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THE NEED FOR DATA MINING
IN BIOINFORMATICS

High-throughput technologies:
Genome and RNA sequencing

Compound screening

Genotyping chips

Bioimaging

BGI Hong Kong, Tai Po Industrial Estate, Hong Kong

Molecular databases are growing much faster than our knowledge
of biological processes.
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Large collections of molecular data

Gene and protein sequences
Genome sequence

Protein structures

Chemical compounds

Problems in Bioinformatics

Predict the function of a gene given its sequence
Predict the structure of a protein given its sequence
Predict the boundaries of a gene given a genome segment

Predict the function of a chemical compound given its
molecular structure
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» Manual lab works are no longer able to match the increasing load of data
« The need of automated, fast and accurate computational tools is all the
more urgent
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« Additional challenges
Highly complex
Noisy
Inconsistent
Redundant

Data Mining can Help !




DATA MINING

What is data mining?

[Fayyad 1996]: "Data mining is the application of specific algorithms for
extracting patterns from data".

[Han&Kamber 2006]: "data mining refers to extracting or mining knowledge
from large amounts of data".

[Zaki and Meira 2014]: "Data mining comprises the core algorithms that
enable one to gain fundamental insights and knowledge from massive data".

Wikipedia: "it is defined as the computational process of discovering patterns
In large data sets involving methods at the intersection of artificial intelligence,
machine learning, statistics, and database systems".
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Data mining and the KDD (Knowledge Discovery in
Databases) process:
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DATA MINING

Pre-processing:

- data cleaning (to remove noise)
- data integration (combine multiple data source)

- data selection (to extract subsets of data that are concerned by the
analysis)

- data transformation (to transform data into convenient formats that are
required from data mining algorithms).

Data mining:
- applying computational methods to extract knowledge from data.

Post-processing:

- evaluation
- validation
 interpretation of the discovered knowledge
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What do we concretely do?

« Clustering
« grouping of similar objects into sets (K-means, mean-
shift, DBSCAN, Spectral Clustering, ...)
« Classification
 |ldentifying to which category an object belongs to
(SVM, KNN, Decision Trees, Neural Networks, ...)
« Pattern mining
« Finding existing (hidden) patterns in data (associations,
correlations, subsequences, subgraphs, ....)
 And more ...
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Clustering: K-means

. Partitional clustering approach

. Each cluster is associated with a (center point)
 Each point is assigned to the cluster with the closest centroid
. Number of clusters, K, must be specified

«  The basic algorithm is very simple

. Select K points as the initial centroids.

: repeat

1
2
3:  Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.

5

. until The centroids don’t change
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Remark: Different algorithms can give different Clustering!

Birch

.04s

.03s

21s

AgglomerativeClustering DBSCAN

Ward

.18s

SpectralClustering

31s

MeanShift

.06s

4.19s

MiniBatchKMeansAffinityPropagation

.02s
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Classification: K-Nearest Neighbors
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(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

Compute distance between two points:

2. K-nearest neighbors of a record x are data points that have the k
smallest distance to x

3. Takes the majority vote of class labels among the k-nearest
neighbors
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Remark: Different algorithms can give different Classification!

Random Forest

Nearest Neighbors

AdaBoost

Linear SVM

Naive Bayes

RBF SVM

Decision Tree
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Pattern Mining: Frequent Subgraph Mining

Finding subgraphs that occur in graph data, giving a minimum support

Example:

P the

Graph database

Freqguent Subgraphs
(minimum support = 3)




DATA MINING IN
BIOINFORMATICS: EXAMPLE 1

PGR
ROTEIN GRAPH
REPOSITORY




PGR: PROTEIN GRAPH
REPOSITORY

Yearly growth of protein structures in the PDB
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Need of automatic tools to meet the increasing load of data !

i 100000
—~ 80000
- 60000
- 40000
- 20000

0




PGR: PROTEIN GRAPH
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A protein 3D structure can be represented by a graph (protein contact map)

« Amino acids =» Nodes (labeled with the amino acid type)
 Connections between amino acids = Edges

If distanceis <o
an edge is created
)

=» Use graph mining techniques for automated analysis of protein 3D structure

Amino acids




PGR: PROTEIN GRAPH
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Protein-to-graph transformation techniques:
 Delaunay triangulation

« Main Atom

» Abstract each residue in one atom of it; usually C-alpha atom
» Two residues are linked by an edge if the distance between their main
atoms <= threshold

« All Atoms

« Two residues are linked by an edge if the distance between any pair of
their atoms <= threshold




PGR: PROTEIN GRAPH
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A real world example:

A protein 3D-structure (PDB-id: 5SAHW) and its corresponding graph
(Main Atom, C-alpha).

Protein 3D structure Protein graph
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A real world example:

The Human Hemoglobin protein 3D-structure (PDB-id: 1GZX) and its
corresponding graph (Main Atom, C-alpha).

Protein 3D structure Protein graph
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Protein Graph Repository

7
L ) PG-converter i Repository ‘ ‘ PG-Similarity

* Transform protein 3D » Download protein graphs * Find protein structural
structure into graph « Visualization neighbors

« Several transformation « Pre-computed Graph « Distribution of topological
methods attributes attributes for the query

« Several output formats protein and its structural

« Download and visualization neighbors




PGR: PROTEIN GRAPH
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PGR v1.0: Latest Release Statistics
Based on PDB dated July 11, 2014

Number of currently holding proteins graphs 188 252
Number of unique proteins 3D-structures 94 126
Protein graphs based on Ca 94 126

Protein graphs based on All Atoms 94 126



http://wjdi.bioinfo.uqam.ca/data/data.html
http://wjdi.bioinfo.uqam.ca/data/data.html?method=CAlpha
http://wjdi.bioinfo.uqam.ca/data/data.html?method=All_Atoms

PGR: PROTEIN GRAPH
REPOSITORY

Online DEMO:

http://wjdi.bioinfo.ugam.ca/



http://wjdi.bioinfo.uqam.ca/

PGR: PROTEIN GRAPH
REPOSITORY

Usefulness of PGR

« Structure alignment and comparison:
- Graph Matching: maximal Clique (Vast / Vast+), Edit distance,
Similarity measures (MCS)
- Graph Embedding: Topological similarity

« Pattern mining:

- Subgraphs (frequent, discriminative, ...)
* Fingerprints

* Functional / structural motifs
« Binding sites
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PROTNN: FAST PROTEIN 3D-
STRUCTURE CLASSIFICATION

Existing protein Classification techniques:

Sequence-based classification (Blast, ProtFun,
SVM-Prot, ...)

Structure-based classification (e.g. Combinatorial Extension, Sheba,
FatCat, Fragbag, ...)

Subsequences / substructures-based classification

The subsequences / substructures are used as features to identify
the function of unknown proteins




PROTNN: FAST PROTEIN 3D-
STRUCTURE CLASSIFICATION

Sequence (and subsequences)-based classification do not
Incorporate spatial information !

less efficient in classifying structurally similar proteins with low
sequence similarity

Structure and substructure-based classification techniques do
Incorporate spatial information

But suffer computational cost!

mmm) |t is essential to find an efficient way to incorporate 3D-
structure information with low computational complexity




PROTNN: FAST PROTEIN 3D-
STRUCTURE CLASSIFICATION

General Framework

We used a set of 18 structural,
topological, spectral, and label
graph attributes Protein to graph

Graph embedding

Nearest
Neighbor
Classification

Predicted Class



PROTNN: FAST PROTEIN 3D-
STRUCTURE CLASSIFICATION

Accuracy comparison of ProtNN with other classification techniques.
Dataset Classification approach
Blast Sheba FatCat CE LPGBCMP D&D GAIA PROTNN PROTNN*
DS1 0.88 0.81 1 0.45 0.88 0.93 1 0.97 0.97
DS§2 0.82 0.86 0.89 0.49 0.73 0.76 0.66 0.8 0.89
DS3 0.9 0.95 0.84 0.59 0.90 0.96 0.89 0.96 0.97
DS54 0.76 0.92 1 0.46 0.9 0.93 0.89 0.97 0.97
DS5 0.86 0.99 0.94 0.76 0.87 0.89 0.72 0.9 0.94
DS6 0.78 1 0.94 0.81 0.91 0.95 0.87 0.96 0.96

Avg. accuracy’ 0.834+0.05 092+0.07 0.94+0.06 0.594+0.15 0.86+0.06 0.9+0.07 0.84+0.12 0.93+0.06 0.95+0.03

Avg. distances® 0.14+0.07 0.05+0.07 0.04+0.05 0.38+0.15 0.114£0.03  0.7+£0.04 0.144+0.09 0.05+0.03 0.02+0.01

Rank 8 4 2 9 6 5 7 3 1

! Average classification accuracy of each classification approach over the six datasets.
2 Average of the distances between the accuracy of each approach and the best obtained accuracy with each dataset.




PROTNN: FAST PROTEIN 3D-
STRUCTURE CLASSIFICATION

Results

Runtime results of ProtNN, FatCat and CE on the entire Protein Data Bank.

Task Total runtime’  Runtime'/protein
Building graph models 23h:9m:57s 0.9s

Computation of attnbutes  5d:8h: 12m:29s 4 95

Classification 2h:55m:15s 0.1s

PROTNN (all) 6d: 10h: 1 7Tme41s  5.9s

FATCAT Forever- 2d:4h:24m: 195"
CE Forever” 2d:10h: Tm:2s”

“The runtime is expressed m terms of days:hours:minutes:seconds
?The program did not finish running within two weeks
*The average runtime of randomly selected 100 proteins
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