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Data mining is the semi-automatic discovery of patterns, associations,
changes, anomalies, and statistically significant structures and events in
data. Traditional data analysis is assumption driven in the sense that
a hypothesis is formed and validated against the data. Data mining, in
contrast, is data driven in the sense that patterns are automatically ex-
tracted from data. The goal of this tutorial is to provide an introduction
to data mining techniques. The focus will be on methods appropriate for
mining massive datasets using techniques from scalable and high perfor-
mance computing. The techniques covered include association rules, se-
quence mining, decision tree classification, and clustering. Some aspects
of preprocessing and postprocessing are also covered. The problem of
predicting contact maps for protein sequences is used as a detailed case
study.

The material presented here is compiled by LW based on the original
tutorial slides of MJZ at the 2002 Post-Genome Knowledge Discovery
Programme in Singapore.
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1. Data Mining Overview

Data mining is generally an iterative and interactive discovery process. The

goal of this process is to mine patterns, associations, changes, anomalies,

and statistically significant structures from large amount of data. Further-

more, the mined results should be valid, novel, useful, and understandable.

These “qualities” that are placed on the process and outcome of data min-

ing are important for a number of reasons, and can be described as follows:

(1) Valid: It is crucial that the patterns, rules, and models that are discov-

ered are valid not only in the data samples already examined, but are

generalizable and remain valid in future new data samples. Only then

can the rules and models obtained be considered meaningful.

(2) Novel: It is desirable that the patterns, rules, and models that are

discovered are not already known to experts. Otherwise, they would

yield very little new understanding of the data samples and the problem

at hand.

(3) Useful: It is desirable that the patterns, rules, and models that are

discovered allow us to take some useful action. For example, they allow

us to make reliable predictions on future events.

(4) Understandable: It is desirable that the patterns, rules, and models

that are discovered lead to new insight on the data samples and the

problem being analyzed.
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Fig. 1. The data mining process.

In fact, the goals of data mining are often that of achieving reliable

prediction and/or that of achieving understandable description. The former

answers the question “what”, while the latter the question “why”. With

respect to the goal of reliable prediction, the key criteria is that of accuracy

of the model in making predictions on the problem being analyzed. How

the prediction decision is arrived at may not be important. With respect to

the goal of understandable description, they key criteria is that of clarity

and simplicity of the model describing the problem being analyzed.

There is sometimes a dichotomy between these two aspects of data min-

ing in the sense that the most accurate prediction model for a problem may

not be easily understandable, and the most easily understandable model

may not be highly accurate in its predictions. For example, on many anal-

ysis and prediction problems, support vector machines are reported to hold

world records in accuracy [22]. However, the maximum error margin mod-

els constructed by these machines and the quadratic programming solution

process of these machines are not readily understood to the non-specialists.

In contrast, the decision trees constructed by tree induction classifiers such

as C4.5 [64] are readily grasped by non-specialists, even though these deci-

sion trees do not always give the most accurate predictions.

The general data mining process is depicted in Figure 1. It comprises

the following steps [1, 36, 80], some of which are optional depending on the

problem being analyzed:

(1) Understand the application domain: A proper understanding of the

application domain is necessary to appreciate the data mining outcomes
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desired by the user. It is also important to assimilate and take advantage

of available prior knowledge to maximize the chance of success.

(2) Collect and create the target dataset: Data mining relies on the avail-

ability of suitable data that reflects the underlying diversity, order, and

structure of the problem being analyzed. Therefore, the collection of a

dataset that captures all the possible situations that are relevant to the

problem being analyzed is crucial.

(3) Clean and transform the target dataset: Raw data contain many errors

and inconsistencies, such as noise, outliers, and missing values. An im-

portant element of this process is the de-duplication of data records to

produce a non-redundant dataset. For example, in collecting informa-

tion from public sequence databases for the prediction of protein trans-

lation initiation sites [60], the same sequence may be recorded multiple

times in the public sequence databases; and in collecting information

from scientific literature for the prediction of MHC-peptide binding [40],

the same MHC-binding peptide information may be reported in two

separate papers. Another important element of this process is the nor-

malization of data records to deal with the kind of pollution caused by

the lack of domain consistency. This type of pollution is particularly

damaging because it is hard to trace. For example, MHC-binding pep-

tide information reported in a paper might be wrong due to a variety

of experimental factors. In fact, a detailed study [72] of swine MHC

sequences found that out of the 163 records examined, there were 36

critical mistakes. Similarly, clinical records from different hospitals may

use different terminologies, different measures, capture information in

different forms, or use different default values to fill in the blanks. As

a last example, due to technology limitations, gene expression data

produced by microarray experiments often contain missing values and

these need to be dealt with properly [78].

(4) Select features, reduce dimensions: Even after the data have been

cleaned up in terms of eliminating duplicates, inconsistencies, miss-

ing values, and so on, there may still be noise that is irrelevant to

the problem being analyzed. These noise attributes may confuse subse-

quent data mining steps, produce irrelevant rules and associations, and

increase computational cost. It is therefore wise to perform a dimension

reduction or feature selection step to separate those attributes that are

pertinent from those that are irrelevant. This step is typically achieved

using statistical or heuristic techniques such as Fisher criterion [29],

Wilcoxon rank sum test [70], principal component analysis [42], en-
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tropy analysis [28], etc.

(5) Apply data mining algorithms: Now we are ready to apply appropriate

data mining algorithms—association rules discovery, sequence mining,

classification tree induction, clustering, and so on—to analyze the data.

Some of these algorithms are presented in later sections.

(6) Interpret, evaluate, and visualize patterns: After the algorithms above

have produced their output, it is still necessary to examine the output

in order to interpret and evaluate the extracted patterns, rules, and

models. It is only by this interpretation and evaluation process that we

can derive new insights on the problem being analyzed.

As outlined above, the data mining endeavor involves many steps. Fur-

thermore, these steps require technologies from other fields. In particular,

methods and ideas from machine learning, statistics, database systems, data

warehousing, high performance computing, and visualization all have im-

portant roles to play. In this tutorial, we discuss primarily data mining

techniques relevant to Step (5) above.

There are several categories of data mining problems for the purpose

of prediction and/or for description [1, 36, 80]. Let us briefly describe the

main categories:

(1) Association Rules: Given a database of transactions, where each trans-

action consists of a set of items, association discovery finds all the item

sets that frequently occur together, and also the rules among them. An

example of an association could be that, 90% of the people who buy

cookies, also buy milk (60% of all grocery shoppers buy both).

(2) Sequence mining (categorical): The sequence mining task is to discover

sequences of events that commonly occur together, e.g., in a set of

DNA sequences ACGTC is followed by GTCA after a gap of 9, with

30% probability.

(3) Similarity search: An example is the problem where we are given a

database of objects and a “query” object, and we are then required to

find those objects in the database that are similar to, i.e., within a user-

defined distance of, the query object. Another example is the problem

where we are given a database of objects, and we are then required to

find all pairs of objects in the databases that are within some distance

of each other.

(4) Deviation detection: An example is the problem of finding outliers. That

is, given a database of objects, we are required to find those objects that

are the most different from the other objects in the database. These
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objects may be thrown away as noise, or they may be the “interesting”

ones, depending on the specific application scenario.

(5) Classification and regression: This is also called supervised learning. In

the case of classification, we are given a database of objects that are

labeled with predefined categories or classes. We are required to learn-

ing from these objects a model that separates them into the predefined

categories or classes. Then, given a new object, we apply the learned

model to assign this new object to one of the classes. In the more gen-

eral situation of regression, instead of predicting classes, we have to

predict real-valued fields.

(6) Clustering: This is also called unsupervised learning. Here, we are given

a database of objects that are usually without any predefined cate-

gories or classes. We are required to partition the objects into subsets

or groups such that elements of a group share a common set of proper-

ties. Moreover the partition should be such that the similarity between

members of the same group is high and the similarity between members

of different groups is low.

Some of the research challenges for data mining from the perspectives

of scientific and engineering applications [33] are issues such as:

(1) Scalability. How does a data mining algorithm perform if the dataset

has increased in volume and in dimensions? This may call for some

innovations based on efficient and sufficient sampling, or a trade-off

between in-memory vs. disk-based processing, or an approach based on

high performance distributed or parallel computing.

(2) Automation. While a data mining algorithm and its output may be

readily handled by a computer scientist, it is important to realize that

the ultimate user is often not the developer. In order for a data mining

tool to be directly usable by the ultimate user, issues of automation—

especially in the sense of ease of use—must be addressed. Even for the

computer scientist, the use and incorporation of prior knowledge into

a data mining algorithm is often a tricky challenge; (s)he too would

appreciate if data mining algorithms can be modularized in a way that

facilitate the exploitation of prior knowledge.

2. Data Mining Techniques

We now review some of the commonly used data mining techniques for

the main categories of data mining problems. We touch on the following in
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sequence: association rules in Subsection 2.2., sequence mining in Subsec-

tion 2.3., classification in Subsection 2.4., clustering in Subsection 2.5., and

k-nearest neighbors in Subsection 2.6.

2.1. Terminology

In the tradition of data mining algorithms, the data being analyzed are

typically represented as a table, where each row of the table is a data

sample and each column is an attribute of the data. Hence, given such a

table, the value stored in jth column of the ith row is the value of the jth

attribute of the ith data sample. An attribute is an item that describes an

aspect of the data sample—e.g., name, sex, age, disease state, and so on.

The term “feature” is often used interchangeably with “attribute”. Some

time the term “dimension” is also used. A feature f and its value v in a

sample are often referred to as an “item”. A set of items is then called an

“itemset” and can be written in notation like {f1 = v1, ..., fn = vn} for an

itemset containing features f1, ..., fn and associated values v1, ..., vn. Given

such an itemset x, we denote by [x]fi
the value of its feature fi. An itemset

can also be represented as a vector 〈v1, ..., vn〉, with the understanding that

the value of the feature fi is kept in the ith position of the vector. Such a

vector is usually called a feature vector. Given such a feature vector x, we

write [x]i for the value in its ith position. An itemset containing k items

is called a k-itemset. The number k is the “length” or “cardinality” of the

itemset.

It is also a convention to write an itemset as {f ′
1, ..., f ′

m}, if all the

features are Boolean—i.e., either 1 or 0—and {f ′
1, ..., f ′

m} = {fi | vi = 1,

1 ≤ i ≤ n}. Under this convention, the itemset is also called a “transaction”.

Note that transactions contain only those items whose feature values are 1

and not those whose values are 0.

2.2. Association Rule Mining

We say a transaction T contains an item x if x ∈ T . We also say an itemset

X occurs in a transaction T if X ⊆ T . Let a dataset D of transactions and

an itemset X be given. We denote the dataset cardinality by |D|. The count

of X in D, denoted countD(X), is the number of transactions in D that

contains X . The support of X in D, denoted supportD(X), is the percentage

of transactions in D that contain X . That is,

supportD(X) =
|{T ∈ D | X ⊆ T}|

|D|
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An association rule is pair that we write as X ⇒ Y , where X and Y

are two itemsets and X ∩ Y = ∅. The itemset X is called the antecedent of

the rule. The itemset Y is called the consequent of the rule.

There are two important properties associated with rules. The first prop-

erty is the support of the rule. The second property is the confidence of the

rule. We define them below.

Definition 1: The support of the rule X ⇒ Y in a dataset D is defined

as the percentage of transactions in D that contain X ∪ Y . That is,

supportD(X ⇒ Y ) = supportD(X ∪ Y )

Definition 2: The confidence of the rule X ⇒ Y in a dataset D is defined

as the percentage of transactions in D containing X that also contain Y .

That is,

confidenceD(X ⇒ Y ) =
supportD(X ∪ Y )

supportD(X)
=

countD(X ∪ Y )

countD(X)

We are now ready to define the objective of data mining for associ-

ation rules. Association rule mining [3] is: Given dataset D of objects

and thresholds minsupp and minconf, find every rule X ⇒ Y so that

supportD(X ⇒ Y ) ≥ minsupp and confidence
D(X ⇒ Y ) ≥ minconf . An

association rule X ⇒ Y can be interpreted as “if a transaction contains X ,

then it is also likely to contain Y .” The thresholds minsupp and minconf

are parameters that are specified by a user to indicate what sort of rules

are “interesting”.

Given the threshold minsupp, an itemset X is said to be frequent in

a dataset D if supportD(X) ≥ minsupp. Furthermore, a frequent itemset

X is said to be maximal in a dataset D if none of its proper supersets is

frequent. Clearly all subsets of a maximal frequent itemset are frequent.

Also a frequent itemset X is said to be closed if none of its supersets has

the same frequency.

Figure 2 shows an example of mining frequent itemsets. Here we have a

database of 5 transactions and the items bought in each. The table on the

right hand shows the itemsets that are frequent at a given level of support.

With a threshold of minsupp = 50% all of the itemsets shown are frequent,

with ACTW, and CDW as the maximal frequent itemsets.

An obvious approach to finding all association rules in a dataset satis-

fying the thresholds minsupp and minconf is the following:

(1) Generate all frequent itemsets. These itemsets satisfy minsupp.
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Fig. 2. An example of frequent itemsets, where we use a threshold of minsupp ≥ 50%.

(2) Generate rules from these frequent itemsets and eliminate those rules

that do not satisfy minconf.

The first step above generally requires searching an exponential space

with respect to the length of itemsets, and is thus computationally ex-

pensive and I/O intensive. Therefore, a key challenge in association rules

mining is a solution to the first step in the process above. This problem

has been studied by the data mining community quite intensively. One of

the first efficient approach was the Apriori algorithm [3], which inspired

the development of many other efficient algorithms[14, 35, 50, 58, 71, 73, 81].

Another promising direction was the development of methods to mine max-

imal [9, 15, 32, 49] and closed itemsets [59, 61, 83].

The Apriori algorithm [3] achieves its efficiency by exploiting the fact

that if an itemset is known to be not frequent, than all its supersets are also

not frequent. Thus it generates frequent itemsets in a level-wise manner.

Let us denote the set of frequent itemsets produced at level k by Lk. To

produce frequent itemset candidates of length k + 1, it is only necessary to

“join” the frequent itemsets in Lk with each other, as opposed to trying

all possible candidates of length k + 1. This join is defined as {i | i1 ∈ Lk,

i2 ∈ Lk, i ⊆ (ii ∪ i2), |i| = k + 1, (6 ∃i′ ⊂ i, (|i′| = k) ∧ (i′ 6∈ Lk))}. The

support of each candidate can then be computed by scanning the dataset

to confirm if the candidate is frequent or not.

The second step of the association rules mining process is relatively

cheaper to compute. Given the frequent itemsets, one can form a frequent

itemset lattice as shown in Figure 3. Each node of the lattice is a unique
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Fig. 3. An example of a frequent itemset lattice, based on the maximal frequent itemsets
from Figure 2.

frequent itemset, whose support has been mined from the database. There

is an edge between two nodes provided they share a direct subset-superset

relationship. After this, for each node X derived from an itemset X ∪ Y ,

we can generate a candidate rule X ⇒ Y , and test its confidence.

As an example, consider Figures 2 and 3. For the maximal itemset

{CDW}, we have:

• countD(CDW ) = 3,

• countD(CD) = 4,

• countD(CW ) = 5,

• countD(DW ) = 3,

• countD(C) = 6,

• countD(D) = 4, and

• countD(W ) = 5.

For each of the above subset counts, we can generate a rule and compute

its confidence:

• confidence
D(CD ⇒ W ) = 3/4 = 75%,

• confidence
D(CW ⇒ D) = 3/5 = 60%,

• confidenceD(DW ⇒ C) = 3/3 = 100%,

• confidenceD(C ⇒ DW ) = 3/6 = 50%,

• confidenceD(D ⇒ CW ) = 3/4 = 75%, and

• confidenceD(W ⇒ CD) = 3/5 = 60%.

Then those rules satisfying minconf can be easily selected.
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Y ⊆ T Y 6⊆ T

X ⊆ T TP FP

X 6⊆ T FN TN

Fig. 4. Contingency table for a rule X ⇒ Y with respect to a data sample T . According
to the table, if X is observed and Y is also observed, then it is a true positive prediction
(TP); if X is observed and Y is not, then it is a false positive (FP); if X is not observed
and Y is also not observed, then it is a true negative (TN); and if X is not observed but
Y is observed, then it is a false negative (FN).

Recall that support and confidence are two properties for determining

if a rule is interesting. As shown above, these two properties of rules are

relatively convenient to work with. However, these are heuristics and hence

may not indicate whether a rule is really interesting for a particular ap-

plication. In particular, the setting of minsupp and minconf is ad hoc. For

different applications, there are different additional ways to assess when a

rule is interesting. Other approaches to the interestingness of rules include

rule templates [44], which limits rules to only those fitting a template; min-

imal rule cover [77], which eliminates rules already implied by other rules;

and “unexpectedness” [51, 74].

As mentioned earlier, a rule X ⇒ Y can be interpreted as “if X is

observed in a data sample T , then Y is also likely to be observed in T .” If

we think of it as a prediction rule, then we obtain the contingency table in

Figure 4.

With the contingency table of Figure 4 in mind, an alternative inter-

estingness measure is that of odds ratio, which is a classical measure of

unexpectedness commonly used in linkage disequilibrium analysis. It is de-

fined as

θD(X ⇒ Y ) =
TP D(X ⇒ Y ) ∗ TND(X ⇒ Y )

FP D(X ⇒ Y ) ∗ FND(X ⇒ Y )

where TP D(X ⇒ Y ) is the number of data sample T ∈ D for which the

rule X ⇒ Y is a true positive prediction, TND(X ⇒ Y ) is the number of

data sample T ∈ D for which the rule X ⇒ Y is a true negative prediction,

FP D(X ⇒ Y ) is the number of data sample T ∈ D for which the rule

X ⇒ Y is a false positive prediction, and FND(X ⇒ Y ) is the number of

data sample T ∈ D for which the rule X ⇒ Y is a false negative prediction.

The value of the odds ratio θD(X ⇒ Y ) varies from 0 to infinity. When

θ(X ⇒ Y ) << 1, then X and Y are indeed associated and the rule may be

of interest.
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Fig. 5. An example of maximal frequent sequences with 75% support.

2.3. Sequence Mining

Sequence mining is a data mining problem closely related to that of as-

sociation rules mining. The key difference between sequence mining and

association rules mining is in the input dataset. In the case of association

rules, each row in the input table represent a single data sample. That is,

each row is the entire transaction. In the case of sequence mining, the situ-

ation is more complicated. Here, a data sample—called a sequence—is split

across multiple consecutive rows in the input table. Each row represents

just one event of the sequence identified with a special identifier attribute.

Each event is itself a transaction.

An example is shown in Figure 5. In the example, each sequence is

identified by an identifier, recorded as the attribute CID (for customer ID);

each event is identified by an identifier, recorded as the attribute Time;

and the transaction associated with the event is recorded as a list of items,

collectively recorded as the attribute Items. The table on the right shows

the frequent sequences at different levels of minsupp, as well as the maximal

sequences at the 75% minsupp level. As in association mining, these frequent

sequences can be organized into a lattice as shown in Figure 6.

An example of applying sequence mining analysis to DNA sequences is

As the sequence and event identifiers are typically unimportant, we write

i1 → · · · → in for a sequence in which the transactions i1, ..., in—which

are itemsets—occur in the same order. Naturally, · → · is to be viewed as

an associative operation. We say that:

Definition 3: A sequence a1 → · · · → an is contained in a sequence b1 →

· · · → bm if there is a mapping ϕ : {1, ..., n} 7→ {1, ..., m} such that (1) for
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Fig. 6. An example of a frequent sequence lattice.

1 ≤ i ≤ n, ai ⊆ bϕ(i); and (2) for 1 ≤ i ≤ j ≤ n, ϕ(i) ≤ ϕ(j). A sequence is

maximal if it is not contained in other sequences. We write s1 ⊆ s2 if the

sequence s1 is contained in the sequence s2.

Note in particular that, according to this definition, the sequence {3} → {5}

is not contained in the sequence {3, 5} and vice versa.

The notion of support is extended to sequences as follows:

Definition 4: The support of a sequence s in a dataset of sequences D is

the percentage of sequences in D that contain s. That is,

supportD(s) =
|{s′ ∈ D | s ⊆ s′}|

|D|

A sequence i1 → · · · → in can generate n− 1 rules of the form X ⇒ Y , viz.

i1 ⇒ i2 → · · · → in, i1 → i2 ⇒ i3 → · · · → in, ..., and i1 → · · · → in−1 ⇒

in. The notions of support and confidence on rules can then be defined in

a manner analogous to Subsection 2.2. as follows.

Definition 5: The support of the rule X ⇒ Y in a dataset D of sequences

is defined as the percentage of sequences in D that contain X → Y . That is,

supportD(X ⇒ Y ) =
|{s′ ∈ D | X → Y ⊆ s′}|

|D|
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Definition 6: The confidence of the rule X ⇒ Y in a dataset D of se-

quences is defined as the percentage of sequences in D containing X that

also contain X → Y . That is,

confidenceD(X ⇒ Y ) =
supportD(X → Y )

supportD(X)
=

|{s′ ∈ D | X → Y ⊆ s′}|

|{s′ ∈ D | X ⊆ s′}|

The goal of sequence mining [4, 75] is, given a dataset D of sequences,

(1) find every sequence s so that its support in D satisfies the user-specified

minimum support minsupp; and (2) find every rule X ⇒ Y derived from a

sequence so that its support and confidence satisfy the user-specified mini-

mum support minsupp and minimum confidence minconf. Also, a sequence

whose support satisfies minsupp is called a frequent sequence.

As in the closely related problem of finding association rules from trans-

actions described in Subsection 2.2., finding frequent sequences is a com-

putationally expensive task, while deriving rules from these sequences is a

relatively cheaper task. A number of efficient algorithms for sequence min-

ing have been proposed in the literature [6, 54, 62, 75, 82], but for purposes

of exposition we focus on the original algorithm AprioriAll [4], which is

similar to Apriori [3] (with a little bit of preprocessing of the input data

samples). Let us outline this algorithm, assuming a dataset of sequences

S = {s1, ..., sn}.

(1) Discover the frequent itemsets i1, ..., im from all the transactions in s1,

..., sn, using the Apriori algorithm already described in Subsection 2.2.,

with a minor modification so that each itemset is counted at most once

for each s1, ..., sn.

(2) Map the frequent itemsets i1, ..., im to consecutive integers î1, ..., ˆim
respectively. This allows any two of these large itemsets ij and ik to be

efficiently compared by comparing the integers îj and îk.

(3) Transform each sequence sj ∈ S by mapping each transaction in sj to

the set of integers corresponding to the large itemsets contained in sj .

Let S′ denote the result of transforming S as described.

(4) Generate the frequent sequences in a level-wise manner using a strat-

egy similar to the Apriori algorithm. Let Lk denote all the frequent

sequences generated at level k. First generate candidate frequent se-

quences of length k + 1 at stage k + 1 by taking the “join” of fre-

quent sequences of length k generated at stage k. The join is defined as

{î1 → · · · → îk → î′k| î1 → · · · → îk ∈ Lk, î′1 → · · · → î′k ∈ Lk, î1 = î′1,

..., ˆik−1 = ˆi′k−1, (6 ∃s, s ⊆ î1 → · · · → îk → î′k ∧ |s| = k ∧ s 6∈ Lk)}.

Then we filter these candidates by scanning S ′ to check their support
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to obtain frequent sequences of length k + 1. Denote by L the set of

resulting frequent sequences from all the levels.

(5) To obtain the maximal frequent sequences, as originally proposed in [4],

we simply start from the longest frequent sequence s ∈ L, and eliminate

all s′ ∈ L − {s} that are contained in s. Then we move on to the next

longest frequent remaining sequence and repeat the process, until no

more frequent sequences can be eliminated. The frequent sequences that

remain are the maximal ones.

For the second task of generating rules that satisfy minconf from the

maximal frequent sequences, an approach similar to that in Subsection 2.2.

can be used. We form a frequent sequence lattice as shown in Figure 6. Each

node of the lattice is a unique frequent sequence. After that, for each node

X derived from a frequent sequence X ′ → Y ′ where X ⊆ X ′, we obtain

rules X ⇒ Y where Y ⊆ Y ′ and check their confidence.

An example of applying sequence mining analysis to DNA sequences

is given in Figure 7. Here the database consists of 7 DNA sequences. At

4/7 minsupp threshold, we obtain the 6 maximal frequent sequences with

length at least three. One possible rule derived from AGTC is also shown;

the rule AGT ⇒ C has confidence = count(AGTC)/count(AGT ) = 4/5.

Fig. 7. An example of a DNA sequence mining for maximal frequent sequences. The
support threshold minsupp is 4/7 and confidence threshold is 4/5. We consider only
frequent sequences of length at least 3. Here SID is the Sequence ID.
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Fig. 8. An example of a decision tree learned from the given data.

2.4. Classification

Predictive modeling can sometime—but not necessarily desirably—be seen

as a “black box” that makes predictions about the future based on infor-

mation from the past and present. Some models are better than others

in terms of accuracy. Some models are better than others in terms of un-

derstandability; for example, the models range from easy-to-understand to

incomprehensible (in order of understandability): decision trees, rule induc-

tion, regression models, neural networks.

Classification is one kind of predictive modeling. More specifically, clas-

sification is the process of assigning new objects to predefined categories

or classes: Given a set of labeled records, build a model such as a decision

tree, and predict labels for future unlabeled records

Model building in the classification process is a supervised learning prob-

lem. Training examples are described in terms of (1) attributes, which can

be categorical—i.e., unordered symbolic values—or numeric; and (2) class

label, which is also called the predicted or output attribute. If the latter is

categorical, then we have a classification problem. If the latter is numeric,

then we have a regression problem. The training examples are processed

using some machine learning algorithm to build a decision function such as

a decision tree to predict labels of new data.

An example of a decision tree is given in Figure 8. The dataset, shown

on the left, consists of 6 training cases, with one numeric attribute (Age),

one categorical attribute (Car Type) and the class that we need to predict.

The decision tree mined from this data is shown on the right. Each internal
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node corresponds to a test on an attribute, whereas the leaf nodes indicate

the predicted class. For example, assume we have a new record, Age =

40, CarType = Family whose class we need to predict. We first apply the

test at the root node. Since Age < 27.5 is not true, we proceed to the right

subtree and apply the second test. Since CarType 6∈ {Sports} we again to

right in the tree where the leaf predicts the label to be Low.

Approaches to classification include decision trees [11, 63, 64], Bayes in-

ference [26, 41], support vector machines [16, 79], emerging patterns [24,

25, 47, 48], neural networks [7, 20, 68], and so on. We describe the decision

tree approach here. Although a large number of algorithms exist for this

approach [11, 63, 64], they share two common main steps. The first is the

“build tree” step:

(1) Start with data at root node.

(2) Select an attribute and formulate a logical test on that attribute. This

selection is based on the so-called “split-points”, which must be evalu-

ated for all attributes.

(3) Create a child node on each outcome of the test, and move subset of

examples satisfying that outcome to the corresponding child node.

(4) Recursively process each child node. The recursion stops for a child node

if is “pure”—i.e., all examples it contains are from a single class—or

“nearly pure”—i.e., most examples it contains are from the same class.

The child node at which a recursion stops is called a leaf of the tree.

The second is the “prune tree” step which removes subtrees that do not

improve classification accuracy, and helps avoid over-fitting. More details

on tree pruning can be found in [55, 56, 65, 67]; we will focus on the build

tree step.

Given a decision tree, each of its leaves corresponds to a rule. The rule

is derived by simply conjoining the logical tests on each node on the path

from the root of the tree to the corresponding leaf. Some rules derived from

the decision tree of Figure 8 are given in Figure 9.

A visualization of how decision trees split the data is given in Figure 10.

Assume that we have 42 points in the two dimensional space shown. The

circles indicate low risk and the stars the high risk points. Decision trees try

to formulate axis-parallel splits to best separate the points into “(relatively)

pure” partitions. One such example is shown in the figure, where we split

on Age < 25 first and then on CarType ∈ {Sports}.

The critical issue in the “build tree” step is the formulation of good

split tests and selection measure for attributes in Substep (2). A general
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Fig. 9. Example of rules derived from the decision tree of Figure 8.

Fig. 10. A visualization of axis-parallel decision tree splits

idea is to prefer the simplest hypothesis that fits the data. One of simplest

“hypothesis” is the so-called “minimum message length” principle.

Definition 7: Given a dataset D. Let there be hypotheses H = {H1, H2,

..., Hn} proposed for describing D. The minimal message length principle

is to pick the hypothesis H that minimizes message length. That is,

H = argminH∈H(ML(Hi) + ML(D|Hi))

where ML(·) is a measure of message length.

There are a number of ways to define message length, such as infor-

mation gain [63], information gain ratio [64], Gini index [30], etc. Let us

illustrate using the Gini index concept familiar from the study of economics.
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Let C = {c1, ..., ck} be all the classes. Suppose we are currently at a node

and D is the set of those samples that have been moved to this node. Let

f be a feature and [d]f be the value of the feature f in a sample d. Let S

be a range of values that the feature f can take. Then the gini index for f

in D for the range S is defined as

giniDf (S) = 1 −
∑

c∈C

(

|{d ∈ D | d ∈ c, [d]f ∈ S}|

|D|

)2

The purity of a split of the value range S of an attribute f by some split-

point into subranges S1 and S2 is then defined as

giniDf (S1, S2) =
∑

S∈{S1,S2}

|{d ∈ D | [d]f ∈ S}|

|D|
∗ giniDf (S)

In Substep (2) of the “build tree” step, we choose the feature f and the split-

point p that minimizes giniDf (S1, S2) over all possible alternative features

and split-points. An illustration is given in Figure 11. This example show

the two best axis parallel split points on each of the two dimensions in our

example: Age and Car-Type. In reality we have to test all possible split

points for both dimensions. When we compare the number of points from

each class on either side of the split and then derive the Gini Index, we

find that the split on the left has a lower value (0.31) and is thus the best

overall split. This also corresponds to our intuition, since it is easy to see

that the split on Age results in a pure right partition (with the exception

on one star), while the split on Car Type results in a less pure top partition

(5 stars mixed with the majority of circles).

The performance of a classifier is often given in terms of accuracy, sensi-

tivity, and precision. Let us assume that given a sample, we need to predict

it as “positive” or as “negative”. Then accuracy is defined as the proportion

of predictions that are correct. Sensitivity is defined as the proportion of

positive samples that we predict as positives. Precision is the proportion of

samples that we predict as positive that are indeed positives.

2.5. Clustering

Given n samples without class labels. It is sometimes important to find a

“meaningful” partition of the n samples into c subsets or groups. Each of

the c subsets can then be considered a class by themselves. That is, we are

discovering the c classes that the n samples can be meaningfully categorized

into. The number c may be itself given or discovered. This task is called

clustering.
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Fig. 11. An example of how to find good split-points using Gini index. The chosen split
is the vertical one given on the left.

Given some notion of “similarity” between samples, the goal of cluster-

ing can be formulated as an optimization problem to maximize intra-cluster

similarity and minimize inter-cluster similarity. If the feature vectors cor-

responding to the samples are all numeric, the notion of similarity can be

defined in terms of distances. But if the features are categorical, then it is

much harder to define a reasonable generic notion of similarity.

The main schemes of clustering are outlined below.

• Distance-based: For numeric feature vectors, the common notions of

distance are the Euclidean distance and the angle between two vectors.

For categorical feature vectors, a notion of distance that works in some

situations is the number of common features.

• Partition-based: The points are partitioned into k subgroups and each

such possible partition is scored. Since an exhaustive enumeration of

all partitions is not feasible, heuristics are used to speed up the search.

• Hierarchical: This comes in two flavors. In a decisive clustering, all

points are initially assumed to be in a single cluster. Then at each

step a split is made into two clusters that are “far” apart. The process

ends when each point is in a cluster by itself. The more common ag-

glomerative clustering starts with each point in its own cluster, and it

repeatedly merges the two most similar clusters until all points belong

to one cluster.

• Model-based: Treat each cluster as a mixture of multivariate normal

distributions, and compute the probability that each point belongs to
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a given cluster.

• Density-based: Detect clusters of arbitrary shapes based on the density

of points in adjoining regions. The clusters are grown as long as there

are sufficient points in the neighborhood, which can be incorporated in

to the cluster recursively.

As the notion of similarity or “closeness” used in a clustering is often

defined as geometrical distances, it is advisable to consider normalizing

the values of different features. For example, given 3 features A in micro

seconds, B in milli seconds, and C in seconds, it is crucial to realize that it

may be unwise to treat differences as the same in all dimensions or features.

For such features, it may be necessary to scale or normalize the values for

proper comparison, or to weigh the features according to their importance.

The better known cluster algorithms include k-means [53], k-

medoids [43], expectation maximization (EM) [23], self organizing

maps [46], competitive learning [69], and so on. We describe the k-means

and EM algorithms as an illustration. For this algorithm, the number of

clusters desired, k, must be specified in advance. The algorithm works like

this:

(1) Guess k “seed” cluster centers.

(2) Iterate the following 2 steps until the centers converge or for a fixed

number of times:

(a) Look at each example and assign it to the center that is closest.

(b) Recalculate the k centers, from all the points assigned to each center.

For Step (2)(a), “closest” is typically defined in terms of Euclidean dis-

tance
√

∑n
i ([d1]fi

− [d2]fi
)2 between two n-dimensional feature vectors d1

and d2 if the feature values are numeric. For Step (2)(b), the center for each

of the k clusters is recomputed by taking the mean 〈(
∑

d∈C [d]f1
)/|C|, ...,

(
∑

d∈C [d]fn
)/|C|〉 of all the points d in the corresponding cluster C. Inci-

dentally, the k-medoids algorithm is very similar to k-means, but for Step

(2)(b) above, it uses the most centrally located sample of a cluster to be

the new center of the cluster.

The K-Means algorithm is illustrated in Figure 12. Initially we choose

random cluster center seeds as shown in the top figure. The boundary line

between the different cluster regions are shown (these lines are the per-

pendicular bisectors of the line joining a pair of cluster centers). After we

recompute the cluster centers based on the assigned points, we obtain the

new centers shown in the bottom left figure. After another round the clus-
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ters converge to yield the final assignment shown in the bottom right figure.

Fig. 12. The working of the k-means clustering algorithm.

While the k-means algorithm is simple, it does have some drawbacks.

First of all, k-means is not designed to handle overlapping clusters. Second,

the clusters are easily pulled off center by outliers. Third, each record is

either in or out of a cluster—in some applications, a fuzzy or probabilistic

view of cluster membership may be desirable.

These drawbacks bring us to the Expectation Maximization (EM) algo-

rithm [10] for clustering. Rather than representing each cluster of a dataset

D using a single point, the EM algorithm represents each cluster using a

d-dimensional Gaussian distribution. This way, a sample x is allowed to

“appear” in multiple clusters Ci with different probabilities P (Ci|x). The

algorithm [10] works like this:
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(1) Choose as random seeds the mean vectors µ1, ..., µk and d × d covari-

ance matrices M1, ..., Mk to parameterized the d-dimensional Gaussian

distribution for the k clusters C1, ..., Ck. Choose also k random weights

W1, ..., Wk to be the fraction of the dataset represented by C1, ..., Ck

respectively.

(2) Calculate probability P (x|Ci) of a point x given Ci based on distance

of x to the mean µi of the cluster as follows

P (x|Ci) =
1

√

(2 ∗ π)d ∗ |Mi|
∗ e

(x − µi)
T · M−1

i · (x − µi)

2

where |Mi| denotes the determinant of Mi and M−1
i its inverse.

(3) Calculate the mixture model probability density function

P (x) =

k
∑

i=1

Wi ∗ P (x|Ci)

(4) Maximize E =
∑

x∈D log(P (x)) by moving the mean µi to the centroid

of dataset, weighted by the contribution of each point. To do this move,

we first compute the probability a point x belongs to Ci by

P (Ci|x) = Wi ∗
P (x|Ci)

P (x)

Then we update Wi, µi, and Mi in that order like this:

Wi =
1

n
∗

∑

x∈D

P (Ci|x)

µi =

∑

x∈D P (Ci|x) ∗ x
∑

x∈D P (Ci|x)

Mi =

∑

x∈D P (Ci|x) ∗ (x − µi) ∗ (x − µi)
T

∑

x∈D P (Ci|x)

(5) Repeat Steps (2)–(4) until E converges or when the increase in E be-

tween two successive iterations is sufficiently small.

2.5.1. Deviation Detection

The problem of deviation detection is essentially the problem of finding

outliers. That is, find points that are very different from the other points in

the dataset. It is in some sense the opposite of clustering, since a cluster by

definition is a group of similar points, and those points that do not cluster
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well can be considered outliers, since they are not similar to other points in

the data. This concept is illustrated in Figure 13; for the large cluster on

the left, it is clear that the bottom left point is an outlier.

Fig. 13. This figure illustrate the concept of outliers, which are points that are far away
from all the clusters.

The outlying points can be “noise”, which can cause problems for clas-

sification or clustering. In the example above, we obtain a more compact

cluster if we discard the outlying point. Or, the outlier points can be really

“interesting” items—e.g., in fraud detection, we are mainly interested in

finding the deviations from the norm.

A number of techniques from statistics [8, 38] and data mining [2, 12,

13, 45, 66] have been proposed to mine outliers. Some clustering algorithms

like BIRCH [85] also have a step to detect outliers.

2.6. K-Nearest Neighbors

In Subsection 2.4. we considered classification prediction from the perspec-

tive of first constructing a prediction model from training data and then

using this model to assign class labels to new samples. There is another

perspective to classification prediction that is quite different where no pre-

diction model is constructed beforehand, and every new sample is assigned
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Fig. 14. The working of kNN. the new sample is the large “star”. We consider k = 8
nearest neighbors. As can be seen in the diagram, 5 of the neighbors are in the “circle”
class and 3 are in “cross” class. Hence the new sample is assigned to the “circle” class.

a class label in an instance-based manner.

Representatives of this perspective of classification prediction include

the “k Nearest Neighbors” classifier (kNN) [21], which is particularly suit-

able for numeric feature vectors; the “Decision making by Emerging Pat-

terns” classifier (DeEPs) [47], which is more complicated but also works

well on categorical feature vectors; and other classifiers [5]. We describe the

simplest of these classifiers—kNN—in this subsection.

The kNN classification technique to assign a class to a new example d

is as follows:

(1) Find k nearest neighbors of d in the existing dataset, according to some

distance or similarity measure. That is, we compare the new sample d

to all known samples in the existing dataset and determine which k

known samples are most similar to d.

(2) Determine which class c is the class to which most of those k known

samples belong.

(3) Assign the new sample d to the class c.

The working of kNN classifier is illustrated in Figure 14

As mentioned earlier, it is a characteristic of kNN that it locates some

training instances or their prototypes in the existing (training) dataset with-

out any extraction of high-level patterns or rules. Such a classifier that is

based solely on distance measure may be insufficient for certain types of
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applications that require a comprehensible explanation of prediction out-

comes. Some in-road to this shortcoming has been made in more modern

instance-based classifiers such as DeEPs [47].

Instead of focusing on distance, DeEPs focuses on the so-called emerging

patterns [24]. Emerging patterns are regular patterns contained in an in-

stance that frequently occurs in one class of known data but that rarely—or

even never—occurs in all other classes of known data. DeEPs then makes

its prediction decision for that instance based on the relative frequency

of these patterns in the different classes. These patterns are usually quite

helpful in explaining the predictions made by DeEPs.

3. Data Preprocessing Techniques

Let us round out our general tutorial on data mining by a more detailed dis-

cussion on data preprocessing issues and techniques, especially with respect

to data problems and data reduction.

3.1. Data Problems

As briefly mentioned in Section 1., collecting, creating, and cleaning a target

dataset are important tasks of the data mining process. In these tasks, we

need to be aware of many types of data problems such as—but not limited

to—the followings:

(1) Noise. The occurrence of noise in the data are typically due to record-

ing errors and technology limitations; or are due to uncertainty and

probabilistic nature of specific feature and class values.

(2) Missing data. This can arise from conflicts in recorded data; or because

the data was not originally considered important and hence not cap-

tured; or even practical reasons such as a patient missing a visit to the

doctor.

(3) Redundant data. This has many forms such as the same data has been

recorded under different names; the same data has been repeated; or

the records contain irrelevant and information-poor attributes.

(4) Insufficient and stale data. Sometimes the data that we are looking for

are rare events and hence we may have insufficient data. Sometimes the

data may not be up to date and hence we may need to discard them

and may end up with insufficient data.

To deal with these data problems, the following types of data prepro-

cessing are performed where appropriate:
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(1) Cleaning the data—which include tasks such as removing duplicates,

removing inconsistencies, supplying missing values, etc.

(2) Selecting an appropriate dataset and/or sampling strategy.

(3) Reducing the dimension of the dataset by performing feature selection.

(4) Mapping of time-series (continuous) or sequence (categorical) data into

a more manageable form.

We discuss techniques for item (3) in Subsection 3.2. below.

3.2. Data Reduction

As mentioned in the previous subsection, an important data problem in

data mining is that of noise. In particular, noise can cause deterioration of

data mining algorithms in two aspects. First, most data mining algorithms’

time complexity grows exponentially with respect to the number of features

that a data record has. If many of these features are polluted by noise, the

exponential amount of extra time in processing them becomes a complete

waste. Second, some data mining algorithms—especially classification and

clustering algorithms—can be confused by noise. If many of these features

are polluted by noise, the classification accuracy obtained becomes lower.

So it is worthwhile considering some ways to reduce the amount of noise

in the data, provided that this can be done without sacrificing the quality of

results, and that this can be done faster than running the main prediction

algorithm itself. There are four major ways to data reduction, viz.

(1) feature selection, which removes irrelevant features;

(2) instance selection, which removes examples;

(3) discretization, which reduces the number of values of a feature; and

(4) feature transformation, which forms new composite features in a way

that can be viewed as compression

Let us discuss feature selection and feature transformation in a little

more detail. Feature selection is aimed at separating features that are rel-

evant from features that are not relevant. Feature selection can be viewed

as a search. There are three basic ways to do this search:

(1) An evaluation function is defined for each feature. Then each feature

is evaluated according to this function. Finally, the best n features are

selected for some fixed n; or all features satisfying some statistically sig-

nificant level are selected. This approach is very reasonable especially

if there is reason to believe that the features are independent of each
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other. Techniques in this category include statistics-based methods such

as t-test [19], signal-to-noise measure [31], Fisher criterion score [29],

Wilcoxon rank sum test [70]; and entropy-based methods such as en-

tropy measure [28], χ2 measure [52], information gain measure [63],

information gain ratio [64], etc.

(2) The evaluation function is defined using the estimated error rate of

some fixed algorithm. Then we do step-wise elimination. That is, we

start with the set F0 of all the features. Then we evaluate F0 − {f}

for each f ∈ F and eliminate the worst f from F0 to obtain F1. The

process is repeated with F1 to obtain F2, and so on. The process stops

at some Fn if Fn contains a small enough number of features, has high

enough accuracy, or meets some other stopping criteria.

(3) The possible combinations of features are enumerated. Then each com-

bination of features is evaluated as a whole. Finally, the best combi-

nation of features is picked. This approach is sometimes necessary if

there is reason to believe that the features are not independent of each

other. As there are 2d possible combinations of d features, exhaustive

enumeration is impossible. Hence some heuristics are used in a branch-

and-bound search. A well-known method in this category is the CFS

method [34].

For feature transformation, the best-known method is probably prin-

cipal component analysis (PCA), which is widely used in signal process-

ing [42]. It works on numeric feature vectors like this.

(1) Let the set of n feature vectors of m dimensions be represented as a

n × m matrix X .

(2) Compute the covariance matrix C of X so that [C]i,j is the linear

correlation coefficient between columns i and j of X .

(3) Extract eigenvalues λi from |C − λi ∗ I | = 0 for i = 1, ..., m, where I

the identity matrix.

(4) Compute eigenvectors ei from (C − λi ∗ I) · ei = 0, for i = 1, ..., m.

These are the principal components of X .

(5) Select those ei with the largest λi, as these account for most of the

variation in the data. Let g1, ..., gm′ , where m′ << m, be those ei’s

selected.

(6) Transform each sample x ∈ X into a lower m′-dimensional feature

vector 〈x · g1, ..., x · gm′〉.
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Fig. 15. An example contact map. The boxes indicate the amino acids in the protein—
whose structure is shown in the inset diagram—that are in contact.

4. Example: Contact Mining

We have described a number of data mining techniques in the preceding

sections. The successful application of these techniques to a specific data

mining problem, however, also depends on an adequate understanding of

the problem domain, a lot of experimentations, and some amount of expe-

rience. Here we illustrate using the example of mining residue contacts in

proteins [84].

Definition 8: Two amino acids Ai and Aj of a protein P are said to be “in

contact” if their 3D (structural) distance is less than some threshold, say

7Å, and their sequence separation is at least 4. We write the contact map

CP of a protein as a n×n matrix, where n is length of P , and CP (i, j) = 1

if Ai and Aj are in contact and CP (i, j) = 0 otherwise.

An example contact map is given in Figure 15. Our objective is to

discover a set of rules for predicting such a contact map given the amino

acid sequence of a protein. We describe the approach of Zaki et al. [84]

to this problem. It is a hybrid approach that first uses a hidden Markov

model (HMM) to predict local substructures within a protein and then uses
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meta-level mining on the output of the HMM using association rule mining.

To tackle this problem, we transform the input protein sequence P of

length n into a set of vectors r1,1, ..., rn,n. Each vector ri,j is an itemset

{p1 = i, p2 = j, a1 = Ai, a2 = Aj , f1 = v1, ..., fm = vm} so that p1 and p2

record the two positions in P , a1 and a2 record the two amino acids at these

two positions, and f1 = v1, ..., fm = vm are additional features derived from

P that are helpful in deciding whether Ai are Aj are in contact. As it turns

out using just the features p1, p2, a1, and a2 by themselves do not give

rise to good prediction performance—Zaki et al. [84] reports a mere 7%

precision and 7% accuracy.

In order to obtain better prediction performance, we need to derive some

additional features from the protein sequence. These additional features can

be chosen from some systematically generated candidate features, such as

k-grams generated from the amino acids flanking positions i and j. They

can also be motifs of local structural features predicted by some other means

from the amino acids flanking position i and j, and so on.

Here, we use a HMM called HMMSTR [18] to derive these additional

features. It is a highly branched HMM, as depicted in Figure 16, for gen-

eral protein sequences based on the I-sites library of sequence structure

motifs [17]. The model extends the I-site library by describing the adjacen-

cies of different sequence-structure motifs as observed in protein databases.

The I-site library consists of an extensive set of 262 short sequence motifs,

each of which correlates strongly with a recurrent local structural motif in

proteins, obtained by exhaustive clustering of sequence segments from a

non-redundant database of known structures [17, 37].

Each of the 262 I-sites motif is represented as a chain of Markov states

in HMMSTR. Each state emits 4 symbols—representing the amino acid,

the secondary structure, the backbone angle region, and structural con-

text observed—according to probability distributions specific to that state.

These linear chains are hierarchically merged, based on the symbols they

emit, into the HMM transition graph depicted in Figure 16. The probability

distributions in the states are trained using about 90% of 691 non-redundant

proteins from PDBselect [39].

HMMSTR is used to derive the additional features that we need as fol-

lows. Given a protein sequence P = A1A2 . . . Am, HMMSTR is applied to it,

yielding a sequence of states S = s1s2 . . . sm. A sample of the output emit-

ted by HMMSTR when given a protein sequence is shown in Figure 17. Such

an output is then then extracted to form the additional features for the pro-

tein sequence. Thus, each vector ri,j becomes an itemset of the form {p1 = i,
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Fig. 16. The highly branched topology of the HMM underlying HMMSTR.

p2 = j, a1 = Ai, a2 = Aj , coordsD1 = ·, coordsR1 = ·, coordsC 1 = ·,

coordsD2 = ·, coordsR2 = ·, coordsC 2 = ·, profile1 1 = ·, ..., profile20 1 = ·,

profile1 2 = ·, ..., profile20 2 = ·, state1 1 = ·, ..., state282 1 = ·, state1 2 = ·,

..., state282 2 = ·}. The ·’s are extracted from the corresponding HMM-

STR output. Each state in HMMSTR can produce, or ”emit”, amino acids

and structure symbols according to a probability distribution specific to

that state. There are four probability distributions defined for the states in

HMMSTR, profile, D, R, and C, which describe the probability of observ-

ing a particular amino acid in a given state, secondary structure, backbone
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PDB Name: 153l

Sequence Length: 185

Position: 1

Residue: R

Coordinates: 0.0, -73.2, 177.6

AA Profile: 0.0 ... 1.0 ... 0.0 # 20 values

HMMSTR State Probabilities: 0.0 ... 0.7 ... 0.0 # 282 values

Distances: 0 3 5 ... 18 15 13 # 185 values

...

Position: 185

Residue: Y

Coordinates: -88.7, 0.0, 0.0

AA Profile: 0.0 ... 0.4 ... 0.6 ... 0.0

HMMSTR State Probabilities: 0.0 ... 0.2 ... 0.5 ... 0.3 ... 0.0

Distances: 15 13 10 ... 5 3 0

Fig. 17. A sample output from HMMSTR for one PDB protein (153l ) with length 185. For each position, it shows the amino acid
(residue), the 3D coordinates, the amino acid profile (i.e., which amino acids are likely to occur at that position based on evolutionary
information), the HMMSTR state probability of that position and the 3D distances to every other position (used to construct the contact
map).
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angle region, or structural context descriptor, respectively. A context de-

scriptor represents the classification of a secondary structure type according

to its context. Along with the probability of being in a given state (state),

such vectors become the input to predict whether the amino acids at posi-

tions i and j of a protein are in contact.

The classification is performed via association rules mining. We use a

training dataset comprising vectors of the form above. In addition, each

vector ri,j in this training dataset is tagged to indicate whether the amino

acids in positions i and j are in contact. This training dataset is partitioned

into a set Dc consisting of those vectors tagged as “contact”, and a set Dn

consisting of those vectors tagged as “non-contact”. The the process of

building a discriminative rule sets is as follows.

(1) Mining: As we are primarily interested in detecting contacts, we apply

association rules mining to mine the frequent itemsets in Dc based on

a suitably chosen minsupp threshold. Let us denote the set of these

itemsets by F .

(2) Counting: We compute the support of all itemsets in F in Dn. The

support of these itemsets in Dc is computed in the course of the previous

step already.

(3) Pruning: The probability of occurrence P (X |Dc) of an itemset

X ∈ F in Dc is simply supportDc(X)/|Dc|. Similarly, the prob-

ability of occurrence P (X |Dn) of an itemset X ∈ F in Dn

is simply supportDn(X)/|Dn|. We remove an itemset X ∈ F if

P (X |Dc)/P (X |Dn) is less than some threshold ρ. That is, we keep

only those itemsets that are highly predictive of contacts. Let us de-

note these remaining itemsets by R.

Now given an unknown protein P of length m. We generate candidate

vectors r1,1, ..., rm,m. we make prediction like this:

(1) Evidence calculation: Let S(ri,j) = {X ∈ R | X ⊂ ri,j}. Next, calculate

Sc(ri,j) =
∑

X∈S(ri,j)

supportDc(X)

Sn(ri,j) =
∑

X∈S(ri,j)

supportDn(X)

Then define “evidence” as the ratio

ρ(ri,j) =
Sc(ri,j)

Sn(ri,j)
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Fig. 18. The predicted contact map for the protein previously shown in Figure 15.

(2) Prediction: Sort C = {ri,j |1 ≤ i ≤ m, 1 ≤ j ≤ m, Sc(ri,j) > 0} in de-

creasing order of evidence. These are the candidates for “contact”. The

top γ fraction of C are predicted as “contact”. All others are predicted

as “non-contact”. Here γ can be specified or determined empirically by

the user.

Zaki et al. [84] test the method above on a test set having a total of

2,336,548 pairs, out of which 35,987 or 1.54% are contacts. This test set

is derived from the 10% of the 691 proteins from PDBselect [39] not used

in the training of the HMM and association rules. They use a minsupp

threshold of 0.5% and a ρ(ri,j) threshold of 4.

Figure 18 is the prediction result by Zaki et al. [84] on the protein given

earlier in Figure 15. For this protein they achieve 35% precision and 37%

sensitivity. Averaging their results over all the proteins in the test set, it is

found that at the 25% sensitivity level, 18% precision can be achieved; this

is about 5 times better than random. And at the 12.5% sensitivity level,

about 44% precision can be achieved.

If we look at proteins at various lengths, we find that for length less than

100, we get 26% precision at 63% sensitivity, which is about 4 times better

than random. For length between 100 and 170, we get 21.5% precision at

10% sensitivity, which is 6 times better than random. For length between
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170 and 300, we get 13% precision at 7.5% sensitivity, which is 7.8 times

better than random. For longer proteins, we get 9.7% precision at 7.5%

sensitivity, which is 7.8 times better than random.

These results appear to be competitive to those reported so far in the lit-

erature on contact map prediction. For example, Fariselli and Casadio [27]

use a neural network based approach—over a pairs database with contex-

tual information like sequence context windows, amino acid profiles, and

hydrophobicity values—to obtain 18% precision for short proteins with a

3 times improvement over random. Olmea and Valencia [57] use correlated

mutations in multiple sequence alignments augmented with information on

sequence conservation, alignment stability, contact occupancy, etc. to ob-

tain 26% precision for short proteins. Note that these two previous works

use smaller test sets and their sensitivity levels have not been reported.

Thomas et al. [76] also use the correlated mutation approach and obtain

13% precision or 5 times better than random, when averaged over proteins

of different lengths. Zhao and Kim [86] examine pairwise amino acid in-

teractions in the context of secondary structural environment—viz. helix,

strand, and coil—and achieve 4 times improvement better than random,

when averaged over proteins of different lengths.

5. Summary

We have given an overview of data mining processes. We have described

several data mining techniques, including association rules, sequence min-

ing, classification, clustering, deviation detection, and k-nearest neighbors.

We have also discussed some data preprocessing issues and techniques, es-

pecially data reduction. We have also illustrated the use of some of these

techniques by a detailed example on predicting the residue contacts in pro-

teins based on the work of Zaki et al. [84].

For association rules, we have in particular described the Apriori algo-

rithm of Agrawal and Srikant [3] in some degree of detail. For sequence

mining, we have in particular presented the a generalization of the Apriori

algorithm by Agrawal and Srikant [4]. For classification, we have concen-

trated mostly on decision tree induction [63, 64] based on Gini index [30].

For clustering, we have described the k-means algorithm [53] and the EM

algorithm [10]. For k-nearest neighbors, we presented the method of Cover

and Hart [21]. For data reduction, we have described the principal compo-

nent analysis approach [42] in some detail.
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