
Data Mining in Functional Test Content Optimization

Li-C. Wang
University of California at Santa Barbara

Abstract — This paper reviews the data mining methodologies
[1]-[4] proposed for functional test content optimization where
tests are sequences of instructions or transactions. Basic machine
learning concepts and the key ideas of these methodologies are
explained. Challenges for implementing these methodologies in
practice are illustrated. Promises are demonstrated through ex-
perimental results based on industrial verification settings.

I. INTRODUCTION

Data mining is the process of uncovering patterns in data.
Many practical data mining tasks involve application of ma-
chine learning concepts and algorithms. The term data mining
is more recent and less rigorously-defined than the term ma-
chine learning where its origin, as described in the statistical
learning theory [5], can be traced back to the Perceptron [6].

In his book [5], Vapnik divides the research of machine
learning into four periods: (1) The Perceptron (1960s), (2)
Construction of the fundamentals of learning theory (1960-
1970s), (3) The Neural Networks (1980s), and (4) Construction
of alternatives to the Neural Networks (1990s). Perceptron is
viewed as the origin of machine learning because it is the first
algorithm to demonstrate that a machine can ”learn.”

Fig. 1. Setting of a learning problem

In this machine learning view, the word ”learning” takes a
functional perspective as illustrated in Fig. 1. The learning
problem comprises three components: (1) A generator G that
draws independent samples x from an unknown but fixed prob-
ability density function p(x); (2) A supervisor S that takes x
as input and outputs a value y according to a conditional distri-
bution function F (y|x) or a function y = f(x) + σ for some
random noise σ; (3) A learning machine LM capable of im-
plementing a set of functions gα(x) = ŷ based on a vector of
parameters α ∈ Λ. In supervised learning, the goal is to learn
the function f() based on samples of (x, y). In unsupervised
learning, the goal is to learn the density function p(x) based on
samples of x. In this case, there is no y.

The performance of the learning machine is usually mea-
sured by a loss function, in supervised learning as L(f, g) and
in unsupervised learning as L(p, g), which characterizes the er-
ror of the learned function g, i.e. the discrepancy between the
true answer (f or p) and g. Let Ln be the empirical error cal-
culated based on n samples. The learning theory concerns two

fundamental questions: (1) how to guarantee that as n → ∞,
the learned function g will converge to the true function, and
(2) how to construct a learning algorithm that delivers an opti-
mal converging rate. In other words, the learning theory studies
the asymptotic behavior of a learning machine.

For many data mining applications in Electronic Design Au-
tomation (EDA) and test, the asymptotic behavior of a learn-
ing machine is not the first concern. This is because in these
applications [7] one often faces the situation that the data is
limited and obtaining large amounts of additional data is cost
prohibitive. For these applications a more important concern
is: not having a dataset with sufficient information.

To provide the missing information to a learning machine,
domain knowledge is required. Applying domain knowledge in
learning is not new. In fact, in theory, learning (or generaliza-
tion from data) would not be possible without any knowledge
[8]. For example, in Fig. 1 one assumes that G follows a fixed
distribution and the samples are drawn independently. Another
example is that traditional statistical analyses such as outlier
analysis [9] and linear/quadratic discriminant analysis [10] as-
sume Gaussian densities in the underlying data. The Gaussian
assumption enables the analyses to be applied on small-size
dataset. Therefore, the question is never whether learning re-
quires domain knowledge or not. The question is how much.

Fig. 2. Tradeoff between knowledge and data

Conceptually, one can think of a tradeoff picture as shown in
Fig. 2. On one end, minimal knowledge is employed to make
a learning machine as general as possible - almost all infor-
mation regarding the underlying function to be learned has to
come from the data. This can be thought of as the area of fo-
cus for traditional machine learning research. On the other end,
one has very limited data. To enable learning, substantial do-
main knowledge is required. In this case, the learning machine
becomes specific to the problem domain.

For many data mining applications in EDA and test, one of-
ten works with data that is limited. Hence, the learning prob-
lems are close to the bottom-right corner of the tradeoff curve.
For these problems, the challenges lie in how to obtain and
incorporate domain knowledge into the data mining tasks [7].



Because domain knowledge is heavily involved, solving these
problems should not be thought of as simply applying some ex-
isting machine learning concepts and algorithms. More impor-
tantly, it is about developing a methodology that can effectively
incorporate domain knowledge into the learning flow. Natu-
rally, such a methodology would be application specific [7].

This paper reviews the data mining methodologies proposed
for functional test content optimization (FTCO) [1]-[4]. One of
the application contexts is functional verification.

Functional verification starts with a verification plan, spec-
ifying the aspects of the design to verify [11]. In addition to
manually-written direct tests, tests can be generated by con-
strained random test generation, which is guided by constraints
and biases specified in a test bench (or test template). Verifi-
cation quality is measured by coverage metrics and coverage
results are analyzed to guide the development of more effective
direct tests and test templates.

Design is an evolutionary process. From one revision to the
next, new features are added and/or bugs are fixed. Functional
verification evolves accordingly. In this evolutionary process,
assets accumulated through the verification efforts are the im-
portant tests and test templates which are collected into a re-
gression test suite. In this context, functional test content op-
timization can be viewed as the process of optimizing this re-
gression test suite for achieving a desired quality level.

Fig. 3. Existing manual learning for FTCO

In a typical verification flow, learning for FTCO is carried
out mostly by manual efforts. Fig. 3 illustrates this process:
The generator G produces a set of tests T . The generator can
be a person or a constrained random test generator. Each test
can be a sequence of instructions/transactions, i.e. an assembly
program. The simulator Sim simulates the set of tests and pro-
duces the result R that is evaluated through a step E to select
the important tests and/or test templates T ′ to be added into the
test suite. For example, an important test could be the one that
excites a bug or provides a unique coverage. When the result
is not satisfactory, some aspects of the generator (e.g. the test
template) are modified to produce new tests. This modification
is based on manual learning from the simulation result R and
the information collected through step E.

Fig. 4. Two data mining components added in FTCO

Fig. 4 shows two data mining components that can be added
into the existing functional test content optimization flow. First,
a filter F is added between the generator and the simulator. The

objective is to filter-in only the novel tests for the simulation
and discard the non-novel tests. Here a novel test could be
thought of as the one whose characteristics are dissimilar to
those tests that have been simulated. The assumption is that
a novel test has a much higher chance to be an important test.
Another important assumption is that the cost of the simulation
is much higher than the cost of the test generation.

Suppose the number of tests to be simulated is limited at N .
Without the filtering, N tests would be generated and simu-
lated. With the filtering, k ∗ N tests could be generated and
N tests would be simulated, assuming one novel test among
every k tests. The idea is that there should be more important
tests in the N novel tests than those in the N original tests.
Consequently, a more effective test suite can be obtained.

The second component intends to automate the learning pro-
cess for improving the test generation G. The improvements
can be twofold. For a coverage point that has been covered by
only a few tests, the learning can be used to obtain more tests
to increase the coverage frequency. For a coverage point that is
not yet covered, the learning can be used to increase the chance
of generating tests to cover the point.

In Fig. 4, if the simulator is replaced with silicon application
then the same ideas could be applicable in the context of post-
silicon validation. With respect to the two data mining compo-
nents, works [1][2] proposed methodologies to implement the
filtering component. Works [3][4] developed a methodology
for the learning and feedback component.

The rest of the paper is the following. Section II sum-
marizes the basic machine learning concepts and highlights
the key challenge for implementing the proposed data mining
methodologies in practice. Section III explains the proposed
data mining components in terms of their learning problem set-
tings. Section IV discusses practical implementation of the fil-
tering component with example results to demonstrate its effec-
tiveness. Section V discusses practical implementation of the
learning and feedback component also with example results to
illustrate its effectiveness. Section VI makes a final remark.

II. BASIC CONCEPTS AND KEY CHALLENGE

Fig. 5. Typical dataset seen by a learning algorithm [7]

Figure 5 illustrates a typical dataset seen by a machine learn-
ing algorithm (For more discussion, see e.g. [7]). When ~y is
present and there is a label for every sample, it is called super-
vised learning. In supervised learning, if each yi is a catego-
rized value, it is a classification problem. If each yi is modeled
as a continuous value, it becomes a regression problem.

When ~y is not present and only X is present, it is called unsu-
pervised learning. When some (usually much fewer) samples
are with labels and others have no label, the learning is then
called semi-supervised [12].



Each sample is encoded with n features f1, . . . , fn. Hence,
the characteristics of each sample are described as a vector ~xi.
In the context of functional test content optimization as shown
in Fig. 4, each sample is a test that is a sequence of instruc-
tions/transactions, i.e. an assembly program. The fundamental
challenge is therefore to encode an assembly program into an
acceptable input format for a learning machine.

Fig. 6. Two approaches to analyze assembly programs

Fig. 6 shows that there can be two approaches to enable a
learning machine to learn from a set of assembly programs. In
the explicit approach, a set of features is selected. Each test ti is
converted into a sample vector ~vi. In the implicit approach, one
develops a kernel function that measures the similarity between
any given two assembly programs directly.

Many modern learning algorithms follow the paradigm of
so-called kernel-based learning where the optimization engine
for building the learning model and the definition of the space
for the learning are separated (see, e.g. [13][14]). As illustrated
in Fig. 6, for a kernel-based machine to learn, it does not need
to access the samples directly. Instead, all it needs is the sim-
ilarity information between pairs of samples. In other words,
during the learning process the learning machine queries the
kernel function for pairs of tests (ti, tj) and the kernel func-
tion returns their similarity measure values k(ti, tj). Hence, to
enable the learning, one can develop a kernel function.

A. Importance of the learning space

A learning machine operates on samples projected into some
learning space. This projection can be explicit based on a set
of features f1, . . . , fn such as that shown in Fig. 5, or can be
implicit based on a kernel function. It is intuitive to observe
that the definition of the learning space can substantially dictate
the complexity of the learning. Fig. 7 uses a simple example
with 20 samples to illustrate this observation.

Fig. 7. Simple example to illustrate the importance of the learning space

The example consists of 7 positive samples and 13 negative
samples. Hence, it can be seen as a binary classification prob-

lem. Suppose these 20 samples are encoded with two features
f1 and f2, and projected onto the 2-dimensional space as shown
on the left plot. In this plot, observe that the two classes of sam-
ples are mixed with each other and are hard to be separated. For
example, there is no linear model to separate the two classes.

Suppose with domain knowledge, one knows that feature f1
is generated by two sources a and b as f1 = a ∗ b. Simi-
larly, f2 is generated by a+ b. The 20 samples are re-encoded
with two source features a and b, and projected onto the new 2-
dimensional space as shown on the right plot. As it is observed,
the two classes can now be separated easily by the line a = b.
The positive samples have the property a > b and the negative
samples have the property a ≤ b.

The simple example illustrates that domain knowledge can
make a learning problem much easier. A complex problem
needs more samples to learn and the resulting model can be
hard to interpret. For example, the left plot requires a non-
linear function to separate the two classes. It needs more sam-
ples to learn and the resulting model is harder to interpret. In
contrast, the right plot is easier to learn and the model is easier
to interpret.

The simple example shows another interesting point: If one
is looking for an interpretable model, then the learning problem
becomes a problem of searching for the learning space where
the resulting model is simple and interpretable. In this case, the
importance of the learning algorithm can be diminishing [7].

III. SETTING OF THE LEARNING PROBLEM

A. Problem formulation

To formulate a problem as a learning problem, one needs to
consider two sets of questions. The first set concerns the input
and output to the learning machine. For example:

• What is a sample?
• Where does the input data come from?
• How is a sample represented?
• How is a learning model represented?
• How will the learning model be applied?

In setting up a learning problem, perhaps the most impor-
tant aspect is to give a definition of the sample. For example,
in earlier discussion, we assume that a sample is a given as-
sembly program. However, depending on the need, one might
also consider every k (e.g. k = 3) consecutive instructions
as a sample, i.e. an assembly program would be broken into
multiple samples. It is obvious that learning depends on the
definition of what a sample is.

The learning component would not be standalone. It receives
input from another component (or components) in an overall
flow. It is important to consider the data source(s) and conse-
quently the availability of the data and its characteristics. Sam-
ple representation is another important aspect. As discussed
above, if a sample is not represented in vector form, additional
data processing is required.

Different learning algorithms produce learning models in
different forms. The representation of a learning model can
be based on rule, tree, equation, a collection of the samples,
etc. This leads to the next question as for how will a learning



model be applied. For example, if the model is first to be inter-
preted by a person, then a complex model would not be of much
use. In this case, a rule or a tree model might be more suitable
(see e.g. [15][16]). Moreover, some applications may demand
models with high accuracy and some may not. The accuracy
requirement also dictates how a learning problem should be
formulated.

The second set of the questions concerns the choice of the
learning approach and the algorithms. For example:

• Should the learning problem be solved by a supervised,
unsupervised, or semi-supervised approach?

• Which algorithms are more suitable than others?

Suppose the data comprises n positive samples and m neg-
ative samples for n � m. This situation often arises in learn-
ing problems formulated for EDA and test applications [7].
Such a problem could be approached by binary classification
with the consideration of handling an imbalanced dataset [17].
This problem could also be seen as finding a space to project
the positive samples as outliers (see e.g. [18]) - outlier analy-
sis is a form of unsupervised learning. Or the problem could
be approached by techniques designed specifically for semi-
supervised learning [12] if most of the negative samples actu-
ally mean ”don’t care” samples. One of the key considerations
is the ratio between n and m. For example, if m is on the order
of 10n, binary classification might still be applicable. If m is
on the order of 106n and n is small (e.g. n < 20), it might be
more suitable to treat it as an unsupervised learning problem.

Even with a learning approach decided, there can be many
algorithms to choose from. For example, a machine learning
tool library may consist of more than ten types of algorithms for
each approach [19]. Each algorithm may have variations and/or
open parameters to be decided on. Moreover, a preprocessing
component may be added to a learning machine. For example,
dimension reduction or feature extraction [19] may be used to
transform the dataset to facilitate the learning.

B. Model validation

Model validation is another crucial aspect of the learning
problem setting. In theory, as discussed in the Introduction,
one would like to learn the underlying function f() in super-
vised learning or the underlying distribution p() in unsuper-
vised learning. With a loss function L() defined, in the su-
pervised case, one can evaluate the empirical error Lm(f, g)
of a learning function g() based on m samples. For example,
the loss function can be based on the average square error that
gives the empirical error as 1

m

∑m
i=1(f(~xi)− g(~xi))

2.
In the supervised case, an empirical error can be calcu-

lated for a collection of samples because each ~xi has a label
yi = f(~xi). In the unsupervised case, it is trickier because
one does not have a way to access the true density value p(~xi).
To apply the loss function concept, for example, one can con-
struct an empirical distribution function pm() as the reference
and calculate an empirical error as Lm(pm(), g()) [20] — The
error is evaluated in a relative sense, not in an absolute sense.

An empirical error Lm() evaluates a learning model g()
based on the given m samples. However, the validity of a
model should be evaluated based on future unseen samples. In

machine learning, the concept of overfitting characterizes the
situation where the performance of a learning model on the fu-
ture samples deviates from the performance of the model on the
current samples used in learning. Fig. 8 illustrates the concept.

Fig. 8. Illustration of the concept overfitting in learning

In theory [5], one can obtain a model to minimize the empir-
ical error by increasing the model complexity. However, as a
model becomes more complex, at some point its performance
on the future samples becomes worse while its performance on
the current samples continues to improve. If a model falls into
this situation, the model is said to be overfitting the data.

To evaluate overfitting, a common way is to perform cross-
validation. The data is divided into two sets: a training set
consisting ofX% of the samples and a validation set consisting
of the remaining samples. For example, X% could be 90%.
The learning is applied to the training set and validated through
the validation set to ensure that the empirical errors calculated
on both sets are consistent. The process can be repeated k times
by randomly selecting the training set and taking the average.

Fig. 9. Challenge faced in many EDA/test data mining applications

In a typical learning problem setting, evaluation of model
validity can take place in two stages. Fig. 9 depicts the two
stages. In the first stage, empirical errors are calculated and
overfitting is evaluated. If both are satisfactory, in the second
stage the model is applied and its resulting performance in the
actual application is observed.

For example, if the objective of a model is to predict con-
sumer behavior and increase sales, ultimately one needs to ob-
serve the sales data for a period of time to conclude the validity
of the model. However, evaluating model validity in an actual
application can be time and effort consuming. Hence, in many
applications it is an acceptable practice to consider a model to
be valid if it can pass the first stage of the model evaluation.

In EDA and test applications, it is often the case that the
first evaluation stage is not even a viable option. Consider a
dataset with n positive samples and m negative samples where
n < 10 and n � m. In this case, one might not have enough
positive samples to pursue cross-validation. Consequently, a
model needs to be validated directly in its application context.



As an application example, in building models for capturing
customer returns [18], a model is validated by showing that it
can capture future potential customer returns. As another appli-
cation example, in building models for improving yield, silicon
experiments need to be conducted to demonstrate actual yield
improvement [21]. Pursuing model evaluation in its applica-
tion context is usually costly and time consuming. Hence, for
many EDA and test applications, one of the key challenges is to
devise a viable model evaluation scheme before actual model
application. This challenge is denoted in Fig. 9 by ”?”.

For functional test context optimization, the model evalua-
tion issue is less challenging. This is because the common ob-
jective of test context optimization is to improve coverage and
coverage can be evaluated through simulation (or silicon appli-
cation). For example, if a model is learned for hitting a par-
ticular event, evaluation of the model can mean (1) modifying
the test template (or test) according to the model, (2) applying
the resulting test(s), and (3) observing the event coverage. In
comparison to other applications such as customer return anal-
ysis and yield improvement, model evaluation in functional test
content optimization is much less costly.

C. The filtering component

The early work in [22] proposed to implement the filtering
component by solving a novelty detection problem with unsu-
pervised learning. Fig. 10 illustrates the idea. Suppose a set of
tests T has been simulated. In novelty detection the learning
machine builds a model to capture the ”space” represented by
the tests in T . The model is then used to filter future tests. If a
test falls inside the boundary of the model, it is discarded. If a
test falls outside, it is novel and selected for simulation.

Fig. 10. Filtering by performing novelty detection

One of the learning algorithms which can be used to build
such a novelty model is the Support Vector Machine (SVM)
one-class algorithm [13] which was used in [22]. In [22], the
tests were assumed to be sequences of binary vectors.

To extend the work to analyze assembly programs, the work
in [23] developed a kernel function that could measure the simi-
larity between two assembly programs. Similarity between two
programs was measured based on their program flow graphs,
more specifically based on the minimal edit distance to convert
one program graph to another.

What is the ”space” represented by a set of tests? With
kernel-based learning, this space is dictated by the similarity
measure function, i.e. the kernel function. Fig. 11 depicts the
concept. Suppose t1 has been simulated. Two more tests t2
and t3 are available. Suppose only one test can be simulated.

Should it be test t2 or test t3? Suppose a kernel function k()
is defined. The similarity between t1 and t2 is measured as
s12 = k(t1, t2) and the similarity between t1 and t3 is mea-
sured as s13 = k(t1, t3). It is intuitive to see that if s12 > s13,
i.e. t2 is closer to t1 than t3 to t1, then t3 should be chosen.

The SVM one-class algorithm essentially works on such a
kernel-induced space to find a model that includes most of the
sample points. For example, one can choose a parameter of
the algorithm to guarantee that the SVM learning model would
leave at most one point outside the modeled space [13].

Fig. 11. Learning space vs. actual coverage space - ideal situation [23]

Fig. 11 also illustrates the fundamental challenge in defin-
ing a proper kernel function. Ideally, the similarity measure
between two tests should reflect their similarity in terms of the
actual coverage in the coverage space. However, before tests
are simulated or applied, their actual coverages are unknown.
Hence, the information in the actual coverage space is not avail-
able to the learning machine.

More importantly, the coverage space can change from one
verification task to another. Consider that one task is to verify
unit A and the other task is to verify unit B. Coverage of unit
A is defined based on the signals in unit A, which would be
different from the coverage defined for unit B. This means that
one should have one kernel for unit A and another kernel for
unit B. In other words, the intent of the verification task should
be taken into account in the definition of the kernel function.

While the early works demonstrate promises of using a fil-
tering component to improve test content, they did not address
the question of how to incorporate verification intent (i.e. do-
main knowledge) into the learning machine. This is a crucial
consideration when the proposed learning approach is applied
in an actual industrial verification environment.

Fig. 12. Absolute novelty vs. relative novelty

With unsupervised learning, a novel test is the one that is
dissimilar to the simulated tests. In this setting, the novelty is
defined relatively. In some applications, one may want to look
for novel tests that have certain properties. For those applica-
tions, the definition of novelty becomes absolute. Fig. 12 de-
picts the difference between the two definitions. For example,



suppose the dataset comprises n novel tests and m non-novel
tests with n � m. To build a model to filter in future novel
tests that have the same properties of the existing novel tests,
one can formulate it as a supervised learning problem (see e.g.
[2]). Therefore, novelty detection can be approached by either
unsupervised learning or supervised learning. Which approach
to choose in Fig. 12 depends on the specific application.

D. The learning and feedback component

The early work in [26] formulated an implicant learning
problem for the learning and feedback component in Fig. 4.
Fig. 13 depicts the setting of the problem.

Fig. 13. Learning to enhance controllability of selected signals [26]

Suppose the input X comprises m vectors ~x1, . . . , ~xm where
each ~xi is a binary vector of length n. The output ~y comprises
m binary values, corresponding to the m values of a particu-
lar signal when the m inputs are applied. Essentially, one can
think of (X, ~y) as m samples drawn from an unknown Boolean
function. The implicant learning problem is to uncover the im-
plicants of this function based on the samples.

Suppose in verification one desires to hit an event. Hitting
the event requires controlling three signals inside the unit under
test (UUT). Then, this leads to three implicant learning prob-
lems. In general, the implicant learning problem can be thought
of as learning the Boolean function itself. However, as studied
in [24] learning a Boolean function works only when the func-
tion has very limited complexity. In fact, learning a Boolean
function in general is a difficult problem [25].

The work in [26] applied the concepts in association rule
mining [27] to implement a method for learning implicants.
The work in [28] implemented a learning and feedback method
in the context of unit-level verification. While these early
works showed promises of applying automatic learning to im-
prove signal controllability, the methods were not designed to
work with assembly programs directly.

E. Two unanswered questions

The early works, while demonstrating promises of applying
learning machine in functional test content optimization, did
not explicitly address two important questions:

• What is the domain knowledge in the application context?
• How to incorporate the domain knowledge when the sam-

ples to analyze are assembly programs?

Answering these questions is essential for practical imple-
mentation of the proposed two data mining components.

IV. IMPLEMENTING THE FILTERING COMPONENT

As discussed in Section II, learning space can be defined
explicitly or implicitly and the definition can dictate the com-
plexity of the learning. Therefore, it is intuitive to see that do-
main knowledge can be applied in two ways: (1) to influence
the computation of the kernel function, or (2) to influence the
feature selection. Fig. 14 illustrates these two approaches.

Fig. 14. Two ways to implement the filtering component

The work in [1] proposed to implement a kernel function
based on a set of monitoring signals selected in the unit un-
der test. Initially, this set is selected by the user. As the flow
iterates, in each iteration the monitoring set is automatically
adjusted based on the result from the simulated tests. The ad-
justment is based on the toggle coverage of the monitoring sig-
nals. For example, if a signal has a high coverage, it is removed
from the monitoring set.

Given a monitoring set, the kernel function measures the
similarity between two assembly programs based on their es-
timated coverage on the monitoring set. Because the kernel
computation has to be very fast, the estimation cannot be based
on simulation. In [1] the coverage estimation is based on a pre-
computed coverage database. The database consists of single-
instruction samples and multi-instruction sequences, and their
coverage on the signals of UUT. Then, coverage estimation of
a given assembly program is based on matching segments of
the assembly program to the stored single-instruction samples
and multi-instruction sequences. Note that the precomputed
coverage database can also be seen as the domain knowledge
that captures how individual instructions or certain primitive
instruction sequences are supposed to behave.

Fig. 15. Effect of the filtering component - Example 1

Fig. 15 and Fig. 16 show two examples to demonstrate the
effectiveness of the filtering component. The experiments were



conducted on a commercial processor [1]. In Fig. 15, no-
tice that in the original simulation without novelty detection
(i.e. without the filtering), the coverage curve has a signifi-
cant jumps in four places (circled with dotted red ovals). These
jumps indicate that there were few tests much more important
than others. With novelty detection these important tests were
recognized as novel tests. As a result, 100 novel tests could
achieve the same coverage of the original 2590 tests.

In Fig. 16, the actual saving in terms of the simulation time
is shown. Note that this simulation time was based on a server
farm. If the simulation was carried out on a single server, the
difference would be around one week.

Fig. 16. Effect of the filtering component - Example 2

The work in [2] implemented a filtering component to look
for tests that exercised the worst-case peak power. In the con-
text of Fig. 14, the work follows the second approach based
on feature selection and encoding. With respect to Fig. 12, the
learning looked for absolute novel tests with certain properties.
The properties are based on a set of architecture and/or micro-
architecture state features selected by the user (as depicted in
Fig. 14). The learning essentially tries to uncover the mapping
between these high-level states and the low-level behavior ob-
served. In [2], the low-level behavior to model is the worst-case
peak power in the execution of an assembly program.

To see that the learning is about learning the mapping, con-
sider two classes of tests T+ and T . Suppose tests in T+ cause
worst-case peak power and tests in T do not. With selected
state features, suppose tests in T+ are converted into n positive
samples, where each sample is a state vector. Each vector char-
acterizes the hardware state during the cycle when the worst-
case peak power is observed. Similarly, from the tests in T , m
negative samples are derived. This conversion is done by the
”sample encoding” step in Fig. 14.

Given the two sets of samples, a supervised learning machine
is applied to model the differences between the positive sam-
ples and the negative samples, for example as a decision tree
[2]. The model essentially characterizes a mapping function
from the high-level hardware states to the low-level worst-case
peak power events. Therefore, the essence of the learning is to
uncover this mapping.

V. IMPLEMENTING THE FEEDBACK COMPONENT

Fig. 17 depicts the learning and feedback component imple-
mented for works [3][4]. The goal is to uncover the properties
on a given set of important tests, with respect to a large num-
ber of unimportant tests (refer to the discussion with Fig. 4).

The approach looks similar to the second approach shown in
Fig. 14. However, there are some fundamental differences.

Fig. 17. Implementing the learning and feedback component

As suggested in [3], features are separated into two levels:
state features and instruction-based features. When the analy-
sis is carried out with state features, the learning tries to un-
cover important state feature combinations. Then, with the
instruction-based features, the learning tries to uncover what
instruction properties are likely to achieve those combinations.

In Fig. 17, features not only can be selected by the user but
also can be ”generated.” Generation of a feature means imple-
menting a function based on some selected features. For exam-
ple, one may have two state features, A and B and use them to
derive a new feature C=A+B.

The sample encoding is similar to that discussed above.
Once the two classes of samples are derived, classification rule
learning can be applied to uncover properties of the positive
samples [3]. Because the emphasis is on the discovery of prop-
erties of the positive samples, the number of the positive sam-
ples is much more important than the number of the negative
samples. As discussed in [4], as the number of negative sam-
ples grows beyond a point (e.g. 10K), adding more negative
samples would not help the learning.

In Fig. 14, a learning model is applied to filter tests. In
Fig. 17, the output of the rule learning is a ranked list of rules.
This list is supposed to be examined by the user. Hence, it is
up to the user to interpret a rule and decide on its usefulness.

Fig. 18. Effect of the learning and feedback component - Example 1

Fig. 18 is an example to show the effectiveness of the learn-
ing and feedback component [3]. The experiments were con-
ducted on a commercial processor verification environment.
Originally, the tests based on the test template written by the
verification team were not able to deliver good coverage on a
family of five assertions - only assertion IV was hit once by
2000 tests generated. By learning the properties on the test hit-
ting the assertion IV, the test template was modified and used to
generate 100 more tests. This resulted in (labeled as ”combined
macro”) coverage of assertions I to IV. With more positive sam-
ples available, the learning was carried out again. Test template
was modified accordingly and 100 more tests were produced.
With the 100 tests (labeled as ”iteration 1”) all five assertions



could be covered. The learning was applied again and the result
(labeled as ”iteration 2”) showed further improved coverage.

Fig. 19. Effect of the learning and feedback component - Example 2

Fig. 19 is an example to explain how the learning could be
applied when the initial simulation had zero coverage on the
events under consideration [4]. In this example, the events to
cover were E8 to E13. Simulation of more than 30K tests gen-
erated from a given test template could not cover any of the six
events. Because there was no test to cover any of the events,
there was no positive sample to learn from.

For this example, domain knowledge was applied to recog-
nize that signal values on C and S0 to S5 were highly related
to the activation of the six E’s events. Hence, learning was
used to learn about the properties related to C and S0 to S5.
Fig. 19 shows that after one iteration of learning, the modified
test template could cover 4 out of the 6 events (with 1K new
tests). By learning on the new positive tests, the modified test
template could cover all 6 events with 100 tests [4].

VI. FINAL REMARK

As explained in [7], data mining in EDA and test applica-
tions can often be treated as an iterative knowledge discov-
ery (KD) process [29] to uncover interpretable and actionable
knowledge. Fig. 20 illustrates a KD process.

Fig. 20. Data mining as an iterative knowledge discovery (KD) process

Fig. 17 can be viewed as an example of the KD process in
Fig. 20. In Fig. 17, the learning perspective is defined by the
features in use. The data preparation is the sample encoding
step. The data mining is the rule learning step. More impor-
tantly, the learning results are interpreted by a user and actions
are pursued according to the interpretation. It is important to
recognize that in order to produce interpretable results, the fea-
tures themselves have to be interpretable to begin with. Inter-
pretability is a crucial consideration in practice. This can apply
to the features, the kernel functions, and the resulting learning
models. In practice, if a user cannot make sense of a model,
the model is often not applied, especially when application of
the model has a non-neglectable cost. How to develop a data
mining system to maximize the interpretability is a problem
subjected to future research.

ACKNOWLEDGMENTS
This work is supported in part by Semiconductor Research Corpo-

ration projects 2012-TJ-2268, 2013-TJ-2466, and by National Science
Foundation Grant No. 1255818.

REFERENCES

[1] Wen Chen, et. al. Novel Test Detection to Improve Simulation Efficiency
— A Commercial Experiment. ACM/IEEE ICCAD, 2012.

[2] Vinayak Kamath, et. al., Functional Test Content Optimization for Peak-
Power Validation — An Experimental Study. In International Test Con-
ference, 2012.

[3] Wen Chen, et al., Simulation knowledge extraction and reuse in con-
strained random processor verification. In ACM/IEEE Design Automation
Conference, 2013.

[4] Kou-Kai Hsieh, et al., On Application of Data Mining in Functional De-
bug. In ICCAD, 2014.

[5] V. Vapnik, The nature of Statistical Learning Theory. 2nd ed., Springer,
1999.

[6] Frank Rosenblatt. Principles of Neurodynamics. Washington, DC. Spar-
tan Books, 1962.

[7] Li-C. Wang, Magdy Abadir. Data Mining In EDA - Basic Principles,
Promises, and Constraints in Design Automation Conference, 2014.

[8] Olivier Bousquet, et. al. Introduction to Statistical Learning Theory.
Springer LNCS, V 3176, 2004, pp. 169-207.

[9] Frank E. Grubbs. Procedures for Detecting Outlying Observations in
Samples in Technometrics, v11, no 1, 1969, pp. 1-21.

[10] Trevor Hastie, et al. The Elements of Statistical Learning - Date Mining,
Inference, and Prediction. Springer Series in Statistics, 2001

[11] Y. Katz and et al. Learning microarchitectural behaviors to improve stim-
uli generation quality. In ACM/IEEE Design Automation Conference,
pages 848 –853, 2011.

[12] Olivier Chapelle, Bernhard Schlkopf and Alexander Zien. Semi-
Supervised Learning. The MIT press, 2010.

[13] Bernhard Schlkopf, and Alexander J. Smola. Learning with Kernels:
Support Vector Machines, Regularization, Optimization, and Beyond.
The MIT Press, 2001.

[14] J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis.
Cambridge University Press 2004.

[15] Nicholas Callegari, et. al. Classification rule learning using subgroup
discovery of cross-domain attributes responsible for design-silicon mis-
match. DAC, 2010, pp. 374-379.

[16] Janine Chen, et. al. Mining AC Delay Measurements for Understanding
Speed-limiting Paths. In IEEE ITC, 2010.

[17] G. Batista. A Study of the Behavior of Several Methods for Balancing
Machine Learning Training Data. Sigkdd Explor., 6(1), pp. 20-29, 2004.

[18] Nik Sumikawa, et. al. Screening Customer Returns With Multivariate
Test Analysis. In IEEE ITC, 2012.

[19] http://scikit-learn.org/stable/user guide.html#user-guide http://scikit-
learn.org/stable/modules/classes.html

[20] Sayan Mukherjee and Vladimir Vapnik. Support Vector Method for Mul-
tivariate Density Estimation. A.I. Memo No. 1653, C.B.C.L. Paper No.
170, MIT 1999.

[21] Jeff Tikkanen et. al., Yield Optimization Using Advanced Statistical Cor-
relation Methods. In IEEE ITC, 2014.

[22] Onur Guzey, et. al., Functional Test Selection Based on Unsupervised
Support Vector Analysis. in Design Automation Conference, 2008.

[23] Po-Hsien Chang, et. al., A Kernel-Based Approach for Functional Test
Program Generation. In International Test Conference, 2010.

[24] Onur Guzey, et. al. Extracting a Simplified View of Design Functionality
Based on Vector Simulation. Lecture Note in Computer Science, LNCS,
Vol 4383, 2007, pp. 34-49.

[25] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computa-
tional Learning Theory, MIT Press, 1994.

[26] Onur Guzey, et. al., Enhancing signal controllability in functional test-
benches through automatic constraint extraction. In International Test
Conference, 2007.

[27] Chengqi Zhang and Shichao Zhang. Association Rule Mining, Models
and Algorithms. Lecture Notes in CS Vol. 2307, Springer 2002.

[28] C.H.-P. Wen, et. al., An Incremental Learning Framework for Estimating
Signal Controllability in Unit-Level Verification. In ICCAD, 2007.

[29] Krzysztof J. Cios, et. al., Data Mining - A Knowledge Discovery Ap-
proach, Springer, 2007.


