
2/15/10	

1	

Data Link Layer	

The Data Link layer can be further subdivided into:	

1.  Logical Link Control (LLC): error and flow control	

2.  Media Access Control (MAC): framing and media

access	

different link protocols may provide different services,
e.g., Ethernet doesn’t provide reliable delivery (error
recovery)	

MAC topics:	

•  framing and MAC address assignment	

• LAN forwarding	

•  IP to MAC address resolution	

•  IP to MAC: Address Resolution Protocol (ARP)	

•  MAC to IP: Reverse ARP (RARP), BOOTstrap Protocol

(BOOTP), Dynamic Host Configuration Protocol (DHCP)	

•  media access control	

application

transport

network

LLC
MAC

physical

Repeaters and Bridges	

Each Ethernet segment is limited to 500 m long by signal
attenuation	

Repeaters: repeat and strengthen signal (physical layer)	

Ethernet only allows 4 repeaters: max 2.5 km. Why?	

Bridges: equivalence of routers at the data link layer	

•  forward frames between segments	

•  unlike routers, only know whether a node is in a segment	

•  does not propagate interference and collisions (must buffer)	

•  increase effective/aggregate bandwidth of a LAN by taking

advantage of spatial locality	

•  can connect segments with different MAC protocols���

2/15/10	

2	

Hubs	

Hubs are essentially physical-layer repeaters:	

•  bits coming from one link go out all other links	

•  at the same rate	

•  no frame buffering	

•  no CSMA/CD at hub: collision detection left to host

adaptors	

twisted pair	

hub	

Interconnecting with Hubs	

•  backbone hub interconnects LAN segments	

•  extends max distance between nodes	

•  but individual segment collision domains

become one large collision domain	

•  can’t interconnect 10BaseT & 100BaseT	

hub	
 hub	
 hub	

hub	

2/15/10	

3	

Switches	

Link layer router-equivalent:	

•  stores and forwards Ethernet frames	

•  examines frame header and selectively forwards frame based on

MAC destination address	

•  when frame is to be forwarded on a segment, uses CSMA/CD to

access segment	

•  transparent: hosts are unaware of presence of switches	

•  plug-and-play: self-learning, switches do not need to be configured	

•  How does a switch determine���

onto which LAN segment to ���
forward frame?	

•  Looks like a routing problem…	

hub	
 hub	
 hub	

switch	
1	

2	
 3	

Transparent Bridges/Switches
and Backward Learning	

How does a bridge know which segment a node is located at?	

Each switch has a switch table, entry in switch table: 	

•  <MAC Address, interface, timestamp>	

•  stale entries in table dropped (TTL can be 60 min) 	

switch learns which hosts can be reached through which
interfaces	

•  when a frame is received, switch “learns” location of sender: incoming

interface connects to the LAN segment through which a sender may be
reached	

•  records sender/interface pair in switch table	

•  called “backward learning”	

2/15/10	

4	

Frame Filtering/Forwarding	

When a switch receives a frame: ���

look for MAC destination address in switch table	

if entry found for destination {	

	
if destination on segment from which frame arrived {	

	
 	
drop the frame	

	
} else {	

	
 	
forward the frame on interface indicated	

	
}	

} else {	

	
flood // forward on all but the interface on which the frame arrived	

}	

Switch Example	

Suppose C sends a frame to D

Switch receives frame from C
records in switch table that C is on interface 1	

because D is not in table, switch forwards frame to

interfaces 2 and 3	

frame received by D 	

hub	
 hub	
 hub	

switch	

A

B C
D

E
F G H

I

address	
 interface	

A
B
E
G

1	

1	

2	

3	

1	

2	
 3	

2/15/10	

5	

Switch Example	

Suppose D now sends a frame to C

Switch receives frame from D
records in switch table that D is on interface 2	

because C is in table, switch forwards frame only to

interface 1	

frame received by C 	

hub	
 hub	
 hub	

switch	

A

B C
D

E
F G H

I

address	
 interface	

A
B
E
G
C
D

1	

1	

2	

3	

1	

2	

1	

2	
 3	

Switch: Traffic Isolation	

switch installation breaks subnet into LAN segments	

switch filters packets: 	

•  same-LAN-segment frames are not usually forwarded onto

other LAN segments	

•  segments become separate collision domains	

hub	
 hub	
 hub	

switch	

collision domain	
 collision domain	

collision ���
domain	

2/15/10	

6	

Switches: Dedicated Access	

Hosts have direct connection ���
to switch	

No collisions; full duplex	

Switching: A-to-D and B-to-E ���
simultaneously, no collisions	

Cut-through switching: frame forwarded from input to output
port without storing	

•  slight reduction in latency	

switches can support combinations of shared/dedicated and
10/100/1000 Mbps interfaces	

switch	

A

D

B

E

C

F

Example Enterprise Network ���
Switch/Hub Installment	

hub	
 hub	

hub	

switch	

to external	

network	

router	

IP subnet	

mail server	

web server	

2/15/10	

7	

Switches and Spanning Tree	

LANs may form cycles, causing broadcast storm	

Bridges/switches detect cycles by doing
distributed spanning tree computation:	

•  all bridges broadcast serial #, root ID, ���

cost to root	

•  bridge with lowest serial # becomes ���

root of tree	

•  all bridges determine root port (port to root)	

•  the spanning tree consists of bridges (nodes) ���

and root port (links)	

Forwarding on the tree:	

•  each LAN determines a designated bridge by lowest cost

to root, break tie by serial #	

•  forward frames only on links that are part of the tree	

Peterson & Davie	

Switches vs. Routers	

Both store-and-forward devices	

Given bridges, why do we still need routers?	

•  routers are network layer devices (what does this mean?)	

•  routers maintain routing tables, implement routing algorithms	

•  switches are link layer devices	

•  switches maintain switch tables, implement filtering, backward

learning algorithms 	

Switch

2/15/10	

8	

Data Link Layer	

The Data Link layer can be further subdivided into:	

1.  Logical Link Control (LLC): error and flow control	

2.  Media Access Control (MAC): framing and media

access	

different link protocols may provide different services,
e.g., Ethernet doesn’t provide reliable delivery (error
recovery)	

MAC topics:	

•  framing and MAC address assignment	

• LAN forwarding	

•  IP to MAC address resolution	

•  IP to MAC: Address Resolution Protocol (ARP)	

•  MAC to IP: Reverse ARP (RARP), BOOTstrap Protocol

(BOOTP), Dynamic Host Configuration Protocol (DHCP)	

•  media access control	

application

transport

network

LLC
MAC

physical

Ethernet: Connectionless Service	

No handshaking between sending and receiving adaptor	

Receiving adaptor doesn’t send ACKs or NACKs to
sending adaptor	

•  stream of datagrams passed up to network layer can have gaps	

•  gaps will be filled if application uses reliable transport layer	

•  otherwise, application will see the gaps	

Other data link protocols may provide error
correction and flow control	

2/15/10	

9	

Transmission Errors	

Three kinds of transmission errors:	

1.  sent signal changed (received wrong data)	

2.  sent signal destroyed (doesn’t receive data)	

3.  spurious signal created (received random data)	

Caused by noise on the channel: ���
interference, cosmic rays	

Error Control	

Ways to detect errors, general idea:	

•  sender computes some info from data	

•  sender sends this info along with data	

•  receiver does the same computation and ���

compares it with the sent info	

Not often used for largely reliable links, ���
but useful for unreliable links such as wireless	

Used at the transport layer also ���
(the Internet is an unreliable “link”)	

Field: Information Theory	

2/15/10	

10	

Error Control	

Two types of error control:	

1.  error detecting code	

2.  error correcting code (ECC), ���

a.k.a. forward error correction/control (FEC)	

Examples error detecting code:	

•  parity check	

•  checksum	

•  cyclic redundancy check (CRC)	

Error Control	

Trade-offs between alternate methods:	

•  complexity of info computation,	

•  bandwidth transmission overhead, and	

•  degree of protection (# of bit errors that can be detected)	

No error detection method is fool-proof	

2/15/10	

11	

Parity Check	

• uses an extra bit (parity bit) for error checking	

• even parity: total # of 1 bits (incl. the parity bit) ���
is an even number	

• odd parity: total # of 1 bits is odd	

•  single-bit parity examples:	

0100101, even-parity bit =	

0101101, even-parity bit =	

• what happens when an error is detected?	

•  discard data and if reliability is required, have sender

retransmit	

• problem: can not detect even # of flipped bits	

2D Parity Check as ECC	

•  generates both a horizontal/row parity ���
and a vertical/column parity	

• both parity info sent to receiver	

•  receiver can detect ���

and correct single-bit errors	

• problem: can not detect ���

even # of flipped bits	

2/15/10	

12	

Error Correction vs. Detection	

ECC generally requires more redundant bits
than just detection	

It is generally cheaper to retransmit data
only when error has been detected than to
transmit redundant data all the time	

FEC is most useful when:	

1.  link is very noisy, e.g., wireless link	

2.  retransmission will take too long, e.g.,	

•  satellite communication	

•  deep space probe transmission	

•  real-time audio/video streaming	

Checksum	

Used also by TCP and UDP	

Sender treats data as a sequence of integers and computes their
(1’s complement) sum	

Example: 16-bit checksum	

•  the string “Hello world.” has an ASCII representation of [48 65 6C 6C 6F

20 77 6F 72 6C 64 2E]	

•  checksum: 4865 + 6C6C + 6f20 + 776F + 726C + 642E + carry = 71FC	

Advantages:	

•  ease of computation (only requires addition)	

•  small amount of additional info to carry: one additional 16-bit or 32-bit

integer	

2/15/10	

13	

Checksum	

Disadvantage:	

•  with 16-bit checksum, 1 in 64K corrupted packet will not be detected

(probability of a random 16-bit number matching the checksum of a
corrupted packet is 1/ 216)	

⇒  under current Internet conditions (error rate etc.), 1 in every 300M
packet accepted corrupted!	

Mogul (1992) measured on a busy NFS���
server that has been up 40 days:	

Layer	
 # checksum
errors caught	

~#pkts	

ethernet	
 (CRC) 446	
 1.7x108	

IP	
 14	
 1.7x108	

UDP	
 5	
 1.4x108	

TCP	
 350	
 3x107	

Cyclic Redundancy Check	

Goal of any error detection/correction code: maximize probability of
detecting error with minimal redundant info	

32-bit CRC protects against most bit errors in messages thousands of
bytes long, also used in storage systems (CD, DVD)	

CRC is based on finite fields math	

Consider a binary message as a representation of an n-degree
polynomial, with the coefficient of each term being 1 or 0 depending
on the bit in the message, with the most significant (leftmost) bit
representing the highest degree term	

•  For example: 1011 represents 1x3 + 0x2 + 1x1 + 1x0 = x3 + x + 1

An m-bit message represents a polynomial of m-1 degree	

2/15/10	

14	

Polynomial Arithmetic	

The math says you can divide one such polynomial by another such
polynomial of lower or equal degree by dividing the binary
representation of the polynomials, e.g., to divide x5+x3+x2+x
by x3+1, divide 101110 by 1001	

Polynomial arithmetic is done using modulo-2 arithmetic, with no
carry and borrow: 1+1 = 0+0 = 0 and 1+0 = 0+1 = 1, e.g.,	

	
10011011 	
11110000 	
01010101	

	
11001010 + 	
10100110 - 	
10101111 -	

01010001 	
01010110 	
11111010	

Note that both addition and subtraction are identical to XOR	

Constructing CRC	

Let’s call the polynomial to be divided T and the divisor/
generator polynomial G

Let t be the number of bits in T and r +1 be the number of
bits in G, t ≥ r +1

Let’s call the remainder of T/G, R; R is of r bits	

Want: the polynomial represented by the message to be
exactly divisible by G, such that if the receiver divides the
message by G and the remainder is not 0, it will know the
message has been corrupted	

M =(T-R) is exactly divisible by G	

2/15/10	

15	

Constructing CRC	

Recall: multiplying a number by 2 is the same as shifting it left by 1 bit	

Let D be the message to be sent, e.g., D =101110	

Construct T as D•2r, D shifted left by r bits, e.g., r =3, T =101110000	

Let G = 1001, compute R, the remainder of T/G, ���
by doing the long-division, with modulo-2 arithmetic, ���
e.g., R = 011	

Now M = (T-R) = (D•2r – R) =(D•2r XOR R), e.g., 101110011,
is exactly divisible by G	

How to Choose G?	

Let the string of bit errors introduced be represented as polynomial E

Error will not be detected only if T+E is exactly divisible by G

Want G that makes this unlikely. What’s known:	

•  if xr and x0 terms have non-zero coefficients, ���
G can detect all single-bit errors	

•  as long as G has a factor with at least 3 terms, ���
it can detect all double-bit errors	

•  as long as G contains the factor (x+1), ���
it can detect any odd number of errors	

• G can detect any burst (sequence of consecutive) errors of length < r bits	

Usually, you just look up a commonly used G, e.g., Ethernet uses CRC-32	

CRC-32: 100000100110000010001110110110111	

CRC-CCITT: 10001000000100001	

2/15/10	

16	

CRC Hardware Implementation	

CRC can be cheaply implemented in hardware by implementing the long-
division to compute R as a combination of linear feedback shift register
(LFSR) and XOR gates	

The shift registers and XOR gates represents the G:	

•  the 0-th term of G occupies the leftmost bit of the shift registers	

•  each XOR gate represents a modulo-2 addition in G
•  the message is fed into the circuit most significant (leftmost) bit first	

•  each bit of the message causes the current content of the shift registers to be
shifted right by one bit	

•  when the message is exhausted, the shift registers contain R
•  for example, computing CRC with G =x2+1 can be implemented as:	

Peterson & Davie	

Link Layer Services	

Half-duplex and full-duplex	

•  with half duplex, nodes at both ends of link can transmit, but not
at same time	

Framing, link access: 	

•  encapsulate datagram into frame, adding header, trailer	

•  channel access if shared medium	

•  “MAC” addresses used in frame headers to identify source, dest 	

•  different from IP address!	

Error Detection: 	

•  errors caused by signal attenuation, noise. 	

•  receiver detects presence of errors: 	

•  signals sender for retransmission or drops frame	

2/15/10	

17	

Link Layer Services	

Error Correction: 	

•  receiver identifies and corrects bit error(s) without resorting to

retransmission	

Flow Control: 	

•  pacing between adjacent sending and receiving nodes	

Reliable delivery between adjacent nodes	

•  seldom used on low bit error link (fiber, some twisted pair)	

•  wireless links: high error rates	

•  Q: why both link-level and end-end reliability?	

Flow Control	

What is flow control?	

• receiver telling sender to slow down	

Why do you need flow control?	

• slow or busy receiver	

• don’t want to overflow receiver’s buffer	

Flow control protocols at data link layer (single hop):	

• XON/XOFF	

• Stop & Wait Protocol (SWP)	

• Sliding Window Protocol	

Similar issues and mechanisms apply at the transport layer	

2/15/10	

18	

XON/XOFF	

Algorithm:	

• S sends stream of data	

• R sends XOFF, S stops transmission	

• R sends XON, S resumes transmission	

Works OK if τ is small, otherwise sender can
overrun receiver (Why?)	

sender receiver

S R

!!" propagation
delay

Stop and Wait (S&W) Protocol	

After each pkt, sender must wait for acknowledgment
(ACK) before sending the next pkt	

Time

Sender
S

Receiver
R

t

t+ !!

t+ !

!"# propagation
delay

!!

round-trip
time (rtt)

ACK

pkt

2/15/10	

19	

Stop & Wait Performance	

Disadvantages:	

• slow	

• must wait for ACK even if no overrun	

• max transmission bandwidth 1 pkt/rtt	

Performance ok if τ is small, else inefficient	

Example 1: 	

• link bandwith (µ) = 1 Mbps, with pkt size (L) = 1 Kbits, ���

transmission time is L/µ = 1 ms 	

•  if rtt (2τ) = 9 ms, we can send 100 pkts/sec	

•  the throughput (Tg) is 100 Kbps (10% of capacity)	

Example 2: 	

•  link bandwith (µ) = 1 Gbps, with pkt size (L) = 8 Kbits, ���

transmission time is L/µ = 8 µs 	

•  sender utilization (Us), fraction of time sender is sending:	

Stop & Wait Performance	

first packet bit transmitted, t = 0
sender receiver

RTT (2τ)

last packet bit transmitted, t = L / µ

first packet bit arrives
last packet bit arrives, send
ACK

ACK arrives, send next 	

packet, t = RTT + L / µ

Us =
L / µ

2τ + L / µ
=
8·103 /109

30 + 8·10−6
= 0.00027

2/15/10	

20	

Sliding Window: ���
Pipelined Flow Control	

Pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts	

• range of sequence numbers must be increased	

• buffering at sender and/or receiver	

Sliding Window	

Send w number of pkts before waiting for an ACK (can have w
outstanding, i.e., unACKed, pkts)	

On receiving an ACK, slide window (over data) by 1 pkt ���
(S&W is sliding window with w = 1)	

Throughput of the sliding window protocol (Tw):	

Tw = Tg*w

send window size w limited by buffer size at receiver (wR):	

Tw = Tg*MIN(w,wR)	

Stevens	

2/15/10	

21	

Example 3: 	

•  link bandwith (µ) = 1 Gbps, with pkt size (L) = 8 Kbits, ���

transmission time is L/µ = 8 µs, window size (w) = 3	

•  sender utilization (Us), fraction of time sender is sending:	

Pipelining: Increased Utilization	

first packet bit transmitted, t = 0

sender receiver

RTT (2τ)

last bit transmitted, t = L / µ

first packet bit arrives
last bit of 1st pkt arrives, send ACK

ACK arrives, send next 	

packet, t = RTT + L / µ

last bit of 2nd pkt arrives, send ACK
last bit of 3rd pkt arrives, send ACK

increase utilization	

by a factor of 3!	

Us =
w * L / µ
2τ + L / µ

=
3*8·103 /109

30 + 8·10−6
= 0.0008

Go-Back-N	

Receiver:	

• remembers next expected seq#	

• ACKs and delivers to app in-order pkts	

• discards out-of-order pkts ⇒ no buffering	

• ACKs out-of-order packets if seq# is ���

smaller than next expected number ���
(why?)	
 Sender

S
Receiver

R

!!

round-trip
time (rtt)

ACKs

Pkts

rexmission
timeout (rto)

X

1
2
3
4

1
2
3
4

5

2
3
4
5

2
3
4
5

discard
all these

5

Sender
S

Receiver
R

ACKs

Pkts
X

1
2
3
4

1

3
4

5

2
3
4
5

2
3
4
5

discard
these

5 discard

2/15/10	

22	

Go-Back-N with Negative ACK (NAK)	

Receiver:	

• ACKs and delivers in-order packets	

• sends NAK for first out of order pkt and discards pkt	

• ACKs and discards subsequent out of order packets	

Sender: rexmits on receiving NAK or rto	

sender	

receiver	

Walrand	

Selective Repeat Protocol (SRP)	

Receiver:	

• ACKs all correctly received pkts	

• buffers out of order pkts (up to wR), ���

for eventual in-order delivery to upper layer	

Sender:	

• keeps a rexmit timer for each pkt	

• retransmits only unACKed pkts	

• must keep track of wR and ensures ���

that wR > (largest unACKed – ���
smallest unACKed), in example, ���
wR = 4	

Selective Acknowledgement: Piggy-back NAK with ACK., e.g.
[ACK2,NAK1], [ACK4,NAK3]	

cannot send	

pkt 5 (why?)	

ok to send	

pkt 6 (why?)	

1 2 3 4 5 6 7	
1 2 3 4 5 6 7	

Walrand	

2/15/10	

23	

Simplifying Assumptions	

Infinite sequence# space	

Suppose you have only a 2-bit sequence space:	

Sender

S
Receiver

R

ACKs

Pkts

rexmission
timeout (rto)

1
2
3
4

1
2
3
4

1

X

1st or
5th pkt?

Other Issues at Transport Layer	

Connectionless network layer means each pkt can:	

• take a different path	

• experience different congestion	

Implications:	

• non-deterministic rtt	

• out of order pkts must be buffered for Go-Back-N	

• complicates computation of w

