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ABSTRACT 
Merging or joining data sets is an integral part of the data consolidation process.  Within SAS® there are numerous 
methods and techniques that can be used to combine two or more data sets.  We commonly think that within the DATA 
step the MERGE statement is the only way to join these data sets, while in fact, the MERGE is only one of numerous 
techniques available to us to perform this process.  Each of these techniques has advantages and some have 
disadvantages.  The informed programmer needs to have a grasp of each of these techniques if the correct technique is 
to be applied. 
 
This paper covers basic merging concepts and options within the DATA step, as well as, a number of techniques that go 
beyond the traditional MERGE statement. These include fuzzy merges, double SET statements, and the use of key 
indexing.  The discussion will include the relative efficiencies of these techniques, especially when working with large 
data sets.   
 

INTRODUCTION 
Merging two or more data tables is an essential data manipulation process.  Known as a join when performed in a SQL 
step, in the DATA step the MERGE statement coordinates the process of bringing in the data from multiple tables to 
create a unified set of variables. 
 
Merging two or more data sets in the DATA step is not limited to just the MERGE statement.  Indeed a number of other 
techniques are available that have a number of advantages including performance enhancements and flexibilities that 
are not available using the tradition MERGE statement.  This paper will introduce a number of these techniques, 
however since it is concentrating on the DATA step, techniques using alternate tools, such as SQL, will not be discussed.   
 
The data used throughout this paper are four small clinical trial data sets. The first CLINDAT.PATIENT has patient 
identifying information, because this is a blinded study the identifying information must be stored separately until we 
are ready to un-blind the study.  This data has one row per patient and PATID is a unique row identifier (primary key).  
The second data set (CLINDAT.TRIAL) has the study information.  It has a different primary key PATID and DT_DIAG.  The 
third data set (CLINDAT.CONMED) lists the medications being taken for each patient.  The variables PATID and DRUG 
form its primary key.  The fourth data set has adverse event information (CLINDAT.AE), and requires three variables as 
its primary key (PATID, AESTART, and AEDESC).  The various data sets do not have the same number of observations.   
 

REVIEW OF A MERGE 
When two or more data sets are merged, their individual variable lists are joined into a single set of variables.  Generally 
these two lists are fairly different with one or more key variables in common that allow the merging process to create 
associations among observations.  In the simplest merge there are no key variables and the MERGE statement is used 
without a BY statement.  This is known as a one-to-one merge, and is generally, 
except under very specific circumstances, a bad idea.  Almost always the MERGE 
statement is immediately followed by a BY statement which lists the variables 
that form the key that coordinates the association between the observations that 
are read from the incoming data sets.  This forms what is known as a match 
merge (shown here).  The match merge assumes that both data sets have been 
sorted (or indexed – see below) for the BY variables. 

data twomerge; 
   merge clindat.patient 
         clindat.trial; 
   by patid; 
   run; 
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Requirements 
When the MERGE statement is used with a BY statement, the incoming data sets must be sorted (or indexed).  This is 
known as a match merge and the BY variables should form a primary key (identify down to the row level) in all, but at 
most one, of the incoming data sets.  If the BY variables do not form a primary key, a one-to-one merge will take place 
within that BY group.  
 
Cautions 
The merge process assumes that the variable lists of the incoming data sets are unique and that the only variables in 
common are those listed on the BY statement. 
 
Because SAS builds the Program Data Vector (PDV) from left to right, the leftmost data set in the MERGE statement will 
be first to supply variable attributes.  If there are overlapping variables, only one can reside on the PDV and it will have 
the attributes associated with the left most of the data sets that contains it.  This includes the BY variables.  It is always 
wise to ensure that the attributes of the BY variables are consistent across all of the data sets. 
 
Behaviors 
For a given combination of BY variables if a corresponding observation does not exist within a data set, the variables 
contributed by that data set will be missing. 
 
When two or more observations have the same combination of BY variables in one data set and there is only one 
matching observation in the other data set the row in that data set will be duplicated. 
 
 

MERGING WITH A DOUBLE SET 
The MERGE statement coordinates the reads of the observations from the incoming data sets.  It is possible to take 
charge of this process by using two SET statements.  In its simplest form two SET statements in a DATA step will result in 
a unified PDV.  The result, however is not necessarily the same as a merge.   The 
example shown here is almost like a one-to-one merge, but it is not the same.  When 
reading data using a SET statement, as is done here, as soon the last observation is 
read from either data set the reading process ends.  This means that the total number 
of observations will be governed by the smaller of the incoming data sets.  If we want 
to use this technique we will have to take control of the read process. 
 
Because we are taking charge of the merging process, a 
DATA step constructed this way, even with the logic 
needed to control the reads, will often be faster than a 
merge managed by a MERGE statement.  However the 
logic is more complex.  Here an observation is read from 
the first data set and the patient id is renamed. The DO 
WHILE is then entered and observations are read until 
the patient codes match (this keeps the two data sets in 
sync with each other).  Obviously as the data becomes 
more complex so too does the logic needed to read it 
successfully. 
 
 

data twoset; 
   set clindat.patient; 
   set clindat.trial; 
   run; 

data doubleset; 
  set clindat.patient(rename=(patid=code)); 
  * The following expression is true only 
  * when the current CODE is a duplicate.; 
  if code=patid then output; 
  do while(code>patid); 
    * lookup the study information using 
    * the code from the primary data set; 
    set clindat.trial(keep=patid symp dt_diag); 
    if code=patid then output; 
  end; 
run; 
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MANY-TO-MANY MERGE 
While a many-to-many merge is the default in a SQL join, it is often said that it is not possible to perform one in the 
DATA step.  This is not correct.  A many-to-many merge matches each observation from one data set to each in another 
data set.  This tends not to be practical, but it is not uncommon to match all observations within a group with all of 
those in the same group in the other data set.  As a general rule it is much more practical to do this in a SQL step.  But 
there can sometimes be reasons that would make the DATA step a more attractive alternative. 
 
In the code that follows merges a data set back on itself.  Here we would like to match all the females in our study with 
all the males with the same symptom (SYMP) so that we can see how consistent the diagnosis codes (DIAG) are across 

gender.  In this approach (there is a more 
efficient example of many to many 
merging in the section on using arrays), we 
read each observation several times.  The 
first SET statement reads each female and 
then the interior DOW loop rereads the 
entire data set to find all observations that 
meet the stated criteria (males with the 
same symptom as the females).  The key 
to rereading the data is the use of the 
POINT= and NOBS= options on the SET 
statement.  These are used to control the 
looping. 

 
Remember, if you are considering a many to many merge, first look at a SQL step, but do not dismiss the DATA step out-
of-hand.  
 
 

TAKING ADVANTAGE OF INDEXES 
One of the disadvantages of the MERGE is that both incoming data sets must be sorted in order to use the BY statement.  
For smaller data sets this may not be a very big consideration, but as data sets become large sorting itself can become 
problematic.  If one or both of the data sets are indexed the sorting can be avoided.  Indexes are a way to logically sort 
your data without physically sorting it.  
 
Indexes must be created, stored, and maintained.  They are most usually created through either PROC DATASETS (shown 
below) or through PROC SQL.  The index stores the order of the data as if it had been physically sorted.  Once an index 
exists, SAS will be able to access it, and you will be able to use the data set with the appropriate BY statement, even 
though the data have never been sorted.  You are not limited to a single index on a data set, so any given data set can be 
effectively sorted multiple ways at any given time. 
 
Obviously there are some of the same limitations to indexes that you encounter when sorting large data sets.  Resources 
are required to create and maintain the index, and these can be similar to the SORT itself.  The index(es) is stored in a 
separate file, and the size of this file can be substantial, especially as the number of indexes, observations, and variables 
used to form the indexes increases.  
 
Indexes can substantially speed up processes, but they can also SLOW things down if they are not constructed 
effectively.  Be sure to read and experiment carefully before investing a lot in the use of indexes.  Indexes are best suited 
to be applied to large stable data sets.  Large and stable will depend on your organization and how it processes its data, 
but if a data set is constantly changing, it may not be a good candidate as the index would need to be recreated each 

data manymany(keep=f_patid m_patid f_symp m_diag f_diag 
              rename=(f_symp=symp)); 
   set clindat.trial(rename=(patid=f_patid diag=f_diag  
                             symp=f_symp sex=f_sex) 
                     where=(f_sex='F')); 
   do pt = 1 to nobs; 
      set clindat.trial(rename=(patid=m_patid diag=m_diag 
                                symp=m_symp sex=m_sex)) 
          point=pt nobs=nobs; 
      if m_sex='M' and f_symp=m_symp then output manymany; 
   end; 
   run; 
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time the data set changes.  For most of my work the definition of large is: ‘Sigh, I have to sort that puppy’ and stable 
data sets are usually not recreated much more often than nightly. 
 

Creating Indexes 
When a merge is performed on an indexed data set, the BY statement can be used as if the data were sorted. 
 
The index can be created using a PROC DATASETS step.  Here an index is created for the primary key of each of the two 

data sets of interest.  Indexes are named although 
we rarely if ever use the name of the index.  Indexes 
consisting of a single variable (PATID for 
CLINDAT.PATIENT) are automatically named for the 
variable.  When the two or more variables are used 
to form the index as they are for CLINDAT.TRIAL, the 
index must be given a name (here the name is 
KEYNAME). 

 
Merging without Sorting 
Once indexes have been created the data set will no longer need to be physically sorted as long as it is virtually sorted 

(indexed) using the appropriate key variables.  You do not need to do 
anything different to take advantage of the indexes.  Notice that the 
composit index for CLINDAT.TRIAL is available, eventhough in this example 
we have only used the first of the two variables in the index. 
 
 

Using the Key= Option 

You can also perform a merge when an index only exists on one of the data sets.  This is very important when one of the 
data sets cannot be sorted or for whatever reason cannot be indexed.  In the example shown here, the data set 
CLINDAT.TRIAL represented the unsorted and unindexed large data set.  We only need to know that it contains the 

variable PATID, which is an index for the second 
(usually smaller) data set.  As each observation is 
read from CLINDAT.TRIAL the value of PATID is 
used by the KEY= option to perform a random 
access read of the corresponding of the indexed 
data set. 
 
It is possible that a PATID in the primary data set 
will not exist in the secondary (indexed) data set.  

When this happens a read of the secondary data set cannot take place and SAS sets the temporary / automatic variable 
_IORC_ to something other than zero.  Here we use this information to reset the secondary table’s variables that would 
otherwise be retained from the previous observation that was successfully read from CLINDAT.PATIENT.  There are a 
number of other functions that utilize this return code to help you during the debugging phase. 
 
The resulting data set will be in the same order as the incoming master data set (CLINDAT.TRIAL).  

proc datasets library=clindat nolist; 
  modify patient; 
    index create patid / unique; 
  modify trial; 
    index create keyname=(patid dt_diag); 
quit; 

data indexmerge; 
   merge clindat.patient 
         clindat.trial; 
   by patid; 
   run; 

data keymerge(keep=patid sex lname fname symp diag); 
   set clindat.trial; *Master data; 
   set clindat.patient key=patid/unique; 
   if _iorc_ ne 0 then do; 
      * clear variables from the indexed data set; 
      lname=' '; 
      fname=' '; 
   end; 
   run; 
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MERGING WITH ARRAYS 
Another solution to the merging problem, which does not require any sorting or indexing, is achieved through the use of 
arrays.  Because arrays are held in memory, their access times, even for very large arrays, are extremely fast.  Once 
understood, variations on the use of array can be used to solve a wide variety of programming problems. 
 
Many to Many Merge Using Arrays 
The key to any of the various types of merges with arrays is to store some portion of the data in one or more arrays.  
Usually you should pick the smaller data set to load into the array, but that really does not matter too much.  In this 
example we return to the many-to-many merge problem.  One of the problems with the previous solution was that we 
had to reread the data multiple times.  In this solution each observation is read only once, and only a portion of the data 
is held in memory. 
 
Remember we want to match all males to all females in the study that have the same symptom code.  First we use a DO 
UNTIL loop to load all of the information on the males into a series of arrays.  In this case each male observation goes 

into the next position (MCNT) of the 
array. 
 
Once all of the data for the males has 
been read into the arrays, we can then 
read the female data.  For each female 
we check all of the male data for the 
same symptom.  For each match we 
write out an observation. 
 
The dimension of the arrays needs to be 
at least as big as the number of males.  
There is essentially no penalty for making 
the dimension too big.  A numeric array 
with a dimension of a million elements 
only uses about eight megabytes of 
memory.  Not much by today’s 
standards. 
 
Using Key Indexing Techniques 
Key indexing is similar to the technique 
used with the many to many merge with 
a very important ‘key’ difference.  In 
both techniques primary information is 
loaded and held in memory through the 
use of arrays.  In both cases the 
information is then retrieved from the 
arrays based on data read from a second 

data set.  The difference is in how the data are stored and retrieved from the arrays.  In the previous example the data 
for the first male went into the first array position, the second male into the second position, and so on.  Retrieval 
required us to step through the whole array to find the information of interest.  In key indexing the data are not stored 
sequentially but rather according to some other data value.  This means that retrieval can be much more efficient.  It 
also means that neither data set needs to be sorted or indexed.  When applicable this will tend to be the fastest possible 
merge of two data sets. 
 

data manymany2(keep=f_patid m_patid f_symp m_diag f_diag 
               rename=(f_symp=symp)); 
   * Use arrays to hold the retained (male) values; 
   array mpatids {100000}    _temporary_; 
   array mdiags  {100000} $1 _temporary_; 
   array msymps  {100000} $2 _temporary_; 
   do until(done); 
      set clindat.trial(keep=patid diag symp sex 
                        where=(sex='M')) end=done; 
      * Save male data to arrays; 
      mcnt+1; 
      mpatids{mcnt} = patid; 
      mdiags{mcnt}  = diag; 
      msymps{mcnt}  = symp;     
   end; 
   do until(fdone); 
      set clindat.trial(rename=(patid=f_patid diag=f_diag  
                             symp=f_symp sex=f_sex) 
                        where=(f_sex='F')) end=fdone; 
      do i = 1 to mcnt; 
         * Retrieve male values; 
         if msymps{i}=f_symp then do; 
            m_patid = mpatids{i}; 
            m_diag  = mdiags{i}; 
            output manymany2; 
         end; 
      end; 
   end; 
   stop; 
   run; 
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In this example we want to retrieve the last and first name from the patient data set (CLINDAT.PATIENT).  Two arrays are 
created to hold all of the potential values.  In this technique the dimension of the array must be as large as the largest 
patient number.  The dimension is not necessarily the number of patients, but the largest patient number.  Say for a one 
hundred patient study the patient numbers ranged from 301 to 400, the arrays would either be dimensioned for 400 
items or dimensioned for one hundred (with the index ranging from 301 to 400).  Here we just choose an arbitrarily 
large enough number (100,000).   
 
The first DO UNTIL loop reads all of the patient data into the arrays (one array for each variable to be saved).  It is very 

important to notice that the information 
is placed into the array by using PATID 
as the index.  If the patient identifier 
takes on the value of 4,057 then his 
information will go into the 4,057th array 
location.   This makes the information 
retrieval especially quick.   
 
The second DO UNTIL loop reads the 
trial data, including the patient 
identifier (PATID).  This variable is then 
used as the array index to retrieve the 
appropriate values. 
 
This technique is unaffected by patients 
with no trial data, and patients with no 
patient history data will automatically 
have missing values returned from the 
array. 
 

 
 

  

data keyindex(keep=patid lname fname symp diag); 
   * Use arrays to hold the retained (patient) values; 
   array lastn  {100000} $10 _temporary_; 
   array firstn {100000} $6  _temporary_; 
   do until(done); 
      * read and store the patient data; 
      set clindat.patient(keep=patid lname fname) end=done; 
      * Save Patient data to arrays; 
      lastn{patid}  = lname; 
      firstn{patid} = fname;    
   end; 
   do until(tdone); 
      set clindat.trial(keep=patid symp diag) end=tdone; 
      * retrive patient data for this patid; 
      lname = lastn{patid}; 
      fname = firstn{patid}; 
      output keyindex; 
   end; 
   stop; 
   run; 
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WITHOUT A PRIMARY KEY (THE FUZZY MERGE) 
A merge in which there is no combination of key variables available that will match up the observations to be joined is 
known as a fuzzy merge.  The MERGE statement requires BY variables that match in both data sets in order to align the 
observations so that it can perform a match merge, when these are not available a match merge will not be successful. 
 
One solution, although not particularly practical is to expand the BY variables in such a way as to create alignment in the 
BY values.  This approach can result in extremely large data sets and correspondingly slow merge times.  A more efficient 
approach is to perform a merge that is a variation on the array approach shown in the previous example. 
 
In the following example patients have recorded when they took 
certain medications.  The data (CLINDAT.CONMEDS) has one 
observation per medication with the start and end dates being 
noted.  For any given patient there may be a number of drugs with 
overlapping, but not necessarily concurrent date ranges.  The 
patients have also reported various adverse events (AEs).  The 
adverse event data (CLINDAT.AE) records the date and type of 
event.  We would like to merge these two data sets to find out what 
if any medications the patient was taking on the date of the adverse 
event, but date cannot be used as a BY variable because the 
medication data only has a date range.  

 
This type of problem can be approached in a number of ways, several 
of which require multiple reads of the data.  The use of doubly 
subscripted arrays will allow us to read each observation exactly once. 

The doubly subscripted arrays will be 
indexed by patient number and date.  
The dimension of the array will 
correspond to the number of patients by 
the number of dates in the study (two 
years).  Here the patient numbers range 
from 200 to 215, and these provide the 
first array dimension.  The study start 
and stop dates are entered into macro 
variables, which are in turn used to 
provide the index range for the dates in 
the array.  
 
The first DO UNTIL loop is used to read 
the medication data for each patient 
and to load the array with the 
medication names.  Since the 
medication data has the date range for 
each medication this range is used as 
the index to fill the array.  A given drug 
name is stored into each date that that 
drug was taken.  In this solution the 
names of the drugs are concatenated 
into one name using the CATX function.  

%let start = %sysevalf('01jan2006'd); 
%let stop  = %sysevalf('31dec2007'd); 
data ae_meds(keep=patid aestart aedesc aemeds); 
   array drgs {200:215, &start.:&stop.} $150 _temporary_; 
   do until(donemed); 
      * Read in the meds; 
      set clindat.conmed(keep=patid drug cmstart cmstop) 
          end=donemed; 
       
      cmstart = max(&start,cmstart); 
      if cmstop gt &stop or cmstop=. then cmstop=&stop; 
      do date = cmstart to cmstop by 1; 
         * assign this drug to each day in its date range; 
         drgs{patid,date} = catx('*',drgs{patid,date},drug); 
      end; 
   end; 
   do until(doneAE); 
      * Read in AE data and check for previous meds; 
      set clindat.ae(keep=patid aestart aedesc)  
          end=doneae; 
      if &start. le aestart le &stop. then do; 
         AEMeds = drgs{patid,aestart}; 
         output ae_meds; 
      end; 
   end; 
run; 
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Each element in this character array takes up 150 bytes.  Since there are fourteen patients (the index has left room for 
16) and around 730 days in the study, the whole array takes up less than one megabyte of storage.  
  
Once all the medication data has been loaded the AE data can be read one observation at a time.  The AE start date 
(AESTART) becomes the index to the array which will return the medications taken by that patient on that date.  By using 
this approach multiple medications across varying date ranges can be easily applied (merged) to a given AE start date, 
and neither of the two data sets has to be ordered (sorted) or indexed. 
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MERGING USING HASH TABLES 
One of the limitations of array based approaches to merging is the necessity to use a numeric value as the array index.  A 
number of techniques have been developed to work around this limitation, however in the current versions of SAS a 
better solution exists.  Hash objects are in many ways like super arrays.  They utilize indexes, but the indexes can be 
either character or numeric.  Like an array they can store values in memory, but unlike an array any number of numeric 
and character values can be stored in each cell.  
 
Essentially the HASH object defines (instantiates) an array in memory.  The hash object is named and it can be preloaded 
with data.  The object can also have one or more numeric or character indexing (KEY) variables.  In this example the hash 
object is being used to store the last and first names of each patient.  Hash objects are instantiated through the use of 
the DECLARE statement and they are operated against by the application of methods.  These methods are used to assign 
attributes to the object as well as to read from it and to write to it.  

 
On the DECLARE statement the hash object is declared and named, in this case it is named HMERGE, and this name is 
used with each method that is to be applied to the hash object.  Naming an object is important as it is not uncommon to 

declare more than one hash object within a DATA 
step.  By using the DATASET: constructor on the 
DECLARE statement we can preload the hash 
object with the values of a data set 
(CLINDAT.PATIENT).  In order to use the DATASET: 
constructor, the variables in the incoming dataset 
have to have been predefined on the PDV.  We can 
do this by using a compilation only SET statement. 
 
Methods are then used to define the key variables 
(DEFINEKEY) and the variables to be stored in the 
hash object (DEFINEDATA).  After the hash object 
has been fully defined, and in this example filled 
with data, the declaration is closed using the 
DEFINEDONE method. 

 
Once defined the hash object is ready to use.  In this example 
a second DO UNTIL loop is used to read the data set 
(CLINDAT.TRIAL).  Each observation that is read contains a 
value of PATID, which is the index variable used to access the 
hash object.  The FIND method uses it to retrieve the 
corresponding LNAME and FNAME from the hash object.  If a 
matching PATID is found (a successful execution of the FIND 
method returns a value of 0, in this case making RC4=0) the 
observation is written out to the resultant data set. 
 
A merge is accomplished even though neither of these two 
data sets has been sorted or indexed.  Usually this type of 
merge will be one of the fastest. Especially when taking time 
to sort or index the data sets is taken into consideration. 
 
 
  

data hashmerge(keep=patid lname fname symp diag); 
   if 0 then set clindat.patient; 
   declare hash hmerge(dataset: 'clindat.patient',  
                       hashexp: 6);   
      rc1 = hmerge.defineKey('patid'); 
      rc2 = hmerge.defineData('lname', 'fname'); 
      rc3 = hmerge.defineDone(); 
 
   do until(done); 
      set clindat.trial end=done; 
      rc4 = hmerge.find(); 
      if rc4 = 0 then output hashmerge; 
   end; 
   stop; 
   run; 
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SUMMARY 
Usually the merging of two data sets in a DATA step is as simple as using a MERGE statement to perform a match merge.  
True the incoming data sets must be sorted in order to use the BY statement, but for most data sets this is not much of a 
constraint.  Sometimes, however the incoming data sets do not meet the criteria needed to successfully use a MERGE 
statement.  Perhaps one or both of the data sets cannot be sorted.  Perhaps there is not an adequate set of KEY 
variables to use with the BY statement.  Perhaps the process of sorting and merging just takes too much time.  Whatever 
the reason, when this happens you need to be aware that alternative merging techniques exist.  These techniques may 
or may not require more advanced coding skills.  Some may not be practical in all situations, but if you have not 
familiarized yourself with these techniques, at least to the level of understanding that you know what they can do, you 
will not be able to successfully apply them when the need arises. 
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