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Data Sources

• Much of the published empirical analysis 
f RV h b b d hi h fof RV has been based on high frequency 

data from two sources:
– Olsen and Associates proprietary FX data 

set for foreign exchange
• www.olsendata.com
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– The NYSE Trades and Quotation (TAQ) 
data for equity

• www.nyse.com/taq

Olsen FX Data
• Historical data made available for use in three 

conferences on the statistical analysis of high frequency 
data: HFDF-1993, HFDF-1996, and HF-2000.data:  HFDF 1993, HFDF 1996, and HF 2000.

• The HFDF-2000 data is the most commonly used data 
set
– spot exchange rates sampled every 5 minutes for the $, DM, 

CHF, BP, Yen over the period December 1, 1986 through June 
30, 1999.

– All interbank bid/ask indicative quotes for the exchange rates 
displayed on the Reuters FXFX screen.
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p y
– Highly liquid market: 2000-4000 observations per day per 

currency
– Outlier filtered log-price at each 5-minute tick is interpolated from 

the average of bid and ask quotes for the two closest ticks, and 
5-minute cc return is difference in the log-price.
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Olsen FX Data

• Data cleaning prior to computation of RV 
measures:
– 5-minute return data is restricted to eliminate non-

trading periods, weekends, holidays, and lapses of the 
Reuters data feed.

– The slow weekend period from Friday 21:05 GMT until 
Sunday 21:00 GMT is eliminated from the sample.

– Holidays removed: Christmas (December 24-26), New 
Year's (December 31- January 2), July 4th, Good 
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Friday, Easter Monday, Memorial Day, Labor Day, and 
Thanksgiving and the day after.

– Days that contain long strings of zero or constant 
returns (caused by data feed problems) are eliminated.

Empirical Analysis of FX Returns

Author Series Sample Days, T m
AB 1998 DM/$, Y/$ 87 93 260 288AB 1998 DM/$, Y/$ 87-93 260 288
AB 1998 DM/$, Y/$ 87-93 260 48
ABDL 2000 DM/$, Y/$ 86-96 2,445 48
ABDL 2001 DM/$, Y/$ 86-96 2,449 288
ABDL 2003 DM/$, Y/$ 86-99 3,045 48
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,
ABDM 2005 DM/$, Y/$ 89-99 3,045 48
BNS 2001 DM/$ 86-96 2,449 various
BNS 2002 DM/$ 86-96 2,449 288
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Distribution of RV

• ABDL (2001): “The Distribution of Realized 
E h R t V l tilit ” J l f thExchange Rate Volatility,” Journal of the 
American Statistical Association.

• BNS (2001): “Estimating Quadratic 
Variation Using Realized Variance,” 
Journal of Applied Econometrics.
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Journal of Applied Econometrics.

Summary Statistics for Daily RV Measures, 
m=228
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GaussianNon-Gaussian
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Unconditional Distributions: m=288
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Unconditional Distributions: m=288
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Correlation Matrix for Daily RV Measures
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“Correlation-in-Volatility” Effect
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Source: ABDL (2001)
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Accuracy of RV Measures: 95% CI from BNS 
Asymptotic Theory as Functions of m
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Source: BNS (2002)

Time Series of Daily RVOL: m=228
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Time Series of Daily RCOR: m=228

5/24/2010 13Source: ABDL (2001)

SACF of Daily RV Measures: m=228
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Long Memory Behavior of RV Measures

A stationary process yt has long memory, or 
l d d if it t l tilong range dependence, if its autocorrelation 
function decays slowly at a hyperbolic rate:

,  as 

(0,1)
k C k k
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Fractionally Differenced Processes

• A long memory process yt can be modeled 
parametrically by extending an integratedparametrically by extending an integrated 
process to a fractionally integrated process:

(1 ) ( ) ,  ~ (0)

0 0.5 :  stationary long memory

d
t t tL y u u I

d
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0.5 1:  nonstationary long memoryd 
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Estimating d

• Nonparametric estimation
Ge eke Porter H dak (GPH) log– Geweke-Porter-Hudak (GPH) log-
periodogram regression

– Local Whittle estimator
– Phillips-Kim modified GPH estimator
– Andrews-Guggenberger biased corrected 

GPH estimator
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GPH estimator

• Parametric estimation
– ARFIMA(p,d,q) model with normal errors

GPH Estimates of d

Note: Multivariate estimate of common d 
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using (RLVOLD, RLVOLY, RLVOLDY) is 0.4
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Temporal Aggregation and Scaling Laws

• The fractional differencing parameter d is 
invariant under temporal aggregationinvariant under temporal aggregation

• If xt is fractionally integrated with parameter 
d then

2 1var([ ] )

[ ]

d
t h

h

x c h  
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Temporal Aggregation and Estimated of d

GPH Estimates of d
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Temporal Aggregation and Scaling Laws
RV RLVOL
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Distribution of Returns 
Standardized by RV

• ABDL (2000): “Exchange Rate Returns 
St d di d b R li d V l tilit AStandardized by Realized Volatility Are 
(Nearly) Gaussian,” Multinational Finance 
Journal
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Stochastic Volatility Model

• Assume daily returns rt may be decomposed 
following a standard conditional volatilityfollowing a standard conditional volatility 
model

latent volatility
t t t

t

r  
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~  (0,1)t iid

Standardized Returns

• Compute returns standardized by estimates 
of conditional volatilityof conditional volatility
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Multivariate Standardized Returns

• Standardized returns based RCOV
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Comparison of Volatility Forecasts

• Squared returns are unbiased but very 
noisynoisy

• GARCH(1,1) estimates are smoother than 
RV estimate; do not utilize information 
between time t-1 and t (exponentially 
weighted average of past returns)
RV ti t k l i f
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• RV estimates make exclusive use of 
information between time t-1 and t; better 
forecast of time t volatility



5/24/2010

14

Summary Statistics
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Gaussian!

Distribution of Daily Returns
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Distribution of Standardized Returns

RVRV
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RCOV

Scatterplot of Daily Returns
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Source: ABDL (2000)
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Scatterplot or Standardized Returns

RV
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Source: ABDL (2000)

RCOV

SACF of Squared Returns

RAW

RV
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RCOV

DM/$ Yen/$ DM/$, Yen/$
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Squared returns 1-day ahead Forecasts of daily t

GARCH(1,1)
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RV-ARMA(1,1), m=48

Returns Standardized by 1-Day-
Ahead Forecasts
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Conclusions

• Daily returns standardized by RV 
l G imeasures are nearly Gaussian

• Supports diffusion model for returns

• Alternative to copula methods for 
characterizing multivariate distributions

Advantages for value at risk computation
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• Advantages for value-at-risk computation

Modeling and Forecasting RV

• ABDL (2003): “Modeling and Forecasting 
R li d V l tilit ” E t iRealized Volatility,” Econometrica
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Traditional Conditional Volatility Models

• Normal GARCH(1,1)

• Log-Normal SV model

2 2 2
1 1

,  ~  (0,1)t t t t
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Advantages of Using RV

• RV provides an observable estimate of 
l t t l tilitlatent volatility

• Standard time series models (e.g. ARIMA) 
may be used to model and forecast RV

• Multivariate time series models may be 
used model and forecast RCOV RCOR
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used model and forecast RCOV, RCOR
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Trivariate System of Exchange Rates
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• Fit models for yt in sample: 12/1/86-12/1/96 

• Forecast yt out-of-sample: 12/2/96 – 6/30/99

SACF of Daily DM/$ RLVOL: m=48

0.4(1 ) ( )it iL y  
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SACF of Daily Yen/$ RLVOL: m=48

0.4(1 ) ( )it iL y  
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SACF of Daily Yen/DM RLVOL: m=48

0.4(1 ) ( )it iL y  
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FI-VAR(5) Model (VAR-RV)
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Alternative Models

• VAR-ABS: VAR(5) fit to |rt|
• AR-RV: univariate AR(5) fit to (1-L)0.4RLVOLi tAR RV: univariate AR(5) fit to (1 L) RLVOLi,t

• Daily GARCH(1,1): normal-GARCH(1,1) fit to daily 
returns ri,t

• Daily RiskMetrics: exponentially weighted moving 
average model for ri,t² with λ=0.94

• Daily FIEGARCH(1,1): univariate fractionally integrated 
exponential GARCH(1,1) fit to ri,t
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i,t

• Intra-day FIEGARCH deseason/filter: univariate 
fractionally integrated exponential GARCH(1,1) fit to 30-
minute filtered and deseasonalized returns ri,t+∆.
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Forecast Evaluation

model
, 0 1 , 2 ,

,

model
,

ˆ ˆ

ˆ  1-day ahead forecast from RV-VAR

ˆ  1-day ahead forecast from alternative model

VAR RV
i t i t i t t

VAR RV
i t

i t

RVOL b bRVOL b RVOL error

RVOL
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0 0 1 2: 0,  1,  0H b b b  

Findings

• RV-VAR is consistently best forecasting 
d l i l d t f lmodel in-sample and out-of-sample: 

highest R2 from forecast evaluation 
regressions.

• Rarely reject H0: b0=0, b1=1, b2=0 for RV-
VAR model
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VAR model

• RV-AR is close to RV-VAR
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Forecasts of Daily RVOL: VAR-RV vs. 
GARCH(1,1)
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NYSE TAQ Data

• Intra-day trade and quotation information 
f ll iti li t d NYSE AMEXfor all securities listed on NYSE, AMEX, 
and NASDAQ. 

• The most active period for equity markets 
is during the trading hours of the NYSE 
between 9:30 a.m. EST until 4:00 p.m.
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between 9:30 a.m. EST until 4:00 p.m. 
EST.  

• Not as liquid as FX markets
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NYSE TAQ Data

• Equity returns are generally subject to more 
pronounced market microstructure effects (e gpronounced market microstructure effects (e.g., 
negative first order serial correlation caused by 
bid-ask bounce effects) than FX data. As a 
result, equity returns are often filtered to remove 
these microstructure effects prior to the 
construction of RV measures.

• A common filtering method involves estimating
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• A common filtering method involves estimating 
an MA(1) or AR(1) model to the returns, and 
then constructing the filtered returns as the 
residuals from the estimated model.

Empirical Analysis of TAQ Data

• Andersen, Bollerslev, Diebold, Ebens 
(2001) “Th Di t ib ti f R li d St k(2001): “The Distribution of Realized Stock 
Return Volatility,” Journal of Financial 
Economics
– Analyze 30 Dow Jones Industrial Average 

Stocks over the period 1/2/93 – 5/29/98
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– Restrict analysis to NYSE exchange hours

– T=1,336; m=79 5-minute returns
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Summary of Findings

• Results for equity returns are similar to 
those for FX returnsthose for FX returns
– RLVOL, RCOR are approximately Gaussian
– RV measures exhibit long memory
– Daily returns standardized by RVOL are 

nearly Gaussian

• Little evidence of leverage effect
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• Little evidence of leverage effect
• Evidence of factor structure in multivariate 

system of RV measures

Distribution of Daily RLVOL: Alcoa

Solid line: RLVOL

D h d li l d itDashed line: normal density
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Distribution of Daily RCOR: Alcoa,Exxon

Solid line: RCOR

Dashed line: normal densityDashed line: normal density
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Time Series of Daily RLVOL: Alcoa
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Time Series of Daily RCOR: Alcoa, Exxon
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Source: ABDE (2001)

Distribution of Daily Standardized Returns 
for Alcoa

Solid line: returns/RVOL

Dashed line: normal density
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Evidence for Factor Structure

RLVOLAlcoa
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Evidence of Factor Structure

RCORAlcoa,i
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RLVOLAlcoa
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Evidence of Factor Structure

Average RCORAlcoa,I

i≠Alcoa, Exxon
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Directions for Future Research

• Continued development of methods for 
l iti th l tilit i f ti i hi hexploiting the volatility information in high-

frequency data

• Volatility modeling and forecasting in the 
high-dimensional multivariate 
environments of practical financial
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environments of practical financial 
economic relevance


