
FS 2020 Slide 1

Data Warehousing

Data Warehouse Design &

Multi-dimensional Models

FS 2020
Dr. Andreas Geppert
geppert@acm.org



© Andreas Geppert 
FS 2020 Slide 2

Outline of the Course

� Introduction

� DWH Architecture

� DWH-Design and multi-dimensional data models

� Extract, Transform, Load (ETL)

� Metadata

� Data Quality

� Analytic Applications and Business Intelligence

� Implementation and Performance

� (Security and Privacy)



© Andreas Geppert 
FS 2020 Slide 3

Content

1. Application Development in Data Warehouses

2. Schema Design for Data Warehouses

3. Multi-dimensional Data Models

4. Logical Design for Data Marts

5. Appendix: Conceptual Design for Data Marts



© Andreas Geppert 
FS 2020 Slide 4

Motivation

� complex facts are represented in the DWH

� DWH supports integration and analysis

– databases must be modeled accordingly

– without complete and adequate data models, DWH will not be a success

� analytic databases (data marts) use multidimensional concepts

– how do you systematically design these databases?

– what is the analogon to the Entity Relationship Model and to the mapping ER → 

RM ?

� notations and conceptual (meta) data models

� modeling approaches



© Andreas Geppert 
FS 2020 Slide 5

Reference Architecture V4 Applications

� build "seed" IL containing most-needed data and integrated most important 

sources

GUI

…

Reusable Selection,

Aggregation,

Calculation

Web/App 

Servers

Integration, Historization Reporting,

OLAP,

Data Mining

Selection,

Aggregation,

Calculation

Data 

Sources

Data
Integration

Data
Enrichment

Analysis

Applications

Encapsulation 



© Andreas Geppert 
FS 2020 Slide 6

logic;

extract, transform, load

logic 

(no ETL)
Legend:

GUI

…

Metadata Management

Reusable Selection,

Aggregation,

Calculation

Web/App 

Servers

Integration, Historization

La
n

d
in

g
 

Z
o

n
e

Reporting,

OLAP,

Data Mining

Selection,

Aggregation,

Calculation

data

flow

Data 

Sources

S
ta

g
in

g
 

A
re

a

S
u

b
je

ct
 

M
a

tt
e

r 
A

re
a

s

R
e

u
sa

b
le

 
M

e
a

su
re

s 
&

 
D

im
e

n
si

o
n

s 
A

re
a

s

relational

database
multidimensional

database
file

Layer:
Data

Integration
Data

Enrichment
Analysis

DWH Data Universe Data Marts
Analysis
Services

Presentation
Front
End

DWH Application Development

� start with requirements of analysis applications



© Andreas Geppert 
FS 2020 Slide 7

General Approach & Data Model Hierarchy

� modeling-driven approach

� model/specify on abstract level and derive (or even 

generate) lower-level constructs

� distinguish conceptual, logical, and physical model

� the same hierarchy is applied to ETL processes / 

mappings

Analysis

Conceptual design

Logical design

Logical model

Conceptual model

Physical design

Physical model

Requirements



© Andreas Geppert 
FS 2020 Slide 8

Data Models: Conceptual

� The Conceptual Data Model serves the following purposes:
– Unambiguously represent business information structures and rules, enabling communication of this 

understanding to the entire development team
– Provide an implementation-independent set of requirements as input to the logical data model, and 

to the physical data model
– Clearly and uniquely identify all business entities in the system

� Note that the conceptual data model should not be considered as an intermediate 
design document to be disregarded after logical and physical design; rather it should 
remain as a part of the database specifications, organized with a variety of documents 
that also describe in detail the requirement acquisition and design process

� Finally one of the possibly most important advantages of conceptual design shows up 
during the operation of the database when the conceptual model and its 
documentation ease the understanding of data schemas and of applications that use 
them and thus facilitate their transformation and maintenance. 



© Andreas Geppert 
FS 2020 Slide 9

Data Models: Logical

� The Logical Data Model (LDM) is a database-near data model that hides details of data 
storage and DBMS-specific idiosyncrasies but can nevertheless be implemented 
straightforward on a computer system

� Its main purpose is to ensure a proper mapping from a high-level conceptual data model 
(i.e., an Entity Relationship Model) that focuses exclusively on business entities and their 
relationships to the (principal) schema constructs used by a class of DBMSs (e.g., 
relational DBMSs). In other words logical design is conducted in the same way for all 
relational DBMSs (e.g., Oracle, DB2 etc.) because they all implement the relational data 
model. As a consequence a specific relational logical model can be used "as is" to design 
the physical data model of DB2, Oracle, SQL Server etc. whereas it cannot be used to 
design the physical data model for an IMS System.



© Andreas Geppert 
FS 2020 Slide 10

Data Models: Physical

� The purpose of the Physical Database Design is to ensure that 

database transactions and queries meet performance requirements 

while reflecting the semantics of the Logical Data Model

� While the Logical Data Model contains the information requirements 

of the system in a normalized form, a direct implementation of the 

model is unlikely to meet performance requirements

� Physical Database Design takes into account data and transaction 

volume as well as typical queries to produce a schema and 

environment that will meet necessary performance requirements. 



© Andreas Geppert 
FS 2020 Slide 11

Application Development Processes Big Picture

analysis application development process

integration application development process

analyze

info req

derive

data req

determine

reuse potential
determine

technology

model

data mart

model

mappings

design

logical schema

design

mappings

implement

data mart

implement

ETL process

develop

reports

analyze

data req

analyze

source
def. incom.

interf.

extend

staging area

model

SMA

model

mappings

define

quality checks

design

SMA

design

ETL

implement

SMA

implement 

ETL

def. outgoing

interfaces

implement 

interfaces

enrichment application development process

design

mappings

implement

log. schema

implement 

mappings

def. outgoing

interfaces

implement 

interfaces

analyze

info req

derive

data req

model

RMDA

model

mappings

design

logical schema



© Andreas Geppert 
FS 2020 Slide 12

Content

1. Application Development in Data Warehouses

2. Schema Design for Data Warehouses

3. Multi-dimensional Data Models

4. Logical Design for Data Marts

5. Appendix: Conceptual Design for Data Marts



© Andreas Geppert 
FS 2020 Slide 13

Schema Design for Data Warehouses

■ database design must support goals of the data warehouse

■ integration
– schema integration

– target of ETL processes

■ historization

■ data quality

■ granularity

■ in most architectural styles (Hub-and-Spoke, etc.) the DWH is implemented relationally 

on the logical level (3NF)

■ the ER Model can/should be used for conceptual modeling



© Andreas Geppert 
FS 2020 Slide 14

Schema Design for Data Warehouses

■ Requirements to the data warehouse result from requirements analysis of the 

analysis/reporting application

■ are the data that an application under construction needs already in the data 

warehouse (integration layer) and can be sourced from there?

– if not, those data have to be sourced from one or more data sources / 

operational systems

■ it is absolutely crucial to maintain accurate, timely, and complete information 

about the data in the data warehouse

– data in the DWH must be modeled ( conceptual schemas !) 

– semantics of data must be understood

– data ownership must be defined



© Andreas Geppert 
FS 2020 Slide 15

Integration

� the data warehouse integrates data from different sources
– different aspects of the same business entities are managed in different business processes 

with disjoint databases

– different business processes over the same business entity operate on disjoint databases

– the same business process is implemented by multiple applications (e.g., because of mergers 

and acquisitions); e.g., multiple CRM systems

� "vertical" integration: integrate attributes from different sources 

into the same entity

� "horizontal" integration: integrate entities from different sources 

into the same entity collection (logically: relation)



© Andreas Geppert 
FS 2020 Slide 16

Key Generation and Integration

� different sources usually maintain different kinds of primary keys

– different types of keys (e.g., securities)

– overlapping sets of key values (no globally unique identifiers)

� business keys vs. technical keys

� use artificial/technical keys in the data warehouse ("surrogate keys")

– map business keys / source keys  surrogate

– maintain business keys as attributes

– surrogates are not visible to users and applications should not rely on the 

mapping of business keys onto surrogates

CSN (Valorennr)

Apple Inc. (CUSIP)

BEA Systems (ISIN)

Surrogate | VNr | CUSIP | ISIN



© Andreas Geppert 
FS 2020 Slide 17

Historization

� DWH must represent historical evolution of objects

� differing states of objects on the timeline

� bi-temporal time notion (temporal databases)

� Validity time: Interval, during which an object has been in a specific state (e.g., 

during which an attribute has had a certain value)

� Transaction time: point in time when the state of an object changed (e.g., an 

attribute has been modified). Could also be an interval.



© Andreas Geppert 
FS 2020 Slide 18

Historization (2)

� Customer Calvin has been living in Basel for a long time

� On April 1, he moved to Bern. He announced his move one week in advance

– this change is reflected by an update (closing the validity interval of the old address) and an insert 

(containing the new address with an infinite valid_until_date)

� On November 11, we learned that Calvin was deleted from the customer 

database as per November 1.

– This change is reflected by an update (update of the transaction time and closing of the validity 

interval)

Customer Name Address TX_Time Valid_From Valid_Until

12345 Calvin Basel 2004-04-04 2004-04-01 9999-12-31

2019-03-31

12345 Calvin Bern 2019-03-24

2019-11-11

2019-04-01 9999-12-31

9999-12-31 2019-11-01



© Andreas Geppert 
FS 2020 Slide 19

Modeling of "Time"

� date and time are important properties in 

many applications

� in addition to the data and time, further 

properties are important, depending on the 

application (e.g., holidays)

� different calendars exists (we normally use 

the Gregorian Calendar)

� in addition to the calendar year, other 

notions of "year" are common (e.g., fiscal 

year)

� in many cases, the explicit modeling of 

date and time is recommended over simply 

using the database system's calendar

Date

Day Month Year

Fiscal

Month

Fiscal

Year



© Andreas Geppert 
FS 2020 Slide 20

Data Vault Modeling

� The Data Vault technique has been introduced in the 1990s 

� Today it is used in many DWH projects

� Previous techniques (3NF-based data models) have issues with 

changing sources. Data Vault modeling has been designed to better 

cope with such changes

� The Data Vault main components:

� Hubs

� Link Tables

� Satellites



© Andreas Geppert 
FS 2020 Slide 21

Data Vault Main Elements: Hub Entities

� Represent an entity in the subject area of interest

� Carries at a minimum a unique list of business keys

– invoice number, customer number, employee PID, …

� In case the business uses multiple business keys, the hub contains 

multiple rows (one for each business key)

� Surrogate key: optional (see surrogates above) 

� Load date timestamp: records when the key was first loaded into the 

data warehouse

� Record source: reference to the source system where the business 

key came from, for traceability reasons



© Andreas Geppert 
FS 2020 Slide 22

Data Vault Main Elements: Link Entities

� Represent the relationship between two or more business 

components 

� Hub keys represent the relationship between the hubs

� Surrogate key: optional component

� Load date timestamp: indicates when the relationship was first 

created in the warehouse 

� Record source: indicates from which data source the relationship 

was loaded; for traceability reasons 



© Andreas Geppert 
FS 2020 Slide 23

Data Vault Main Elements: Satellite Entities

� hub key context (descriptive) information

� satellite data are subject to change over time; therefore the 

structure must be capable of storing new or altered data 

� Satellite primary key: Hub or link primary key

� Load date timestamp: indicates when the context information was 

first created in the warehouse 

� Sequence surrogate number: optional. Useful for Satellites that have 

multiple values

� Record source: indicates from which data source the satellite was 

loaded; for traceability reasons 



© Andreas Geppert 
FS 2020 Slide 24

Data Vault Example

source: https://danlinstedt.com/solutions-2/data-vault-basics/



© Andreas Geppert 
FS 2020 Slide 25

Inhalt

1. Application Development in Data Warehouses

2. Schema Design for Data Warehouses

3. Multi-dimensional Data Models

4. Logical Design for Data Marts

5. Appendix: Conceptual Design for Data Marts



© Andreas Geppert 
FS 2020 Slide 26

Multi-dimensional Data Models

� “Classical” relations:

– One-dimensional (not in the mathematical sense)

– Relation maps key onto attributes

� However, in many cases in data warehousing one is interested in 

multiple perspectives („dimensions“)

– Example: Sales based on product, time, region, customer, store, 

manager/employee

Cannot be represented with normal relations

Multi-dimensional data models 

Multi-dimensional database systems 



© Andreas Geppert 
FS 2020 Slide 27

Comparison: relational vs. Multi-dimensional DM

relational model

■Simple, little semantics

■Application-neutral

■Less ostensive modeling ( ERM)

■standardized

Multi-dimensional data models

■More complex, more semantics 

■Well-suited only for specific 

applications

■Ostensive modeling  user-

friendly

■Caution: the multi-dimensional data 

model does not exist
– No uniform query language

– No standards

– No uniform formalization



© Andreas Geppert 
FS 2020 Slide 28

Content

1. Application Development in Data Warehouses

2. Schema Design for Data Warehouses

3. Multi-dimensional Data Models

– Dimensions, Measures, Facts, Cubes

– Operators

4. Logical Design for Data Marts

5. Appendix: Conceptual Design for Data Marts



© Andreas Geppert 
FS 2020 Slide 29

Multi-dimensional Data: Cubes

� Multi-dimensional data are seen and represented as data cubes

� More precisely: Hypercubes

11

45

99

45

5

23

8

56

19

44

16

39

8

7

20

56

24

23

28

11

61 94 62

R
egio

nP
ro

d
u

k
t

Quartal

 Distinction into

– Qualifying and 

– Quantifying information

 Qualifying information identifies cell 

or sub-cube

 Quantifying information contains 

numbers



© Andreas Geppert 
FS 2020 Slide 30

Multi-dimensional Data: Representation



© Andreas Geppert 
FS 2020 Slide 31

Multi-dimensional Data: Dimensions

� Dimension:

– Set of (at least two) dimension elements

 All articles, customers, ...

– Analysis perspective of an application area

– Qualifying information

– “cube axes”

� Examples:

– Customer, Product, Time, Store, ...



© Andreas Geppert 
FS 2020 Slide 32

Multi-dimensional Data: Dimensions (2)

■Dimensions are rarely flat

■Attributes form a classification hierarchy

■Examples: - Month  Quarter  Year

- City  Canton  Region

- Product  Product family  Product group  Area

Camcorder

Heimelektronik

Video Audio Haushaltsgeräte

Waschmaschinen Trockner

Grossgeräte

T
R

-7
5

T
S

-7
8

A
2

0
0

D
u
e
tt

L
a

v
a

m
a
t

A
B

1
0
4
3

P
ri
n

c
e
s
s

S
u
p

e
rI

S
o

n
y

S
o

n
y

J
V

C

S
ie

m
e

n
s

Z
u
g

M
ie

le

B
o

s
c
h

S
ie

m
e

n
s

ArtikelNr

Bereich

Gruppe

Familie

Marke

Geschäft

Region

Kanton

StadtHeimrekorder

V
-2

0
1

C
la

s
s
ic

I

J
V

C

G
ru

n
d

ig

Monat

Jahr

Quartal

Total Total TotalAll



© Andreas Geppert 
FS 2020 Slide 33

Dimension Schemas

� Schema of a dimension hierarchy

� Partially ordered set D of dimensional attributes

– ({D1, …, Dn, Top
D
}; )

–  functional dependency

attribute A determines B  (A  B), if the value of B is uniquely determined by 

the value of A

– Top
D

is the maximum element regarding 

  Di: Di  Top
D

– There is a unique, smallest element Di, which determines all others

  Di:  Dk, ki: Di  Dk

� Example: 

– {Day, Month, Quarter, Year, Top}, 

– Day  Month  Quarter  Year  Top



© Andreas Geppert 
FS 2020 Slide 34

Dimension Schemas

� Partial ordering allows for parallel 

hierarchies

� Example: 

– {Day, Month, Quarter, Year, Calendar Week}, 

– Day  Month  Quarter   Year

– Day  Calendar Week  Year

� Orthogonality

–   D.Di  D’.Dj

Top

Year

Quarter

Month Week

Day



© Andreas Geppert 
FS 2020 Slide 35

Dimension schemas: Examples Product and Store

Top

P-Dep‘t

P-Group

P-Family

Article

Brand

Top

Country

State

City

Store

Manager

Region



© Andreas Geppert 
FS 2020 Slide 36

Dimension schemas and Instances

Products
All

HomeVCR Camcorder

Video Audio Computers

Brown Goods White Goods

Article

Family

Group

Area

Top

 Functional dependencies determine instances structures

– 1:n relationships

– Path to the root: consolidation path

 Camcorder  Video  Brown Goods  All



© Andreas Geppert 
FS 2020 Slide 37

Dimension Schemas: Special Cases

� Relationships between hierarchy levels not always 1:n

� Element node has more than one predecessor

– No tree structure anymore, but acyclic graph

– Example: Product � Promotion

� Gaps in the ancestor relation

– Node on level n+1 does not have predecessor on level n

– Tree is no longer balanced

– Example: Shop  City  State



© Andreas Geppert 
FS 2020 Slide 38

Multi-dimensional Data: Measures 

� Quantifying information 

– Usually numeric

� Key figures, measures

� Examples:

– sales figures

– turnover

– Measurements (temperature, rainfall, …)



© Andreas Geppert 
FS 2020 Slide 39

Characteristics of Measures

� Name, data type, range

� Aggregation type

– Defines which aggregation operation are meaningful (hence, allowed)

– FLOW: can be aggregated in arbitrary ways (sales, turnover)

– Stock: cannot be summed up over time (inventory, ...)

– VPU (Value per Unit): cannot be summed up at all (price, tax, ...)

� Average, minimum, maximum are always possible

– When semantically meaningful



© Andreas Geppert 
FS 2020 Slide 40

Multi-dimensional Data: Facts

� A fact is an element of the multi-dimensional space

� Associates a set of dimension elements with measures

� „cube cell“ 

– Granularity is given by dimension elements

– Fact is uniquely identified through a combination of dimension elements

� Qualifying and quantifying information

� Interesting occurrences

Sometimes misleading use of terms

Facts and measures are sometimes confused, but are not the same

Fact  Cell, Measure  cell content



© Andreas Geppert 
FS 2020 Slide 41

Multi-dimensional Data: Cubes

� A data cube is a multi-dimensional space of facts

� Cubes, Hypercubes

11

45

99

45

5

23

8

56

19

44

16

39

8

7

20

56

24

23

28

11

61 94 62

R
egio

nP
ro

d
u

k
t

Quartal



© Andreas Geppert 
FS 2020 Slide 42

Data Cube Instances

� Cube domain:

– dom(C) = ((dom(G1)  …  dom(Gn)) 

 ((dom(M1)  …  dom(Mm))

� Instance:

– All cube cells from the cube domain 

– Not: subset of existing facts as in the relational 

model

� „cube“ is more like a metaphor

– Rarely all cells are really present (in the sense of facts that occurred in the real 

world)

– Implementation as null or 0

S hop
D a y

A
rt

ic
le

S a les  T u rn o ver



© Andreas Geppert 
FS 2020 Slide 43

Content

1. Application Development in Data Warehouses

2. Schema Design for Data Warehouses

3. Multi-dimensional Data Models

– Dimensions, Measures, Facts, Cubes

– Operators

4. Logical Design for Data Marts

5. Appendix: Conceptual Design for Data Marts



© Andreas Geppert 
FS 2020 Slide 44

Multi-dimensional Operators: Slice and Dice

� Cuts a cube

– Specification of a hierarchy node

– Example: sales in Germany

� Selection of a sub-cube 

– Specification of nodes in the

dimension hierarchies

– Sales for Consumer Electric in 

Germany in 1997

Time

Loca
tio

n

P
ro

d
u
c
t

1997

C
o

n
s
. 

E
le

c
tr

ic

G
erm

any

g
ro

u
p

fa
m

ily

a
rt

ic
le day

month

year

sh
op

re
gio

n
co

untry



© Andreas Geppert 
FS 2020 Slide 45

Multi-dimensional Operators: Navigation

� Drill-Down

– Start at coarser granularity

– Navigate to a representation with finer granularity (i.e., more detailed)

– Sums will be broken up in partial sums

– Example: Sales [Year, Kanton] -> Sales [Quarter, Kanton]

Drill down



© Andreas Geppert 
FS 2020 Slide 46

Multi-dimensional Operators: Navigation (2)

� Roll-up

– Start at finer granularity

– Navigate to a representation with coarser granularity (i.e., less detailed)

– Possibly first expansion of the data

– Example: Sales per year and state (2005, CA)

 Sales per year and country (2005, USA)

Roll up



© Andreas Geppert 
FS 2020 Slide 47

Multi-dimensional Operators: Pivot

� Changes orientation of the dimensions

� Rather an operation on presentation level, not of the data model

Location

T
im

e

Product

Lo
ca

ti
o

nPivot



© Andreas Geppert 
FS 2020 Slide 48

Multi-dimensional Operators: Join

� Combines two cubes into a new one

� (G, M1)  (G, M2) = (G, M1  M2)

� Example: Sales Cube  Price Cube

� Possibly granularities need to be adjusted first

Join



© Andreas Geppert 
FS 2020 Slide 49

Multi-dimensional Operators: Aggregation

� Aggregation happens (implicitly) whenever granularity changes (e.g., 

rollup)

– By default, sums are computed

– Other standard aggregation operators are possible as well: average, minimum, 

maximum, count

– Further, application-specific calculations

– A multi-dimensional DBS can be used as a calculation engine



© Andreas Geppert 
FS 2020 Slide 50

Multi-dimensionale Data Models: Summary

� Several multi-dimensional data models

� Dimensions & hierarchies, measures, facts, cubes

� Cubes as the basis for ...

– Analysis

– Calculations

� Some (subtle) restrictions

� „Cube" is a concept, there are different instantiations on logical and 

physical level



© Andreas Geppert 
FS 2020 Slide 51

Content

1. Application Development in Data Warehouses

2. Schema Design for Data Warehouses

3. Multi-dimensional Data Models

4. Logical Design for Data Marts

5. Appendix: Conceptual Design for Data Marts



© Andreas Geppert 
FS 2020 Slide 52

Logical Design

� Derive logical schema from conceptual one

� express logical schema with the means of the logical (meta) data model (!)

– logical data model can be relational or multidimensional

� Requirements (to logical (meta) data models and DBMSs

– adequate representation of data (types)

 dimensions and hierarchies

 facts

– operators support analysis adequately

– DBMS aspects

 large volumes of data

 performance

 multi user access

 security, ...



© Andreas Geppert 
FS 2020 Slide 53

Relational Mapping of Multidimensional Structures

Storage of multidimensional data

– in relations

– only existing cube cells

Separation of structure and content (unlike as in cubes)

– central fact table(s)

– dimension tables

– facts reference dimension tables

– fact table contains measures
Zeit

P
ro

d
u
k
t 27

11. 11. 2001
MediaMarkt

TR-75 Produkt Geschäft Zeit Verkäufe

TR-75 MediaMarkt 11. 11. 2001 27

AC300 ProMarkt 23. 12. 2001 39

... ... ... ...



© Andreas Geppert 
FS 2020 Slide 54

Snowflake Schemas

� (central) fact table, dimension tables

� dimension tables are normalized

� n dimension hierarchy levels (within a dimension)  n dimension 

relations for this dimension

� foreign key/primary key relationship between fact and dimension 

tables: fact table references dimension table representing most 

granular hierarchy level

� primary key of fact table is composed out of foreign keys (i.e., 

primary keys of dimensions)

� foreign key/primary key relationship between dimension tables 

(representing the hierarchy levels) 



© Andreas Geppert 
FS 2020 Slide 55

Snowflake Schema: Example

RegionID

Region

State

...

StateID

State

Country

...

ShopID

ShopType

Region

... ArticleID

Family

VSys

…

Load

Temp

ArticleID

ShopID

Day

Sales

Stock

Turnover

FamilyID

Family

Group

...

GroupID

Group

Area

...

Month

Quarter

...

Quarter

Year

...

Day

Month

...



© Andreas Geppert 
FS 2020 Slide 56

Snowflake Schemas: Implications for Queries

■Example: Sum of sales by region, by month, by product group

■7 join operations:

– 3 between fact table and (most granular) dimension tables

– 4 for rollup to higher hierarchy levels 



© Andreas Geppert 
FS 2020 Slide 57

Snowflake Schemas: Properties

� correct update of dimension tables is easier

– because of normalization

– normalization avoids update anomalies

� schema design is easier 

– depending on conceptual design, snowflake design is obtained as a result of an 

automatic transformation

� performance is worse

– many joins are required

– one join per involved dimension + one join per "rollup"

� no redundancy

– again, because of normalization



© Andreas Geppert 
FS 2020 Slide 58

Star Schemas

� central fact table

� one table per dimension, regardless of the number of hierarchy 

levels within the dimensions

� denormalized dimension tables

� foreign key/primary key relationship between fact and dimension 

tables: fact table references dimension tables

� primary key of fact table is composed out of foreign keys (i.e., 

primary keys of dimensions)



© Andreas Geppert 
FS 2020 Slide 59

Star Schema: Example

ShopID

Region

State

Country

ShopType

Region

...

ArticleID

Family

Group

Area

Brand

VSys

…

Load

Temp

ArticleID

ShopID

Day

Sales

Stock

Turnover
Day

Month

Quarter

Year

...



© Andreas Geppert 
FS 2020 Slide 60

Star Schemas: Properties

� Redundancy

– because of denormalization

– update anomalies are possible

� Performance

– smaller number of joins

– because of denormalization

� intuitive



© Andreas Geppert 
FS 2020 Slide 61

Star Schemas: Implications for Queries

■Example: Sum of sales by region, by 

month, by product group

■3 join operations

– 3 between fact table and dimension 

tables

– no joins for rollup to higher hierarchy 

levels 

ShopID

Region

State

Country

ShopType

Region

...

ArticleID

Family

Group

Area

Brand

VSys

…

Load

Temp

ArticleID

ShopID

Day

Sales

Stock

Turnover
Day

Month

Quarter

Year

...



© Andreas Geppert 
FS 2020 Slide 62

Comparison: Star vs. Snowflake

� Advantages of Star schemas

faster query evaluation

 no difference between star and snowflake when for each dimension only the most 

granular hierarchy level is needed

 but: analytic queries are more often than not on a high (coarse) aggregation level

 one join per rollup

simpler structure

 important for the generation of OLAP-queries

additional data volume is negligible

updates to classifications are rare

 update anomalies are less of an issue



© Andreas Geppert 
FS 2020 Slide 63

Special Cases: Factless Fact Tables

■Fact table contains dimensions and 

measures

■Special case:

– no measure

existence statement without numeric 

attributes

■recording of events

■Example: student attends course held 

by a lecturer on a certain day

StudentKey

VorlesungKey

DozentKey

ZeitKey



© Andreas Geppert 
FS 2020 Slide 64

Factless Fact Tables (2)

� Non-occurrence of events

� “Coverage table” contains possible events

� fact table contains actual events

� non-occurred events are obtained by computing the table difference

� Example: which products have not been sold despite promotion campaigns?

ProductKey

StoreKey

PromoKey

TimeKey



© Andreas Geppert 
FS 2020 Slide 65

Galaxy Schemas

� multiple independent fact tables

� fact tables share some (but not all) dimension tables



© Andreas Geppert 
FS 2020 Slide 66

Fact Constellation

� Measures are needed on different aggregation levels within an 

analysis scenario

� Computation of aggregated measures always possible, but possibly 

expensive

� possible optimization: materialization of aggregate values

� option 1: addition of aggregate values to fact table

– additional attribute for each aggregate value

– additional discriminator attribute

– correct linkage to dimension tables?



© Andreas Geppert 
FS 2020 Slide 67

Fact Constellation (2)

� Option 2: separate table for aggregate values (fact constellation)

� „smaller“ fact table

� also smaller dimension tables possible

� more efficient queries against detailed and aggregated data

Customer

Product

Date

MonthDate

Sales

SalesbyMonth



© Andreas Geppert 
FS 2020 Slide 68

Monster Dimensions

� common problem: very big dimension tables

� many attributes, many rows

� example: product dimension

– 10K-100K product articles, 20-50 attributes (warehouses, retail)

� example: customer dimension

– up to 100M customers, many attributes

� demography: often queried, rather frequent modifications

– example income, marital status



© Andreas Geppert 
FS 2020 Slide 69

Monster Dimensions

� demographic mini-dimensions

� extract of the demographic information out of customer dimension

� better performance

� demographic information of a customer no longer in customer 

dimension

Purchases

Customer

Demography
age_level

income_level

marital_status

gender



© Andreas Geppert 
FS 2020 Slide 70

Versioning of Dimension Tables

� Problem: changes in dimension tables

� Examples:

– Customers change address, name, marital status, ...

– products are abandoned

– product properties (classification) change

� Dimensions are yet "rather constant"

– slowly changing dimensions (SCD)

� changes are permitted in OLTP applications, because there the current state is 

of (sole) interest

– old values are overridden, update-in-place

� changes are problematic in a DWH, they can lead to misleading, erroneous 

analysis results



© Andreas Geppert 
FS 2020 Slide 71

Versioning of Dimension Tables (2)

� Versioning of Dimension Tables: Solutions

1. Update-in-place

– old values are lost

– simple to implement

– no history is available

– misleading analysis results are possible

– SCD Type 1

Customer_key name status

1234 Joe Cool  single married



© Andreas Geppert 
FS 2020 Slide 72

Versioning of Dimension Tables (3)

2. Addition of a "status attribute"

– current and previous value

– rarely done

– useful?

– SCD Type 3

Customer_key name old_status current effective_date

1234 Joe Cool single married 04-10-1992



© Andreas Geppert 
FS 2020 Slide 73

Versioning of Dimension Tables (4)

3. Addition of a version number

– clean modeling

– querying becomes more difficult

– temporal history not obvious

– version number must be added to fact table, too

– composite foreign/primary key

Customer_key name status

1234 Joe Cool single

version

001

1234 002 Joe Cool married



© Andreas Geppert 
FS 2020 Slide 74

Versioning of Dimension Tables (5)

4. extension of primary key with version number

– questionable from a modeling point of view

– unique identification and reference, for instance for aggregation?



© Andreas Geppert 
FS 2020 Slide 75

Versioning of Dimension Tables (6)

5. explicit addition of validity intervals

– eases historical and time-based queries

– at least one of the timestamps must be added to primary key

– or referential integrity cannot be maintained

– SCD Type 2



© Andreas Geppert 
FS 2020 Slide 76

Summary

� DWH application development

� "standard" approach for DWH itself (ER-based)

� conceptual data mart design

– no established notation (a la ER)

– patterns of logical design are used for conceptual one ("dimensional modeling")

� relational implementation

– Star and Snowflake schemas

– Galaxy schema & Fact Constellation Schema

– Factless Fact Tables

– Slowly Changing Dimensions



© Andreas Geppert 
FS 2020 Slide 77

APPENDIX



© Andreas Geppert 
FS 2020 Slide 78

Content

1. Application Development in Data Warehouses

2. Schema Design for Data Warehouses

3. Multi-dimensional Data Models

4. Logical Design for Data Marts

5. Appendix: Conceptual Design for Data Marts



© Andreas Geppert 
FS 2020 Slide 79

Conceptual Design for Data Marts

Multidimensional concepts: basic support considered in DWH and 

OLAP systems

 no common, widely accepted model

 no standardized modeling language and notation

 no common formalization

 methods and guidelines based on experience



© Andreas Geppert 
FS 2020 Slide 80

Relational vs. Multidimensional Schema Design

Benutzersicht

Externes Schema

Semi-formal; ER

Konzeptuelles Schema

Formal; Relationen

Logisches Schema

Speicherungsstrukturen

Physisches Schema

Relationales Vorgehen Multidimensionales Vorgehen

Benutzersicht

Externes Schema

Semi-formal; mER, mUML

Konzeptuelles Schema

Formal; Dimensionen, Cubes

Logisches Schema

Relationen (!), MD-Strukturen

Physisches Schema



© Andreas Geppert 
FS 2020 Slide 81

Conceptual Design: Variants

� Use of existing notations (and methods, tools)

– possibly with adapted semantics

– currently prevalent approach in practice

� Extensions of existing notations

– ER

– UML

– typically academic/research proposals

� Development of new notations

– typically academic/research proposals

 can be designed to optimally meet requirements

 additional notation



© Andreas Geppert 
FS 2020 Slide 82

Notations: M-E/R

� Extension of the ER model

� additional entity type representing dimension hierarchy level

� additional relationship types:

– relationship between dimension hierarchy levels

– relationship between dimensions and hierarchies



© Andreas Geppert 
FS 2020 Slide 83

Notations: M-E/R

Fakten-Beziehungstyp

Dimensionsebenentyp

Rolls-Up-Beziehungstyp



© Andreas Geppert 
FS 2020 Slide 84

M-E/R: Example

Tag

Woche

Jahr Quartal Monat

ArtikelP.Kategorie P.Familie P.Gruppe

FilialeRegion Bezirk StadtLand



© Andreas Geppert 
FS 2020 Slide 85

Gold: Notation

� developed on the basis of the Unified Modeling Language (UML)

� Approach by Trujillo et al., prototypically implemented in the "Gold" 

tool

Usage of UML constructs for the modeling of:

� fact classes

� dimensions

� relationships between
– facts and dimensions

– dimension hierarchy levels

� cardinalities



© Andreas Geppert 
FS 2020 Slide 86

Gold: Notation (2)

� UML classes for the modeling of fact and dimension classes

� UML-aggregation for the modeling of the relationship between facts 

and dimensions

Sales

price

quantity

Product

name

weight

Store

name

address

Customer

name

address

Time

day



© Andreas Geppert 
FS 2020 Slide 87

Gold: Notation (3)

■dimension hierarchies

■general associations used for the modeling of relationships 

between dimension classes (dimension hierarchy levels)



© Andreas Geppert 
FS 2020 Slide 88

Gold: Notation (4)

■Gold supports shared hierarchies



© Andreas Geppert 
FS 2020 Slide 89

Gold: Notation (5)

■Gold supports parallel hierarchies

Store

name

address

City

name

population

Province

name

population

State

name

population

SalesRegion

name

population



© Andreas Geppert 
FS 2020 Slide 90

Gold: Notation (6)

� relationship properties: Cardinalities

� m:n relationship between facts and dimensions

� Completeness: annotation of relationships

Store

name

address

City

name

population

Province

name

population

State

name

population

Customer

name

address

SalesRegion

name

population

1* 1* 11..*

1..*

1..*
1..*

1

*

1..*



© Andreas Geppert 
FS 2020 Slide 91

Gold: Notation (7)

� Specialization of dimension 

classes using UML 

specialization 

� problem: which circumstances 

should be modeled as a 

classification hierarchy, which 

as a specialization hierarchy

Cleaning

...

Grocery

expire_date

Beverage

volume

Food

preparation

Alcohol

percentage

SoftDrink

sparkling

Product

name

weight



© Andreas Geppert 
FS 2020 Slide 92

Adapt

� Application Design for Analytical Processing Technologies

� Trademark of Symmetry Corp.

� intended as a conceptual model for OLAP-Applications
– Star schemas presume implementation

– ER and "dimensional Modeling" are biased towards relational implementations

Hypercube

Dimension



© Andreas Geppert 
FS 2020 Slide 93

Adapt: Modeling of Hierarchies

Hierarchy (within a dimension), consisting of levels

Level{�}



© Andreas Geppert 
FS 2020 Slide 94

Adapt

� Combination of dimensions and hierarchies into hypercubes



© Andreas Geppert 
FS 2020 Slide 95

Adapt: Modeling of dimension details

Member{�}

Attribute



© Andreas Geppert 
FS 2020 Slide 96

Adapt: Modeling of Dimension Scopes

Scope: set of dimension elements{ }



© Andreas Geppert 
FS 2020 Slide 97

Adapt: Modeling of Calculations

algebraic processes model calculationsf ( )



© Andreas Geppert 
FS 2020 Slide 98

Adapt: Sample Product Dimension


