
1

PODS 2002 1

Models and Issues in Data
Stream Systems

Rajeev Motwani

Stanford University

(with Brian Babcock, Shivnath Babu,
Mayur Datar, and Jennifer Widom)

STREAM Project Members: Arvind Arasu, Gurmeet Manku,
Liadan O’Callaghan, Justin Rosentein, Qi Sun, Rohit Varma

PODS 2002 2

Data Streams
• Traditional DBMS – data stored in finite,

persistent data sets

• New Applications – data input as continuous,
ordered data streams
– Network monitoring and traffic engineering
– Telecom call records
– Network security
– Financial applications
– Sensor networks
– Manufacturing processes
– Web logs and clickstreams
– Massive data sets

PODS 2002 3

Data Stream Management System

User/Application

Register Query

Stream Query
Processor

Results

Scratch Space
(Memory and/or Disk)

Data
Stream

Management
System
(DSMS)

PODS 2002 4

Meta-Questions

• Killer-apps
– Application stream rates exceed DBMS capacity?

– Can DSMS handle high rates anyway?

• Motivation
– Need for general-purpose DSMS?

– Not ad-hoc, application-specific systems?

• Non-Trivial
– DSMS = merely DBMS with enhanced support for

triggers, temporal constructs, data rate mgmt?

PODS 2002 5

Sample Applications

• Network security
(e.g., iPolicy, NetForensics/Cisco, Niksun)
– Network packet streams, user session information

– Queries: URL filtering, detecting intrusions & DOS
attacks & viruses

• Financial applications
(e.g., Traderbot)
– Streams of trading data, stock tickers, news feeds

– Queries: arbitrage opportunities, analytics, patterns

– SEC requirement on closing trades

PODS 2002 6

Executive Summary

• Data Stream Management Systems (DSMS)
– Highlight issues and motivate research

– Not a tutorial or comprehensive survey

• Caveats
– Personal view of emerging field

�
Stanford STREAM Project bias

�
Cannot cover all projects in detail

2

PODS 2002 7

DBMS versus DSMS
• Persistent relations

• One-time queries

• Random access

• “Unbounded” disk store

• Only current state matters

• Passive repository

• Relatively low update rate

• No real-time services

• Assume precise data

• Access plan determined by
query processor, physical DB
design

• Transient streams

• Continuous queries

• Sequential access

• Bounded main memory

• History/arrival-order is critical

• Active stores

• Possibly multi-GB arrival rate

• Real-time requirements

• Data stale/imprecise

• Unpredictable/variable data
arrival and characteristics

PODS 2002 8

Making Things Concrete

DSMS

Outgoing (call_ID, caller, time, event)
Incoming (call_ID, callee, time, event)

event = start or end

Central
Office

Central
Office

ALICE BOB

PODS 2002 9

Query 1 (self-join)

• Find all outgoing calls longer than 2 minutes

SELECT O1.call_ID, O1.caller
FROM Outgoing O1, Outgoing O2
WHERE (O2.time – O1.time > 2

AND O1.call_ID = O2.call_ID
AND O1.event = start
AND O2.event = end)

• Result requires unbounded storage

• Can provide result as data stream

• Can output after 2 min, without seeing end

PODS 2002 10

Query 2 (join)

• Pair up callers and callees

SELECT O.caller, I.callee
FROM Outgoing O, Incoming I
WHERE O.call_ID = I.call_ID

• Can still provide result as data stream

• Requires unbounded temporary storage …

• … unless streams are near-synchronized

PODS 2002 11

Query 3 (group-by aggregation)
• Total connection time for each caller

SELECT O1.caller, sum(O2.time – O1.time)
FROM Outgoing O1, Outgoing O2
WHERE (O1.call_ID = O2.call_ID

AND O1.event = start
AND O2.event = end)

GROUP BY O1.caller

• Cannot provide result in (append-only) stream
– Output updates?
– Provide current value on demand?
– Memory?

PODS 2002 12

Outline of Remaining Talk

• Stream Models and DSMS Architectures

• Query Processing

• Runtime and Systems Issues

• Algorithms

• Conclusion

3

PODS 2002 13

Data Model
• Append-only

– Call records

• Updates
– Stock tickers

• Deletes
– Transactional data

• Meta-Data
– Control signals, punctuations

System Internals – probably need all above
PODS 2002 14

Query Model

User/Application
Query Registration
• Predefined
• Ad-hoc

• Predefined, inactive
until invoked

Answer Availability
• One-time
• Event/timer based
• Multiple-time, periodic
• Continuous (stored or

streamed)

Stream Access
• Arbitrary
• Weighted history

• Sliding window
(special case: size = 1)

DSMS

Query Processor

PODS 2002 15

Related Database Technology
• DSMS must use ideas, but none is substitute

– Triggers, Materialized Views in Conventional DBMS
– Main-Memory Databases
– Distributed Databases
– Pub/Sub Systems
– Active Databases
– Sequence/Temporal/Timeseries Databases
– Realtime Databases
– Adaptive, Online, Partial Results

• Novelty in DSMS
– Semantics: input ordering, streaming output, …
– State: cannot store unending streams, yet need history
– Performance: rate, variability, imprecision, …

PODS 2002 16

Stream Projects
• Amazon/Cougar (Cornell) – sensors

• Aurora (Brown/MIT) – sensor monitoring, dataflow

• Hancock (AT&T) – telecom streams

• Niagara (OGI/Wisconsin) – Internet XML databases

• OpenCQ (Georgia) – triggers, incr. view maintenance

• Stream (Stanford) – general-purpose DSMS

• Tapestry (Xerox) – pub/sub content-based filtering

• Telegraph (Berkeley) – adaptive engine for sensors

• Tribeca (Bellcore) – network monitoring

PODS 2002 17

Aurora/STREAM Overview

Input streams

Users issue
continuous and
ad-hoc queries

Administrator monitors
query execution and adjusts

run-time parameters

Applications register
continuous queries

Output streams

�x

� � x

Waiting Op

Ready Op

Running Op

Synopses Query Plans

Historical
Storage

PODS 2002 18

Adaptivity (Telegraph)

• Runtime Adaptivity

• Multi-query Optimization

• Framework – implements arbitrary schemes

EDDY
R

STeMs for join
Output
Queues

Input Streams

S

T

R S T

R x S x T
grouped

filter (S.B)

grouped
filter (R.A)

4

PODS 2002 19

Query-Split Scheme (Niagara)

• Aggregate subscription for efficiency

• Split – evaluate trigger only when file updated

• Triggers – multi-query optimization

constant
table

join

scan

split

scan

scan scan

trig.Act.i trig.Act.j

file i file j

Quotes.XML
Symbol = Const.Value

…

IBM

MSFT

file i

file j

… …

…

PODS 2002 20

Shared Predicates [Niagara, Telegraph]

R.A > 1
R.A > 7
R.A > 11

R.A < 3
R.A < 5

R.A = 6
R.A = 8

R.A • 9

Predicates
for R.A

7

1 11

A>7 A>11

9

A<3

3

6 8

A<5

A>1

>

<

=

•

Tuple
A=8

PODS 2002 21

Outline of Remaining Talk

• Stream Models and DSMS Architectures

• Query Processing

• Runtime and Systems Issues

• Algorithms

• Conclusion

PODS 2002 22

Blocking Operators
• Blocking

– No output until entire input seen
– Streams – input never ends

• Simple Aggregates – output “update” stream

• Set Output (sort, group-by)
– Root – could maintain output data structure
– Intermediate nodes – try non-blocking analogs
– Example – juggle for sort [Raman,R,Hellerstein]
– Punctuations and constraints

• Join
– non-blocking, but intermediate state?
– sliding-window restrictions

PODS 2002 23

Punctuations [Tucker, Maier, Sheard, Fegaras]

• Assertion about future stream contents

• Unblocks operators, reduces state

• Future Work
– Inserted at source or internal (operator signaling)?
– Does P unblock Q? Exists P? Rewrite Q?
– Relation between P and memory for Q?

R.A<10
R.A•10

P: S.A•10

State/Index

group-by

X

R S

PODS 2002 24

Constraints
– Schema-level: ordering, referential integrity, many-one joins

– Instance-level: punctuations

– Query-level: windowed join (nearby tuples only)

• [Babu-Widom]
– Input – multi-stream SPJ query, schema-level constraints

– Output – plan with low intermediate state for joins

• Future Work
– Query-level constraints? Combining constraints?

– Relaxed constraints (near-sorted, near-clustered)

– Exploiting constraints in intra-operator signaling

5

PODS 2002 25

Impact of Limited Memory

• Continuous streams grow unboundedly

• Queries may require unbounded memory

• [ABBMW 02]
– a priori memory bounds for query

– Conjunctive queries with arithmetic comparisons

– Queries with join need domain restrictions

– Impact of duplication elimination

• Open – general queries

PODS 2002 26

Approximate Query Evaluation

• Why?
– Handling load – streams coming too fast
– Avoid unbounded storage and computation
– Ad hoc queries need approximate history

• How? Sliding windows, synopsis, samples, load-shed

• Major Issues?
– Metric for set-valued queries
– Composition of approximate operators
– How is it understood/controlled by user?
– Integrate into query language
– Query planning and interaction with resource allocation
– Accuracy-efficiency-storage tradeoff and global metric

PODS 2002 27

Sliding Window Approximation

• Why?
– Approximation technique for bounded memory
– Natural in applications (emphasizes recent data)
– Well-specified and deterministic semantics

• Issues
– Extend relational algebra, SQL, query optimization
– Algorithmic work
– Timestamps?

0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1 0

PODS 2002 28

Timestamps
• Explicit

– Injected by data source
– Models real-world event represented by tuple
– Tuples may be out-of-order, but if near-ordered can reorder

with small buffers

• Implicit
– Introduced as special field by DSMS
– Arrival time in system
– Enables order-based querying and sliding windows

• Issues
– Distributed streams?
– Composite tuples created by DSMS?

PODS 2002 29

Timestamps in JOIN Output

Approach 1

• User-specified, with defaults

• Compute output timestamp

• Must output in order of
timestamps

• Better for Explicit Timestamp

• Need more buffering

• Get precise semantics and
user-understanding

Approach 2

• Best-effort, no guarantee

• Output timestamp is exit-time

• Tuples arriving earlier more
likely to exit earlier

• Better for Implicit Timestamp

• Maximum flexibility to system

• Difficult to impose precise
semantics

S
x

R
T

PODS 2002 30

Approximate via Load-Shedding

Input Load-Shedding

• Sample incoming tuples

• Use when scan rate is
bottleneck

• Positive – online aggregation
[Hellerstein, Haas, Wang]

• Negative – join sampling
[Chaudhuri, Motwani, Narasaya]

Output Load-Shedding

• Buffer input infrequent output

• Use when query processing
is bottleneck

• Example – XJoin
[Urhan, Franklin]

• Exploit synopses

Handles scan and processing rate mismatch

6

PODS 2002 31

Distributed Query Evaluation
• Logical stream = many physical streams

– maintain top 100 Yahoo pages

• Correlate streams at distributed servers
– network monitoring

• Many streams controlled by few servers
– sensor networks

• Issues
– Move processing to streams, not streams to

processors
– Approximation-bandwidth tradeoff

PODS 2002 32

Example: Distributed Streams

• Maintain top 100 Yahoo pages
– Pages served by geographically distributed servers

– Must aggregate server logs

– Minimize communication

• Pushing processing to streams
– Most pages not in top 100

– Avoid communicating about such pages

– Send updates about relevant pages only

– Requires server coordination

PODS 2002 33

Stream Query Language?

• SQL extension

• Sliding windows as first-class construct
– Awkward in SQL, needs reference to timestamps

– SQL-99 allows aggregations over sliding windows

• Sampling/approximation/load-shedding/QoS
support?

• Stream relational algebra and rewrite rules
– Aurora and STREAM

– Sequence/Temporal Databases

PODS 2002 34

Outline of Remaining Talk

• Stream Models and DSMS Architectures

• Query Processing

• Runtime and Systems Issues

• Algorithms

• Conclusion

PODS 2002 35

Aurora Run-time Architecture

Scheduler

Catalogs

Load
Shedder

QoS
Monitor

Router

Persistent Store

Buffer Manager

x
Box

Processors

Q1

Q2

Q3

Q4

Q5

Inputs Outputs

PODS 2002 36

DSMS Internals
• Query plans: operators, synopses, queues

• Memory management
– Dynamic Allocation – queries, operators, queues, synopses

– Graceful adaptation to reallocation

– Impact on throughput and precision

• Operator scheduling
– Variable-rate streams, varying operator/query requirements

– Response time and QoS

– Load-shedding

– Interaction with queue/memory management

7

PODS 2002 37

Queue Memory and Scheduling
[Babcock, Babu, Datar, Motwani]

• Goal
– Given – query plan and selectivity estimates

– Schedule – tuples through operator chains

• Minimize total queue memory
– Best-slope scheduling is near-optimal

– Danger of starvation for some tuples

• Minimize tuple response time
– Schedule tuple completely through operator chain

– Danger of exceeding memory bound

• Open – graceful combination and adaptivity

PODS 2002 38

Queue Memory and Scheduling
[Babcock, Babu, Datar, Motwani]

Time

selectivity = 0.0

selectivity = 0.6

selectivity = 0.2

N
et

 S
el

ec
ti

vi
ty

1

2

3

best slope3

2

1

Input

Output

starvation point

PODS 2002 39

Precision-Resource Tradeoff
• Resources – memory, computation, I/O

• Global Optimization Problem
– Input: queries with alternate plans, importance weights

– Precision: function of resource allocation to queries/operators

– Goal: select plans, allocate resources, maximize precision

• Memory Allocation Algorithm [Varma, Widom]
– Model – single query plan, simple precision model

– Rules for precision of composed operators

– Non-linear numerical optimization formulation

• Open – Combinatorial algorithm? General case?

PODS 2002 40

Rate-Based & QoS Optimization

• [Viglas, Naughton]
– Optimizer goal is to increase throughput

– Model for output-rates as function of input-rates

– Designing optimizers?

• Aurora – QoS approach to load-shedding

% tuples delivered

Q
o

S

Q
o

S

Delay Ouput-value

Q
o

S

Static: drop-based Runtime: delay-based Semantic: value-based

PODS 2002 41

Outline of Remaining Talk

• Stream Models and DSMS Architectures

• Query Processing

• Runtime and Systems Issues

• Algorithms

• Conclusion

PODS 2002 42

Synopses
• Queries may access or aggregate past data

• Need bounded-memory history-approximation

• Synopsis?
– Succinct summary of old stream tuples
– Like indexes/materialized-views, but base data is unavailable

• Examples
– Sliding Windows
– Samples
– Sketches
– Histograms
– Wavelet representation

8

PODS 2002 43

Model of Computation

� � � � � �
�
� �

�
�

Increasi
ng tim

e

Synopses/Data Structures

Data Stream

Memory: ����� ���	�
 ��� ������
Query/Update Time: ����� ���	�
 ��� ������

N: # tuples so far, or window size� error parameter

PODS 2002 44

Sketching Techniques

• [Alon,Matias,Szegedy] frequency moments

• [Feigenbaum etal, Indyk] extended to Lp norm

• [Dobra et al] complex aggregates over joins

• Key Subproblem – Self-Join Size Estimation
– Stream of values from D = {1,2,…,N}

– Let fi = frequency of value i

– Self-join size ��� � i2
– Question – estimating S in small space?

PODS 2002 45

Self-Join Size Estimation
• AMS Technique (randomized sketches)

– Given (f1,f2,…,fN)

– Zi = random{-1,1}

– X = fiZi (X incrementally computable)

• Theorem Exp[X2 ��� �
i
2

– Cross-terms fiZi fjZj have 0 expectation

– Square-terms fiZi fiZi = fi
2

• Space = � � �"!�#%$ fi)

• Independent samples Xk reduce variance

PODS 2002 46

Sliding Window Computations
[Datar, Gionis, Indyk, Motwani]

• Goal: statistics/queries

• Memory: o(N), preferably &�'�()�*,+.- /�('103254
• Problem: count/sum/variance, histogram, clustering,…

• Sample Results: (1+)-approximation
– Counting: Space O(1/ (log N)) bits, Time O(1) amortized

– Sum over [0,R]: Space O(1/ log N (log N + log R)) bits,
Time O(log R/log N) amortized

– Lp sketches: maintain with 687:9 ;=< >@? A=9 7CBEDGF space overhead

– Matching space lower bounds

PODS 2002 47

Sliding Window Histograms

• Key Subproblem – Counting 1’s in bit-stream

• Goal – Space O(log N) for window size N

• Problem – Accounting for expiring bits

• Idea
– Partition/track buckets of known count

– Error in oldest bucket only

– Future 0’s?H5IJIKHLIKHMHNHOHMHLIKHPIOIQHRHOHJH5IJIJINIOIOS

PODS 2002 48

Exponential Histograms
• Buckets of exponentially increasing size

• Between K/2 and K/2+1 buckets of each size
• K = 1/ and = relative error

9

PODS 2002 49

���������	��
�� ���
������ ��� ��� ��� H�����������	��
�� ���
������ ��� ��� H�����������	��
�� ���
������ ��� ��� H�� H�� H�����������	��
�� ���
������ ��� ��� H�� H�����������	��
�� ���
������ ��� ��� H��

Exponential Histograms

S�� H H I H H H I H�I H I"I H I H H H H S

�����

 �! ��"#��$��&%�' ' � (��)*�,+��
-
.� ��/0�

1����,��' �

243 5 68792:3 5 ;<7>=?792:;>792&687A@CB ��D���E��0F 243

• Buckets of exponentially increasing size
• Between K/2 and K/2+1 buckets of each size

• K = 1/ and = relative error

PODS 2002 50

Many other results …
• Histograms

– V-Opt Histograms
[Gilbert, Guha, Indyk, Kotidis, Muthukrishnan, Strauss], [Indyk]

– End-Biased Histograms (Iceberg Queries)
[Manku, Motwani], [Fang, Shiva, Garcia-Molina, Motwani, Ullman]

– Equi-Width Histograms (Quantiles)
[Manku, Rajagopalan, Lindsay], [Khanna, Greenwald]

– Wavelets
Seminal work [Vitter, Wang, Iyer] + many others!

• Data Mining
– Stream Clustering

[Guha, Mishra, Motwani, O’Callaghan]
[O’Callaghan, Meyerson, Mishra, Guha, Motwani]

– Decision Trees
[Domingos, Hulten], [Domingos, Hulten, Spencer]

PODS 2002 51

Conclusion: Future Work
• Query Processing

– Stream Algebra and Query Languages
– Approximations
– Blocking, Constraints, Punctuations

• Runtime Management
– Scheduling, Memory Management, Rate Management
– Query Optimization (Adaptive, Multi-Query, Ad-hoc)
– Distributed processing

• Synopses and Algorithmic Problems

• Systems
– UI, statistics, crash recovery and transaction management
– System development and deployment

PODS 2002 52

Thank You!

