DATA MINING IN BIOINFORMATICS

DHIFLI WAJDI

POSTDOCTORAL RESEARCHER AT UNIVERSITY OF QUEBEC AT MONTREAL (UQAM)

DHIFLI.WAJDI@COURRIER.UQAM.CA

HTTPS://SITES.GOOGLE.COM/SITE/WAJDIDHIFLI/

BGI Hong Kong, Tai Po Industrial Estate, Hong Kong

High-throughput technologies:

- Genome and RNA sequencing
- Compound screening
- Genotyping chips
- Bioimaging

Molecular databases are growing much faster than our knowledge of biological processes.

- Large collections of molecular data
 - Gene and protein sequences
 - Genome sequence
 - Protein structures
 - Chemical compounds

Problems in Bioinformatics

- Predict the function of a gene given its sequence
- Predict the structure of a protein given its sequence
- Predict the boundaries of a gene given a genome segment
- Predict the function of a chemical compound given its molecular structure

•

- Manual lab works are **no longer able to match** the increasing load of data
- The need of automated, fast and accurate computational tools is all the more urgent

- Additional challenges
 - Highly complex
 - Noisy
 - Inconsistent
 - Redundant
 -

Data Mining can Help !

What is data mining?

[Fayyad 1996]: "Data mining is the application of specific algorithms for extracting patterns from data".

[Han&Kamber 2006]: "data mining refers to extracting or mining knowledge from large amounts of data".

[Zaki and Meira 2014]: "Data mining comprises the core algorithms that enable one to gain fundamental insights and knowledge from massive data".

Wikipedia: "*it is defined as the computational process of discovering patterns in large data sets involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems*".

Data mining and the KDD (Knowledge Discovery in Databases) process:

Pre-processing:

- data cleaning (to remove noise)
- data integration (combine multiple data source)
- data selection (to extract subsets of data that are concerned by the analysis)
- data transformation (to transform data into convenient formats that are required from data mining algorithms).

Data mining:

• applying computational methods to extract knowledge from data.

Post-processing:

- evaluation
- validation
- interpretation of the discovered knowledge

What do we concretely do?

- Clustering
 - grouping of similar objects into sets (K-means, meanshift, DBSCAN, Spectral Clustering, ...)
- Classification
 - Identifying to which category an object belongs to (SVM, KNN, Decision Trees, Neural Networks, ...)
- Pattern mining
 - Finding existing (hidden) patterns in data (associations, correlations, subsequences, subgraphs,)
- And more ...

Clustering: K-means

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple
 - 1: Select K points as the initial centroids.
 - 2: repeat
 - 3: Form K clusters by assigning all points to the closest centroid.
 - 4: Recompute the centroid of each cluster.
 - 5: **until** The centroids don't change

Remark: Different algorithms can give different Clustering!

Classification: K-Nearest Neighbors

(a) 1-nearest neighbor (b) 2-

(b) 2-nearest neighbor

(c) 3-nearest neighbor

- 1. Compute distance between two points:
- 2. K-nearest neighbors of a record x are data points that have the k smallest distance to x
- 3. Takes the majority vote of class labels among the k-nearest neighbors

Remark: Different algorithms can give different Classification!

Pattern Mining: Frequent Subgraph Mining

Finding subgraphs that occur in graph data, giving a minimum support

DATA MINING IN BIOINFORMATICS: EXAMPLE 1

PGR PROTEIN GRAPH REPOSITORY

Yearly growth of protein structures in the PDB

Need of automatic tools to meet the increasing load of data !!

A protein 3D structure can be represented by a graph (protein contact map)

- Amino acids \rightarrow Nodes (labeled with the amino acid type)
- Connections between amino acids → Edges

→ Use graph mining techniques for automated analysis of protein 3D structure

Protein-to-graph transformation techniques:

Delaunay triangulation

- Main Atom
 - Abstract each residue in one atom of it; usually C-alpha atom
 - Two residues are linked by an edge if the distance between their main atoms <= threshold
- All Atoms
 - Two residues are linked by an edge if the distance between any pair of their atoms <= threshold

A real world example:

A protein 3D-structure (PDB-id: 5AHW) and its corresponding graph (Main Atom, C-alpha).

A real world example:

The *Human Hemoglobin* protein 3D-structure (PDB-id: 1GZX) and its corresponding graph (Main Atom, C-alpha).

Protein 3D structure

Protein graph

Protein Graph Repository

PG-converter

- Transform protein 3D structure into graph
- Several transformation methods
- Several output formats
- Download and visualization

Repository

- Download protein graphs
- Visualization
- Pre-computed Graph attributes

PG-Similarity

- Find protein structural neighbors
- Distribution of topological attributes for the query protein and its structural neighbors

PGR v1.0: Latest Release Statistics Based on PDB dated July 11, 2014

Number of currently holding proteins graphs	<u>188 252</u>
Number of unique proteins 3D-structures	94 126
Protein graphs based on Ca	<u>94 126</u>
Protein graphs based on All Atoms	<u>94 126</u>

Online DEMO:

http://wjdi.bioinfo.uqam.ca/

Usefulness of PGR

- Structure alignment and comparison: ٠
 - Graph Matching: maximal Clique (Vast / Vast+), Edit distance, Similarity measures (MCS)
 - Graph Embedding: Topological similarity ۲

Pattern mining: ٠

. . . .

- Subgraphs (frequent, discriminative, ...) ٠
- **Fingerprints** ۲
- Functional / structural motifs
- Binding sites

DATA MINING IN BIOINFORMATICS: EXAMPLE 2

ProtNN Fast and Accurate Protein 3D-structure classification in Structural and Topological Space

Existing protein Classification techniques:

- Sequence-based classification (Blast, ProtFun, SVM-Prot, ...)
- Structure-based classification (*e.g.* Combinatorial Extension, Sheba, FatCat, Fragbag, ...)
- Subsequences / substructures-based classification
 - The subsequences / substructures are used as features to identify the function of unknown proteins

- Sequence (and subsequences)-based classification **do not** incorporate spatial information !
 - less efficient in classifying structurally similar proteins with low sequence similarity
- Structure and substructure-based classification techniques **do** incorporate spatial information
 - But suffer computational cost!

It is essential to find an efficient way to incorporate 3Dstructure information with low computational complexity

Results

Accuracy comparison of ProtNN with other classification techniques.

Dataset	Classification approach								
Dataset	Blast	Sheba	FatCat	CE	LPGBCMP	D&D	GAIA	PROTNN	PROTNN*
DS1	0.88	0.81	1	0.45	0.88	0.93	1	0.97	0.97
DS2	0.82	0.86	0.89	0.49	0.73	0.76	0.66	0.8	0.89
DS3	0.9	0.95	0.84	0.59	0.90	0.96	0.89	0.96	0.97
DS4	0.76	0.92	1	0.46	0.9	0.93	0.89	0.97	0.97
DS5	0.86	0.99	0.94	0.76	0.87	0.89	0.72	0.9	0.94
DS6	0.78	1	0.94	0.81	0.91	0.95	0.87	0.96	0.96
Avg. accuracy ¹	$0.83{\pm}0.05$	$0.92{\pm}0.07$	$0.94{\pm}0.06$	$0.59{\pm}0.15$	$0.86{\pm}0.06$	$0.9{\pm}0.07$	$0.84{\pm}0.12$	$0.93{\pm}0.06$	$0.95{\pm}0.03$
Avg. distances 2	$0.14{\pm}0.07$	$0.05{\pm}0.07$	$0.04{\pm}0.05$	$0.38{\pm}0.15$	0.11±0.03	$0.7 {\pm} 0.04$	$0.14{\pm}0.09$	$0.05{\pm}0.03$	$0.02{\pm}0.01$
Rank	8	4	2	9	6	5	7	3	1

¹Average classification accuracy of each classification approach over the six datasets.

²Average of the distances between the accuracy of each approach and the best obtained accuracy with each dataset.

Results

Runtime results of ProtNN, FatCat and CE on the entire Protein Data Bank.

Task	Total runtime ¹	Runtime ¹ /protein
Building graph models	23h:9m:57s	0.9s
Computation of attributes	5d:8h:12m:29s	4.9s
Classification	2h:55m:15s	0.1s
PROTNN (all)	6d:10h:17m:41s	5.9s
FATCAT	Forever ²	2d:4h:24m:19s3
CE	Forever ²	2d:10h:7m:2s ³

¹The runtime is expressed in terms of days:hours:minutes:seconds ²The program did not finish running within two weeks

³The average runtime of randomly selected 100 proteins

QUESTIONS