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• A tree T is a finite set of one or more nodes：
• there is one specific node R, called the root of T

• If the set T-{R} is not empty, these nodes are 

partitioned into m > 0 disjoint finite subsets T
1
，T

2
，

…，T
m

, each of which is a tree. The subsets T
i
are said 

to be subtrees of T.

• Directed ordered trees: the relative order of subtrees 

is important

• An ordered tree with degree 2 is not a binary tree

• After the first child node is deleted

• The second child node will take the first child node’s 

place

F
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Logical Structure of Tree

• A finite set K of n nodes, and a relation r satisfying the 

following conditions:

– There is a unique node k
0
∈K, who has no predecessor 

in relation r.

• Node k
0 
is called the root of the tree.

– Except k
0
, all the other nodes in K has a unique

predecessor in relation r

• An example as in the figure on the right

– Node set K = { A, B, C, D, E, F, G, H, I, J }

– The relation on K: r = { <A, B>, <A, C>, <B, D>, <B, E>, 

<B, F>, <C, G>, <C, H>, <E, I>, <E, J> }
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Terminology of Tree
• Node

– Child node, parent node, the first child node

• If <k, k′> ∈ r, we call that k is the parent node of k′, and k′ is the

child node of k

– Sibling node, previous/next sibling node

• If <k, k′> ∈ r and <k, k″>∈ r, we call k′ and k″ are sibling nodes

– Branch node, leaf node

• Nodes who have no subtrees are called leaf nodes

• Other nodes are called branch nodes
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Terminology of Tree

• Edge

– The ordered pair of two nodes is called an edge

• Path, path length

– Except the node k
0
, for any other node k∈K, there 

exists a node sequence k
0
, k

1
, …, k

s
, s.t. k

0 
is the root 

node, k
s
=k, and <k

i-1
, k

i
>∈r (1≤i≤s).

– This sequence is called a path from the root node to 

node k, and the path length (the total number of edges 

in the path) is s

• Ancestor, descendant

– If there is a path from node k to node k
s
, we call that k 

is an ancestor of k
s
, and k

s
is a descendant of k
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Terminology of Tree

• Degree: The degree of a node is the number of 
children for that node.

• Level: The root node is at level 0

– The level of any other node is the level of its 
parent node plus 1

• Depth: The depth of a node M in the tree is the 

path length from the root to M.

• Height: The height of a tree is the depth of the 

deepest node in the tree plus 1.
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Different Representations of Trees

• Classic node-link representation

• Formal (set theory) representation

• Venn diagram representation

• Outline representation

• Nested parenthesis representation
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6.1  General Definitions and Terminology of Tree

Formal Representation

The logical structure of a Tree is:

Node set: 

K = {A, B, C, D, E, F, G, H, I, J}

The relation on K: 

N = {<A, B>, <A, C>, <B, D>, <B, E>, <B, 

F>, <C, G>, <C, H>, <E, I>, <E, J>} 
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Venn Diagram Representation
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Nested Parenthesis 

Representation

(A(B(D)(E(I)(J))(F))(C(G)(H))) JI
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The conversion from Venn 

diagram to nested parenthesis
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I J
HG

F

(A )(B(D)(E (I)(J)) (C(G)(H))(F))
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Equivalent Transformation between a 
Forest and a Binary Tree

• Forest: A forest is a collection of one or more 
disjoint trees. (usually ordered)

• The correspondence between trees and a forests
– Removing the root node from a tree, its 

subtrees become a forest.
– Adding an extra node as the root of the trees 

in a forest, the forest becomes a tree.
• There is a one-to-one mapping between forests 

and binary trees
– So that all the operations on forests can be 

transformed to the operations on binary trees
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How to map a forest to a binary tree?
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The transformation from a forest to a binary tree
 Ordered set F = {T

1
, T

2
, …, T

n
} is a forest with trees T

1
, T

2
, …, T

n
. We transform it to a binary tree B(F) recursively:

 If F is empty (i.e., n=0), B(F) is an empty binary tree.

 If F is not empty (i.e., n≠0), the root of B(F) is the root W
1

of the first tree T
1

in F;

 the left subtree of B(F) is the binary tree B(F
W1

), where F
W1

is a forest consisting of W
1
’s subtrees in T

1
;

 the right subtree of B(F) is the binary tree B(F’), where F’ = {T
2
, …, T

n
}.
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Convert a forest to a binary tree
1st step: Add a connection 
between all sibling nodes in the 
forest.
2nd step: For each node, delete all 
the connections between the 
node and its children, except the 
first child.

3rd step: Adjust the 
position
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The transformation from a binary tree to a forest

• Assume B is a binary tree, r is the root of B, B
L

is the left sub-tree of r, B
R  

is the 

right sub-tree of r. We can transform B to a corresponding forest F(B) as follows,

• If B is empty, F(B) is an empty forest.

• If B is not empty, F(B) consists of trees {T
1
} ∪ F(B

R
),

where the root of T
1

is r, the subtrees of r are F(B
L
)
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Convert a binary tree to a forest

A
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GJ

H

1st step: If the node x is the left 
child of its parent y, then 
connect the right child of x, the 
right child of right child of x, ... , 
to y.

2nd step: delete all 
connections between 
parents and their right 
children.

3rd step: Adjust the 
position

C

K

E F

H J

A D

B1 G



22

目录页

Ming Zhang “Data Structures and Algorithms”

Questions

1. Is a tree also a forest?

1. Why do we establish the one-to-

one mapping between binary trees 

and forests?

Trees

Chapter 6
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template<class T>

class TreeNode  { // The ADT of the tree node

public:

TreeNode(const T& value); // Constructor 

virtual ~TreeNode() {}; // Destructor

bool isLeaf(); // Check whether the current node is the 

//    leaf node or not

T Value(); // Return the value of the node

TreeNode<T> *LeftMostChild(); // Return the left-most (first) child

TreeNode<T> *RightSibling(); // Return the right sibling

void setValue(const T& value); // Set the value of the current node

void setChild(TreeNode<T> *pointer); // Set the left child

void setSibling(TreeNode<T> *pointer);   // Set the right sibling

void InsertFirst(TreeNode<T> *node);   // Insert a node as the left child

void InsertNext(TreeNode<T> *node); // Insert a node as the right sibling

};

Trees

Chapter 6

6.1  General Tree Definitions and Terminology

Abstract Data Type of Tree
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template<class T>

class Tree  {

public:

Tree(); // Constructor

virtual ~Tree(); // Destructor

TreeNode<T>* getRoot(); // Return the root node

void CreateRoot(const T& rootValue);  // Create a root node whose value is rootValue

bool isEmpty();  // Check whether it is an empty tree

TreeNode<T>* Parent(TreeNode<T> *current);        // Return parent node

TreeNode<T>* PrevSibling(TreeNode<T> *current);  // Return the previous sibling

void DeleteSubTree(TreeNode<T> *subroot);  // Delete the subtree rooted at “subroot”

void RootFirstTraverse(TreeNode<T> *root); // Depth-first preorder traversal

void RootLastTraverse(TreeNode<T> *root);  // Depth-first postorder traversal

void WidthTraverse(TreeNode<T> *root);    // Breath-first traversal

};

Tree

Chapter 6

6.1  General Tree Definitions and Terminology

Abstract Data Type of Tree
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Traversal of a Forest

A
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• Preorder sequence:   A B C K D E H F J G

• Postorder sequence: B K C A H E J F G D
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Forest Traversal vs.
Binary Tree Traversal

• Preorder forest traversal
– Preorder binary tree traversal

• Postorder forest traversal

– Inorder binary tree traversal

• Inorder forest traversal?

– We cannot define between which two child nodes 
should the root locate.
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template<class T>

void Tree<T>::RootFirstTraverse(

TreeNode<T> * root)  {

while (root != NULL) {

Visit(root->Value()); // Visit the current node

// Traverse the subtree forest of the root node of 

// the first tree (except the root node)

RootFirstTraverse(root->LeftMostChild()); 

root = root->RightSibling();    // Traverse other trees

}

}

Trees

Chapter 6

6.1  General Tree Definitions and Terminology

Depth-First Preorder Forest Traversal
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template<class T>

void Tree<T>::RootLastTraverse(

TreeNode<T> * root)  {

while (root != NULL) {

// Traverse the subtree forest of the root node

// of the first tree

RootLastTraverse(root->LeftMostChild());  

Visit(root->Value());  // Visit the current node

root = root->RightSibling(); // Traverse other trees

}

}

Trees

Chapter 6

6.1  General Tree Definitions and Terminology

Depth-First Postorder Traversal
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Breadth-First Forest Traversal

• Breadth-first forest traversal

– Also be called level-order traversal

• a) First, visit the nodes who are at level 0
• b) Second, visit the nodes who are at level 1
• c) Continue until all the nodes at the deepest 

level are visited
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Breadth-First Forest Traversal
A
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• Breadth-first forest traversal sequence: A D B C E F G K H J

• Look at the right diagonal of the binary tree storage 

structure
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template<class T>

void Tree<T>::WidthTraverse(TreeNode<T> * root)  {

using std::queue;                                  // Use STL queue

queue<TreeNode<T>*> aQueue;

TreeNode<T> * pointer = root;

while (pointer != NULL) {

aQueue.push(pointer);               // Put the current node go into the queue

pointer = pointer->RightSibling();     // pointer pointing to right sibling

}

while (!aQueue.empty()) {

pointer = aQueue.front();                 // Get the first element of the queue

aQueue.pop();                        // Pop the current element out of the queue

Visit(pointer->Value());               // Visit the current node

pointer = pointer-> LeftMostChild(); // pointer pointing to the first child

while (pointer != NULL) {                   // Put the child nodes of the current node 

// into the queue

aQueue.push(pointer);

pointer = pointer->RightSibling();

} }   }

Trees

Chapter 6

6.1  General Tree Definitions and Terminology

Breadth-first forest traversal
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Questions

1. Can we use the template of preorder 

binary tree traversal to accomplish the 

preorder forest traversal?

2. Can we use the template of inorder 

binary tree traversal to accomplish the 

postorder forest traversal?

3. How to accomplish non-recursive 

depth-first forest search?

Trees

Chapter 6
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different opinions of breadth-first search
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• Cannot use the template of breadth-first binary tree traversal. For example，
– In the left figure, the breadth-first forest traversal: A D B C E F G K H J

• Look at the tilt dotted circles in the middle

– In the right figure, the breadth-first binary tree traversal: A B D C E K H F J G

• Look at the parallel dotted circles on the right
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wrong
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• General Definitions and Terminology of Tree

• Linked Storage Structure of Tree
– List of Children

– Static Left-Child/Right-Sibling representation

– Dynamic representation 

– Dynamic Left-Child/Right-Sibling representation 

– Parent Pointer representation and its Application in 
Union/Find Sets

• Sequential Storage Structure of Tree

• K-ary Trees
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6.2  Linked Storage Structure of Tree

“List of Children” representation
List of children is the adjacency list of a directed graph.

 

 1 

 

A   

B 0 

 

C 0  
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6.2  Linked Storage Structure of Tree

Static Left-Child/Right-Sibling representation

• Child node table stored in an array

A

B C D

E F

G

H I

左子

结点
值

父

结点

右兄弟

结点
A

B 0

C 0

D 0

E 2

F 2

G

H 6

I 6

J

J 7
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6.2  Linked Storage Structure of Tree

Dynamic representation
• Allocate dynamic storage to each node

– If the number of child nodes changes, we should
reallocate the storage
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I J K L
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D E
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0 0
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(a) 树 (b) 树的实现
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Chapter 6

6.2  Linked Storage Structure of Tree

Dynamic Left-Child/Right-Sibling representation

• The left child in the tree is the first child of the node, the right child is the right sibling of that node.

• The right sibling of the root node is the root node of next tree in the forest
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// Add following private variables to the class TreeNode

private:

T m_Value; // the value of the node

TreeNode<T> *pChild; // the pointer of the first left child

TreeNode<T> *pSibling; // the pointer of the right sibling

Trees

Chapter 6

6.2  Linked Storage Structure of Tree

The key details of Dynamic Left-
Child/Right-Sibling representation
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template<class T>

TreeNode<T>* Tree<T>::Parent(TreeNode<T> *current)  {

using std::queue;                          // use the queue of STL

queue<TreeNode<T>*> aQueue;

TreeNode<T> *pointer = root;

TreeNode<T> *father = upperlevelpointer  = NULL;   // record the parent node

if (current != NULL && pointer != current)  {

while (pointer != NULL) {     // Put all root nodes in the forest into the queue

if (current == pointer)  // the parent node of the root node is empty

break;

aQueue.push(pointer); // Put the current node into the queue

pointer=pointer-> RightSibling(); // let the pointer point to the right sibling node

}

Trees

Chapter 6

6.2  Linked Storage Structure of Tree

Find the parent node of the current node
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while (!aQueue.empty()) {

pointer = aQueue.front();   // get the pointer of the first node in the queue

aQueue.pop();                     // Pop the current node out of the queue

upperlevelpointer  = pointer; // pointing to the node at upper level

pointer = pointer-> LeftMostChild();  // pointing to the first child

while (pointer) {                  

// Put the child node of the current node into the queue

if (current == pointer) {

father = upperlevelpointer;  // return the parent node

break;}

else {

aQueue.push(pointer);

pointer = pointer->RightSibling();}

}

}

}

aQueue. clear( ); // clear the queue, optional(local variable)

return father;

}

Trees

Chapter 6

6.2  Linked Storage Structure of Tree

Find the parent node of the current node
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template <class T>

void Tree<T>::DestroyNodes(TreeNode<T>* root)  {

if (root) {

DestroyNodes(root->LeftMostChild());//delete the first subtree

DestroyNodes(root->RightSibling());   //delete other subtrees recursively

delete root; // delete the root node

}

}

Trees

Chapter 6

6.2  Linked Storage Structure of  Tree

Delete all the nodes in a sub-forest
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template<class T>
void Tree<T>::DeleteSubTree(TreeNode<T> *subroot)  {

if (subroot == NULL) return;// if the subtree to be deleted is empty, then return
TreeNode<T> *pointer = Parent (subroot); // find the parent node of subroot
if (pointer == NULL) {// if subroot does not have a parent node, it is a root node
pointer = root;
while (pointer->RightSibling() != subroot)// find in the right siblings of subroot 
pointer = pointer->RightSibling();

pointer->setSibling(subroot->RightSibling()); // renew the right sibling of pointer
}
else if (pointer->LeftMostChild() == subroot) // if subroot is the first child
pointer->setChild(subroot->RightSibling()); // renew the right sibling of pointer

else {// the condition where subroot has a left sibling
pointer = pointer->LeftMostChild();   // sift down to the most left sibling
while (pointer->RightSibling() != subroot))// find in the right siblings of subroot
pointer = pointer->RightSibling();

pointer->setSibling(subroot->RightSibling()); // renew the right sibling of pointer
}
subroot->setSibling(NULL);// very important. it will go wrong without this statement
DestroyNodes(subroot);  // delete all the nodes of in the subforest rooted at subroot

}

Trees

Chapter 6

6.2  Linked Storage Structure of Tree

Delete the subtree whose root node is subroot
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template <class T>

void Traverse(TreeNode <T> * rt) {

if (rt==NULL)  return;

Visit(rt);

TreeNode * temp = rt-> LeftMostChild();

while (temp != NULL) {

Traverse(temp);

temp = temp->RightSibling();

}

}

Trees

Chapter 6

6.2  Linked Storage Structure of Tree

Thinking: Can the following 
algorithm traverse the forest?

N

L

D

F
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X
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I
K

J
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Trees

Chapter 6

6.2  Linked Storage Structure of Tree

Thinking: use the traversal 
template flexibly

Example: Specular mapping of a forest

F

D

E G

A B

F

D

G E

B A
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Trees

Chapter 6

6.2  Linked Storage Structure of Tree

After mapping

A

F

D
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F

D

G

E

B

A

F

D

E G
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F

D

G E

B
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Trees

Chapter 6

6.2  Linked Storage Structure of Tree

Thinking: delete the subtree 
rooted at “subroot”

Pay attention to checking whether the 
subtree to be deleted is empty or not, 
and whether the subroot have a parent 
pointer.

Pay attention to the order of pointer 
updates after deletion.
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Chapter 6 Trees
• General Definitions and Terminology of Tree

• Linked Storage Structure of Tree
– List of Children

– Static Left-Child/Right-Sibling representation

– Dynamic representation

– Dynamic Left-Child/Right-Sibling representation

– Parent Pointer representation and its Application in 
Union/Find Sets

• Sequential Storage Structure of Tree

• K-ary Trees

Trees

Chapter 6
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Trees

Chapter 6

6.2  Linked Storage Structure of Tree

Parent Pointer representation
• A representation that you only need to know the parent node
• For each node, you only need to store a pointer which points 

to its parent node, so that we call it parent pointer 
representation

• Use an array to store the tree nodes, and each node includes a 
value and a pointer which points to its parent node

A

B C

D E F G H

I J K L

结点索引

值
父结点索引

A B C D E F G H I J K L

0 0 1 1 2 2 2 3 3 6 6

0 1 2 3 4 5 6 7 8 9 10 11
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Trees

Chapter 6

6.2  Linked Storage Structure of Tree

Parent Pointer representation: Algorithm

• Find the root node of the current node

– Start from a node, find a path from that node to its root node

• O(k), k is the height of the tree

• Check whether two nodes are in the same tree

– If these two nodes have the same root node, then they are sure to be in the 

same tree.

– If these two nodes have different root nodes, then they are sure to be in 

different trees.
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Trees

Chapter 6

6.2  Linked Storage Structure of Tree

Union/Find Sets
• Union/Find Sets is a special kind of sets, consisted of 

some disjoint subsets. The basic operations of 
Union/Find Sets are:

– Find: Find the set the node belongs to

– Union: Merge two sets

• Union/Find Sets is an important abstract data types

– The application of Union/Find sets is mainly to solve the 
problem of equivalence classes .
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Trees

Chapter 6

6.2  Linked Storage Structure of Tree

Equivalence relation

• There is a set S, having n elements, and a set R, having r 

relations, which are defined based on S. And x, y, z, are the 

elements of the set S.

• The relation R will be an equivalence relation, if and only if 

the following conditions are true:

a) (x, x)∈R for all (reflexivity)

b) (y, x)∈R if and only if (x, y)∈R (symmetry)

c) If (x, y)∈R and (y, z)∈R, then (x, z)∈R（transitivity）

• If (x, y)∈R, we say elements x and y are equivalent
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Trees

Chapter 6

6.2  Linked Storage Structure of Tree

Equivalence Classes

• Equivalence class is the largest set consisting of 

elements which are equivalent to each other. 

The ‘largest’ means that there is no other 

element equivalent to any element in the set.

• An equivalence class derived from x∈S based on 

the relation R

– [x]
R

= {y| y∈S ∧ xRy}

– R partition S into r disjoint sets S
1
, S

2
, …S

r
, 

and the union of these sets equals to S
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• Use a tree to represent a set
– The set can be represented by the root node

– If two nodes are in the same tree, they belong 
to the same set

• The representation of tree
– Store in a static pointer array

– A node only needs to store the information of 
its parent node

Trees

Chapter 6

6.2  Linked Storage Structure of Tree

Use tree to represent the 
Union/Find of equivalence classes

1

3 5 7

2

4 6

2

41 6

53 7

(a) (b) (c)

S1 S2 S3

8

8
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UNION/FIND Algorithm(1) 

Process these 5 equivalence pairs (A, B), 

(C, K) , (J, F), (H, E), (D, G) 

Trees

Chapter 6

6.2  Linked Storage Structure of Tree

(A,B)

6 74 52 30 1 8 9

F GD EC KA B H J

0

(C,K)

2

(J,F)(E,H)(D,G)

654

A C F E D

B K J H G
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UNION/FIND Algorithm(1) 

Then, process two equivalence pairs (K, A) and (E, G)

Trees

Chapter 6

6.2  Linked Storage Structure of Tree

A

C F E

D

B

K J H

G

6 74 52 30 1 8 9

F GD EC KA B H J

0 2 654

(K,A)The root of the tree that K belongs 
to is C, A itself is a root node, and 
A！=C, so merge these two trees.

(E,G)

0 4
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template<class T>

class ParTreeNode { //Definition of tree node

private:

Tvalue; //The value of the node

ParTreeNode<T>* parent; //The parent node pointer

int nCount; //The number of the nodes in the set

public:

ParTreeNode(); //Constructor

virtual ~ParTreeNode(){}; //Destructor

TgetValue(); //Return the value of the node

void setValue(const T& val);       //Set the value of the node

ParTreeNode<T>*  getParent();    //Return the parent node pointer

void setParent(ParTreeNode<T>* par); //Set the parent node pointer

int getCount(); //Return the number of nodes

void setCount(const int count);    //Set the number of nodes

};

Trees

Chapter 6

6.2  Linked Storage Structure of Tree

Parent pointer representation and Union/Find algorithm representation



59

目录页

Ming Zhang “Data Structures and Algorithms”

Parent pointer representation and Union/Find algorithm representation

template<class T>

class ParTree {   // Definition of the tree

public:

ParTreeNode<T>* array; // the array used to store the tree node

int Size;    // the size of the array

ParTreeNode<T>*

Find(ParTreeNode<T>* node) const;  // Find the root node of “node”

ParTree(const int size);   // Constructor

virtual ~ParTree();   // Destructor

void Union(int i,int j);   // Union set i and j, and merge them 

//    into the same subtree

bool Different(int i,int j);   // Check if node i and j belong to the same tree

};

Trees

Chapter 6

6.2  Linked Storage Structure of Tree
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Parent pointer representation and Union/Find algorithm representation

template <class T>

ParTreeNode<T>*

ParTree<T>::Find(ParTreeNode<T>* node) const

{

ParTreeNode<T>* pointer=node;

while ( pointer->getParent() != NULL )

pointer=pointer->getParent();

return pointer;

}

Trees

Chapter 6

6.2  Linked Storage Structure of Tree
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Parent pointer representation and Union/Find algorithm representation
template<class T>

void ParTree<T>::Union(int i,int j) {

ParTreeNode<T>* pointeri = Find(&array[i]); // find the root node of node i

ParTreeNode<T>* pointerj = Find(&array[j]); // find the root node of node j

if (pointeri != pointerj) {

if(pointeri->getCount() >= pointerj->getCount()) {

pointerj->setParent(pointeri);

pointeri->setCount(pointeri->getCount() +

pointerj->getCount());

}

else {

pointeri->setParent(pointerj);

pointerj->setCount(pointeri->getCount() + 

pointerj->getCount());

}

} }

Trees

Chapter 6

6.2  Linked Storage Structure of Tree
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UNION/FIND Algorithm(2) 

Trees

Chapter 6

6.2  Linked Storage Structure of Tree

Use weighted union rule to process (H, J)

A

C F

D

E
B

K J

G

H

6 74 52 30 1 8 9

F GD EC KA B H J

0 2 654

(H,J)

0 4

The root node of the tree H locates 
in is E, and that of J is F, E != F, so 
that two trees should union

According to weighted union 
rule, the number of nodes of the 
tree whose root node is F is 
smaller, so let F point to D

4
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Path compression

• Find X

– Assume that X finally reaches the root node R

– Along the path from X to R, make parent 

pointer of every node point to R

• Low altitude trees come out

Trees

Chapter 6

6.2  Linked Storage Structure of Tree

A

C F

D

E
B

K J

G

H
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UNION/FIND Algorithm(3) 

Use path compression to deal with Find(H)

Trees

Chapter 6

6.2  Linked Storage Structure of Tree

A

C F

D

E
B

K J

G

H

6 74 52 30 1 8 9

F GD EC KA B H J

0 2 6540 4 4 4



65

目录页

Ming Zhang “Data Structures and Algorithms”

Path compression
template <class T>

ParTreeNode<T>*

ParTree<T>::FindPC(ParTreeNode<T>* node) const

{

if (node->getParent() == NULL)

return node;

node->setParent(FindPC(node->getParent()));

return node->getParent();

}

Trees

Chapter 6

6.2  Linked Storage Structure of Tree

A

C F

D

E
B

K J

G H
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Path compression make the expenditure 

of Find close to a constant

• Weight ＋ path compression
• The expenditure of n Find operations for n 

nodes is O(nα(n)), which is about Θ(nlog*n)
– α(n) is the inverse of univariate Ackermann function, its growth 

rate is slower than logn, but not equals to constant
– log*n is the number of operations that calculate log(n) before n 

= logn ≤ 1
– log*65536 = 4 (4 log operations)

• The algorithm of find needs at most n Find
operations, so it is very close to Θ(n)

– In practical applications, α(n) is usually smaller than 4

Trees

Chapter 6

6.2  Linked Storage Structure of Tree
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Thinking

• Can we use dynamic pointer representation 

to accomplish parent pointer 

representation?

• Consult books or websites, read different 

optimizations of weighted union rule and 

path compression. Discuss their differences, 

advantages and disadvantages.

Trees

Chapter 6

6.2  Linked Storage Structure of Tree
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Chapter 6 Trees
• General Definitions and Terminology 

of Tree

• Linked Storage Structure of Tree

• Sequential Storage Structure of Tree

• K-ary Trees

Trees

Chapter 6
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B
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D

H
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• Preorder sequence with right link representation

• Double-tagging preorder sequence representation

• Double-tagging level-order sequence representation

• Postorder sequence with degree representation

Trees

Chapter 6

6.3 Sequential Storage Structure of Tree

Sequential Storage Structure of Tree
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Preorder sequence with right link representation
• Nodes are stored continuously according to preorder sequence

– info：the data of the node

– rlink：right link

• Point to the next sibling of the node, which is
corresponding to the right child node of the parent node
in the binary tree

– ltag：tag

• If the node has no child node, which means the node
doesn’t have a left child node in the binary tree, and ltag
will be 1.

• Otherwise, ltag will be 0.

Trees

Chapter 6

6.3  Sequential Storage Structure of Tree

 rlink info ltag 
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Index0 1 2 3 4 5 6 7 8 9

rlink 7 5 3 4 -1 6 -1 -1 9 -1

info C E J K L F G D X I

ltag 0 0 1 1 1 1 1 0 1 1

Preorder sequence with right link representation

Trees

Chapter 6

6.3  Sequential Storage Structure of Tree

F
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X I
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F
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X

L
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From a preorder rlink-ltag to a tree

Trees

Chapter 6

6.3  Sequential Storage Structure of Tree

Index0 1 2 3 4 5 6 7 8 9

rlink 7 5 3 4 -1 6 -1 -1 9 -1

info C E J K L F G D X I

ltag 0 0 1 1 1 1 1 0 1 1

J

K

D

G

C

E

F

I

X
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F
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G

D

X I

E

K H J
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Double-tagging preorder sequence representation

Trees

Chapter 6

6.3  Sequential Storage Structure of Tree

 In preorder sequence with right link representation, rlink is

still redundant, so we can replace the pointer rlink with a

tag rtag, then it is called “double-tagging preorder sequence

representation”. Each node includes data and 2 tags(ltag

and rtag), the form of the node is like:
 rtag info ltag 

According to the preorder sequence and 2 tags(ltag, rtag), we 

can calculate the value of llink and rlink of each node in the 

“Left-child/Right-sibling” list. And llink will be the same as 

that in preorder sequence with right link representation.
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Double-tagging preorder sequence representation

Trees

Chapter 6

6.3  Sequential Storage Structure of Tree

00 000 111 1 1

info

ltag

H FD EC KA B J G

000 0 111 1 1 1rtag

A

B C
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H J G
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B
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From a rtag-ltag preorder sequence to a tree

Trees

Chapter 6

6.3  Sequential Storage Structure of Tree

Index0 1 2 3 4 5 6 7 8 9

rtag 0 0 0 0 1 0 1 1 0 1

info C E J K L F G D X I

ltag 0 0 1 1 1 1 1 0 1 1

G

C

I

L

X

D

K

E

FJ

F

C

G

D

X I

E

K H J

stack C E JKFX
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Rebuild the tree by double-tagging preorder sequence

template<class T>

class DualTagTreeNode  { // class of double-tagging preorder sequence node

public:

T info; // data information of the node

int ltag, rtag; // left/right tag

DualTagTreeNode(); // constructor

virtual ~DualTagTreeNode();

};

template <class T>

Tree<T>::Tree(DualTagTreeNode<T> *nodeArray, int count)  {

// use double-tagging preorder sequence representation to build “Left-child/Right-sibling” tree

using std::stack;        // Use the stack of STL

stack<TreeNode<T>* > aStack;

TreeNode<T> *pointer = new TreeNode<T>;   // ready to set up root node

root = pointer;

Trees

Chapter 6

6.3  Sequential Storage Structure of Tree
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for (int i = 0; i < count-1; i++) { // deal with one node

pointer->setValue(nodeArray[i].info); // assign the value to the node

if (nodeArray[i].rtag == 0) // if rtag equals to 0, push the node into the stack

aStack.push(pointer); 

else pointer->setSibling(NULL);    // if rtag equals to 1, then right sibling pointer 

// should be NULL

TreeNode<T> *temppointer = new TreeNode<T>; // get ready for the next node

if (nodeArray[i].ltag == 0)              // if ltag equals to 0, then set the child node

pointer->setChild(temppointer);

else { // if ltag equals to 1

pointer->setChild(NULL); // set child pointer equal to NULL

pointer = aStack.top(); // get the top element of the stack

aStack.pop();

pointer->setSibling(temppointer); } // set a sibling node for the top element of the stack

pointer = temppointer; }

pointer->setValue(nodeArray[count-1].info); // deal with the last node

pointer->setChild(NULL);  pointer->setSibling(NULL);

}

Trees

Chapter 6

6.3  Sequential Storage Structure of Tree
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Double-tagging level-order sequence representation

Trees

Chapter 6

6.3  Sequential Storage Structure of Tree

• Nodes are stored continuously according to level-

order sequence

– Info represents the data of the node.

– ltag is a 1-bit tag, if the node doesn’t have a child node, which means 

the node of the corresponding binary tree doesn’t have a left child 

node, then ltag equals to 1, otherwise, ltag equals to 0.

– rtag is a 1-bit tag, if the node doesn’t have a right sibling node , which 

means the node of the corresponding binary tree doesn’t have a right 

child node, then rtag equals to 1, otherwise, rtag equals to 0.

 rtag info ltag 
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From a double-tagging level-order sequence to a tree

Trees

Chapter 6

6.3  Sequential Storage Structure of Tree

JHD
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K H J
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1 1

queue C D E
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From a double-tagging level-order sequence to a tree
template <class T>

Tree<T>::Tree(DualTagWidthTreeNode<T>* nodeArray, int count)  {

using std::queue;                                 // use the queue of STL

queue<TreeNode<T>*> aQueue;

TreeNode<T>* pointer=new TreeNode<T>; // build the root node

root=pointer;

for(int i=0;i<count-1;i++) { // deal with each node

pointer->setValue(nodeArray[i].info);

if(nodeArray[i].ltag==0)

aQueue.push(pointer);   // push the pointer into the queue

else pointer->setChild(NULL);   // set the left child node as NULL

TreeNode<T>* temppointer=new TreeNode<T>;

Trees

Chapter 6

6.3  Sequential Storage Structure of Tree
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if(nodeArray[i].rtag == 0)

pointer->setSibling(temppointer);

else {

pointer->setSibling(NULL);     // set the right sibling node as NULL

pointer=aQueue.front();         // get the pointer of the first node in the queue

aQueue.pop();                         // and pop it out of the queue

pointer->setChild(temppointer);

}

pointer=temppointer;

}

pointer->setValue(nodeArray[count-1].info); // the last node

pointer->setChild(NULL);  pointer->setSibling(NULL);

}

Trees

Chapter 6
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Postorder sequence with degree representation

Trees

Chapter 6

6.3  Sequential Storage Structure of Tree

• In postorder sequence with degree 

representation, nodes are stored contiguously 

according to postorder sequence, whose form 

are like:

• info represents the data of the node, and 

degree represents the degree of the node

 degree info 
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Postorder sequence with degree representation

Trees

Chapter 6

6.3  Sequential Storage Structure of Tree

info C XF GJ EK H I D

3 00 00 30 0 0 2degree

F

C

G

D

X I

E

K H J
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Postorder sequence with degree representation

Trees

Chapter 6

6.3  Sequential Storage Structure of Tree

info C XF GJ EK H I D

3 00 00 30 0 0 2degree

F

C

G
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X I

E

K H J
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• Preorder sequence of the full 
tagging binary tree

A’ B’ I C D’ E’ H F’ J G K

Trees

Chapter 6

6.3  Sequential Storage Structure of Tree

G

FH

D

C

A

B

E

J

I K

• Preorder sequence of the virtual 
full tagging binary tree

A’ B’ / C D’ E’ H F’ J / K

FH

D

C

A

B

E

J

K
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Thinking: Sequential Storage of the Forest

Trees

Chapter 6

6.3  Sequential Storage Structure of Tree

• Information redundancy

• Other sequential storage of tree

– Preorder sequence with degree?

– Level-order sequence with degree?

• Sequential storage of the binary tree?

– The binary tree is corresponding to the tree, but their 

semantemes are different

• Preorder sequence of the binary tree with right link

• Level-order sequence of the binary tree with left link



87

目录页

Ming Zhang “Data Structures and Algorithms”

Definition of K-ary tree

Trees

Chapter 6

6.4  K-ary Trees

• K-ary tree T is a finite node set, which can be 

defined recursively:

– (a) T is an empty set.

– (b) T consists of a root node and K disjoint K-

ary subtrees.

• Nodes except the root R are devided into K 

subsets (T
0
, T

1
, …, T

K–1
), and each subset is a K-

ary tree, such that T = {R, T
0
, T

1
, …, T

K-1
}.

• Each branch node of K-ary tree has K child nodes.
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Full K-ary trees and complete K-ary trees

Trees

Chapter 6

6.4  K-ary Trees

• The nodes of K-ary tree have K child nodes

• Many properties of binary tree can be generalized to K-ary tree

– Full K-ary trees and complete K-ary trees are similar to full 

binary trees and complete binary trees

– Complete K-ary trees can also be storeed in an array

Full 3-ary tree Complete 3-ary tree
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