
CSE333, Summer 2019L20: DNS, Client Networking

Server-Side Networking
CSE 333 Summer 2019

Instructor: Aaron Johnston

Teaching Assistants:

Yifan Bai Stuart Kol Daniel Lyu Kris Wong

CSE333, Summer 2019L20: DNS, Client Networking

About how long did Exercise 14 take?

A. 0-1 Hours
B. 1-2 Hours
C. 2-3 Hours
D. 3-4 Hours
E. 4+ Hours
F. I prefer not to say

2

CSE333, Summer 2019L20: DNS, Client Networking

Administrivia

❖ Exercise 15 out today

▪ Second-to-last exercise; server-side networking

❖ Final exam on Friday, August 23rd

▪ 1 hour (in lecture), 2 pages allowed as note sheets

▪ Will focus on post-midterm topics (C++ templates and on), but
may build off midterm topics

▪ Course website exams page has policies, topics, and practice finals

❖ HW4 posted and files will be pushed to repos today

▪ Due last Wednesday of the quarter (8/21)

▪ Only 1 late day allowed for HW4 (hard deadline of 8/22)

3

CSE333, Summer 2019L20: DNS, Client Networking

Socket API: Server TCP Connection

❖ Pretty similar to clients, but with additional steps:

1) Figure out the IP address and port on which to listen

2) Create a socket

3) bind() the socket to the address(es) and port

4) Tell the socket to listen() for incoming clients

5) accept() a client connection

6) .read() and write() to that connection

7) close() the client socket

4

CSE333, Summer 2019L20: DNS, Client Networking

Lecture Objectives

❖ Know what each of the 7 steps of server-side networking
does and why it is important

❖ Non-objective: be able to write server-side networking
code from scratch after this lecture

▪ You’ll have plenty of code to practice with at home ☺

▪ Copy and paste is not necessarily a bad thing here – but make
sure you understand it well enough to modify it if you have to

5

CSE333, Summer 2019L20: DNS, Client Networking

Servers

❖ Servers can have multiple IP addresses (“multihoming”)

▪ Usually have at least one externally-visible IP address, as well as a
local-only address (127.0.0.1)

❖ The goals of a server socket are different than a client
socket

▪ Want to bind the socket to a particular port of one or more IP
addresses of the server

▪ Want to allow multiple clients to connect to the same port

• OS uses client IP address and port numbers to direct I/O to the
correct server file descriptor

6

CSE333, Summer 2019L20: DNS, Client Networking

Step 1: Figure out IP address(es) & Port

❖ Step 1: getaddrinfo() invocation may or may not be
needed (but we’ll use it)

▪ Do you know your IP address(es) already?

• Static vs. dynamic IP address allocation

• Even if the machine has a static IP address, don’t wire it into the code
– either look it up dynamically or use a configuration file

▪ Can request listen on all local IP addresses by passing
NULL/nullptr as hostname and setting AI_PASSIVE in
hints.ai_flags

• Effect is to use address 0.0.0.0 (IPv4) or :: (IPv6)

7

CSE333, Summer 2019L20: DNS, Client Networking

Step 2: Create a Socket

❖ Step 2: socket() call is same as before

▪ Can directly use constants or fields from result of
getaddrinfo()

▪ Recall that this just returns a file descriptor – IP address and port
are not associated with socket yet

8

CSE333, Summer 2019L20: DNS, Client Networking

Step 3: Bind the socket

❖

▪ Looks nearly identical to connect()!

▪ Returns 0 on success, -1 on error

❖ Some specifics for addr:

▪ Address family: AF_INET or AF_INET6

• What type of IP connections can we accept?

• POSIX systems can handle IPv4 clients via IPv6 ☺

▪ Port: port in network byte order (htons() is handy)

▪ Address: specify particular IP address or any IP address

• “Wildcard address” – INADDR_ANY (IPv4), in6addr_any (IPv6)

9

int bind(int sockfd, const struct sockaddr* addr,

socklen_t addrlen);

CSE333, Summer 2019L20: DNS, Client Networking

Step 4: Listen for Incoming Clients

❖

▪ Tells the OS that the socket is a listening socket that clients can
connect to

▪ backlog: maximum length of connection queue

• Gets truncated, if necessary, to defined constant SOMAXCONN

• The OS will refuse new connections once queue is full until server
accept()s them (removing them from the queue)

▪ Returns 0 on success, -1 on error

▪ Clients can start connecting to the socket as soon as listen()
returns

• Server can’t use a connection until you accept() it

10

int listen(int sockfd, int backlog);

CSE333, Summer 2019L20: DNS, Client Networking

Pseudocode Time

❖ Assume we have set up struct addrinfo hints

to get both IPv4 and IPv6 addresses

▪ Write pseudocode to bind to and listen
on the first socket that works

❖ Pieces you can use:
▪ retval = getaddrinfo(..., &res);

▪ freeaddrinfo(res);

▪ fd = socket(...);

▪ retval = bind(fd, ...);

▪ retval = listen(fd, SOMAXCONN);

▪ close(fd);

11

CSE333, Summer 2019L20: DNS, Client Networking

Example #1

❖ See server_bind_listen.cc

▪ Takes in a port number from the command line

▪ Opens a server socket, prints info, then listens for connections for
20 seconds

• Can connect to it using netcat (nc)

12

CSE333, Summer 2019L20: DNS, Client Networking

Step 5: Accept a Client Connection

❖

▪ Returns an active, ready-to-use socket file descriptor connected
to a client (or -1 on error)

• sockfd must have been created, bound, and listening

• Pulls a queued connection or waits for an incoming one

▪ addr and addrlen are output parameters

• *addrlen is ALSO a normal parameter: initially set to
sizeof(*addr), gets overwritten with the size of the client
address

• Address information of client is written into *addr

– Use inet_ntop() to get the client’s printable IP address

– Use getnameinfo() to do a reverse DNS lookup on the client

13

int accept(int sockfd, struct sockaddr* addr,

socklen_t* addrlen);

CSE333, Summer 2019L20: DNS, Client Networking

Example #2

❖ See server_accept_rw_close.cc

▪ Takes in a port number from the command line

▪ Opens a server socket, prints info, then listens for connections

• Can connect to it using netcat (nc)

▪ Accepts connections as they come

▪ Echoes any data the client sends to it on stdout and also sends
it back to the client

14

CSE333, Summer 2019L20: DNS, Client Networking

Something to Note

❖ Our server code is not concurrent

▪ Single thread of execution

▪ The thread blocks while waiting for the next connection

▪ The thread blocks waiting for the next message from the
connection

❖ A crowd of clients is, by nature, concurrent

▪ While our server is handling the next client, all other clients are
stuck waiting for it

15

CSE333, Summer 2019L20: DNS, Client Networking

Extra Exercise #1

❖ Write a program that:

▪ Creates a listening socket that accepts connections from clients

▪ Reads a line of text from the client

▪ Parses the line of text as a DNS name

▪ Does a DNS lookup on the name

▪ Writes back to the client the list of IP addresses associated with
the DNS name

▪ Closes the connection to the client

16

