Data Mining Techniques

CS 6220 - Section 3 - Fall 2016

Lecture 19: Social Networks

Jan-Willem van de Meent (*credit:* Leskovec et al Chapter 10, Aggarwal Chapter 19)

Community Detection

Problem: Can we identify groups of densely connected nodes?

Communities: Football Conferences

Nodes: Football Teams, *Edges:* Matches, *Communities:* Conferences

Communities: Academic Citations

Source: Citation networks and Maps of science [Börner et al., 2012]

Nodes: Journals, *Edges:* Citations, *Communities:* Academic Disciplines

Communities: Protein-Protein Interactions

Nodes: Proteins, Edges: Physical interactions, Communities: Functional Modules

Community Detection

Graph Partitioning

Overlapping Communities

We will work with undirected (unweighted) networks

Centrality Measures

- Betweenness: Number of shortest paths
- Closeness: Average distance to other nodes
- *Degree*: Number of connections to other nodes

Betweenness

Edge Strength (call volume)

Edge Betweenness

Betweenness: Number of shortest paths passing through a node or edge

Edge Betweenness

- Count number of shortest paths passing through each edge (can be done with weighted edges)
- If there are multiple paths of equal length, then split counts

Girvan-Newman Algorithm

(hierarchical divisive clustering according to betweenness)

Repeat until k clusters found

- 1. Calculate betweenness
- 2. Remove edge(s) with highest betweenness

Girvan-Newman Algorithm

(hierarchical divisive clustering according to betweenness)

Girvan-Newman: Physics Citations

Girvan-Newman

Two problems

- 1. How can we compute the betweenness for all edges?
- 2. How can we choose the number of components k?

Calculating Betweenness

How can we count all shortest paths?

- Loop over nodes in graph
 - Perform breadth-first search to find shortest paths to other nodes
 - Increment counts for edges traversed by shorts paths
- Divide final betweenness by 2 (since all paths counted twice)

Counting Shortest Paths

Count number of shortest paths from (E) to each node

Accumulate credit upwards, dividing across shortest paths

Original Graph

Breadth-first Ordering from A

Step 1. Count number of shortest paths from to each node

Step 2. Propagate credit upwards, splitting according to number of paths to parents

Step 2. Propagate credit upwards, splitting according to number of paths to parents

Step 2. Propagate credit upwards, splitting according to number of paths to parents

Step 2. Propagate credit upwards, splitting according to number of paths to parents

Step 2. Propagate credit upwards, splitting according to number of paths to parents

Determining the Number of Communities

Hierarchical decomposition

Choosing a cut-off

Analogous problem to deciding on number of clusters in hierarchical clustering

Modularity

Idea: Compare fraction of edges within module to fraction that would be observed for random connections

$$Q = \frac{1}{2m} \sum_{uv} \left[A_{vw} - \frac{k_v k_w}{2m} \right] \delta(c_u, c_v)$$

- *m:* Number of edges in graph
- Auv: Adjacency matrix (1 if edge exists 0 otherwise)
- *k_u*: Degree of node *u*
- *c_u:* Cluster assignment for node u

Modularity

Use modularity to optimize connectivity within modules

Spectral Clustering

Graph Partitioning

- What makes a good partition?
 - Maximize the within-group connections
 - Minimize the between-group connections

Graph Cuts

Degree Volume Cut
$$d_i = \sum_j A_{ij}$$
 $\operatorname{vol}(A) = \sum_j d_i$ $\operatorname{cut}(A, B) = \sum_{i \in A, j \in B} A_{ij}$

Minimal Cuts

arg min_{A,B} cut(A,B)

Problem: minimal cut is not necessarily a good splitting criterion

Normalized Cuts

Find Optimal Cut [Fiedler'73]

- Back to finding the optimal cut
- Express partition (A,B) as a vector

$$y_i = \begin{cases} +1 & if \ i \in A \\ -1 & if \ i \in B \end{cases}$$

We can minimize the cut of the partition by finding a non-trivial vector x that minimizes:

$$y^* = \operatorname*{argmin}_{y \in \{-1,1\}^n} \sum_{(i,j) \in E} (y_i - y_j)^2$$

Can't solve exactly. Let's relax y and allow it to take any real value.

Matrix Representations

- Adjacency matrix (A):
 - *n*× *n* matrix
 - $A = [a_{ij}], a_{ij} = 1$ if edge between node *i* and *j*

		2	3	4	5	6
	0	_		0		0
2		0		0	0	0
3			0		0	0
4	0	0		0		
5		0	0		0	
6	0	0	0			0

- Important properties:
 - Symmetric matrix
 - Eigenvectors are real and orthogonal

Matrix Representations

- Degree matrix (D):
 - *n*×*n* diagonal matrix
 - *D*=[*d_{ii}*], *d_{ii}* = degree of node *i*

Matrix Representations

Laplacian matrix (L):

n×n symmetric matrix

		2	3	4	5	6
	3	-	-	0	-	0
2	-	2	-	0	0	0
3	-	-	3	-	0	0
4	0	0	-	3	-	-
5	-	0	0	-	3	-
6	0	0	0	-	-	2

What is trivial eigenpair?

• x = (1, ..., 1) then $L \cdot x = 0$ and so $\lambda = \lambda_1 = 0$

Important properties:

- Eigenvalues are non-negative real numbers
- Eigenvectors are real and orthogonal

Second Eigenvalue

Fact: For symmetric matrix M:

$$\lambda_2 = \min_{x} \frac{x^T M x}{x^T x}$$

What is the meaning of min x^TL x on G?

•
$$\mathbf{x}^{\mathrm{T}} \mathbf{L} \mathbf{x} = \sum_{i,j=1}^{n} L_{ij} x_i x_j = \sum_{i,j=1}^{n} (D_{ij} - A_{ij}) x_i x_j$$

$$= \sum_i D_{ii} x_i^2 - \sum_{(i,j)\in E} 2x_i x_j$$

$$= \sum_{(i,j)\in E} (x_i^2 + x_j^2 - 2x_i x_j) = \sum_{(i,j)\in E} (x_i - x_j)^2$$

Node *i* has degree d_i . So, value x_i^2 needs to be summed up d_i times. But each edge (i, j) has two endpoints so we need $x_i^2 + x_i^2$

Second Eigenvector of Laplacian

What else do we know about x?

- x is unit vector: $\sum_i x_i^2 = 1$
- x is orthogonal to $\mathbf{1}^{st}$ eigenvector $(\mathbf{1}, ..., \mathbf{1})$ thus: $\sum_{i} x_{i} \cdot \mathbf{1} = \sum_{i} x_{i} = \mathbf{0}$

We want to assign values x_i to nodes *i* such that few edges cross 0. (we want x_i and x_i to subtract each other)

Balance to minimize

 x_i

 x_i

Rayleigh Theorem

$$\min_{y\in\Re^n} f(y) = \sum_{(i,j)\in E} (y_i - y_j)^2 = y^T L y$$

- $\lambda_2 = \min_y f(y)$: The minimum value of f(y) is y given by the 2nd smallest eigenvalue λ_2 of the Laplacian matrix L
- x = arg min_y f(y): The optimal solution for y is given by the corresponding eigenvector x, referred as the Fiedler vector

Spectral Clustering Algorithms

- Three basic stages:
 - 1) Pre-processing
 - Construct a matrix representation of the graph
 - More generally, construct similarity matrix
 - 2) Decomposition
 - Compute eigenvalues and eigenvectors of the matrix
 - Map each point to a lower-dimensional representation based on one or more eigenvectors
 - 3) Grouping
 - Assign points to two or more clusters, based on the new representation

Spectral Partitioning Algorithm

- 1) Pre-processing:
 - Build Laplacian matrix *L* of the graph

	I	2	3	4	5	6
I	3	-	-	0	-	0
2	-	2	-	0	0	0
3	-	-	3	-	0	0
4	0	0	-	3	-	-
5	-	0	0	-	3	-
6	0	0	0	-	-	2

- 2) Decomposition:
 - Find eigenvalues λ and eigenvectors x of the matrix L
 - Map vertices to corresponding components of λ₂

Spectral Partitioning

- 3) Grouping:
 - Sort components of reduced 1-dimensional vector
 - Identify clusters by splitting the sorted vector in two
- How to choose a splitting point?
 - Naïve approaches:
 - Split at 0 or median value
 - More expensive approaches:
 - Attempt to minimize normalized cut in 1-dimension (sweep over ordering of nodes induced by the eigenvector)

Cluster A: Positive points

Cluster B: Negative points

L	0.3		4	-0.3	
2	0.6		5	-0.3	
3	0.3		6	-0.6	

Example: Spectral Partitioning

Example: Spectral Partitioning

k-Way Spectral Clustering

- How do we partition a graph into k clusters?
- Two basic approaches:
 - Recursive bi-partitioning [Hagen et al., '92]
 - Recursively apply bi-partitioning algorithm in a hierarchical divisive manner
 - Disadvantages: Inefficient, unstable
 - Cluster multiple eigenvectors [Shi-Malik, '00]
 - Build a reduced space from multiple eigenvectors
 - Commonly used in recent papers

Spectral Clustering as Ger

Define "edge weight" Wusing some similarity metric (e.g. a kernel function)