Data Mining Techniques

CS 6220 - Section 3 - Fall 2016

Lecture 19: Social Networks

Jan-Willem van de Meent

(credit: Leskovec et al Chapter 10, Aggarwal Chapter 19)

Community Detection

Problem: Can we identify groups of densely connected nodes?

Communities: Football Conferences

O Mid American
O Big East

- Atlantic Coast

○ SEC
○ Conference USA

- Big 12

O Western Athletic

- Pacific 10

O Mountain West

- Big 10

O Sun Belt
\bigcirc Independents
Nodes: Football Teams, Edges: Matches, Communities: Conferences

Communities: Academic Citations

Source: Citation networks and Maps of science [Börner et al., 2012]
Nodes: Journals, Edges: Citations, Communities: Academic Disciplines

Communities: Protein-Protein Interactions

Nodes: Proteins, Edges: Physical interactions, Communities: Functional Modules

Community Detection

Graph Partitioning

Overlapping Communities

We will work with undirected (unweighted) networks

Centrality Measures

- Betweenness: Number of shortest paths
- Closeness: Average distance to other nodes
- Degree: Number of connections to other nodes

Betweenness

Edge Strength (call volume)

Edge Betweenness

- Betweenness: Number of shortest paths passing through a node or edge

Edge Betweenness

- Count number of shortest paths passing through each edge (can be done with weighted edges)
- If there are multiple paths of equal length, then split counts

Girvan-Newman Algorithm

(hierarchical divisive clustering according to betweenness)

Repeat until k clusters found

1. Calculate betweenness
2. Remove edge(s) with highest betweenness

Girvan-Newman Algorithm

(hierarchical divisive clustering according to betweenness)

Step

(7)

Hierarchical network

Girvan-Newman: Physics Citations

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)

Girvan-Newman

Two problems

1. How can we compute the betweenness for all edges?
2. How can we choose the number of components k ?

Calculating Betweenness

How can we count all shortest paths?

- Loop over nodes in graph
- Perform breadth-first search to find shortest paths to other nodes
- Increment counts for edges traversed by shorts paths
- Divide final betweenness by 2 (since all paths counted twice)

Counting Shortest Paths

Count number of shortest paths from
(E) to each node

Accumulate credit upwards, dividing across shortest paths

Counting Paths: Larger Example

Original Graph Breadth-first Ordering from A

Counting Paths: Larger Example

Step 1. Count number of shortest paths from to each node

Counting Paths: Larger Example

Step 2. Propagate credit upwards, splitting according to number of paths to parents

Counting Paths: Larger Example

Step 2. Propagate credit upwards, splitting according to number of paths to parents

Counting Paths: Larger Example

Step 2. Propagate credit upwards, splitting according to number of paths to parents

Counting Paths: Larger Example

Step 2. Propagate credit upwards, splitting according to number of paths to parents

Counting Paths: Larger Example

Step 2. Propagate credit upwards, splitting according to number of paths to parents

Determining the Number of Communities

Hierarchical decomposition

Choosing a cut-off

Analogous problem to deciding on number of clusters in hierarchical clustering

Modularity

Idea: Compare fraction of edges within module to fraction that would be observed for random connections

$$
Q=\frac{1}{2 m} \sum_{u v}\left[A_{v w}-\frac{k_{v} k_{w}}{2 m}\right] \delta\left(c_{u}, c_{v}\right)
$$

- m: Number of edges in graph
- Auv: Adjacency matrix (1 if edge exists 0 otherwise)
- k_{u} : Degree of node u
- c_{u} : Cluster assignment for node u

Modularity

Use modularity to optimize connectivity within modules

Spectral Clustering

Graph Partitioning

- What makes a good partition?
- Maximize the within-group connections
- Minimize the between-group connections

Graph Cuts

$$
\begin{array}{ccc}
\text { Degree } & \text { Volume } & \text { Cut } \\
d_{i}=\sum_{j} \boldsymbol{A}_{i j} & \operatorname{vol}(A)=\sum_{j} d_{i} & \operatorname{cut}(A, B)=\sum_{i \in A, j \in B} \boldsymbol{A}_{i j}
\end{array}
$$

Minimal Cuts

$\arg \min _{\mathrm{A}, \mathrm{B}} \operatorname{cut}(A, B)$

Problem: minimal cut is not necessarily a good splitting criterion

Normalized Cuts

Degree

Volume
Cut

$$
d_{i}=\sum_{j} \boldsymbol{A}_{i j} \quad \operatorname{vol}(A)=\sum_{j} d_{i} \quad \operatorname{cut}(A, B)=\sum_{i \in A, j \in B} \boldsymbol{A}_{i j}
$$

Find Optimal Cut [Fiedler'73]

- Back to finding the optimal cut
- Express partition (A, B) as a vector

$$
y_{i}= \begin{cases}+1 & \text { if } i \in A \\ -1 & \text { if } i \in B\end{cases}
$$

- We can minimize the cut of the partition by finding a non-trivial vector x that minimizes:

$$
\boldsymbol{y}^{*}=\underset{y \in\{-1,1\}^{n}}{\operatorname{argmin}} \sum_{(i, j) \in E}\left(y_{i}-y_{j}\right)^{2}
$$

Can't solve exactly. Let's relax y and allow it to take any real value.

Matrix Representations

- Adjacency matrix (\boldsymbol{A}):
- $\boldsymbol{n} \times \boldsymbol{n}$ matrix
- $\boldsymbol{A}=\left[a_{i j}\right], \boldsymbol{a}_{i j}=\mathbf{1}$ if edge between node \boldsymbol{i} and \boldsymbol{j}

- Important properties:

	1	2	3	4	5	6
1	0	1	1	0	1	0
2	1	0	1	0	0	0
3	1	1	0	1	0	0
4	0	0	1	0	1	1
5	1	0	0	1	0	1
6	0	0	0	1	1	0

- Symmetric matrix
- Eigenvectors are real and orthogonal

Matrix Representations

Degree matrix (D):

- $\boldsymbol{n} \times \boldsymbol{n}$ diagonal matrix
- $\boldsymbol{D}=\left[\boldsymbol{d}_{i i}\right], \boldsymbol{d}_{\boldsymbol{i i}}=$ degree of node \boldsymbol{i}

	1	2	3	4	5	6
1	3	0	0	0	0	0
2	0	2	0	0	0	0
3	0	0	3	0	0	0
4	0	0	0	3	0	0
5	0	0	0	0	3	0
6	0	0	0	0	0	2

Matrix Representations

- Laplacian matrix (L):
- $\boldsymbol{n} \times \boldsymbol{n}$ symmetric matrix

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

- What is trivial eigenpair?
- $\boldsymbol{x}=(\mathbf{1}, \ldots, \mathbf{1})$ then $\boldsymbol{L} \cdot \boldsymbol{x}=\mathbf{0}$ and so $\boldsymbol{\lambda}=\boldsymbol{\lambda}_{\mathbf{1}}=\mathbf{0}$
- Important properties:
- Eigenvalues are non-negative real numbers
- Eigenvectors are real and orthogonal

Second Eigenvalue

- Fact: For symmetric matrix M:

$$
\lambda_{2}=\min _{x} \frac{x^{T} M x}{x^{T} x}
$$

- What is the meaning of $\min x^{T} L x$ on G ?
- $\mathrm{x}^{\mathrm{T}} \mathrm{L} \mathrm{x}=\sum_{i, j=1}^{n} L_{i j} x_{i} x_{j}=\sum_{i, j=1}^{n}\left(D_{i j}-A_{i j}\right) x_{i} x_{j}$
$-=\sum_{i} D_{i i} x_{i}^{2}-\sum_{(i, j) \in E} 2 x_{i} x_{j}$
$=\sum_{(i, j) \in E} \underbrace{\left(x_{i}^{2}+x_{j}^{2}\right.}-2 x_{i} x_{j})=\sum_{(i, j) \in E}\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{\boldsymbol{j}}\right)^{2}$
Node \boldsymbol{i} has degree $\boldsymbol{d}_{\boldsymbol{i}}$. So, value $\boldsymbol{x}_{\boldsymbol{i}}^{2}$ needs to be summed up $\boldsymbol{d}_{\boldsymbol{i}}$ times.
But each edge ($\boldsymbol{i}, \boldsymbol{j}$) has two endpoints so we need $x_{t}^{2}+x_{i}^{2}$

Second Eigenvector of Laplacian

- What else do we know about \boldsymbol{x} ?
- x is unit vector: $\sum_{i} x_{i}^{2}=\mathbf{1}$
- \boldsymbol{x} is orthogonal to $\mathbf{1}^{\text {st }}$ eigenvector $(\mathbf{1}, \ldots, \mathbf{1})$ thus: $\sum_{i} x_{i} \cdot \mathbf{1}=\sum_{i} x_{i}=\mathbf{0}$
- Remember:

$$
\lambda_{2}=\min _{\substack{\text { All lablings } \\ \text { of of ofsis sis } \\ \text { Uhal } \sum x_{i}=0}} \frac{\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i} x_{i}^{2}}
$$

We want to assign values x_{i} to nodes i such that few edges cross 0 .
(we want x_{1} and x_{1} to subtract each other)

Balance to minimize

Rayleigh Theorem

$$
\min _{y \in \Re^{n}} f(y)=\sum_{(i, j) \in E}\left(y_{i}-y_{j}\right)^{2}=y^{T} L y
$$

$\square \lambda_{2}=\min f(y)$: The minimum value of $f(y)$ is given by the $2^{\text {nd }}$ smallest eigenvalue λ_{2} of the Laplacian matrix L

- $x=\arg \min _{y} f(y)$: The optimal solution for y is given by the corresponding eigenvector \boldsymbol{x}, referred as the Fiedler vector

Spectral Clustering Algorithms

- Three basic stages:
- 1) Pre-processing
- Construct a matrix representation of the graph
- More generally, construct similarity matrix
- 2) Decomposition
- Compute eigenvalues and eigenvectors of the matrix
- Map each point to a lower-dimensional representation based on one or more eigenvectors
-3) Grouping
- Assign points to two or more clusters, based on the new representation

Spectral Partitioning Algorithm

1) Pre-processing:

- Build Laplacian matrix \boldsymbol{L} of the graph

- 2) Decomposition:
- Find eigenvalues λ and eigenvectors \boldsymbol{x} of the matrix \boldsymbol{L}
- Map vertices to corresponding components of λ_{2}

How do we now find the clusters?

Spectral Partitioning

- 3) Grouping:
- Sort components of reduced 1-dimensional vector
- Identify clusters by splitting the sorted vector in two
- How to choose a splitting point?
- Naïve approaches:
- Split at 0 or median value
- More expensive approaches:
- Attempt to minimize normalized cut in 1-dimension (sweep over ordering of nodes induced by the eigenvector)

1	0.3
$\mathbf{2}$	0.6
3	0.3
4	-0.3
5	-0.3
6	-0.6

Split at 0:
Cluster A: Positive points
Cluster B: Negative points

1	0.3
2	0.6
3	0.3

4	-0.3
5	-0.3
6	-0.6

Example: Spectral Partitioning

Example: Spectral Partitioning

k-Way Spectral Clustering

- How do we partition a graph into \boldsymbol{k} clusters?
- Two basic approaches:
- Recursive bi-partitioning [Hagen et al., '92]
- Recursively apply bi-partitioning algorithm in a hierarchical divisive manner
- Disadvantages: Inefficient, unstable
- Cluster multiple eigenvectors [Shi-Malik, '00]
- Build a reduced space from multiple eigenvectors
- Commonly used in recent papers

Spectral Clustering as General-purpose Method

source: Ng, Jordan and Weiss, NIPS 2001
Define "edge weight" W using some similarity metric (e.g. a kernel function)

