
Data Visualization For Patients

Paige M. Applegate

CIS4914, Senior Project
Department of CISE
University of Florida

Advisor: Dr. Peggy Borum, email: prb@ufl.edu
Department of CALS/Food Science and Human Nutrition

University of Florida, Gainesville, FL 32611

Date of Talk: 7 Dec 2020

Abstract

According to the CDC, approximately 470,000 children nationwide are affected with

epilepsy. The Borum Lab aims to help these patients through Precision Ketogenic

Therapy (PKT). They help to closely monitor patients' nutritional intake. This includes

fats, carbohydrates, and amino acids. Based on how the patient reacts to the prescribed

ratio, the team will edit and update the recommended cookbooks. The way that healthcare

providers are able to do this is through data analysis. By comparing variables in a graph

(whether it be variable vs. variable or variable vs date) and checking the patients z-scores,

they are able to see how specific ratios are affecting the patient, and thus making the

treatment more effective. The way this used to be done was through microsoft sheets in

microsoft teams. While this was a good way to make information accessible to all the

providers, it was inconvenient to have to search through and update various folders and

files.

To address this, we created web pages for healthcare providers. They would be able to

enter data, have that data stored in a database, then be able to view that data through

dynamic graphs. The webpage would then be tested by the clinical students to make sure

that everything stores/displays correctly and works intuitively. To accomplish this, we use

PostgreSQL, Docker, Python, as well as various Python libraries that will be discussed in

this paper.

1. Introduction.

In this project we aim to develop a web application that assists healthcare providers in

entering data and displaying the information. This particular part of the senior project

focuses on visualizing that data for patients. We hope to create graphs that help patients

understand exactly what the information is trying to convey. In doing this, the healthcare

providers will have a useful tool when showing and explaining data to their patients. This

can be done through allowing the healthcare providers to change the graph types, how

many variables are on each axis, and be able to zoom into particular sections of the graph.

It has also been noted that patients could have a hard time understanding what the

data means past spikes or dips are bad, we also introduced a stoplight feature. This allows

for them to visualize that data is in a range. While variables may go up and down, it does

not always mean something is necessarily going wrong.

The schedule for this project is as followed:

08/27/21 - 08/31/21 Identify the Problem

08/31/21 - 09/10/21 Learn from Databases

09/11/21 - 09/17/21 Create Wireframes

09/17/21 - 09/29/21 Create ER Diagrams

09/22/21 - 10/11/21 Anthropometric Graphs

10/15/21 - 11/10/21 Clinical Graphs

10/20/21 - 11/10/21 Other Graphs

11/16/21 - 11/19/21 Demonstrate Features

Expected challenges are working with the ResVault updating schedule, both when

we need to send updated versions of our code in and when ResVault itself is undergoing

updates. Another challenge is learning curves. For example, before this summer I had not

worked with HTML, Flask, PostgreSQL, PgAdmin, Streamlit, Plotly, or Docker before. I

needed to learn them fast and efficiently so that I could use them in my project.

1.1. Problem Domain.

Before working on this project, there was no way for healthcare providers to

dynamically update and create graphs. They would have to go into each microsoft sheets

file in each of the patients folders to create a graph. They would also have to update each

sheet by hand. This process would be time consuming and tedious. Because there is no

error checking in sheets either, there would sometimes be errors ranging from not

following the data dictionary to simple mistypes. By creating a web page that checks for

these errors upon input, this could be solved. The issue with the files could also be solved

by creating a dropdown menu that contains the current patients, as well as a drop down

menu for the different types of files. With the data being entered this way, it could be

stored into a database. The graphs can then pull from this database and therefore be

dynamically updated.

1.2. Literature Overview

Through this project, a lot was learned from the Docker documentation [1].

Before running the webpage we had to create, build, and run Docker images. The

documentation taught me how to use various Docker commands, be able to troubleshoot

Docker related errors, and create Docker images.

Along with Docker, I had to learn how to use Streamlit [2]. Streamlit is a very

useful Python library that was created with data visualization in mind. It is an intuitive

platform that allows for the user to create a webpage without having to use HTML or

Javascript. After selecting Streamlit as the main platform, I had to learn Plotly from its

documentation [3]. It is a very user-friendly Python library that allows for a vast amount

of customization of graphs and for the user to download the graphs into a png. The other

option we thought about using was dygraphs [4]. However, since dygraphs works in

HTML and Streamlit solely uses Python it would be difficult to integrate it into the

webpage. The functionality for Plotly also worked better for our end goal.

On the data entry side of the project, I had to learn Flask [5]. Flask allows for the

user to transfer from Python to HTML/Javascript and back to Python. It is a good way to

create well designed web pages that the creator can customize in whatever way they

wish. It is also well known for data entry. Through Flask we could put restrictions on the

data being entered, make fields required, and let the user know if there is anything wrong

with the way they entered their data.

2. Technical Approach (Solution)

To address the issues faced with only using the excel sheets, we created the

patient data entry page and the data visualization pages. To be able to access these pages

the user would first need to log into Resvault. Resvault is the application we chose to run

our webpage on since it is secure and HIPAA compliant. This is important as we are

working with real patient data. After logging in, the user would need to navigate to

‘localhost:5000’. This will automatically link to the website’s home page. From there

they can choose to enter data through the data entry button or look at data output through

the data science portal. Figure 1 displays all of the various option available to the user

after selecting one of the two buttons, however the main focus for this paper is the Patient

Data Entry and the Patient Data Visualization sections.

Figure 1. Flow chart diagram displaying how the website will work

When selecting the Patient Data Entry, the user is sent to a form. First they must

either ‘add patient’ or use the drop down menu to select an existing patient. After that

they must select a file they wish to work with. An ER diagram of the available files are

shown below in figure 2.

Figure 2. ER diagram of the different files. This includes vitals, alertness,

clinical_labs, clinic_vns, clinic_gi_issues, and anthropometrics

After selecting a file, the user can then choose to view existing data or add data. If

the user selects add data, they are taken to a form that they can fill out. Each file has their

own unique form, each with specific requirements. If they select ‘view’, they are shown a

table full of all the current information stored in the PgAdmin database. Next to each row

are two buttons: edit and delete. Delete will delete the row selected. Edit will take the

user to the file’s form. Any data entered into the form will replace the data in the row

selected.

Figure 3. Wireframe for Patient Data Visualization page

When selecting Patient Data Visualization, the user is taken to the patient data

visualization webpage. In this page the user first selects the patient they want, then selects

the file they want to generate the graphs from. The user can then change the graph type

using buttons found on top of the graph, export the graph through the export button

(which converts the graph into a png they can save on their account in Resvault), and

change the date range using the date slider found at the bottom of the graph. If the user

wants to change the x-axis values, they have to select ‘add graph’. This generates a graph

that they can use to plot any value against any other value.

Below these graphs is the z-score graph. The z-score graph allows the user to plot

z-weight, z-height, and/or z-bmi against date. The main feature for this graph is the stop

light colors. In the z-score graph there are 3 main colors: red, yellow, and green. The

green range is +1 to -1, yellow is +2 to -2, and red is +6 to -6. This allows for patients to

have a better understanding about what the z-score is trying to convey. Green is the

healthy range, yellow is equivalent to so-so, and red is not good. The patient gets closer

to the green range, the better the progress they are making.

To create the graphs in the patient data visualization section, we utilized PostgreSQL,

Streamlit, Pandas, and Ploty. PostgreSQL and Pandas were used to obtain the information

stored in the database (entered by the patient data entry page). From there they were

stored into values that Streamlit and Plotly could use. Plotly then graphed the data.

In the patient data entry section, Flask and HTML were used. Flask was used to

communicate information taken from the forms created by HTML and stored them into

the PgAdmin database. The HTML created the visual part of the webpages, made

restrictions on the forms, and obtained information from the user’s input.

3. Results

.The tests for the webpage ran successfully. Each page loaded up correctly and

displayed the appropriate information. Updating the database through the data entry page

was successful and all the data stored in the database showed up accurately on the graphs

in the patient data visualization page. Results of these pages are shown in figure 4 and 5.

Figure 4. View tables for the Patient Data Entry pages

Figure 5. Z-score graph for the Patient Visualization page

Testing was done through Virtualbox, as well as Resvault. Since I cannot show actual

patient data in this paper, I filled the graph with dummy data (an explanation as to why

the data looks odd). The stop light function works well in the z-score graphs. A DOL and

date button was added to the graph to give the user an option for how they would like to

view the data. Normally there would be an option to view the graph by 1month, 6months,

1year, or ytd. Unfortunately, this did not work with the DOL value as it is not in date

format. Pressing the date button switches the graph from value vs DOL to value vs date,

thus allowing the user to use these buttons.

4. Conclusion

For this project, I created a data visualization page for patients that help healthcare

providers explain visually what the data is trying to convey. I also helped in creating the

patient data entry page by adding a way to edit already existing data and being able to

more easily navigate the web pages. This will hopefully result in the healthcare providers

no longer needing to rely on excel spreadsheets to store information.

For future work I would encourage others to add more of the files to the data

visualization page as we were only able to get through anthropometrics and clinical. I

would also encourage further testing in the data editing functions. There are simply a lot

of values and moving parts in that section, so it is very easy for an error to occur but go

unnoticed.

5. Acknowledgements

The author would like to thank her advisor, Dr. Peggy Borum, for her

guidance, advice, and encouragement towards completion of this project. She would also

like to thank Octavio Ochoa for his incredible training as well as Berlin Sankar for her

continued assistance with Resvault.

6. References

[1] https://docs.docker.com/ “Docker (Base Commands)” web:
https://docs.docker.com/engine/reference/commandline/docker/ last accessed
15 October 2021.

[2] streamlit “Streamlit Documentation” web: https://docs.streamlit.io/ last accessed 29
November 2021

[3] https://plotly.com “Plotly Python Open Source Graphing Library”
web:https://plotly.com/python/ last accessed 15 October 2021.

[4] https://dygraphs.com “Tutorial” web: https://dygraphs.com/tutorial.html last accessed
29 November 2021

[5] https://flask.palletsprojects.com/ “Flask Minimal Application” web:
https://flask.palletsprojects.com/en/2.0.x/quickstart/ last accessed 15 October
2021.

7. Biography

Paige M. Applegate was born June 6, 1999. She is completing her B.S. degree in

Computer Science at the University of Florida (Gainesville, FL). She expects to graduate

on December 17, 2021. Through her five years at UF, Ms. Applegate learned plenty about

computers and became proficient in C++, Java, Python, and C#. In her free time she

enjoyed creating games in Unity, though none of them have been released as of yet, as

well as drawing, reading, and playing the flute. She hopes to be employed as a software

developer after graduation.

https://docs.docker.com/
https://docs.docker.com/engine/reference/commandline/docker/
https://plotly.com/python/
https://plotly.com/python/
https://flask.palletsprojects.com/
https://flask.palletsprojects.com/en/2.0.x/quickstart/

