model
	3.2.1 RI concepts
	3.2.2 RI rules and options

	3.3 RI in DB2
	3.3.1 Additional DB2 terminology
	3.3.2 Data definitions for RI
	3.3.3 Plan, package, and trigger considerations
	3.3.4 Maintaining RI when using data encryption
	3.3.5 Informational referential constraint

	3.4 Functional implications
	3.4.1 DELETE rule for self-referencing tables
	3.4.2 DELETE with RESTRICT
	3.4.3 DELETE with SET NULL
	3.4.4 Cycles should not cause a table to be delete-connected to itself
	3.4.5 Table delete-connections through multiple paths
	3.4.6 INSERT
	3.4.7 UPDATE
	3.4.8 DELETE

	3.5 Summary of design recommendations
	3.5.1 Primary key
	3.5.2 Foreign keys
	3.5.3 Circumventing DML restrictions

	3.6 Code and look-up tables
	3.6.1 Code table alternatives

	3.7 DB2 versus application RI
	3.8 REPORT utility
	3.9 CHECK utility
	3.9.1 CHECK DATA
	3.9.2 CHECK INDEX

	3.10 LOAD utility
	3.10.1 Loading tables involved in cycles

	3.11 Performance
	3.12 Migrating applications to RI
	3.12.1 Planning considerations
	3.12.2 Application implementation considerations

	3.13 DB2 catalog information and queries
	3.13.1 DB2 catalog extensions
	3.13.2 Sample catalog queries
	3.13.3 Constraints and multilevel security

	Chapter 4. Triggers
	4.1 Why use triggers for data integrity
	4.2 Trigger terminology
	4.3 Extending triggers with UDFs and stored procedures
	4.3.1 Data validation
	4.3.2 Data propagation

	4.4 Invoking UDFs and stored procedures
	4.4.1 Using the VALUES statement
	4.4.2 Using the SELECT statement
	4.4.3 Using the CALL statement

	4.5 Passing parameters to UDFs and stored procedures
	4.5.1 Using transition variables
	4.5.2 Using transition tables

	4.6 Raising error conditions
	4.7 Handling errors during execution
	4.8 Auditing versus mass replication
	4.9 Impact of LOAD utility
	4.10 DB2-enforced RI versus triggers
	4.11 Execution sequence of multiple triggers
	4.12 Trigger cascading
	4.12.1 Triggers at the same level
	4.12.2 Triggers at different levels

	4.13 Interactions among triggers and other integrity checks
	4.14 Creating triggers to obtain consistent results
	4.14.1 Effect of an uncorrelated subquery
	4.14.2 Effect of row processing order
	4.14.3 Effect of set update with row triggers

	4.15 Common business scenarios
	4.15.1 Data validation
	4.15.2 Complex data validation with a UDF
	4.15.3 Maintaining redundant data
	4.15.4 Complex redundant data maintenance with a stored procedure
	4.15.5 Bidirectional data maintenance
	4.15.6 Maintaining summary data
	4.15.7 Maintaining existence flags
	4.15.8 Enforcing multiple parent RI
	4.15.9 Enforcing “Empty-nest-last-child-gone” rule
	4.15.10 Generating alerts
	4.15.11 Writing an MQ message
	4.15.12 Auditing

	Chapter 5. Other integrity features
	5.1 Data structure validation
	5.1.1 DSN1COPY with CHECK option
	5.1.2 DSN1PRNT with FORMAT option
	5.1.3 COPY with CHECKPAGE option

	5.2 Insert within select
	5.2.1 Generated values example
	5.2.2 Multiple-row inserts example
	5.2.3 Trigger example

	5.3 Atomic versus not atomic on multi-row insert and update
	5.4 Sequence objects
	5.4.1 Generated values may have gaps
	5.4.2 Generated values may not be in strict sequential order

	5.5 Informational RI
	5.5.1 What is informational RI
	5.5.2 Impact on utilities
	5.5.3 Impact on MQT usage
	5.5.4 Usage recommendations

	5.6 Locking
	5.6.1 Data sharing implications
	5.6.2 Locking protocol level 2

	Chapter 6. Recovery
	6.1 DB2 attachment facilities
	6.2 DB2 commit process
	6.3 Unit of recovery
	6.3.1 Commit processing for TSO applications
	6.3.2 Commit processing for CICS, IMS, or RRSAF applications
	6.3.3 Consistency across multiple DBMSs

	6.4 Unit of work
	6.4.1 Commit
	6.4.2 Commit frequency
	6.4.3 Cursors WITH HOLD
	6.4.4 Savepoints
	6.4.5 More on read only COMMIT

	6.5 Data integrity
	6.5.1 Concurrent update
	6.5.2 Last update column
	6.5.3 Work-in-progress tables
	6.5.4 Restricting other applications’ data access
	6.5.5 Applications to switch between isolation levels
	6.5.6 Error handling control table
	6.5.7 Restart using sequential input and output files
	6.5.8 Restart using DB2 tables for input and output files

	6.6 Scrollable cursors
	6.6.1 Static scrollable cursors
	6.6.2 Dynamic scrollable cursors
	6.6.3 FETCHing options for scrollable cursors
	6.6.4 Updating using scrollable cursors
	6.6.5 Change of underlying data for scrollable cursors
	6.6.6 Using multi-row FETCH with scrollable cursors
	6.6.7 SQLCODEs for scrollable cursors
	6.6.8 Summary on scrollable cursors

	6.7 DB2 subsystem restart after abend
	6.8 Recovery of objects in error
	6.8.1 LPL recovery
	6.8.2 CHECK-pending
	6.8.3 Write Error Page Range recovery
	6.8.4 COPY utility

	6.9 Application recovery process
	6.9.1 Rolling back work

	6.10 Preparing to recover to a point of consistency
	6.10.1 Copying the data
	6.10.2 Recovery of the data to the previous point of consistency
	6.10.3 Restore data to previous point in time
	6.10.4 New utilities in DB2 V8 for online backup and point in time recovery

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Abbreviations and acronyms
	Index
	Back cover

