MORGAN §CLAYPOOL PUBLISHERS

Data Processing on

FPGAs

Jens Teubner

Louis Woods

SYNTHESIS LECTURES ON DAT4A M ANAGEMENT

e 1 U U o o
M.T@Iler@zsu, SerzesEdTLj)r 1 0w 0 0
0 0O 0 B 0 0O 0

Data Processing on FPGAs

Synthesis Lectures on Data
Management

Editor
M. Tamer Ozsu, Uniwversity of Waterloo

Synthesis Lectures on Data Management is edited by Tamer Ozsu of the University of Waterloo.
'The series will publish 50- to 125 page publications on topics pertaining to data management. The
scope will largely follow the purview of premier information and computer science conferences, such
as ACM SIGMOD, VLDB, ICDE, PODS, ICDT, and ACM KDD. Potential topics include, but
not are limited to: query languages, database system architectures, transaction management, data
warehousing, XML and databases, data stream systems, wide scale data distribution, multimedia
data management, data mining, and related subjects.

Data Processing on FPGAs
Jens Teubner and Louis Woods
2013

Perspectives on Business Intelligence

Raymond T. Ng, Patricia C. Arocena, Denilson Barbosa, Giuseppe Carenini, Luiz Gomes, Jr.
Stephan Jou, Rock Anthony Leung, Evangelos Milios, Renée J. Miller, John Mylopoulos, Rachel A.
Pottinger, Frank Tompa, and Eric Yu

2013

Semantics Empowered Web 3.0: Managing Enterprise, Social, Sensor, and Cloud-based
Data and Services for Advanced Applications

Amit Sheth and Krishnaprasad Thirunarayan

2012

Data Management in the Cloud: Challenges and Opportunities
Divyakant Agrawal, Sudipto Das, and Amr El Abbadi
2012

Query Processing over Uncertain Databases
Lei Chen and Xiang Lian
2012

Foundations of Data Quality Management
Wenfei Fan and Floris Geerts
2012

Incomplete Data and Data Dependencies in Relational Databases

Sergio Greco, Cristian Molinaro, and Francesca Spezzano
2012

Business Processes: A Database Perspective
Daniel Deutch and Tova Milo
2012

Data Protection from Insider Threats
Elisa Bertino

2012

Deep Web Query Interface Understanding and Integration
Eduard C. Dragut, Weiyi Meng, and Clement T. Yu
2012

P2P Techniques for Decentralized Applications
Esther Pacitti, Reza Akbarinia, and Manal El-Dick
2012

Query Answer Authentication
HweeHwa Pang and Kian-Lee Tan
2012

Declarative Networking
Boon Thau Loo and Wenchao Zhou
2012

Full-Text (Substring) Indexes in External Memory
Marina Barsky, Ulrike Stege, and Alex Thomo
2011

Spatial Data Management
Nikos Mamoulis
2011

Database Repairing and Consistent Query Answering
Leopoldo Bertossi
2011

Managing Event Information: Modeling, Retrieval, and Applications
Amarnath Gupta and Ramesh Jain
2011

Fundamentals of Physical Design and Query Compilation
David Toman and Grant Weddell
2011

iii

iv

Methods for Mining and Summarizing Text Conversations
Giuseppe Carenini, Gabriel Murray, and Raymond Ng
2011

Probabilistic Databases
Dan Suciu, Dan Olteanu, Christopher R¢, and Christoph Koch
2011

Peer-to-Peer Data Management
Karl Aberer
2011

Probabilistic Ranking Techniques in Relational Databases
Ihab F. Ilyas and Mohamed A. Soliman
2011

Uncertain Schema Matching
Avigdor Gal
2011

Fundamentals of Object Databases: Object-Oriented and Object-Relational Design
Suzanne W. Dietrich and Susan D. Urban
2010

Advanced Metasearch Engine Technology
Weiyi Meng and Clement T. Yu
2010

Web Page Recommendation Models: Theory and Algorithms

Sule Gﬁndﬁz—@gﬁdﬁcﬁ
2010

Multidimensional Databases and Data Warehousing
Christian S. Jensen, Torben Bach Pedersen, and Christian Thomsen
2010

Database Replication
Bettina Kemme, Ricardo Jimenez-Peris, and Marta Patino-Martinez
2010

Relational and XML Data Exchange
Marcelo Arenas, Pablo Barcelo, Leonid Libkin, and Filip Murlak
2010

User-Centered Data Management
Tiziana Catarci, Alan Dix, Stephen Kimani, and Giuseppe Santucci
2010

Data Stream Management
Lukasz Golab and M. Tamer Ozsu
2010

Access Control in Data Management Systems
Elena Ferrari

2010

An Introduction to Duplicate Detection

Felix Naumann and Melanie Herschel
2010

Privacy-Preserving Data Publishing: An Overview
Raymond Chi-Wing Wong and Ada Wai-Chee Fu
2010

Keyword Search in Databases
Jeftrey Xu Yu, Lu Qin, and Lijun Chang
2009

Copyright © 2013 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations

in printed reviews, without the prior permission of the publisher.

Data Processing on FPGAs
Jens Teubner and Louis Woods

WWW.morganclaypool.com

ISBN: 9781627050609 paperback
ISBN: 9781627050616 ebook

DOI 10.2200/500514ED1V01Y201306 DTMO035

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON DATA MANAGEMENT

Lecture #35

Series Editor: M. Tamer Ozsu, University of Waterloo
Series ISSN

Synthesis Lectures on Data Management

Print 2153-5418 Electronic 2153-5426

www.morganclaypool.com

Data Processing on FPGAs

Jens Teubner

Databases and Information Systems Group, Dept. of Computer Science, TU Dortmund

Louis Woods
Systems Group, Dept. of Computer Science, ETH Ziirich

SYNTHESIS LECTURES ON DATA MANAGEMENT #35

1\@ MORGAN CLAYPOOL PUBLISHERS

ABSTRACT

Roughly a decade ago, power consumption and heat dissipation concerns forced the semicon-
ductor industry to radically change its course, shifting from sequential to parallel computing.
Unfortunately, improving performance of applications has now become much more difhicult than
in the good old days of frequency scaling. This is also affecting databases and data processing
applications in general, and has led to the popularity of so-called data appliances—specialized
data processing engines, where software and hardware are sold together in a closed box. Field-
programmable gate arrays (FPGAs) increasingly play an important role in such systems. FPGAs
are attractive because the performance gains of specialized hardware can be significant, while
power consumption is much less than that of commodity processors. On the other hand, FPGAs
are way more flexible than hard-wired circuits (ASICs) and can be integrated into complex sys-
tems in many different ways, e.g., directly in the network for a high-frequency trading application.
'This book gives an introduction to FPGA technology targeted at a database audience. In the first
few chapters, we explain in detail the inner workings of FPGAs. Then we discuss techniques and
design patterns that help mapping algorithms to FPGA hardware so that the inherent parallelism
of these devices can be leveraged in an optimal way. Finally, the book will illustrate a number of
concrete examples that exploit different advantages of FPGAs for data processing.

KEYWORDS

FPGA, modern hardware, database, data processing, stream processing, parallel al-
gorithms, pipeline parallelism, programming models

Contents

Preface xiii
Introduction 1
1.1 Moore’s Law and Transistor-Speed Scaling, 1
1.2 Memory Wall and Von Neumann Bottleneck 1
1.3 Power Wall 2
1.4 Multicore CPUsand GPUs 3
1.5 Specialized Hardware i 4
1.6 Field-Programmable Gate Arrays (FPGAs) 5
1.7 FPGAs for Data Processing 5
1.7.1 Stream Processing 5
1.7.2 BigData ... 6
1.7.3 Cloud Computing 6
174 Security ... 6
A Primerin Hardware Design, 9
2.1 Basic Hardware Components. i i, 9
2.1.1 Combinational Logic i i 9
2.1.2 Sequential Logic i 10
2.1.3 Asynchronous sequential logic o oL 11
2.1.4 Synchronous sequential logic 11
2.2 Hardware Programming.......... i i 12
2.2.1 Hardware Description Languages (HDLs) 12
2.3 Circuit Generationuuet ittt 14
2.3.1 Logical Design Flow (Synthesis)t 14
2.3.2 Physical Design Flow i i i 15
FPGAs . . o 17
3.1 ABriefHistory of FPGAs. 17
3.2 Look-up Tables—The Key to Re-Programmability 18

3.2.1 LUT Representation of a Boolean Function 18

3.2.2 Internal Architecture of an LUT 18

3.2.3 LUT (Re)programminguuuuuiinnnneeeeeeennnnnnnn. 18
3.2.4 Alternative Usage of LUTs oo 19
3.3 FPGA Architecturet 20
3.3.1 Elementary Logic Units (Slices/ALMs) 20
3.4 Routing Architectureouiiiiiiiiiiiiiiiii 21
341 LogicIslands 21
3.4.2 INtercONNECctottt e e 22
3.5 High-Speed I/O 22
3.6 Auxiliary On-Chip Components............. ..., 24
3.6.1 Block RAM (BRAM) e 24
3.6.2 Digital Signal Processing (DSP) Units............. 25
3.6.3 Softand HardIP-Cores i .. 26
3.7 FPGA Programminguuuiiiiiiiiiiiiiiiiiiann. 26
3.71 FPGA DesignFlow i i 27
3.7.2 Dynamic Partial Reconfiguration 28
3.8 Advanced Technology and Future Trends 30
3.8.1 DieStacking 30
3.8.2 Heterogeneous Die-Stacked FPGAs 31
3.8.3 Time-Multiplexed FPGAs i 31
3.8.4 High-level Synthesis oo i i i 32
FPGA ProgrammingModels. 33
41 Re-Build, Parameterize, or Program the Hardware Accelerator? 33
4.1.1 Re-Building Circuits at Runtime 34
4.1.2 Parameterized Circuits i i 35
4.1.3 Instruction Set Processors on top of FPGAs 37
42 From Algorithm to Circuitooiiiiiiiiiiiiiiiiiiiannn.. 38
4.2.1 Expression — Circuitoooiiiiiiiiiiiiiiiiiiiinnnn... 38
4.2.2 Circuit Generationouiiiiiiiiiiiiiiiiiiian... 39
4.2.3 High-Level Synthesis, 40
43 Data-Parallel Approaches i i 41
4.3.1 DataParallelism 42
4.4 Pipeline-Parallel Approaches i i 43
4.4.1 Pipeline Parallelism in Hardware 43
442 Pipeliningin FPGAs o i 45

4.4.3 Designing for Pipeline Parallelism 46

4.4.4 'Turning a Circuit into a Pipeline-Parallel Circuit 47

4.5 Related Conceptsottt 48
Data Stream Processing Lol 51
5.1 Regular Expression Matching i 51
5.1.1 Finite-State Automata for Pattern Matching...................... 51
5.1.2 Implementing Finite-State Automata in Hardware 53
5.1.3 Optimized Circuit Constructioncoiiunn... 54
5.1.4 Network Intrusion Detection 56
52 Complex Event Processing.o o i i i 58
5.2.1 Stream Partitioning.......... i 58
5.2.2 Hardware Partitioner 59
5.2.3 Best-Effort Allocationoiiiiiiiiiiiin.. 60
5.2.4 Line-Rate Performance......... i i 60
53 Filteringinthe DataPath 61
5.3.1 Data Path Architecture in the Real World 61
5.4 Data Stream Processing i 62
5.4.1 Compositional Query Compilation 64
542 GettingDatalnandOuto 67
5.5 Dynamic Query Workloads i il 67
5.5.1 Fast Workload Changes Through Partial Modules 68
5.6 Bibliographic Notes i 69
Accelerated DB Operators i 71
6.1 Sort Operatorttt 71
6.1.1 Sorting Networks 71
6.1.2 BRAM-based FIFO Merge Sorter.cooiiiiii.. 73
6.1.3 External Sorting with a Tree Merge Sorter 74
6.1.4 Sorting with Partial Reconfiguration 75
6.2 Skyline Operator i 76
6.2.1 Standard Block Nested Loops (BNL) Algorithm 77
6.2.2 Parallel BNLwith FPGAs 78
6.2.3 Performance Characteristicsouueeneein ... 79
Secure Data Processing 83
7.1 FPGAsversus CPUs o 83

7.1.1 Von Neumann Architectureuuuuiuuieaenn.. 83

o e}

7.1.2 Trusted Platform Module (TPM) 83
72 FPGAsversus ASICs. 84
7.3 Security Properties of FPGAs 84
7.3.1 Bitstream Encryptiono i oo 85
7.3.2 Bitstream Authenticationc. ... 85
7.3.3 Further Security Mechanisms o ... 85
74 FPGA asTrusted Hardware 86
7.4.1 Fully Homomorphic Encryption with FPGAs 86
7.4.2 Hybrid Data Processingo i i i 86
7.4.3 Trusted Hardware Implementation 88
Conclusions i 89
Commercial FPGA Cards 93
Al NetEPGA . 93
A.2 Solarflare’s ApplicationOnload™ Engine 93
A3 Fusion I/OS10DIIVE . . oottt 94
Bibliography 95
Authors’ Biographies i i 101

Preface

System architectures, hardware design, and programmable logic (specifically, feld-programmable
gate arrays or FPGAs) are topics generally governed by electrical engineers. “Hardware people”
are in charge of embracing technological advantages (and turning them into improved perfor-
mance), preferably without breaking any of the established hardware/software interfaces, such as
instruction sets or execution models.

Conversely, computer scientists and software engineers are responsible for understanding
users’ problems and satisfying their application and functionality demands. While doing so, they
hardly care how hardware functions underneath—much as their hardware counterparts are largely
unaware of how their systems are being used for concrete problems.

As time progresses, this traditional separation between hard- and software leaves more
and more potential of modern technology unused. But giving up the separation and building
hardware/software co-designed systems requires that both parties involved understand each other’s
terminology, problems/limitations, requirements, and expectations.

With this book we want to help work toward this idea of co-designed architectures.
Most importantly, we want to give the software side of the story—the database community in
particular—a basic understanding of the involved hardware technology. We want to explain what
FPGAs are, how they can be programmed and used, and which role they could play in a database

context.

'This book is intended for students and researchers in the database field, including those
that have not had much contact with hardware technology in the past, but would love to get
introduced to the field. At ETH Ziirich/TU Dortmund, we have been teaching for several years
a course titled “Data Processing on Modern Hardware.” The material in this book is one part of
that Master-level course (which further discusses also “modern hardware” other than FPGAS).

We start the book by highlighting the urgent need from the database perspective to invest
more effort into hardware/software co-design issues (Chapter 1). Chapters 2 and 3 then introduce
the world of electronic circuit design, starting with a high-level view, then looking at FPGAs
specifically. Chapter 3 also explains how FPGAs work internally and why they are particularly
attractive at the present time.

In the remaining chapters, we then show how the potential of FPGAs can be turned into
actual systems. First, we give general guidelines how algorithms and systems can be designed
to leverage the potential of FPGAs (Chapter 4). Chapter 5 illustrates a number of examples
that successfully used FPGAs to improve database performance. But FPGAs may also be used to
enable new database functionality, which we discuss in Chapter 7 by example of a database crypto

xiv. PREFACE

co-processor. We conclude in Chapter 8 with a wary look into the future of FPGAs in a database
context.

A short appendix points to different flavors of FPGA system integration, realized through
different plug-ins for commodity systems.

Jens Teubner and Louis Woods
June 2013

CHAPTER 1

Introduction

For decades, performance of sequential computation continuously improved due to the stunning
evolution of microprocessors, leaving little room for alternatives. However, in the mid-2000s,
power consumption and heat dissipation concerns forced the semiconductor industry to radically
change its course, shifting from sequential to parallel computing. Ever since, software developers
have been struggling to achieve performance gains comparable to those of the past. Specialized
hardware can increase performance significantly at a reduced energy footprint but lacks the nec-
essary flexibility. FPGAs (reprogrammable hardware) are an interesting alternative, which have
similar characteristics to specialized hardware, but can be (re)programmed after manufacturing.
In this chapter, we give an overview of the problems that commodity hardware faces, discuss how
FPGAs differ from such hardware in many respects, and explain why FPGAs are important for

data processing.

1.1 MOORE’S LAW AND TRANSISTOR-SPEED SCALING

Ever since Intel co-founder Gordon E. Moore stated his famous observation that the number of
transistors on integrated circuits (IC) doubles roughly every two years, this trend (Moore’s law)
has continued unhalted until the present day. The driving force behind Moore’s law is the contin-
uous miniaturization of the metal oxide semiconductor (MOS) transistor, the basic building block
of electronic circuits. Transistor dimensions have been shrunk by about 30 % every two years, re-
sulting in an area reduction of 50 %, and hence the doubling of transistors that Moore observed.

Transistor scaling has not only led to more transistors but also to faster transistors (shorter
delay times and accordingly higher frequencies) that consume /ess energy. The bottom line is that,
in the past, every generation of transistors has enabled circuits with twice as many transistors,
an increased speed of about 40 %, consuming the same amount of energy as the previous gener-
ation, despite 50 % more transistors. The theory behind this technology scaling was formulated
by Dennard et al. [1974] and is known as Dennard’s scaling. There was a time when Dennard’s
scaling accurately reflected what was happening in the semiconductor industry. Unfortunately,
those times have passed for reasons that we will discuss next.

1.2 MEMORY WALL AND VON NEUMANN BOTTLENECK
Just like CPUs, off-chip dynamic memory (DRAM) has also been riding Moore’s law but due

to economic reasons with a different outcome than CPUs. Whereas memory density has been

2 1. INTRODUCTION

doubling every two years, access speed has improved at a much slower pace, i.e., today, it takes
several hundred CPU cycles to access off-chip memory. DRAM is being optimized for large
capacity at minimum cost, relying on data locality and caches in the CPU for performance. Thus,
a significant gap between processor speed and memory speed has been created over the years, a
phenomenon known as the memory wall.

Furthermore, the majority of computers today are built according to the Von Neumann
model, where data and software programs are stored in the same external memory. Thus, the bus
between main memory and the CPU is shared between program instructions and workload data,
leading to the so-called Von Neumann bottleneck.

To mitigate the negative effects of both the memory wall and the Von Neumann bottleneck,
CPUs use many of the available transistors to implement all sorts of acceleration techniques to
nonetheless improve performance, e.g., out-of-order execution, branch prediction, pipelining,
and last but not least cache hierarchies. In fact, nowadays a substantial amount of transistors and
die area (up to 50 %) are used for caches in processors.

1.3 POWER WALL

In the past, frequency scaling, as a result of transistor shrinking, was the dominant force that in-
creased performance of commodity processors. However, this trend more or less came to an end
about a decade ago. As already mentioned in the previous section, the advantages of higher clock
speeds are in part negated by the memory wall and Von Neumann bottleneck, but more impor-
tantly, power consumption and heat dissipation concerns forced the semiconductor industry to stop
pushing clock frequencies much further.

Higher power consumption produces more heat, and heat is the enemy of electronics. Too
high temperatures may cause an electronic circuit to malfunction or even damage it permanently.
A more subtle consequence of increased temperature is that transistor speed decreases, while
current leakage increases, producing even more heat. Therefore, silicon chips have a fixed power
budget, which microprocessors started to exeed in the mid-2000s, when frequency scaling hit the
so-called power wall.

A simplified equation that characterizes CPU power consumption (Pcpy) is given below.
We deliberately ignore additional terms such as shor# circuit and glitch power dissipation, and focus
on the most important components: dynamic power and szatic power.

Pcpy = ax C x V3, X fer + Vaa X lieak

dynamic power static power

Dynamic power is the power consumed when transistors are switching, i.e., when transis-
tors are changing their state. The parameter o characterizes the switching activity, C stands for

capacitance, Vg4 for voltage, and f.jx corresponds to the clock frequency. Szatic power, on the

1.4. MULTICORE CPUS AND GPUS 3

other hand, is the power consumed even when transistors are inactive, because transistors always
leak a certain amount of current (/7.4).

As transistors became smaller (< 130 nanometers), reality increasingly started to deviate
from Dennard’s theory, i.e., the reduced voltage of smaller transistor was no longer sufficient to
compensate fully for the increased clock speed and the larger number of transistors. For a number
of reasons, voltage scaling could no longer keep up with frequency scaling, leading to excessive
power consumption.

Unfortunately, limiting frequency scaling solved the power consumption issue only tem-
porarily. As transistor geometries shrink, a higher percentage of current is leaked through the
transistor. As a result, static power consumption, which is independent of the clock frequency,
is increased. Thus, to avoid hitting the power wa/l again, in the future, an increasing amount of
transistors will need to be powered off, i.e., it will only be possible to use a fraction of all available
transistors at the same time.

1.4 MULTICORE CPUS AND GPUS

As Moore’s law prevailed but frequency scaling reached physical limits, there was a major shift
in the microprocessor industry toward parallel computing: instead of aiming for ever-increasing
clock frequencies of a single core, multiple identical cores are now placed on the same die. Un-
fortunately, there are a number of issues with multicore scaling. First of all, performance is now
directly dependant on the degree of parallelism that can be exploited for a given task. Amdahl’s
law states that if a fraction f of computation is enhanced by a speedup of S, then the overall
speedup is:
1
1-/+%

In the case of multicores, we can interpret f as the fraction of parallelizable computation (assum-

speedup =

ing perfect parallelization), and S as the number of cores. Thus, as the number of cores increases,
so does the pressure to be able to exploit maximum parallelism from a task. However, as Hill
and Marty [2008] observed, a parallel architecture that relies on large amounts of homogeneous,
lean cores is far from optimal to extract the necessary parallelism from a task. Hill and Marty
[2008] suggest that an asymmetric architecture would be better suited, while they see the highest
potential in dynamic techniques that allow cores to work together on sequential execution.

Graphic processors (GPUs), in a sense, are an extreme version of multicore processors. In a
GPU there are hundreds of very lean cores that execute code in lockstep. GPUs have the same
problems with Almdahl’s law as multicore CPUs. In fact, the more primitive GPU cores and
the way threads are scheduled on them, reduces flexibility, making it even more difficult to extract
suitable parallelism from arbitrary applications that would allow an effective mapping to the GPU
architecture.

4 1. INTRODUCTION
1.5 SPECIALIZED HARDWARE

Dark silicon [Esmacilzadeh et al., 2011] refers to the underutilization of transistors due to power
consumption constraints and/or inefficient parallel hardware architectures that conflict with Am-
dahl’s law. A promising way to overcome these limitations is a move toward heterogeneous ar-
chitectures, i.e., where not all cores are equal and tasks are off-loaded to specialized hardware to
both improve performance and save energy. This conclusion is similar to the “one size does not
fit all” concept [Stonebraker et al., 2007] from database research although applied to hardware
architectures.

Instead of mapping a given task to a fixed general-purpose hardware architecture, spe-
cialized hardware is mapped to the task at hand. Different problems require different forms of
parallelism, e.g., data parallelism versus pipeline parallelism, coarse-grained parallelism vs. fine-
grained parallelism. Custom hardware allows employing the most effective form of parallelization
that best suits a given task.

Specialized hardware is neither bound to the Von Neumann bottleneck nor does it necessarily
suffer from the memory wall. For instance, custom hardware that needs to monitor network data,
e.g., for network intrusion detection or high-frequency trading, can be coupled directly with a
hardware Ethernet controller. Thus, the slow detour via system bus and main memory is avoided.
Consequently, the need for large caches, branch prediction, etc., dissolves, which saves chip space
and reduces power consumption.

Power consumption of specialized hardware solutions is usually orders of magnitude below
that of general-purpose hardware such as CPUs and GPUs. Knowing exactly what kind of a
problem the hardware is supposed to solve, allows using transistors much more effectively. Also,
due to specialized hardware parallelism and avoidance of the Von Neumann bottleneck, lower clock
frequencies are typically sufficient to efficiently solve a given task, which further reduces power
consumption. For instance, a circuit that handles 10G Ethernet traffic processes 64-bit words at
a clock speed of only 156.25 MHz.

Nevertheless, specialized hardware also has a number of drawbacks, and in the past systems
that were built from custom hardware (e.g. database machines in the 1980s) typically lost the
race against systems based on general-purpose hardware. First of all, building custom hardware
is a difficult and time-consuming process. Second, potential bugs usually cannot be solved after
manufacturing, making testing even more time-consuming, and also increasing the risk associated
with producing specialized hardware. Third, unless the custom hardware is mass-produced, it
is significantly more expensive than general-purpose hardware. In the past, frequency scaling
improved sequential computation performance to such an extent that in many domains custom
hardware solutions were simply uneconomical.

1.6. FIELD-PROGRAMMABLE GATE ARRAYS (FPGAS) 5
1.6 FIELD-PROGRAMMABLE GATE ARRAYS (FPGAS)

Between the two extremes—general-purpose processors and specialized hardware—
reprogrammable hardware is another class of silicon devices, which in a sense combines the
best of both worlds. Field-programmable gate arrays (FPGAs) are the most advanced brood
of this class. FPGAs consist of a plethora of uncommitted hardware resources, which can be
programmed after manufacturing, i.e., in the fre/d.

A circuit implemented on an FPGA can be thought of as a hardware simulation of a corre-
sponding hard-wired circuit. As such FPGA-based circuits exhibit many of the favorable charac-
teristics of specialized hardware: (7) application-tailored parallelism, (77) low power-consumption,
(iii) and integration advantages (e.g., to avoid the Von Neumann bottleneck). But the fundamental
difference compared to specialized hardware is that circuits implemented on an FPGA can be
changed anytime, by a mere update of configuration memory. Of course, there is no free lunch.
Hard-wired circuits consume even less energy, require even fewer transistors to implement a given
task, and can be clocked faster than FPGAs. But oftentimes these are acceptable (or even negli-
gible) concessions, given the various benefits of reprogrammability.

First, reprogrammability allows multiple specialized circuits to execute on the same silicon
device in a time-multiplexed manner, i.e., circuits can be “loaded” when they are needed. Second,
FPGAs drastically reduce time to market and provide the ability to upgrade already deployed
circuits. Third, migration to the next-generation manufacturing process (to benefit from smaller
transistors) is seamless, i.e., by buying a next-generation FPGA and migrating the hardware de-
scription code, similar to the way software is migrated from one CPU generation to the next.

1.7 FPGAS FOR DATA PROCESSING

Originally, FPGAs were primarily used as glue logic on printed circuit boards (PCBs), and later on
also for rapid prototyping. However, more than two decades of FPGA technology evolution have
allowed FPGAs to emerge in a variety of fields, as a class of customizable hardware accelerators
that address the increasing demands for performance, with a low energy footprint, at affordable
cost. In recent years, increased attention from both academia and industry has been drawn to
using FPGAs for data processing tasks, which is the domain that this book focuses on.

1.7.1 STREAM PROCESSING

FPGAs have several desirable properties for stream processing applications. High-frequency trad-
ing is a good example, where high-rate data streams need to be processed in real time, and mi-
crosecond latencies determine success or failure. The 1/O capabilities of FPGAs, allow for flexible
integration, e.g., in the case of high-frequency trading, the FPGAs are inserted directly into the
network, enabling most efficient processing of network traffic. Furthermore, the reprogramma-

bility of FPGAs makes it possible to quickly adapt to market changes.

6 1. INTRODUCTION

Another example illustrating the advantages of FPGAs are network intrusion detection sys-
tems (NIDSs) that scan incoming network packets, attempting to detect malicious patterns. Typ-
ically there are several hundred patterns formulated as regular expressions, which all need to be
evaluated in real time. The regular expressions can easily be implemented in hardware as finite state
machines (FSMs), which, on an FPGA, can then all be executed in parallel. Thus, besides the in-
tegration and reprogramming capabilities, here the inherent parallelism of FPGAs is exploited to
achieve unprecedented performance.

1.7.2 BIG DATA

Data management, in the advent of big data, becomes an increasingly difficult task using tra-
ditional database techniques. For instance, ad-hoc data analytics queries often cannot rely on
indexes, and need to fall back to scanning vast amounts of data. This has led to so-called daza
warehouse appliances that combine hardware and software in a single, closed box, allowing ap-
pliance vendors to fine-tune software/hardware co-design. IBM/Netezza’s appliance [Francisco,
2011], for example, combines multiple FPGAs and CPUs in a large blade server. To increase I/O
bandwidth stored data are highly compressed. During query execution, the FPGAs efficiently
decompress and filter data, while the CPUs take care of more complex higher-level operations.

1.7.3 CLOUD COMPUTING

Whereas today FPGAs are still considered exotic for many data processing tasks, cloud computing
could catapult FPGAs to a mainstream data processing technology. In cloud computing, compute
resources are provided as a service to customers, i.e., customers can outsource tasks to the cloud
and only pay for the resources they actually need for a particular job. A major cost factor for
cloud providers is the power consumption of their data centers. Thus, any technology that can
deliver the same performance and flexibility with a lower energy footprint is very attractive for the
cloud. In addition, big cloud providers such as Google, Amazon, and Microsoft definitively have
the economic means to provide a bundle of FPGAs as a service with a high-level programming
interface, making FPGA technology much more accessible to customers than it is today. The
implications of bringing FPGA acceleration into cloud infrastructures has been discussed, e.g.,

by Madhavapeddy and Singh [2011].

1.7.4 SECURITY

So far, we stressed performance and energy consumption as key advantages of FPGAs. However,
security is a third dimension, where FPGAs can provide significant benefits. FPGA configuration
data can be encrypted and authenticated, making it very difficult to tamper with the FPGA con-
figuration itself. These built-in authentication and encryption mechanisms can be used to create
a root of trust, on top of which secure reprogrammable hardware can be built. In the Von Neumann

model of a conventional processor, data and program are stored in the same memory, making

1.7. FPGAS FOR DATA PROCESSING 7

buffer overflow attacks' or rootkits* possible. In hardware, on the other hand, data and program
can be easily separated, e.g., the program can be implemented in logic (protected by the root of
trust), while data are stored in memory. Based on these ideas Arasu et al. [2013] built the Ci-
pherbase system, which extends Microsoft’s SQL Server with FPGA-based secure hardware to
achieve high data confidentiality and high performance.

'In a buffer overflow attack, a data buffer’s boundary is intentionally overrun such that data are written into adjacent memory.
For instance, if the attacker can guess where the program code is stored, this method can be used to inject malicious code.

2A rootkit is software that typically intercepts common API calls, and is designed to provide administrator privileges to a user
without being detected. A buffer overflow could be exploited to load a rootkit.

CHAPTER 2

A Primer in Hardware Design

Before we delve into core FPGA technology in Chapter 3, we need to familiarize ourselves with
a few basic concepts of hardware design. As we will see, the process of designing a hard-wired
circuit—a so-called application specific integrated circuit (ASIC)—is not that different from im-
plementing the same circuit on an FPGA. In this chapter, we will cover the key components
that make up an integrated circuit, how these circuits are typically designed, and the various
tools required to convert an abstract circuit specification into a physical implementation, ready
for manufacturing.

2.1 BASIC HARDWARE COMPONENTS

'The majority of electronic circuits, be it a simple counter or a full-fledged microprocessor, are made
up of the following three fundamental ingredients: (7) combinational /ogic elements, (ii) memory
elements, (iii) and wiring to interconnect logic and memory elements. With the help of a few sim-
ple examples, in the following, we will show how these three ingredients are typically combined
to construct circuits that implement a given function.

2.1.1 COMBINATIONAL LOGIC

At the heart of any circuit there are basic /ogic gates, which can be combined by wiring their input
and output ports together to form more complex combinational logic elements. For instance, on the
left-hand side of Figure 2.1, a circuit known as Aalf adder is constructed from an XOR gate and an
AND gate. This circuit computes the addition of two one-bit numbers 4 and B, and reports the
result on the output port S. If A and B are both set to one this produces an overflow, which is
captured by the AND gate and reported as carry it on output port C. Together with an additional
OR gate, two half adders can be combined to build a so-called fu// adder. A full adder has a third
input port (carry-in) and accounts for the carry bit from another full adder, i.e., it adds up three
one-bit numbers. This way, a cascade of full adders can be further combined to construct adders
with a wider word width, e.g., 32-bit adders.

Another example of a very fundamental combinational circuit in hardware design is a mu/-
tiplexer, illustrated on the right-hand side of Figure 2.1. This 2-to-1 multiplexer has three input
ports: two input signals (ing, in1) and a select line (se/) that determines which of the two input
signals is routed to the output port of the multiplexer. Again, wider multiplexers can be con-
structed from these basic 2-to-1 multiplexers. Multiplexers enable the evaluation of conditional

10 2. APRIMER IN HARDWARE DESIGN

SSIEN
E/!I
___(n____

]

=
S

Figure 2.1: Combining basic logic gates to construct more complex circuits: a half adder (left) and a
two-input multiplexer (right).

expressions, i.e., if~then-else expressions of the form out = (sel) ?iny : ing, where sel determines
whether inj or ing is selected for the output.

Combinational logic is purely driven by the input data, i.e., in the examples in Figure 2.1,
no clock is involved and no explicit synchronization is necessary. Notice that each logic gate has a
fixed propagation delay, i.c., the time it takes before the effect of driving input signals is observable
at the output of a gate. Propagation delays result from physical effects, such as signal propagation
times along a signal wire or switching speeds of transistors. Combining multiple gates increases
the overall propagation delay, i.e., the propagation delay of a complex combinational circuit com-
prises the sum of propagation delays of its gates along the longest path within the circuit, known
as the critical path. The critical path determines the maximum clock speed of sequential circuits,
which we will discuss next.

2.1.2 SEQUENTIAL LOGIC

In contrast to combinational logic, sequential logic has state (memory). In fact, sequential logic is
combinational logic plus memory. While the output of combinational logic depends solely on its
present input, the output of sequential logic is a function of both its present and its past input,
as illustrated in Figure 2.2 (left). Whereas the Jogic gate is the fundamental building block of
combinational logic, state elements (e.g., flip-flops, latches, etc.) are the basic building blocks of a
sequential circuit.

2.1. BASICHARDWARE COMPONENTS 11

|

in — / combinational
logic S
state —
element clk = o
R

Figure 2.2: A sequential circuit with a feedback loop (left), the internals of an S-R (NOR) latch
(center), and symbol of a D flip-flop (right).

2.1.3 ASYNCHRONOUS SEQUENTIAL LOGIC

One of the most basic one-bit state elements is a so-called SR (set/reset) latch. Internally, it can
be constructed using two cross-coupled NOR gates, as depicted in Figure 2.2 (center). If S and R
are both /logic low (i.e., S = 0, R = 0), the feedback loops ensure that Q and Q (the complement
of Q) remain in a constant state. S = 1 and R = 0 forces Q = 1 and Q = 0, whereas S = 0 and
R = 1 does the opposite. S and R are not allowed to be logic high (i.e., S = 1, R = 1) at the same
time since this would cause Q = Q = 0.

Notice that the SR latch is level-sensitive, meaning that its state changes when the input
signals change their voltage /evels (e.g., where five volt corresponds to one state and zero volt to
the other). Thus, even though a circuit with latches can maintain state, it is still entirely driven
by its inputs, and no form of synchronization exists. Therefore, this type of circuitry is called
asynchronous sequential logic. 'The speed of asynchronous sequential logic is essentially only limited
by the propagation delays of the logic gates used. However, asynchronous logic is very difficult to
get right, with, e.g., race conditions to deal with, which is why nearly all sequential circuits today
are synchronous.

2.14 SYNCHRONOUS SEQUENTIAL LOGIC

In a synchronous sequential circuit all memory elements are synchronized by means of a clock signal,
which is generated by an electronic oscillator, and distributed to all memory elements. The clock
signal (c1k) periodically alternates between two states, i.e., logic low and logic high, and memory
elements are synchronized to one of the c/ock edges, i.e. the rising edge (change from 0 to 1) or the
falling edge (change from 1 to 0).

A more sophisticated memory element than the SR latch is required to be able to synchro-
nize to the edge of a clock, e.g., a so-called D flip-flop. The symbol that represents a D flip-flop is
illustrated on the right-hand side of Figure 2.2. The D flip-flop only stores the input value from
the D port at the specified clock edge (rising or falling). After that the outputs (Q and Q) re-
main unchanged for an entire clock period (cycle). Internally, the edge-sensitivity of D flip-flops

12 2. APRIMER IN HARDWARE DESIGN

is implemented using two latches in combination with additional logic gates. Most D flip-flops
allow the D and clk port to be bypassed, forcing the flip-flop to sez or reset state, via separate
S/R ports.

'The main reason for the ubiquitous use of synchronous sequential logic is its simplicity. The
clock frequency determines the length of a clock period and all combinational logic elements are
required to finish their computation within that period. If these conditions are met the behaviour
of the circuit is predictable and reliable. On the flip-side, maximum clock frequency is determined
by the critical path in a circuit, i.e., by the longest combinational path between any two flip-flops.
As a consequence, the potential performance of other faster combinational elements cannot be
maxed out.

2.2 HARDWARE PROGRAMMING

In the early days of electronic circuit design, schematics were the only formal way to represent a
circuit. Thus, circuits used to be drawn (e.g., as the circuits depicted in Figure 2.1) by hand or
using a computer-aided design (CAD) tool. Today, the most common way to design a circuit is
using an appropriate hardware description language (HDL), which is better suited to capture the
complexity of large circuits, and significantly increases productivity.

2.2.1 HARDWARE DESCRIPTION LANGUAGES (HDLS)

The two most popular hardware description languages are Verilog and VHDL (both are also
used to program FPGAs). A hardware description language (HDL), at first glance, resembles
an ordinary programming language such as C. Nevertheless, there are fundamental differences
between a language designed for generating assembly code to be executed on a microprocessor, and
one that is designed to produce hardware circuits. HDLs are structured programming languages
that (7) capture circuit hierarchy and connectivity, (i) naturally allow expressing the inherent
parallelism of separate circuit components, and (7ii) provide a built-in mechanism for simulating
circuit behavior in software.

Different Levels of Abstraction: Structural versus Behavioral Modeling
'The fundamental abstraction in any HDL is a module (referred to as entity in VHHDL). A module
encapsulates a (sub)circuit and defines an interface to the outside world in terms of input/output
ports. Much like classes in an object-oriented language, modules are defined once and can then
be instantiated multiple times. Several instantiations of modules execute in parallel and can be
connected via wires between their input and output ports.

A Verilog implementation of a 2-to-1 multiplexer (cf. Figure 2.1) is given in Listing 2.1.
'The module multiplexer defines an interface with three single-wire input ports (in0, ini, sel)
and one output port (out). Inside the multiplexer module four gates are instantiated (1 x inverter,
2 x AND gates, and 1 x OR gate), and connected using the wires nsel, out0 and out1. Notice
how also the input/output ports of the multiplexer are connected with the instantiated gates.

2.2. HARDWARE PROGRAMMING 13

Listing 2.1: Structural Verilog (MUX). Listing 2.2: Behavioral Verilog (MUX).
1 module multiplexer(1 module multiplexer(

2 input in0, inl, sel, 2 input in0, inl, sel,

3 output out 3 output out

4) 4)5

5 wire nsel; 5

6 wire out0; 6 assign out = sel ? inl : in0;
7 wire outl; 7

8 8 endmodule

9 inverter inv0(sel,nsel);

10 andgate andO(in0,nsel,out0);

11 andgate andl(inl,sel,outl);

12 orgate or0(out0,outl ,out);

13

14 endmodule

'The multiplexer displayed in Listing 2.1 is a structural implementation of a 2-to-1 multi-
plexer. That is, the multiplexer was built boztom-up by combining multiple instantiations of sim-
pler modules into a single, more complex module. However, often it is beneficial to model a
complex system prior to detailed architecture development. Therefore, common HDL:s also sup-
port a fop-down method for designing a circuit, known as bebavioral modeling. Listing 2.2 shows
the same 2-to-1 multiplexer implemented using behavioral Verilog. Whereas structural modeling
is an imperative technique, exactly defining how a circuit is constructed, behavioral modeling is a
declarative technique, specifying the behavior rather than the architecture of a circuit.

Simulation

Since producing a hardware circuit is a costly and lengthy process, simulation is a crucial tool for
designing hardware circuits economically. Simulation is so fundamental that supporting mecha-
nisms are directly integrated into the HDL.

There are various levels of granularity at which a circuit can be simulated. The first step in
the design process of a circuit is usually to verify the behavioral correctness of a circuit. For that
matter, a behavioral model of the circuit is implemented and an appropriate testbench is created
within the HDL. A software simulator can then evaluate the circuit against the test cases specified
in the testbench.

Later in the design process, bebavioral components are gradually replaced by structural
ones, and other aspects than logical correctness, e.g., adherence to timing constraints, become
important. HDLs also support this form of simulation, e.g., modules can be annotated with es-
timated timing information such as propagation delay, etc., and a simulator can check whether a
circuit can sustain a given clock rate.

14 2. APRIMER IN HARDWARE DESIGN

behavioral
circuit

manufacturing

specification

Figure 2.3: Design flow: formal circuit specification — physical circuit.

2.3 CIRCUIT GENERATION

In this section we briefly discuss the design flow for producing a physical circuit from a formal
specification, written in some HDL or higher-level language. The main steps are illustrated in
Figure 2.3. Most of these steps are also relevant for FPGA programming, which we will discuss
in the next chapter.

2.3.1 LOGICAL DESIGN FLOW (SYNTHESIS)

The highest level of abstraction in the circuit design flow are purely behavioral specifications of
circuits. These specifications are typically not written using a hardware description language. In-
stead, domain specific languages, as well as standard languages such as C/C+ and SystemC" are
commonly used. The output of a high-level synthesizer is typically a so-called register-transfer
level (RTL) description (see below) in HDL code. Notice that high-level synthesis is an active
field of research, and especially general-purpose high-level synthesis often produces inferior re-
sults, compared to hand-crafted HDL code, which is why RTL descriptions (using, for example,
Verilog or VHDL) are still the most common entry point to circuit design.

At the register-transfer level (RTL), a circuit is modeled as a network of storage elements
(flip-flops, RAM, etc.) with combinational logic elements in between. At this level, combina-
tional elements may still be specified in a behavioral manner, e.g., an arithmetic adder component
may be used, without specifying a concrete implementation of an adder. The RTL abstraction has
two immediate advantages: (i) increased productivity, as certain functionality can be generated,
in contrast to being assembled manually from logic gates, and (7i) portability, as the RTL rep-
resentation is technology independent, e.g., the same RTL specification can be used to generate

!SystemC is an extension of C+ targeted toward software/hardware co-design.

2.3. CIRCUIT GENERATION 15
an ASIC or program an FPGA. To reach an RTL model of a circuit, manual design and tuning

may be necessary. However, once an RTL model of a circuit exists, all further processing steps
(including RTL synthesis) toward the physical circuit are fully automated.

An RTL synthesizer translates the RTL circuit description into an internal representation
of unoptimized Boolean logic equations. The next step is a technology-independent optimization
of these equations, i.e., redundant logic is automatically removed.

'The final step of the synthesis process is to implement the abstract internal representation of
the design by mapping it to the ce/ls of a technology library (also known as ce// library, provided by
the device manufacturer. The cells of a technology library range from basic logic gates (standard
cells) to large and complex megacells with ready-to-use layout (e.g., a DMA controller). The
library consists of cell descriptions that contain information about functionality, area, timing, and
power for each cell. As illustrated in Figure 2.3, the fechnology mapping process also takes design
constraints into account. These constraints, e.g. regarding area consumption, timing, and power
consumption, guide the mapping process, and determine which cells are selected when multiple
options exist.

2.3.2 PHYSICAL DESIGN FLOW

'The end result of the synthesis process is a so-called net/ist. Netlists consist of two fundamental
components: instances and nets. Each time a cel/ of some target fechnology library is used, this is
called an instance. Nets, on the other hand, refer to the “wires” that connect instances.

Based on the netlist, the physical design process begins. In the first phase the gates of the
netlist are placed on the available two-dimensional space. Initially, structures that should be placed
close together are identified—a process known as floorplanning. 'Then, based on the floorplan,
the placer tool assigns a physical location to each gate of the netlist. After initial placement, the
clock tree is inserted and placement decisions are re-evaluated. Multiple iterations are typically
necessary to find a satisfying placement for all gates.

From the placed-gates netlist and the geometric information about the cells provided by
the technology library, the router tool derives the physical paths of the nets that connect gates,
as well as the power supply lines. Again, multiple iterations are typically necessary, and gates
might be relocated in the routing phase. The fully routed physical netlist is the final result of
the entire design flow. It consists of the gates of a circuit, their exact placement, and “drawn”
interconnecting wires. In essence, the circuit design is now ready for fabrication. What follows
is typically a number of physical design verification steps carried out in software before a first
prototype of the circuit is produced by an IC vendor.

17

CHAPTER 3

FPGAs

In this chapter, we give an overview of the technology behind fre/d-programmable gate arrays (FP-
GAs). We begin with a brief history of FPGAs before we explain the key concepts that make
(re)programmable hardware possible. We do so in a bottom-up approach, that is, we first dis-
cuss the very basic building blocks of FPGAs, and then gradually zoom out and show how the
various components are combined and interconnected. We then focus on programming FPGAs
and illustrate a typical FPGA design flow, also covering advanced topics such as dynamic partial
reconfiguration. Finally, to complete the picture of modern FPGAs, we highlight bleeding-edge
technology advances and future FPGA trends.

3.1 A BRIEF HISTORY OF FPGAS

Field-programmable gate arrays (FPGAs) arose from programmable logic devices (PLDs), which
first appeared in the early 1970s. PLDs could be programmed after manufacturing in the fie/d.
However, programmability in these devices was limited, i.e., programmable logic was hard-wired
between logic gates.

In 1985, the first commercially available FPGA (the Xilinx XC2064) was invented. This
device hosted arrays of configurable logic bocks (CLBs) that contained the programmable gates, as
well as a programmable interconnect between the CLBs.

Early FPGAs were usually used as glue logic between other fixed hardware components.
However, the tremendous development of FPGAs in the 1990s, made FPGAs an attractive al-
ternative to ASICs for prototyping, small volume production, for products with a short time to
market, or products that require frequent modifications.

Today, FPGAs are enhanced with many additional hardware components that are inte-
grated directly into the FPGA fabric such as embedded digital signal processing units (DSP),
network cores, and even full-fledged processors, e.g., the ARM Cortex™-A9, which is embed-
ded in the Xilinx Zynq™-7000 programmable SoC.

In summary, FPGAs have gone through an extreme evolution in the last three decades. To-
day, FPGAs provide massive parallelism, low power consumption, and high-speed I/O capabili-
ties, which makes them interesting devices for data processing with compute- and data-intensive
workloads.

18 3. FPGAS

Input | Output Input | Output
- 00 0 - 00 0
| AND)H 01 0 H 01 1
10 0 10 1
11 1 11 1

Figure 3.1: AND gate (left) and OR gate (right), each represented by a two-input LUT.

3.2 LOOK-UPTABLES—THEKEYTO
RE-PROGRAMMABILITY

In Chapter 2, we saw that the three fundamental ingredients of any circuit are combinational logic
(compute), memory elements (storage), and interconnect (communication). In the following, we
will discuss these aspects in the context of FPGAs. In an ASIC, combinational logic is built from
wiring a number of physical basic logic gates together. In FPGAs, these logic gates are simulated
using multiple instances of a generic element called a /ook-up table—or simply LUT. As we will
see, LUTs can be (re)programmed after manufacturing, which makes them mainly responsible

for the (re)programmability property of FPGAs.

3.2.1 LUT REPRESENTATION OF A BOOLEAN FUNCTION

An n-input LUT can be used to implement an arbitrary Boolean-valued function with up to n
Boolean arguments. Two simple examples of a two-input AND gate and a two-input OR gate, each
implemented by a two-input LU'T, are given in Figure 3.1.

3.2.2 INTERNALARCHITECTURE OF AN LUT

An n-input LUT requires 2" bits of SRAM to store the lookup table, and a 2" : 1 multiplexer to
read out a given configuration bit—typically implemented as a tree of 2 : 1 multiplexers. 4-input
LUTs used to be the standard, but today 6-input LUTs are more common. For readability, an
example of a 4-input LUT is given in Figure 3.2.

As illustrated in the figure, the Boolean values at the inputs ing to in3 determine which
SRAM bit is forwarded to the output (out) of the LUT. The LUT in the illustration can be used
to implement any 4-input Boolean expression. However, in practice, LUTs are even more sophis-
ticated, e.g., the 4-input LUT above could also be used to implement two 3-input LUTs. Hence,
typical LUTs today have not only one output port but several to support such configurations.

3.2.3 LUT (RE)PROGRAMMING

Since the configuration of an LUT, i.e., what Boolean function the LUT implements, is stored in
SRAM, programming an LUT boils down to updating the SRAM cells of a given LUT. Inter-

3.2. LOOK-UP TABLES—THE KEY TO RE-PROGRAMMABILITY 19

in1 il’lz in3

Conf. Bit — |D Q.
We EN

—o

Clk

—o

—o

=g

:&H out out

16 bits of SRAM

LUT LUT

Figure 3.2: Internal structure of a 4-input LUT: circuitry for reading (left) and writing (right).

nally, these SRAM cells are organized as shift registers (1-bit wide and 2" -bits deep), as depicted
on the right of Figure 3.2. Thus, the bits of the configuration bitstream are shifted bit-by-bit into
the LUTs when an FPGA is (re)programmed. Thus, an LUT can be read (asynchronously) in less
than a cycle but writing to an LUT requires 2" cycles. This reflects one of the typical trade-offs in
hardware design—here, write performance is traded for a simpler design and, as a result, reduced
chip space consumption.

3.2.4 ALTERNATIVE USAGE OF LUTS

So far, we have described how LUTs can be used to simulate gates, i.e., as combinational logic.
However, since a key component of a LUT is SRAM, LUTs can also be used as memory elements
of a circuit implemented on an FPGA.

When an FPGA is programmed, some LUTs can be configured to be used as so-called
distributed RAM, i.e., a LUT can be configured as a small n x 1 LUT RAM. Multiple LUT
RAMs can then be combined with others for deeper and/or wider memories. Distributed RAM
is a good choice for relatively small embedded RAM blocks within a circuit, e.g. to implement
small FIFOs.

LUTs can also be configured to implement yet another fundamental memory element,
namely as shift registers. As illustrated in Figure 3.2 (right), the shift register functionality is
already present in the LUT as part of the write logic. Shift registers are useful, for example, to
build delay lines to compensate for certain latencies of other circuit components.

20 3. FPGAS

carry-out
Dﬂ _|4-LUT Cin
= b Qf—
_,|4-LUT— carry 7 ! !
A . s el
gL Ll
W
T T D T
—|4-LUT [carry c
- logic out
elementary
logic unit
carry-in

Figure 3.3: Functionality within an elementary logic unit (left) and a fu// adder constructed by com-
bining a LUT with elements of the carry logic (right).

3.3 FPGAARCHITECTURE

After discussing the key ideas behind look-up tables (LUTs) in the previous section, we now
focus on how these LUTs are embedded into coarser architectural units and distributed across

the FPGA fabric.

3.3.1 ELEMENTARY LOGIC UNITS (SLICES/ALMS)
A fixed number of LUTs are grouped and embedded into a programmable logic component,

which we will call elemnentary logic unit (Xilinx refers to these units as s/ices, whereas Altera calls
them adaptive logic modules (ALMs)). The exact architecture of elementary logic units varies among
different vendors and even between different generations of FPGAs from the same vendor. Nev-
ertheless, we can identify four main structural elements of an elementary logic unit: (7) a number of
LUTs (typically between two and eight), (ii) a proportional number of 1-bit registers, (7ii) arith-
metic/carry logic, (iv) and several multiplexers.

An example elementary logic unit is illustrated in Figure 3.3, on the left-hand side. For pre-
sentation purposes, this elementary logic unit has only two 4-input LUTs with two corresponding
flip-flop registers. This architecture can be considered classic (i.e., slices of Xilinx Virtex-4 and
earlier FPGAs are based on this architecture) but modern FPGAs typically have more LUTs per

elementary logic unit.

3.4. ROUTING ARCHITECTURE 21

Each LUT is paired with a flip-flop, i.e., a 1-bit memory element to store the result of
a table look-up. This facilitates pipelined circuit designs, where signals may propagate through
large parts of the FPGA chip while a high clock frequency is maintained. Next to LUT-based
memories these flip-flops are the second type of memory elements present in FPGAs. Whether
a flip-flop is used or by-passed is determined by a multiplexer. The multiplexers in the elementary
logic units can be driven by additional SRAM that is also set when an FPGA is programmed.

Finally, FPGAs have fast dedicated wires between neighboring LUTs and their correspond-
ing circuitry. The most common type of such communication channels are carry chains. Carry
chains allow combining multiple LUTs to implement arithmetic functions such as adders and
multipliers. In Figure 3.3 (left), the blue path represents a carry chain (though somewhat simpli-
fied, e.g., wires to the flip-flop or output multiplexer have been omitted).

Typically, the vertical wires of the carry chain pass through dedicated carry logic that helps
in the construction of particular arithmetic functions. For example, on the right-hand side of
Figure 3.3, a full adder (1-bit adder) is constructed using an XOR gate (implemented by the LUT)
together with another XOR gate, as well as a 2-to-1 multiplexer of the carry logic. Via the vertical
carry wires a cascade of such full adders can be used to create wider adders.

3.4 ROUTINGARCHITECTURE

Direct wires to neighboring elementary logic units (e.g., carry chains) allow combining multiple
units to build more sophisticated circuits such as adders and multipliers. However, modern FP-
GAs provide enough configurable resources to host an entire system on chip (SoC). But to build
such a complex system a more flexible communication mechanism is required to connect different
sub-circuits spread out over the FPGA fabric. This communication mechanism is known as the
interconnect.

3.4.1 LOGICISLANDS

A small number of elementary logic units (cf. Section 3.3.1) are grouped together into a coarser
grained unit that we refer to as Jogic island (corresponding to configurable logic blocks (CLBs) or logic
array blocks (LBAs) in the terminology of Xilinx and Altera, respectively). An example, resembling
the CLBs of Virtex-5 and Virtex-6 FPGAs, is given in Figure 3.4, on the left-hand side.

In this example, a logic island consists of two elementary logic units. Each elementary logic
unit has a separate set of wires (e.g., for carry-chains, etc.) running vertically through the chip
and connecting elementary logic units of adjacent logic islands. For more general communica-
tion among logic islands the elementary logic units of every logic island are connected to the
interconnect via switch matrix, which we will discuss in just a moment.

On the right-hand side of Figure 3.4, we show how the logic islands are arranged as a two-
dimensional array on the FPGA. The flexible interconnect between the logic islands allows for
arbitrary communication patterns, say, L /oo could be talking to L1,;, which is three hops (wiring

22 3. FPGAS

carry—out carry—out

‘
|
I
I
|
|
|
I
|
|
'
I
I
I
|
I
I
|
I
I
I
—
I
|
|
|
I
I
|
|
|
=
o
=
=
o
=]

Llos || |L113 || LI2s| || |IL133

elementary

logic unit (2)

LI()Z L112 lez LI32 10B

LIOl L111 L121 LI31 10B

switch matrix

elementary LI()() Lll() leo L130 10B

o8 | ||| 108

logic unit (1)

logic island

carry-in carry-in

Figure 3.4: Internals of a /ogic island (left) and two-dimensional arrangement of logic islands (L1ys)
on an FPGA (right), surrounded by I/O blocks (IOBs).

segments) away. The interconnect also makes it possible for logic islands to directly communicate

with special I/O blocks (IOBs) located at the periphery of the FPGA (see Section 3.5).

3.4.2 INTERCONNECT

'The interconnect is a configurable routing architecture that allows communication between arbi-
trary logic islands. It consists of communication channels (bundles of wires) that run horizontally
and vertically across the chip, forming a grid containing a logic island in every grid cell.

As illustrated in Figure 3.5, at the intersection points of the routing channels there are
programmable links that determine how the wires are connected, allowing to connect the outputs
and the inputs of arbitrary logic islands or I/O blocks.

Each wire can be connected to any of the other three wires that come together at the in-
tersection point, i.e., all those physical connections exist but programmable switches determine
which connections are active. In the example, in Figure 3.5, a vertical connection (red) was pro-
grammed by setting the SRAM cell of the corresponding switch appropriately. Hence, wires can
be programmed to take left or right turns or continue straight.

3.5 HIGH-SPEED I/O

As mentioned in the previous section, the two-dimensional array of logic islands is surrounded by

a large amount of I/0 blocks (IOBs). These IOBs sit at the periphery of the FPGA and are also

3.5. HIGH-SPEED I/O 23

programmable

switch matrix and
bundle of lines

programmable link
at intersection point

programmable

switch with

memory cell

Figure 3.5: Routing architecture with switch matrix, programmable links at intersection points, and
g g 3 p
programmable switches.

connected to the programmable interconnect, allowing the logic islands to communicate with the
outside world (cf. Figure 3.4).

Also the IOBs can be programmed to serve different needs and allow the FPGA to com-
municate with a multitude of other devices. Typically, many I/O standards are supported, with the
two main classes of I/O standards being single-ended (used, e.g., in PCI) and for higher perfor-
mance differential (used, e.g., in PCI Express, SATA, 10G Ethernet, etc.). Typically, the IOBs
also contain certain auxiliary hardware such as serial-to-parallel converters or 8b/10b encoder-
s/decoders that are used in a number of communication protocols. In a nutshell, the IOBs can be
programmed to implement the physical layer of many common communication schemes.

High-speed (multi-gigabit) I/O is implemented using extremely fast serial transceivers' at
the heart of the IOBs. The fastest transceivers, at the time of writing this book, are the GTH/GTZ
type transceivers of the Virtex-7 HT FPGAs from Xilinx, providing 28 Gb/s serial bandwidth
each—by comparison, SATA Gen 3 requires 6 Gb/s serial bandwidth. The Virtex-7 HT FPGA
ships with sixteen 28 Gb/s and seventy-two 13 Gb/s transceivers. Thus, aggregate bandwidth of
more than a terabit per second can be achieved with these FPGAs.

'A transceiver is an electronic device consisting of both a fransmitter and a receiver.

24 3. FPGAS
Ologic island EBRAM O DSP unit

=f=k=k=i=k=R-N=R=R=R=R=R=R R=R=Ani=E
oooooolloooooof|loo||o Clock A — — DataOut A
oooooolloooooo||loolUo

ooooooloooooo|loopo Address A = Port A
oooooolloooooof|loo||o Dataln A — or
oooooodooooooloolo

O00OOOROC0OOOOROORO WriteEn A —
ooooool|loooooo||loo||o.

oooooo||looooool|ooUo] C
ooooool|loooooof|loopo

oooooofjoooooofool|o Clock B — — DataOut B
ooooooldooooooloolo

O0O0OOOpO0OOO0OO0O[O0RO Address B — Port B
oooooolloooooof|loo||o Dataln B —
oooooolloooooo||loolUo i
ooooool|ocoooool|loopo. WriteEn B —/
oooooolloooooof|loo||o

oooooodooooooloolo

Figure 3.6: FPGA layout with interspersed BRAM blocks and DSP units (left), and the (slightly
simplified) interface of a dual-ported BRAM block (right).

3.6 AUXILIARY ON-CHIP COMPONENTS

The logic resources of FPGAs discussed so far are in principle sufficient to implement a wide
range of circuits. However, to address high-performance and usability needs of some applications,
FPGA vendors additionally intersperse FPGAs with special silicon components (cf. Figure 3.6)
such as dedicated RAM blocks (BRAM), multipliers and adders (DSP units), and in some cases
even full-fledged CPU cores. Hence, Herbordt et al. [2008] observed that the model for FPGAs

has evolved from a “bag of gates” to a “bag of computer parts.”

3.61 BLOCKRAM (BRAM)

On the left-hand side of Figure 3.6, a common layout of the different components within an
FPGA is illustrated. Between the columns of logic islands there are columns of dedicated RAM
blocks typically referred to as Block RAM (BRAM). A single BRAM block can hold a few kilo-
bytes of data (e.g., 4 KiB), and usually an FPGA holds a few hundred BRAMs, which can all be
accessed in parallel. BRAM access is very fast, i.e., a word can be read or written in a single clock
cycle at a clock speed of several hundred megahertz.

Compared to distributed RAM, discussed in Section 3.2.4, BRAMs provide significantly
higher density but can only be instantiated at a coarser grain, making them the ideal choice to store
larger working set data on-chip. As with distributed RAM, multiple BRAMs can be combined

to form larger memories.

3.6. AUXILIARY ON-CHIP COMPONENTS 25

On Virtex FPGAs, BRAMs are dual-ported, as depicted on the right-hand side of Fig-
ure 3.6. This means that the BRAM can be accessed concurrently by two different circuits. The
word width for each port is configurable, i.e., one circuit might choose to access BRAM at a byte
granularity, while another addresses BRAM in four-byte chunks. Each port is driven by a sepa-
rate clock, i.e., the two circuits accessing the BRAM may run at different speeds. Furthermore,
a dual-ported BRAM can be configured to behave as two single-ported BRAMs (each one-half
the original size) or even as FIFO-queues.

BRAMs can be used for clock domain crossing and bus width conversion in an elegant way.
For instance, an Ethernet circuit clocked at 125 MHz could directly write data of received packets
into a BRAM, configured as a FIFO buffer, one byte at a time. On the other side, a consuming
circuit with a different clock speed, say 200 MHz, could choose to read from that same bufter at
a 4-byte granularity.

3.6.2 DIGITAL SIGNAL PROCESSING (DSP) UNITS

FPGAs are attractive for digital signal processing (e.g, digital filtering, Fourier analysis, etc.),
which heavily relies on mathematical operations. However, while adders and multipliers can be
built from the LUTs and flip-flops provided in an FPGA, they can by no means compete—in
terms of performance, space, and power consuption—with corresponding circuits in pure silicon.
‘Therefore, FPGA manufacturers also embed dedicated hardware multipliers and adders (between
less than a hundred to a few thousand) in their FPGAs. A finite impulse response (FIR) filter is a
typical DSP application. An example of a FIR filter is given below:

y[n] = apx[n] + a1x[n — 1] + axx[n — 2]

(where x[n]/y[n] indicate the filter’s input/output values at clock cycle n, respectively).

'This filter processes a stream of input samples in a “sliding window” manner, i.e., the last
three input samples are multiplied by some coefficients (ag, a1, a2) and then accumulated. A
typical (fully pipelined) hardware implementation of such as filter is depicted in Figure 3.7. All
three multiplications and additions are computed in parallel and intermediate results are stored in
flip-flop registers (H). Because this combination of multiply and accumulate (IMLAC) is so frequently
used in DSP applications, a DSP unit, in essence, usually comprises a multiplier and an adder.

As with most other components in FPGAs, the DSP units can also be customized and
combined with adjacent DSP units. For example, a Xilinx DSP48E slice has three input ports
(which are 25 bits, 18 bits, 48 bits wide) and provides a 25 x 18-bit multiplier in combination
with a pipelined second stage that can be programmed as 48-bit subtractor or adder with optional
accumulation feedback. Hence, these DSP units can be used in a variety of modes, and perform
operations such as multiply, multiply-and-accumulate, multiply-and-add/subtract, three input
addition, wide bus multiplexing, barrel shifting, etc., on wide inputs in only one or two clock
cycles. In the database context, fast multipliers are very useful, e.g., to implement efhcient hash

functions.

26 3. FPGAS

0 ﬂ§%®%§>:%% oo

Figure 3.7: Fully pipelined FIR filter constructed from three DSP units.

3.6.3 SOFT AND HARD IP-CORES

FPGAs are a great tool to create custom hardware but development effort is still significantly
higher than for writing software. Certain functionality is fairly standardized and used in many
FPGA designs over and over again. Thus, so-called intellectual property (IP) cores can be instan-
tiated in FPGA designs. In essence, an IP core is a reusable unit of logic—free or commercial—
ranging from circuits for simple arithmetic operations to entire microprocessors. A sof¢ IP core
implements the corresponding functionality using standard programmable resources provided by
the FPGA, while a Aard IP core refers to a dedicated silicon component embedded in the FPGA
fabric.

BRAMs and DSP units are the simplest form of embedded silicon components on FP-
GAs. Often FPGA vendors also add more complex hard-wired circuitry to their FPGAs to sup-
port common functionality at high performance with minimal chip space consumption. A typical
example is the medium access controller (MAC) core found on many FPGAs, connected to an
Ethernet PHY device” on the corresponding FPGA card, providing high-level access to Ether-
net frames.

Some FPGAs even incorporate full-fledged hard CPU cores. Several older generations
of Xilinx’s Virtex FPGAs shipped with embedded PowerPC cores, e.g., the Virtex-5 FX130T
integrates two PowerPC 440 cores (800 MHz). FPGAs of the newer Xilinx Zynq series include
an ARM Cortex-A9 dual-core (1 GHz). Also Altera produces FPGAs with embedded ARM
cores, and Intel in collaboration with Altera designed an embedded processor (Stellarton) that
combines an Atom core with an FPGA in the same package.’

3.7 FPGA PROGRAMMING

Having discussed the key ingredients of FPGAs, we now take a closer look at how FPGAs are
programmed. From a high-level perspective, the FPGA design flow is very similar to generating
hard-wired circuits, which we discussed in the previous chapter (Section 2.3). It’s the tools pro-
*The PHY connects Ethernet circuitry to a physical medium such as optical fiber or copper cable.

*Please note that here the Atom processor and the FPGA communicate via PCI Express, i.e., this is more of a system-in-
package than a true system on chip (SoC).

3.7. FPGAPROGRAMMING 27

-

% E G 8 I
HDL| 2 | NGC | 5 [NGD | & | NCD | 5 | NCD | g | BIT] B

8 = g 2. & = 3 FPGA [

- 50 mapped routed | 8B S 7 F

%) s =

>< TTTTTTT

synthesize implement design generate program

bitstream FPGA

Figure 3.8: FPGA design flow: Xilinx tool chain and intermediate circuit specification formats.

vided by the FPGA vendors that do all the magic of mapping a generic circuit specification onto
FPGA hardware.

3.7.1 FPGA DESIGN FLOW

To illustrate a typical FPGA design flow, we will examine the tools of the Xilinx tool chain,
as well as their intermediate circuit representations. For some of the terminology used in this
section, we refer to Chapter 2, where we discussed fundamental hardware design concepts. The
most important steps and tools of the design flow to produce an FPGA-circuit are depicted in

Figure 3.8.

Synthesis

The entry point to programming FPGAs is the same as for producing hard-wired circuits, i.e.,
typically by using a hardware description language (HDL) such as VHDL or Verilog. The Xil-
inx synthesizer (XST) turns an HDL specification into a collection of gate-level netlists (native
generic circuit (NGC) format), mapped to a technology library (UNISIM) provided by Xilinx.
However, at this level also third-party synthesizers (e.g., Synplicity) may be used, which typically
store the netlist using an industry-standard EDIF* format.

Translate

The tool ngdbuild combines and #ranslates all input netlists and constraints into a single netlist
saved as native generic database (NGD) file. The FPGA designer specifies constraints in a so-
called wuser constraint file (UCF). Constraints are used to assign special physical elements of the
FPGA (e.g., I/O pins, clocks, etc.) to ports of modules in the design, as well as to specify timing
requirements of the design. Whereas the NGC netlist is based on the UNISIM library for behav-
ioral simulation, the NGD netlist is based on the SIMPRIM library, which also allows timing

simulation.

*EDIF stands for electronic design interchange format.

28 3. FPGAS
Map
'The map tool maps the SIMPRIM primitives in an NGD netlist to specific device resources such
as logic islands, I/O blocks, BRAM blocks, etc. The map tool then generates a native circuit
description (NCD) file that describes the circuit, now mapped to physical FPGA components.

Notice that this is an additional step not needed in the classical design flow for generating circuits
(cf. Section 2.3).

Place and Route

Placement and routing is performed by the par tool. The physical elements specified in the NCD
file are placed at precise locations on the FPGA chip and interconnected. While doing so, par takes
timing constraints specified in the user constraint file (UCF) into account. Oftentimes, place and
route (based on simulated annealing algorithms) is the most time consuming step in the design
flow, and multiple iterations may be necessary to comply with all timing constraints. The par tool
takes the mapped NCD file and generates a routed NCD file, which also contains the routing

information.

Bitstream Generation and Device Programming
Now the routed design needs to be loaded onto the FPGA. However, the design must first be
converted into an FPGA-readable format. This is handled by the bitgen tool, which encodes the
design into a binary, known as bizstream. The bitstream can then be loaded onto the FPGA, e.g.,
via JTAG cable and using the iMPACT tool. As a side note, modern FPGAs often also feature
the possibility to encrypt and authenticate bitstreams to support security-sensitive applications.
'The bitstream controls a finite state machine inside the FPGA, which extracts configuration
data from the bitstream and block-wise loads it into the FPGA chip. Xilinx calls these blocks
Jframes. Each frame is stored in a designated location in the configuration SRAM that directly
relates to a physical site on the FPGA (cf. Figure 3.9) and configures the various configurable
elements on that site, e.g., multiplexers, inverters, different types of LUTs, and other configuration
parameters. Once the configuration memory is completely written, the FPGA is programmed and
ready for operation.

3.7.2 DYNAMIC PARTIAL RECONFIGURATION

As noted in the previous section, configuration memory of an FPGA is divided into frames, of
which each corresponds to a specific physical site on the FPGA. These frames are the smallest
addressable units of device configuration and are distributed across the FPGA, as illustrated on
the left-hand side of Figure 3.9. A frame always groups together a column of elementary blocks
of some type such as logic islands, BRAM blocks, I/0 blocks, etc. In earlier FPGAs (e.g., Xilinx
Virtex-2 FPGAs), a frame would span the entire hight of the FPGA chip but nowadays frames are

usually arranged in multiple rows. To give an idea of the granularity of these configuration frames,

3.7. FPGAPROGRAMMING 29
logic frame BRAM frame DSP frame FPGA

static region

row n

partially re- partially re-
configurable configurable
region A region B

[

internal configuration access port

row n-1

¥

partial bitstrcam Al

partial bitstrcam A2
partial bitstream Bl
partial bitstrcam B2

row n-2

see |
see |

large (external) storage

Figure 3.9: Configuration regions of an FPGA, comprising multiple elementary blocks of one type,
covered by configuration frames (left), and an FPGA programmed with two partially reconfigurable
regions (PRRs) and corresponding partial bitstreams stored externally (right).

in Virtex-4, Virtex-5, and Virtex-6 FPGAs a CLB-frame (i.e., for logic island configuration)
spans 16 x 1,20 x 1, and 40 x 1 CLBs, respectively.

The organization of configuration memory described above is the basis for a technique
known as dynamic partial reconfiguration. This technique allows parts of an FPGA to be repro-
grammed without interrupting other running parts on the same FPGA. To do so, only the frames
of a particular partial reconfiguration region (PRR) are updated with a new configuration, while
the other frames are left unchanged.

Dynamic partial reconfiguration enables interesting applications, where specialized mod-
ules can be loaded on-demand at run time without occupying precious chip space when they are
inactive. To load a hardware module, a control unit on the FPGA (e.g., a processor) loads con-
figuration data from some external source—for example, from off-chip DRAM—and sends it to
the so-called Internal Configuration Access Port (ICAP),” which is the gateway to the configuration
memory of the FPGA.

'The above scenario is illustrated on the right-hand side of Figure 3.9. Notice that fixed
partially reconfigurable regions (PRRs) need to be defined beforehand, i.e., when the static part
of a circuit is designed. Those regions then serve as placeholders, into which a bitstream can be
loaded later on. A partial bitstream can be only loaded into the exact PRR that it was designed for,

*Note that Xilinx has a longer history of supporting dynamic partial reconfiguration in their FPGAs than Altera, which is why
in this section we use Xilinx-specific terminology and focus on the design flow for Xilinx devices.

30 3. FPGAS
/ 28 nm FPGA die

]« silicon interposer

[LO_O_O_O_O_O_GJLO_O_O_O_O_O_GJLO_O_O_O_O_O_GJ
Q0000000000000 O

«— package substrate

O O O O O O O O+ solder balls

Figure 3.10: Xilinx’s stacked silicon interconnect (SSI) technology.

e.g., in the example the partial bitstream A1 could not be loaded into the partially reconfigurable
region B. 'This can be a limitation, hence partial bitstream relocation is an active research topic
studied, e.g., in the work of Touiza et al. [2012].

Nevertheless, state-of-the-art dynamic partial reconfiguration already exhibits significant
benefits, for example: (7) time-multiplexed applications may use more circuitry than actually fits
onto a single FPGA, (7i) there is no idle power consumed by the circuits not currently in use,
(iii) and design productivity can be increased since synthesizing smaller partial bitstreams is a lot
faster than full bitstreams synthesis.

3.8 ADVANCED TECHNOLOGY AND FUTURE TRENDS

After having discussed established core FPGA technology, in this section, we look into what
is currently happening at the forefront of FPGA research and innovation. We selected a few
topics ranging from FPGA manufacturing and FPGA architecture to how FPGAs could be pro-

grammed in the future.

3.8.1 DIE STACKING

FPGAs have a long history of being at the leading edge of semiconductor technology innova-
tion. As such, Xilinx produced one of the first devices that introduced so-called die stacking—the
Virtex-7 2000T. Die stacking (also referred to as 3D ICs) is a technique to assemble and combine
multiple dies within the same package. The difference to assembling multiple chips on a printed
circuit board (PCB) is that the dies can be assembled at the same density as a monolithic solution,
leading to better performance and less power consumption.

'The problem with large monolithic FPGAs is that at the early stages of a new manufactur-
ing process (shrinking transistors), there are many defective dies. In fact, die yield dramatically
decreases as a function of die size. Therefore very large monolithic FPGAs are typically only
manufactured once the process matures. Thus, one benefit of die stacking is that large FPGAs
can be produced early on. The Virtex-7 2000T that was released in 2011 consisted of 6.8 billion
transistors, making it the largest FPGA ever.

Figure 3.10 illustrates Xilinx’s stacked silicon interconnect (SSI) technology used for the
Virtex-7 2000T. Four FPGA dies, fabricated using a 28 nm manufacturing process, are soldered

3.8. ADVANCED TECHNOLOGYAND FUTURE TRENDS 31

side by side on top of the so-called sificon interposer.® The interposer is a passive silicon chip
that connects adjacent FPGA dies via tens of thousands of connections, allowing for very high
bandwidth, low latency, and low power consumption. Note that side by side stacking avoids a
number of thermal issues that could result from stacking multiple FPGA dies on top of each
other.

3.8.2 HETEROGENEOUS DIE-STACKED FPGAS

The Virtex-7 20007, discussed in the previous section, can be thought of as homogeneous since
the four dies are all identical FPGA dies. In 2012, Xilinx took its die stacking technology one
step further and introduced the Virtex-7 H580T, which assembles Aezerogencous dies in the same
package. In particular, the Virtex-7 H580T combines two FPGA dies with one transceiver die,
that hosts multiple 28 Gb/s transceivers. Thus, the analog portions of the transceivers are physi-
cally separated from the digital portions of the FPGA, isolating the transceivers from noise and
ensuring very high signal integrity.

At the broader scale, heterogeneous die stacking is about integrating different process tech-
nologies into the same package. Logic, analog, and memory (DRAM) chips have very different
optimization constraints, and are thus produced independently. Integrating these technologies
on the same die would be feasible but not economical. Notice that integrating, for example, a
CPU core into an FPGA die is not as problematic because CPUs and FPGAs are both logic and
use the same process technology. Fortunately, heterogeneous die stacking allows integrating dies
produced using different process technologies into the same package in an economically sensi-
ble way. In the future, die stacking might bring several new interesting FPGAs, as for example,
FPGAs with integrated DRAM memory.

3.8.3 TIME-MULTIPLEXED FPGAS

Tabula is a semiconductor start-up that introduced a fundamentally new FPGA architecture with
their ABAX product family, in 2010. Existing FPGA architectures suffer from the fact that an
increasing amount of die area is used for the interconnect rather than logic elements, as process
technology shrinks. In other words, there would be enough space on the silicon for more logic
elements, but interconnecting them is the problem.

To avoid this underutilization of chip space, Tabula replicates FPGA resources (e.g., LUTs,
flip-flops, multiplexers, and interconnect) eight times and then switches between those indepen-
dent sets of resources—so-called “folds”—at a very high frequency (1.6 GHz). In a sense, eight
smaller FPGAs execute in a time-multiplexed manner, and simulate a larger FPGA, where each
individual fold runs with a clock period of 625 picoseconds, resulting in an overall clock period
of 5 nanoseconds.

“Xilinx refers to SSI as being a 2.5D technology. What is meant is that active silicon (FPGA dies) are mounted on passive
silicon (the interposer). By contrast, 3D die stacking refers to active-on-active stacking, e.g¢, multiple FPGAs on top of each
other, which might be supported in future devices.

32 3. FPGAS

Tabula refers to this concept as “3-dimensional chips” of eight folds, where logic elements
not only connect to adjacent logic elements in the two-dimensional space, as in traditional FPGA
architectures, but also to logic cells in the “above” fold. This is made possible using “transparent
latches” in the interconnect, which are controlled by time-multiplexing circuitry, and allow com-
munication between different folds.

The ABAX chip can be programmed exactly the same way as one would program a com-
modity FPGA, i.e., the high-speed reconfiguration and time-multiplexing is completely hidden
from the programmer. The key advantage of this technology is that it can provide the same amount
of logic resources as large commodity FPGAs, however, at a significantly lower price, i.e., in the
range of 100-200 USD. Hence, the technology is very promising. As a result, Tabula was ranked
third on the Wall Street’s Journal’s annual “Next Big Thing” list in 2012 [Basich and Maltby,
2012].

3.8.4 HIGH-LEVEL SYNTHESIS

As FPGA technology is developing at a rapid pace, producing chips with an ever increasing
number of programmable resources, the evolution of programming paradigms for FPGAs has
been lagging far behind, i.e., the de facto standard for many years has been to write code at the
RTL level (see Section 2.3.1) using a hardware description language such as VHDL or Verilog.
Programming at this level of abstraction is difficult and error-prone, leading to long design cycles
and a steep learning curve for developers coming from the software world, which is hindering the
wide-spread adoption of FPGA technology.

To make FPGAs accessible to a wider range of developers and to lower time to market,
there have been significant research efforts to enable the translation of higher-level languages into
hardware circuits—so-called high-level synthesis (HLS) or electronic system level (ESL) synthesis.
Xilinx’s new design suite Vivado, for example, supports synthesizing C-based algorithmic circuit
specifications. The actual HLS tool is based on Autopilot from AutoESL, a high-level synthesis
vendor that Xilinx purchased in 2011.

By contrast, Altera is pushing for high-level synthesis based on OpenCL, which is a frame-
work for writing parallel programs that execute across a number of different platforms such as
multicore CPUs and GPUs. OpenCL is well known for general purpose GPU (GPGPU) pro-
gramming, where serial routines on the CPU control a heavy parallel workload that is executed
on the GPU. In OpenCL so-called %ernels that execute on OpenCL devices, e.g., a GPU, are
specified using the C-based OpenCL language. Whereas a GPU executes such kernels on fixed
compute cores, in an FPGA, the compute cores are highly customizable, and it is expected that
often similar performance to that of GPUs can be achieved, however, with significantly lower
energy consumption. While a HLS compiler makes it easier to specify hardware circuits, testing
the generated circuits is still cumbersome. Since OpenCL is not just a language and a compiler
but also includes an execution framework, it has the potential to eventually also make testing and
debugging more productive.

33

CHAPTER 4

FPGA Programming Models

We mainly looked at FPGAs from the hardware technology side so far. Clearly, the use and
“programming” of FPGAs is considerably different to the programming models that software
developers are used to. In this chapter, we will show how entire system designs can be derived
from a given application context, and we will show how those designs can be made to benefit
from the intrinsic properties of FPGA hardware (or how work can be partitioned, so solutions
can get the most out of hard- and software).

We will start the chapter (Section 4.1) with a discussion about trade-offs in flexibility and
performance and how one can avoid very high circuit compilation cost. In Section 4.2, we show
how a given application problem can actually be turned into a hardware circuit. In Sections 4.3
and 4.4 we then illustrate how generated circuits can be optimized by leveraging daza and pipeline
parallelism (respectively).

4.1 RE-BUILD, PARAMETERIZE, OR PROGRAM THE
HARDWARE ACCELERATOR?

FPGAs provide the opportunity to modify and re-configure the FPGA at a very fine granularity,
even from one user query to the next. We will, in fact, discuss some systems that follow this
route later in Chapter 5. The strategy is not appropriate for all application scenarios, however.
'The problem is that circuit (re-)compilation is an extremely CPU-intensive operation. Necessary
steps, such as component placement and routing are highly compute-intensive, and they scale
poorly with the circuit size. In practice, several minutes of compilation are the norm; some circuits
might require hours to be generated.

On the positive side, circuit re-building has the potential to generate highly efficient (if not
“optimal”) circuits for a very wide range of problem instances. Effectively, system designers face
three design goals:

(a) Runtime Performance. At runtime, the hardware solution should have good performance char-
acteristics. Ideally, these characteristics should be close to those of a hand-crafted, tailor-made
circuit for the problem instance at hand.

(b) Flexibility/Expressiveness. 'The solution should support a wide range of problem instances.
SQL, for instance, is expressive enough to cover many useful applications.

34 4. FPGAPROGRAMMING MODELS

runtime
performance

flexibility/ re-configuration
expressiveness speed

Figure 4.1: Design space for FPGA programming model. Design goals are execution performance
at runtime; flexibility/expressiveness to support different problem instances; and a fast way to realize
workload changes. Not all goals can be maximized at the same time.

(c) Re-Configuration Speed. When workloads change, the hardware solution should be able to
react to such changes with low latency. To illustrate, having to wait for minute- or hour-long
circuit routing is certainly inappropriate for ad hoc query processing.

Unfortunately, not all of these goals can be reached at the same time. Rather, designers have to
make compromises between the opposing goals. As illustrated with Figure 4.1, at most two goals
can be met satisfactory—at the expense of the third.

4.1.1 RE-BUILDING CIRCUITS AT RUNTIME

Circuit re-compilation enables optimizing runtime performance runtime perf.
and expressiveness, but sacrifices re-configuration speed. It could
thus be placed in the design space as shown here on the right.
Because of the high re-configuration effort, the model seems
most appropriate whenever the workload is mostly static and long
re-compilation times are acceptable.’ Examples could be risk man-
agement for electronic trading systems (we shall see one example flexibility re-conf. speed
in Section 5.3.1) or network intrusion detection (Section 5.1.4),
where rule sets to match change only at a longer time scale.

Pre-Compiled Modules, Partial Reconfiguration
'The re-compilation effort can be reduced through the use of pre-compiled modules that the circuit
generator merely stitches together to obtain a working hardware solution for a given problem

"Note that circuit re-compilation is a software-only task. The FPGA must be taken off-line only to upload the compiled
bitstream. This time is relatively short and technology exists to eliminate it altogether (using multi-context FPGAs).

4.1. RE-BUILD, PARAMETERIZE, OR PROGRAM THE HARDWARE ACCELERATOR? 35

instance. The system of Dennl et al. [2012], for instance, includes modules for relational algebra
operators that can be used to construct a physical representation of an algebraic query plan on the
two-dimensional chip space.

Pre-compiled modules work well together with partial re-
configuration, selective replacement of only some areas on the
FPGA chip (cf. Section 3.7.2). And when these areas are small,
also less time is needed to move the (partial) bitstream to the
device, which may further improve responsiveness to workload
changes.

Only so much variety can be pre-compiled, however, which
limits the flexibility that can be achieved by following this route. In flexibility ~ re-conf. speed
our three-goal design space, this moves the approach toward faster

runtime perf.

re-configuration speed, but at the expense of flexibility (illustrated

on the right). Pre-compiled modules and partial re-configuration can also be combined with
parameterization to improve the flexibility/performance trade-off. We will look at this technique
in 2 moment.

At this point we would like to mention that circuit re-construction is not only compute-
intensive. It also implies that, at application runtime, a stack of hardware design tools has to be
executed for synthesis, placement/routing, and bitstream generation. Installation, maintenance,
and licensing of these tools might be too complex and expensive to employ the approach in prac-
tical settings. If used with partial re-configuration, pre-compiled modules might not actually de-
pend on the availability of these tools. But partial re-configuration has yet to prove its maturity
practical use. Most commercial users would likely refrain from using the technology today in
real-world settings.

4.1.2 PARAMETERIZED CIRCUITS

Commercial uses of FPGAs often do not re-generate circuits after system deployment at all
and treat them similarly to a hard-wired ASIC. Hardware re-configurability is used here only
to (a) perform occasional hardware/software updates and (4) avoid the high production cost of
ASICs when the application’s market size is too small. Adaptation to application workloads is
then achieved via parameterization. The idea is that the hardware circuit itself is hard-wired, but
at runtime it reads out and interprets a number of configuration parameters that describe the
current workload.

For certain workloads, this model is a good fit. If, for instance, the FPGA is used only to
filter a tuple stream based on a simple predicate, say

column-name 0 constant

(where 6 is some comparison operator =, <, <,...), then column-name, 0, and constant can be
left as a configuration parameter in an otherwise hard-wired circuit.

36 4. FPGAPROGRAMMING MODELS

—| compress

I

— .
—> memory |— project — CPU |—
1

restrict

DMA

FPGA

Figure 4.2: Data flow in the Netezza FAST engine (adapted from Francisco [2011]).

An example of this model is the Netezza Data Appliance Architecture. The included
FAST engine (“FPGA-accelerated streaming technology”) uses a fixed processing pipeline
to perform data preprocessing in FPGA hardware. This pipeline, illustrated in Figure 4.2,

first decompresses the raw table data, then performs projection and

runtime perf. row selection in sequence. Not shown in the figure is a “visibility en-

gine” that discards tuples not valid for the current transaction (e.g.,
uncommitted data).

Through runtime parameters, the FAST engine can be con-
figured to run most of the critical tasks in the application areas that

s Netezza was designed for. Parameter updates can be applied almost
flexibility] > e

instantaneously, since the necessary amount of configuration is very
small. But the engine cannot be configured beyond this well-defined query pattern. In terms of
our design space illustration, Netezza offers good runtime performance and fast re-configuration.
But it gives up flexibility, compared to systems that employ circuit re-construction, as illustrated

here on the left.

Example: Skeleton Automata

Parameterization can actually be quite powerful. Its potential reaches far beyond only the setting
of selection parameters or column names. The approach is expressive enough to cover a large and,
most importantly, relevant subset of XPazh, the de facto standard to access XML data [Teubner
et al., 2012]. Pushing this subset to an accelerator may speed up, e.g., an in-memory XQuery
processor by large factors.

XPath can be implemented with help of finite-state automata, driven by the sequence of
opening and closing tags in the XML input. The structure of these automata depends on the user
query. The relevant insight now is that the class of automata that can arise is constrained by the
XPath language specification. This constraint is sufficient to build a “skeleton automaton” that in-
cludes any transition edge that could be expressed with XPath. By making the condition assigned
to each of these edges a configuration parameter, the skeleton automaton can be parameterized

4.1. RE-BUILD, PARAMETERIZE, OR PROGRAM THE HARDWARE ACCELERATOR? 37

skeleton automaton

U L]

XPath N

spec. 0 0 0 l
static part (off-line) @, - () - O -
dynamic part (runtime) J_ * D

a b
user query HO/_\J e

configuration param.

Figure 4.3: Parameterization offers excellent runtime and re-configuration performance, but limits
the expressiveness addressable by the hardware accelerator. “Skeleton automata” illustrate how a mean-
ingful class of queries can be supported nevertheless. Edges of a general-purpose state automaton (the
“skeleton automaton”) can be parameterized to describe any relevant query automaton.

to run any XPath query (within the relevant dialect) as a true hardware NFA. Transitions not
needed for a particular query can be assigned a ‘false’ condition parameter, effectively removing
the transition from the automaton.

Figure 4.3 illustrates this concept. The skeleton automaton is generated based on the lan-
guage semantics of XPath and uploaded to the FPGA once. The user query is then used to infer
configuration parameters (printed blue in Figure 4.3), which are used to fill placeholders (indi-
cated as O in Figure 4.3) in the hardware circuit. Configuration parameters can be inferred and
installed in a micro-second time scale, which guarantees full ad hoc query capabilities.

4.1.3 INSTRUCTION SET PROCESSORS ON TOP OF FPGAS

'The remaining corner in our design space (see figure on the right below) is easy to fill. An instruc-
tion set processor, realized in the FPGA fabric, offers high flexibility and can be re-configured by

merely changing the program it executes.

38 4. FPGAPROGRAMMING MODELS

Possible processor designs could range from low-footprint
general-purpose processors (such as ARM architectures or Micro-
Blaze soft cores offered by Xilinx) to very specialized proces-
sors whose instruction set is targeted to the particular applica-
tion problem. However, the former type of processors would com-
pete with counterparts that are readily available as discrete silicon
components—which offer higher speeds and better energy effi- flexibility ~ re-conf. speed
ciency at a significantly lower price. Realizing a general-purpose
processor on FPGA hardware alone thus seems hardly attractive.

Specialized processors on FPGA hardware can have an edge over mainstream proces-
sors. This was demonstrated, e.g., by Vaidya and Lee [2011], which proposed a tailor-made co-

runtime perf.

processor for column-oriented databases, implemented in Altera Stratix III hardware. Though
Vaidya and Lee [2011] did not implement an end-to-end system, their simulations indicated
that this can lead to an improvement in query execution speed by one or two orders of magni-

tude. The approach had been followed commercially by Kickfire, which marketed their accelerator
as “SQL chip.” Kickfire was acquired by Teradata in 2010.

Mixed Designs. The approaches listed above do not exclude one another. In fact, the potential
of configurable hardware lies in the possibility to build hybrid designs. For instance, a hardware
design could include a highly specialized, tailor-made circuit; fast, but only suited to run the
most common case. The tailor-made circuit could be backed up by an instruction set processor
that captures all remaining situations, such as infrequent request types, system setup, or exception
handling. If these situations are rare, processor speed will not really matter to the overall system
performance.

Commercially available FPGA hardware increasingly supports such mixed designs. In var-
ious forms, vendors offer FPGA chips where a general-purpose CPU is readily integrated as a
discrete silicon component. This eases system design, reduces cost (since the instruction set pro-
cessor does not occupy precious configurable chip space), and improves performance (discrete
silicon blocks sustain higher clock frequencies). An example of such hardware is the Xilinx Zynq
product line, which integrates a hard ARM core with configurable chip space.

4.2 FROMALGORITHM TO CIRCUIT

The true potential of FPGA technology lies, of course, in the ability to create tailor-made circuits
for a given application problem. But how can such circuit be inferred from a problem specification?

4.2.1 EXPRESSION — CIRCUIT

As discussed in the hardware design part of this book, any logic circuit consists of combinational
logic and some form of memory. Both parts are glued together through a wiring that connects all
parts of a circuit. Combinational logic can describe operations where the output only depends on

4.2. FROM ALGORITHM TO CIRCUIT 39

the present operator input, but not on, e.g., previously seen input items. That is, combinational
circuits describe pure functions. Combinational circuits can be wired up into larger combinational
circuits simply according to the data flow of the functions that they describe. The operation

y = f(g(xl)’ h(xz))

could thus be implemented as the circuit

0
RN R
X1 *>‘

where @ indicates the sub-circuit that implements f. By construction, this leads to directed
acyclic graphs/circuits.

Some application problems require access to previous values from the input and/or from the
output. If we use x[k] to denote the value of an (input) item x at clock cycle k, the two examples

X[k — 1] + x[k]

5 (Ave) ylkl = ylk = 1] + x[k] (Sum)

ylk] =

would access values from the preceding clock cycle to compute the average value of the last two
x seen and the running sum of all x, respectively.

To implement such behavior, memory elements—flip-flop registers in practice—must be
inserted into the data path(s) of the circuit. A register, indicated as rectanglesi as before, briefly
stores the value that it receives at its input and makes it available on its output during the next
clock cycle. The above two examples can then be expressed in hardware as follows:

x—m @%y

X *)@4)1'—> y

Observe how, in both cases, registers de/ay values by one clock cycles. To access even older
items, multiple delay registers can be used one after another.

4.2.2 CIRCUIT GENERATION

Oftentimes, programmers need not explicitly draw circuit diagrams to turn an application prob-
lem into a hardware circuit. Rather, expressions that describe the combinational parts of a circuit
can be phrased directly in a hardware description language (VHDL or Verilog). Modern design
tools will then not only compose circuits automatically as illustrated above. They will also perform
cross-operator optimizations, generally improving area and/or speed efficiency of the generated
circuit.”

2For instance, in the Ave example, addition and division can be combined, simply by discarding any logic that would compute
the least-significant bit of the + output.

40 4. FPGAPROGRAMMING MODELS

For functions that require delay functionality, the circuit must be explicitly synchronized to
a clock signal in the VHDL/Verilog code. If a (sub-)result must be carried from one clock cycle
to the next (i.e., delayed) that result must explicitly be assigned to a register variable or signal.
Design tools will, however, try to eliminate redundant registers. They will often also try to re-
time the resulting circuit: pushing combinatorial tasks before or after a delay register may help to
balance signal delay paths and thus improve the maximum propagation delay, which is one of the
key determinant for the circuit’s speed.

Circuits generated this way typically serve as an entry point for further tuning. In particular,
those circuits might have long and poorly balanced signal paths (despite automatic re-timing).
And they do not leverage parallelism, which is a key strength of tailor-made hardware. In the sec-
tion that follows, we will thus discuss how circuits can be optimized by exploiting data parallelism
and pipeline parallelism (the latter also leads to optimized signal paths). But before that, we will
have a very brief look at high-level synthesis tools.

4.2.3 HIGH-LEVEL SYNTHESIS

'The aforementioned techniques are quite effective to build fast hardware circuits based on daza
flow-oriented task descriptions. By composing large circuits from smaller ones, even sizable ap-
plication problems become manageable.

From a (software) programmer perspective, however, composition purely based on data flow
is often counter-intuitive; an automated compiler that can handle control and data flow parts of
a “conventional” programming language is clearly desirable. And indeed, several development
platforms today offer high-level language compilers that can compile C, Java, or similar languages
directly into a circuit description.

Much like a conventional software compiler, these systems usually turn the user program
first into an internal representation consisting of basic blocks and annotated with data flow and
control flow information. Figure 4.4 illustrates this for the Optimus compiler of Hormati et al.
[2008]. The small code in Figure 4.4(a) results in four basic blocks as shown in Figure 4.4(b). The
graph in Figure 4.4(b) is also annotated with control flow and data flow information (the latter
only for variable sum).

To convert the sample code into a hardware circuit, Optimus will create a hardware unit
for each block that adheres to a fixed port interface schema. This schema includes explicit ports
for data and control flow information. Hardware units are finally wired up by connecting these
ports according to the data and control flow information inferred from the user code. For more
details refer to [Hormati et al., 2008].

High-level language synthesis becomes more effective if the starting language already con-
tains mechanisms to, e.g., express independence of operations and/or parallelism. The Optimus
compiler, for instance, is part of the Liguid Metal system of IBM Research [Auerbach et al.,
2012] and comes with its own programming language Lime to express such properties. Kiwi, a

4.3. DATA-PARALLEL APPROACHES 41

sum <— 0
BB1 illl<— 0
\\ ﬁ
BB2 | tmp <— read ()
sum < 0 . g -
fori =0to7do sum < Sil'lm + tmp N
BB3|i=i+ !
d W !
enilufi?:,:_ sum + read O brinch to BB2 if i <8 J
\\\\\\ %L’/
write (sum) R -

BB4 ’ write (sum) ‘

(a) Small example code with data and control (b) Basic blocks as inferred by Optimus, annotated with data flow
flow. information - - s and control flow information —.

Figure 4.4: To compile high-level language code, Optimus [Hormati et al., 2008] breaks down user
code into basic blocks and annotates data flow and control flow information. After mapping all basic
blocks to hardware, their control and data ports are wired according to the control and data flow
information. Illustration adapted from [Hormati et al., 2008].

joint research project of U Cambridge and Microsoft Research [Greaves and Singh, 2008], uses
custom attributes to .NET assembly to achieve the same goal.

The Accelerator platform® makes the interplay of language expressiveness and parallelism on
different hardware back-ends explicit. In the context of NE'T, Accelerator describes a functional-
style framework to express data-parallel programs. A set of back-end compilers can then gener-
ate runnable code for a wide range of data-parallel hardware, including commodity processors,

graphics processors, and FPGAs (the latter has been demonstrated by Singh [2011]).

4.3 DATA-PARALLEL APPROACHES

The strength of FPGAs (or any other bare-hardware platform) lies in their inherent hardware
parallelism. Fundamentally, any single gate, any sub-circuit, or any sub-area on the chip die can
operate independently of any other. This massive potential for parallelism is only limited by ex-
plicit synchronization or serialization, which the circuit designer chose to define to match the
semantics of the application scenario.

In practice, application circuits do need a fair degree of synchronization. But hardware
allows such synchronization to be lightweight and very efficient. This is in sharp contrast to
heavyweight mechanisms (compare and swap or even just memory ordering), which program-

%http://research.microsoft.com/en-us/projects/Accelerator/

http://research.microsoft.com/en-us/projects/Accelerator/

42 4. FPGAPROGRAMMING MODELS

mers should avoid in software-based systems if they aim for performance. This capability for
lightweight synchronization is also the reason why we are particularly interested in fine-grained
parallelism in this chapter and look at task assignment on the level of assembly style micro-
operations.

Types of Parallelism. 'The available hardware parallelism can be applied to application problems
in many different ways. In the context of FPGAs and tailor-made circuits, two strategies have
been by far the most successful, and we will discuss them in turn. In this section, we first look at
fine-grained data parallelism, which has many similarities to software techniques like vectorization
or partition/replicate schemes. Section 4.4 then looks at pipeline parallelism, which in hardware
is a lot more appealing than it typically is in software.

4.3.1 DATA PARALLELISM

There are many real-world situations where the same processing task has to be applied to all items
in a data set. And with certain assumptions on independence and order indifference, hardware
is free to handle individual items in parallel. The classical example to this are matrix or vector
computations, where individual components can be calculated independently. Most tasks in the
database domain can be handled this way, too; the relational data model, for instance, explicitly
assumes set-oriented processing.

In the software domain, data parallelism has been successful at many levels. Vector pro-
cessors operate on sets of data on the assembly level, a model that has been re-incarnated more
recently in the form of SIMD capabilities for mainstream processors or in the form of data-
parallel kernel execution on modern graphics processors (GPUs). Modern compilers allow us to
parallelize situations of data parallelism across compute resources of multi-core architectures (an
example tool kit is Intel’s Thread Building Blocks library). And on the network scale, the MapRe-

duce paradigm [Dean and Ghemawat, 2004] has written a remarkable story of success.

Data Parallelism in Hardware

On the hardware level, data parallelism corresponds to a
replication of components on the chip area. This is illus-
trated in Figure 4.5 here on the right. Input data is dis-

—| replical |—

o
tributed over the ¢ replicas of the sub-circuit and processed 2 S
— = |—
in parallel. At the output, circuitry may be required to col- 5 e
5

lect the results of parallel execution into a sequential output

—| repli —
stream. cplca g

Replication allows us to linearly increase throughput
by dedicating additional chip resources. ¢-fold replication Figure 4.5: Circuit replication.
roughly leads to a throughput improvement by a factor of
g (dispatch and collect logic can usually be integrated into surrounding components and thus be
neglected).

4.4. PIPELINE-PARALLEL APPROACHES 43

Besides availability of chip space, the practical limit to replication is the speed at which data
can be provided to the circuit and/or results consumed at the output of the circuit. For instance,
if data arrive as a single, sequential input stream, dissecting this stream into independent work
units often bottlenecks data-parallel execution.

4.4 PIPELINE-PARALLEL APPROACHES

Pipeline parallelism is a form of task parallelism and applies to situations where a given task f
can be broken down into a sequence sub-tasks fi, ..., fp, such that f = f, o--- o fi. The sub-
tasks fi,..., fp can then be computed on separate processing units, and intermediate results are
forwarded from unit to unit (or pipeline stage to pipeline stage). The concept is similar to an
assembly line in, say, a car factory. And like in a car factory, the concept becomes highly parallel if
multiple data items flow through the pipeline one after another; all processing units then operate
in parallel, each one on a different input item.

At the logical level, pipelining is a frequent pattern in many software systems. The execution
engines of most database systems, for instance, are built on the concept and evaluate query plans
in a pipeline model. Physically, however, those systems use pipelining only rarely. The cost of
messaging between physical processing units is often prohibitive; forwarding database tuples,
e.g., between processor cores would dominate the overall execution cost.

4.4.1 PIPELINE PARALLELISM IN HARDWARE

Between components of a hardware circuit, however, communication can be realized very effi-
ciently, making pipeline parallelism a feasible concept even for very lightweight sub-tasks f;. In
fact, as we shall see in a moment, pipeline parallelism is the method of choice to gain performance
in hardware circuits.

'The reason for this is that pipeline parallelism becomes relatively easy to apply to a hardware
circuit. To illustrate, suppose we are given a combinational circuit that performs an application
task f. By re-grouping the gates and wirings into, say, three blocks, we can break up the compu-
tation of f into sub-circuits f1, ..., f3, even when their local semantics would be hard to express
on the application level:

T~

To compute the f; independent of one another (and thus allow for parallelism), as a next
step we need to introduce pipeline registers. To this end, we insert a flip-flop on any signal path
from f; to fi41, as indicated here using gray bars:

G-

44 4. FPGAPROGRAMMING MODELS

- ..
5 . replication
a. » combined

5o o

2 722

8 i /9/ p =100

ﬁ

pipelining

area

Figure 4.6: Effects of replication and pipelining on processing throughput of an example circuit. For
this graph, we modeled an example circuit along the lines of Kaeslin [2008]. Notice that the location
of, e.g., crossover points may depend on the particular circuit.

The effect of these registers is that they remember the outcome of computation f;, such that in
the following clock cycle they appear as a stable signal to the input of f; 1. The circuit for f; then
becomes available again to accept the next item from its input.

Thus, the modified circuit could still accept a new input item on every clock cycle (like the
original circuit f could). But the introduction of pipeline registers reduced the longest signal path
of the circuit, which is now the longest path of any f;. Assuming that f could be broken into sub-
circuits of equal size, this means that the c/ock frequency can be increased by approximately a factor
of p (the pipeline depth). The increased clock frequency directly translates into a throughput
increase.

Cost of Pipelining. Pipelining is attractive in hardware, because the introduction of pipeline
registers causes only a small overhead, both in terms of space and performance. Notice in par-
ticular that we only had to introduce new registers; there was no need to replicate or expand the
combinational part of the circuit, however. Pipelining reaches its limit when the signal delay for
asingle f; approaches the speed of the associated pipeline register.

'This can be seen in Figure 4.6. In this figure, we illustrated how replication/data parallelism
and pipelining can turn additional chip area into increased throughput. To obtain the graph, we
assumed characteristics of a typical hardware circuit and idealized models for the effects of repli-
cation and pipelining, as detailed by Kaeslin [2008]. The graph shows how, initially, pipelining
requires little investment (some flip-flops only) to gain substantial throughput improvements. The
intrinsic latency of pipeline registers, however, limits the throughput that can be achieved with

pipelining alone.

4.4. PIPELINE-PARALLEL APPROACHES 45

In practice, replication and pipelining are often used in combination. To illustrate, we in-
cluded an example where the (pipelined) circuit with p = 10 is replicated on the chip, which for
the example results in an additional performance boost.

Wiring Overhead. 'The simple model used to generate Figure 4.6 does not include any overhead
that may result from wiring and communication needs. If replication is used excessively, however,
this overhead may become significant in practice, whereas pipeline parallelism tends to be less
affected by wiring costs. This difference can be understood from the graphical representation that
we showed above for both approaches. As the degree of parallelism increases replicated circuits
will range over an increasing area of the chip die. Thus, dispatch and collect circuits at both ends
have to bridge an increasing distance as ¢ grows, which directly affects signal path lengths. This
problem does not arise for pipeline parallelism, where communication remains short-ranged no
matter how large the parallelism degree.

A practical example of how pipelining may actually help to avoid
large fan-outs and long signal paths is the XML filtering engine that _)W_ N
we showed earlier in Figure 4.3. Its actual implementation (detailed in
[Teubner et al., 2012]) uses pipeline registers in-between segments of
the state automaton circuit, as illustrated here on the right (Figure 4.7).
'The design avoids that the input stream must be supplied to all automa- Figure 4.7: Pipelining
ton transitions in parallel, which would scale poorly as the number of and skeleton automata
segments increases. This keeps throughput rates high, even when the [Teubner et al., 2012].

length and complexity of the matching automaton increases [Teubner
etal., 2012].

4.4.2 PIPELINING IN FPGAS

The discussion above assumed that “chip space” can equally be used to instantiate (or replicate)
logic or for additional flip-flops used as pipeline registers. In FPGAs, the amount and proportion
of chip resources is fixed, however. Combinational logic resources cannot be re-purposed for flip-
flops or vice versa.

In Section 3.3.1, we saw that actual FPGA devices are composed of elementary logic units,
which refers to a static combination of lookup tables (i.e., combinational logic) and flip-flops that
can latch the lookup table output. Enabling these flip-flops as pipeline registers, hence, will 7oz
increase the overall “chip space” demand of the circuit. At the same time, the size of an elementary
logic unit lies within the sweet spot of pipelining, where combinational logic and register count
are balanced to obtain a good area/throughput trade-off.

Good FPGA designs thus try to (quite aggressively) pipeline until the point where com-
binational logic and flip-flops are in balance. This explains, in other words, why the NFA con-
struction mechanism of Yang and Prasanna [2012], which we looked at in Section 5.1.3, achieves
favorable performance characteristics. The basic building blocks of this mechanism exactly match
the lookup table/flip-flop combination within a typical elementary logic block. Observe how, in

46 4. FPGAPROGRAMMING MODELS

the same line of work, Yang et al. [2008] also bounded signal paths and fan-outs through pipelin-
ing (Figure 5.8).

4.4.3 DESIGNING FOR PIPELINE PARALLELISM

Pipeline parallelism is attractive also because—unlike data parallelism—it permits many forms
of loop-carried dependencies. This is because, by construction, a data item that is processed at
a pipeline stage f; still “sees” any side effects that preceding items may have produced at f;. To
illustrate this with a toy example, the for clause in

sum < 0

for all input items x do
sum < sum + x>

end for

contains an inter-loop dependency (through variable su) that violates the requirements for a
data-parallel loop processing.

'The loop body can, however, be broken down into two sub-operations that are evaluated in

))

Pipeline registers in-between the two sub-operations would enable the loop body to be pro-
cessed in parallel. In practice, operations like x? can be pipelined internally, increasing parallelism
and speed even further.

a pipeline fashion:

Example: Pipeline-Parallel Frequent Item Computation
Arguably, the above example could be replaced by a parallel computation of partial sums, followed
by a merging operation. The attractiveness of pipelining comes from the fact that also much more
intricate application problems can be accelerated through pipeline parallelism. To illustrate this,
consider the Space-Saving algorithm of Metwally et al. [2006], shown as Algorithm 1. To answer
top-k-type queries, Space-Saving counts the number of occurrences of items x; in a data stream.
Space-Saving is an approximate algorithm with bounded space (n “bins,” item/count pairs).

Space-Saving not only contains loop-carried dependencies (via count and item values). It
also requires accessing the same memory content according to different criteria (item lookups and
search for the bin with the minimum count value), which has made the algorithm notoriously
hard to parallelize through classical means. In fact, the parallel solution of Das et al. [2009] has a
lower throughput than the single-threaded code of Cormode and Hadjieleftheriou [2008], who
did an in-depth study and comparison of frequent item counting techniques.

Pipeline parallelism can help to significantly speed up Space-Saving on FPGA hard-
ware [Teubner et al., 2011]. The idea is a combination of classical pipeline parallelism—Iet input
items x flow through a sequence of hardware-based bins—and a neighbor-to-neighbor commu-

nication mechanism between bins. The concept is illustrated in Figure 4.8. Items x; travel along

4.4. PIPELINE-PARALLEL APPROACHES 47

for all input items x do

find bin b, with by.item = x

if such a bin was found then
by.count < by.count + 1

else
bmin < bin with minimum count value
bmin.count <= bpin.count + 1
bmin.item < x

end if

end for

Algorithm 1: Space-Saving algorithm of Metwally et al. [2006].

@ //j_\\
Xj)
N

0
@ b;.item = x,

item item item item o

count |b;_; |count |b; count |bjy1 |count |bjys
EN 4
1

?
@ bj.count < b 41 .count

Figure 4.8: Pipeline-parallel implementation of Space-Saving. For each item x; and bin b;, @ com-
pare x; to the content of b;, @ compare the count values of b; and b;11 (if necessary, swap bin
contents so the smaller count value ends up on the right), then @ forward x; to b; ;.

a pipeline of bins b;. At every bin b;, @ x; is compared to the local item and the count value
incremented if a match was found. Otherwise, @) the bin contents of b; and b; 4 are compared
according to their count values. If necessary, the contents of b; and b; | are swapped, such that
bi+1 receives the smaller count value. Then) the input item x; moves on to the next bin b; ;.

'The frequent item example also nicely illustrates how pipeline parallelism can lead to sig-
nificantly better scalability properties than data-parallel alternatives. In Teubner et al. [2011], we
discussed various parallelization schemes for the problem on FPGA hardware. Figure 4.9 shows
the scalability of the pipelined and data-parallel strategies of this comparative study.

4.4.4 TURNING A CIRCUITINTO A PIPELINE-PARALLEL CIRCUIT

An electronic circuit reflects the data flow of the application problem that it implements. If this
data flow is cycle-free, pipelining becomes straightforward and can be achieved as sketched at the
beginning of Section 4.4.1. To this end, the circuit is “cut in half” in such a way that all signal
wires which cross the cut have the same direction. A set of pipeline registers inserted into such

48 4. FPGAPROGRAMMING MODELS

— 125 F pipeline-parallel

=

[EN
o
o

~
wun
t

data-parallel

[\
(V2%
t

throughput [million items/ sec
(4%
S

(e}

16 32 64 128 256 512 1024
number of items monitored (degree of parallelism)

Figure 4.9: FPGA-based solutions to the frequent item problem. The pipeline-parallel strategy of
Figure 4.8 keeps wire lengths short and scales significantly better than a data-parallel alternative (data
from [Teubner et al., 2011]).

a cut will keep the semantics of the circuit intact; results will only be delayed by one additional
clock cycle.

If the data flow contains cycles—that is, if the output of a previous computation is needed
to process the next input item—such cuts may no longer be found, and the intuitive approach to
pipelining no longer be successful. It turns out, however, that many forms of such recursive circuits
can still be pipelined. A good starting point to get to a pipelined solution is to partially unroll the
iterative computation. Depending on additional properties, such as associativity of operations, the
unrolled circuit can then often be re-organized such that “cuts” in the above sense can be found.
A detailed discussion is beyond the scope of this book and we refer to Section 2.7 in the book of
Kaeslin [2008] for details.

4.5 RELATED CONCEPTS

In many ways, FPGAs are probably the most flexible type of compute resources available today.
As such, they cover a very large design space in terms of their system design and integration
and in terms of how they exploit hardware parallelism, which has become the key approach to
performance in virtually any computing device.

Several specific points in this design space are also covered by off-the-shelf hardware devices
that may be usable as accelerators, co-processors, or even standalone processors. Probably the most
well-known representatives of such a device are graphics processors (GPUs), which meanwhile have
evolved into computing platforms with a remarkably wide range of applications.

4.5. RELATED CONCEPTS 49

Graphics Processors (GPUs). Graphics processing units make data parallelism explicit at a scale
unmatched by any other processor technology. The latest incarnation of the NVIDIA Kepler ar-
chitecture, for instance, includes up to 15 “SMX Streaming Multiprocessors” [Corp., 2012]. Each
of them contains 192 “cores” (which in general-purpose CPU terminology would best compare
to an ALU), for a total of 2,880 parallel processing units. Thereby, the granularity of data par-
allelism sits in-between the replicated parallel circuits that we discussed in Section 4.3 and the
course-grained parallelism available in general-purpose multi-core processors. NVIDIA GPUs
follow an SIMT (“single instruction, multiple threads”) execution model: groups of 32 threads
(a “warp”) are scheduled such that a// 32 threads execute the same instruction at the same time.
This significantly eases hardware scheduling logic and brings intrinsic data parallelism all the way
down to the execution layer.

At the programmer’s level, the graphics device can execute compute kernels. Many thou-
sands, even millions or more, logical executions of such a kernel operate on independent data
items. Thereby, synchronization across threads is highly limited, which again simplifies the un-
derlying hardware and enables higher compute density.

Graphics processors were identified as a potential substrate for database co-processing al-
most a decade ago. Govindaraju et al. [2004] showed—even before graphics processors offered
the programmability that they have today—that the available data parallelism can be used to speed
up important database tasks, such as selection and aggregation. Two years later, Govindaraju et al.
[2006] showed how the use of a GPU co-processor can offer significant performance/price advan-
tages when implementing sor#ing. He et al. [2008] pushed the idea of using graphics processors
for database co-processing one step further by running database joins on GPU hardware.

Many-Core Processors. Inspired by graphics processor designs, other processor makers have
come up with acceleration platforms that emphasize data parallelism on the hardware level. Intel
has recently announced their Xeon Phi platform [Intel Corp., 2012], which packages 60 general-
purpose cores, each capable of executing four threads, into a single chip. Internally, each core
offers a 512-bit-wide SIMD unit for vector-oriented execution. While the processing model of
Xeon Phi is not strictly tied to data-parallel execution, its NUMA (non-uniform memory access)
architecture clearly favors data-parallel tasks.

Data Flow Computing on FPGAs. For reasons mentioned in this chapter, FPGAs are very at-
tractive to leverage pipeline parallelism (and accelerate application tasks that can benefit less from
data parallelism alone). Several vendors make this explicit in FPGA programming platforms. For
instance, Maxeler offers platforms for dataflow computing [Pell and Averbukh, 2012]. A dedi-
cated compiler extracts data flow information from a Java program. The resulting data flow graph
is then mapped to an FPGA circuit design that is highly susceptible to pipeline parallelism. Pro-
cessing pipelines created this way may span entire FPGA chip dies and use thousands of pipeline
stages.

51

CHAPTER 5

Data Stream Processing

FPGA technology can be leveraged in modern computing systems by using them as a co-processor
(or “accelerator”) in a heterogeneous computing architecture, where CPUs, FPGAs, and possibly
further hardware components are used jointly to solve application problems.

'This idea is particularly attractive for application settings that readily match the strengths
of programmable hardware. This has led the research community to specifically investigate into
streaming scenarios, where data arrives as a continuous flow and has to be processed in real time.
Flow-oriented processing can leverage the /O capabilities of modern FPGA devices, and if the
necessary amount of szafe can be kept (mostly) within the device, an FPGA-based stream pro-
cessor will not suffer from von Neumann or memory bottlenecks.

In this chapter, we look at some systems that have applied this idea successfully to impor-
tant application problems. We start by showing how FPGAs can accelerate pattern matching in
network intrusion detection systems (Section 5.1), then lift the ideas to support complex event pro-
cessing, which lies at the heart of many stream processing engines (Section 5.2). In Sections 5.3
through 5.5, we will generalize the use of FPGAs for data flow problems and illustrate how SQL-
style query functionality can be realized with the help of FPGAs.

5.1 REGULAR EXPRESSION MATCHING

Matching an input data stream to a (set of) regular expression(s) is an important and useful task
on its own, but also as a pre-processing step for many stream analysis tasks. For instance, it is the
task of a metwork intrusion detection system to detect suspicious patterns in a network data flow
and perform a series of actions when a match is detected (e.g., alert users or block network traffic).
Semantically rich stream processing engines depend on parsing and value extraction from their
input stream to perform higher-level computations.

Regular expressions correspond 1-to-1 to finite-state automata, which are the method of
choice to realize pattern matching in both hard- and software. Their low-level implementation
faces considerably different trade-offs in hard- and software. By studying these trade-offs, in
the following we illustrate some of the important characteristics of FPGA hardware and their
consequences on real-world applications.

5.1.1 FINITE-STATE AUTOMATA FOR PATTERN MATCHING

Figure 5.1 illustrates how finite-state automata and regular expressions relate. The automaton
shown implements the regular expression .*abac.*d. It is an instance of a non-deterministic

52 5. DATA STREAM PROCESSING

Figure 5.1: Non-deterministic automaton, corresponding to the regular expression . *abac. *d.

finite-state automaton (NFA). That is, multiple states in this automaton might be active at a time
(e.g., after reading a single a, states go and ¢ are both active) and multiple transitions may have
to be followed for a single input symbol.

A beauty of non-deterministic automata lies in their easy derivation from regular expres-
sions. Simple, syntax-driven construction rules—most well known are those of McNaughton and
Yamada [1960] and Thompson [1968]—allow to mechanically convert any regular pattern into an
equivalent NFA. This simplicity is the reason why in Figure 5.1, the original pattern . *abac.*d
still shines through. For similar reasons, such non-deterministic automata are attractive in many
application scenarios, because new patterns can easily be added (or old ones removed) from an
existing automaton.

Deterministic and Non-Deterministic Automata

On the flip side, non-deterministic automata are less straightforward to implement in computer
software. To process an input symbol, all candidate states and transitions have to be considered
iteratively by a software program. This is ineflicient by itself and will likely break the O(1) cost
characteristics (per input symbol) promised by regular expressions and state automata.

Most software systems resolve this inefficiency by converting the generated NFA into a
deterministic finite-state automaton (DFA). In a DFA, exactly one state is active at any time, and
exactly one transition has to be followed for every input symbol. Systems can exploit this prop-
erty and implement input processing as a series of lookups in a (old-state, symbol) — new-state
mapping table (e.g., realized through a hash table). An NFA can be converted into a DFA, e.g.,
by powerset construction: given an NFA with states g € S¥, each subset of (active) states cor-
responds to exactly one element in the powerset Q© := 20M 1

Figure 5.2 illustrates the result of such a conversion (we simplified the automaton by elimi-
nating unreachable DFA states). The illustration shows that the conversion increases the number
of automaton states. Further, the correspondence to the original pattern has largely gone lost in
the conversion process.

'In practice, many states in QO D can be determined statically to be unreachable, so the actual number of states |Q Djs typically
N
less than 21271

5.1. REGULAR EXPRESSION MATCHING 53

Figure 5.2: Deterministic automaton, equivalent to the non-deterministic automaton in Figure 5.1.
'The automaton contains more states, but now only one of them can be active at a time.

. ? . ? . ? . ?
input = a input =o input = ¢ input =d

q0 q1 q>2
)R > F L FF A2 pR

Figure 5.3: Hardware implementation for the non-deterministic automaton in Figure 5.1. Each state
¢; maps to a flip-flop register; each transition maps to combinational logic between states.

5.1.2 IMPLEMENTING FINITE-STATE AUTOMATA IN HARDWARE

FPGAs can be viewed as essentially a generic implementation of a finite-state automaton in hard-
ware. In fact, any logic circuit strictly is not more than a finite-state automaton (since the available
amount of memory is finite). As such, it is only natural to implement user-level automata using
configurable logic.

A given automaton can be mapped to an equivalent hardware circuit mechanically in the
following way (this construction assumes that ¢ transitions have been eliminated beforehand, as
it is the case in Figure 5.1):

1. For each automaton state g;, instantiate a ffip—flop register FIF;. Each flip-flop can hold one
bit of information, which we interpret as active/ inactive.

o p . . N . S
2. For each transition ¢; — ¢, instantiate combinational logic that forwards an active bit from
FF; to FFj if the condition p is satisfied. If the new content of FFj has multiple sources,
combine them with a logical OR.

Applying this strategy to the automaton in Figure 5.1 results in the hardware logic shown
in Figure 5.3. Observe how the construction preserves the structure of the source automaton and
how states/transitions map to flip-flops/combinational logic.

54 5. DATA STREAM PROCESSING

An automaton can be mapped into hardware with this strategy whether the automaton is
deterministic or not. The inefficiency that arises in software implementations—iterative process-
ing of candidate states—does not apply to this hardware solution. All logic resources in an FPGA
chip operate independently, so possible transitions are naturally considered in parallel.

6
2 51 —e— NFA |
g —a— DFA (one-hot encoded)
g2 47 _s DFA (binary encoded) T
g€ 34
%
§ 2
Q
=1
B 1
0

0 1 2 3 4 5 6 7 8 9 10
iin (0l1)*1 (0]1)!

Figure 5.4: FPGA resource consumption (lookup tables) for automaton alternatives. DFAs can be
encoded with one bit per state (one-hot) or by enumerating all states and encoding them in a binary
number.

In fact, when implemented in hardware, non-deterministic automata are often the strategy
of choice. In addition to the advantages already mentioned above (correspondence with regular
expressions allows for easy construction or modification), NFAs tend to have a much simpler
structure. This makes the combinational logic to implement transitions simpler and more effi-
cient.” In Figure 5.4, we illustrated the FPGA resource demand for different implementation
strategies for the same regular expression (Xilinx Virtex-5 LX110T chip). Consumption of logic
resources is an important criterion in FPGA design on its own. Here the growing logic com-
plexity may additionally lead to longer signal propagation delays, reduced clock frequencies, and
lower overall performance.

5.1.3 OPTIMIZED CIRCUIT CONSTRUCTION

Early on, alternative construction mechanisms were suggested that allow us to turn a given regular
expression into a hardware implementation directly, without explicitly building an automaton as
we saw in Figure 5.1. Such a direct construction is particularly meaningful for programmable logic,
such as programmable logic arrays (PLAs; addressed by Floyd and Ullman [1982]) or FPGAs
(which are the target of the technique of Sidhu and Prasanna [2001]).

. . . . N
*Note that the number of states does not directly make a difference. An NFA with |Q N | states may lead to a DFA with 210%
states. But since only one of them can be active at any time, | Q| bits still suffice to encode the current state.

5.1. REGULAR EXPRESSION MATCHING 55

(a) Simplified NFA to match the regular expression (b) NFA for b*c(alb)*d where all transitions incoming
b*c(alb)*d. to one state carry the same condition.

Figure5.5: Rewriting finite-state automata for better FPGA resource utilization. Both automata rec-
ognize the same language, but the right one maps better to FPGA primitives.

DNC
FF —

. ?
input = x

(a) Hardware module to implement NFA. (b) Automaton for expression b*c (alb)*d, built from modules
shown on the left.

Figure 5.6: Once NFAs are in proper shape (cf. Figure 5.5(b)), they can be realized just with the
single type of module shown as (a). Figure (b) illustrates the resulting implementation of b*c (a|b)*d
(where @ abbreviates an OR gate and ® stands for an AND gate).

The utilization of FPGA logic resources can be improved if the construction is designed
to match the basic FPGA primitives. In particular, combinational logic is available in FPGAs in
the form of n-input lookup tables, which are typically paired with a flip-flop register (in Xilinx
FPGA:s, this makes the basic building block of an FPGA s/ice). A method to do so was suggested
by Yang and Prasanna [2012], Yang et al. [2008]. They observed that the NFA for any user pattern
can be brought into a particular shape, namely such that for each state, all of its input transitions
have to match the same input symbol.

Formally, in a finite-state automaton, each input symbol x; brings the automaton from one
state ¢; to another, ¢;4+1. The new state is defined by a transition function f:

gi+1 = f(qi,xi) . (5.1)

Figure 5.5 illustrates this with two automata for the regular expression bxc(a|b)*d. In-
tuitively, the automaton in Figure 5.5(a) has lower resource consumption. But the alternative in

56 5. DATA STREAM PROCESSING

Figure 5.5(b) satisfies the constraint of having just one input symbol at the incoming transitions
of each automaton state. Automata that adhere to this shape can be realized in hardware with
just a single type of module. Such a module is shown in Figure 5.6(a) (assuming an n-ary OR gate
to accommodate ingoing transitions and an AND gate to account for the condition). As Yang and
Prasanna [2012] have shown, the combinational parts of this circuit map well to a combination
of lookup tables, which are readily paired with a flip-flop in modern FPGAs. Figure 5.6(b) shows

how modules can be assembled to implement the automaton shown in Figure 5.5(b).

5.1.4 NETWORKINTRUSION DETECTION

Regular expression matching forms the heart of most publish/subscribe systems, where “subscribers”
register patterns that describe which parts of a stream they are interested in. A particular use case
is metwork intrusion detection, where the set of subscriptions is a rule set that describes known
network attacks. Yang and Prasanna [2012], Yang et al. [2008] have shown how the matching of
network packets to this rule set can be realized in FPGA hardware. Beyond design internals of
finite-state automata (as discussed above), these implementations also give a good sense of how
FPGA circuits can be optimized and how design trade-offs are considerably different from those
in software-based systems.

Multiple-Character Matching

Consequently, state g; 4, can be obtained by applying f twice, m
state E logic

def
gi+v1 = f@it1.xi41) = f(F(qi.xi). xi41) = F(qi,xi, xit1) :
(52) mnput x;
and consuming fwo input symbols at once. (a) initial situation
If realized in software, F might be difficult to construct and

require a very large lookup table. In hardware, by contrast, the con-
log:

cept is rather simple to implement. Figure 5.7(a) shows a high-level state T log.
view of a hardware state automaton, grouping the circuit into szate input x; T
(flip-flop registers Q) and combinational /ogic that implements the input x;j 41

transition function f. As can be seen in the figure, f consumes the (b) f replicated

initial state and an input symbol x; to compute a new state (as in

Equation 5.1). Figure5.7: Two input sym-

'The situation in Equation 5.2 can now be obtained by rep/i- pols per clock cycle.
cating the logic associated with f. As shown in Figure 5.7(b), this
means that the resulting hardware circuit can now consume two input symbols in a single clock
cycle. In practice, this trades higher chip space consumption for better matching throughput.

Signal Propagation Delays and Pipelining
Actual intrusion detection systems will have to match the input network stream against hundreds,
if not thousands, of rules. With the amount of chip space available in modern FPGAs, all state

5.1. REGULAR EXPRESSION MATCHING 57

reg match out
| RE5 [4{ REs |]RE 3 RE14\
S
| RE7 1| RES |]RE1 RE16\
| RE1 A{ RE2 | | RE9 RE10\
reg + { re
input | RE3 M RE4 |]RE11 M RE12\

Figure5.8: Pipeline registers (indicated as) help to keep signal propagation delays low and avoid
high-fanout signals (illustration adapted from Yang et al. [2008]).

automata to match such large rule sets can be laid out side-by-side on the two-dimensional chip
area. Thanks to the intrinsic parallelism, all rules can then be matched fully in parallel, promising
high, rule set-independent matching speed.

In practice, however, such perfect scaling is limited by geometrical and physical effects.
As the rule set grows, the generated automata will cover a growing area on the chip, causing
the distance between components to increase (following an O(N) dependence, where N is the
number of NFAs). This, in turn, increases signal propagation delays in the generated circuit, such
that the c/ock frequency (and thus the achievable throughput) has to be reduced to maintain correct
behavior of the hardware circuit.

A solution to this problem is pipelining. Thereby, signal paths are intercepted by pipeline
registers, which memorize their input signals from one clock cycle to the next. With shorter signal
paths, clock frequencies can be increased, with direct consequences on the observed throughput.
'The price for this is a slight increase in latency. In an n-staged pipeline, the overall circuit output
(in this case a match information) is delayed by n FPGA clock cycles.

For the problem at hand, pipelining can be applied in a hierarchical fashion, as illustrated in
Figure 5.8. As can be seen in the figure, this keeps the number of stages (intuitively, the number of
pipeline registers along any path from the circuit input to its output) short, while still allowing for
a large rule set. In practice, clock cycle times are in the range 5-10 ns, such that pipelining causes
only negligible latency overhead (e.g., compared to the time the same packet needs to travel over
the network wire).

58 5. DATA STREAM PROCESSING

event stream event pattern
raw . events e . match
——— extraction partitioning old matcher s
stream
(NFA-based) (state memory) oW (NFA-based)
state

Figure 5.9: Complex event processing architecture. Events are extracted from raw input stream. A
partitioner component reads the corresponding state for each input event, hands it to an NFA-based

pattern matcher, then memorizes the new partition state.

Space < Throughput

Multi-character matching and pipelining both trade chip resources for better matching through-
put. As a third space <> throughput trade-off, the entire matching logic can be replicated on
the chip, with incoming network packets load-balanced to either of the replicas. In practice, all
three strategies form a design space, and it depends on the hardware and problem characteris-
tic, which combination of strategies maximizes the overall matching throughput. For a rule set of
760 patterns from the SNORT intrusion detection system, Yang et al. [2008] report an achievable
throughput of 14.4 Gb/s on a Virtex-4 LX100 FPGA device (this chip was released in 2004).

52 COMPLEX EVENT PROCESSING

As described above, finite-state automata allow the detection of symbol sequences in a single input
data stream. This model is adequate, e.g., to perform syntactic analyses on the stream or to match
patterns within a single message (as is the case in the above intrusion detection scenario). The true
strength of modern stream processing engines, however, comes from lifting pattern matching to
a higher semantical level. To this end, low-level events are derived from the input stream (e.g.,
through syntactic analyses). The resulting sequence of events is then analyzed according to complex
event patterns. As an example, a stock broker might want to be informed whenever the price for
any stock symbol has seen five or more upward movements, then a downward change (pattern
up{5} down, where up and down are derived events).

'The challenge in matching complex event patterns is that they usually depend on semantic
partitioning of the input events. For instance, prices for various stock symbols might arrive in-
terleaved with one another; a matching pattern for one stock symbol might overlap with many
(partial) matches for other symbols. To detect such patterns, the stream processor needs to keep
track of the matching state for each of the stock symbols in the stream.

5.2.1 STREAM PARTITIONING

To realize semantic stream partitioning, Woods et al. [2010] devised a partitioner component that
p g p
plugs into the data flow of the stream processing system.

5.2. COMPLEX EVENT PROCESSING 59

input

> | user, 42) | — | | — | (6006, 17) | — | | — | (aapr,29) | 1 P

matcher

events

old

)

new

Figure 5.10: Hardware-based stream partitioning using a chain of (group-id, state-vec) pairs. The
strategy keeps signal paths short and the design scalable.

The resulting architecture is illustrated in Figure 5.9. An NFA-based syntax analyzer ex-
tracts low-level events from the raw input stream (e.g., a network byte stream, as used for click
stream analysis in [Woods et al., 2011]). A hardware stream partitioner uses the partitioning cri-
terion in each event (e.g., a stock symbol or a client IP address) to read out the current vector
of states from a local state memory. State vector and source event are then routed to the actual
pattern matcher which will (2) report eventual matches to the outside and (4) send an updated
state vector back to the partitioner component.

5.2.2 HARDWARE PARTITIONER

To sustain real-world input data rates, such as the line rate of a monitored network port, state
lookups and write-backs must adhere to tight performance constraints. On the one hand, this
rules out typical approaches that are optimized for average-case performance in software solu-
tions, such as hash tables. On the other hand, the intrinsic parallelism of FPGA hardware allows
us to perform a large number of (lookup) tasks in parallel. Woods et al. [2010] showed how this
FPGA feature can be used to guarantee line-rate processing for hundreds of stream partitions,
with the only limit being the available chip space.

The idea of this approach is illustrated in Figure 5.10. (group-id, state-vec) pairs are orga-
nized as a chain of hardware components. Incoming events (containing a group id and further
semantic content) are handed from one element in this chain to the next, one every FPGA clock
cycle. The key idea is that chain elements can be swapped under certain conditions. Swapping
means that two neighboring elements exchange their contents (state vector and group id).

In our case, whenever a group-id matches the one in the passing-by event, we swap that
element toward the end of the chain. Thus, when the event has been propagated through the
entire chain, the last element will contain its associated state vector. From there, both event and
state vector are handed over to the NFA that performs the actual pattern matching.

60 5. DATA STREAM PROCESSING
12 120

% processed

§ 10+ ¢ o +100

. &
& 8t 180 2
§ basic events §
> 6f 160 o
Q Q
a, 4+ 140 &,
5 X
?é 21 +20

input packets
0 & o o 10

1 10 20 30 40 50 60 70 80 90
basic events per packet

Figure 5.11: Complex event processing in hardware guarantees line-rate performance, independent
of how events are packeted on the network wire. Results taken from Woods et al. [2011].

5.2.3 BEST-EFFORT ALLOCATION

The chain of (group-id, state-vec) pairs defines a fixed number of partitions (e.g., the number
of distinct stock symbols) that can be monitored concurrently. These available chain elements are
allocated dynamically based on incoming events. To this end, elements are not only swapped when
they match the group id of a passing-by event, but also when they have not yet been assigned to
any group id. In Figure 5.10, for instance, the event (GOOG, 17) may have pushed the still-empty
element in the middle to its current position. As a consequence, when an event reaches the right
end of the chain, it will find there either its matching state vector or a vacant chain element, which
will then be allocated for the respective group id.

Some input streams may exceed the hardware limit on the number of group ids (many
hundreds, in practice). In such cases, chain elements can be allocated using a best-¢ffort strategy,
where recently seen group ids are prioritized over very old ones. Such best-effort allocation can be
achieved with a simple timeout counter associated with each chain element [Woods et al., 2010].

5.2.4 LINE-RATE PERFORMANCE

A key selling point of hardware-based solutions are their strong performance guarantees, even
under unforeseen load characteristics. In the case of monitoring or event processing applications,
the ability to process input data at full line rate is particularly desirable.

5.3. FILTERING IN THE DATAPATH 61

'The hardware partitioning mechanism illustrated above was shown to guarantee such line-
rate performance, as illustrated in Figure 5.11. Software-based alternatives are often very sensitive
to the way events are presented at the input of the system. If events are sent as very small Ethernet
packets, for instance, most software solutions become overloaded because of their high per-packet
processing overhead. As the figure shows, hardware-accelerated complex event processing is not
sensitive to this problem and guarantees 100 % line rate performance independent of event pack-
eting.

5.3 FILTERING IN THE DATA PATH

Up until now we had looked at the FPGA as an isolated component. It would listen to an incom-
ing stream, but we left unspecified what kind of “output” or “action” is being generated by the
programmable hardware. In practice, most applications will be too complex to be solved entirely
in FPGA hardware, which suggests hybrid FPGA/CPU processing to jointly solve the application
task. Ideally, a hybrid system design would also allow for a fransition path, where performance-
critical functionality is oft-loaded one-by-one without major disruptions on the user-level inter-
face.

A system architecture that can satisfy all these criteria is when the FPGA is plugged into
the data path of the processing engine:

— 3 . - filtered
M SFPGA[==) | CPU
3 - data

In such an architecture, the FPGA consumes the raw input data—usually high-volume—and
applies filtering or other pre-processing steps that reduce the volume of data. The remaining low-
volume data set is forwarded to a conventional CPU, where, for instance, it could be fed into the
processing pipeline of an existing system. A practical example of this model could be an FPGA
that applies selection and projection to a large data set while it is read from a hard disk (i.e.,
source = disk). Netezza commercialized this concept in their Netezza Performance Server (NPS)
system.

A data path architecture elegantly separates the application task to match the strengths of
both parts of an FPGA/CPU hybrid. FPGAs are extremely good when the task to perform is
relatively simple, but the data volume is huge. Conversely, sophisticated control logic in general-
purpose processors makes them very efficient at complex operations; but their I/O capabilities

and their energy efficiency fall way behind those of modern FPGA devices.

5.3.1 DATA PATHARCHITECTURE IN THE REAL WORLD
Architecting an FPGA/CPU hybrid along its data path fits well also with “needle in a haystack”

application patterns that are becoming dominant in many business domains. Event processing

62 5. DATA STREAM PROCESSING

systems need to sift through large amounts of dynamic data, but typically only few events are
actually relevant for further processing. High expectations toward ad hoc querying force data
analytics engines to execute most of their work as brute force scans over large data volumes (Un-
terbrunner et al. [2009] describe a flight booking system as a concrete example).

Electronic stock trading is a prototype example of how FPGAs can significantly accelerate
existing application systems or even enable new market opportunities that will remain hard to
address with software-only solutions even in upcoming CPU architectures. The challenge here
is a very high input data volume, combined with uniquely tight latency requirements. Any im-
provement in latency—on a micro-second scale!—will bring a competitive advantage that may be

worth millions of dollars [Schneider, 2012].

High-Frequency Trading. In high-frequency trading, stock traders monitor market price infor-
mation. Automated systems buy or sell stocks within fractions of a milli-second to, e.g., benefit
from arbitrage effects. These systems usually focus on a very particular market segment, stock
symbol, or class of shares. If the input stream from the stock market—typically a high-volume
stream with information about a large market subset—is pre-processed on an FPGA and with
negligible latency, the core trading system can focus just on the relevant parts of the market, with
lower latency and better forecasting precision.

Risk Management. In response to incidents on the stock market, where erroneous trades by
automated systems have led to severe market disruptions (e.g., the May 6, 2010 “Flash Crash” or
a technology breakdown at Knight Capital Group on August 1, 2012), the American SEC began
to impose risk management controls on stock brokers. Today, any broker with direct market access
has to sanity-check all orders sent to the stock market to prevent unintended large-scale stock
orders (SEC Rule 15¢3-5).

Software alone would not be able to evaluate all SEC criteria without adding significant
latency to the trading process. But if the control program “listens in” to the trading stream through
an FPGA with pre-processing capabilities, risk evaluation can be performed with a latency of only
a micro-second or less [Lockwood et al., 2012].

5.4 DATA STREAM PROCESSING

For certain application areas—we discussed network monitoring and electronic stock trading
here—FPGAs offer significant advantages in terms of performance, but also in terms of their
energy efficiency. Ideally, these advantages would carry over to more general cases of stream or
database processing.

This is exactly the goal of the Glacier system [Mueller et al., 2009, 2010]. Glacier is a com-
piler that can translate queries from a dialect of SQL into the VHDL description of an equivalent
hardware circuit. This circuit, when loaded into an FPGA, implements the given query in hard-

ware and at a guaranteed throughput rate.

5.4. DATA STREAM PROCESSING 63

Table 5.1: Streaming algebra supported by the Glacier SQL-to-hardware compiler (a, b, c: field
names; ¢, ¢;: sub-plans; x: parameterized sub-plan input). Taken from [Mueller et al., 2009].

operator semantics

Tay,...an(q) projection

04(q) select tuples where field a contains true

®a:(by.52) @) arithmetic/Boolean operation a = by » b,

q1 U gz union

aggy..(q) aggregate agg using input field a, agg € {avg, count, max, min, sum}

q1 9Py e q2(x) | group output of gy by field ¢, then

invoke ¢, with x substituted by the group

q1 B ; 92(x) | sliding window with size k, advance by /; apply ¢> with x substituted
on each window; ¢ € {time, tuple}: time- or tuple-based

q1 @ q> concatenation; position-based field join
|
tuple
EE‘x|4,1
SELECT avg (Price) AS avgprice Oa avga;gprice:(Price)
FROM (SELECT * FROM Trades | \
WHERE Symbol="UBSN") Sa:(symbol,muBsur) X
|
[SIZE 4 ADVANCE 1 TUPLES] Trades
(a) Example sliding-window query. (b) Corresponding algebra plan.

Figure 5.12: Query compilation in Glacier. Streaming SQL queries are converted into an algebraic
representation, then compiled into a hardware circuit.

The heart of the Glacier compiler operates on a streaming algebra that assumes tuple-
structured input events. This algebra, shown in Table 5.1, is sufficient to express particularly those
aspects of a user query that can be realized as a pre-processing step in the sense of the data path
architecture discussed above. Operators can be nested arbitrarily. Following the usual design of a
database-style query processor, SQL queries stated by the user are first converted into an internal
algebraic form, then translated to VHDL code. Figure 5.12 illustrates an example adapted from
Mueller et al. [2009] and its corresponding algebraic plan.

64 5. DATA STREAM PROCESSING
5.4.1 COMPOSITIONAL QUERY COMPILATION

Glacier derives its power from the ability to translate the aforementioned algebra in a fully compo-
sitional manner. To this end, the hardware equivalent for every compiled algebra (sub-)expression
tollows the same wiring interface, which is sketched in Figure 5.13. Each n-bit-wide tuple
is represented as a set of n parallel wires on the hardware side. An additional data valid
line signals the presence of a tuple in the remaining wires. For every
algebraic operator ®, Glacier knows a set of compilation rules that pro-
duces the wiring interface in Figure 5.13, provided that the operands
of ® are already compiled according to that interface.
#‘HW Figure 5.14 illustrates two such compilation rules. The rule on
c the left (translating the selection operator o) uses an AND gate to set
the data_valid line to false if the selection condition is not met, thus

Figure 5.13: Wiring in- invalidating the respective tuple.’ The projection operator 7 effectively
terface in Glacier.

n wires

dat
vgli?i_

drops columns from the relation schema. In hardware, this can be
achieved by simply not wiring up the respective signals to any upstream
operator, as shown in the right rule in Figure 5.14.

Oq (Q) =
e

Figure 5.14: Glacier compilation rules for selection (left) and projection (right).

Tay,....an (@) =

'This compilation rule for algebraic projection illustrates an interesting interplay between
query compilation into a logical hardware circuit and the subsequent compilation stages (synthe-
sis, map, and place & route) that generate the actual physical circuit. For many reasons, “loose
wires” often occur in generated hardware circuits. FPGA design tools thus optimize out all sub-
circuits whose output is not connected to any outside port. Glacier’s compilation rule for projection
takes advantage of this feature. Effectively, Glacier oft-loads projection pushdown—a well-known
database optimization strategy—to the FPGA design tools.

Push-Based Execution Strategy
Glacier-generated hardware execution plans follow a strictly push-based execution strategy. That
is, individual sub-plans write their output into a single register set, from where they assume an
upstream operator will pick up the result immediately in the next clock cycle.

Such a strategy is adequate for execution in hardware, because a circuit’s runtime charac-
teristics can be inferred statically at circuit generation time with very high accuracy. More specif-

*Note that in the Glacier algebra, o operates on Boolean columns only. Complex selection criteria must be made explicit by
applying, e.g., arithmetic or Boolean operations beforehand.

5.4. DATA STREAM PROCESSING 65

ically, the /atency, i.e., the number of clock cycles needed by an operator to present the result of
a computation at its output port, and the issue rate, i.e., the minimum gap (in clock cycles) be-
tween two successive tuples pushed into an operator, are precisely defined by the structure of the
hardware circuit. Glacier submits the generated hardware description together with the desired
clock frequency (e.g., sufficient to meet the line rate of a network data stream) to the FPGA tool
chain, which will verify that the generated circuit can meet the frequency requirements. If a cir-
cuit cannot meet its requested throughput rate, the situation will be detected at compile time and
the user demand rejected by the Glacier system.

For most query types, Glacier can maintain an issue rate of one tuple per clock cy-
cle [Mueller et al., 2009] (which in practice significantly eases timing and interfacing with the
respective stream source). Typical queries roughly compile into a pipeline-style query plan, which
means that the latency of the generated plan depends linearly on the query complexity. In prac-
tice, the resulting latencies are rarely a concern; for clock frequencies of 100-200 MHz, a few
cycles (typically less than a hundred) still result in a latency of less than a micro-second.

Resource Management

Glacier draws its predictable runtime performance from statically allocating a// hardware resources
at circuit compilation time. Each operator instance, for example, receives its dedicated chip area
and no resources are shared between operators.” In effect, the compiler lays out a hardware plan
on the two-dimensional chip space with a structure that resembles the shape of the input algebra
plan. Processed data flows through this plan, resulting in a truly pipelined query execution.

Resource management becomes an issue mainly in the context of stateful operators such as
grouping (aggregation) or windowing. Glacier assumes that the necessary state for such operations
can be determined at query compilation time (e.g., with knowledge about group cardinalities or
from the combination of window and slide sizes in the case of windowing operators). Glacier then
replicates dependent sub-plans and produces a dispatch logic that routes tuples to any involved
replica.

Figure 5.15 illustrates this mechanism for the query shown earlier in Figure 5.12. The bot-
tom part of this generated hardware execution plan reflects the 0-& combination (this part will
result in strictly pipelined processing). The upper part contains five replicas of the avg sub-plan
(the windowing clause 4, 1 allows at most four windows to be open at any time) and dispatch
logic to drive them. For windowing operators, the dispatch logic consists of cyclic shift registers
(CSRs) that let windows open and close according to the windowing clause given.

In the case of windowing clauses, Glacier will route tuples to sub-circuits for all active win-
dows and typically many of them are active at a time. For grouping operations, by contrast, tuples
must be routed to exactly one group. Glacier still uses circuit replication to represent grouping in
hardware (and a content-addressable memory (CAM) to look up matching groups). If replica-

*Glacier does allow a restricted form of multi-query optimization. Because of the strictly push-based processing model, identical
sub-plans can be shared across queries.

66 5. DATA STREAM PROCESSING

-way union

CSR2

avgprc

tal

,,,,,,, T3 csri

Figure 5.15: Hardware execution plan for the query in Figure 5.12(a). Glacier replicates the sub-plan
of the windowing operator H. A combination of two cyc/ic shift registers (CSR) routes tuples to the
right replica(s). Illustration adapted from [Mueller et al., 2009].

tion is not desirable (or not feasible, e.g., because of hardware resource constraints), the hardware
partitioning mechanism discussed in Section 5.2.2 could be used to memorize group states and
create only one circuit instance to serve all groups.

Hash Tables in Hardware. For even larger groups, circuits may have to resort to external mem-
ory to keep group states. A hash table would be the obvious choice for a data structure for this
purpose. The crux of hashing is, however, its unpredictable performance. Hash collisions may
require multiple round trips to memory, leading to a response time dependence on key distribu-
tions.

Kirsch and Mitzenmacher [2010] describe and analyze hashing schemes for hardware im-
plementations. If used correctly, multiple-choice hashing schemes can significantly reduce the prob-
ability of hash collisions. And once collisions have become very rare (Kirsch and Mitzenmacher
[2010] report probabilities below one in a million entries), a small content-addressable memory
(CAM), installed side-by-side to the hash table, is enough to capture them. This way, predictable
performance can be achieved with minimal hardware resource consumption.

In multiple-choice hashing schemes, every key has multiple locations where it could be
placed in memory. Cuckoo hashing [Pagh and Rodler, 2001] is a known software technique based
on multiple-choice hashing to guarantee constant-time lookups. When realized in hardware, all

5.5. DYNAMIC QUERY WORKLOADS 67

possible locations of an entry can be tested in parallel, hence avoiding one of the down sides of
multiple-choice hashing.

54.2 GETTING DATAINAND OUT

'The design of Glacier, but also that of other FPGA-based stream processors, assumes that data can
be consumed and produced in a particular format defined by the processing engine. For instance,
Glacier assumes that data arrives as a parallel set of wires, with a data valid signal indicating the
presence of data (see Section 5.4.1) and the same data format is produced as the engine’s output.

Thus, to interface with application-level stream formats, g/ue logic must be placed around
hardware query plans and translate between formats:

\, !
! !
external | | gluelogic | internal | hardware | internal |glue logic | external
| . . P E— I EE—— . .
format ! |(de-serialize) | format |queryplan| format |(serialize)|| format
!)

Incoming data is being de-serialized to the internal format of the hardware execution plan. The
produced query output is brought into an external wire format before it leaves the FPGA chip
again.

Observe how glue logic usually requires some additional chip area. Interfacing with outside
data formats does not, however, usually lead to a noticeable runtime overhead on the query pro-
cessing task. Assuming that glue logic components can keep up with the stream data rates, they
cooperate with the hardware plan in a pipelining fashion. The additional latency (order of a few
FPGA cycles) is typically negligible.

Implementing a de-serialization component can be a tedious task. Conceptually, it resem-
bles the writing of a software parser. But unlike in the software world, very few tools (such as
(£)1ex or JLex for C/Java) exist to generate hardware parsers from high-level language specifica-
tions. One tool to generate VHDL code from regular language grammars is Snowfa// [Teubner
and Woods, 2011]. Similar in spirit to compiler generators for software parsers, Snowfall allows
a grammar specification to be annotated with action code. At runtime, this action code may, for
instance, drive signal wires depending on the syntactical structure of the input stream.

As in the software domain, serializing the output of a query processor into an applica-
tion format usually amounts to a sequential program (implemented via a small, sequential state
machine) that emits field values as required by the format.

5.5 DYNAMIC QUERY WORKLOADS

All of the systems and strategies discussed above assume a processing model that is illustrated in
Figure 5.16 (assuming the Glacier query compiler). In this model, a query compiler generates a

description for a dedicated hardware circuit (e.g., using VHHDL) that implements the input query.

68 5. DATA STREAM PROCESSING

Glacier VHDIL FPGA FPGA

compiler code tools chip

Figure 5.16: Processing model for FPGA-accelerated query processing. A query-to-hardware com-
piler (e.g., Glacier) compiles the user query into a circuit description. Standard FPGA design tools
generate a bitstream from that, which is uploaded to the FPGA chip.

FPGA design tools, such as Xilinx ISE convert this description into a runnable bitstream that is
uploaded to the FPGA for execution.

Intuitively, this model offers high flexibility, allows maximum performance (by fully re-
tailoring the chip for every workload change), and leverages the re-programming capabilities
of FPGA devices in a meaningful way. This intuition, however, is overshadowed by a massive
compilation overhead that the approach brings. The conversion of high-level circuit descriptions
into a runnable bitstream is highly compute intensive; the vpr program in the SPEC CPU2000
benchmark suite even uses the place & route task to measure CPU performance. By comparison,

compilation to VHDL and re-configuration of the FPGA can be performed quickly.”

5.5.1 FAST WORKLOAD CHANGES THROUGH PARTIAL MODULES

A countermeasure for high circuit compilation cost was suggested by Dennl et al. [2012] and
applied to a Glacier-like scenario. The idea is to build hardware execution plans from a set of hard-
wired components, but composing and wiring them in flexible ways, tailored to the particular
user query at hand. To this end, all components adhere to a very strict port interface, so arbitrary
components can be mixed and matched as needed.

Interfacing Between Components. The wiring interface used in Glacier, illustrated in Fig-
ure 5.13, is not suited for such a use. The width of the tuple data part of this interface depends
on the schema of the (sub-)expression ¢. If turned into generic components, those would have to
have a fixed tuple width. Limited chip resources rule out straightforward workarounds, such as
over-provisioning the wiring interface for very wide tuples.

Dennl et al. [2012] thus forward tuple data in chunks of fixed size (which is chosen to match
the processing word width). That is, tuples #; = (a;, b, ¢i, d;) are pushed through the series of

*The latter is only bottlenecked by a limited configuration bus bandwidth, which can be mitigated, e.g., by compressing the
bitstream before uploading it to the chip [Li and Hauck, 2001]. Multi-context FPGA devices offer a double buffering mecha-
nism for configuration; Tabula’s “3d programmable logic devices” allow us to switch between configurations at multi-gigahertz
rates [Tabula, Inc., 2010].

5.6. BIBLIOGRAPHICNOTES 69

processing components in a pipeline fashion:

0P, 0op, 0op3
(b3 —[as][] (o) —[a]

(The illustration assumes an execution plan of three operators. The first of them is just seeing the
last attribute of tuple #5.) In this representation, the port width between neighboring components
is constant and tuples of arbitrary width could be processed.

Configuring Modules. Minimal compilation cost is achieved by using pre-compiled modules to
instantiate the op; in the above illustration. To guarantee the necessary flexibility, most modules
will be generic operators that can be parameterized to fit the particular operator requirements
and the given input/output tuple schemata. In the implementation of Dennl et al. [2012], con-
figuration parameters are communicated over the same data path as the payload data. Additional
handshake signals ensure that both uses are handled as appropriate.

A particular configuration parameter are tuple field names where hardware operators read
their input from or, equivalently, the chunk index where the respective field can be found within
the input stream. For operator results (e.g., the outcome of an arithmetic or Boolean operation),
Dennl et al. [2012] use an in-band transfer mechanism; results are simply written into available
chunks of the data stream. To make this possible, the input data stream is interspersed with spare
chunks that can be used for that purpose.

Runtime Reconfiguration. Once the interfaces between hardware components are fixed, the
“mix & match” idea of Dennl et al. [2012] may even be used in combination with partial reconfig-
uration. With some restrictions, this feature of modern FPGA chips allows us to swap sub-circuits
of a larger hardware design in and out at runtime. Such a strategy is best suited if multiple queries
are run concurrently on a single FPGA chip. Queries can then be added/removed from the chip
without a need to stop running queries for the reconfiguration.

'The price to pay for the partial reconfiguration capability is that the size of all components
must fit the granularity of a reconfiguration frame (a device-specific value; 20/40 configurable
logic blocks for Xilinx Virtex-5/6 devices). According to Dennl et al. [2012], this overhead is
bearable and amounts to about 30 % lost chip space.

5.6 BIBLIOGRAPHICNOTES

FPGAs have been used for regular expression matching in a number of scenarios. Clark and
Schimmel [2004] suggested their use for network packet analysis. Mitra et al. [2009] showed
how XML publish/subscribe systems could be accelerated with FPGA-based pattern matching.
Later, they refined their approach to handle a larger class of twig-based XML patterns [Moussalli
etal,, 2011]. Sadoghi et al. [2011] used FPGAs for a very similar application scenario, but their

70 5. DATA STREAM PROCESSING

system is not based on state automata and regular expression matching. Rather, they break down
their input data into attribute/value pairs and match them through their “Propagation” algorithm.

Vaidya et al. [2010] extended the Borealis stream processing engine [Abadi et al., 2005] and
accelerated a use case where traffic information obtained through a video channel is pre-processed
using dedicated image processing logic on the FPGA. The design of this Symébiote system is such
that partial or entire plan trees can be migrated to the FPGA or handled on the CPU.

The data path concept of Section 5.3 resembles the idea of database machines. In this line
of research, various groups built special-purpose hardware that could pre-filter data as it is being
read from persistent storage. Most notable here is the DirecT engine of DeWitt [1979].

Outside the database and stream processing world, researchers have very successfully used
FPGAs in, e.g., scientific applications. The use of FGPAs at CERN’s Large Hadron Collider
(LHC) essentially follows the data path architecture that we looked at on page 61. Data rates
of several terabits per second, produced by the particle accelerator, are way above what could
be processed and archived on commodity hardware. Thus, FPGA-based #riggers pre-analyze the
high-volume input stream, so only relevant information gets forwarded to the main processing
flow. Gregerson et al. [2009] illustrate this for (parts of) the Compact Muon Solenoid (CMS)
Trigger at CERN. There, an FPGA-based filter reduces a 3'Tb/s input stream to manageable
100 Mb/s.

71

CHAPTER 6

Accelerated DB Operators

In the previous chapter, we illustrated various ways of applying FPGAs to stream processing
applications. In this chapter, we illustrate that FPGAs also have the potential to accelerate more
classical data processing tasks by exploiting various forms of parallelism inherent to FPGAs. In
particular, we will discuss FPGA-acceleration for two different database operators (7) sort and (i)
skyline.

6.1 SORT OPERATOR

Sorting is a fundamental operation in any database management system. Various other database
operators such as joins or GROUP BY aggregation can be implemented efficiently when input
tuples to these operators are sorted. However, sorting is a rather expensive operation that can
easily become the bottleneck in a query plan. Hence, accelerating sorting can have great impact
on overall query processing performance in a database. In this section, we will discuss a number
of different approaches to sort small as well as large problem sets with FPGAs.

6.1.1 SORTING NETWORKS

We will start this chapter with a simple example, where only very small data sets are sorted in
hardware, consisting of, say, only eight values. Mueller et al. [2012] investigated how to do this on
FPGAs using so-called sorting networks. This example will underline once more the fundamental
differences of laying out an algorithm in hardware versus executing a corresponding software
program on a microprocessor.

The key idea of sorting networks is to stream unsorted data
through a series of compare-and-swap elements, as the one il-
lustrated on the right. This will bring the data into the desired r
sort order. The compare-and-swap element is constructed from a "

32-bit comparator, which drives two cross-coupled 32-bit multi- A ‘ A

plexers, i.e., if input B is smaller than input 4 both multiplexers

will select the other value and hence the values will be swapped.

In Figure 6.1, eighteen such compare-and-swap elements B 7 ‘ B

(illustrated as [) are combined to form an eight-way sorting net-

work. We display the new values on the wires in gray whenever
a swap happens, e.g., at the first stage four pairs of 32-bit wire buses with values (5,8), (3,1),
(2,7), and (4,6) are processed in parallel and only the values of the third and fourth bus need to

72 6. ACCELERATED DB OPERATORS

i 1-@5 3I ! ® 2 Iiij
1 3 8 »7T 4 4
S S
L7Ié) ®-3 17_;

Figure 6.1: Eight—way even-odd sorting network using 18 compare-and-swap elements.

X1 Jo
X2 @ Y1
X3 L 4 Y2
X4)3
X5 Y4
X6 L s
X7 @ Ve
X8 V7

Figure 6.2: Fully pipelined even-odd sorting network with six pipeline stages.

be swapped: (3,1) — (1,3). After all values have propagated through all the compare-and-swap
elements they appear in sorted order at the output of the circuit, i.e., the smallest value is at the
topmost output and the largest value appears at the bottom output.

There are several ways that compare-and-swap elements can be arranged to build a sort-
ing network. The arrangement shown here is known as even-odd sorting network. Mueller et al.
[2012] also discuss other sorting networks in detail such as bifonic sorting networks or networks
based on bubble sort. Different arrangements of the compare-and-swap elements mostly affect re-
source consumption and ease of implementation, and we will not discuss them any further here.

One problem with the circuit depicted in Figure 6.1 is that the longest signal path has to
traverse six compare-and-swap elements. The maximum clock frequency at which a circuit can be
clocked is determined by the longest signal path of a circuit. By inserting pipeline registers into the
circuit the longest signal path can be shortened. In Figure 6.2, we illustrate such pipeline registers

6.1. SORT OPERATOR 73

merged run
N

sorted runs 1

I

select-value component

Figure 6.3: Select-value component merges two sorted runs into a larger sorted run.

with gray boxes. With the pipeline registers in place, every signal now only needs to traverse one
compare-and-swap element to the next pipeline register. At every clock tick, intermediate states
are stored in the pipeline registers, allowing the circuit to partially process six different data sets
concurrently in six different stages.

Mueller et al. [2012] report that a similar pipelined circuit to the one shown in Figure 6.2
could be clocked at f; = 267 MHz. Since the circuit processes 8 x 32 bits per clock cycle, a data
processing rate of 8.5 GB/s was achieved. A sorting network with twice as many inputs (i.e., 16 x
32-bit words) at the same clock rate would double the throughput. However, it quickly becomes
difficult to move data in and out of the FPGA at these high processing rates and the complexity
of the sorting circuits exponentially increases with more inputs. Thus, sorting networks are a very
efficient way to sort small sets of values that could be used, e.g., to implemented a hardware
accelerated sort instruction of a closely coupled microprocessor to sort SIMD registers.

6.1.2 BRAM-BASED FIFO MERGE SORTER

The sorting network example of the previous section suggests a

tightly coupled CPU/FPGA architecture, where the FPGA is —>
invoked at the granularity of individual instructions. If we could -
off-load bigger chunks of data to be completely sorted by the j/zj:
FPGA, this would reduce communication between FPGA and A 1 4’ out
CPU, and the CPU would have more time to take care of other B —+—

tasks while the FPGA is sorting. Koch and Torresen [2011]

proposed to use BRAM-based FIFO queues to implement a merge sorter that can efficiently sort

larger problem sizes inside the FPGA.

At the heart of the merge sorter a select~value component is used, which is illustrated on the
right. The select-value component is half of the compare-and-swap component of the previous
section, i.e., two values A and B are compared and the smaller one is selected. The select-value
component can be used to merge two sorted runs into a larger sorted run, as depicted in Figure 6.3.

The inputs to the select-value component A and B are read from two FIFOs, where each
FIFO stores a sorted run. The smaller of the two inputs is selected and written to an output

74 6. ACCELERATED DB OPERATORS

%F }%F }%F -

Figure 6.4: A cascade of FIFO merge sorters used to produce large sorted runs.

FIFO. Then the next value is requested from the input FIFO that has submitted the smaller
value. Figure 6.4 shows how a cascade of such merge sorters can be combined to create larger and
larger sorted runs. The output of the select-value component is directed to a first output FIFO
until it is filled and then redirected to a second output FIFO. Those output FIFOs then serve as
inputs to the next select-value component.

Koch and Torresen [2011] observed that at each stage, processing can start after the first
input FIFO has been filled and the first value of the second FIFO arrives. Furthermore, the select-
value component always only reads from one of the two input FIFOs and the result is written to
only one of the two output FIFOs. Hence, the overall fill level of the FIFOs is constant. Therefore,
the second FIFO is not strictly necessary. Koch and Torresen [2011] showed how to get rid of
the second FIFO. To do so, however, they had to build a custom FIFO based on a linked list
structure to deal with the two read and two write pointers within a single FIFO.

Koch and Torresen [2011] evaluated the FIFO merge sorter described above. Using 98% of
the available BRAM it was possible to sort 43,000 64-bit keys (344 KB) in a single iteration, i.e.,
by streaming the keys through the FPGA once. The circuit could be clocked at f,; = 252 MHz
resulting in a throughput of 2 GB/s.

6.1.3 EXTERNAL SORTING WITH A TREE MERGE SORTER

To sort even bigger data sets that exceed the capacity of on-chip BRAM storage, runs need to be
stored outside the FPGA, e.g., in DRAM on the FPGA card. Nevertheless, merging of several
external runs can still be performed in a streaming manner inside the FPGA, i.e., as the FPGA
reads from several smaller runs stored in DRAM, it can continuously write tuples of the merged
result back to DRAM to generate larger runs, or back to the host (e.g., via PCI-Express) for the
final run.

To merge several runs into one larger run a merge sorter tree can be used, e.g., as the one
illustrated in Figure 6.5 on the left, which merges eight runs. The tree is constructed from several
select-value components, represented by the gray boxes in the figure. DRAM latency can be hidden
by placing small FIFOs between the tree and external memory. A load unit then monitors the
fill-level of all FIFOs and coordinates DRAM read requests accordingly. To avoid clock speed
degradation, large merge sorter trees need to be pipelined, e.g., by adding tiny FIFOs between
every level of the tree.

6.1. SORT OPERATOR 75

’ memory ‘ ’ memory ‘

l 1 lTl I I

’ load unit ‘

N N L L N N L | |

E E BE BE E B B E] i
1 1 1 1 1 1 1 1 _

A host 1 — -

T 0 1 FIFO tree B

N : merge merge B

sorter sorter

T T T T T T

Figure 6.5: Tree merge sorter (left), and a combination of a FIFO merge sorter with a tree merge
sorter connected to external DRAM (right).

On the right-hand-side of Figure 6.5 a combination of the FIFO merge sorter, described
in the previous section, and a tree merge sorter is illustrated. In a first step, unsorted data is
streamed through the FIFO merge sorter on the FPGA, which generates initial runs that are
stored in external DRAM. Then these runs are read back from DRAM and merged by a tree
merge sorter before the final result is sent back to the host. If the data set is so large that one
pass through the tree merge sorter is not enough then multiple round trips to DRAM would be
necessary.

Koch and Torresen [2011] report that the tree-merge-sorter achieved a throughput of
1 GB/s on their FPGA, and could merge up to 4.39 million keys (35.1 MB) in one pass. However,
this measurement assumes that the entire FPGA can be used for merging. For a configuration
like the one in Figure 6.5 on the right, where both a FIFO merge sorter and a tree merge sorter
need to fit on the same FPGA 1,08 million keys (8.6 MB) could be sorted at a throughput of
1 GB/s.

6.1.4 SORTING WITH PARTIAL RECONFIGURATION

For a configuration as in Figure 6.5 on the right, where a FIFO merge sorter needs to share the
available FPGA resources with a ¢ree merge sorter, each module can only solve half the problem size
per run. However, notice that the two modules do not run in parallel, i.e., first the FIFO merge
sorter generates initial runs in DRAM, and once those runs are generated, they are merged by
the tree merge sorter.

To increase device utilization, an alternative is to first use the entire FPGA for the FIFO
merge sorter, and then use dynamic partial reconfiguration to load the tree merge sorter after the
FIFO merge sorter has terminated, as illustrated in Figure 6.6.

With this approach, both the FIFO merge sorter and the tree merge sorter can sort larger
problem sizes in one pass. However, the time required for reconfiguration needs to be considered

76 6. ACCELERATED DB OPERATORS

memory ‘ ’ memory ‘

dynamie partial

RN M reconfiguration R
i r il L
host 1 FIFO | [host 1 tree i
_ merge L i merge L
— sorter - — sorter =

T T T T T T T T T T T T

Figure 6.6: Using dynamic partial reconfiguration to first run the FIFO merge sorter and then the
tree merge sorter in the same partially reconfigurable region.

as well. The configuration time of a partially reconfigurable region is directly proportional to its
size. Koch and Torresen [2011] measured roughly 3 MB configuration data for the sorter modules.
At a configuration speed of 400 MB/s, this means that during the time it takes to swap in the tree
merge sorter module, the FIFO merge sorter module could have sorted 5 x 3 MB of data because
of the five times higher throughput (2 GB/s).

'Thus, dynamic partial reconfiguration only pays off for large problem sizes. For a sorting
problem with 4 million keys Koch and Torresen [2011] measured a configuration overhead of
46 %, while for 448 million keys (3.58 GB) the configuration overhead is negligible. To sort this
large data set, one run of the FIFO merge sorter and two runs of the tree merge sorter were
necessary resulting in an overall throughput of 667 MB/s.

6.2 SKYLINE OPERATOR

Skyline queries compute the Pareto-optimal set of multi-dimensional data points. They are a good
example of a complex database task that can greatly benefit from FPGA acceleration due to their
compute-intensive nature, especially when dealing with higher dimensions. Formally, the s&y/ine
of a set of multi-dimensional data points is defined as follows:

Definition 6.1 A tuple #; dominates (<) another tuple 7; iff every dimension of t; is better' than

or equal to the corresponding dimension of #; and at least one dimension of #; is s¢rictly better than
the corresponding dimension of ¢;.

Definition 6.2 Given a set of input tuples / = {t,12, .. .1}, the skyline query returns a set of
tuples S, such that any tuple ¢; € S is not dominated by any other tuple t; € I.

'Here, “better” means either smaller or larger depending on the query.

6.2. SKYLINE OPERATOR 77

1 foreach tuple q; € queue do
2 isDominated = false;
3 foreach ruple p; € window do
4 if q; .timestamp > pj.timestamp then /% pj is part of the skyline "/
5 output(p;);
6 window.drop(p;);
7 elseif g; < pj then /% pj is dominated by q; %/
8 L window.drop(p;);
9 elseif p; < g; then /*q; is dominated by p; "/
10 isDominated = true,
11 break;
12 if not isDominated then /*q; is a potential skyline tuple /
13 timestamp(q;);
14 if window.isFull() then /" add q; to the window later */
15 L queue.insert(gq;);
16 else /* there is space in the window "/
17 L window.insert(g;);

Figure 6.7: Standard Block Nested Loops (BNL) Algorithm (< means “dominates”).

6.2.1 STANDARD BLOCKNESTED LOOPS (BNL) ALGORITHM

FPGAs s exhibit tremendous aggregated compute power but they can only keep a limited amount
of state in the chip during computation, as we have already seen in Section 6.1. In the case of
skyline queries, it is possible that the intermediate state or even the final result exceed the capacity
of current FPGAs. Woods et al. [2013] implemented a highly parallel variant of the &/ock nested
loops (BNL) [Borzsonyi et al., 2001] algorithm on an FPGA. The BNL algorithm is appealing
for an FPGA implementation because it was designed exactly for this scenario, although in a
software context, where all data does not fit into main memory.

In Figure 6.7, the BNL algorithm is given in pseudocode. All input tuples are stored in a
queue and then compared one by one against a window of w potential skyline tuples. If an input
tuple is dominated by a potential window tuple, it is discarded. On the other hand, all window
tuples that are dominated by an input tuple are removed from the window.

After an input tuple has been compared against all potential skyline tuples in the window,
the input tuple itself is either inserted into the window as a potential skyline tuple (when there
is room), or else it is inserted into the queue of input tuples again for later processing. In both

cases, the tuple is timestamped. A potential window tuple p; becomes a true skyline tuple when

78 6. ACCELERATED DB OPERATORS

n-dimensional tuple message channels

N N
— «—

PEO PE1 PE 2

Figure 6.8: Window tuples (consisting of several dimensions) are distributed over a pipeline of pro-
cessing elements. Neighboring processing elements are connected via 32-bit message channels.

it either encounters the first tuple ¢; from the input queue that has a larger timestamp or when
the input queue is empty. A larger timestamp indicates that two tuples must have already been
compared and since the queue is totally ordered, all following tuples in the queue will also have
larger timestamps. The algorithm terminates when the input queue is empty.

6.2.2 PARALLEL BNL WITH FPGAS

In the FPGA implementation of Woods et al. [2013], the queue of input tuples is stored in
DRAM mounted on an FPGA card, i.e., outside of the FPGA chip, and only the window of
potential skyline tuples is maintained inside the FPGA. Result tuples (i.e., skyline tuples) are also

written back to DRAM. Hence, input tuples are streamed from the DRAM through the FPGA
and back to DRAM. Several iterations may be necessary until the algorithm terminates.

Pipeline of Processing Elements (PEs)

In BNL, each input tuple needs to be compared against all potential skyline tuples stored in the
window. This is an expensive process since the window may consist of several hundred tuples. To
achieve high throughput only a minimal number of clock cycles should be spent on each input
tuple before the next tuple is read from the queue. Thus, Woods et al. [2013] propose to distribute
the window of potential skyline tuples over a pipeline of daisy-chained processing elements, as
illustrated in Figure 6.8.

A processing element stores a single tuple of the window. An input tuple is submitted to the
first processing element in the pipeline from where it is forwarded to the neighboring processing
element after evaluation via the specified message channel. Thus, w processing elements operate
on the window concurrently such that w dominance tests are performed in parallel, where w is
the size of the window.

Causality Guarantees
'The processing elements are organized in a way that input tuples are evaluated in a strictly feed-
forward oriented way. This has important consequences that can be exploited in order to parallelize
the execution over many processing elements while preserving the causality of the corresponding
sequential algorithm.

6.2. SKYLINE OPERATOR 79

1
\
\
N
v«{]
/‘k
/
3
‘\
\
Y
<—[;]
15
/
M

Figure 6.9: Causality guarantees. The earlier x; will see no effects caused by the later x; but x; sees
all effects of x;.

Feed-forward processing implies that the global working set is scanned exactly once in a
defined order. What is more, once an input tuple x; has reached a processing element vy, its eval-
uation cannot be aftected by any later input tuple x; that is evaluated over a preceding processing
element vy (conversely, the later x; is guaranteed to see all effects caused by the earlier x;).

These causality guarantees hold even if we let the executions of x; on vy and x; on vy
run in parallel on independent compute resources, as illustrated in Figure 6.9. For example, once
an input tuple x; reaches the last processing element, it can safely be assumed that it has been
compared against all other working set tuples and appropriate actions can be invoked.

Parallel BNL as Two-Phase Algorithm

In summary, the parallel version of BNL works as follows. Input tuples propagate through the
pipeline of processing elements and are evaluated against a different window tuple at every stage
in the pipeline. If at one point an input tuple is dominated, a flag is set that propagates through
the pipeline together with every tuple. On the other hand, if a window tuple is dominated it is
deleted. When an input tuple reaches the last processing element, and was not dominated by any
window tuple (indicated by the domination flag), the tuple is timestamped and then inserted into
the window if there is space, or written back to DRAM otherwise. Notice that new potential
skyline tuples can only be inserted into the window at the last processing element to ensure that
they have been compared to all existing window tuples. This means that free slots in the window
that occur when window tuples are dominated need to propagate toward the end of the pipeline.
To enforce this, neighboring processing elements can swap their contents.

The processing elements execute the algorithm just described in two phases: (i) an evalu-
ation phase and (ii) a shift phase. During the evaluation phase, a new state is determined for each
processing element; but these changes are not applied before the shifz phase, which is the phase that
allows nearest neighbor communication. Those two phases run synchronously across the FPGA,
as depicted in Figure 6.10.

6.2.3 PERFORMANCE CHARACTERISTICS

In their evaluation, Woods et al. [2013] showed interesting performance characteristic of par-

allel BNL running on an FPGA. They evaluated their FPGA-based skyline operator against a

80 6. ACCELERATED DB OPERATORS

eval. i shift | eval. { shift | eval. { shift : eval. { shift | eval. { shift

i = i3 = i3 — —
PNV NI NN TN
Q) (O) (O) () (O
— — — — —

—

N NS N N N N8 N N N

Figure 6.10: Two-phase processing in parallel BNL. Circles represent processing elements. A pro-
cessing element consists of logic, storage for the window tuple, and communication channels to neigh-
boring processing elements.

7
107+ 17M tuples/seh i

61 ms exec. time

0 4 8 16 32 64 128 256

window size : number of tuples

’g 109 N T T T T T T T]

& —e— BNL Software

5 —=- BNL FPGA 41 M tuples/sec

5108 | 25 ms exec. time |

E - CPU
g

=107 L7777 e - FPGA
a0

=)

e

5

Figure 6.11: Correlated dimensions resulting in a small skyline. Performance is memory bound.

single-threaded software implementation, as well as a state-of-the-art multi-threaded skyline im-
plementation [Park et al., 2009]. As we will discuss, the comparisons with the single-threaded
software implementation (Figure 6.11 and Figure 6.12) highlight several fundamental differences
between CPUs and FPGA:s.

For their experiments, Woods et al. [2013] use data sets with common data distributions to
evaluate skyline computation. Figure 6.11 shows the results for a data set, where the dimensions of
the tuples are correlated. This means that the values in all dimensions of a tuple are similar resulting
in very few skyline tuples that dominate all other tuples. As can been seen in the figure, both
implementations achieve a throughput that is close to the maximum possible throughput given
by the memory subsystem (dashed lines). The CPU achieves better performance here because it
has the more efficient memory subsystem. The total number of dominance tests is very low, i.e.,
essentially what is measured is how fast main memory can be read/written on the given platform.

By contrast, the results displayed in Figure 6.12 for a data set where the dimensions of the
tuples are anti-correlated, present the two implementations in a different light. Anti-correlated
means that tuples with high values in some dimensions are likely to have low values in other

6.2. SKYLINE OPERATOR 81

T T T T T

/g 105 L 32K tuples/sec
}2 _e— BNL Software 32 sec exec. time
X} -= BNL FPGA -
£ 10* | 1
=

=

%‘0 10° 1.8 K tuples/sec 3 R
e 579 sec exec. time

_(: 1 1 1 1 1 1 1

+ 0 4 8 16 32 64 128 256

window size : number of tuples

Figure 6.12: Anti-correlated dimensions resulting in a large skyline. Performance is compute bound.

dimensions, i.e., there are many incomparable tuples” leading to many dominance tests. Hence,
skyline computation is now heavily compute-bound.

For the software variant, increasing the window size has little effect on throughput because
the number of total dominance tests stays roughly the same independent of the window size. For
the FPGA implementation, on the other hand, increasing the window means adding processing
elements, i.e., compute resources, which is why throughput increases linearly with the window
size.

Notice that the computation of the skyline for the anti-correlated data set is significantly
more expensive, e.g., the best execution time of the CPU-based version has gone from 18 mil-
liseconds to almost 10 minutes. This slowdown is due to the increased number of comparisons
since all skyline tuples have to be pairwise compared with each other. Thus, the workloads where
the FPGA excels are also the ones where acceleration is needed most.

As mentioned previously, Woods et al. [2013] also compared their implementation against
PSkyline [Park et al., 2009], a state-of-the-art parallel skyline operator for multicores. The perfor-
mance achieved with a low-end FPGA was comparable to the one of PSkyline on a 64-core Dell
PowerEdge Server using 64 threads. However, notice that there is a significant difference in price
(FPGA =$750 versus Dell = $12,000), as well as power consumption® between the two systems.
Moreover, with 192 processing elements a throughput of 32,000 tuples/sec (anti-correlated dis-
tribution) is reached on the FPGA. This is more than two orders of magnitude below the upper
bound of 17 million tuples/sec (cf. Figure 6.11), i.e., with a larger FPGA, there is still a lot of

leeway to further increase performance by adding more processing elements.

*Two tuples are incomparable if neither tuple dominates the other one.
SFPGAs use between one and two orders of magnitude less power than CPUs.

83

CHAPTER 7

Secure Data Processing

So far, we have manly highlighted advantages of FPGAs with respect to performance, e.g., for
low-latency and/or high-volume stream processing. An entirely different area where FPGAs pro-
vide a number of benefits is secure data processing. Especially in the cloud computing era, guar-
anteeing data confidentiality, privacy, etc., are increasingly important topics. In this chapter, we
first compare FPGAs to CPUs and ASICs regarding security aspects before we describe a few
key features of modern FPGAs that allow them to be used as even more secure co-processors.
Finally, we discuss a use case—Cipherbase—a recent project that achieves data confidentiality in

Microsoft’s SQL Server using FPGAs.

7.1 FPGAS VERSUS CPUS

CPU-based systems are typically very complex, both in respect to hardware and software. This
means that there are many possibilities for attacks, i.e., bugs in the operating system, the device
drivers, the compiler, hardware components, etc., can all be exploited to attack the system, and
as a result it is very difficult to make such systems secure. FPGAs have a much smaller attack
surface.

7.1.1 VONNEUMANN ARCHITECTURE

Most CPU-based systems today are designed according to the Von Neumann architecture, i.e., data
and executable code are stored in the same contiguous memory. This is a major security problem,
allowing for various code injection attacks. On an FPGA, it is easy to physically separate data and
program, i.e., a program can be implemented in logic, while data is stored in on-chip dedicated
memory.

Another problem is isolating multiple applications from each other. Again, in an FPGA
two applications could run in physically isolated regions of the FPGA, only sharing perhaps some
I/0 channel to which access can be granted in a secure manner. On a multicore CPU this is
virtually impossible, i.e., even if two applications are executed on different cores, those cores will
still share a lot of resources such as caches, memory, I/O devices, etc.

7.1.2 TRUSTED PLATFORM MODULE (TPM)

There have been numerous attempts in the past to make CPU-based software systems more secure.
For instance, the Trusted Platform Module (TPM) chip is a secure cryptoprocessor that can store

84 7. SECURE DATA PROCESSING
cryptographic keys. Together with the BIOS, the TPM chip provides a “roof of trust” that can

be used for authenticated boot. However, one limitation of this approach is that while software is
authenticated when loaded, there is no protection against modification of the code at runtime.
Circuits running on an FPGA are much more difficult to tamper with, especially if the security
teatures that we will discuss in Section 7.3 are enabled.

Another limitation is that the TPM chip cannot do encryption/decryption on its own. It
can only transfer the cryptographic keys to a region in memory, which the BIOS is supposed to
protect. Encryption/decryption are then performed by the processor. However, the BIOS cannot
always protect main memory, e.g., with physical access to a computer an attacker can retrieve
the encryption keys from a running operating system with a so-called co/d boot attack. This is an
attack that relies on the fact that DRAM contents are still readable for a short period of time
after power supply has been removed. In Section 7.4, we will discuss how FPGAs can be used
as secure cryptoprocessors capable of encrypting/decrypting data, such that plaintext data never
leave the chip.

7.2 FPGAS VERSUS ASICS

With respect to protecting intellectual property, FPGAs have an important advantage over
ASICs. If circuit designer and circuit manufacturer are two different parties, then the designer
needs to provide the manufacturer with the sensitive circuit description. In fact, very few com-
panies such as Samsung or IBM design circuits and also own high-end semiconductor foundries
to produce them. Most semiconductor companies are fabless. FPGAs allow a company to benefit
from the latest manufacturing technology while keeping their circuit designs fully confidential.

Another threat to which ASICs are susceptible is destructive analysis, where each layer of the
device is captured to determine its functionality. This technique is not applicable to determining
the functionality of the circuit loaded onto an FPGA since the entire circuit specification is stored
in on-chip configuration memory, i.e., there are no physical wires and gates of such a circuit that
can be analyzed.

While circuits running on FPGAs are better protected than ASICs against reverse engi-
neering threats as the ones described above, FPGAs exhibit other vulnerabilities. For example, by
intercepting the bitstream during configuration of an FPGA the design could relatively easily be
cloned or tampered with. In the next section, we discuss common mechanisms that guard FPGAs
from such and other attacks.

7.3 SECURITY PROPERTIES OF FPGAS

FPGAs provide a number of security features to protect intellectual property (i.e., the circuit
specification uploaded to the FPGA) from reverse engineering, tampering, and counterfeiting. In
this section, we highlight the most important security-related features of modern FPGAs.

7.3. SECURITY PROPERTIES OF FPGAS 85
7.3.1 BITSTREAM ENCRYPTION

A number of FPGAs ship with an on-chip decryption engine to support encrypred bitstreams.
Typically, the advanced encryption standard (AES) is implemented, which is a state-of-the art
block cipher. The software that generates the bitstream also encrypts it before sending it to the
FPGA. The FPGA then decrypts the bitstream on the chip before it writes the configuration to
the corresponding locations. The key used for decryption is loaded into the FPGA once via the
JTAG port, i.e., physical access to the FPGA is required. Then the key is stored using either on-
chip (battery-backed) memory or non-volatile key storage such as OTP fuses. Hence, turning off
power will not erase the key. Bitstream encryption ensures the confidentiality of a circuit design,
preventing reverse engineering and device cloning.

7.3.2 BITSTREAM AUTHENTICATION

Besides bitstream encryption, Xilinx also introduced bitstream authentication with their Virtex-
6 series. Thus, an on-chip keyed-HMAC algorithm implemented in hardware ensures that only
authenticated users can modify an existing configuration or overwrite it with a different bitstream.
During bitstream generation a message authentication code (MAC) is generated and embedded in
the encrypted bitstream together with the HMAC key. During device configuration the MAC
is recomputed on the FPGA using the provided HMAC key. In case the MAC computed by
the FPGA does not match the MAC provided in the encrypted bitstream there are two options:
either a fall-back bitstream is loaded or the configuration logic is disabled all together. HMAC
ensures that the bitstream loaded into the FPGA has not been altered, preventing zampering of
the bitstream, i.e., even single bit flips are detected. This protects an application running on an
FPGA from attacks such as spogfing and trojan horse attacks.

7.3.3 FURTHER SECURITY MECHANISMS

Besides bitstream encryption and authentication FPGAs incorporate several other security mech-
anisms to guard against different kinds of attacks. For instance, the JTAG port—intended for
device configuration and debugging—could be misused to reverse engineer the functionality of a
specific design. Therefore, access to the JTAG port is usually highly restricted. In general, ded-
icated logic ensures that configuration memory cannot be read back via any external interface
including the JTAG interface.

Some FPGA vendors go even one step further and continuously compute a CRC of the
configuration data in the background, which is used to verify that no bits of configuration data
have changed. A bit flip in the configuration data could be caused by a so-called single-event upset
due to the impact of a high-energy neutron. Thus, monitoring the CRC of configuration data on
a regular basis even allows detecting highly sophisticated side channel attacks at runtime.

86 7. SECURE DATA PROCESSING
74 FPGAAS TRUSTED HARDWARE

The Cipherbase system [Arasu et al., 2013] extends Microsoft’s SQL Server with customized
trusted hardware built using FPGAs. The project targets data confidentiality in the cloud. Cloud
computing offers several advantages that make it attractive for companies to outsource data pro-
cessing to the cloud. However, a major concern is processing sensitive data. Companies might
not trust a cloud provider to keep their data confidential. In fact, in some cases a company might
even want to protect highly confidential data from its own employees.

741 FULLY HOMOMORPHIC ENCRYPTION WITH FPGAS

Fully homomorphic encryption [Gentry, 2010] is a way to encrypt data such that certain types
of computation can be executed directly on the ciphertext, i.e., without the need to decrypt the
ciphertext. For instance, addition of two encrypted numbers would directly produce the encrypted
result, i.e.:
Decrypt(Encrypt(A) + Encrypt(B)) = A+ B

Since a program would never need to decrypt the data it is processing, fully homomorphic encryp-
tion would allow to safely execute computations on encrypted data in an untrusted environment.
Unfortunately, fully homomorphic encryption is prohibitively expensive in practice [Bajaj and
Sion, 2011].

In Cipherbase, fully homomorphic encryption is simulated by integrating closely coupled,
trusted hardware into an untrusted system. Cipherbase considers an FPGA as a trusted black box
that can compute a number of operations on data that are encrypted using a non-homomorphic
encryption scheme such as AES (advanced encryption standard). That is, the FPGA actually
decrypts data internally, computes the operation, and encrypts the result again before it leaves the
trusted hardware, as illustrated below:

E A) — | 77T VL
ncrypz‘edAES() i trusted | L
Encrypted ;g (B) —— 1 ' qard- | [——— Encrypted ;o (A+B)
Operation (+) 4>E i ware 1 E
FPGA

7.4.2 HYBRID DATA PROCESSING

In Cipherbase, the FPGA that implements the trusted cryptoprocessor is connected to the host
server (running MS SQL Server) via PCI Express. The bandwidth of the PCI Express bus is
lower than the bandwidth of the server’s memory system, i.e., a performance penalty is associated
with using the trusted cryptoprocessor. Therefore, a design goal of Cipherbase is to minimize data
transfers between host and FPGA, and to do as little computation on the FPGA as possible to
meet given security constraints.

7.4. FPGAAS TRUSTED HARDWARE 87

Table 7.1: Typical plaintext operations and corresponding primitives to execute the same operations

on ciphertext via FPGA.

Plaintext Operation Primitive(s) executed on FPGA

O4=5 Dec({A}4rs) = Dec({5}ars)

TA+B Enc(Dec({A}4s) + Dec({B}4Es))

p<h ek Hash(Dec({A}4Es)); Dec({A}4rs) = Dec({ B} 4Es)
sum(B) Enc(Dec({B}4rs) + Dec({partialsum}s))

Index lookup FindPos(Dec({k } 415), (Dec({k1}4E5), - - . » Dec({kn }ags)))
Range lock Dec({v}4Es) € [Dec({l}aps), Dec({h}4Es)]

We can distinguish several forms of Aybrid data processing in Cipherbase, meaning that
some parts of the processing are handled on commodity hardware while other parts are executed
in the secure environment on the FPGA. First of all, users can specify the level of confidentiality
guarantees at a column granularity. For example, when processing employee records, the “salary”
field might require strong confidentiality guarantees while “employer address” might not. Hence,
columns and tables that have no confidentiality restrictions will not be processed by the trusted
hardware, allowing for a more efficient execution.

Furthermore, even individual operators can be broken down into the parts that need to
be executed by the cryptoprocessor and others that can be handled unprotected by the standard
database software. For instance, consider (B-tree) index processing, where a confidential column
is indexed. Searching within an index page requires decrypting confidential keys, i.e., needs to be
executed by the cryptoprocessor. On the other hand, many other index operations such as concur-
rency control, buffer pool management, recovery, etc., can be handled outside the crpytoprocesor.

Since FPGA and host system are tightly coupled, a few primitives (cf. Table 7.1) that can be
called from the host system and are implemented on the FPGA are sufficient to extend a complete
database system to support fully homomorphic encryption, as described above. Table 7.1 shows
how primitives for decryption (Dec(+)), encryption (Enc(-)), and expression evaluation are invoked
by the host system to execute a given operation on encrypted data." Coming back to our index
processing example, for each index page the FindPos(-) primitive would be called to determine the
next page to visit. All other indexing logic—with the exception of checking key range locks’—can
be handled by the standard database software running on the host.

'Encrypted data are denoted {. .. } sz5 assuming an AES encryption scheme.
*To check range locks another primitive needs to be invoked: Dec({v}4zs) € [Dec({!}4rs), Dec({h}aEs)]-

88 7. SECURE DATA PROCESSING
Table 7.2: Stack machine for the expression Dec({$0}4z5) = Dec({$1} 45).

1d Instruction
1 GetData $0O
2 Decrypt
3 GetData S$1
4 Decrypt
5 Compare

7.4.3 TRUSTED HARDWARE IMPLEMENTATION

In Cipherbase, the main reason to use FPGAs is security rather than performance, i.e., expres-
siveness and simplicity are more important goals than speed of execution. On an FPGA, there
is always a trade-oft between expressiveness and performance. In Cipherbase it is of utmost im-
portance that the system is complete. Notice that expressions in a projection, for instance, can be
arbitrarily complex. Hence, to support all possible SQL queries the trusted hardware engine was
designed as a stack machine, i.e., a restricted, special-purpose processor that runs inside the FPGA.
The stack machine can execute a number of special instructions (e.g., for encryption, decryption,
etc.), where each one is directly implemented in hardware.

When a query is compiled by the modified MS SQL Server, code is generated for the stack
machine that runs on the FPGA. Each instruction is directly implemented in hardware and only
parameters can be supplied at runtime. An example is given in Table 7.2, where the stack machine
code is shown that evaluates a restriction expression of the form Dec({$0}4r5) = Dec({$1} 4£s)
on encrypted data. The compiler generates a sequence of instructions, of which some can have
parameters (e.g., $0 and $1 in the example represent parameters).

'The mechanisms described so far ensure that decrypted data never leave the FPGA. Never-
theless, access patterns are not hidden. While for many applications this is acceptable, Cipherbase
also introduces the notion of ob/ivious operators that even hide data access patterns for applica-
tions that require a higher degree of confidentiality. It is beyond the scope of this book to discuss
oblivious operators, and we therefore refer to the work of Arasu et al. [2013], Goodrich [2011]
for a thorough discussion of the topic.

89

CHAPTER 8

Conclusions

Almost 50 years have passed since Gordon Moore observed that the number of transistors per
integrated chip would double approximately every 2 years. Throughout these years, hardware tech-
nology followed the exponential growth with remarkable precision, and there is no indication that
the trend will change any time soon.

'The consequences of Moore’s Law on chip technology, however, have changed dramatically
over time. As already sketched in Chapter 1, Moore’s Law—in combination with Dennard scal-
ing—allowed to drive up clock frequencies and micro-architecture sophistication for many years.
Power constraints set an end to this approach some ten years ago and hardware designers started
to focus on multi-core architectures instead: additional transistors offered by Moore’s Law were now
turned into replicated on-chip processors (“cores”).

Multi-core computing never sofved the power consumption problem, however. At best, the
now-prevalent way of leveraging hardware parallelism can be considered a temporary mechanism
to mitigate the fundamental problem. A one-to-one conversion of Moore’s dividend into addi-
tional CPU cores would incur an exponentially growing power consumption. But today’s chips
already operate at the limit in terms of heat dissipation and cooling.

POWER CONSTRAINTS AND DARK SILICON

Taylor [2012] discussed the search space for escapes to the urging power constraints and identified
four basic strategies that he termed the four horsemen of the coming dark silicon apocalypse:

The Shrinking Horseman. Increased transistor densities could be used to reduce chip sizes—
and thus cost—rather than to improve performance. The strategy does not per se offer a
solution to the increased performance demand coming from the application side.

The Dim Horseman. An excess power budged from additional CPU cores can be avoided by
clocking down all cores in the chip. Since power consumption grows super-linearly with the
clock frequency, a chip with many low-frequency cores may be more power-efficient than
the alternative of fewer high-frequency cores.

The Specialized Horseman. Rather than replicating the same core over and over, the chip could
be populated with a diverse mix of processing units, each one (energy-)optimized for a
particular task. Only few of these can be active together at any time (to meet the power
budget). But hardware specialization will likely lead to a higher net energy efficiency.

90 8. CONCLUSIONS

The Deus Ex Machina Horseman. There might be an entirely unforeseen escape to the power
limitation, e.g., by leveraging technologies other than the current MOSFET. However,
waiting for miracles in the future can hardly be considered a strategy for problems that
applications are suffering already today.

In this solution space, FPGAs could be considered a variation of the specialized horseman.
But by contrast to the strategy in Taylor’s narrow sense, an FPGA-based realization avoids the
need to decide on a set of specialized units at chip design time. Rather, new or improved special-
ized units could be added to the portfolio of the system at any time. At the same time, no chip
resources are “wasted” for specialized functionality that a particular system installation may never
actually need (e.g., a machine purely used as a database server will hardly benefit from an on-chip

H 264 video decoder).

FPGAS VS. ASICS

Reconfigurable hardware always comes at a price, however. In particular, a circuit realized in an
FPGA will never be competitive with an implementation of the same functionality in dedicated
custom hardware—neither in terms of raw performance, nor in terms of energy efficiency. Kuon
and Rose [2007], for instance, quantified the penalty of reconfigurability to about 3x in perfor-
mance and 14x in energy efficiency.

However, continuing integration densities will work more in favor of reconfigurable hard-
ware than in favor of hard-wired alternatives, mainly for two reasons.

Reason 1: What to Specialize For? As transistor count continues to increase, more and more
tasks will have to be moved to specialized components (otherwise, technology will soon no longer
benefit from Moore’s Law again). The need to continuously specialize, however, will emphasize
the challenge of deciding whar to specialize for. As hardware moves toward specialized designs,
the first specializations are rather easy to decide (for instance, a floating-point unit will benefit a
wide range of applications at relatively little cost). But effectiveness will quickly wane for those
specializations that come after. As mentioned before, this limitation will not arise in configurable
hardware, since any application can instantiate just those accelerators that it actually can benefit
from.

Reason 2: I/0O Limitations While available logic resources—for FPGAs as well as for ASICs—
are expected to still grow exponentially for at least some more years, the number of pins per
chip—and thus its /O capacity—has been mostly stagnating for years already. This leads to a
widening /O gap between an increased compute capacity inside the chip and a lack of bandwidth
to feed the logic with data.

Eftectively, conventional circuits have growing difficulties to actually benefit from all their
compute resources purely for bandwidth reasons (even if they were not constrained by energy). In
such a situation, the better chip space efficiency of ASICs no longer provides an advantage over
configurable hardware.

91

In summary, the fundamental FPGA technology—we sketched the combination of lookup
tables and other components in Chapter 3—has been around for quite some time, but remained
mostly a niche technology throughout most of this time. However, the conditions around the
technology have changed only recently. ASIC technology is reaching limits (as discussed above),
whereas today’s FPGA chip sizes allows competitive functionality to be realized in configurable
hardware.

OPEN CHALLENGES

Under these premises, we expect the relevance of FPGAs in computing systems to increase in
the coming years. Hardware makers already demonstrated various ways to integrate configurable
logic with commodity CPUs. Hybrid chips—where CPU(s) and configurable logic sit on the
same die—are available today, commercially and at volume.

It is thus no longer a question whether or not FPGAs will appear in (mainstream) com-
puting systems. Rather, the database community should begin to worry about how the potential
of FPGAs can be leveraged to improve performance and/or energy efficiency.

Tools and Libraries Several decades of research and development work have matured the soft-
ware world to a degree that virtually any application field receives a rich set of support by tools,
programming languages, libraries, but also design patterns and good practices. Hardware devel-
opment is significantly more complex and has not yet reached the degree of convenience that
software developers have long become used to.

FPGA development still has a rather steep learning curve and many software people shy
away from the technology, because they cannot see the quick progress that they are used to from
their home field. This is unfortunate not only because the potential of FPGA technology—once
the entrance fee has been paid—is high, but also because hardware/software co-design has so far
mostly been left to the hardware community. Clearly, the concept could benefit a lot from expe-
rience and technology (e.g., in software compilers, to name just one) that have become ubiquitous
in the software world.

Systems Architectures As discussed in Chapter 4, the final word on what is the best system
architecture for hybrid CPU/FPGA processing has not yet been spoken. Moreover, data processing
engines would likely benefit also from even more classes of modern system technology, including
graphics processors (GPUs), massively parallel processor arrays (MPPAs) [Butts, 2007], or smart
memories [Mai et al., 2000]. However, only small spots in the large space of possible system
architectures have been explored, yet.

Finding a system architecture that brings together the potential of hardware and the re-
quirements of (database) applications requires a fair amount of experimentation, systems build-
ing, and evaluation. Early results—some of which we also sketched in this book—are promising.
But they also still show rough edges that need to be ironed out before they become attractive for
practical use.

92 8. CONCLUSIONS

FPGAs as a Technology Enabler Specialization and the use of FPGAs is often seen as a mech-
anism to improve quantitative properties of a data processing engine, e.g., its throughput, its
latency, or its energy efficiency.

In Chapter 7, we showed that there are also scenarios where FPGAs can act as an enabler
for functionality that cannot be matched with commodity hardware. With their outstanding flex-
ibility, FPGAs might serve as an enabler also in further ways. For instance, placing configurable
logic into the network fabric or near storage modules might open new opportunities that cannot
be realized by conventional means.

Flexibility vs. Performance In Chapter 4, we discussed trade-offs between runtime performance,
flexibility, and re-configuration speed in FPGA designs. Circuit and systems design in general
face very similar trade-ofts.

General-purpose CPUs were always designed for flexibility, with application performance
or energy efficiency only as secondary goals. These priorities are necessary with a technology and
a market where one size must fit all.

Designers of FPGA circuits, however, are not bound to this prioritization. Rather, their
circuit typically has to support just one very specific application type and the circuit can be re-
built whenever it is no longer adequate for the current application load. And specialization usually
yields sufficient performance advantages, so a “slow path” (e.g., using a general-purpose processor)
for exceptional situations will not seriously affect performance.

Given this freedom to re-decide on trade-offs, it is really not clear which point in the design
space should be chosen for a particular use case. As we already discussed in Chapter 4, existing
research mostly explored configurations with fairly extreme decisions. We think, however, that
the true potential of FPGA lies in the open space in-between. Most likely, the sweet spot is when
different processing units, composed of one or more FPGA units; one or more general-purpose
CPUs; and potentially even more units, operate together in the form of a hybrid system design.

93

APPENDIX A

Commercial FPGA Cards

Most commonly, FPGAs are mounted onto PCI Express plug-in cards. These cards are tailored at
specific purposes (e.g., networking) but usually also have some general purpose extension slots to

support pluggable daughter cards that can directly interface with the high-speed 1/O transceivers
of the FPGA.

A.1 NETFPGA

The NetFPGA project originated at Stanford University in 2007. It is an open source hardware
and software platform targeted at networking research. The first generation development plat-
form is called NetFPGA-1G. It is a PCI card with a Xilinx Virtex-II FPGA and a 4 x 1 Gbps
networking interface. NetFPGA-10G is the latest development platform. Besides a much more
powerful Xilinx Virtex-5 FPGA it also provides significantly more bandwidth, e.g., 40 Gigabit
per second network bandwidth (4 x 10 Gbps Ethernet ports), and theoretical 4 Gigabyte per sec-
ond maximum (bi-directional) PCI Express bandwidth (8 lanes, PCle 2.0, 500MB/s per lane).

Network data are routed via high-speed 1/O transceivers directly into the FPGA chip,
where it can be processed at full /ine-rate without dropping packets, etc., making these cards
very attractive for a variety of networking applications ranging from switches and routers to con-
tent processing applications such as deep packet inspection and network intrusion detection. The
NetFPGA project is the only one of its kind, in the sense that it supports an active community
of hardware and software developers that contribute to the project in the form of open source IP
cores and reference designs. This significantly increases productivity for other developers.

NetFPGA has been successful also for commercial use, however. In particular, Algo-Logic,
a US-based company, utilizes NetFPGA for applications in the area of low-latency trading ap-
plications [Lockwood et al., 2012].

A.2 SOLARFLARE’S APPLICATIONONLOAD™ ENGINE

Solarflare is one of the leading suppliers of low-latency Ethernet. The company provides
10 Gigabit Ethernet adapters, primarily targeting the financial markets. Recently, Solarflare has
launched a new product—the ApplicationOnload™ Engine (AOE)—that combines one of their
network interface cards (NICs) with an Altera Stratix V (GX A5) FPGA. The AOE (SFA6902F)
provides two 10 Gbps Ethernet ports, PCI Express (8 lanes, PCle 2.0, 500MB/s per lane), and
four SODIMM DDR3 memory sockets (supporting up to 16 GB each). Form a hardware per-

94 A. COMMERCIAL FPGA CARDS

spective, Solarflare’s AOE and the NetFPGA are conceptually similar, however, the focus is dif-
terent. While NetFPGA is a very FPGA-centric project, in Solarflare’s AOE the FPGA is added
to an existing product as a “bump-in-the-wire” co-processor. That is, the existing software stack
for Solarfalre’s NICs still runs on AOE, and only users with extreme performance demands, say
for high-frequency trading, will start moving parts of the application into the FPGA on the NIC.
'This makes the transition to an FPGA-based system very smooth.

A.3 FUSIONI/O’SIODRIVE

Fusion I/0 operates in the PCle SSD market. Solid state drives (SSDs) access flash storage
via SATA/SAS interface, which were designed for hard disk access. Fusion 1/O’s ioDrive cards
allow direct access to a flash memory storage tier via PCI Express, offering lower latency and
better overall performance than commodity SSDs. Since Fusion I/0O is a young company with a
revolutionary product, they decided to implement the flash controller on the ioDrive card using
an FPGA, rather than an ASIC. This allows the company to easily modify the controller, and
provide “hardware-updates” to their customers. However, notice that here the FPGA really is a
means to an end, i.e., ioDrive is a pure storage solution, and it is not intended that users program

the FPGA themselves.

Bibliography

Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch Cherniack,
Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther Ryvkina, Nes-
ime Tatbul, Ying Xing, and Stanley B. Zdonik. The design of the Borealis stream processing

engine. In Proc. 2nd Biennial Conf. on Innovative Data Systems Research, pages 277-289, Jan-
uary 2005. 70

Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Kossmann, Ravi Rama-
murthy, and Ramaratnam Venkatesan. Orthogonal security with Cipherbase. In Proc. 625
Biennial Conf. on Innovative Data Systems Research, January 2013. 7, 86, 88

Joshua Auerbach, David F. Bacon, Ioana Burcea, Perry Cheng, Stephen J. Fink, Rodric Rabbah,
and Sunil Shukla. A compiler and runtime for heterogeneous computing. In Proc. 49th Design
Automaton Conference, pages 271-276, June 2012. DOI: 10.1145/2228360.2228411 40

Sumeet Bajaj and Radu Sion. Trusteddb: a trusted hardware based database with privacy and
data confidentiality. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 205~
216, June 2011. DOI: 10.1145/1989323.1989346 86

Zoran Basich and Emily Maltby. Looking for the ‘next big thing’? ranking the top 50 start-ups.
The Wall Street Journal, September 2012. 32

Stephan Borzsonyi, Donald Kossmann, and Konrad Stocker. The skyline operator. In Proc. 17th
Int. Conf. on Data Engineering, 2001. DOI: 10.1109/ICDE.2001.914855 77

Mike Butts. Synchronization through communication in a massively parallel processor array.

IEEE Micro, 27(5):32-40, September 2007. DOI: 10.1109/MM.2007.4378781 91

Christopher R. Clark and David E. Schimmel. Scalable pattern matching for high speed net-
works. In Proc. 12th IEEE Symp. on Field-Programmable Custom Computing Machines, pages
249-257, April 2004. DOI: 10.1109/FCCM.2004.50 69

Graham Cormode and Marios Hadjieleftheriou. Finding frequent items in data streams. Proc.

VLDB Endowment, 1(2):1530-1541, 2008. DOI: 10.1007/3-540-45465-9 59 46

NVIDIA Corp. NVIDIA’ next generation CUDA™ compute architecture: Kepler™ GK110,
2012. White Paper; version 1.0. 49

http://dx.doi.org/10.1145/2228360.2228411
http://dx.doi.org/10.1145/1989323.1989346
http://dx.doi.org/10.1109/ICDE.2001.914855
http://dx.doi.org/10.1109/MM.2007.4378781
http://dx.doi.org/10.1109/FCCM.2004.50
http://dx.doi.org/10.1007/3-540-45465-9_59

96 BIBLIOGRAPHY
Sudipto Das, Shyam Antony, Divyakant Agrawal, and Amr El Abbadi. Thread cooperation

in multicore architectures for frequency counting over multiple data streams. Proc. VLDB
Endowment, 2(1):217-228, August 2009. 46

Jeftrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large clusters.
In Proc. 6th USENIX Symp. on Operating System Design and Implementation, pages 137-150,
December 2004. DOI: 10.1145/1327452.1327492 42

R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R. LeBlanc. Design of ion-
implanted mosfet’s with very small physical dimensions. So/id-State Circuits, IEEE Journal of,
9(5):256-268, October 1974. DOI: 10.1109/JSSC.1974.1050511 1

Christopher Dennl, Daniel Ziener, and Jirgen Teich. On-the-fly composition of FPGA-based
SQL query accelerators using a partially reconfigurable module library. In Proc. 20th IEEE
Symp. on Field-Programmable Custom Computing Machines, pages 45-52, May 2012. DOI:
10.1109/FCCM.2012.18 35, 68, 69

David J. DeWitt. DIRECT—a multiprocessor organization for supporting relational database
management systems. JEEE Trans. Comput., c-28(6):182-189, June 1979.
DOI: 10.1109/TC.1979.1675379 70

Hadi Esmacilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug
Burger. Dark silicon and the end of multicore scaling. In Proc. 38th Annual Symp. on Computer
Architecture, pages 365-376, 2011. DOI: 10.1145/2024723.2000108 4

Robert W. Floyd and Jeftrey D. Ullman. The compilation of regular expressions into integrated
circuits. J. ACM, 29(3):603-622, July 1982. DOI: 10.1145/322326.322327 54

Phil Francisco. The Netezza Data Appliance Architecture: A platform for high performance data
warehousing and analytics. Technical Report REDP-4725-00, IBM Redguides, June 2011. 6,
36

Craig Gentry. Computing arbitrary functions of encrypted data. Commun. ACM, 53(3):97-105,
March 2010. DOI: 10.1145/1666420.1666444 86

Michael T. Goodrich. Data-oblivious external-memory algorithms for the compaction, selection,
and sorting of outsourced data. In Proc. 23rd Annual ACM Symp. on Parallelism in Algorithms
and Architectures, June 2011. DOI: 10.1145/1989493.1989555 88

Naga K. Govindaraju, Brandon Lloyd, Wei Wang, Ming C. Lin, and Dinesh Manocha. Fast
computation of database operations using graphics processors. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 215-226, June 2004. DOI: 10.1145/1007568.1007594
49

http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1109/JSSC.1974.1050511
http://dx.doi.org/10.1109/FCCM.2012.18
http://dx.doi.org/10.1109/FCCM.2012.18
http://dx.doi.org/10.1109/TC.1979.1675379
http://dx.doi.org/10.1145/2024723.2000108
http://dx.doi.org/10.1145/322326.322327
http://dx.doi.org/10.1145/1666420.1666444
http://dx.doi.org/10.1145/1989493.1989555
http://dx.doi.org/10.1145/1007568.1007594

BIBLIOGRAPHY 97
Naga K. Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. =~ GPUTeraSort:

High performance graphics co-processor sorting for large database management. In Proc.
ACM SIGMOD Int. Conf- on Management of Data, pages 325-336, June 2006. DOI:
10.1145/1142473.1142511 49

David J. Greaves and Satnam Singh. Kiwi: Synthesis of FPGA circuits from parallel programs.
In Proc. 16th IEEE Symp. on Field-Programmable Custom Computing Machines, pages 3-12,
April 2008. DOI: 10.1109/FCCM.2008.46 41

Anthony Gregerson, Amin Farmahini-Farahani, Ben Buchli, Steve Naumov, Michail Bachtis,
Katherine Compton, Michael Schulte, Wesley H. Smith, and Sridhara Dasu. FPGA de-
sign analysis of the clustering algorithm for the CERN Large Hadron Collider. In Proc. 17th
IEEE Symp. on Field-Programmable Custom Computing Machines, pages 19-26, 2009. DOI:
10.1109/FCCM.2009.33 70

Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga K. Govindaraju, Qiong Luo, and Pedro V.
Sander. Relational joins on graphics processors. In Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, pages 511-524, June 2008. DOI: 10.1145/1376616.1376670 49

Martin C. Herbordt, Yongfeng Gu, Tom VanCourt, Josh Model, Bharat Sukhwani, and Matt
Chiu. Computing models for FPGA-based accelerators. Computing in Science and Engineering,
10(6):35-45, 2008. DOI: 10.1109/MCSE.2008.143 24

Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore era. IEEE Computer, 41(7):
33-38, July 2008. DOI: 10.1109/MC.2008.209 3

Amir Hormati, Manjunath Kudlur, Scott A. Mahlke, David F. Bacon, and Rodric M. Rabbah.
Optimus: Efficient realization of streaming applications on FPGAs. In Proc. Int’l Conf. on
Compilers, Architecture, and Synthesis for Embedded Systems, pages 41-50, October 2008. DOI:
10.1145/1450095.1450105 40, 41

Intel Corp. The Intel® Xeon Phi™ coprocessor 5110P, 2012. Product Brief; more information
athttp://www.intel.com/xeonphi. 49

Hubert Kaeslin. Digital Integrated Circuit Design. Cambridge University Press, 2008. ISBN
978-0-521-88267-5. 44, 48

Adam Kirsch and Michael Mitzenmacher. The power of one move: Hashing schemes for hard-
ware. IEEE/ACM Transactions on Networking, 18(6):1752-1765, December 2010. DOI:
10.1109/TNET.2010.2047868 66

Dirk Koch and Jim Torresen. FPGASort: A high performance sorting architecture exploiting
run-time reconfiguration on FPGAs for large problem sorting. In Proc. 19th ACM SIGDA Int.
Symp. on Field Programmable Gate Arrays, 2011. DOI: 10.1145/1950413.1950427 73, 74, 75,
76

http://dx.doi.org/10.1145/1142473.1142511
http://dx.doi.org/10.1145/1142473.1142511
http://dx.doi.org/10.1109/FCCM.2008.46
http://dx.doi.org/10.1109/FCCM.2009.33
http://dx.doi.org/10.1109/FCCM.2009.33
http://dx.doi.org/10.1145/1376616.1376670
http://dx.doi.org/10.1109/MCSE.2008.143
http://dx.doi.org/10.1109/MC.2008.209
http://dx.doi.org/10.1145/1450095.1450105
http://dx.doi.org/10.1145/1450095.1450105
http://www.intel.com/xeonphi
http://dx.doi.org/10.1109/TNET.2010.2047868
http://dx.doi.org/10.1109/TNET.2010.2047868
http://dx.doi.org/10.1145/1950413.1950427

98 BIBLIOGRAPHY

Ian Kuon and Jonathan Rose. Measuring the gap between FPGAs and ASICs. IEEE
Trans. Computer-Aided Design of Integrated Circuits, 26(2), February 2007. DOI: 10.1109/T-
CAD.2006.884574 90

Zhiyuan Li and Scott Hauck. Configuration compression for Virtex FPGAs. In Proc. 9th IEEE
Symp. on Field-Programmable Custom Computing Machines, pages 147-159, April 2001. DOI:
10.1109/FCCM.2001.19 68

John W. Lockwood, Adwait Gupte, Nishit Mehta, Michaela Blott, Tom English, and Kees
Vissers. A low-latency library in FPGA hardware for high-frequency trading (HFT). In
IEEE 20th Annual Symp. on High-Performance Interconnects, pages 9-16, August 2012. DOI:
10.1109/HOTI.2012.15 62, 93

Anil Madhavapeddy and Satnam Singh. Reconfigurable data processing for clouds. In Proc. 19th
IEEE Symp. on Field-Programmable Custom Computing Machines, pages 141-145, May 2011.
DOI: 10.1109/FCCM.2011.35 6

Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, and Mark Horowitz. Smart
memories: A modular reconfigurable architecture. In Proc. 27th Symp. on Computer Architecture,
pages 161-171, June 2000. DOI: 10.1145/342001.339673 91

Robert McNaughton and Hisao Yamada. Regular expressions and state graphs for automata.
IEEE Trans. Electr. Comp., 9:39-47,1960. DOI: 10.1109/TEC.1960.5221603 52

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. An integrated efficient solution for

computing frequent and top-k elements in data streams. ACM Trans. Database Syst., 31(3):
1095-1133, September 2006. DOI: 10.1145/1166074.1166084 46, 47

Abhishek Mitra, Marcos R. Vieira, Petko Bakalov, Vassilis J. Tsotras, and Walid A. Najjar. Boost-
ing XML filtering through a scalable FPGA-based architecture. In Proc. 4th Biennial Conf. on
Innovative Data Systems Research, January 2009. 69

Roger Moussalli, Mariam Salloum, Walid A. Najjar, and Vassilis J. Tsotras. Massively parallel
XML twig filtering using dynamic programming on FPGAs. In Proc. 27th Int. Conf. on Data
Engineering, pages 948-959, April 2011. DOI: 10.1109/ICDE.2011.5767899 69

Rene Mueller, Jens Teubner, and Gustavo Alonso. Streams on wires—a query compiler for FP-

GAs. Proc. VLDB Endowment, 2(1):229-240, August 2009. 62, 63, 65, 66

Rene Mueller, Jens Teubner, and Gustavo Alonso. Glacier: A query-to-hardware compiler. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 1159-1162, June 2010. DOI:
10.1145/1807167.1807307 62

Rene Mueller, Jens Teubner, and Gustavo Alonso. Sorting networks on FPGAs. VLDB J., 21
(1):1-23, February 2012. DOI: 10.1007/s00778-011-0232-2 71, 72, 73

http://dx.doi.org/10.1109/TCAD.2006.884574
http://dx.doi.org/10.1109/TCAD.2006.884574
http://dx.doi.org/10.1109/FCCM.2001.19
http://dx.doi.org/10.1109/FCCM.2001.19
http://dx.doi.org/10.1109/HOTI.2012.15
http://dx.doi.org/10.1109/HOTI.2012.15
http://dx.doi.org/10.1109/FCCM.2011.35
http://dx.doi.org/10.1145/342001.339673
http://dx.doi.org/10.1109/TEC.1960.5221603
http://dx.doi.org/10.1145/1166074.1166084
http://dx.doi.org/10.1109/ICDE.2011.5767899
http://dx.doi.org/10.1145/1807167.1807307
http://dx.doi.org/10.1145/1807167.1807307
http://dx.doi.org/10.1007/s00778-011-0232-z

BIBLIOGRAPHY 99

Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Proc. 9th European Symp. on
Algorithms, pages 121-133, August 2001. DOI: 10.1007/978-0-387-30162-4_97 66

Sungwoo Park, Tackyung Kim, Jonghyun Park, Jinha Kim, and Hyeonseung Im. Parallel skyline
computation on multicore architectures. In Proc. 25¢h Int. Conf. on Data Engineering, 2009.
DOI: 10.1109/ICDE.2009.42 80, 81

Oliver Pell and Vitali Averbukh. Maximum performance computing with dataflow engines. Com-

puting in Science and Engineering, 14(4):98-103, 2012. DOI: 10.1109/MCSE.2012.78 49

Mohammad Sadoghi, Harsh Singh, and Hans-Arno Jacobsen. Towards highly parallel event

processing through reconfigurable hardware. In Proc. 7th Workshop on Data Management on
New Hardware, pages 27-32, June 2011. DOI: 10.1145/1995441.1995445 69

David Schneider. The microsecond market. IEEE Spectrum, 49(6):66-81, June 2012. DOI:
10.1109/MSPEC.2012.6203974 62

Reetinder Sidhu and Viktor K. Prasanna. Fast regular expression matching using FPGAs. In
Proc. 9th IEEE Symp. on Field-Programmable Custom Computing Machines, pages 227-238,
April 2001. DOI: 10.1109/FCCM.2001.22 54

Satnam Singh. Computing without processors. Commun. ACM, 54(8):46-54, August 2011.
DOI: 10.1145/1978542.1978558 41

Michael Stonebraker, Samuel Madden, Daniel]. Abadi, Stavros Harizopoulos, Nabil Hachem,
and Pat Helland. The end of an architectural era: (it’s time for a complete rewrite). In Proc.
33rd Int. Conf. on Very Large Data Bases, pages 1150-1160, 2007. 4

Tabula, Inc. Spacetime™ architecture, 2010. URL http://www.tabula.com/. White Paper.
68

Michael B. Taylor. Is dark silicon useful? harnessing the four horsemen of the coming dark silicon
apocalypse. In Proc. 49th Design Automaton Conference, June 2012.
DOI: 10.1145/2228360.2228567 89

Jens Teubner and Louis Woods. Snowfall: Hardware stream analysis made easy. In Proc. 14th
Conf. on Databases in Business, Technology, and Web, pages 738-741, March 2011. 67

Jens Teubner, Rene Mueller, and Gustavo Alonso. Frequent item computation on a
chip. IEEE Trans. Knowl. and Data Eng., 23(8):1169-1181, August 2011. DOI:
10.1109/TKDE.2010.216 46, 47, 48

Jens Teubner, Louis Woods, and Chongling Nie. Skeleton automata for FPGAs: Reconfiguring
without reconstructing. In Proc. ACM SIGMOD Int. Conf- on Management of Data, pages
229-240, May 2012. DOI: 10.1145/2213836.2213863 36, 45

http://dx.doi.org/10.1007/978-0-387-30162-4_97
http://dx.doi.org/10.1109/ICDE.2009.42
http://dx.doi.org/10.1109/MCSE.2012.78
http://dx.doi.org/10.1145/1995441.1995445
http://dx.doi.org/10.1109/MSPEC.2012.6203974
http://dx.doi.org/10.1109/MSPEC.2012.6203974
http://dx.doi.org/10.1109/FCCM.2001.22
http://dx.doi.org/10.1145/1978542.1978558
http://www.tabula.com/
http://dx.doi.org/10.1145/2228360.2228567
http://dx.doi.org/10.1109/TKDE.2010.216
http://dx.doi.org/10.1109/TKDE.2010.216
http://dx.doi.org/10.1145/2213836.2213863

100 BIBLIOGRAPHY

Ken Thompson. Programming techniques: Regular expression search algorithm. Commun. ACM,

11(6):419-422, 1968. DOI: 10.1145/363347.363387 52

Maamar Touiza, Gilberto Ochoa-Ruiz, ElI-Bay Bourennane, Abderrezak Guessoum, and Kamel
Messaoudi. A novel methodology for accelerating bitstream relocation in partially reconfig-

urable systems. Microprocessors and Microsystems, 2012. DOI: 10.1016/j.micpro.2012.07.004
30

Philipp Unterbrunner, Georgios Giannikis, Gustavo Alonso, Dietmar Fauser, and Donald Koss-
mann. Predictable performance for unpredictable workloads. Proc. VLDB Endowment, 2(1):
706-717, 2009. 62

Pranav Vaidya and Jachwan John Lee. A novel multicontext coarse-grained reconfigurable archi-
tecture (CGRA) for accelerating column-oriented databases. ACM Trans. Reconfig. Technol.
Syst., 4(2), May 2011. DOI: 10.1145/1968502.1968504 38

Pranav Vaidya, Jachwan John Lee, Francis Bowen, Yingzi Du, Chandima H. Nadungodage,
and Yuni Xia. Symbiote: A reconfigurable logic assisted data stream management system
(RLADSMS). In Proc. ACM SIGMOD Int. Conf: on Management of Data, pages 1147-1150,
June 2010. DOI: 10.1145/1807167.1807304 70

Louis Woods, Jens Teubner, and Gustavo Alonso. Complex event detection at wire speed with

FPGAs. Proc. VLDB Endowment, 3(1):660-669, September 2010. 58, 59, 60

Louis Woods, Jens Teubner, and Gustavo Alonso. Real-time pattern matching with FP-
GAs. In Proc. 27th Int. Conf. on Data Engineering, pages 1292-1295, April 2011. DOI:
10.1109/ICDE.2011.5767937 59, 60

Louis Woods, Jens Teubner, and Gustavo Alonso. Parallel computation of skyline queries. In
Proc. 215t IEEE Symp. on Field-Programmable Custom Computing Machines, April 2013. 77,
78,79, 80, 81

Yi-Hua E. Yang and Viktor K. Prasanna. High-performance and compact architecture for regular
expression matching on FPGA. IEEE Trans. Comput., 61(7):1013-1025, July 2012. DOI:
10.1109/TC.2011.129 45, 55, 56

Yi-Hua E. Yang, Weirong Jiang, and Viktor K. Prasanna. Compact architecture for high-
throughput regular expression matching on FPGA. In Proc. ACM/IEEE Symp. on Ar-
chitecture for Networking and Communication Systems, pages 30-39, November 2008. DOI:
10.1145/1477942.1477948 46, 55, 56, 57, 58

http://dx.doi.org/10.1145/363347.363387
http://dx.doi.org/10.1016/j.micpro.2012.07.004
http://dx.doi.org/10.1145/1968502.1968504
http://dx.doi.org/10.1145/1807167.1807304
http://dx.doi.org/10.1109/ICDE.2011.5767937
http://dx.doi.org/10.1109/ICDE.2011.5767937
http://dx.doi.org/10.1109/TC.2011.129
http://dx.doi.org/10.1109/TC.2011.129
http://dx.doi.org/10.1145/1477942.1477948
http://dx.doi.org/10.1145/1477942.1477948

101

Authors’ Biographies

JENS TEUBNER

Jens Teubner is leading the Databases and Information Sys-
tems Group at TU Dortmund in Germany. His main re-
search interest is data processing on modern hardware plat-
forms, including FPGAs, multi-core processors, and hardware-
accelerated networks. Previously, Jens Teubner was a postdoc-
toral researcher at ETH Zurich (2008-2013) and IBM Re-
search (2007-2008). He holds a Ph.D. in Computer Science
from TU Minchen (Munich, Germany) and an M.S. degree

in Physics from the University of Konstanz in Germany.

LOUIS WOODS

Louis Woods is a Ph.D. student, who joined the Systems
Group at ETH Zurich in 2009. His research interests in-
clude FPGAs in the context of databases, modern hardware,
stream processing, parallel algorithms, and design patterns.
Louis Woods received both his B.S. and M.S. degree in Com-
puter Science from ETH Zurich in 2008 and 2009, respec-
tively.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00514ED1V01Y201306DTM035&iName=master.img-006.jpg&w=107&h=161
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00514ED1V01Y201306DTM035&iName=master.img-007.jpg&w=107&h=161

bitstream, 28

bitstream authentication, 85
bitstream encryption, 85
block nested loops, 77
Block RAM (BRAM), 24

carry chain, 21

CEP (complex event processing), 58
chip space, 58

Cipherbase, 83, 86

CLB, see logic island

clock signal, 11, 39, 65

cloud computing, 6

co-processor, 51

combinational logic, 9

complex event processing, 58
configurable logic block, see logic island

cryptoprocessor, 86

dark silicon, 89

data flow computing, 49
data parallelism, 42
data path, 61
de-serialization, 67
Dennard scaling, 1
deterministic automaton, 52
DFA, 52

die stacking, 30
distributed RAM, 19
DSP unit, 25

electronic stock trading, 62

Index

elementary logic unit, 20
encryption
bitstream, 85

finite-state automaton, 51
flip-flop, 11, 39

frequent item computation, 46
Fusion I/0, 94

Glacier, 62
GPU, 3, 48
graphics processor, 3, 48

hard cores, 26

hardware description language, 12
hash table, 66

high-frequency trading (HFT), 62
high-level synthesis, 32, 40
homomorphic encryption, 86

instruction set processor, 37
interconnect, 9, 22

latch, 11

line-rate performance, 60, 93
logic island, 21

look-up table (LUT), 18

many-core processor, 49
map (design flow), 28
memory, 9

merge sorter, 73
Moore’s Law, 1, 89
multiplexer, 9, 13

103

104 INDEX

NetFPGA, 93
network intrusion detection, 5, 51, 56
NFA, 52

non-deterministic automaton, 52

parameterization, 35
partial reconfiguration, 28, 34, 69, 75
pattern matching, 51
PCI Express, 93
pipelining, 43, 57

in FPGAs, 45
place and route (design flow), 28
PLD (programmable logic device), 17
power consumption, 2
programmable logic devices, 17
propagation delay, 10, 56, 72

push-based execution, 64
query compilation, 64

RAM

distributed, 19, 24
reconfiguration

partial, 28
register-transfer level, 14
regular expression, 51
replication, 42
risk management, 62

RTL (register-transfer level), 14

security, 6
sequential logic, 10
asynchronous, 11
synchronous, 11
serialization, 67
simulation, 13
skeleton automata, 36
skyline operator, 76
slice, see elementary logic unit
soft cores, 26
Solarflare, 93
sorting, 71
sorting network, 71
stack machine, 88
stream partitioning, 58
stream processing, 5
synthesis, 14, 27

time-multiplexed FPGAs, 31
translate (design flow), 27
tree merge sorter, 74

trusted platform module, 83

von Neumann architecture, 83
von Neumann bottleneck, 2

XPath, 36

	Preface
	Introduction
	Moore's Law and Transistor-Speed Scaling
	Memory Wall and Von Neumann Bottleneck
	Power Wall
	Multicore CPUs and GPUs
	Specialized Hardware
	Field-Programmable Gate Arrays (FPGAs)
	FPGAs for Data Processing
	Stream Processing
	Big Data
	Cloud Computing
	Security

	A Primer in Hardware Design
	Basic Hardware Components
	Combinational Logic
	Sequential Logic
	Asynchronous sequential logic
	Synchronous sequential logic

	Hardware Programming
	Hardware Description Languages (HDLs)

	Circuit Generation
	Logical Design Flow (Synthesis)
	Physical Design Flow

	FPGAs
	A Brief History of FPGAs
	Look-up Tables—The Key to Re-Programmability
	LUT Representation of a Boolean Function
	Internal Architecture of an LUT
	LUT (Re)programming
	Alternative Usage of LUTs

	FPGA Architecture
	Elementary Logic Units (Slices/ALMs)

	Routing Architecture
	Logic Islands
	Interconnect

	High-Speed I/O
	Auxiliary On-Chip Components
	Block RAM (BRAM)
	Digital Signal Processing (DSP) Units
	Soft and Hard IP-Cores

	FPGA Programming
	FPGA Design Flow
	Dynamic Partial Reconfiguration

	Advanced Technology and Future Trends
	Die Stacking
	Heterogeneous Die-Stacked FPGAs
	Time-Multiplexed FPGAs
	High-level Synthesis

	FPGA Programming Models
	Re-Build, Parameterize, or Program the Hardware Accelerator?
	Re-Building Circuits at Runtime
	Parameterized Circuits
	Instruction Set Processors on top of FPGAs

	From Algorithm to Circuit
	Expression Circuit
	Circuit Generation
	High-Level Synthesis

	Data-Parallel Approaches
	Data Parallelism

	Pipeline-Parallel Approaches
	Pipeline Parallelism in Hardware
	Pipelining in FPGAs
	Designing for Pipeline Parallelism
	Turning a Circuit into a Pipeline-Parallel Circuit

	Related Concepts

	Data Stream Processing
	Regular Expression Matching
	Finite-State Automata for Pattern Matching
	Implementing Finite-State Automata in Hardware
	Optimized Circuit Construction
	Network Intrusion Detection

	Complex Event Processing
	Stream Partitioning
	Hardware Partitioner
	Best-Effort Allocation
	Line-Rate Performance

	Filtering in the Data Path
	Data Path Architecture in the Real World

	Data Stream Processing
	Compositional Query Compilation
	Getting Data In and Out

	Dynamic Query Workloads
	Fast Workload Changes Through Partial Modules

	Bibliographic Notes

	Accelerated DB Operators
	Sort Operator
	Sorting Networks
	BRAM-based FIFO Merge Sorter
	External Sorting with a Tree Merge Sorter
	Sorting with Partial Reconfiguration

	Skyline Operator
	Standard Block Nested Loops (BNL) Algorithm
	Parallel BNL with FPGAs
	Performance Characteristics

	Secure Data Processing
	FPGAs versus CPUs
	Von Neumann Architecture
	Trusted Platform Module (TPM)

	FPGAs versus ASICs
	Security Properties of FPGAs
	Bitstream Encryption
	Bitstream Authentication
	Further Security Mechanisms

	FPGA as Trusted Hardware
	Fully Homomorphic Encryption with FPGAs
	Hybrid Data Processing
	Trusted Hardware Implementation

	Conclusions
	Commercial FPGA Cards
	NetFPGA
	Solarflare's ApplicationOnload™ Engine
	Fusion I/O's ioDrive

	Bibliography
	Authors' Biographies
	Index

