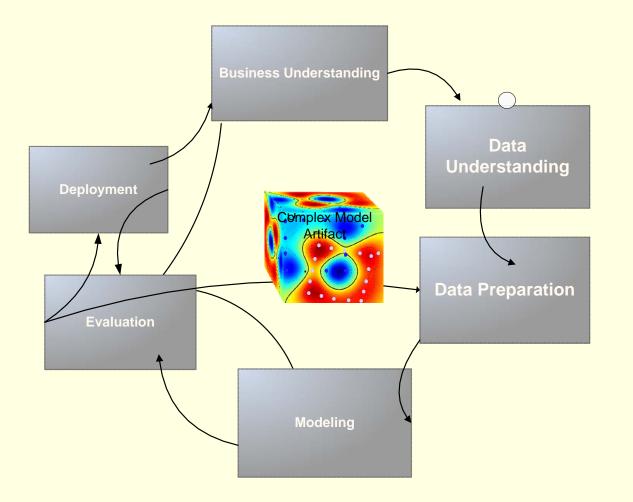
Data Preparation Part 1: Exploratory Data Analysis & Data Cleaning, Missing Data

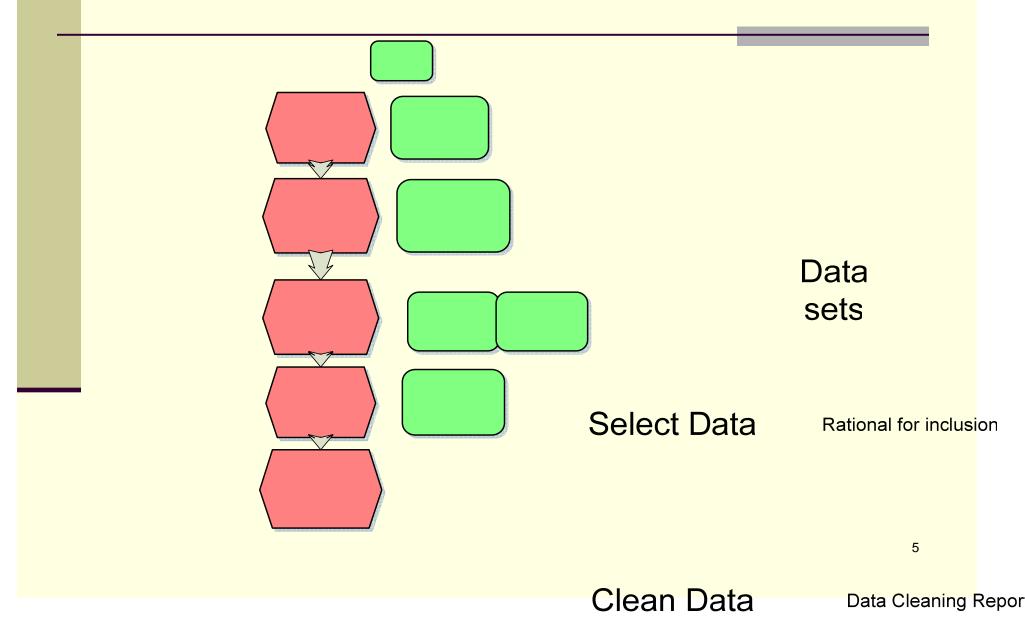
CAS Predictive Modeling Seminar Louise Francis Francis Analytics and Actuarial Data Mining, Inc. <u>www.data-mines.com</u> Louise.francis@data-mines.cm

Objectives


- Introduce data preparation and where it fits in in modeling process
- Discuss Data Quality
- Focus on a key part of data preparation
 - Exploratory data analysis
 - Identify data glitches and errors
 - Understanding the data
 - Identify possible transformations
 - What to do about missing data
 - Provide resources on data preparation

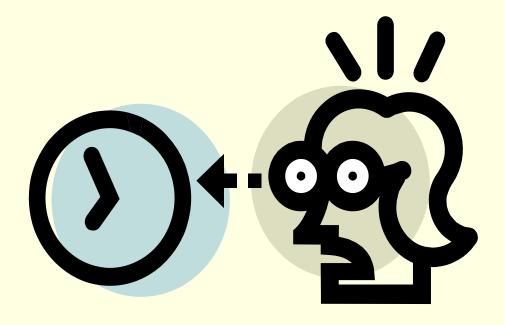
LF1 Louise Francis, 9/29/2006

CRISP-DM


- Guidelines for data mining projects
- Gives overview of life cycle of data mining project
- Defines different phases and activities that take place in phase

Modelling Process

4


Data Preprocessing

Data Quality Problem

Data Quality: A Problem

Actuary reviewing a database

May's Law

May's Law: The quality

May's Law: The quality of correlation is inversely proportional to the density of control. (The fewer the data points, the smoother the curves.)

It's Not Just Us

"In just about any organization, the state of information quality is at the same low level"
 Olson, *Data Quality*

Some Consequences of poor data quality

- Affects quality (precision) of result
- Can't do modeling project because of data problems
- If errors not found modeling blunder

Data Exploration in Predictive Modeling

Exploratory Data Analysis

- Typically the first step in analyzing data
 - Makes heavy use of graphical techniques
- Also makes use of simple descriptive statistics
- Purpose
 - Find outliers (and errors)
 - Explore structure of the data

Definition of EDA

Exploratory <u>data analysis</u> (EDA) is that part of <u>statistical practice</u> concerned with reviewing, communicating and using <u>data</u> where there is a low level of knowledge about its <u>cause system</u>.. Many **EDA** techniques have been adopted into <u>data mining</u> and are being taught to young students as a way to introduce them to statistical thinking.

- www.wikipedia.org

Example Data

Private passenger auto

Some variables are:

- Age
- Gender
- Marital status
- Zip code
- Earned premium
- Number of claims
- Incurred losses
- Paid losses

Some Methods for Numeric Data

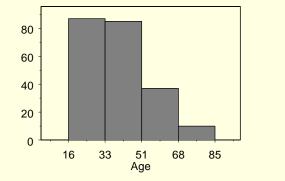
Visual

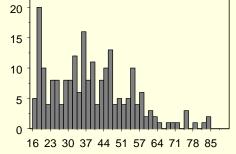
- Histograms
- Box and Whisker Plots
- Stem and Leaf Plots

Statistical

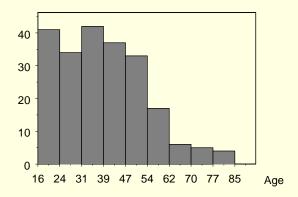
- Descriptive statistics
- Data spheres

Histograms


Can do them in Microsoft Excel

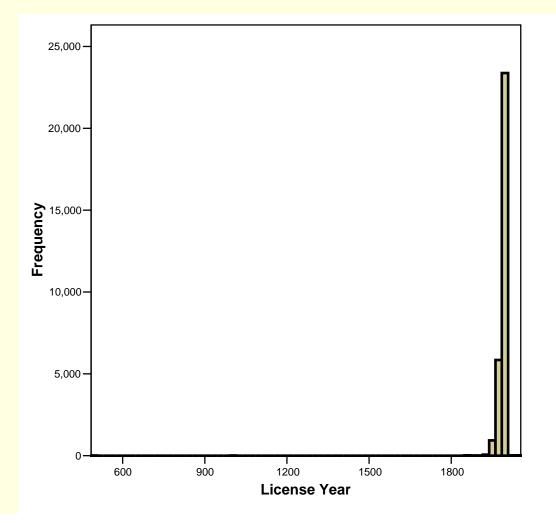

Histogram		? 🗙
Input Input Range: Bin Range:	\$F\$2:\$F\$220 1 \$H\$3:\$H\$18 1	OK Cancel Help
Labels Output options Output Range: Output Range: New Worksheet Ply:		
C New Workbook	,	

Histograms Frequencies for Age Variable

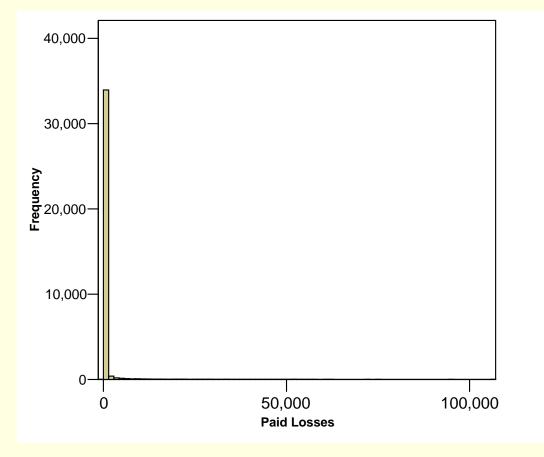

Bin		Frequency
	20	2853
	25	3709
	30	4372
	35	4366
	40	4097
	45	3588
	50	2707
	55	1831
	60	1140
	65	615
	70	397
	75	271
	80	148
	85	83
	90	32
	95	12
More		5

Histograms of Age Variable Varying Window Size

Age

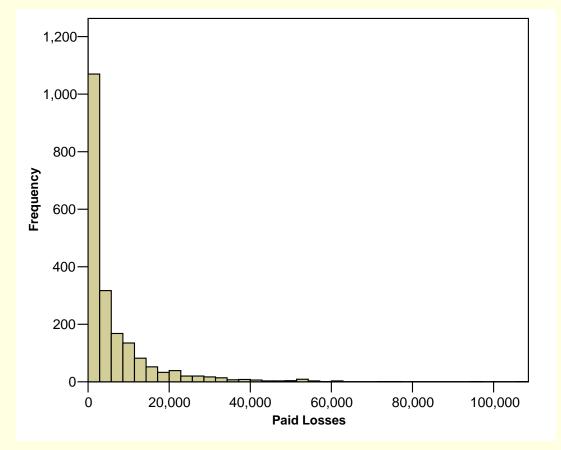

18

Formula for Window Width


$$h = \frac{3.5\sigma}{\frac{1}{\sqrt[3]{N}}}$$

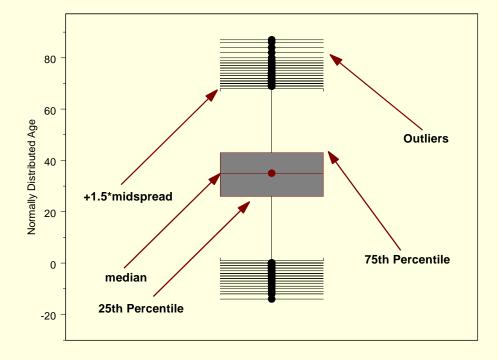
$$\sigma = \text{standard deviation}$$

N=sample size
h = window width

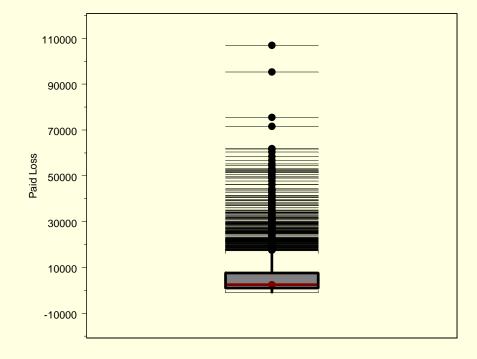

Example of Suspicious Value

Discrete-Numeric Data

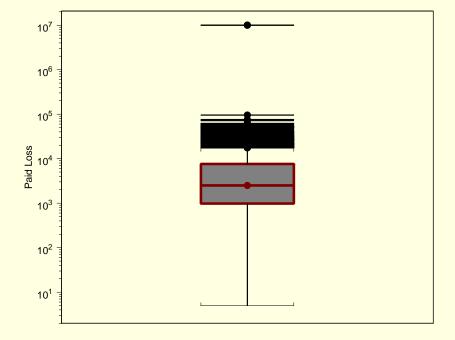
Filtered Data Filter out Unwanted Records

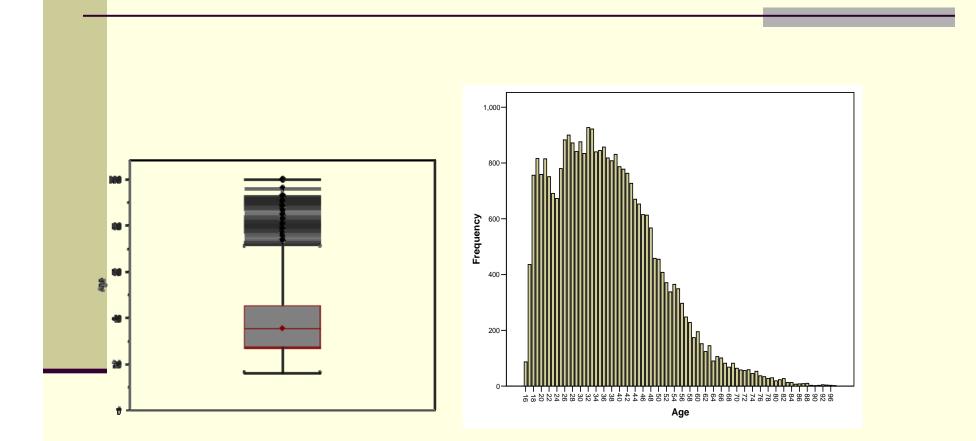

Box Plot Basics: Five – Point Summary

- Minimum
- 1st quartile
- Median
- 2nd quartile
- Maximum


Functions for five point summary

- =min(data range)
- =quartile(data range1)
- =median(data range)
- =quartile(data range,3)
- =max(data range)


Box and Whisker Plot


Plot of Heavy Tailed Data Paid Losses

Heavy Tailed Data – Log Scale

Box and Whisker Example

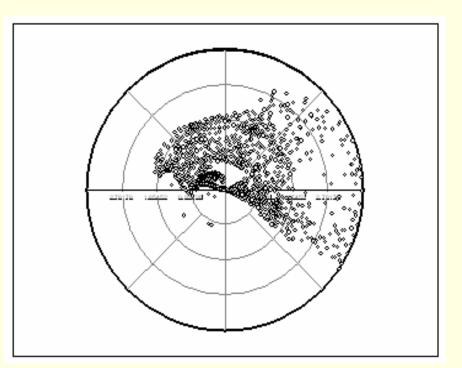
Descriptive Statistics Analysis ToolPak

Statistic	Policyholder Age
Mean	36.9
Standard Error	0.1
Median	35.0
Mode	32.0
Standard Deviation	13.2
Sample Variance	174.4
Kurtosis	0.5
Skewness	0.7
Range	84
Minimum	16
Maximum	100
Sum	1114357
Count	30226
Largest(2)	100
Smallest(2)	16

Descriptive Statistics

Claimant age has minimum and maximums that are impossible

	N	Minimum	Maximum	Mean	Std. Deviation
License Year	30,250	490	2,049	1,990	16.3
Valid N	30,250				

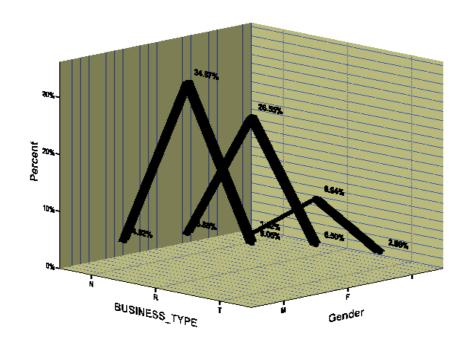

Data Spheres: The Mahalanobis Distance Statistic

$$\mathbf{MD} = (\mathbf{x} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

v is a vector of variables

- **x** is a vector of variables
- $\boldsymbol{\mu}$ is a vector of means
- Σ is a variance-covariance matrix

Screening Many Variables at Once


- Plot of Longitude and Latitude of zip codes in data
- Examination of outliers indicated drivers in Ca and PR even though policies only in one mid-Atlantic state

Records With Unusual Values Flagged

N Policy ID	lahalanobis Depth	Percentile of Mahalanobis	Age	License Year	Number of Cars	Number of Drivers	Model Year	Incurred Loss
			ž					
22244	59	100	27	1997	3	6	1994	4,456
6159	60	100	22	2001	2	6	1993	0
22997	65	100	NA	NA	2	1	1954	0
5412	61	100	17	2003	3	6	1994	0
30577	72	100	43	1979	3	1	1952	0
28319	8,490	100	30	490	1	1	1987	0
27815	55	100	44	1976	-1	0	1959	0
16158	24	100	82	1938	1	1	1989	61,187
4908	25	100	56	1997	4	4	2003	35,697
28790	24	100	82	2039	1	1	1985	27,769

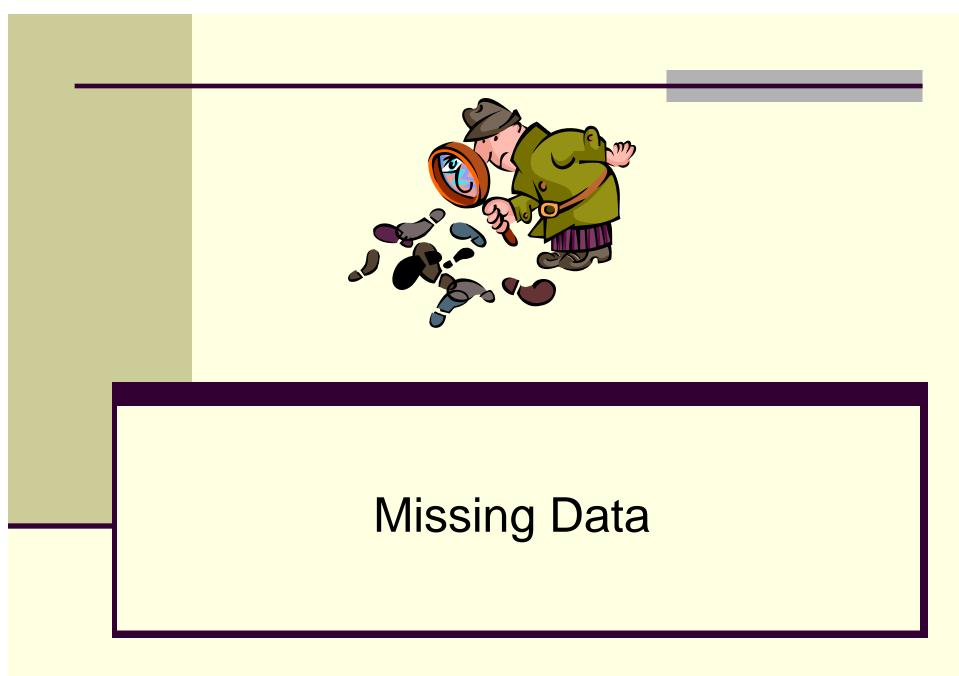
Categorical Data: Data Cubes

Categorical Data

Data Cubes

Usually frequency tables

Search for missing values coded as blanks


Gender				
	Frequency	Percent		
	5,054	14.3		
F	13,032	36.9		
Μ	17,198	48.7		
Total	35,284	100		

Categorical Data

Table highlights inconsistent coding of marital status

	Frequency	Percent	
	5,053	14.3	
1	2,043	5.8	
2	9,657	27.4	
4	2	0	
D	4	0	
Μ	2,971	8.4	
S	15,554	44.1	
Total	35,284	100	

Marital Status

Screening for Missing Data

		BUSINESS TYPE	Gender	Age	License Year
N	Valid	35,284	35,284	30,242	30,250
	Missing	0	0	5,042	5,034
	25			27.00	1,986.00
Percentiles	50			35.00	1,996.00
	75			45.00	2,000.00

Blanks as Missing

		Frequency	Percent	Valid Percent	Cumulative Percent
		5,054	14.3	14.j	14.3
Valid	F	13,03 2	36.9	36.9	51.3
v anu	Μ	17,198	48.7	48.7	100.0
	Total	35,284	100.0	100.6	

Types of Missing Values

- Missing completely at random
- Missing at random
- Informative missing

Methods for Missing Values

- Drop record if any variable used in model is missing
- Drop variable
- Data Imputation
- Other
 - CART, MARS use surrogate variables
 - Expectation Maximization

Imputation

- A method to "fill in" missing value
- Use other variables (which have values) to predict value on missing variable
- Involves building a model for variable with missing value

 $\bullet Y = f(x_1, x_2, \dots x_n)$

Example: Age Variable

About 14% of records missing values
 Imputation will be illustrated with simple regression model

• Age = $a + b_1 X_1 + b_2 X_2 \dots b_n X_n$

Model for Age

Tests of Between-Subjects Effects					
Dependent Variable: Age					
	Type III Sum of Squares	df	Mean Square	F	Sig.
Source Corrected Model	3,218,216	24	134,092	1,971.2	0.000
Intercept	9,255	1	9,255	136.0	0.000
ClassCode	3,198,903	18	177,717	2,612.4	0.000
CoverageType	876	3	292	4.3	0.005
ModelYear	7,245	1	7,245	106.5	0.000
No of Vehicles	2,365	1	2,365	34.8	0.000
No of drivers	3,261	1	3,261	47.9	0.000
Error	2,055,243	30,212	68		
Total	46,377,824	30,237			
Corrected Total	5,273,459	30,236			

Missing Values

- A problem for many traditional statistical models
 - Elimination of records missing on anything from analysis
- Many data mining procedures have techniques built in for handling missing values
- If too many records missing on a given variable, probably need to discard variable

Metadata

Metadata

Data about data

- A reference that can be used in future modeling projects
- Detailed description of the variables in the file, their meaning and permissible values

Marital Status Value	Description
1	Married, data from source 1
2	Single, data from source 1
4	Divorced, data from source 1
D	Divorced, data from source 2
Μ	Married, data from source 2
S	Single, data from source 2
Blank	Marital status is missing

Library for Getting Started

Dasu and Johnson, Exploratory Data Mining and Data Cleaning, Wiley, 2003 Francis, L.A., "Dancing with Dirty Data: Methods for Exploring and Claeaning Data", CAS Winter Forum, March 2005, www.casact.org Find a comprehensive book for doing analysis in Excel such as: John Walkebach, Excel 2003 Formulas or Jospeh Schmuller, Statistical Analysis With Excel for Dummies

If you use R, get a book like: Fox, John, An R and S-PLUS Companion to Applied Regression, Sage Publications, 2002 48