DATA PREPARATION AND ANALYSIS LABORATORY

LAB MANUAL

Academic Year		:	2019
	SubjectCode	:	BCSB20
	Regulations	:	IARE -R18
	Semester	:	II
	Branch	:	CSE

PreparedBy

Mrs. G Sulakshana

Assistant Professor

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad – 500 043

1

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

DUNDIGAL – 500 043, HYDERABAD

COMPUTER SCIENCE AND ENGINEERING

1. PROGRAM OUTCOMES:

	M.TECH-PROGRAM OUTCOMES(POS)
PO1	Analyze a problem, identify and define computing requirements, design and implement appropriate solutions
PO2	Solve complex heterogeneous data intensive analytical based problems of real time scenario using state of the art hardware/software tools
PO3	Demonstrate a degree of mastery in emerging areas of CSE/IT like IoT, AI, Data Analytics, Machine Learning, cyber security, etc.
PO4	Write and present a substantial technical report/document
PO5	Independently carry out research/investigation and development work to solve practical problems
PO6	Function effectively on teams to establish goals, plan tasks, meet deadlines, manage risk and produce deliverables
PO7	Engage in life-long learning and professional development through self-study, continuing education, professional and doctoral level studies.

2. PROGRAM SPECIFIC OUTCOMES:

	PROGRAM SPECIFIC OUTCOMES(PEO's)
PEO1	Independently design and develop computer software systems and products based on sound theoretical principles and appropriate software development skills.
PEO2	Demonstrate knowledge of technological advances through active participation in life-long
PEO3	Accept to take up responsibilities upon employment in the areas of teaching, research, and software development.
PEO4	Exhibit technical communication, collaboration and mentoring skills and assume rolesboth as team members and as team leaders in an organization.

ATTAINMENT OF PROGRAM OUTCOMES

S. No	Experiment	Program Outcomes Attained
1	DATA PRE-PROCESSING AND DATA CUBE Data preprocessing methods on student and labor datasets Implement data cube for data warehouse on 3-dimensional data	PO1
2	DATA CLEANING Implement various missing handling mechanisms, Implement various noisy handling mechanisms	PO1
3	EXPLORATORY ANALYSIS Develop k-means and MST based clustering techniques, Develop the methodology for assessment of clusters for given dataset	PO2
4	ASSOCIATION ANALYSIS Design algorithms for association rule mining algorithms	PO2
5	HYPTOTHYSIS GENERATION Derive the hypothesis for association rules to discovery of strong association rules; Use confidence and support thresholds.	PO1
6	TRANSFORMATION TECHNIQUES Construct Haar wavelet transformation for numerical data, Construct principal component analysis (PCA) for 5-dimensional data.	PO7
7	DATA VISUALIZATION Implement binning visualizations for any real time dataset, Implement linear regression techniques	PO2
8	CLUSTERS ASSESSMENT Visualize the clusters for any synthetic dataset, Implement the program for converting the clusters into histograms	PO7
9	HIERARCHICAL CLUSTERING Write a program to implement agglomerative clustering technique ,Write a program to implement divisive hierarchical clustering technique	PO7
10	SCALABILITY ALGORITHMS Develop scalable clustering algorithms ,Develop scalable a priori algorithm	PO2

SYLLABUS:

Course	e Code	Category		Hours	/ Week	Credits	Ma	ximum N	Iarks
DCS	D 7 0	Corro	L	Т	Р	С	CIA	SEE	Total
BCS	B20	Core	0	0	4	2	30	70	100
Contact C	Classes: Nil	Total Tutorials: Nil	Tota	l Practi	cal Clas	ses: 36	To	tal Class	es: 36
I. Lea II. Pra III. Lea	should ena rn pre-proc ctice on dat rn various c	able the students to: essing method for mul a cleaningmechanisms lata exploratoryanalys sualizations for cluster	s sis		data				
		LIST	OF E	XPERI	MENTS	5			
Week-1	DATA PR	E-PROCESSING AN	ND DA	TA CU	BE				
		hods on student and lansional data	abor da	itasets In	nplemen	it data cub	e for dat	a	
Week-2	DATA CL	EANING							
mplement	various mis	sing handling mechani	isms ,I	mplemer	nt variou	ıs noisy ha	ndling n	nechanisr	ns
Week-3	EXPLOR	ATORY ANALYSIS							
·		l MST based clusterin s for given dataset	g techr	niques, D	Develop (the method	lology f	or	
Week-4	ASSOCIA	TION ANALYSIS							
Design algo	rithms for a	ssociation rule mining	g algori	ithms					
Week-5	HYPTOTI	HYSIS GENERATIO	ON						
	ypothesis f ort threshold	or association rules to ls.	discov	ery of st	trong ass	sociation r	ules; Use	e confide	nce
Week-6	TRANSF	ORMATION TECH	NIQUI	ES					
	laar wavelet	transformation for nu	imerica	ıl data, C	Construct	t principal	compon	ent analy	sis (PCA
	nsional data								
	nsional data								
for 5-dimer	nsional data	l.	al time	dataset,	Implem	ent linear	regressio	on technic	ques

Visualize the clusters for any synthetic dataset, Implement the program for converting the clusters into histograms

Week-9 HIERARCHICAL CLUSTERING

Write a program to implement agglomerative clustering technique ,Write a program to implement divisive hierarchical clustering technique

Week-10 SCALABILITY ALGORITHMS

Develop scalable clustering algorithms, Develop scalable a priori algorithm

Reference Books:

1. Sinan Ozdemir, "Principles of Data Science", Packt Publishers, 2016.

Web References:

- 1. https://paginas.fe.up.pt/~ec/files_1112/week_03_Data_Preparation.pdf
- 2. https://socialresearchmethods.net/kb/statprep.php
- 3. https://www.quest.com/solutions/data-preparation-and-analysis/

SOFTWARE AND HARDWARE REQUIREMENTS FOR 18 STUDENTS:

SOFTWARE: Open source Weka 3.8, Python

HARDWARE: 18 numbers of Intel Desktop Computers with 4 GB RAM

INDEX

S. No	List of Experiments	Page No
1	DATA PRE-PROCESSING AND DATA CUBE Data preprocessing methods on student and labor datasets Implement data cube for data warehouse on 3-dimensional data	8-13
2	DATA CLEANING Implement various missing handling mechanisms, Implement various noisy handling mechanisms	14-22
3	EXPLORATORY ANALYSIS Develop k-means and MST based clustering techniques, Develop the methodology for assessment of clusters for given dataset	23-28
4	ASSOCIATION ANALYSIS Design algorithms for association rule mining algorithms	29-31
5	HYPTOTHYSIS GENERATION Derive the hypothesis for association rules to discovery of strong association rules; Use confidence and support thresholds.	32-35
6	TRANSFORMATION TECHNIQUES Construct Haar wavelet transformation for numerical data, Construct principal component analysis (PCA) for 5-dimensional data.	36-41
7	DATA VISUALIZATION Implement binning visualizations for any real time dataset, Implement linear regression techniques	42-44
8	CLUSTERS ASSESSMENT Visualize the clusters for any synthetic dataset, Implement the program for converting the clusters into histograms	45-46
9	HIERARCHICAL CLUSTERING Write a program to implement agglomerative clustering technique ,Write a program to implement divisive hierarchical clustering technique	47-50
10	SCALABILITY ALGORITHMS Develop scalable clustering algorithms ,Develop scalable a priori algorithm	51-54

WEEK-1

Aim: Data preprocessing methods on student and labor datasets

Description:

We need to create an Employee Table with training data set which includes attributes like name, id, salary, experience, gender, phone number.

Procedure:

Steps:

- 1) Open Start Programs Accessories Notepad→
- 2) Type the following training data set with the help of Notepad for Employee Table.

@relation employee
@attribute name {x,y,z,a,b}
@attribute id numeric
@attribute salary {low,medium,high}
@attribute exp numeric
@attribute gender {male,female}
@attribute phone numeric

@data x,101,low,2,male,250311 y,102,high,3,female,251665 z,103,medium,1,male,240238 a,104,low,5,female,200200 b,105,high,2,male,240240

- 3) After that the file is saved with **.arff** file format.
- 4) Minimize the arff file and then open Start Programs weka-3-4.
- 5) Click on weka-3-4, then Weka dialog box is displayed on the screen.
- 6) In that dialog box there are four modes, click on **explorer**.
- 7) Explorer shows many options. In that click on 'open file' and select the arff file
- 8) Click on edit button which shows employee table on weka.

Training Data Set_Weather Table

No.	outlook Nominal	temparature Numeric	humidity Numeric	windy Nominal	play Nominal		
L I	sunny	85.0	85.0	false	no		
2	overcast	80.0	90.0	true	no		
3	sunny	83.0	86.0	false	yes		
1	rainy	70.0	86.0	false	yes		
5	rainy	68.0	80.0	False	yes		
5	rainy	65.0		true	no		
7	overcast	64.0	65.0	false	yes		
	sunny	72.0	95.0	true	no		
9	sunny	69.0		False	yes		
0	rainy	75.0	80.0	false	yes		

Result:

This program has been successfully executed.

Aim:

Implement data cube for data warehouse on 3-dimensional data

Description:

We need to create a Weather table with training data set which includes attributes like outlook, temperature, humidity, windy, play.

Procedure:

Steps:

- 1) Open Start Programs Accessories Notepad
- 2) Type the following training data set with the help of Notepad for Weather Table.

@relation weather
@attribute outlook {sunny,rainy,overcast}
@attribute temparature numeric
@attribute humidity numeric
@attribute windy {true,false}
@attribute play {yes,no}

@data

sunny,85.0,85.0,false,no overcast,80.0,90.0,true,no sunny,83.0,86.0,false,yes rainy,70.0,86.0,false,yes rainy,68.0,80.0,false,yes rainy,65.0,70.0,true,no overcast,64.0,65.0,false,yes sunny,72.0,95.0,true,no sunny,69.0,70.0,false,yes rainy,75.0,80.0,false,yes

- 3) After that the file is saved with **.arff** file format.
- 4) Minimize the arff file and then open Start -Programs weka-3-4.
- 5) Click on weka-3-4, then Weka dialog box is displayed on the screen.
- 6) In that dialog box there are four modes, click on **explorer**.
- 7) Explorer shows many options. In that click on 'open file' and select the arff file
- 8) Click on edit button which shows weather table on weka.

Training Data Set - Weather Table

No.	outlook Nominal	temparature Numeric	humidity Numeric	windy Nominal	play Nominal			
1	sunny	85.0	85.0	false	no	i.		
2	overcast	80.0	90.0	true	no			
3	sunny	83.0	86.0	false	yes			
1	rainy	70.0	86.0	false	yes			
5	rainy	68.0	80.0	false	yes			
5	rainy	65.0	70.0	true	no			
7	overcast	64.0	65.0	false	yes			
3	sunny	72.0	95.0	true	no			
)	sunny	69.0	70.0	False	yes			
10	rainy	75.0	80.0	false	yes			

Result:

This program has been successfully executed.

WEEK-2

<u>Aim:</u>

Implement various missing handling mechanisms

Description:

Real world databases are highly influenced to noise, missing and inconsistency due to their queue size so the data can be pre-processed to improve the quality of data and missing results and it also improves the efficiency.

There are 3 pre-processing techniques they are:

- 1) Add
- 2) Remove
- 3) Normalization

Creation of Weather Table:

Procedure:

- 1) Open Start Programs Accessories Notepad
- 2) Type the following training data set with the help of Notepad for Weather Table.

@relation weather
@attribute outlook {sunny,rainy,overcast}
@attribute temparature numeric
@attribute humidity numeric
@attribute windy {true,false}
@attribute play {yes,no}

@data

sunny,85.0,85.0,false,no overcast,80.0,90.0,true,no sunny,83.0,86.0,false,yes rainy,70.0,86.0,false,yes rainy,68.0,80.0,false,yes rainy,65.0,70.0,true,no overcast,64.0,65.0,false,yes sunny,72.0,95.0,true,no sunny,69.0,70.0,false,yes rainy,75.0,80.0,false,yes

- 3) After that the file is saved with **.arff** file format.
- 4) Minimize the arff file and then open Start \rightarrow Programs \rightarrow weka-3-4.
- 5) Click on weka-3-4, then Weka dialog box is displayed on the screen.
- 6) In that dialog box there are four modes, click on **explorer**.
- 7) Explorer shows many options. In that click on 'open file' and select the arff file
- 8) Click on **edit button** which shows weather table on weka.

	outlook Nominal	temparature Numeric	humidity Numeric
1	sunny	85.0	85.0
2	overcast	80.0	90.0
3	sunny	83.0	86.0
4	rainy	70.0	86.0
5	rainy	68.0	80.0
6	rainy	65.0	1. A.
7	overcast	64.0	in the second
8	sunny	72.0	and the second se
9	sunny	69.0	70.0
10	rainy	75.0	80.0

Weather Table after removing attributes WINDY, PLAY:

Normalize -Pre-Processing Technique:

Procedure:

- 1) Start Programs -Weka-3-4- Weka-3-4
- 2) Click on explorer.
- 3) Click on open file.
- 4) Select Weather.arff file and click on open.
- 5) Click on Choose button and select the Filters option.
- 6) In Filters, we have **Supervised** and **Unsupervised data**.
- 7) Click on Unsupervised data.
- 8) Select the attribute Normalize.
- 9) Select the attributes **temparature**, **humidity** to Normalize.
- 10) Click on Apply button and then Save.
- 11) Click on the Edit button, it shows a new Weather Table with normalized values on Weka.

Weather Table after Normalizing TEMPARATURE, HUMIDITY: Weather Table after removing attributes WINDY, PLAY:

C consistent	and a second second second		unsupervised.att	nouce. Remove-P	UT J	
No.	Nominal	temparature Numeric	humidity Numeric			
1	sunny	85.0	85.0			
2	overcast	80.0	90.0			
3	sunny	83.0	86.0			
4	rainy	70.0	86.0			
5	rainy	68.0	80.0			
6	rainy	65.0	70.0			
7	overcast	64.0	65.0			
8	sunny	72.0	95.0			
9	sunny	69.0	70.0			
10	rainy	75.0	80.0			
				Undo	ОК	Cancel
ze -Pre-Proces <u>re:</u> Start - Progr	ams -Wel		a-3-4	Undo) [ок]	Cancel
e: Start - Progr Click on exp	ams -Wel blorer.		a-3-4	Undo) [ОК]	Cancel
e: Start - Progr Click on exp Click on ope	ams -Wel blorer. en file.	ka-3-4 -Wek		Undo) [ОК]	Cancel
e: Start - Progr Click on exp Click on ope Select Weat	ams -Wel lorer. en file. her.arff i	ka-3-4 -Wek	c on open.) [ОК]	Cancel
e: Start - Progr Click on exp Click on ope Select Weat Click on Ch	ams -Wel blorer. en file. her.arff : oose butt	ka-3-4 -Wek file and click t on and selec	t on open. ct the Filters o	ption.	ОК)	Cancel
e: Start - Progr Click on exp Click on ope Select Weat Click on Ch In Filters, we	ams -Wel lorer. en file. her.arff f oose butt e have Su	ka-3-4 -Wek file and click t on and selec pervised an	c on open.	ption.) (ОК	Cancel
e: Start - Progr Click on exp Click on ope Select Weat Click on Ch In Filters, we Click on Un	ams -Web lorer. en file. her.arff f oose butt e have Su supervise	ka-3-4 -Wek file and click ton and selec pervised an ed data.	t on open. ct the Filters o	ption.	ОК)	Cancel
Start - Progr Click on exp Click on ope Select Weat Click on Ch In Filters, we	ams -Web lorer. en file. her.arff f oose butt e have Su supervise	ka-3-4 -Wek file and click ton and selec pervised an ed data.	t on open. ct the Filters o	ption.	ОК	Cancel
e: Start - Progr Click on exp Click on ope Select Weat Click on Ch In Filters, we Click on Un Select the at	ams -Wel blorer. en file. her.arff f oose butt e have Su supervise tribute No	ka-3-4 -Wek file and click ton and selec upervised an ed data. ormalize.	t on open. ct the Filters o	ption. ed data.	ОК	Cancel
 Start - Progr Click on exp Click on ope Click on ope Select Weat Click on Ch In Filters, we Click on Un Select the att 	ams -Wel blorer. en file. her.arff i oose butt e have Su supervise tribute Ne tributes to	ka-3-4 -Wek file and click ton and selec upervised an ed data. ormalize. emparature	t on open. ct the Filters o d Unsupervis , humidity to	ption. ed data.	ОК	Cancel
E Start - Progr Click on exp Click on ope Select Weat Click on Ch In Filters, we Click on Un Select the att Select the att	ams -Wel olorer. en file. her.arff f oose butt e have Su supervise tribute Ne tribute Ne tributes to ply butto	ka-3-4 -Wek file and click ton and selec upervised an ed data. ormalize. emparature on and then \$	t on open. ct the Filters o d Unsupervis , humidity to	ption. ed data. Normalize.		

Weather Table after Normalizing TEMPARATURE, HUMIDITY: Add -Pre-Processing Technique:

Procedure:

- 1) Start Programs -Weka-3-4 -Weka-3-4
- 2) Click on **explorer**.
- 3) Click on open file.
- 4) Select Weather.arff file and click on open.
- 5) Click on **Choose button** and select the **Filters option**.
- 6) In Filters, we have **Supervised** and **Unsupervised data**.
- 7) Click on Unsupervised data.
- 8) Select the attribute Add.
- 9) A new window is opened.
- 10) In that we enter attribute index, type, data format, nominal label values for Climate.
- 11) Click on OK.
- 12) Press the Apply button, then a new attribute is added to the Weather Table.
- 13) Save the file.
- 14) Click on the Edit button, it shows a new Weather Table on Weka.

Weather Table after adding new attribute CLIMATE: Add -Pre-Processing Technique:

Procedure:

- 1) Start Programs Weka-3-4 Weka-3-4
 - 2) Click on explorer.
 - 3) Click on open file.
 - 4) Select Weather.arff file and click on open.
 - 5) Click on **Choose button** and select the **Filters option**.
 - 6) In Filters, we have **Supervised** and **Unsupervised data**.
 - 7) Click on Unsupervised data.
 - 8) Select the attribute Add.
 - 9) A new window is opened.
 - 10) In that we enter attribute index, type, data format, nominal label values for Climate.
 - 11) Click on OK.

12) Press the Apply button, then a new attribute is added to the Weather Table.

13) Save the file.

14) Click on the **Edit button**, it shows a new Weather Table on Weka. 05,high,2,male,240240

- 3) After that the file is saved with **.arff** file format.
- 4) Minimize the arff file and then open Start Programs → weka-3-4.
- 5) Click on weka-3-4, then Weka dialog box is displayed on the screen.
- 6) In that dialog box there are four modes, click on **explorer**.
- 7) Explorer shows many options. In that click on **'open file'** and select the arff file
- 8) Click on **edit button** which shows employee table on weka.

Training Data Set -Employee Table

No.	ion: emplo name Nominal	id Numeric	salary Nominal	exp Numeric	gender Nominal	phone Numeric	
1	x	101.0	low	2.0	male	25031	
2	y.	102.0	high	3.0	female	25166	
3	z	103.0	medium	1.0	male	24023	
4	a	104.0	low	5.0	female	20020	
	Ь	105.0	high	2.0	male	24024	

Add -Pre-Processing Technique: Procedure:

- 1) Start Programs -Weka-3-4 -Weka-3-4
- 2) Click on explorer.
- 3) Click on open file.
- 4) Select **Employee.arff** file and click on open.
- 5) Click on **Choose button** and select the **Filters option**.
- 6) In Filters, we have **Supervised** and **Unsupervised data**.
- 7) Click on Unsupervised data.
- 8) Select the attribute Add.
- 9) A new window is opened.
- 10) In that we enter attribute index, type, data format, nominal label values for Address.
- 11) Click on OK.
- 12) Press the Apply button, then a new attribute is added to the Employee Table.
- 13) Save the file.
- 14) Click on the Edit button, it shows a new Employee Table on Weka.

Employee Table after adding new attribute ADDRESS:

1 x 101.0 low 2.0 male 25031 2 y 102.0 high 3.0 female 25166 3 z 103.0 medium 1.0 male 24023 4 a 104.0 low 5.0 female 20020 5 b 105.0 high 2.0 male 24024	No.	name Nominal	id Numeric	salary	exp Numeric	gender	phone Numeric	dress-Lhyd, Address Nominal	and the state of the state of
3 z 103.0 medium 1.0 male 24023 4 a 104.0 low 5.0 female 20020 5 b 105.0 high 2.0 male 24024	1	x	101.0	low	2.0	male	25031		
4 a 104.0 low 5.0 female 20020 5 b 105.0 high 2.0 male 24024	2	y.	102.0	high	3.0	female	25166	i.	l.
5 b 105.0 high 2.0 male 24024	3	Z	103.0	medium	1.0	male	24023		Ē.
	Ę.	a	104.0	low	5.0	female	20020		Ĩ.
		b	105.0	high	2.0	male	24024		Ĩ.

<u>Remove</u> -Pre-Processing Technique: Procedure:

- 1) Start Programs -Weka-3-4 -Weka-3-4
- 2) Click on explorer.
- 3) Click on open file.
- 4) Select **Employee.arff** file and click on open.
- 5) Click on Choose button and select the Filters option.
- 6) In Filters, we have **Supervised** and **Unsupervised data**.
- 7) Click on Unsupervised data.
- 8) Select the attribute **Remove**.
- 9) Select the attributes salary, gender to Remove.
- **10**) Click **Remove button** and then **Save**.
- 11) Click on the Edit button, it shows a new Employee Table on Weka.

Employee Table after removing attributes SALARY, GENDER:

No.	name Nominal	id Numeric	exp Numeric	upervised phone Numeric
-	x	101.0	2.0	And the owner of the owner owner
_	у	102.0	5	25166
	z	103.0	1.0	24023
	a	104.0	5.0	20020
	b	105.0	2.0	24024

Normalize -Pre-Processing Technique: Procedure:

- 1) Start -Programs -Weka-3-4 -Weka-3-4
- 2) Click on explorer.
- 3) Click on **open file.**
- 4) Select **Employee.arff** file and click on open.
- 5) Click on **Choose button** and select the **Filters option**.
- 6) In Filters, we have **Supervised** and **Unsupervised data**.
- 7) Click on **Unsupervised data**.
- 8) Select the attribute **Normalize**.
- 9) Select the attributes **id**, **experience**, **phone** to Normalize.
- 10) Click on Apply button and then Save.
- 11) Click on the **Edit button**, it shows a new Employee Table with normalized values on Weka.

Employee Table after Normalizing ID, EXP, PHONE:

Result:

This program has been successfully executed.

2 y 0.25 high 0.5 female 25166 3 z 0.5 medium 0.0 male 24023	No.	name Nominal	id Numeric	salary Nominal	exp Numeric	gender Nominal	phone Numeric		
3 z 0.5 medium 0.0 male 24023 4 a 0.75 low 1.0 female 20020	1	x	0.0	low	0.25	male	25031		
4 a 0.75 low 1.0 female 20020	2	y :	0.25	high	0.5	female	25166		
	3	z	0.5	medium	0.0	male	24023		
5 b 1.0 high 0.25 male 24024	4	a	0.75	low	1.0	female	20020		
		b	1.0	high	0.25	male	24024		

WEEK-3

Aim:

Develop k-means and MST based clustering techniques **Description:**

The knowledge flow provides an alternative way to the explorer as a graphical front end to WEKA's algorithm. Knowledge flow is a working progress. So, some of the functionality from explorer is not yet available. So, on the other hand there are the things that can be done in knowledge flow, but not in explorer. Knowledge flow presents a dataflow interface to WEKA. The user can select WEKA components from a toolbar placed them on a layout campus and connect them together in order to form a knowledge flow for processing and analyzing the data.

Creation of Weather Table:

Procedure:

- 1) Open Start Programs Accessories Notepad
- 2) Type the following training data set with the help of Notepad for Weather Table.

@relation weather
@attribute outlook {sunny,rainy,overcast}
@attribute temparature numeric
@attribute humidity numeric
@attribute windy {true,false}
@attribute play {yes,no}

@data

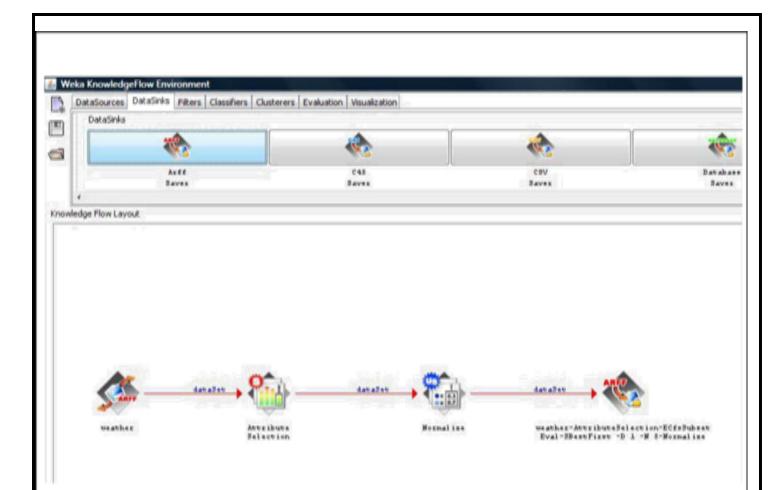
sunny,85.0,85.0,false,no overcast,80.0,90.0,true,no sunny,83.0,86.0,false,yes rainy,70.0,86.0,false,yes rainy,65.0,70.0,true,no overcast,64.0,65.0,false,yes sunny,72.0,95.0,true,no sunny,69.0,70.0,false,yes rainy,75.0,80.0,false,yes

3) After that the file is saved with **.arff** file format.

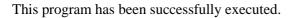
- 4) Minimize the arff file and then open Start Programs weka-3-4.
- 5) Click on weka-3-4, then Weka dialog box is displayed on the screen.
- 6) In that dialog box there are four modes, click on **explorer**.
- 7) Explorer shows many options. In that click on 'open file' and select the arff file
- 8) Click on edit button which shows Weather table on weka.

Output:

Training Data Set -Weather Table


No.	outlook Nominal	temparature Numeric	humidity Numeric	windy Nominal	play Nominal		
1	sunny	85.0	85.0	false	no		
2	overcast	80.0	90.0	true	no		
3	sunny	83.0	86.0	false	yes		
4	rainy	70.0	86.0	false	yes		
5	rainy	68.0	80.0	false	yes		
6	rainy	65.0	70.0	true	no		
7	overcast	64.0	65.0	false	yes		
8	sunny	72.0	95.0	true	no		
9	sunny	69.0	70.0	false	yes		
10	rainy	75.0	80.0	false	yes		

Procedure for Knowledge Flow:


- 1) Open Start \rightarrow Programs \rightarrow Weka-3-4 \rightarrow Weka-3-4
- 2) Open the Knowledge Flow.
- 3) Select the Data Source component and add Arff Loader into the knowledge layout canvas.
- 4) Select the Filters component and add Attribute Selection and Normalize into the knowledge layout canvas.
- 5) Select the Data Sinks component and add Arff Saver into the knowledge layout canvas.
- 6) Right click on Arff Loader and select Configure option then the new window will be opened and select Weather.arff
- 7) Right click on **Arff Loader** and select **Dataset option** then establish a link between **Arff Loader** and **Attribute Selection**.
- 8) Right click on Attribute Selection and select Dataset option then establish a link between AttributeSelection and Normalize.
- **9**) Right click on **Attribute Selection** and select **Configure option** and choose the best attribute for Weather data.
- 10) Right click on Normalize and select Dataset option then establish a link between Normalize and Arff Saver.
- 11) Right click on **Arff Saver** and select **Configure option** then new window will be opened and set the path, enter **.arff** in look in dialog box to save normalize data.
- 12) Right click on Arff Loader and click on Start Loading option then everything will be executed one by one.

20

- 13) Check whether output is created or not by selecting the preferred path.
- 14) Rename the data name as **a.arff**
- 15) Double click on **a.arff** then automatically the output will be opened in MS-Excel.

Result:

<u>Aim:</u>

Develop the methodology for assessment of clusters for given dataset

Description:

The knowledge flow provides an alternative way to the explorer as a graphical front end to WEKA's algorithm. Knowledge flow is a working progress. So, some of the functionality from explorer is not yet available. So, on the other hand there are the things that can be done in knowledge flow, but not in explorer. Knowledge flow presents a dataflow interface to WEKA. The user can select WEKA components from a toolbar placed them on a layout campus and connect them together in order to form a knowledge flow for processing and analyzing the data.

Creation of Employee Table:

Procedure:

- 1) Open Start- Programs Accessories -Notepad
- 2) Type the following training data set with the help of Notepad for Employee

Table. @relation employee @attribute eid numeric @attribute ename {raj,ramu,anil,sunil,rajiv,sunitha,kavitha,suresh,ravi,ramana,ram,kavya,navya} @attribute salary numeric @attribute exp numeric @attribute address {pdtr,kdp,nlr,gtr} @data 101,raj,10000,4,pdtr 102,ramu,15000,5,pdtr 103,anil,12000,3,kdp 104, sunil, 13000, 3, kdp 105,rajiv,16000,6,kdp 106, sunitha, 15000, 5, nlr 107,kavitha,12000,3,nlr 108,suresh,11000,5,gtr 109, ravi, 12000, 3, gtr 110,ramana,11000,5,gtr 111,ram,12000,3,kdp 112,kavya,13000,4,kdp 113,navya,14000,5,kdp

- 3) After that the file is saved with **.arff** file format.
- 4) Minimize the arff file and then open Start \rightarrow Programs \rightarrow weka-3-4.
- 5) Click on weka-3-4, then Weka dialog box is displayed on the screen.
- 6) In that dialog box there are four modes, click on **explorer**.
- 7) Explorer shows many options. In that click on 'open file' and select the arff file
- 8) Click on edit button which shows employee table on weka.

Output:

Training Data Set -Employee Table

No. eid Numeric ename Nominal salary Numeric exp Numeric address Nominal 1 101.0 raj 10000.0 4.0 pdtr 2 102.0 ramu 15000.0 5.0 pdtr 3 103.0 anil 12000.0 3.0 kdp 4 104.0 sunil 13000.0 3.0 kdp 5 105.0 rajiv 16000.0 6.0 kdp 6 106.0 sunitha 15000.0 5.0 nlr 7 107.0 kavitha 12000.0 3.0 gtr 9 109.0 ravi 12000.0 3.0 gtr 10 110.0 ramana 11000.0 5.0 gtr 11 111.0 ram 12000.0 3.0 kdp 12 112.0 kavya 1300.0 4.0 kdp 13 113.0 navya 14000.0 5.0 kdp		on: emplo					r
2 102.0 ramu 15000.0 5.0 pdtr 3 103.0 anil 12000.0 3.0 kdp 4 104.0 sunil 13000.0 3.0 kdp 5 105.0 rajiv 16000.0 6.0 kdp 6 106.0 sunitha 15000.0 5.0 nlr 7 107.0 kavitha 12000.0 3.0 gtr 9 109.0 ravi 12000.0 5.0 gtr 9 109.0 ravi 12000.0 3.0 gtr 10 110.0 ramana 11000.0 5.0 gtr 11 111.0 ramana 11000.0 3.0 kdp 12 112.0 kavya 13000.0 4.0 kdp	No.	eid Numeric	ename Nominal	salary Numeric	and the second	address Nominal	
3 103.0 anil 12000.0 3.0 kdp 4 104.0 sunil 13000.0 3.0 kdp 5 105.0 rajiv 16000.0 6.0 kdp 6 106.0 sunitha 15000.0 5.0 nlr 7 107.0 kavitha 12000.0 3.0 nlr 8 108.0 suresh 11000.0 5.0 gtr 9 109.0 ravi 12000.0 3.0 gtr 10 110.0 ramana 11000.0 5.0 gtr 11 111.0 ramana 11000.0 5.0 gtr 12 112.0 kavya 13000.0 4.0 kdp	1	101.0	raj	10000.0	4.0	pdtr	1
4 104.0 sunil 13000.0 3.0 kdp 5 105.0 rajiv 16000.0 6.0 kdp 6 106.0 sunitha 15000.0 5.0 nlr 7 107.0 kavitha 12000.0 3.0 nlr 8 108.0 suresh 11000.0 5.0 gtr 9 109.0 ravi 12000.0 3.0 gtr 10 110.0 ramana 11000.0 5.0 gtr 11 111.0 ram 12000.0 3.0 kdp 12 112.0 kavya 13000.0 4.0 kdp	2	102.0	ramu	15000.0	5.0	pdtr	
5 105.0 rajiv 16000.0 6.0 kdp 6 106.0 sunitha 15000.0 5.0 nlr 7 107.0 kavitha 12000.0 3.0 nlr 8 108.0 suresh 11000.0 5.0 gtr 9 109.0 ravi 12000.0 3.0 gtr 10 110.0 ramana 11000.0 5.0 gtr 11 111.0 ram 12000.0 3.0 kdp 12 112.0 kavya 13000.0 4.0 kdp	3	103.0	anil	12000.0	3.0	kdp	
5 106.0 sunitha 15000.0 5.0 nlr 7 107.0 kavitha 12000.0 3.0 nlr 8 108.0 suresh 11000.0 5.0 gtr 9 109.0 ravi 12000.0 3.0 gtr 10 110.0 ramana 11000.0 5.0 gtr 11 111.0 ram 12000.0 3.0 kdp 12 112.0 kavya 13000.0 4.0 kdp	4	104.0	sunil	13000.0	3.0	kdp	
7 107.0 kavitha 12000.0 3.0 nlr 8 108.0 suresh 11000.0 5.0 gtr 9 109.0 ravi 12000.0 3.0 gtr 10 110.0 ramana 11000.0 5.0 gtr 11 111.0 ram 12000.0 3.0 kdp 12 112.0 kavya 13000.0 4.0 kdp	š	105.0	rajiv	16000.0	6.0	kdp	
8 108.0 suresh 11000.0 5.0 gtr 9 109.0 ravi 12000.0 3.0 gtr 10 110.0 ramana 11000.0 5.0 gtr 11 111.0 ram 12000.0 3.0 kdp 12 112.0 kavya 13000.0 4.0 kdp	5	106.0	sunitha	15000.0	5.0	nlr	1
9 109.0 ravi 12000.0 3.0 gtr 10 110.0 ramana 11000.0 5.0 gtr 11 111.0 ram 12000.0 3.0 kdp 12 112.0 kavya 13000.0 4.0 kdp	7	107.0	kavitha	12000.0	3.0	nlr	1
10 110.0 ramana 11000.0 5.0 gtr 11 111.0 ram 12000.0 3.0 kdp 12 112.0 kavya 13000.0 4.0 kdp	3	108.0	suresh	11000.0	5.0	gtr	1
11 111.0 ram 12000.0 3.0 kdp 12 112.0 kavya 13000.0 4.0 kdp	9	109.0	ravi	12000.0	3.0	gtr	1
12 112.0 kavya 13000.0 4.0 kdp	10	110.0	ramana	11000.0	5.0	gtr	1
	11	111.0	ram	12000.0	3.0	kdp	
13 113.0 navya 14000.0 5.0 kdp	12	112.0	kavya	13000.0	4.0	kdp	1
	13	113.0	navya	14000.0	5.0	kdp	

Procedure for Knowledge Flow:

- 1) Open Start -Programs -Weka-3-4- Weka-3-4
- 2) Open the Knowledge Flow.
- 3) Select the Data Source component and add Arff Loader into the knowledge layout canvas.
- 4) Select the Filters component and add Attribute Selection and Normalize into the knowledge layout canvas.
- 5) Select the Data Sinks component and add Arff Saver into the knowledge layout canvas.
- Right click on Arff Loader and select Configure option then the new window will be opened and select Employee.arff
- 7) Right click on **Arff Loader** and select **Dataset option** then establish a link between **Arff Loader** and **Attribute Selection**.
- 8) Right click on Attribute Selection and select Dataset option then establish a link between AttributeSelection and Normalize.
- **9**) Right click on **Attribute Selection** and select **Configure option** and choose the best attribute for Employee data.
- 10) Right click on Normalize and select Dataset option then establish a link between Normalize and Arff Saver.
- 11) Right click on **Arff Saver** and select **Configure option** then new window will be opened and set the path, enter **.arff** in look in dialog box to save normalize data.
- 12) Right click on Arff Loader and click on Start Loading 3 ption then everything will be executed one by one.

- 13) Check whether output is created or not by selecting the preferred path.
- 14) Rename the data name as **a.arff**

15) Double click on **a.arff** then automatically the output will be opened in **MS-Excel**.

Result:

This program has been successfully executed.

WEEK-4

Aim: Design algorithms for association rule mining algorithms

Description:

In data mining, **associationrule learning** is a popular and well researched method for discovering interesting relations between variables in large databases. It can be described as analyzing and presenting strong rules discovered in databases using different measures of interestingness. In market basket analysis association rules are used and they are also employed in many application areas including Web usage mining, intrusion detection and bioinformatics.

Creation of Buying Table:

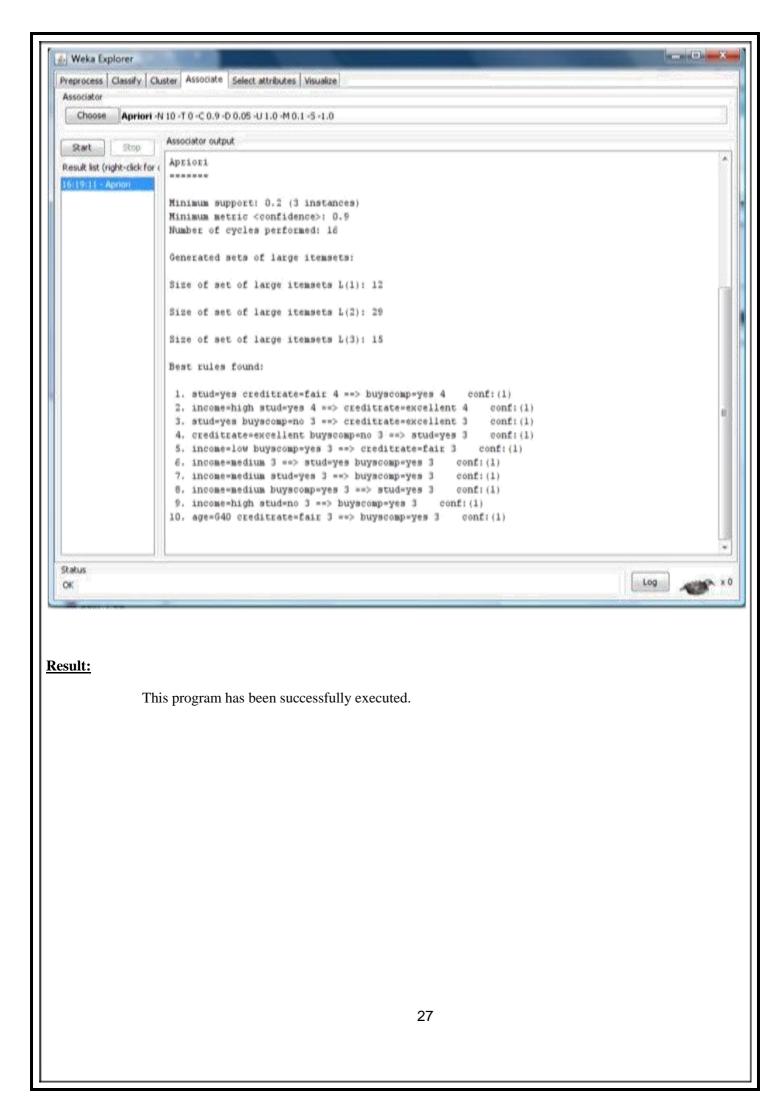
Procedure:

- 1) Open Start Programs Accessories Notepad
- 2) Type the following training data set with the help of Notepad for Buying

Table. @relation buying @attribute age {L20,20-40,G40} @attribute income {high,medium,low} @attribute stud {yes,no} @attribute creditrate {fair,excellent} @attribute buyscomp {yes,no} @data

L20,high,no,fair,yes 20-40,low,yes,fair,yes G40,medium,yes,fair,yes L20,low,no,fair,no G40,high,no,excellent,yes L20,low,yes,fair,yes 20-40,high,yes,excellent,no G40,low,no,fair,yes L20,high,yes,excellent,yes G40,high,no,fair,yes L20,low,yes,excellent,no G40,high,yes,excellent,no 20-40,medium,yes,excellent,yes L20,medium,yes,fair,yes G40,high,yes,excellent,yes

- 3) After that the file is saved with **.arff** file format.
- 4) Minimize the arff file and then open Start ⁷ Programs ⁷ weka-3-4.
- 5) Click on weka-3-4, then Weka dialog box is displayed on the screen.
- 6) In that dialog box there are four modes, click on **explorer**.
- 7) Explorer shows many options. In that click on **'open file'** and select the arff file
- 8) Click on edit button which shows buying table on weka.


Output:

Training Data Set -Buying Table

Nominal	Nominal	Nominal	creditrate Nominal	Nominal		
.20	high	no	fair	yes		
20-40	low	yes	fair	yes		
G40	medium	yes	fair	yes		
.20	low	no	fair	no		
G40	high	no	excellent	yes		
.20	low	yes	fair	yes		
20-40	high	yes	excellent	no		
G40	low	no	fair	yes		
	high	yes	excellent	yes		
G40	high	no	fair	yes		
	low	yes				
	high	yes		no		
20-40		yes		yes		
	medium	yes		yes		
G40	high	yes	excellent	yes		
	20 40 20 0-40 20 40 20 40 20 0-40 20	20 low i40 high 20 low i0-40 high i40 low 20 high i40 low 20 high i40 high i40 high i40 high 20 low i40 high 20 low i40 high 20 medium 20 medium	20 Iow no i40 high no 20 Iow yes i0-40 high yes i40 low no 20 high yes i40 low no 20 high yes i40 high yes i20 medium yes	20 low no fair i40 high no excellent 20 low yes fair i0-40 high yes excellent i40 low no fair 20 low no fair 20 low no fair 20 high yes excellent i40 high no fair 20 low yes excellent i40 high yes excellent i40 high yes excellent i40 medium yes excellent i20 medium yes fair	20 low no fair no i40 high no excellent yes 20 low yes fair yes 20-40 high yes excellent no i40 low no fair yes 20 high yes excellent no i40 high yes excellent yes 20 high no fair yes 20 low yes excellent no i40 high yes excellent no i40 high yes excellent no i40 high yes excellent yes i40 high yes excellent no i40 high yes excellent yes i20 medium yes excellent yes	20Iownofairnoi40highnoexcellentyes20Iowyesfairyes:0-40highyesexcellentnoi40Iownofairyes20highyesexcellentyes20highyesexcellentyes20highnofairyes20lowyesexcellentnoi40highyesexcellentnoi40highyesexcellentno:0-40mediumyesexcellentyes20mediumyesfairyes

Procedure for Association Rules:

- 1) Open Start -Programs Weka-3-4 -Weka-3-4
- 2) Open explorer.
- 3) Click on open file and select buying.arff
- 4) Select Associate option on the top of the Menu bar.
- 5) Select Choose button and then click on Apriori Algorithm.
- 6) Click on **Start button** and output will be displayed on the **right side** of the window.

WEEK-5

<u>Aim:</u>

Derive the hypothesis for association rules to discovery of strong association rules; Use confidence and support thresholds.

Description:

In data mining, **associationrule learning** is a popular and well researched method for discovering interesting relations between variables in large databases. It can be described as analyzing and presenting strong rules discovered in databases using different measures of interestingness. In market basket analysis association rules are used and they are also employed in many application areas including Web usage mining, intrusion detection and bioinformatics.

Creation of Banking Table:

Procedure:

- 1) Open Start- Programs Accessories Notepad
- 2) Type the following training data set with the help of Notepad for Banking
 - Table. @relation bank

@attribute cust {male,female} @attribute accno

 $\{0101, 0102, 0103, 0104, 0105, 0106, 0107, 0108, 0109, 0110, 0111, 0112, 0113, 0114, 0115\}$

@attribute bankname {sbi,hdfc,sbh,ab,rbi}

@attribute location {hyd,jmd,antp,pdtr,kdp} @attribute deposit {yes,no} @data male,0101,sbi,hyd,yes female,0102,hdfc,jmd,no male,0103,sbh,antp,yes male,0104,ab,pdtr,yes female,0105,sbi,jmd,no male,0106,ab,hyd,yes female,0107,rbi,jmd,yes female,0108,hdfc,kdp,no male,0109,sbh,kdp,yes

male,0110,ab,jmd,no female,0111,rbi,kdp,yes

male,0112,sbi,jmd,yes

female,0113,rbi,antp,no

male,0114,hdfc,pdtr,yes female,0115,sbh,pdtr,no

- 3) After that the file is saved with **.arff** file format.
- 4) Minimize the arff file and then open Start Programs weka-3-4.
- 5) Click on weka-3-4, then Weka dialog box is displayed on the screen.
- 6) In that dialog box there are four modes, click on **explorer**.
- 7) Explorer shows many options. In that click on 'open file' and select the arff file
- 8) Click on **edit button** which shows banking table on weka.

Training Data Set -Banking Table

No.	cust Nominal	accno	bankname	location Nominal	deposit Nominal	
1	male	0101	sbi	hyd	Ves	
2 1	female	0102	hdfc	imd	no	
3 1	male	0103	sbh	antp	yes	
4 1	male	0104	ab	pdtr	yes	
5 /	female	0105	sbi	jmd	no	
6 1	male	0106	ab	hyd	yes	
7 1	female	0107	rbi	jmd	yes	
8	female	0108	hdfc	kdp	no	
9 1	male	0109	sbh	kdp	yes.	
10	male	0110	ab	jmd	no	
11 /	female	0111	rbi	kdp	yes	
12	male	0112	sbi	jmd	yes	
13	female	0113	rbi	antp	no	
14	male	0114	hdfc	pdtr	yes	
15 /	female	0115	sbh		no	
<u>s </u> 1	female	0115	<u> sbh</u>		no	

Procedure for Association Rules:

- 1) Open Start -Programs -Weka-3-4- Weka-3-4
- 2) Open explorer.
- 3) Click on open file and select bank.arff
- 4) Select Associate option on the top of the Menu bar.
- 5) Select Choose button and then click on Apriori Algorithm.
- 6) Click on **Start button** and output will be displayed on the **right side** of the window.

<u>utput:</u>		
🐇 Weka Explorer		
Preprocess Classi	y Cluster Associate Select attributes Visualize	
Associator		
Choose Ap	riori -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S -1.0	
Start Sto		
Result list (right-cli	ckfor Apriori	
16:27:05 - Apriori	Minimum support: 0.15 (2 instances)	
	Minimum metric <confidence>: 0.9</confidence>	
	Number of cycles performed: 17	
	Generated sets of large itemsets:	
	Size of set of large itemsets L(1): 14	
	Size of set of large itemsets L(2): 24	
	Size of set of large itemsets L(3): 8	
	Best rules found:	
	1. bankname=rbi 3 ==> cust=female 3 conf:(1)	
	<pre>2. bankname=ab 3 ==> cust=male 3 conf:(1) 3. cust=female deposit=yes 2 ==> bankname=rbi 2 conf:(1)</pre>	
	4. bankname=rbi deposit=yes 2 ==> cust=female 2 conf: (1)	
	5. cust=female bankname=hdfc 2 ==> deposit=no 2 conf:(1) 6. bankname=hdfc deposit=no 2 ==> cust=female 2 conf:(1)	
	7. cust=male location=pdtr 2 ==> deposit=yes 2 conf:(1)	
	8. location=pdtr deposit=yes 2 ==> cust=male 2 conf:(1) 9. location=hyd 2 ==> cust=male deposit=yes 2 conf:(1)	
	10. cust=male location=hyd 2 ==> deposit=yes 2 conf:(1)	
Status		
ОК		Log
esult:		
	This program has been successfully executed.	
	30	

WEEK-6

Aim: Construct Haar wavelet transformation for numerical data.

Description:

In data mining, **associationrule learning** is a popular and well researched method for discovering interesting relations between variables in large databases. It can be described as analyzing and presenting strong rules discovered in databases using different measures of interestingness. In market basket analysis association rules are used and they are also employed in many application areas including Web usage mining, intrusion detection and bioinformatics.

Creation of Banking Table:

Procedure:

- 1) Open Start Programs Accessories Notepad
- 2) Type the following training data set with the help of Notepad for Employee

Table. @relation employee-1 @attribute age {youth, middle, senior} @attribute income {high, medium, low} @attribute class {A, B, C}

@data youth, high, A youth, medium,B youth, low, C middle, low, C middle, medium, C middle, high, A senior, low, C senior, medium, B senior, high, B middle, high, B

- 3) After that the file is saved with **.arff** file format.
- 4) Minimize the arff file and then open Start \rightarrow Programs \rightarrow weka-3-4.
- 5) Click on weka-3-4, then Weka dialog box is displayed on the screen.
- 6) In that dialog box there are four modes, click on **explorer**.
- 7) Explorer shows many options. In that click on 'open file' and select the arff file
- 8) Click on edit button which shows employee table on weka.

No. age Nominal income Nominal class Nominal 1 youth high A 2 youth medium B 3 youth low C 4 middle low C 5 middle medium C 6 middle high A 7 senior low C 8 senior medium B 9 senior high B 10 middle high B	2.	/iewer	_	_
NominalNominalNominal1youthhighA2youthmediumB3youthlowC4middlelowC5middlemediumC6middlehighA7seniorlowC8seniormediumB9seniorhighB10middlehighB	-	-	1	
2youthmediumB3youthlowC4middlelowC5middlemediumC6middlehighA7seniorlowC8seniormediumB9seniorhighB10middlehighB	No.			
3 youth low C 4 middle low C 5 middle medium C 6 middle high A 7 senior low C 8 senior medium B 9 senior high B 10 middle high B	1	youth	high	A
4 middle low C 5 middle medium C 6 middle high A 7 senior low C 8 senior medium B 9 senior high B 10 middle high B	2	youth		В
5 middle medium C 6 middle high A 7 senior low C 8 senior medium B 9 senior high B 10 middle high B	3	youth	low	С
5 middle medium C 6 middle high A 7 senior low C 8 senior medium B 9 senior high B 10 middle high B	4	middle	low	С
6middlehighA7seniorlowC8seniormediumB9seniorhighB10middlehighB		middle	medium	
7 senior low C 8 senior medium B 9 senior high B 10 middle high B	6	middle	high	A
9 senior high B 10 middle high B	7	senior		
9 senior high B 10 middle high B	8	senior	medium	
	9	senior		В
	10	middle	high	В

Procedure for Association Rules:

- 1) Open Start- Programs Weka-3-4 Weka-3-4
- 2) Open **explorer**.
- 3) Click on open file and select employee-1.arff
- 4) Select **Associate option** on the top of the Menu bar.
- 5) Select **Choose button** and then click on **Apriori Algorithm**.
- 6) Click on **Start button** and output will be displayed on the **right side** of the window.

Output:		
🐇 Weka Explorer		x
Preprocess Classify Clus Associator	ster Associate Select attributes Visualize	
	10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -5 -1.0	
Start Stop	Associator output	
Result list (right-click for (Apriori	^
11:26:08 - Apriori	Minimum support: 0.15 (1 instances) Minimum metric <confidence>: 0.9 Number of cycles performed: 17</confidence>	
	Generated sets of large itemsets:	
	Size of set of large itemsets L(1): 9	
	Size of set of large itemsets L(2): 22	
	Size of set of large itemsets L(3): 10	
	Best rules found:	
	<pre>1. income=low 3 ==> class=C 3 conf:(1) 2. class=A 2 ==> income=high 2 conf:(1) 3. age=senior income=low 1 ==> class=C 1 conf:(1) 4. age=senior class=C 1 ==> income=low 1 conf:(1) 5. age=senior income=medium 1 ==> class=B 1 conf:(1) 6. age=senior income=high 1 ==> class=C 1 conf:(1) 7. age=middle income=low 1 ==> class=C 1 conf:(1) 8. age=middle income=medium 1 ==> class=C 1 conf:(1) 9. income=medium class=C 1 ==> age=middle 1 conf:(1) 10. age=middle class=B 1 ==> income=high 1 conf:(1)</pre>	
Status OK	Log	x 0
Result:	s program has been successfully executed.	
	33	

<u>Aim:</u>

Construct principal component analysis (PCA) for 5 dimentional data **Description:**

Classification & Prediction:

Classification is the process for finding a model that describes the data values and concepts for the purpose of Prediction.

Decision Tree:

A decision Tree is a classification scheme to generate a tree consisting of root node, internal nodes and external nodes.

Root nodes representing the attributes. Internal nodes are also the attributes. External nodes are the classes and each branch represents the values of the attributes

Decision Tree also contains set of rules for a given data set; there are two subsets in Decision Tree. One is a Training data set and second one is a Testing data set. Training data set is previously classified data. Testing data set is newly generated data.

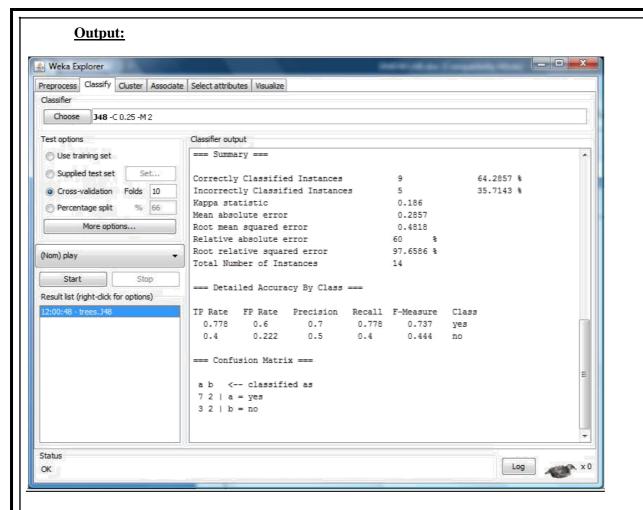
Creation of Weather Table:

Procedure:

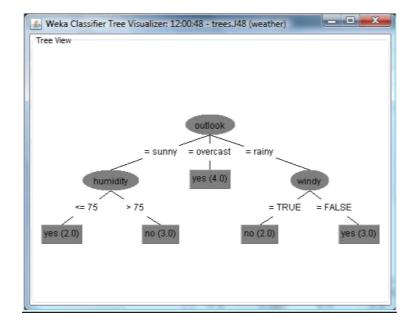
- 1) Open Start Programs Accessories Notepad
- 2) Type the following training data set with the help of Notepad for Weather Table. @relation weather
 @attribute outlook {sunny, rainy, overcast}
 @attribute temperature numeric @attribute
 humidity numeric
 @attribute windy {TRUE,
 FALSE} @attribute play {yes, no}

@data

sunny,85,85,FALSE,no sunny,80,90,TRUE,no overcast,83,86,FALSE,yes rainy,70,96,FALSE,yes rainy,65,70,TRUE,no overcast,64,65,TRUE,yes sunny,72,95,FALSE,no sunny,69,70,FALSE,yes rainy,75,80,FALSE,yes sunny,75,70,TRUE,yes overcast,72,90,TRUE,yes overcast,81,75,FALSE,yes rainy,71,91,TRUE,no


- 3) After that the file is saved with **.arff** file format.
- 4) Minimize the arff file and then open Start -Programs -weka-3-4.

- 5) Click on weka-3-4, then Weka dialog box is displayed on the screen.
- 6) In that dialog box there are four modes, click on **explorer**.
- 7) Explorer shows many options. In that click on 'open file' and select the arff file
- 8) Click on **edit button** which shows weather table on weka.


Training Data Set -Weather Table

Procedure for Decision Trees:

- 1) Open Start Programs Weka-3-4 Weka-3-4
- 2) Open explorer.
- 3) Click on open file and select weather.arff
- 4) Select **Classifier option** on the top of the Menu bar.
- 5) Select Choose button and click on Tree option.
- 6) Click on **J48**.
- 7) Click on Start button and output will be displayed on the right side of the window.
- 8) Select the result list and right click on result list and select Visualize Tree option.
- 9) Then **Decision Tree** will be displayed on **new window**.

Decision Tree:

<u>Result:</u> This program has been successfully executed.

<u>Aim:</u>

Implement binning visualizations for any real time dataset, Implement linear regression techniques

Description:

Classification & Prediction:

Classification is the process for finding a model that describes the data values and concepts for the purpose of Prediction.

Decision Tree:

A decision Tree is a classification scheme to generate a tree consisting of root node, internal nodes and external nodes.

Root nodes representing the attributes. Internal nodes are also the attributes. External nodes are the classes and each branch represents the values of the attributes

Decision Tree also contains set of rules for a given data set; there are two subsets in Decision Tree. One is a Training data set and second one is a Testing data set. Training data set is previously classified data. Testing data set is newly generated data.

Creation of Customer Table:

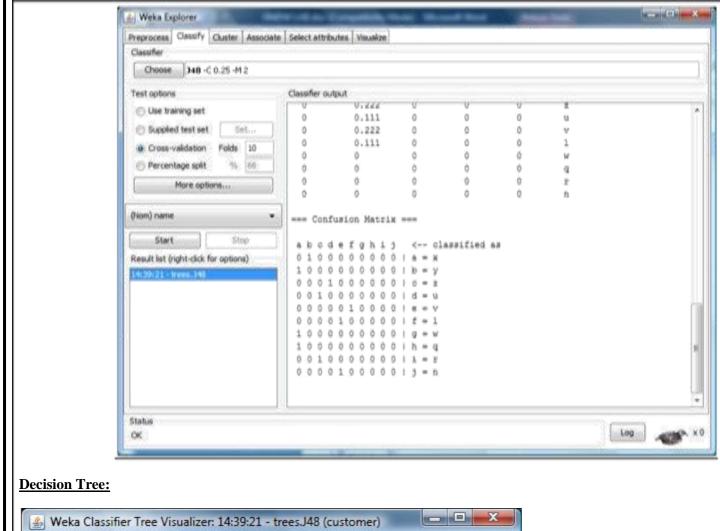
Procedure:

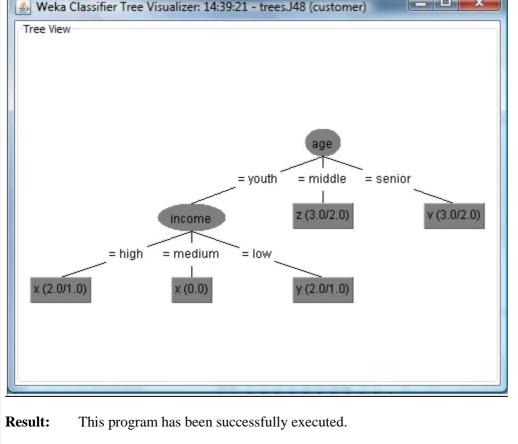
- 1) Open Start- Programs- Accessories -Notepad
- 2) Type the following training data set with the help of Notepad for Customer

Table. @relation customer @attribute name {x,y,z,u,v,l,w,q,r,n} @attribute age {youth,middle,senior} @attribute income {high,medium,low} @attribute class {A,B}

@data

x,youth,high,A y,youth,low,B z,middle,high,A u,middle,low,B v,senior,high,A l,senior,low,B w,youth,high,A q,youth,low,B r,middle,high,A n,senior,high,A


- 3) After that the file is saved with **.arff** file format.
- 4) Minimize the arff file and then open Start Programs weka-3-4.
- 5) Click on weka-3-4, then Weka dialog box is displayed on the screen.
- 6) In that dialog box there are four modes, click on **explorer**.
- 7) Explorer shows many options. In that click on 'open file' and select the arff file
- 8) Click on edit button which shows customer table 377 weka.


No.		ner		
	name Nominal	age Nominal	income Nominal	class Nominal
1	x	youth	high	A
2	y	youth	low	В
3	z	middle	high	A
4	u	middle	low	В
5	v	senior	high	A
6	1	senior	low	В
7	w	youth	high	A
8	q	youth	low	В
9	r .	middle	high	A
10	n	senior	high	A

Procedure for Decision Trees:

- 1) Open Start Programs -Weka-3-4- Weka-3-4
- 2) Open explorer.
- 3) Click on open file and select customer.arff
- 4) Select Classifier option on the top of the Menu bar.
- 5) Select Choose button and click on Tree option.
- 6) Click on J48.
- 7) Click on Start button and output will be displayed on the right side of the window.
- 8) Select the result list and right click on result list and select Visualize Tree option.
- 9) Then Decision Tree will be displayed on new window.

Output:

<u>im:</u>

Visualize the clusters for any synthetic dataset, Implement the program for converting the clusters into histograms

Description:

Classification & Prediction:

Classification is the process for finding a model that describes the data values and concepts for the purpose of Prediction.

Decision Tree:

A decision Tree is a classification scheme to generate a tree consisting of root node, internal nodes and external nodes.

Root nodes representing the attributes. Internal nodes are also the attributes. External nodes are the classes and each branch represents the values of the attributes

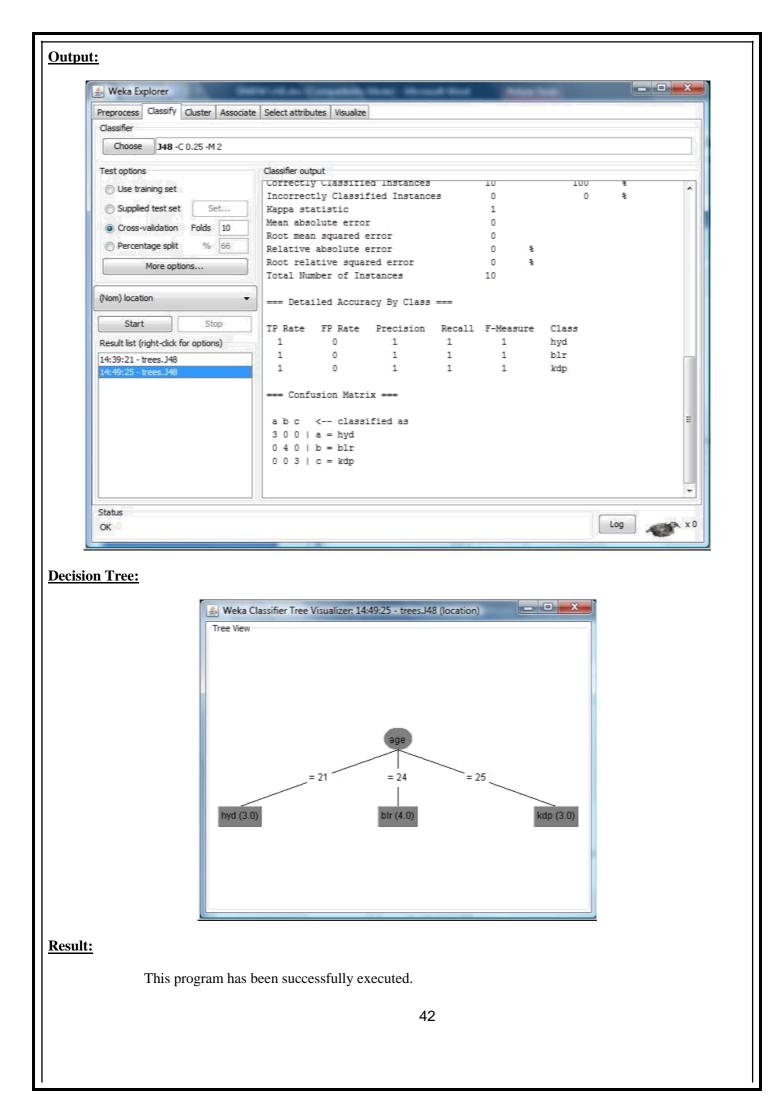
Decision Tree also contains set of rules for a given data set; there are two subsets in Decision Tree. One is a Training data set and second one is a Testing data set. Training data set is previously classified data. Testing data set is newly generated data.

Creation of Weather Table:

Procedure:

- 1) Open Start Programs Accessories Notepad
- 2) Type the following training data set with the help of Notepad for Location
 - Table. @relation location @attribute age {21,24,25} @attribute location {hyd,blr,kdp}

@data 21,hyd 21,hyd 24,blr 24,blr 24,blr 24,blr 21,hyd 25,kdp 25,kdp 25,kdp


- 3) After that the file is saved with **.arff** file format.
- 4) Minimize the arff file and then open Start \rightarrow Programs \rightarrow weka-3-4.
- 5) Click on weka-3-4, then Weka dialog box is displayed on the screen.
- 6) In that dialog box there are four modes, click on **explorer**.
- 7) Explorer shows many options. In that click on 'open file' and select the arff file
- 8) Click on edit button which shows location table on weka.

Training Data Set -Location Table

Ho. oge Nominal Iocation Nominal 1 21 hyd 2 21 hyd 3 24 bir 5 24 bir 6 24 bir 7 21 hyd 8 25 kdp 9 25 kdp	- hitting	ion: locatio	A REAL PROPERTY OF A REAL PROPER
2 21 hyd 3 24 bir 4 24 bir 5 24 bir 6 24 bir 7 21 hyd 8 25 kdp	No.		
3 24 bir 4 24 bir 5 24 bir 6 24 bir 7 21 hyd 8 25 kdp 9 25 kdp	1	21	hyd
4 24 bir 5 24 bir 6 24 bir 7 21 hyd 8 25 kdp	2	21	hyd
5 24 bir 6 24 bir 7 21 hyd 8 25 kdp 9 25 kdp	3	24	blr
6 24 blr 7 21 hyd 8 25 kdp 9 25 kdp	4	24	bir
6 24 blr 7 21 hyd 8 25 kdp 9 25 kdp	5	24	blr
8 25 kdp 9 25 kdp	6	24	bir
9 25 kdp	7	23	hyd
	8	25	kdp
10 25 kdp	9		kdp.
	10	25	kdp

Procedure for Decision Trees:

- 1) Open Start Programs Weka-3-4 Weka-3-4
- 2) Open explorer.
- 3) Click on open file and select location.arff
- 4) Select **Classifier option** on the top of the Menu bar.
- 5) Select Choose button and click on Tree option.
- 6) Click on **J48**.
- 7) Click on **Start button** and output will be displayed on the **right side** of the window.
- 8) Select the **result list** and **right click** on result list and select **Visualize Tree option**.
- 9) Then **Decision Tree** will be displayed on **new window**.

Aim:

Write a program to implement agglomerative clustering technique, Write a program to implement divisive hierarchical clustering technique

Description:

This program calculates and has comparisons on the data set selection of attributes and methods of manipulations have been chosen. The Visualization can be shown in a 2-D representation of the information.

Creation of Weather Table:

Procedure:

- 1) Open Start Programs- Accessories Notepad
- 2) Type the following training data set with the help of Notepad for Weather Table. @relation weather @attribute outlook {sunny, rainy, overcast} @attribute temperature numeric @attribute humidity numeric

@attribute windy {TRUE, FALSE { @attribute play { yes, no }

@data

sunny,85,85,FALSE,no sunny,80,90,TRUE,no overcast,83,86,FALSE,yes rainy,70,96,FALSE,yes rainy,68,80,FALSE,yes rainy,65,70,TRUE,no overcast,64,65,TRUE,yes sunny,72,95,FALSE,no sunny,69,70,FALSE,yes rainy,75,80,FALSE,yes sunny,75,70,TRUE,yes overcast,72,90,TRUE,yes overcast,81,75,FALSE,yes rainy,71,91,TRUE,no

- 3) After that the file is saved with **.arff** file format.
 - \rightarrow Programs \rightarrow weka-3-4.
- 4) Minimize the arff file and then open Start 5) Click on weka-3-4, then Weka dialog box is displayed on the screen.
- 6) In that dialog box there are four modes, click on **explorer**.
- 7) Explorer shows many options. In that click on 'open file' and select the arff file
- 8) Click on edit button which shows weather table on weka.

Training Data Set -Weather Table

No.	outlook Nominal	temperature Numeric	humidity Numeric	windy Nominal	play Nominal	
1	sunny	85.0	85.0	FALSE	no	
2	sunny	80.0	90.0	TRUE	no	
3	overcast	83.0	86.0	FALSE	yes	
1	rainy	70.0	96.0	FALSE	yes	
;	rainy	68.0	80.0	FALSE	yes	
5	rainy	65.0	70.0	TRUE	no	
7	overcast	64.0	65.0	TRUE	yes	
В	sunny	72.0	95.0	FALSE	no	
	sunny	69.0	70.0	FALSE	yes	
10	rainy	75.0	80.0	FALSE	yes	
11	sunny	75.0	70.0	TRUE	yes	
12	overcast	72.0	90.0	TRUE	yes	
13	overcast	81.0	75.0	FALSE	yes	
14	rainy	71.0	91.0	TRUE	no	

2-D Plot Matrix:

reprocess Classify	/ Cluster	Associate	Select attributes	Visualize				······································				
lot Matrix	ou	tlook	temperature		humid	lity	wi	ndy	pl	ay		
olay						- 12 -	-	٠		-		
		÷ +					1					
vindy	a	÷ •						-	• .			
		- + -		. • .	:		2		:	-		
umidity	· •		· · · · ·	÷	_1 _1	2	:		*. 1 2	-		
	-					- -		*		-		
emperature	2 2 2	- - - -			-	• •				:		
utlook	2	-						-		-		
	a				2		· ·	-		-		
* tatus Ж									_	_	Log	~

Procedure:

- 1) Open Start Programs Weka-3-4 Weka-3-4
- 2) Open the explorer and click on **Preprocess**, then a new window will appear. In that window select **weather.arff** file then the data will be displayed.
- 3) After that click on the Visualize tab on the top of the Menu bar.
- 4) When we select **Visualize tab** then **Plot Matrix** is displayed on the screen.

Output:

🛃 Weka Explorer	
Preprocess Classify Cluster Associate Select attributes Visualize	
Plot Matrix outlook	
outlook	
PlotSize: [100] Update PointSize: [1] Update Jitter: Select Attril Colour: play (Nom)	putes
Class Colour yes	
Status OK	Log x 0

- 5) After that we select the **Select Attribute button**, then select **Outlook attribute** and clock OK.
- 6) Click on the **Update button** to display the output.
- 7) After that select the **Select Attribute button** and select **Temperature attribute** and then click OK.
- 8) Increase the Plot Size and Point Size.
- 9) Click on the Update button to display the output.
- 10) After that we select the Select Attribute button, then select Humidity attribute and clock OK.
- 11) Click on the Update button to display the output.
- 12) After that select the Select Attribute button and select Windy attribute and then click OK.
- 13) Increase the Jitter Size.
- **14**) Click on the **Update button** to display the output.
- 15) After that we select the Select Attribute button, then select Play attribute and clock OK.

45

16) Click on the **Update button** to display the output.

Output:

Preprocess Classify Cluster Associate Select attributes Visualize	Weka Ex			_				
temperature	Preprocess	Classify	Cluster	Associate	Select attributes	Visualize		
temperature	Plot Matrix	i ve	-	tempe	rature			
temperature					٥			
PlotSize: [200] PointSize: [200] PointSize: [5] Update Select Attributes Colour: play (Nom) Class Colour yes Status					°			
PlotSize: [200] PointSize: [200] PointSize: [5] Update Select Attributes Colour: play (Nom) Class Colour yes Status	temnerati	Ire:			o			
Image: Status	comportate	10			Ϋ́,			
Matrix Panel Matrix Panel Matrix Panel Matrix Panel Matrix Panel Update Select Attributes Colour: play (Nom) Class Colour yes no				°°				
Image: Select Attributes Colour: play (Nom) Class Colour yes								
NotSize: [200]						12	_	
PlotSize: [200] Update DointSize: [5] Update Select Attributes Colour: play (Nom) Class Colour yes no							Mat	
PointSize: [5] Update Jitter: Jest Colour: play (Nom) SubSample % : 100 Class Colour yes no		- 79-20 - 50-20						
Itter:Select Attributes Colour: play (Nom)SubSample % :100 Class Colour yesno	PlotSize: [2	00] ,		- 0				
Colour: play (Nom) Class Colour yes no status	ointSize: [5]		~~~	0		Update	
Class Colour yes no	litter:	0			97771		Select Attributes	
yes no	Colour: pla	y (Nom)					▼ SubSample % : 100	
yes no	Class Colo	ur						
itatus	yes						no	
itatus	<u> </u>							
	V TERMES							122

Output:

Weka Explorer				and and Name	-particular Manada	
Preprocess Classify	Cluster Associate Select att	ributes Visualize			innunnunnunnun	
Plot Matrix	humidity					
		°0				
		°				
	00					
humidity	0					
	10 ₁₁				Matrix Panel	
	0				Matrix Panel	
s	<u> </u>					
• NotSize: [200]	0		<u> </u>			
PointSize: [5]			Update			
litter: []	(9)		Select Attributes	1		
Colour: play (Nom)			SubSample % :	100		
Class Colour				63		
Class Colour						
yes			no			
table					1.0000	1. martine 1973
Status OK					Log	X X

& Ø Intrix Panel otSize: [200] intSize: [5] update Select Attributes olour: play (Nom) Class Colour	the second second	plorer	-									-	
Indy Solice: [200] IntSize: [5] IntSize:	I MIRAT AND A		Cluster			Visualize						 	
Indy	ot Matrix			wir	idy								
					600								
Matrix Panel	indy												
btSize: [200]			3	\$ 8									
intSize: [5] Update Ler: Select Attributes SubSample %: 100 Class Colour							M	atrix Pan	el				
intSize: [5] Update Ler: Select Attributes SubSample %: 100 Class Colour													
intSize: [5] Update Ler: Select Attributes SubSample %: 100 Class Colour	e otSiza: [7	101		0								 	
olour: play (Nom) SubSample %: 100 Lass Colour es no				U	0				Update				
es no	tter:	¥		-0-	ų			Selec	t Attribute:	;			
	olour: pla	y (Nom)					•]	Sub	Sample % :	10	0		
ahus	Class Colo	ur											
stus (Log	es						no						
	atus												
	S											Log	r
		A Designation of the second second	Construction of the	Cluster Ac	ociate Select attrib	utes Visualiz			188			E	<
Weka Explorer Preprocess Classify Cluster Associate Select attributes Visualize	11.00	reprocess	claboury	Chabter This	beleet atom	acco							 _

Result:	

PlotSize: [200]

PointSize: [5]

Class Colour

Colour: play (Nom)

Jitter:

yes Status

ок

This program has been successfully executed.

0

0

0

1

•]

no

Update

Select Attributes

100

Log 💉 0

SubSample % :

<u>Aim:</u>

Develop scalable clustering algorithms ,Develop scalable a priori algorithm

Description:

This program calculates and has comparisons on the data set selection of attributes and methods of manipulations have been chosen. The Visualization can be shown in a 2-D representation of the information.

Creation of Banking Table:

Procedure:

- 1) Open Start -Programs -Accessories- Notepad
- Type the following training data set with the help of Notepad for Banking Table. @relation bank

@attribute cust {male,female} @attribute accno

 $\{0101, 0102, 0103, 0104, 0105, 0106, 0107, 0108, 0109, 0110, 0111, 0112, 0113, 0114, 0115\}$

@attribute bankname {sbi,hdfc,sbh,ab,rbi}

@attribute location {hyd,jmd,antp,pdtr,kdp} @attribute deposit {yes,no} @data male,0101,sbi,hyd,yes female,0102,hdfc,jmd,no male,0103,sbh,antp,yes male,0104,ab,pdtr,yes female,0105,sbi,jmd,no male,0106,ab,hyd,yes female,0107,rbi,jmd,yes female,0108,hdfc,kdp,no male,0109,sbh,kdp,yes male,0110,ab,jmd,no female,0111,rbi,kdp,yes male,0112,sbi,jmd,yes female,0113,rbi,antp,no male,0114,hdfc,pdtr,yes

3) After that the file is saved with **.arff** file format.

female,0115,sbh,pdtr,no

- 4) Minimize the arff file and then open Start Programs weka-3-4.
- 5) Click on weka-3-4, then Weka dialog box is displayed on the screen.
- 6) In that dialog box there are four modes, click on **explorer**.
- 7) Explorer shows many options. In that click on 'open file' and select the arff file
- 8) Click on **edit button** which shows Banking table on weka.

Training Data Set -Banking Table

No.	cust	accno	bankname	location					
	Nominal	Nominal 0101	Nominal	Nominal	Nominal				
	female	0102	hdfc		no				
- C	male	0102	sbh	antp	ves		- 1		
	male	0104	ab	pdtr	ves				
	female	0105	sbi	A DESCRIPTION OF A DESC	no			l.	
	male	0105	ab	hyd	yes				
	female	0107	rbi	imd	yes				
	female	0108	hdfc	- Constanting of the second	00				
- Li	male	0109	sbh	kdp	ves				
	male	0110	ab	al the local sectors and the local sectors a	no				
and the second se	female	0111	rbi	kdp	yes				
and the second	male	0112	sbi	jmd	ves				
	CONTRACTOR OF CONTRACTOR	0113	rbi	and the second sec	no				
	male	0114	hdfc	pdtr	ves				
	female	0115	sbh	Contract Contractor	no				

Procedure:

- 1) Open Start Programs -Weka-3-4 Weka-3-4
- 2) Open the explorer and click on Preprocess, then a new window will appear. In that window select bank.arff file then the data will be displayed.
- 3) After that click on the Visualize tab on the top of the Menu bar.
- 4) When we select **Visualize tab** then **Plot Matrix** is displayed on the screen.

Weka Explorer			1.1			Dere all	na Fange	-	
Preprocess Classif	y Cluster A	ssociate	Select attributes Vis	sualize					
Plot Matrix	cus	t)	accno	bankname		location	depo	sit	
deposit		*				* = * =		-	
						a a, a a,			
							~	-	
location		-				-	* *	-	
		-				-	*. *		
		P	- x-				-	-	
bankname	•							-	
								-	
					:		-	-	
accno		4 4., 			· .	· ·	2. 2.	•	
		-							
cust									

- 5) After that we select the **Select Attribute button**, then select **Cust attribute** and clock OK.
- 6) Click on the **Update button** to display the output.
- 7) <u>Output:</u>

🛃 Weka Explorer	rit as Corpolicity Heat	Nexad New York Table	
Preprocess Classify Cluster Associate Se	ect attributes Visualize		
Plot Matrix cust			
1			
cust			
PlotSizer [100]			
PointSize: [1]		Update	
3itter: 0		Select Attributes	
U U		SubSample % : 100	
Colour: deposit (Nom)	•	annautre ver	
Class Colour			
yes		0	
Status			
ок			Log
	THE OWNERS		
After that select the Select Attrib	ute button and select A	Accno attribute and then clie	ck OK.
Increase the Plot Size and Point	Size.		
)) Click on the Update button to dia	splay the output.		
ut:			
/eka Explorer	Manakan	and the second lines	
rocess Classify Cluster Associate Select attr Matrix accno	ibutes visualize		
	0		
	°		
1			
°°			
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
•••••			
°°°		Matrix Panel	1
•••••••••••••••••••••••••••••••••••••••	- - 	Matrix Panel]
•		Matrix Panel)
No 000000000000000000000000000000000000		Matrix Panel]
		Matrix Panel]

PlotSize: [200]	-0				
PointSize: [6]			Update]	
Jitter:	927 A	÷	Select Attributes]	
Colour: deposit (Nom)		- [SubSample % :	100	
Class Colour					
yes		no			
Status					
ОК					Log ×0

11)After that we select the Select Attribute button, then selectBankname attribute and clock OK.12)Click on the Update button to display the output.

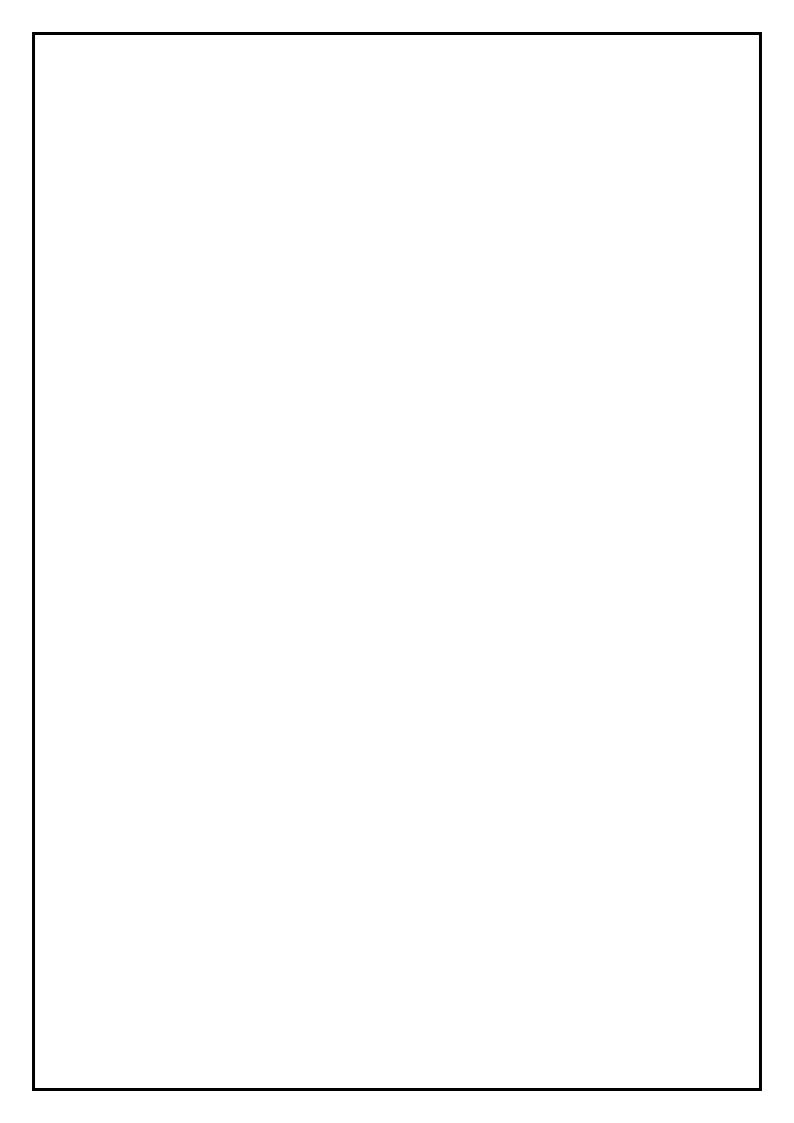
Output:

Weka Explorer	100 mar	a to data da filiaria	-	House See	And a lot of	
reprocess Classify	Cluster Associate	Select attributes	Visualize			
lot Matrix	bank	name				
		٥				
		0				
ankname	į	o.				
	0					
	0					
			i.			
• · · ·						
otSize: [200]				E <u>20</u>		
ointSize: [6]		-0		Update		
tter:		53M)		Select Attributes		
Colour: deposit (No	n)			SubSample % :	100	
Class Colour						
Yes				no		
atus						Log
Ж						LOO

13)After that select the **Select Attribute button** and select **location attribute** and then click OK.

14)Increase the Jitter Size.

15)Click on the **Update button** to display the output.


Weka Explorer		-								
reprocess Classify	Cluster	Associate	Select attributes	Visualize				_	 	4
lot Matrix		loca	tion	- 24						
			2							
			ø							
			0							
ocation		0								
		8° 8								
	0									
2	0									
							Mat	trix Panel		
• lotSize: [200]		-0				_				 _
ointSize: [6]					R	Upd	ate			
itter:						Select At	tributes	ĺ		
Colour: deposit (No			-		•]	SubSam	ple % :	100		
Class Colour										
yes					no					
yes					no					

16)After that we select the **Select Attribute button**, then select **Deposit attribute** and clock OK.

17) Click on the **Update button** to display the output.

Output:

Weka Explorer	and the second s		
	y Cluster Associate	Select attributes Visu	Jalize
Plot Matrix	depo	eit Ø	
deposit	8 80 80		Matrix Panel
VotSize: (200) ,	0	0	Update Select Attributes SubSample % : 100
Colour: deposit (Ne Class Colour yea	om)		Subsample % : 100
Status OK			Log 🛷
* ult:	yram has been suc	cessfully execut	
ж <u>ult:</u>	gram has been sud	ccessfully execut	
×	gram has been sud	ecessfully execut	
ж <u>sult:</u>	gram has been sud	ccessfully execut	

