Data Link Technology (2)

Suguru Yamaguchi
Nara Institute of Science and Technology
Department of Information Science

Flow Control

Flow Control

- Flow Control Protocols deal with how to send sequences of DLL frames
- They have two jobs:
 - Recover from lost frames
 - Prevent buffer overflows
- Network Layer must receive same set of frames in the same order they were sent
- Automatic Repeat Request (ARQ)
 - Stop-and-wait
 - Go-back-N
 - Selective-repeat

Unrestricted Case

- Sender send
- Receiver waits to receive

 Problem: receiver's buffers may fill up

Stop-and-wait ARQ (1)

- t_1 : Round Trip Time
- *t*₂: Frame Transmission Time
- t_3 : Frame Processing Time
- t₄: ACK Transmission Time
- *t*₅: ACK Processing Time

Stop-and-wait ARQ (2)

Procedure

- Waiting to receive ACK on each frame transmission
- Setting a sender timer greater than $2t_1+t_2+t_3+t_4$
- Retransmission when sender timer times out.

Characteristics

- Simple
- The buffer never contains more than one frame for the receiver and the sender
- Channel usage rate is extremely bad

Stop-and-wait ARQ (3)

Timeout

Lost ACK

Automatic Repeat Request (ARQ)

- Use sequence numbers to identify frames
- Sender sends SEQ n
 - Start timer
 - If ACK received, n = n+1, if timeout, resend n
- Receiver receives n
 - If expecting n, send ACK for n
 - If expecting n+1 then ACK for n was lost
 - Resend ACK for n
 - Await delivery of n+1

Go-back-N ARQ (1)

- Improving Stop-and-Wait Protocol
 - ARQ performance is bad because the sender spends most of the time waiting for a timeout or an ACK
- How can we improve the channel utilisation of an ARQ protocol?
- Transmitting a frame in series
 - Assume operation *i* is successful
 - Perform operations i+1,2,3... up to a max n
 - Be prepared to go back up to n operations if one or more were incorrect
 - No ACK is returned until the frame is correctly received.

Go-back-N ARQ (2)

- Frame and ACK errors solved with timeout
- e.g. window size of 7

Go-back-N ARQ (3)

Characteristics

- Wastefulness: upon error detection, correct frames received after the error are also dropped.
 - Especially, setting a bigger value to the retransmission timer is a disadvantage.
- On the sender side, a buffer is necessary for retransmission.
 - Frames that did not receive an ACK, buffering is necessary to enforce retransmission.
 - The "N" in Go-back-N corresponds to the number of frames sent without receiving an ACK (on-the-fly frames)
 - Buffer depends on the retransmission timer value.

Selective-Repeat ARQ (1)

- Improving Go-back-N protocol
 - Go-back-N's retransmission overhead is very large
- Characteristics
 - Transmission efficiency is better than Go-back-N
 - Not dropping correct frames uselessly
 - Processing is complex
 - Needs a buffer on the receiver side
 - Frame sequence control is necessary

Selective-Repeat ARQ (2)

- Send Negative ACK (NAK) if a frame is skipped over
- ACK for frame n implicitly acknowledges all frames ≤ n

Role Allocation

- Role allocation depends on a system design
- Various solutions exist

HDLC & PPP

High-Level Data Link Control (HDLC)

- A bit-oriented synchronous data link layer protocol developed by the ISO
- It provides both connection-oriented and connectionless service
- It is still widely used nowadays even if it is an old protocol
 - Employed in public data communication networks such as ISDN
 - Existing online network, e.g., online banking system

HDLC Frame (1)

- Address: identifies a communication station (terminal)
- Control: information for communication control
- Data: information to be transmitted
- Checksum: CRC-CCITT

HDLC Frame (2) – Control Field

HDLC Frame (3) – Control Field

- Define three main types of frames:
 - Information frame (*I-frame*)
 - carry the data to be transmitted for the user
 - flow- and error-control data are piggybacked on an information frame
 - Supervisory frame (S-frame)
 - provide the ARQ mechanism when piggybacking is not used
 - Unnumbered frame (*U-frame*)
 - provide supplemental link control functions, e.g. link termination

X.25

- WAN: Wide Area Network
 - Technology built at a time when LAN (Local Area Network) and WAN were connected through different technologies
 - communication networks by telephone engineers
 - Nowadays, almost extinct
 - e.g., ISDN
- Approved as an international standard
 - CCITT standard → ITU-T standard
- Layer 1 Layer 3 of the OSI reference model
 - Network layer: PLP
 - Data link layer: HDLC (ITU-T), LAPB (CCITT)
 - Physical layer: X.21 bis

X.25 Network Model

Point-to-Point Protocol (PPP)

- PPP design requirement (RFC 1557)
 - Packet framing: encapsulation of network-layer datagram in data link frame
 - Carry network layer data of any network layer protocol (not just IP) at same time
 - Ability to demultiplex upwards
 - Bit transparency: must carry any bit pattern in the data field
 - Error detection (no correction)
 - Connection liveness: detect, signal link failure to network layer
 - Network layer address negotiation: endpoint can learn/configure each other's network address
- Error recovery, flow control, data re-ordering all relegated to higher layers
- PPP over SONET/SDH
 - 2-point connection in large-scale or long-distance

PPP Data Control Protocol

- Before exchanging network layer data, data link peers must
 - configure PPP link (max. frame length, authentication)
 - learn/configure network layer information
 - For IP: carry IP Control Protocol (IPCP) messages to configure/ learn IP address

PPP Phase Diagram

A simplified phase diagram for bring a line up and down.

Sublayers of the Data Link

From monolithic structure to sub-layered structure

- Data link basic concepts were formed from the technologies using point-to-point connection type data link back in the 1960s.
- LAN standardization from the late 1970s moved to sub-layered structure.
 - Architecture of ISO/OSI 8802 and IEEE802 groups.
 - Constructing a common IEEE802.2 (ISO8802/2) Logical Link Control (LLC)
 - IEEE802.x specialized for each medium

Sublayers of the Data Link Layer

Logical Link Control (LLC) (1)

- Unacknowledged Connectionless Service (LLC type1)
 - Transmitting frame without synchronization between sender and receiver.
 - No special processing, upon error detection.
 - Enforcing error control in upper layers.
 - Control method for high speed and errorless links.
 - LAN, real-time traffic (voice/speech)
- Acknowledged Connection-oriented Service (LLC type2)
 - Setting up a connection, before data transmission
 - Enabling synchronized processing between sender and receiver
 - Ensuring reliability (error and sequence)
 - Processing is usually complex
 - For low speed and error-prone links

Logical Link Control (LLC) (2)

- Acknowledged connectionless Service (LLC type3)
 - Receiver sends ACK for each frame.
 - Enforcing error control at data link layer level
 - Improving reliability
- Unacknowledged Connection-oriented Service
 - Not ensuring reliability (error and sequence)
 - Control method for high speed and errorless links.

Media Access Control (MAC) (1)

Data link layer provides packet send/ receive service to network layer

Physical Layer provides binary send/receive to data link layer

Different media have different constraints about multiple nodes accessing the medium

We want to reserve the medium for a longer space of time!

Media Access Control (MAC) (2)

IP (network) LLC (data link) MAC layer provides medium access service to the data link layer MAC (data link) A separate protocol is needed to implement the service for each **Ethernet** Wi-Fi different transmission medium

Next class, we will learn about the channel allocation (multiplexing)