
Data Mining Techniques
CS 6220 - Section 3 - Fall 2016

Lecture 19: Social Networks
Jan-Willem van de Meent
(credit: Leskovec et al Chapter 10,
 Aggarwal Chapter 19)

Community Detection

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

Problem: Can we identify groups
of densely connected nodes?

http://www.mmds.org

Communities: Football Conferences

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

Nodes: Football Teams, Edges: Matches,
Communities: Conferences

http://www.mmds.org

Communities: Academic Citations

Source: Citation networks and Maps of science [Börner et al., 2012]

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

Nodes: Journals, Edges: Citations,
Communities: Academic Disciplines

http://www.mmds.org

Communities: Protein-Protein Interactions

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

Nodes: Proteins, Edges: Physical interactions,
Communities: Functional Modules

http://www.mmds.org

Community Detection

We will work with undirected (unweighted) networks

Graph Partitioning Overlapping Communities

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

http://www.mmds.org

Centrality Measures
19.2. SOCIAL NETWORKS: PRELIMINARIES AND PROPERTIES 625

67
16

17
HIGHEST

BETWEENNESS

1 32 4 5

8

9
14

15CENTRALITY

10

11 13G S G HIGHEST
12

HI HEST DEGREE
CENTRALITY CLOSENESS

CENTRALITY

7

65

1 2

34

CINFLUENCE
SET OF NODE 1

centrality illustration proximity prestige(a) (b)

Figure 19.1: Illustration of centrality and prestige

The notion of closeness centrality is meaningfully defined with respect to undirected and
connected networks. The average shortest path distance, starting from node i, is denoted by
AvDist(i) and is defined in terms of the pairwise shortest path distances Dist(i, j), between
nodes i and j as follows:

AvDist(i) =

∑n
j=1 Dist(i, j)

n − 1
(19.8)

The closeness centrality is simply the inverse of the average distance of other nodes to
node i.

CC(i) = 1/AvDist(i) (19.9)

Because the value of AvDist(i) is at least 1, this measure ranges between 0 and 1. In the
case of Fig. 19.1a, node 3 has the highest closeness centrality because it has the lowest
average distance to other nodes.

A measure known as proximity prestige can be used to measure prestige in directed
networks. To compute the proximity prestige of node i, the shortest path distance to node i
from all other nodes is computed. Unlike undirected networks, a confounding factor in the
computation is that directed paths may not exist from other nodes to node i. For example,
no path exists to node 7 in Fig. 19.1b. Therefore, the first step is to determine the set of
nodes Influence(i) that can reach node i with a directed path. For example, in the case of
the Twitter network, Influence(i) corresponds to all recursively defined followers of node i.
An example of an influence set of node 1 is illustrated in Fig. 19.1b. The value of AvDist(i)
can now be computed only with respect to the influence set Influence(i).

AvDist(i) =

∑
j∈Influence(i) Dist(j, i)

|Influence(i)| (19.10)

Note that distances are computed from node j to i, and not vice versa, because we are
computing a prestige measure, rather than a gregariousness measure.

Both the size of the influence set and average distance to the influence set play a role
in defining the proximity prestige. While it is tempting to use the inverse of the average
distance, as in the previous case, this would not be fair. Nodes that have less influence
should be penalized. For example, in Fig. 19.1b, node 6 has the lowest possible distance
value of 1 from node 7, which is also the only node it influences. While its low average
distance to its influence set suggests high prestige, its small influence set suggests that it

• Betweenness: Number of shortest paths
• Closeness: Average distance to other nodes
• Degree: Number of connections to other nodes

Betweenness
Edge Strength (call volume) Edge Betweenness

• Betweenness: Number of shortest paths  
passing through a node or edge

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

http://www.mmds.org

Edge Betweenness

10.2. CLUSTERING OF SOCIAL-NETWORK GRAPHS 355

ness, until the graph has broken into a suitable number of connected compo-
nents.

Example 10.9 : Let us start with our running example, the graph of Fig. 10.1.
We see it with the betweenness for each edge in Fig. 10.7. The calculation of
the betweenness will be left to the reader. The only tricky part of the count
is to observe that between E and G there are two shortest paths, one going
through D and the other through F . Thus, each of the edges (D, E), (E, F),
(D, G), and (G, F) are credited with half a shortest path.

A B D E

G F

C

5

12

41

5 4.5

1.5

1.5

4.5

Figure 10.7: Betweenness scores for the graph of Fig. 10.1

Clearly, edge (B, D) has the highest betweenness, so it is removed first.
That leaves us with exactly the communities we observed make the most sense,
namely: {A, B, C} and {D, E, F, G}. However, we can continue to remove
edges. Next to leave are (A, B) and (B, C) with a score of 5, followed by (D, E)
and (D, G) with a score of 4.5. Then, (D, F), whose score is 4, would leave the
graph. We see in Fig. 10.8 the graph that remains.

A B D E

G F

C

Figure 10.8: All the edges with betweenness 4 or more have been removed

The “communities” of Fig. 10.8 look strange. One implication is that A and
C are more closely knit to each other than to B. That is, in some sense B is a
“traitor” to the community {A, B, C} because he has a friend D outside that
community. Likewise, D can be seen as a “traitor” to the group {D, E, F, G},
which is why in Fig. 10.8, only E, F , and G remain connected. ✷

• Count number of shortest paths  
passing through each edge  
(can be done with weighted edges)

• If there are multiple paths of equal  
length, then split counts

Girvan-Newman Algorithm

Repeat until k clusters found
1. Calculate betweenness
2. Remove edge(s) with highest betweenness

(hierarchical divisive clustering according to betweenness)

49
33

12
1

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

http://www.mmds.org

Girvan-Newman Algorithm
(hierarchical divisive clustering according to betweenness)
Step Step

Step Hierarchical network

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

http://www.mmds.org

Girvan-Newman: Physics Citations

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

http://www.mmds.org

Girvan-Newman

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

Two problems
1. How can we compute the  

betweenness for all edges?
2. How can we choose the  

number of components k?

http://www.mmds.org

Calculating Betweenness

How can we count all shortest paths?
• Loop over nodes in graph

• Perform breadth-first search to find  
shortest paths to other nodes

• Increment counts for edges traversed  
by shorts paths

• Divide final betweenness by 2  
(since all paths counted twice)

Counting Shortest Paths
352 CHAPTER 10. MINING SOCIAL-NETWORK GRAPHS

E

D F

B G

A C
1 1

2
1

1 1

1

Level 1

Level 2

Level 3

Figure 10.4: Step 1 of the Girvan-Newman Algorithm

Example 10.6 : Figure 10.4 is a breadth-first presentation of the graph of Fig.
10.3, starting at node E. Solid edges are DAG edges and dashed edges connect
nodes at the same level. ✷

The second step of the GN algorithm is to label each node by the number of
shortest paths that reach it from the root. Start by labeling the root 1. Then,
from the top down, label each node Y by the sum of the labels of its parents.

Example 10.7 : In Fig. 10.4 are the labels for each of the nodes. First, label
the root E with 1. At level 1 are the nodes D and F . Each has only E as a
parent, so they too are labeled 1. Nodes B and G are at level 2. B has only
D as a parent, so B’s label is the same as the label of D, which is 1. However,
G has parents D and F , so its label is the sum of their labels, or 2. Finally, at
level 3, A and C each have only parent B, so their labels are the label of B,
which is 1. ✷

The third and final step is to calculate for each edge e the sum over all nodes
Y of the fraction of shortest paths from the root X to Y that go through e.
This calculation involves computing this sum for both nodes and edges, from
the bottom. Each node other than the root is given a credit of 1, representing
the shortest path to that node. This credit may be divided among nodes and
edges above, since there could be several different shortest paths to the node.
The rules for the calculation are as follows:

1. Each leaf in the DAG (a leaf is a node with no DAG edges to nodes at
levels below) gets a credit of 1.

2. Each node that is not a leaf gets a credit equal to 1 plus the sum of the
credits of the DAG edges from that node to the level below.

10.2. CLUSTERING OF SOCIAL-NETWORK GRAPHS 353

3. A DAG edge e entering node Z from the level above is given a share of the
credit of Z proportional to the fraction of shortest paths from the root to
Z that go through e. Formally, let the parents of Z be Y1, Y2, . . . , Yk. Let
pi be the number of shortest paths from the root to Yi; this number was
computed in Step 2 and is illustrated by the labels in Fig. 10.4. Then the
credit for the edge (Yi, Z) is the credit of Z times pi divided by

∑k
j=1 pj .

After performing the credit calculation with each node as the root, we sum
the credits for each edge. Then, since each shortest path will have been discov-
ered twice – once when each of its endpoints is the root – we must divide the
credit for each edge by 2.

Example 10.8 : Let us perform the credit calculation for the BFS presentation
of Fig. 10.4. We shall start from level 3 and proceed upwards. First, A and C,
being leaves, get credit 1. Each of these nodes have only one parent, so their
credit is given to the edges (B, A) and (B, C), respectively.

E

D F

B G

A C1 1

3 1

1 1

Figure 10.5: Final step of the Girvan-Newman Algorithm – levels 3 and 2

At level 2, G is a leaf, so it gets credit 1. B is not a leaf, so it gets credit
equal to 1 plus the credits on the DAG edges entering it from below. Since
both these edges have credit 1, the credit of B is 3. Intuitively 3 represents the
fact that all shortest paths from E to A, B, and C go through B. Figure 10.5
shows the credits assigned so far.

Now, let us proceed to level 1. B has only one parent, D, so the edge
(D, B) gets the entire credit of B, which is 3. However, G has two parents, D
and F . We therefore need to divide the credit of 1 that G has between the edges
(D, G) and (F, G). In what proportion do we divide? If you examine the labels
of Fig. 10.4, you see that both D and F have label 1, representing the fact that
there is one shortest path from E to each of these nodes. Thus, we give half
the credit of G to each of these edges; i.e., their credit is each 1/(1 + 1) = 0.5.
Had the labels of D and F in Fig. 10.4 been 5 and 3, meaning there were five

Count number of
shortest paths from  

(E) to each node

3 0.5
0.5

Accumulate credit 
upwards, dividing  

across shortest paths

4.5 1.5

4.5 1.5

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

http://www.mmds.org

Counting Paths: Larger Example

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

Original Graph Breadth-first Ordering from A

http://www.mmds.org

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

Step 1. Count number of shortest paths from to each node

Counting Paths: Larger Example

http://www.mmds.org

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

Step 2. Propagate credit upwards, splitting  
according to number of paths to parents

1 path to K.
Split in ratio 3:3

Counting Paths: Larger Example

http://www.mmds.org

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

1+0.5 paths to J
Split 1:2

1 path to K.
Split in ratio 3:3

Step 2. Propagate credit upwards, splitting  
according to number of paths to parents

Counting Paths: Larger Example

http://www.mmds.org

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

1+0.5 paths to J
Split 1:2

1 path to K.
Split in ratio 3:3

Step 2. Propagate credit upwards, splitting  
according to number of paths to parents

Counting Paths: Larger Example

http://www.mmds.org

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

1+0.5 paths to J
Split 1:2

1 path to K.
Split in ratio 3:3

Step 2. Propagate credit upwards, splitting  
according to number of paths to parents

Counting Paths: Larger Example

http://www.mmds.org

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

1+0.5 paths to J
Split 1:2

1 path to K.
Split in ratio 3:3

Step 2. Propagate credit upwards, splitting  
according to number of paths to parents

Counting Paths: Larger Example

http://www.mmds.org

Determining the Number of Communities

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

Hierarchical decomposition Choosing a cut-off

Analogous problem to deciding on number  
of clusters in hierarchical clustering

http://www.mmds.org

Modularity

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

Idea: Compare fraction of edges within module to fraction  
 that would be observed for random connections

• m: Number of edges in graph
• Auv: Adjacency matrix (1 if edge exists 0 otherwise)
• ku: Degree of node u
• cu: Cluster assignment for node u

Q =
1

2m

X

uv

Avw � kvkw

2m

�
�(cu, cv)

http://www.mmds.org

Modularity

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

Use modularity to optimize connectivity within modules

http://www.mmds.org

Spectral Clustering

Graph Partitioning

• What makes a good partition?
• Maximize the within-group connections
• Minimize the between-group connections

1

3

2

5

4 6

A B

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

http://www.mmds.org

Graph Cuts

1

3

2

5

4 6

A B

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

Degree
di =

X

j

Aij

Volume
vol(A) =

X

j

di cut(A,B) =
X

i2A,j2B

Aij

Cut

http://www.mmds.org

Minimal Cuts

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

arg minA,B cut(A,B)

“Optimal cut”
Minimum cut

Problem: minimal cut is not
necessarily a good splitting criterion

http://www.mmds.org

Normalized Cuts

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

Degree
di =

X

j

Aij

Volume
vol(A) =

X

j

di

1

3

2

5

4 6

A B

cut(A,B) =
X

i2A,j2B

Aij

Cut

ncut(A,B) =

cut(A,B)

vol(A)

+

cut(A,B)

vol(B)

http://www.mmds.org

Find Optimal Cut [Fiedler’73]

 0
j

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

y⇤ = argmin
y2{�1,1}n

X

(i, j)2E

(yi � yj)2

http://www.mmds.org

Matrix Representations
• Adjacency matrix (A):

• n× n matrix
• A=[aij], aij= 1 if edge between node i and j

• Important properties:
• Symmetric matrix
• Eigenvectors are real and orthogonal

1

3

2

5

4
6

1 2 3 4 5 6

1 0 1 1 0 1 0
2 1 0 1 0 0 0
3 1 1 0 1 0 0
4 0 0 1 0 1 1
5 1 0 0 1 0 1
6 0 0 0 1 1 0

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

http://www.mmds.org

Matrix Representations
• Degree matrix (D):

• n× n diagonal matrix

• D=[dii], dii = degree of node i

1

3

2

5

4
6

1 2 3 4 5 6

1 3 0 0 0 0 0
2 0 2 0 0 0 0
3 0 0 3 0 0 0
4 0 0 0 3 0 0
5 0 0 0 0 3 0
6 0 0 0 0 0 2

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

http://www.mmds.org

Matrix Representations

1

3

2

5

4 6

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

http://www.mmds.org

Second Eigenvalue

xx
xMx

T

T

x

 min2 =λ

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

http://www.mmds.org

Second Eigenvector of Laplacian

∑
∑ −

= ∈

2

2
),(

2
)(

min
ii

jiEji

x
xx

λ

i j

 0
x

Balance to minimize

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

http://www.mmds.org

Rayleigh Theorem

Lyyyyyf T
ji

Ejiy n
=−= ∑

∈ℜ∈

2

),(
)()(min

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

http://www.mmds.org

Spectral Clustering Algorithms
• Three basic stages:

• 1) Pre-processing
• Construct a matrix representation of the graph
• More generally, construct similarity matrix

• 2) Decomposition
• Compute eigenvalues and eigenvectors of the matrix
• Map each point to a lower-dimensional representation

based on one or more eigenvectors
• 3) Grouping

• Assign points to two or more clusters, based on the new
representation

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

http://www.mmds.org

Spectral Partitioning Algorithm
• 1) Pre-processing:

• Build Laplacian  
matrix L of the  
graph

• 2) Decomposition:
• Find eigenvalues λ 

and eigenvectors x  
of the matrix L

• Map vertices to  
corresponding  
components of λ2

0.0-0.4-0.40.4-0.60.4

0.50.4-0.2-0.5-0.30.4

-0.50.40.60.1-0.30.4

0.5-0.40.60.10.30.4

0.00.4-0.40.40.60.4

-0.5-0.4-0.2-0.50.30.4

5.0

4.0

3.0

3.0

1.0

0.0

λ= X =

How do we now
find the clusters?

-0.66

-0.35

-0.34

0.33

0.62

0.31

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

http://www.mmds.org

Spectral Partitioning
• 3) Grouping:

• Sort components of reduced 1-dimensional vector
• Identify clusters by splitting the sorted vector in two

• How to choose a splitting point?
• Naïve approaches:

• Split at 0 or median value
• More expensive approaches:

• Attempt to minimize normalized cut in 1-dimension  
(sweep over ordering of nodes induced by the eigenvector)

-0.66

-0.35

-0.34

0.33

0.62

0.31 Split at 0:
Cluster A: Positive points

Cluster B: Negative points

0.33

0.62

0.31

-0.66

-0.35

-0.34

A B

Example: Spectral Partitioning

Rank in x2

Va
lu

e
of

 x
2

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

http://www.mmds.org

Example: Spectral Partitioning

Rank in x2

Va
lu

e
of

 x
2

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

http://www.mmds.org

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

k-Way Spectral Clustering
• How do we partition a graph into k clusters?

• Two basic approaches:
• Recursive bi-partitioning [Hagen et al., ’92]

• Recursively apply bi-partitioning algorithm in a
hierarchical divisive manner

• Disadvantages: Inefficient, unstable
• Cluster multiple eigenvectors [Shi-Malik, ’00]

• Build a reduced space from multiple eigenvectors
• Commonly used in recent papers

43

Spectral Clustering as General-purpose Method

source: Ng, Jordan and Weiss, NIPS 2001

Spectral&clustering&

[Figures from Ng, Jordan, Weiss NIPS ‘01]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
nips, 8 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
lineandballs, 3 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
fourclouds, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
squiggles, 4 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
twocircles, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
threecircles−joined, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
threecircles−joined, 3 clusters

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Rows of Y (jittered, randomly subsampled) for twocircles

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
two circles, 2 clusters (K−means)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
threecircles−joined, 3 clusters (connected components)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
lineandballs, 3 clusters (Meila and Shi algorithm)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
nips, 8 clusters (Kannan et al. algorithm)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
nips, 8 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
lineandballs, 3 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
fourclouds, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
squiggles, 4 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
twocircles, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
threecircles−joined, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
threecircles−joined, 3 clusters

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Rows of Y (jittered, randomly subsampled) for twocircles

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
two circles, 2 clusters (K−means)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
threecircles−joined, 3 clusters (connected components)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
lineandballs, 3 clusters (Meila and Shi algorithm)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
nips, 8 clusters (Kannan et al. algorithm)

Define “edge weight” W using some similarity metric
(e.g. a kernel function)

