

Database Analysis and

Design Techniques

Chapter 9 Database Planning, Design, and Administration 281

Chapter 10 Fact-Finding Techniques 314

Chapter 11 Entity–Relationship Modeling 342

Chapter 12 Enhanced Entity–Relationship Modeling 371

Chapter 13 Normalization 387

Chapter 14 Advanced Normalization 415

3
Part

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

PD

Fi
ll

PD
F

Edi
to

r w
ith

 F
re

e W
rit

er
 an

d
Too

ls

http://www.pdfill.com

9
Chapter

Database Planning,

Design, and Administration

Chapter Objectives

In this chapter you will learn:

n The main components of an information system.

n The main stages of the database system development lifecycle (DSDLC).

n The main phases of database design: conceptual, logical, and physical design.

n The benefits of Computer-Aided Software Engineering (CASE) tools.

n The types of criteria used to evaluate a DBMS.

n How to evaluate and select a DBMS.

n The distinction between data administration and database administration.

n The purpose and tasks associated with data administration and database

administration.

Software has now surpassed hardware as the key to the success of many computer-
based systems. Unfortunately, the track record at developing software is not particularly
impressive. The last few decades have seen the proliferation of software applications
ranging from small, relatively simple applications consisting of a few lines of code,
to large, complex applications consisting of millions of lines of code. Many of these
applications have required constant maintenance. This involved correcting faults that
had been detected, implementing new user requirements, and modifying the software to
run on new or upgraded platforms. The effort spent on maintenance began to absorb
resources at an alarming rate. As a result, many major software projects were late, over
budget, unreliable, difficult to maintain, and performed poorly. This led to what has
become known as the software crisis. Although this term was first used in the late 1960s,
more than 40 years later the crisis is still with us. As a result, some authors now refer
to the software crisis as the software depression. As an indication of the crisis, a study
carried out in the UK by OASIG, a Special Interest Group concerned with the Organ-
izational Aspects of IT, reached the following conclusions about software projects
(OASIG, 1996):

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

282 | Chapter 9 z Database Planning, Design, and Administration

9.1

n 80–90% do not meet their performance goals;

n about 80% are delivered late and over budget;

n around 40% fail or are abandoned;

n under 40% fully address training and skills requirements;

n less than 25% properly integrate enterprise and technology objectives;

n just 10–20% meet all their success criteria.

There are several major reasons for the failure of software projects including:

n lack of a complete requirements specification;

n lack of an appropriate development methodology;

n poor decomposition of design into manageable components.

As a solution to these problems, a structured approach to the development of software
was proposed called the Information Systems Lifecycle (ISLC) or the Software
Development Lifecycle (SDLC). However, when the software being developed is a
database system the lifecycle is more specifically referred to as the Database System
Development Lifecycle (DSDLC).

Structure of this Chapter

In Section 9.1 we briefly describe the information systems lifecycle and discuss how
this lifecycle relates to the database system development lifecycle. In Section 9.2 we pre-
sent an overview of the stages of the database system development lifecycle. In Sections
9.3 to 9.13 we describe each stage of the lifecycle in more detail. In Section 9.14 we dis-
cuss how Computer-Aided Software Engineering (CASE) tools can provide support for
the database system development lifecycle. We conclude in Section 9.15 with a discussion
on the purpose and tasks associated with data administration and database administration
within an organization.

The Information Systems Lifecycle

Information The resources that enable the collection, management, control, and

system dissemination of information throughout an organization.

Since the 1970s, database systems have been gradually replacing file-based systems as part
of an organization’s Information Systems (IS) infrastructure. At the same time there has

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

9.2 The Database System Development Lifecycle | 283

been a growing recognition that data is an important corporate resource that should be
treated with respect, like all other organizational resources. This resulted in many organ-
izations establishing whole departments or functional areas called Data Administration
(DA) and Database Administration (DBA), which are responsible for the management and
control of the corporate data and the corporate database, respectively.

A computer-based information system includes a database, database software, applica-
tion software, computer hardware, and personnel using and developing the system.

The database is a fundamental component of an information system, and its develop-
ment and usage should be viewed from the perspective of the wider requirements of the
organization. Therefore, the lifecycle of an organization’s information system is inherently
linked to the lifecycle of the database system that supports it. Typically, the stages in the
lifecycle of an information system include: planning, requirements collection and analysis,
design, prototyping, implementation, testing, conversion, and operational maintenance.
In this chapter we review these stages from the perspective of developing a database sys-
tem. However, it is important to note that the development of a database system should
also be viewed from the broader perspective of developing a component part of the larger
organization-wide information system.

Throughout this chapter we use the terms ‘functional area’ and ‘application area’ to
refer to particular enterprise activities within an organization such as marketing, personnel,
and stock control.

The Database System Development
Lifecycle

As a database system is a fundamental component of the larger organization-wide
information system, the database system development lifecycle is inherently associated
with the lifecycle of the information system. The stages of the database system develop-
ment lifecycle are shown in Figure 9.1. Below the name of each stage is the section in this
chapter that describes that stage.

It is important to recognize that the stages of the database system development life-
cycle are not strictly sequential, but involve some amount of repetition of previous stages
through feedback loops. For example, problems encountered during database design may
necessitate additional requirements collection and analysis. As there are feedback loops
between most stages, we show only some of the more obvious ones in Figure 9.1. A sum-
mary of the main activities associated with each stage of the database system development
lifecycle is described in Table 9.1.

For small database systems, with a small number of users, the lifecycle need not be
very complex. However, when designing a medium to large database systems with tens to
thousands of users, using hundreds of queries and application programs, the lifecycle can
become extremely complex. Throughout this chapter we concentrate on activities associ-
ated with the development of medium to large database systems. In the following sections
we describe the main activities associated with each stage of the database system develop-
ment lifecycle in more detail.

9.2

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

Figure 9.1 The stages of the database system development lifecycle.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

9.3 Database Planning | 285

Database Planning

Database The management activities that allow the stages of the database sys-

planning tem development lifecycle to be realized as efficiently and effectively as

possible.

Database planning must be integrated with the overall IS strategy of the organization.
There are three main issues involved in formulating an IS strategy, which are:

n identification of enterprise plans and goals with subsequent determination of informa-
tion systems needs;

n evaluation of current information systems to determine existing strengths and
weaknesses;

n appraisal of IT opportunities that might yield competitive advantage.

9.3

Table 9.1 Summary of the main activities associated with each stage of the database
system development lifecycle.

Stage

Database planning

System definition

Requirements collection
and analysis

Database design

DBMS selection (optional)

Application design

Prototyping (optional)

Implementation

Data conversion and loading

Testing

Operational maintenance

Main activities

Planning how the stages of the lifecycle can be realized most
efficiently and effectively.

Specifying the scope and boundaries of the database system,
including the major user views, its users, and application areas.

Collection and analysis of the requirements for the new
database system.

Conceptual, logical, and physical design of the database.

Selecting a suitable DBMS for the database system.

Designing the user interface and the application programs that
use and process the database.

Building a working model of the database system, which
allows the designers or users to visualize and evaluate how the
final system will look and function.

Creating the physical database definitions and the application
programs.

Loading data from the old system to the new system and,
where possible, converting any existing applications to run on
the new database.

Database system is tested for errors and validated against the
requirements specified by the users.

Database system is fully implemented. The system is
continuously monitored and maintained. When necessary, new
requirements are incorporated into the database system through
the preceding stages of the lifecycle.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

286 | Chapter 9 z Database Planning, Design, and Administration

The methodologies used to resolve these issues are outside the scope of this book; how-
ever, the interested reader is referred to Robson (1997) for a fuller discussion.

An important first step in database planning is to clearly define the mission statement
for the database system. The mission statement defines the major aims of the database
system. Those driving the database project within the organization (such as the Director
and/or owner) normally define the mission statement. A mission statement helps to clarify
the purpose of the database system and provide a clearer path towards the efficient and
effective creation of the required database system. Once the mission statement is defined,
the next activity involves identifying the mission objectives. Each mission objective
should identify a particular task that the database system must support. The assumption is
that if the database system supports the mission objectives then the mission statement
should be met. The mission statement and objectives may be accompanied with some
additional information that specifies, in general terms, the work to be done, the resources
with which to do it, and the money to pay for it all. We demonstrate the creation of a
mission statement and mission objectives for the database system of DreamHome in
Section 10.4.2.

Database planning should also include the development of standards that govern how
data will be collected, how the format should be specified, what necessary documentation
will be needed, and how design and implementation should proceed. Standards can be very
time-consuming to develop and maintain, requiring resources to set them up initially, and
to continue maintaining them. However, a well-designed set of standards provides a basis
for training staff and measuring quality control, and can ensure that work conforms to a
pattern, irrespective of staff skills and experience. For example, specific rules may govern
how data items can be named in the data dictionary, which in turn may prevent both
redundancy and inconsistency. Any legal or enterprise requirements concerning the data
should be documented, such as the stipulation that some types of data must be treated
confidentially.

System Definition

System Describes the scope and boundaries of the database application and

definition the major user views.

Before attempting to design a database system, it is essential that we first identify
the boundaries of the system that we are investigating and how it interfaces with other
parts of the organization’s information system. It is important that we include within
our system boundaries not only the current users and application areas, but also future
users and applications. We present a diagram that represents the scope and boundaries
of the DreamHome database system in Figure 10.10. Included within the scope and
boundary of the database system are the major user views that are to be supported by the
database.

9.4

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

9.4 System Definition | 287

User Views

User view Defines what is required of a database system from the perspective

of a particular job role (such as Manager or Supervisor) or enterprise

application area (such as marketing, personnel, or stock control).

A database system may have one or more user views. Identifying user views is an im-
portant aspect of developing a database system because it helps to ensure that no major
users of the database are forgotten when developing the requirements for the new database
system. User views are also particularly helpful in the development of a relatively com-
plex database system by allowing the requirements to be broken down into manageable
pieces.

A user view defines what is required of a database system in terms of the data to be
held and the transactions to be performed on the data (in other words, what the users will
do with the data). The requirements of a user view may be distinct to that view or overlap
with other views. Figure 9.2 is a diagrammatic representation of a database system with
multiple user views (denoted user view 1 to 6). Note that whereas user views (1, 2, and 3)
and (5 and 6) have overlapping requirements (shown as hatched areas), user view 4 has
distinct requirements.

9.4.1

Figure 9.2

Representation of a

database system

with multiple user

views: user views

(1, 2, and 3) and

(5 and 6) have

overlapping

requirements

(shown as hatched

areas), whereas user

view 4 has distinct

requirements.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

288 | Chapter 9 z Database Planning, Design, and Administration

Requirements Collection and Analysis

Requirements The process of collecting and analyzing information about the

collection and part of the organization that is to be supported by the database

analysis system, and using this information to identify the requirements for

the new system.

This stage involves the collection and analysis of information about the part of the
enterprise to be served by the database. There are many techniques for gathering this
information, called fact-finding techniques, which we discuss in detail in Chapter 10.
Information is gathered for each major user view (that is, job role or enterprise application
area), including:

n a description of the data used or generated;

n the details of how data is to be used or generated;

n any additional requirements for the new database system.

This information is then analyzed to identify the requirements (or features) to be included
in the new database system. These requirements are described in documents collectively
referred to as requirements specifications for the new database system.

Requirements collection and analysis is a preliminary stage to database design. The
amount of data gathered depends on the nature of the problem and the policies of the enter-
prise. Too much study too soon leads to paralysis by analysis. Too little thought can result
in an unnecessary waste of both time and money due to working on the wrong solution to
the wrong problem.

The information collected at this stage may be poorly structured and include some
informal requests, which must be converted into a more structured statement of require-
ments. This is achieved using requirements specification techniques, which include for
example: Structured Analysis and Design (SAD) techniques, Data Flow Diagrams (DFD),
and Hierarchical Input Process Output (HIPO) charts supported by documentation. As
we will see shortly, Computer-Aided Software Engineering (CASE) tools may provide
automated assistance to ensure that the requirements are complete and consistent. In
Section 25.7 we will discuss how the Unified Modeling Language (UML) supports
requirements collection and analysis.

Identifying the required functionality for a database system is a critical activity, as systems
with inadequate or incomplete functionality will annoy the users, which may lead to rejection
or underutilization of the system. However, excessive functionality can also be problematic
as it can overcomplicate a system making it difficult to implement, maintain, use, or learn.

Another important activity associated with this stage is deciding how to deal with the
situation where there is more than one user view for the database system. There are three
main approaches to managing the requirements of a database system with multiple user
views, namely:

n the centralized approach;

n the view integration approach;

n a combination of both approaches.

9.5

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

9.5 Requirements Collection and Analysis | 289

Centralized Approach

Centralized Requirements for each user view are merged into a single set of

approach requirements for the new database system. A data model represent-

ing all user views is created during the database design stage.

The centralized (or one-shot) approach involves collating the requirements for differ-
ent user views into a single list of requirements. The collection of user views is given
a name that provides some indication of the functional area covered by all the merged
user views. In the database design stage (see Section 9.6), a global data model is created,
which represents all user views. The global data model is composed of diagrams and
documentation that formally describe the data requirements of the users. A diagram rep-
resenting the management of user views 1 to 3 using the centralized approach is shown in
Figure 9.3. Generally, this approach is preferred when there is a significant overlap in
requirements for each user view and the database system is not overly complex.

View Integration Approach

View Requirements for each user view remain as separate lists. Data models

integration representing each user view are created and then merged later during

approach the database design stage.

Figure 9.3 The centralized approach to managing multiple user views 1 to 3.

9.5.1

9.5.2

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

290 | Chapter 9 z Database Planning, Design, and Administration

The view integration approach involves leaving the requirements for each user view as
separate lists of requirements. In the database design stage (see Section 9.6), we first
create a data model for each user view. A data model that represents a single user view
(or a subset of all user views) is called a local data model. Each model is composed of
diagrams and documentation that formally describes the requirements of one or more but
not all user views of the database. The local data models are then merged at a later stage
of database design to produce a global data model, which represents all user requirements
for the database. A diagram representing the management of user views 1 to 3 using the
view integration approach is shown in Figure 9.4. Generally, this approach is preferred

Figure 9.4

The view integration

approach to

managing multiple

user views 1 to 3.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

9.6 Database Design | 291

when there are significant differences between user views and the database system is
sufficiently complex to justify dividing the work into more manageable parts. We demon-
strate how to use the view integration approach in Chapter 16, Step 2.6.

For some complex database systems it may be appropriate to use a combination of both
the centralized and view integration approaches to manage multiple user views. For example,
the requirements for two or more user views may be first merged using the centralized
approach, which is used to build a local logical data model. This model can then be merged
with other local logical data models using the view integration approach to produce a
global logical data model. In this case, each local logical data model represents the require-
ments of two or more user views and the final global logical data model represents the
requirements of all user views of the database system.

We discuss how to manage multiple user views in more detail in Section 10.4.4 and
using the methodology described in this book we demonstrate how to build a database for
the DreamHome property rental case study using a combination of both the centralized and
view integration approaches.

Database Design

Database The process of creating a design that will support the enterprise’s

design mission statement and mission objectives for the required database

system.

In this section we present an overview of the main approaches to database design. We also
discuss the purpose and use of data modeling in database design. We then describe the
three phases of database design, namely conceptual, logical, and physical design.

Approaches to Database Design

The two main approaches to the design of a database are referred to as ‘bottom-up’ and
‘top-down’. The bottom-up approach begins at the fundamental level of attributes (that
is, properties of entities and relationships), which through analysis of the associations
between attributes, are grouped into relations that represent types of entities and relation-
ships between entities. In Chapters 13 and 14 we discuss the process of normalization,
which represents a bottom-up approach to database design. Normalization involves the
identification of the required attributes and their subsequent aggregation into normalized
relations based on functional dependencies between the attributes.

The bottom-up approach is appropriate for the design of simple databases with a
relatively small number of attributes. However, this approach becomes difficult when
applied to the design of more complex databases with a larger number of attributes, where
it is difficult to establish all the functional dependencies between the attributes. As the con-
ceptual and logical data models for complex databases may contain hundreds to thousands

9.6

9.6.1PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

292 | Chapter 9 z Database Planning, Design, and Administration

of attributes, it is essential to establish an approach that will simplify the design process.
Also, in the initial stages of establishing the data requirements for a complex database, it
may be difficult to establish all the attributes to be included in the data models.

A more appropriate strategy for the design of complex databases is to use the top-down
approach. This approach starts with the development of data models that contain a few
high-level entities and relationships and then applies successive top-down refinements to
identify lower-level entities, relationships, and the associated attributes. The top-down
approach is illustrated using the concepts of the Entity–Relationship (ER) model,
beginning with the identification of entities and relationships between the entities,
which are of interest to the organization. For example, we may begin by identifying the
entities PrivateOwner and PropertyForRent, and then the relationship between these entities,
PrivateOwner Owns PropertyForRent, and finally the associated attributes such as PrivateOwner

(ownerNo, name, and address) and PropertyForRent (propertyNo and address). Building a high-
level data model using the concepts of the ER model is discussed in Chapters 11 and 12.

There are other approaches to database design such as the inside-out approach and the
mixed strategy approach. The inside-out approach is related to the bottom-up approach
but differs by first identifying a set of major entities and then spreading out to consider
other entities, relationships, and attributes associated with those first identified. The mixed
strategy approach uses both the bottom-up and top-down approach for various parts of the
model before finally combining all parts together.

Data Modeling

The two main purposes of data modeling are to assist in the understanding of the meaning
(semantics) of the data and to facilitate communication about the information require-
ments. Building a data model requires answering questions about entities, relationships, and
attributes. In doing so, the designers discover the semantics of the enterprise’s data,
which exist whether or not they happen to be recorded in a formal data model. Entities,
relationships, and attributes are fundamental to all enterprises. However, their meaning
may remain poorly understood until they have been correctly documented. A data model
makes it easier to understand the meaning of the data, and thus we model data to ensure
that we understand:

n each user’s perspective of the data;

n the nature of the data itself, independent of its physical representations;

n the use of data across user views.

Data models can be used to convey the designer’s understanding of the information
requirements of the enterprise. Provided both parties are familiar with the notation used
in the model, it will support communication between the users and designers. Increas-
ingly, enterprises are standardizing the way that they model data by selecting a particular
approach to data modeling and using it throughout their database development projects.
The most popular high-level data model used in database design, and the one we use
in this book, is based on the concepts of the Entity–Relationship (ER) model. We describe
Entity–Relationship modeling in detail in Chapters 11 and 12.

9.6.2

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

9.6 Database Design | 293

Criteria for data models

An optimal data model should satisfy the criteria listed in Table 9.2 (Fleming and Von
Halle, 1989). However, sometimes these criteria are not compatible with each other and
tradeoffs are sometimes necessary. For example, in attempting to achieve greater express-
ibility in a data model, we may lose simplicity.

Phases of Database Design

Database design is made up of three main phases, namely conceptual, logical, and physical
design.

Conceptual database design

Conceptual The process of constructing a model of the data used in an

database design enterprise, independent of all physical considerations.

The first phase of database design is called conceptual database design, and involves
the creation of a conceptual data model of the part of the enterprise that we are interested
in modeling. The data model is built using the information documented in the users’
requirements specification. Conceptual database design is entirely independent of imple-
mentation details such as the target DBMS software, application programs, programming
languages, hardware platform, or any other physical considerations. In Chapter 15, we
present a practical step-by-step guide on how to perform conceptual database design.

Throughout the process of developing a conceptual data model, the model is tested and
validated against the users’ requirements. The conceptual data model of the enterprise is a
source of information for the next phase, namely logical database design.

Table 9.2 The criteria to produce an optimal data model.

Structural validity

Simplicity

Expressibility

Nonredundancy

Shareability

Extensibility

Integrity

Diagrammatic
representation

Consistency with the way the enterprise defines and organizes information.

Ease of understanding by IS professionals and non-technical users.

Ability to distinguish between different data, relationships between data,
and constraints.

Exclusion of extraneous information; in particular, the representation of
any one piece of information exactly once.

Not specific to any particular application or technology and thereby usable
by many.

Ability to evolve to support new requirements with minimal effect on
existing users.

Consistency with the way the enterprise uses and manages information.

Ability to represent a model using an easily understood diagrammatic
notation.

9.6.3

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

294 | Chapter 9 z Database Planning, Design, and Administration

Logical database design

Logical The process of constructing a model of the data used in an enterprise

database based on a specific data model, but independent of a particular DBMS

design and other physical considerations.

The second phase of database design is called logical database design, which results
in the creation of a logical data model of the part of the enterprise that we interested in
modeling. The conceptual data model created in the previous phase is refined and mapped
on to a logical data model. The logical data model is based on the target data model for
the database (for example, the relational data model).

Whereas a conceptual data model is independent of all physical considerations, a log-
ical model is derived knowing the underlying data model of the target DBMS. In other
words, we know that the DBMS is, for example, relational, network, hierarchical, or object-
oriented. However, we ignore any other aspects of the chosen DBMS and, in particular,
any physical details, such as storage structures or indexes.

Throughout the process of developing a logical data model, the model is tested and
validated against the users’ requirements. The technique of normalization is used to test
the correctness of a logical data model. Normalization ensures that the relations derived
from the data model do not display data redundancy, which can cause update anomalies
when implemented. In Chapter 13 we illustrate the problems associated with data redun-
dancy and describe the process of normalization in detail. The logical data model should
also be examined to ensure that it supports the transactions specified by the users.

The logical data model is a source of information for the next phase, namely physical
database design, providing the physical database designer with a vehicle for making
tradeoffs that are very important to efficient database design. The logical model also serves
an important role during the operational maintenance stage of the database system devel-
opment lifecycle. Properly maintained and kept up to date, the data model allows future
changes to application programs or data to be accurately and efficiently represented by the
database.

In Chapter 16 we present a practical step-by-step guide for logical database design.

Physical database design

Physical The process of producing a description of the implementation of the

database database on secondary storage; it describes the base relations, file

design organizations, and indexes used to achieve efficient access to the data,

and any associated integrity constraints and security measures.

Physical database design is the third and final phase of the database design process,
during which the designer decides how the database is to be implemented. The previ-
ous phase of database design involved the development of a logical structure for the
database, which describes relations and enterprise constraints. Although this structure is

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

9.7 DBMS Selection | 295

DBMS-independent, it is developed in accordance with a particular data model such as
the relational, network, or hierarchic. However, in developing the physical database
design, we must first identify the target DBMS. Therefore, physical design is tailored to
a specific DBMS system. There is feedback between physical and logical design, because
decisions are taken during physical design for improving performance that may affect the
structure of the logical data model.

In general, the main aim of physical database design is to describe how we intend to
physically implement the logical database design. For the relational model, this involves:

n creating a set of relational tables and the constraints on these tables from the informa-
tion presented in the logical data model;

n identifying the specific storage structures and access methods for the data to achieve an
optimum performance for the database system;

n designing security protection for the system.

Ideally, conceptual and logical database design for larger systems should be separated
from physical design for three main reasons:

n it deals with a different subject matter – the what, not the how;

n it is performed at a different time – the what must be understood before the how can be
determined;

n it requires different skills, which are often found in different people.

Database design is an iterative process, which has a starting point and an almost endless
procession of refinements. They should be viewed as learning processes. As the designers
come to understand the workings of the enterprise and the meanings of its data, and
express that understanding in the selected data models, the information gained may well
necessitate changes to other parts of the design. In particular, conceptual and logical
database designs are critical to the overall success of the system. If the designs are not a
true representation of the enterprise, it will be difficult, if not impossible, to define all the
required user views or to maintain database integrity. It may even prove difficult to define
the physical implementation or to maintain acceptable system performance. On the
other hand, the ability to adjust to change is one hallmark of good database design. There-
fore, it is worthwhile spending the time and energy necessary to produce the best possible
design.

In Chapter 2, we discussed the three-level ANSI-SPARC architecture for a database
system, consisting of external, conceptual, and internal schemas. Figure 9.5 illustrates the
correspondence between this architecture and conceptual, logical, and physical database
design. In Chapters 17 and 18 we present a step-by-step methodology for the physical
database design phase.

DBMS Selection

DBMS selection The selection of an appropriate DBMS to support the database

system.

9.7

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

296 | Chapter 9 z Database Planning, Design, and Administration

If no DBMS exists, an appropriate part of the lifecycle in which to make a selection is
between the conceptual and logical database design phases (see Figure 9.1). However,
selection can be done at any time prior to logical design provided sufficient information
is available regarding system requirements such as performance, ease of restructuring,
security, and integrity constraints.

Although DBMS selection may be infrequent, as enterprise needs expand or existing
systems are replaced, it may become necessary at times to evaluate new DBMS products.
In such cases the aim is to select a system that meets the current and future requirements
of the enterprise, balanced against costs that include the purchase of the DBMS product,
any additional software/hardware required to support the database system, and the costs
associated with changeover and staff training.

A simple approach to selection is to check off DBMS features against requirements. In
selecting a new DBMS product, there is an opportunity to ensure that the selection process
is well planned, and the system delivers real benefits to the enterprise. In the following sec-
tion we describe a typical approach to selecting the ‘best’ DBMS.

Selecting the DBMS

The main steps to selecting a DBMS are listed in Table 9.3.

Figure 9.5

Data modeling and

the ANSI-SPARC

architecture.

Table 9.3 Main steps to selecting a DBMS.

Define Terms of Reference of study

Shortlist two or three products

Evaluate products

Recommend selection and produce report

9.7.1

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

9.7 DBMS Selection | 297

Define Terms of Reference of study

The Terms of Reference for the DBMS selection is established, stating the objectives and
scope of the study, and the tasks that need to be undertaken. This document may also
include a description of the criteria (based on the users’ requirements specification) to
be used to evaluate the DBMS products, a preliminary list of possible products, and all
necessary constraints and timescales for the study.

Shortlist two or three products

Criteria considered to be ‘critical’ to a successful implementation can be used to produce
a preliminary list of DBMS products for evaluation. For example, the decision to include
a DBMS product may depend on the budget available, level of vendor support, compat-
ibility with other software, and whether the product runs on particular hardware. Addi-
tional useful information on a product can be gathered by contacting existing users who
may provide specific details on how good the vendor support actually is, on how the
product supports particular applications, and whether or not certain hardware platforms
are more problematic than others. There may also be benchmarks available that compare
the performance of DBMS products. Following an initial study of the functionality and
features of DBMS products, a shortlist of two or three products is identified.

The World Wide Web is an excellent source of information and can be used to identify
potential candidate DBMSs. For example, the DBMS magazine’s website (available at
www.intelligententerprise.com) provides a comprehensive index of DBMS products.
Vendors’ websites can also provide valuable information on DBMS products.

Evaluate products

There are various features that can be used to evaluate a DBMS product. For the purposes
of the evaluation, these features can be assessed as groups (for example, data definition)
or individually (for example, data types available). Table 9.4 lists possible features for
DBMS product evaluation grouped by data definition, physical definition, accessibility,
transaction handling, utilities, development, and other features.

If features are checked off simply with an indication of how good or bad each is, it may
be difficult to make comparisons between DBMS products. A more useful approach is to
weight features and/or groups of features with respect to their importance to the organiza-
tion, and to obtain an overall weighted value that can be used to compare products.
Table 9.5 illustrates this type of analysis for the ‘Physical definition’ group for a sample
DBMS product. Each selected feature is given a rating out of 10, a weighting out of 1 to
indicate its importance relative to other features in the group, and a calculated score based
on the rating times the weighting. For example, in Table 9.5 the feature ‘Ease of reorgan-
ization’ is given a rating of 4, and a weighting of 0.25, producing a score of 1.0. This
feature is given the highest weighting in this table, indicating its importance in this part
of the evaluation. Further, the ‘Ease of reorganization’ feature is weighted, for example,
five times higher than the feature ‘Data compression’ with the lowest weighting of 0.05.
Whereas, the two features ‘Memory requirements’ and ‘Storage requirements’ are given a
weighting of 0.00 and are therefore not included in this evaluation.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

298 Table 9.4 Features for DBMS evaluation.

Data definition

Primary key enforcement
Foreign key specification
Data types available
Data type extensibility
Domain specification
Ease of restructuring
Integrity controls
View mechanism
Data dictionary
Data independence
Underlying data model
Schema evolution

Accessibility

Query language: SQL2/SQL:2003/ODMG
compliant

Interfacing to 3GLs
Multi-user
Security
– Access controls
– Authorization mechanism

Utilities

Performance measuring
Tuning
Load/unload facilities
User usage monitoring
Database administration support

Other features

Upgradability
Vendor stability
User base
Training and user support
Documentation
Operating system required
Cost
Online help
Standards used
Version management
Extensibile query optimization
Scalability
Support for analytical tools

Physical definition

File structures available
File structure maintenance
Ease of reorganization
Indexing
Variable length fields/records
Data compression
Encryption routines
Memory requirements
Storage requirements

Transaction handling

Backup and recovery routines
Checkpointing facility
Logging facility
Granularity of concurrency
Deadlock resolution strategy
Advanced transaction models
Parallel query processing

Development

4GL/5GL tools
CASE tools
Windows capabilities
Stored procedures, triggers, and rules
Web development tools

Interoperability with other DBMSs and other systems
Web integration
Replication utilities
Distributed capabilities
Portability
Hardware required
Network support
Object-oriented capabilities
Architecture (2- or 3-tier client/server)
Performance
Transaction throughput
Maximum number of concurrent users
XML support

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

9.8 Application Design | 299

We next sum together all the scores for each evaluated feature to produce a total score
for the group. The score for the group is then itself subject to a weighting, to indicate its
importance relative to other groups of features included in the evaluation. For example, in
Table 9.5, the total score for the ‘Physical definition’ group is 5.75; however, this score
has a weighting of 0.25.

Finally, all the weighted scores for each assessed group of features are summed to pro-
duce a single score for the DBMS product, which is compared with the scores for the other
products. The product with the highest score is the ‘winner’.

In addition to this type of analysis, we can also evaluate products by allowing vendors
to demonstrate their product or by testing the products in-house. In-house evaluation
involves creating a pilot testbed using the candidate products. Each product is tested
against its ability to meet the users’ requirements for the database system. Benchmarking
reports published by the Transaction Processing Council can be found at www.tpc.org

Recommend selection and produce report

The final step of the DBMS selection is to document the process and to provide a state-
ment of the findings and recommendations for a particular DBMS product.

Application Design

Application The design of the user interface and the application programs that

design use and process the database.

Table 9.5 Analysis of features for DBMS product evaluation.

DBMS: Sample product
Vendor: Sample vendor

Physical Definition Group

Features Comments Rating Weighting Score

File structures available Choice of 4 8 0.15 1.2

File structure maintenance NOT self-regulating 6 0.2 1.2

Ease of reorganization 4 0.25 1.0

Indexing 6 0.15 0.9

Variable length fields/records 6 0.15 0.9

Data compression Specify with file structure 7 0.05 0.35

Encryption routines Choice of 2 4 0.05 0.2

Memory requirements 0 0.00 0

Storage requirements 0 0.00 0

Totals 41 1.0 5.75

Physical definition group 5.75 0.25 1.44

9.8

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

300 | Chapter 9 z Database Planning, Design, and Administration

In Figure 9.1, observe that database and application design are parallel activities of the
database system development lifecycle. In most cases, it is not possible to complete the
application design until the design of the database itself has taken place. On the other hand,
the database exists to support the applications, and so there must be a flow of information
between application design and database design.

We must ensure that all the functionality stated in the users’ requirements specifica-
tion is present in the application design for the database system. This involves designing
the application programs that access the database and designing the transactions,
(that is, the database access methods). In addition to designing how the required func-
tionality is to be achieved, we have to design an appropriate user interface to the database
system. This interface should present the required information in a ‘user-friendly’ way.
The importance of user interface design is sometimes ignored or left until late in the
design stages. However, it should be recognized that the interface may be one of the most
important components of the system. If it is easy to learn, simple to use, straightforward
and forgiving, the users will be inclined to make good use of what information is pre-
sented. On the other hand, if the interface has none of these characteristics, the system will
undoubtedly cause problems.

In the following sections, we briefly examine two aspects of application design, namely
transaction design and user interface design.

Transaction Design

Before discussing transaction design we first describe what a transaction represents.

Transaction An action, or series of actions, carried out by a single user or

application program, which accesses or changes the content of the

database.

Transactions represent ‘real world’ events such as the registering of a property for rent, the
addition of a new member of staff, the registration of a new client, and the renting out of
a property. These transactions have to be applied to the database to ensure that data held
by the database remains current with the ‘real world’ situation and to support the informa-
tion needs of the users.

A transaction may be composed of several operations, such as the transfer of money
from one account to another. However, from the user’s perspective these operations still
accomplish a single task. From the DBMS’s perspective, a transaction transfers the
database from one consistent state to another. The DBMS ensures the consistency of the
database even in the presence of a failure. The DBMS also ensures that once a transaction
has completed, the changes made are permanently stored in the database and cannot be
lost or undone (without running another transaction to compensate for the effect of the
first transaction). If the transaction cannot complete for any reason, the DBMS should
ensure that the changes made by that transaction are undone. In the example of the bank
transfer, if money is debited from one account and the transaction fails before crediting the
other account, the DBMS should undo the debit. If we were to define the debit and credit

9.8.1

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

9.8 Application Design | 301

operations as separate transactions, then once we had debited the first account and com-
pleted the transaction, we are not allowed to undo that change (without running another
transaction to credit the debited account with the required amount).

The purpose of transaction design is to define and document the high-level character-
istics of the transactions required on the database, including:

n data to be used by the transaction;

n functional characteristics of the transaction;

n output of the transaction;

n importance to the users;

n expected rate of usage.

This activity should be carried out early in the design process to ensure that the
implemented database is capable of supporting all the required transactions. There are
three main types of transactions: retrieval transactions, update transactions, and mixed
transactions.

n Retrieval transactions are used to retrieve data for display on the screen or in the
production of a report. For example, the operation to search for and display the details
of a property (given the property number) is an example of a retrieval transaction.

n Update transactions are used to insert new records, delete old records, or modify
existing records in the database. For example, the operation to insert the details of a new
property into the database is an example of an update transaction.

n Mixed transactions involve both the retrieval and updating of data. For example,
the operation to search for and display the details of a property (given the property
number) and then update the value of the monthly rent is an example of a mixed
transaction.

User Interface Design Guidelines

Before implementing a form or report, it is essential that we first design the layout. Useful
guidelines to follow when designing forms or reports are listed in Table 9.6 (Shneiderman,
1992).

Meaningful title

The information conveyed by the title should clearly and unambiguously identify the
purpose of the form/report.

Comprehensible instructions

Familiar terminology should be used to convey instructions to the user. The instructions
should be brief, and, when more information is required, help screens should be made
available. Instructions should be written in a consistent grammatical style using a standard
format.

9.8.2

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

302 | Chapter 9 z Database Planning, Design, and Administration

Logical grouping and sequencing of fields

Related fields should be positioned together on the form/report. The sequencing of fields
should be logical and consistent.

Visually appealing layout of the form/report

The form/report should present an attractive interface to the user. The form/report should
appear balanced with fields or groups of fields evenly positioned throughout the form/
report. There should not be areas of the form/report that have too few or too many fields.
Fields or groups of fields should be separated by a regular amount of space. Where appro-
priate, fields should be vertically or horizontally aligned. In cases where a form on screen
has a hardcopy equivalent, the appearance of both should be consistent.

Familiar field labels

Field labels should be familiar. For example, if Sex was replaced by Gender, it is possible
that some users would be confused.

Consistent terminology and abbreviations

An agreed list of familiar terms and abbreviations should be used consistently.

Consistent use of color

Color should be used to improve the appearance of a form/report and to highlight import-
ant fields or important messages. To achieve this, color should be used in a consistent and

Table 9.6 Guidelines for form/report design.

Meaningful title
Comprehensible instructions
Logical grouping and sequencing of fields
Visually appealing layout of the form/report
Familiar field labels
Consistent terminology and abbreviations
Consistent use of color
Visible space and boundaries for data-entry fields
Convenient cursor movement
Error correction for individual characters and entire fields
Error messages for unacceptable values
Optional fields marked clearly
Explanatory messages for fields
Completion signal

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

9.9 Prototyping | 303

meaningful way. For example, fields on a form with a white background may indicate
data-entry fields and those with a blue background may indicate display-only fields.

Visible space and boundaries for data-entry fields

A user should be visually aware of the total amount of space available for each field. This
allows a user to consider the appropriate format for the data before entering the values into
a field.

Convenient cursor movement

A user should easily identify the operation required to move a cursor throughout the
form/report. Simple mechanisms such as using the Tab key, arrows, or the mouse pointer
should be used.

Error correction for individual characters and entire fields

A user should easily identify the operation required to make alterations to field values.
Simple mechanisms should be available such as using the Backspace key or by overtyping.

Error messages for unacceptable values

If a user attempts to enter incorrect data into a field, an error message should be displayed.
The message should inform the user of the error and indicate permissible values.

Optional fields marked clearly

Optional fields should be clearly identified for the user. This can be achieved using an
appropriate field label or by displaying the field using a color that indicates the type of the
field. Optional fields should be placed after required fields.

Explanatory messages for fields

When a user places a cursor on a field, information about the field should appear in a
regular position on the screen such as a window status bar.

Completion signal

It should be clear to a user when the process of filling in fields on a form is complete.
However, the option to complete the process should not be automatic as the user may wish
to review the data entered.

Prototyping
At various points throughout the design process, we have the option to either fully imple-
ment the database system or build a prototype.

9.9

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

304 | Chapter 9 z Database Planning, Design, and Administration

Prototyping Building a working model of a database system.

A prototype is a working model that does not normally have all the required features or
provide all the functionality of the final system. The main purpose of developing a proto-
type database system is to allow users to use the prototype to identify the features of
the system that work well, or are inadequate, and if possible to suggest improvements or
even new features to the database system. In this way, we can greatly clarify the users’
requirements for both the users and developers of the system and evaluate the feasibility
of a particular system design. Prototypes should have the major advantage of being
relatively inexpensive and quick to build.

There are two prototyping strategies in common use today: requirements prototyping
and evolutionary prototyping. Requirements prototyping uses a prototype to determine
the requirements of a proposed database system and once the requirements are complete
the prototype is discarded. While evolutionary prototyping is used for the same pur-
poses, the important difference is that the prototype is not discarded but with further
development becomes the working database system.

Implementation

Implementation The physical realization of the database and application designs.

On completion of the design stages (which may or may not have involved prototyping),
we are now in a position to implement the database and the application programs. The
database implementation is achieved using the Data Definition Language (DDL) of the
selected DBMS or a Graphical User Interface (GUI), which provides the same functional-
ity while hiding the low-level DDL statements. The DDL statements are used to create the
database structures and empty database files. Any specified user views are also imple-
mented at this stage.

The application programs are implemented using the preferred third or fourth genera-
tion language (3GL or 4GL). Parts of these application programs are the database trans-
actions, which are implemented using the Data Manipulation Language (DML) of the target
DBMS, possibly embedded within a host programming language, such as Visual Basic
(VB), VB.net, Python, Delphi, C, C++, C#, Java, COBOL, Fortran, Ada, or Pascal. We
also implement the other components of the application design such as menu screens, data
entry forms, and reports. Again, the target DBMS may have its own fourth generation tools
that allow rapid development of applications through the provision of non-procedural
query languages, reports generators, forms generators, and application generators.

Security and integrity controls for the system are also implemented. Some of these
controls are implemented using the DDL, but others may need to be defined outside
the DDL using, for example, the supplied DBMS utilities or operating system controls.
Note that SQL (Structured Query Language) is both a DDL and a DML as described in
Chapters 5 and 6.

9.10

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

9.12 Testing | 305

Data Conversion and Loading

Data conversion Transferring any existing data into the new database and

and loading converting any existing applications to run on the new

database.

This stage is required only when a new database system is replacing an old system.
Nowadays, it is common for a DBMS to have a utility that loads existing files into the
new database. The utility usually requires the specification of the source file and the
target database, and then automatically converts the data to the required format of
the new database files. Where applicable, it may be possible for the developer to convert
and use application programs from the old system for use by the new system. Whenever
conversion and loading are required, the process should be properly planned to ensure a
smooth transition to full operation.

Testing

Testing The process of running the database system with the intent of finding

errors.

Before going live, the newly developed database system should be thoroughly tested.
This is achieved using carefully planned test strategies and realistic data so that the entire
testing process is methodically and rigorously carried out. Note that in our definition of
testing we have not used the commonly held view that testing is the process of demon-
strating that faults are not present. In fact, testing cannot show the absence of faults; it
can show only that software faults are present. If testing is conducted successfully, it will
uncover errors with the application programs and possibly the database structure. As a sec-
ondary benefit, testing demonstrates that the database and the application programs appear
to be working according to their specification and that performance requirements appear
to be satisfied. In addition, metrics collected from the testing stage provide a measure of
software reliability and software quality.

As with database design, the users of the new system should be involved in the testing
process. The ideal situation for system testing is to have a test database on a separate hard-
ware system, but often this is not available. If real data is to be used, it is essential to have
backups taken in case of error.

Testing should also cover usability of the database system. Ideally, an evaluation should
be conducted against a usability specification. Examples of criteria that can be used to con-
duct the evaluation include (Sommerville, 2002):

n Learnability – How long does it take a new user to become productive with the system?

n Performance – How well does the system response match the user’s work practice?

n Robustness – How tolerant is the system of user error?

9.11

9.12

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

306 | Chapter 9 z Database Planning, Design, and Administration

n Recoverability – How good is the system at recovering from user errors?

n Adapatability – How closely is the system tied to a single model of work?

Some of these criteria may be evaluated in other stages of the lifecycle. After testing is
complete, the database system is ready to be ‘signed off’ and handed over to the users.

Operational Maintenance

Operational The process of monitoring and maintaining the database system

maintenance following installation.

In the previous stages, the database system has been fully implemented and tested. The
system now moves into a maintenance stage, which involves the following activities:

n Monitoring the performance of the system. If the performance falls below an acceptable
level, tuning or reorganization of the database may be required.

n Maintaining and upgrading the database system (when required). New requirements are
incorporated into the database system through the preceding stages of the lifecycle.

Once the database system is fully operational, close monitoring takes place to ensure that
performance remains within acceptable levels. A DBMS normally provides various utilit-
ies to aid database administration including utilities to load data into a database and to
monitor the system. The utilities that allow system monitoring give information on, for
example, database usage, locking efficiency (including number of deadlocks that have
occurred, and so on), and query execution strategy. The Database Administrator (DBA)
can use this information to tune the system to give better performance, for example, by
creating additional indexes to speed up queries, by altering storage structures, or by com-
bining or splitting tables.

The monitoring process continues throughout the life of a database system and in time
may lead to reorganization of the database to satisfy the changing requirements. These
changes in turn provide information on the likely evolution of the system and the future
resources that may be needed. This, together with knowledge of proposed new applica-
tions, enables the DBA to engage in capacity planning and to notify or alert senior staff to
adjust plans accordingly. If the DBMS lacks certain utilities, the DBA can either develop
the required utilities in-house or purchase additional vendor tools, if available. We discuss
database administration in more detail in Section 9.15.

When a new database application is brought online, the users should operate it in
parallel with the old system for a period of time. This safeguards current operations in
case of unanticipated problems with the new system. Periodic checks on data consistency
between the two systems need to be made, and only when both systems appear to be
producing the same results consistently, should the old system be dropped. If the change-
over is too hasty, the end-result could be disastrous. Despite the foregoing assumption
that the old system may be dropped, there may be situations where both systems are
maintained.

9.13

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

9.14 CASE Tools | 307

CASE Tools

The first stage of the database system development lifecycle, namely database planning,
may also involve the selection of suitable Computer-Aided Software Engineering (CASE)
tools. In its widest sense, CASE can be applied to any tool that supports software engin-
eering. Appropriate productivity tools are needed by data administration and database
administration staff to permit the database development activities to be carried out as
efficiently and effectively as possible. CASE support may include:

n a data dictionary to store information about the database system’s data;

n design tools to support data analysis;

n tools to permit development of the corporate data model, and the conceptual and logical
data models;

n tools to enable the prototyping of applications.

CASE tools may be divided into three categories: upper-CASE, lower-CASE, and integrated-
CASE, as illustrated in Figure 9.6. Upper-CASE tools support the initial stages of the
database system development lifecycle, from planning through to database design. Lower-
CASE tools support the later stages of the lifecycle, from implementation through testing,
to operational maintenance. Integrated-CASE tools support all stages of the lifecycle and
thus provide the functionality of both upper- and lower-CASE in one tool.

Benefits of CASE

The use of appropriate CASE tools should improve the productivity of developing a
database system. We use the term ‘productivity’ to relate both to the efficiency of the
development process and to the effectiveness of the developed system. Efficiency refers
to the cost, in terms of time and money, of realizing the database system. CASE tools aim
to support and automate the development tasks and thus improve efficiency. Effectiveness
refers to the extent to which the system satisfies the information needs of its users. In the
pursuit of greater productivity, raising the effectiveness of the development process may
be even more important than increasing its efficiency. For example, it would not be sens-
ible to develop a database system extremely efficiently when the end-product is not what
the users want. In this way, effectiveness is related to the quality of the final product. Since
computers are better than humans at certain tasks, for example consistency checking,
CASE tools can be used to increase the effectiveness of some tasks in the development
process.

CASE tools provide the following benefits that improve productivity:

n Standards CASE tools help to enforce standards on a software project or across the
organization. They encourage the production of standard test components that can be
reused, thus simplifying maintenance and increasing productivity.

n Integration CASE tools store all the information generated in a repository, or data
dictionary, as discussed in Section 2.7. Thus, it should be possible to store the data
gathered during all stages of the database system development lifecycle. The data then
can be linked together to ensure that all parts of the system are integrated. In this way,

9.14

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

308 | Chapter 9 z Database Planning, Design, and Administration

an organization’s information system no longer has to consist of independent, uncon-
nected components.

n Support for standard methods Structured techniques make significant use of diagrams,
which are difficult to draw and maintain manually. CASE tools simplify this process,
resulting in documentation that is correct and more current.

n Consistency Since all the information in the data dictionary is interrelated, CASE
tools can check its consistency.

n Automation Some CASE tools can automatically transform parts of a design specifica-
tion into executable code. This reduces the work required to produce the implemented
system, and may eliminate errors that arise during the coding process.

For further information on CASE tools, the interested reader is referred to Gane (1990),
Batini et al. (1992), and Kendall and Kendall (1995).

Figure 9.6 Application of CASE tools. PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

9.15 Data Administration and Database Administration | 309

Data Administration and Database
Administration

The Data Administrator (DA) and Database Administrator (DBA) are responsible for
managing and controlling the activities associated with the corporate data and the corpo-
rate database, respectively. The DA is more concerned with the early stages of the life-
cycle, from planning through to logical database design. In contrast, the DBA is more
concerned with the later stages, from application/physical database design to operational
maintenance. In this final section of the chapter, we discuss the purpose and tasks associ-
ated with data and database administration.

Data Administration

Data The management of the data resource, which includes database

administration planning, development, and maintenance of standards, policies

and procedures, and conceptual and logical database design.

The Data Administrator (DA) is responsible for the corporate data resource, which
includes non-computerized data, and in practice is often concerned with managing the
shared data of users or application areas of an organization. The DA has the primary
responsibility of consulting with and advising senior managers and ensuring that the appli-
cation of database technologies continues to support corporate objectives. In some enter-
prises, data administration is a distinct functional area, in others it may be combined with
database administration. The tasks associated with data administration are described in
Table 9.7.

Database Administration

Database The management of the physical realization of a database system,

administration which includes physical database design and implementation,

setting security and integrity controls, monitoring system perform-

ance, and reorganizing the database, as necessary.

The database administration staff are more technically oriented than the data administra-
tion staff, requiring knowledge of specific DBMSs and the operating system environment.
Although the primary responsibilities are centered on developing and maintaining systems
using the DBMS software to its fullest extent, DBA staff also assist DA staff in other areas,
as indicated in Table 9.8. The number of staff assigned to the database administration
functional area varies, and is often determined by the size of the organization. The tasks
of database administration are described in Table 9.8.

9.15

9.15.1

9.15.2PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

310 | Chapter 9 z Database Planning, Design, and Administration

Table 9.7 Data administration tasks.

Selecting appropriate productivity tools.

Assisting in the development of the corporate IT/IS and enterprise strategies.

Undertaking feasibility studies and planning for database development.

Developing a corporate data model.

Determining the organization’s data requirements.

Setting data collection standards and establishing data formats.

Estimating volumes of data and likely growth.

Determining patterns and frequencies of data usage.

Determining data access requirements and safeguards for both legal and enterprise requirements.

Undertaking conceptual and logical database design.

Liaising with database administration staff and application developers to ensure applications meet
all stated requirements.

Educating users on data standards and legal responsibilities.

Keeping up to date with IT/IS and enterprise developments.

Ensuring documentation is up to date and complete, including standards, policies, procedures, use
of the data dictionary, and controls on end-users.

Managing the data dictionary.

Liaising with users to determine new requirements and to resolve difficulties over data access or
performance.

Developing a security policy.

Table 9.8 Database administration tasks.

Evaluating and selecting DBMS products.

Undertaking physical database design.

Implementing a physical database design using a target DBMS.

Defining security and integrity constraints.

Liaising with database application developers.

Developing test strategies.

Training users.

Responsible for ‘signing off’ the implemented database system.

Monitoring system performance and tuning the database, as appropriate.

Performing backups routinely.

Ensuring recovery mechanisms and procedures are in place.

Ensuring documentation is complete including in-house produced material.

Keeping up to date with software and hardware developments and costs, and installing updates
as necessary.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

Chapter Summary | 311

Comparison of Data and Database Administration

The preceding sections examined the purpose and tasks associated with data administra-
tion and database administration. In this final section we briefly contrast these functional
areas. Table 9.9 summarizes the main task differences of data administration and database
administration. Perhaps the most obvious difference lies in the nature of the work carried
out. Data administration staff tend to be much more managerial, whereas the database
administration staff tend to be more technical.

Table 9.9 Data administration and database administration – main task differences.

Data administration

Involved in strategic IS planning

Determines long-term goals

Enforces standards, policies, and procedures

Determines data requirements

Develops conceptual and logical database
design

Develops and maintains corporate data model

Coordinates system development

Managerial orientation

DBMS independent

Database administration

Evaluates new DBMSs

Executes plans to achieve goals

Enforces standards, policies, and procedures

Implements data requirements

Develops logical and physical database
design

Implements physical database design

Monitors and controls database

Technical orientation

DBMS dependent

Chapter Summary

n An information system is the resources that enable the collection, management, control, and dissemination
of information throughout an organization.

n A computer-based information system includes the following components: database, database software,
application software, computer hardware including storage media, and personnel using and developing the
system.

n The database is a fundamental component of an information system, and its development and usage should
be viewed from the perspective of the wider requirements of the organization. Therefore, the lifecycle of an
organizational information system is inherently linked to the lifecycle of the database that supports it.

n The main stages of the database system development lifecycle include: database planning, system definition,
requirements collection and analysis, database design, DBMS selection (optional), application design, proto-
typing (optional), implementation, data conversion and loading, testing, and operational maintenance.

n Database planning is the management activities that allow the stages of the database system development
lifecycle to be realized as efficiently and effectively as possible.

9.15.3

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

312 | Chapter 9 z Database Planning, Design, and Administration

n System definition involves identifying the scope and boundaries of the database system and user views. A
user view defines what is required of a database system from the perspective of a particular job role (such as
Manager or Supervisor) or enterprise application (such as marketing, personnel, or stock control).

n Requirements collection and analysis is the process of collecting and analyzing information about the
part of the organization that is to be supported by the database system, and using this information to identify
the requirements for the new system. There are three main approaches to managing the requirements for
a database system that has multiple user views, namely the centralized approach, the view integration
approach, and a combination of both approaches.

n The centralized approach involves merging the requirements for each user view into a single set of require-
ments for the new database system. A data model representing all user views is created during the database
design stage. In the view integration approach, requirements for each user view remain as separate lists. Data
models representing each user view are created then merged later during the database design stage.

n Database design is the process of creating a design that will support the enterprise’s mission statement
and mission objectives for the required database system. There are three phases of database design, namely
conceptual, logical, and physical database design.

n Conceptual database design is the process of constructing a model of the data used in an enterprise, inde-
pendent of all physical considerations.

n Logical database design is the process of constructing a model of the data used in an enterprise based on a
specific data model, but independent of a particular DBMS and other physical considerations.

n Physical database design is the process of producing a description of the implementation of the database on
secondary storage; it describes the base relations, file organizations, and indexes used to achieve efficient
access to the data, and any associated integrity constraints and security measures.

n DBMS selection involves selecting a suitable DBMS for the database system.

n Application design involves user interface design and transaction design, which describes the application
programs that use and process the database. A database transaction is an action, or series of actions, carried
out by a single user or application program, which accesses or changes the content of the database.

n Prototyping involves building a working model of the database system, which allows the designers or users
to visualize and evaluate the system.

n Implementation is the physical realization of the database and application designs.

n Data conversion and loading involves transferring any existing data into the new database and converting
any existing applications to run on the new database.

n Testing is the process of running the database system with the intent of finding errors.

n Operational maintenance is the process of monitoring and maintaining the system following installation.

n Computer-Aided Software Engineering (CASE) applies to any tool that supports software engineering and
permits the database system development activities to be carried out as efficiently and effectively as possible.
CASE tools may be divided into three categories: upper-CASE, lower-CASE, and integrated-CASE.

n Data administration is the management of the data resource, including database planning, development and
maintenance of standards, policies and procedures, and conceptual and logical database design.

n Database administration is the management of the physical realization of a database system, including
physical database design and implementation, setting security and integrity controls, monitoring system
performance, and reorganizing the database as necessary.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

Exercises | 313

Review Questions

9.1 Describe the major components of an
information system.

9.2 Discuss the relationship between the
information systems lifecycle and the database
system development lifecycle.

9.3 Describe the main purpose(s) and activities
associated with each stage of the database
system development lifecycle.

9.4 Discuss what a user view represents in the
context of a database system.

9.5 Discuss the main approaches for managing the
design of a database system that has multiple
user views.

9.6 Compare and contrast the three phases of
database design.

9.7 What are the main purposes of data modeling and
identify the criteria for an optimal data model?

9.8 Identify the stage(s) where it is appropriate to
select a DBMS and describe an approach to
selecting the ‘best’ DBMS.

9.9 Application design involves transaction design
and user interface design. Describe the purpose
and main activities associated with each.

9.10 Discuss why testing cannot show the absence of
faults, only that software faults are present.

9.11 Describe the main advantages of using the
prototyping approach when building a database
system.

9.12 Define the purpose and tasks associated with
data administration and database administration.

Exercises

9.13 Assume that you are responsible for selecting a new DBMS product for a group of users in your organization.
To undertake this exercise, you must first establish a set of requirements for the group and then identify a set
of features that a DBMS product must provide to fulfill the requirements. Describe the process of evaluating
and selecting the best DBMS product.

9.14 Describe the process of evaluating and selecting a DBMS product for each of the case studies described in
Appendix B.

9.15 Investigate whether data administration and database administration exist as distinct functional areas within
your organization. If identified, describe the organization, responsibilities, and tasks associated with each
functional area. PD

Fi
ll

PD
F

Edi
to

r w
ith

 F
re

e W
rit

er
 an

d
Too

ls

http://www.pdfill.com

10
Chapter

Fact-Finding Techniques

Chapter Objectives

In this chapter you will learn:

n When fact-finding techniques are used in the database system development

lifecycle.

n The types of facts collected in each stage of the database system development

lifecycle.

n The types of documentation produced in each stage of the database system

development lifecycle.

n The most commonly used fact-finding techniques.

n How to use each fact-finding technique and the advantages and disadvantages

of each.

n About a property rental company called DreamHome.

n How to apply fact-finding techniques to the early stages of the database

system development lifecycle.

In Chapter 9 we introduced the stages of the database system development lifecycle. There
are many occasions during these stages when it is critical that the database developer
captures the necessary facts to build the required database system. The necessary facts
include, for example, the terminology used within the enterprise, problems encountered
using the current system, opportunities sought from the new system, necessary constraints
on the data and users of the new system, and a prioritized set of requirements for the new
system. These facts are captured using fact-finding techniques.

Fact-finding The formal process of using techniques such as interviews and

questionnaires to collect facts about systems, requirements, and

preferences.

In this chapter we discuss when a database developer might use fact-finding techniques and
what types of facts should be captured. We present an overview of how these facts are used to
generate the main types of documentation used throughout the database system development

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

10.1 When Are Fact-Finding Techniques Used? | 315

10.1

lifecycle. We describe the most commonly used fact-finding techniques and identify the
advantages and disadvantages of each. We finally demonstrate how some of these techniques
may be used during the earlier stages of the database system development lifecycle using a
property management company called DreamHome. The DreamHome case study is used
throughout this book.

Structure of this Chapter

In Section 10.1 we discuss when a database developer might use fact-finding tech-
niques. (Throughout this book we use the term ‘database developer’ to refer to a person or
group of people responsible for the analysis, design, and implementation of a database
system.) In Section 10.2 we illustrate the types of facts that should be collected and the
documentation that should be produced at each stage of the database system development
lifecycle. In Section 10.3 we describe the five most commonly used fact-finding tech-
niques and identify the advantages and disadvantages of each. In Section 10.4 we demon-
strate how fact-finding techniques can be used to develop a database system for a case
study called DreamHome, a property management company. We begin this section by
providing an overview of the DreamHome case study. We then examine the first three
stages of the database system development lifecycle, namely database planning, system
definition, and requirements collection and analysis. For each stage we demonstrate the
process of collecting data using fact-finding techniques and describe the documentation
produced.

When Are Fact-Finding Techniques Used?

There are many occasions for fact-finding during the database system development life-
cycle. However, fact-finding is particularly crucial to the early stages of the lifecycle
including the database planning, system definition, and requirements collection and
analysis stages. It is during these early stages that the database developer captures the
essential facts necessary to build the required database. Fact-finding is also used during
database design and the later stages of the lifecycle, but to a lesser extent. For example,
during physical database design, fact-finding becomes technical as the database developer
attempts to learn more about the DBMS selected for the database system. Also, during
the final stage, operational maintenance, fact-finding is used to determine whether a
system requires tuning to improve performance or further development to include new
requirements.

Note that it is important to have a rough estimate of how much time and effort is to
be spent on fact-finding for a database project. As we mentioned in Chapter 9, too much
study too soon leads to paralysis by analysis. However, too little thought can result in an
unnecessary waste of both time and money due to working on the wrong solution to the
wrong problem.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

316 | Chapter 10 z Fact-Finding Techniques

What Facts Are Collected?

Throughout the database system development lifecycle, the database developer needs to
capture facts about the current and/or future system. Table 10.1 provides examples of the
sorts of data captured and the documentation produced for each stage of the lifecycle. As
we mentioned in Chapter 9, the stages of the database system development lifecycle are

Table 10.1 Examples of the data captured and the documentation produced for each stage of the
database system development lifecycle.

Stage of database
system development
lifecycle

Database planning

System definition

Requirements
collection and analysis

Database design

Application design

DBMS selection

Prototyping

Implementation

Data conversion and
loading

Testing

Operational
maintenance

Examples of data
captured

Aims and objectives of
database project

Description of major user views
(includes job roles or business
application areas)

Requirements for user views;
systems specifications,
including performance and
security requirements

Users’ responses to checking
the logical database design;
functionality provided by
target DBMS

Users’ responses to checking
interface design

Functionality provided by
target DBMS

Users’ responses to prototype

Functionality provided by
target DBMS

Format of current data; data
import capabilities of target
DBMS

Test results

Performance testing results;
new or changing user and
system requirements

Examples of documentation
produced

Mission statement and
objectives of database
system

Definition of scope and
boundary of database
application; definition of user
views to be supported

Users’ and system requirements
specifications

Conceptual/logical database
design (includes ER model(s),
data dictionary, and relational
schema); physical database
design

Application design (includes
description of programs and
user interface)

DBMS evaluation and
recommendations

Modified users’ requirements
and systems specifications

Testing strategies used; analysis
of test results

User manual; analysis of
performance results; modified
users’ requirements and systems
specifications

10.2

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

10.3 Fact-Finding Techniques | 317

not strictly sequential, but involve some amount of repetition of previous stages through
feedback loops. This is also true for the data captured and the documentation produced at
each stage. For example, problems encountered during database design may necessitate
additional data capture on the requirements for the new system.

Fact-Finding Techniques

A database developer normally uses several fact-finding techniques during a single
database project. There are five commonly used fact-finding techniques:

n examining documentation;

n interviewing;

n observing the enterprise in operation;

n research;

n questionnaires.

In the following sections we describe these fact-finding techniques and identify the advan-
tages and disadvantages of each.

Examining Documentation

Examining documentation can be useful when we are trying to gain some insight as to how
the need for a database arose. We may also find that documentation can help to provide
information on the part of the enterprise associated with the problem. If the problem relates
to the current system, there should be documentation associated with that system. By
examining documents, forms, reports, and files associated with the current system, we can
quickly gain some understanding of the system. Examples of the types of documentation
that should be examined are listed in Table 10.2.

Interviewing

Interviewing is the most commonly used, and normally most useful, fact-finding technique.
We can interview to collect information from individuals face-to-face. There can be
several objectives to using interviewing, such as finding out facts, verifying facts, clarify-
ing facts, generating enthusiasm, getting the end-user involved, identifying requirements,
and gathering ideas and opinions. However, using the interviewing technique requires
good communication skills for dealing effectively with people who have different values,
priorities, opinions, motivations, and personalities. As with other fact-finding techniques,
interviewing is not always the best method for all situations. The advantages and dis-
advantages of using interviewing as a fact-finding technique are listed in Table 10.3.

There are two types of interview: unstructured and structured. Unstructured inter-
views are conducted with only a general objective in mind and with few, if any, specific

10.3.1

10.3.2

10.3

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

318 | Chapter 10 z Fact-Finding Techniques

questions. The interviewer counts on the interviewee to provide a framework and direction
to the interview. This type of interview frequently loses focus and, for this reason, it often
does not work well for database analysis and design.

In structured interviews, the interviewer has a specific set of questions to ask the
interviewee. Depending on the interviewee’s responses, the interviewer will direct addi-
tional questions to obtain clarification or expansion. Open-ended questions allow the
interviewee to respond in any way that seems appropriate. An example of an open-ended
question is: ‘Why are you dissatisfied with the report on client registration?’ Closed-
ended questions restrict answers to either specific choices or short, direct responses. An
example of such a question might be: ‘Are you receiving the report on client registration

Table 10.3 Advantages and disadvantages of using interviewing as a fact-finding technique.

Advantages

Allows interviewee to respond freely and
openly to questions

Allows interviewee to feel part of project

Allows interviewer to follow up on interesting
comments made by interviewee

Allows interviewer to adapt or re-word
questions during interview

Allows interviewer to observe interviewee’s
body language

Disadvantages

Very time-consuming and costly, and
therefore may be impractical

Success is dependent on communication
skills of interviewer

Success can be dependent on willingness of
interviewees to participate in interviews

Table 10.2 Examples of types of documentation that should be examined.

Purpose of documentation

Describes problem and need
for database

Describes the part of the
enterprise affected by problem

Describes current system

Examples of useful sources

Internal memos, e-mails, and minutes of meetings
Employee/customer complaints, and documents that
describe the problem
Performance reviews/reports

Organizational chart, mission statement, and strategic plan
of the enterprise
Objectives for the part of the enterprise being studied
Task/job descriptions
Samples of completed manual forms and reports
Samples of completed computerized forms and reports

Various types of flowcharts and diagrams
Data dictionary
Database system design
Program documentation
User/training manuals

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

10.3 Fact-Finding Techniques | 319

on time?’ or ‘Does the report on client registration contain accurate information?’ Both
questions require only a ‘Yes’ or ‘No’ response.

To ensure a successful interview includes selecting appropriate individuals to interview,
preparing extensively for the interview, and conducting the interview in an efficient and
effective manner.

Observing the Enterprise in Operation

Observation is one of the most effective fact-finding techniques for understanding a sys-
tem. With this technique, it is possible to either participate in, or watch, a person perform
activities to learn about the system. This technique is particularly useful when the validity
of data collected through other methods is in question or when the complexity of certain
aspects of the system prevents a clear explanation by the end-users.

As with the other fact-finding techniques, successful observation requires preparation.
To ensure that the observation is successful, it is important to know as much about the
individuals and the activity to be observed as possible. For example, ‘When are the low,
normal, and peak periods for the activity being observed?’ and ‘Will the individuals be
upset by having someone watch and record their actions?’ The advantages and disadvan-
tages of using observation as a fact-finding technique are listed in Table 10.4.

Research

A useful fact-finding technique is to research the application and problem. Computer trade
journals, reference books, and the Internet (including user groups and bulletin boards) are
good sources of information. They can provide information on how others have solved
similar problems, plus whether or not software packages exist to solve or even partially
solve the problem. The advantages and disadvantages of using research as a fact-finding
technique are listed in Table 10.5.

Table 10.4 Advantages and disadvantages of using observation as a fact-finding technique.

Advantages

Allows the validity of facts and data to be
checked

Observer can see exactly what is being done

Observer can also obtain data describing
the physical environment of the task

Relatively inexpensive

Observer can do work measurements

Disadvantages

People may knowingly or unknowingly
perform differently when being observed

May miss observing tasks involving different
levels of difficulty or volume normally
experienced during that time period

Some tasks may not always be performed in
the manner in which they are observed

May be impractical

10.3.3

10.3.4

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

320 | Chapter 10 z Fact-Finding Techniques

Questionnaires

Another fact-finding technique is to conduct surveys through questionnaires. Question-
naires are special-purpose documents that allow facts to be gathered from a large number
of people while maintaining some control over their responses. When dealing with a large
audience, no other fact-finding technique can tabulate the same facts as efficiently. The
advantages and disadvantages of using questionnaires as a fact-finding technique are listed
in Table 10.6.

There are two types of questions that can be asked in a questionnaire, namely free-
format and fixed-format. Free-format questions offer the respondent greater freedom in
providing answers. A question is asked and the respondent records the answer in the space
provided after the question. Examples of free-format questions are: ‘What reports do you
currently receive and how are they used?’ and ‘Are there any problems with these reports?
If so, please explain.’ The problems with free-format questions are that the respondent’s
answers may prove difficult to tabulate and, in some cases, may not match the questions
asked.

Fixed-format questions require specific responses from individuals. Given any ques-
tion, the respondent must choose from the available answers. This makes the results much

10.3.5

Table 10.5 Advantages and disadvantages of using research as a fact-finding technique.

Advantages

Can save time if solution already exists

Researcher can see how others have solved
similar problems or met similar requirements

Keeps researcher up to date with current
developments

Disadvantages

Requires access to appropriate sources of
information

May ultimately not help in solving problem
because problem is not documented elsewhere

Table 10.6 Advantages and disadvantages of using questionnaires as a fact-finding technique.

Advantages

People can complete and return questionnaires
at their convenience

Relatively inexpensive way to gather data
from a large number of people

People more likely to provide the real
facts as responses can be kept confidential

Responses can be tabulated and
analyzed quickly

Disadvantages

Number of respondents can be low, possibly
only 5% to 10%

Questionnaires may be returned incomplete

May not provide an opportunity to adapt or
re-word questions that have been
misinterpreted

Cannot observe and analyze the respondent’s
body language

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

10.4 Using Fact-Finding Techniques – A Worked Example | 321

easier to tabulate. On the other hand, the respondent cannot provide additional information
that might prove valuable. An example of a fixed-format question is: ‘The current format
of the report on property rentals is ideal and should not be changed.’ The respondent may
be given the option to answer ‘Yes’ or ‘No’ to this question, or be given the option
to answer from a range of responses including ‘Strongly agree’, ‘Agree’, ‘No opinion’,
‘Disagree’, and ‘Strongly disagree’.

Using Fact-Finding Techniques –
A Worked Example

In this section we first present an overview of the DreamHome case study and then use
this case study to illustrate how to establish a database project. In particular, we illustrate
how fact-finding techniques can be used and the documentation produced in the early
stages of the database system development lifecycle namely the database planning, system
definition, and requirements collection and analysis stages.

The DreamHome Case Study – An Overview

The first branch office of DreamHome was opened in 1992 in Glasgow in the UK. Since
then, the Company has grown steadily and now has several offices in most of the main
cities of the UK. However, the Company is now so large that more and more adminis-
trative staff are being employed to cope with the ever-increasing amount of paperwork.
Furthermore, the communication and sharing of information between offices, even in the
same city, is poor. The Director of the Company, Sally Mellweadows feels that too many
mistakes are being made and that the success of the Company will be short-lived if she
does not do something to remedy the situation. She knows that a database could help in
part to solve the problem and requests that a database system be developed to support the
running of DreamHome. The Director has provided the following brief description of how
DreamHome currently operates.

DreamHome specializes in property management, by taking an intermediate role
between owners who wish to rent out their furnished property and clients of DreamHome
who require to rent furnished property for a fixed period. DreamHome currently has about
2000 staff working in 100 branches. When a member of staff joins the Company, the
DreamHome staff registration form is used. The staff registration form for Susan Brand is
shown in Figure 10.1.

Each branch has an appropriate number and type of staff including a Manager,
Supervisors, and Assistants. The Manager is responsible for the day-to-day running of
a branch and each Supervisor is responsible for supervising a group of staff called
Assistants. An example of the first page of a report listing the details of staff working at a
branch office in Glasgow is shown in Figure 10.2.

Each branch office offers a range of properties for rent. To offer property through
DreamHome, a property owner normally contacts the DreamHome branch office nearest
to the property for rent. The owner provides the details of the property and agrees an

10.4.1

10.4

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

322 | Chapter 10 z Fact-Finding Techniques

appropriate rent for the property with the branch Manager. The registration form for a
property in Glasgow is shown in Figure 10.3.

Once a property is registered, DreamHome provides services to ensure that the property
is rented out for maximum return for both the property owner and, of course, DreamHome.

Figure 10.1

The DreamHome

staff registration form

for Susan Brand.

Figure 10.2

Example of the first

page of a report

listing the details

of staff working at a

DreamHome branch

office in Glasgow.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

10.4 Using Fact-Finding Techniques – A Worked Example | 323

These services include interviewing prospective renters (called clients), organizing view-
ings of the property by clients, advertising the property in local or national newspapers
(when necessary), and negotiating the lease. Once rented, DreamHome assumes respons-
ibility for the property including the collection of rent.

Members of the public interested in renting out property must first contact their nearest
DreamHome branch office to register as clients of DreamHome. However, before regis-
tration is accepted, a prospective client is normally interviewed to record personal details
and preferences of the client in terms of property requirements. The registration form for
a client called Mike Ritchie is shown in Figure 10.4.

Once registration is complete, clients are provided with weekly reports that list pro-
perties currently available for rent. An example of the first page of a report listing the
properties available for rent at a branch office in Glasgow is shown in Figure 10.5.

Clients may request to view one or more properties from the list and after viewing
will normally provide a comment on the suitability of the property. The first page of a
report describing the comments made by clients on a property in Glasgow is shown in
Figure 10.6. Properties that prove difficult to rent out are normally advertised in local and
national newspapers.

Once a client has identified a suitable property, a member of staff draws up a lease.
The lease between a client called Mike Ritchie and a property in Glasgow is shown in
Figure 10.7.

Figure 10.3

The DreamHome

property registration

form for a property

in Glasgow.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

324 | Chapter 10 z Fact-Finding Techniques

Figure 10.4

The DreamHome

client registration

form for Mike Ritchie.

Figure 10.5

The first page of

the DreamHome

property for rent

report listing

property available

at a branch in

Glasgow.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

10.4 Using Fact-Finding Techniques – A Worked Example | 325

Figure 10.6

The first page of

the DreamHome

property viewing

report for a property

in Glasgow.

Figure 10.7

The DreamHome

lease form for a

client called Mike

Ritchie renting a

property in Glasgow.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

326 | Chapter 10 z Fact-Finding Techniques

At the end of a rental period a client may request that the rental be continued; however,
this requires that a new lease be drawn up. Alternatively, a client may request to view
alternative properties for the purposes of renting.

The DreamHome Case Study – Database Planning

The first step in developing a database system is to clearly define the mission statement
for the database project, which defines the major aims of the database system. Once
the mission statement is defined, the next activity involves identifying the mission
objectives, which should identify the particular tasks that the database must support
(see Section 9.3).

Creating the mission statement for the DreamHome
database system

We begin the process of creating a mission statement for the DreamHome database
system by conducting interviews with the Director and any other appropriate staff, as
indicated by the Director. Open-ended questions are normally the most useful at this stage
of the process. Examples of typical questions we might ask include:

‘What is the purpose of your company?’

‘Why do you feel that you need a database?’

‘How do you know that a database will solve your problem?’

For example, the database developer may start the interview by asking the Director of
DreamHome the following questions:

Database Developer What is the purpose of your company?
Director We offer a wide range of high quality properties for rent

to clients registered at our branches throughout the UK. Our
ability to offer quality properties, of course, depends upon
the services we provide to property owners. We provide a
highly professional service to property owners to ensure that
properties are rented out for maximum return.

Database Developer Why do you feel that you need a database?
Director To be honest we can’t cope with our own success. Over the

past few years we’ve opened several branches in most of the
main cities of the UK, and at each branch we now offer a
larger selection of properties to a growing number of clients.
However, this success has been accompanied with increasing
data management problems, which means that the level of
service we provide is falling. Also, there’s a lack of co-
operation and sharing of information between branches,
which is a very worrying development.

10.4.2

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

10.4 Using Fact-Finding Techniques – A Worked Example | 327

Database Developer How do you know that a database will solve your problem?
Director All I know is that we are drowning in paperwork. We need

something that will speed up the way we work by automating
a lot of the day-to-day tasks that seem to take for ever these
days. Also, I want the branches to start working together.
Databases will help to achieve this, won’t they?

Responses to these types of questions should help to formulate the mission statement.
An example mission statement for the DreamHome database system is shown in Fig-
ure 10.8. When we have a clear and unambiguous mission statement that the staff of
DreamHome agree with, we move on to define the mission objectives.

Creating the mission objectives for the DreamHome
database system

The process of creating mission objectives involves conducting interviews with appropriate
members of staff. Again, open-ended questions are normally the most useful at this stage
of the process. To obtain the complete range of mission objectives, we interview various
members of staff with different roles in DreamHome. Examples of typical questions we
might ask include:

‘What is your job description?’

‘What kinds of tasks do you perform in a typical day?’

‘What kinds of data do you work with?’

‘What types of reports do you use?’

‘What types of things do you need to keep track of?’

‘What service does your company provide to your customers?’

These questions (or similar) are put to the Director of DreamHome and members of staff
in the role of Manager, Supervisor, and Assistant. It may be necessary to adapt the ques-
tions as required depending on whom is being interviewed.

Director

Database Developer What role do you play for the company?
Director I oversee the running of the company to ensure that we con-

tinue to provide the best possible property rental service to our
clients and property owners.

Figure 10.8

Mission statement

for the DreamHome

database system.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

328 | Chapter 10 z Fact-Finding Techniques

Database Developer What kinds of tasks do you perform in a typical day?
Director I monitor the running of each branch by our Managers. I try to

ensure that the branches work well together and share import-
ant information about properties and clients. I normally try to
keep a high profile with my branch Managers by calling into
each branch at least once or twice a month.

Database Developer What kinds of data do you work with?
Director I need to see everything, well at least a summary of the data

used or generated by DreamHome. That includes data about
staff at all branches, all properties and their owners, all clients,
and all leases. I also like to keep an eye on the extent to which
branches advertise properties in newspapers.

Database Developer What types of reports do you use?
Director I need to know what’s going on at all the branches and there’s

lots of them. I spend a lot of my working day going over long
reports on all aspects of DreamHome. I need reports that are
easy to access and that let me get a good overview of what’s
happening at a given branch and across all branches.

Database Developer What types of things do you need to keep track of?
Director As I said before, I need to have an overview of everything,

I need to see the whole picture.

Database Developer What service does your company provide to your customers?
Director We try to provide the best property rental service in the UK.

Manager

Database Developer What is your job description?
Manager My job title is Manager. I oversee the day-to-day running of

my branch to provide the best property rental service to our
clients and property owners.

Database Developer What kinds of tasks do you perform in a typical day?
Manager I ensure that the branch has the appropriate number and

type of staff on duty at all times. I monitor the registering of
new properties and new clients, and the renting activity of our
currently active clients. It’s my responsibility to ensure that we
have the right number and type of properties available to offer
our clients. I sometimes get involved in negotiating leases for
our top-of-the-range properties, although due to my workload
I often have to delegate this task to Supervisors.

Database Developer What kinds of data do you work with?
Manager I mostly work with data on the properties offered at my branch

and the owners, clients, and leases. I also need to know when
properties are proving difficult to rent out so that I can arrange
for them to be advertised in newspapers. I need to keep an eye
on this aspect of the business because advertising can get
costly. I also need access to data about staff working at my

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

10.4 Using Fact-Finding Techniques – A Worked Example | 329

branch and staff at other local branches. This is because I
sometimes need to contact other branches to arrange manage-
ment meetings or to borrow staff from other branches on a
temporary basis to cover staff shortages due to sickness or
during holiday periods. This borrowing of staff between local
branches is informal and thankfully doesn’t happen very often.
Besides data on staff, it would be helpful to see other types of
data at the other branches such as data on property, property
owners, clients, and leases, you know, to compare notes.
Actually, I think the Director hopes that this database project
is going to help promote cooperation and sharing of informa-
tion between branches. However, some of the Managers I
know are not going to be too keen on this because they think
we’re in competition with each other. Part of the problem is
that a percentage of a Manager’s salary is made up of a bonus,
which is related to the number of properties we rent out.

Database Developer What types of reports do you use?
Manager I need various reports on staff, property, owners, clients, and

leases. I need to know at a glance which properties we need to
lease out and what clients are looking for.

Database Developer What types of things do you need to keep track of?
Manager I need to keep track of staff salaries. I need to know how well

the properties on our books are being rented out and when
leases are coming up for renewal. I also need to keep eye on
our expenditure on advertising in newspapers.

Database Developer What service does your company provide to your customers?
Manager Remember that we have two types of customers, that is clients

wanting to rent property and property owners. We need to
make sure that our clients find the property they’re looking for
quickly without too much legwork and at a reasonable rent
and, of course, that our property owners see good returns from
renting out their properties with minimal hassle.

Supervisor

Database Developer What is your job description?
Supervisor My job title is Supervisor. I spend most of my time in the

office dealing directly with our customers, that is clients want-
ing to rent property and property owners. I’m also responsible
for a small group of staff called Assistants and making sure
that they are kept busy, but that’s not a problem as there’s
always plenty to do, it’s never ending actually.

Database Developer What kinds of tasks do you perform in a typical day?
Supervisor I normally start the day by allocating staff to particular duties,

such as dealing with clients or property owners, organizing for
clients to view properties, and the filing of paperwork. When

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

330 | Chapter 10 z Fact-Finding Techniques

a client finds a suitable property, I process the drawing up of a
lease, although the Manager must see the documentation before
any signatures are requested. I keep client details up to date
and register new clients when they want to join the Company.
When a new property is registered, the Manager allocates
responsibility for managing that property to me or one of the
other Supervisors or Assistants.

Database Developer What kinds of data do you work with?
Supervisor I work with data about staff at my branch, property, property

owners, clients, property viewings, and leases.

Database Developer What types of reports do you use?
Supervisor Reports on staff and properties for rent.

Database Developer What types of things do you need to keep track of?
Supervisor I need to know what properties are available for rent and

when currently active leases are due to expire. I also need to
know what clients are looking for. I need to keep our Manager
up to date with any properties that are proving difficult to
rent out.

Assistant

Database Developer What is your job description?
Assistant My job title is Assistant. I deal directly with our clients.

Database Developer What kinds of tasks do you perform in a typical day?
Assistant I answer general queries from clients about properties for rent.

You know what I mean: ‘Do you have such and such type of
property in a particular area of Glasgow?’ I also register new
clients and arrange for clients to view properties. When we’re
not too busy I file paperwork but I hate this part of the job, it’s
so boring.

Database Developer What kinds of data do you work with?
Assistant I work with data on property and property viewings by clients

and sometimes leases.

Database Developer What types of reports do you use?
Assistant Lists of properties available for rent. These lists are updated

every week.

Database Developer What types of things do you need to keep track of?
Assistant Whether certain properties are available for renting out and

which clients are still actively looking for property.

Database Developer What service does your company provide to your customers?
Assistant We try to answer questions about properties available for

rent such as: ‘Do you have a 2-bedroom flat in Hyndland,
Glasgow?’ and ‘What should I expect to pay for a 1-bedroom
flat in the city center?’

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

10.4 Using Fact-Finding Techniques – A Worked Example | 331

Responses to these types of questions should help to formulate the mission object-
ives. An example of the mission objectives for the DreamHome database system is shown
in Figure 10.9.

The DreamHome Case Study – System Definition

The purpose of the system definition stage is to define the scope and boundary of the
database system and its major user views. In Section 9.4.1 we described how a user view
represents the requirements that should be supported by a database system as defined by a
particular job role (such as Director or Supervisor) or business application area (such as
property rentals or property sales).

Defining the systems boundary for the DreamHome
database system

During this stage of the database system development lifecycle, further interviews with
users can be used to clarify or expand on data captured in the previous stage. However,
additional fact-finding techniques can also be used including examining the sample

Figure 10.9

Mission objectives

for the DreamHome

database system.

10.4.3

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

332 | Chapter 10 z Fact-Finding Techniques

documentation shown in Section 10.4.1. The data collected so far is analyzed to define
the boundary of the database system. The systems boundary for the DreamHome database
system is shown in Figure 10.10.

Identifying the major user views for the DreamHome
database system

We now analyze the data collected so far to define the main user views of the database sys-
tem. The majority of data about the user views was collected during interviews with the
Director and members of staff in the role of Manager, Supervisor, and Assistant. The main
user views for the DreamHome database system are shown in Figure 10.11.

The DreamHome Case Study – Requirements
Collection and Analysis

During this stage, we continue to gather more details on the user views identified in the
previous stage, to create a users’ requirements specification that describes in detail the data
to be held in the database and how the data is to be used. While gathering more information
on the user views, we also collect any general requirements for the system. The purpose
of gathering this information is to create a systems specification, which describes any
features to be included in the new database system such as networking and shared access
requirements, performance requirements, and the levels of security required.

As we collect and analyze the requirements for the new system we also learn about the
most useful and most troublesome features of the current system. When building a new
database system it is sensible to try to retain the good things about the old system while
introducing the benefits that will be part of using the new system.

An important activity associated with this stage is deciding how to deal with the situ-
ation where there is more than one user view. As we discussed in Section 9.6, there are three

Figure 10.10

Systems boundary

for the DreamHome

database system.

10.4.4

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

Figure 10.11

Major user views

for the DreamHome

database system.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

334 | Chapter 10 z Fact-Finding Techniques

major approaches to dealing with multiple user views, namely the centralized approach,
the view integration approach, and a combination of both approaches. We discuss how
these approaches can be used shortly.

Gathering more information on the user views of the DreamHome
database system

To find out more about the requirements for each user view, we may again use a selection
of fact-finding techniques including interviews and observing the business in operation.
Examples of the types of questions that we may ask about the data (represented as X)
required by a user view include:

‘What type of data do you need to hold on X?’

‘What sorts of things do you do with the data on X?’

For example, we may ask a Manager the following questions:

Database Developer What type of data do you need to hold on staff?
Manager The types of data held on a member of staff is his or her full

name, position, sex, date of birth, and salary.

Database Developer What sorts of things do you do with the data on staff?
Manager I need to be able to enter the details of new members of staff

and delete their details when they leave. I need to keep the
details of staff up to date and print reports that list the full
name, position, and salary of each member of staff at my
branch. I need to be able to allocate staff to Supervisors.
Sometimes when I need to communicate with other branches,
I need to find out the names and telephone numbers of
Managers at other branches.

We need to ask similar questions about all the important data to be stored in the database.
Responses to these questions will help identify the necessary details for the users’ require-
ments specification.

Gathering information on the system requirements of the
DreamHome database system

While conducting interviews about user views, we should also collect more general infor-
mation on the system requirements. Examples of the types of questions that we may ask
about the system include:

‘What transactions run frequently on the database?’

‘What transactions are critical to the operation of the organization?’

‘When do the critical transactions run?’

‘When are the low, normal, and high workload periods for the critical transactions?’

‘What type of security do you want for the database system?’

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

10.4 Using Fact-Finding Techniques – A Worked Example | 335

‘Is there any highly sensitive data that should be accessed only by certain members of
staff?’

‘What historical data do you want to hold?’

‘What are the networking and shared access requirements for the database system?’

‘What type of protection from failures or data loss do you want for the database
system?’

For example, we may ask a Manager the following questions:

Database Developer What transactions run frequently on the database?
Manager We frequently get requests either by phone or by clients who

call into our branch to search for a particular type of property
in a particular area of the city and for a rent no higher than a
particular amount. We also need up-to-date information on
properties and clients so that reports can be run off that show
properties currently available for rent and clients currently
seeking property.

Database Developer What transactions are critical to the operation of the business?
Manager Again, critical transactions include being able to search for

particular properties and to print out reports with up-to-date
lists of properties available for rent. Our clients would go else-
where if we couldn’t provide this basic service.

Database Developer When do the critical transactions run?
Manager Every day.

Database Developer When are the low, normal, and high workload periods for the
critical transactions?

Manager We’re open six days a week. In general, we tend to be quiet in
the mornings and get busier as the day progresses. However,
the busiest time-slots each day for dealing with customers are
between 12 and 2pm and 5 and 7pm.

We may ask the Director the following questions:

Database Developer What type of security do you want for the database system?
Director I don’t suppose a database holding information for a property

rental company holds very sensitive data, but I wouldn’t want
any of our competitors to see the data on properties, owners,
clients, and leases. Staff should only see the data necessary
to do their job in a form that suits what they’re doing.
For example, although it’s necessary for Supervisors and
Assistants to see client details, client records should only be
displayed one at a time and not as a report.

Database Developer Is there any highly sensitive data that should be accessed only
by certain members of staff?

Director As I said before, staff should only see the data necessary to do
their jobs. For example, although Supervisors need to see data
on staff, salary details should not be included.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

336 | Chapter 10 z Fact-Finding Techniques

Database Developer What historical data do you want to hold?
Director I want to keep the details of clients and owners for a couple of

years after their last dealings with us, so that we can mailshot
them to tell them about our latest offers, and generally try to
attract them back. I also want to be able to keep lease informa-
tion for a couple of years so that we can analyze it to find out
which types of properties and areas of each city are the most
popular for the property rental market, and so on.

Database Developer What are the networking and shared access requirements for
the database system?

Director I want all the branches networked to our main branch office,
here in Glasgow, so that staff can access the system from
wherever and whenever they need to. At most branches,
I would expect about two or three staff to be accessing the
system at any one time, but remember we have about 100
branches. Most of the time the staff should be just accessing
local branch data. However, I don’t really want there to be
any restrictions about how often or when the system can be
accessed, unless it’s got real financial implications.

Database Developer What type of protection from failures or data loss do you want
for the database system?

Director The best of course. All our business is going to be con-
ducted using the database, so if it goes down, we’re sunk. To
be serious for a minute, I think we probably have to back up
our data every evening when the branch closes. What do you
think?

We need to ask similar questions about all the important aspects of the system. Responses
to these questions should help identify the necessary details for the system requirements
specification.

Managing the user views of the DreamHome database system

How do we decide whether to use the centralized or view integration approach, or a
combination of both to manage multiple user views? One way to help make a decision
is to examine the overlap in the data used between the user views identified during the
system definition stage. Table 10.7 cross-references the Director, Manager, Supervisor, and
Assistant user views with the main types of data used by each user view.

We see from Table 10.7 that there is overlap in the data used by all user views. How-
ever, the Director and Manager user views and the Supervisor and Assistant user views
show more similarities in terms of data requirements. For example, only the Director and
Manager user views require data on branches and newspapers whereas only the Supervisor
and Assistant user views require data on property viewings. Based on this analysis, we use
the centralized approach to first merge the requirements for the Director and Manager user
views (given the collective name of Branch user views) and the requirements for the
Supervisor and Assistant user views (given the collective name of Staff user views). We

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

10.4 Using Fact-Finding Techniques – A Worked Example | 337

then develop data models representing the Branch and Staff user views and then use the
view integration approach to merge the two data models.

Of course, for a simple case study like DreamHome, we could easily use the centralized
approach for all user views but we will stay with our decision to create two collective user
views so that we can describe and demonstrate how the view integration approach works
in practice in Chapter 16.

It is difficult to give precise rules as to when it is appropriate to use the centralized or
view integration approaches. The decision should be based on an assessment of the com-
plexity of the database system and the degree of overlap between the various user views.
However, whether we use the centralized or view integration approach or a mixture of both
to build the underlying database, ultimately we need to re-establish the original user views
(namely Director, Manager, Supervisor, and Assistant) for the working database system.
We describe and demonstrate the establishment of the user views for the database system
in Chapter 17.

All of the information gathered so far on each user view of the database system is
described in a document called a users’ requirements specification. The users’ require-
ments specification describes the data requirements for each user view and examples of
how the data is used by the user view. For ease of reference the users’ requirements
specifications for the Branch and Staff user views of the DreamHome database system are
given in Appendix A. In the remainder of this chapter, we present the general systems
requirements for the DreamHome database system.

The systems specification for the DreamHome database system

The systems specification should list all the important features for the DreamHome data-
base system. The types of features that should be described in the systems specification
include:

n initial database size;

n database rate of growth;

n the types and average number of record searches;

Table 10.7 Cross-reference of user views with the main types of data used by each.

Director Manager Supervisor Assistant

branch X X

staff X X X

property for rent X X X X

owner X X X X

client X X X X

property viewing X X

lease X X X X

newspaper X X

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

338 | Chapter 10 z Fact-Finding Techniques

n networking and shared access requirements;

n performance;

n security;

n backup and recovery;

n legal issues.

Systems Requirements for DreamHome Database System

Initial database size

(1) There are approximately 2000 members of staff working at over 100 branches. There
is an average of 20 and a maximum of 40 members of staff at each branch.

(2) There are approximately 100,000 properties available at all branches. There is an
average of 1000 and a maximum of 3000 properties at each branch.

(3) There are approximately 60,000 property owners. There is an average of 600 and a
maximum of 1000 property owners at each branch.

(4) There are approximately 100,000 clients registered across all branches. There is an
average of 1000 and a maximum of 1500 clients registered at each branch.

(5) There are approximately 4,000,000 viewings across all branches. There is an average
of 40,000 and a maximum of 100,000 viewings at each branch.

(6) There are approximately 400,000 leases across all branches. There are an average of
4000 and a maximum of 10,000 leases at each branch.

(7) There are approximately 50,000 newspaper adverts in 100 newspapers across all
branches.

Database rate of growth

(1) Approximately 500 new properties and 200 new property owners are added to the
database each month.

(2) Once a property is no longer available for renting out, the corresponding record is
deleted from the database. Approximately 100 records of properties are deleted each
month.

(3) If a property owner does not provide properties for rent at any time within a period of
two years, his or her record is deleted. Approximately 100 property owner records are
deleted each month.

(4) Approximately 20 members of staff join and leave the company each month. The
records of staff who have left the company are deleted after one year. Approximately
20 staff records are deleted each month.

(5) Approximately 1000 new clients register at branches each month. If a client does not
view or rent out a property at any time within a period of two years, his or her record
is deleted. Approximately 100 client records are deleted each month.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

10.4 Using Fact-Finding Techniques – A Worked Example | 339

(6) Approximately 5000 new viewings are recorded across all branches each day. The
details of property viewings are deleted one year after the creation of the record.

(7) Approximately 1000 new leases are recorded across all branches each month. The
details of property leases are deleted two years after the creation of the record.

(8) Approximately 1000 newspaper adverts are placed each week. The details of news-
paper adverts are deleted one year after the creation of the record.

The types and average number of record searches

(1) Searching for the details of a branch – approximately 10 per day.

(2) Searching for the details of a member of staff at a branch – approximately 20 per day.

(3) Searching for the details of a given property – approximately 5000 per day (Monday
to Thursday), approximately 10,000 per day (Friday and Saturday). Peak workloads
are 12.00–14.00 and 17.00–19.00 daily.

(4) Searching for the details of a property owner – approximately 100 per day.

(5) Searching for the details of a client – approximately 1000 per day (Monday to
Thursday), approximately 2000 per day (Friday and Saturday). Peak workloads are
12.00–14.00 and 17.00–19.00 daily.

(6) Searching for the details of a property viewing – approximately 2000 per day
(Monday to Thursday), approximately 5000 per day (Friday and Saturday). Peak
workloads are 12.00–14.00 and 17.00–19.00 daily.

(7) Searching for the details of a lease – approximately 1000 per day (Monday to
Thursday), approximately 2000 per day (Friday and Saturday). Peak workloads are
12.00–14.00 and 17.00–19.00 daily.

Networking and shared access requirements

All branches should be securely networked to a centralized database located at
DreamHome’s main office in Glasgow. The system should allow for at least two to three
people concurrently accessing the system from each branch. Consideration needs to be
given to the licensing requirements for this number of concurrent accesses.

Performance

(1) During opening hours but not during peak periods expect less than 1 second response
for all single record searches. During peak periods expect less than 5 second response
for each search.

(2) During opening hours but not during peak periods expect less than 5 second response
for each multiple record search. During peak periods expect less than 10 second
response for each multiple record search.

(3) During opening hours but not during peak periods expect less than 1 second response
for each update/save. During peak periods expect less than 5 second response for each
update/save.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

340 | Chapter 10 z Fact-Finding Techniques

Security

(1) The database should be password-protected.

(2) Each member of staff should be assigned database access privileges appropriate to a
particular user view, namely Director, Manager, Supervisor, or Assistant.

(3) A member of staff should only see the data necessary to do his or her job in a form
that suits what he or she is doing.

Backup and Recovery

The database should be backed up daily at 12 midnight.

Legal Issues

Each country has laws that govern the way that the computerized storage of personal data
is handled. As the DreamHome database holds data on staff, clients, and property owners
any legal issues that must be complied with should be investigated and implemented.

The DreamHome Case Study – Database Design

In this chapter we demonstrated the creation of the users’ requirements specification for
the Branch and Staff user views and the systems specification for the DreamHome
database system. These documents are the sources of information for the next stage of the
lifecycle called database design. In Chapters 15 to 18 we provide a step-by-step meth-
odology for database design and use the DreamHome case study and the documents created
for the DreamHome database system in this chapter to demonstrate the methodology in
practice.

Chapter Summary

n Fact-finding is the formal process of using techniques such as interviews and questionnaires to collect facts
about systems, requirements, and preferences.

n Fact-finding is particularly crucial to the early stages of the database system development lifecycle including
the database planning, system definition, and requirements collection and analysis stages.

n The five most common fact-finding techniques are examining documentation, interviewing, observing the
enterprise in operation, conducting research, and using questionnaires.

n There are two main documents created during the requirements collection and analysis stage, namely the
users’ requirements specification and the systems specification.

n The users’ requirements specification describes in detail the data to be held in the database and how the data
is to be used.

n The systems specification describes any features to be included in the database system such as the perform-
ance and security requirements.

10.4.5

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

Exercises | 341

Exercises

10.9 Assume that you are developing a database system for your enterprise, whether it is a university (or
college) or business (or department). Consider what fact-finding techniques you would use to identify the
important facts needed to develop a database system. Identify the techniques that you would use for each
stage of the database system development lifecycle.

10.10 Assume that you are developing a database system for the case studies described in Appendix B. Consider
what fact-finding techniques you would use to identify the important facts needed to develop a database
system.

10.11 Produce mission statements and mission objectives for the database systems described in the case studies
given in Appendix B.

10.12 Produce a diagram to represent the scope and boundaries for the database systems described in the case
studies given in Appendix B.

10.13 Identify the major user views for the database systems described in the case studies given in Appendix B.

Review Questions

10.1 Briefly describe what the process of fact-
finding attempts to achieve for a database
developer.

10.2 Describe how fact-finding is used throughout
the stages of the database system development
lifecycle.

10.3 For each stage of the database system
development lifecycle identify examples of the
facts captured and the documentation produced.

10.4 A database developer normally uses several
fact-finding techniques during a single database
project. The five most commonly used
techniques are examining documentation,
interviewing, observing the business in
operation, conducting research, and using
questionnaires. Describe each fact-finding

technique and identify the advantages and
disadvantages of each.

10.5 Describe the purpose of defining a mission
statement and mission objectives for a database
system.

10.6 What is the purpose of identifying the systems
boundary for a database system?

10.7 How do the contents of a users’ requirements
specification differ from a systems
specification?

10.8 Describe one method of deciding whether to
use either the centralized or view integration
approach, or a combination of both when
developing a database system with multiple
user views.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

11
Chapter

Entity–Relationship

Modeling

Chapter Objectives

In this chapter you will learn:

n How to use Entity–Relationship (ER) modeling in database design.

n The basic concepts associated with the Entity–Relationship (ER) model, namely

entities, relationships, and attributes.

n A diagrammatic technique for displaying an ER model using the Unified Modeling

Language (UML).

n How to identify and resolve problems with ER models called connection traps.

In Chapter 10 we described the main techniques for gathering and capturing information
about what the users require of a database system. Once the requirements collection and
analysis stage of the database system development lifecycle is complete and we have
documented the requirements for the database system, we are ready to begin the database
design stage.

One of the most difficult aspects of database design is the fact that designers, pro-
grammers, and end-users tend to view data and its use in different ways. Unfortunately,
unless we gain a common understanding that reflects how the enterprise operates, the
design we produce will fail to meet the users’ requirements. To ensure that we get a
precise understanding of the nature of the data and how it is used by the enterprise, we
need to have a model for communication that is non-technical and free of ambiguities.
The Entity–Relationship (ER) model is one such example. ER modeling is a top-down
approach to database design that begins by identifying the important data called entities
and relationships between the data that must be represented in the model. We then add
more details such as the information we want to hold about the entities and relation-
ships called attributes and any constraints on the entities, relationships, and attributes. ER
modeling is an important technique for any database designer to master and forms the
basis of the methodology presented in this book.

In this chapter we introduce the basic concepts of the ER model. Although there is
general agreement about what each concept means, there are a number of different nota-
tions that can be used to represent each concept diagrammatically. We have chosen a dia-
grammatic notation that uses an increasingly popular object-oriented modeling language

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

11.1 Entity Types | 343

called the Unified Modeling Language (UML) (Booch et al., 1999). UML is the successor
to a number of object-oriented analysis and design methods introduced in the 1980s
and 1990s. The Object Management Group (OMG) is currently looking at the standard-
ization of UML and it is anticipated that UML will be the de facto standard modeling
language in the near future. Although we use the UML notation for drawing ER models,
we continue to describe the concepts of ER models using traditional database terminology.
In Section 25.7 we will provide a fuller discussion on UML. We also include a summary
of two alternative diagrammatic notations for ER models in Appendix F.

In the next chapter we discuss the inherent problems associated with representing com-
plex database applications using the basic concepts of the ER model. To overcome these
problems, additional ‘semantic’ concepts were added to the original ER model resulting
in the development of the Enhanced Entity–Relationship (EER) model. In Chapter 12 we
describe the main concepts associated with the EER model called specialization/general-
ization, aggregation, and composition. We also demonstrate how to convert the ER model
shown in Figure 11.1 into the EER model shown in Figure 12.8.

Structure of this Chapter

In Sections 11.1, 11.2, and 11.3 we introduce the basic concepts of the Entity–Relationship
model, namely entities, relationships, and attributes. In each section we illustrate how the
basic ER concepts are represented pictorially in an ER diagram using UML. In Section
11.4 we differentiate between weak and strong entities and in Section 11.5 we discuss how
attributes normally associated with entities can be assigned to relationships. In Section
11.6 we describe the structural constraints associated with relationships. Finally, in
Section 11.7 we identify potential problems associated with the design of an ER model
called connection traps and demonstrate how these problems can be resolved.

The ER diagram shown in Figure 11.1 is an example of one of the possible end-
products of ER modeling. This model represents the relationships between data described
in the requirements specification for the Branch view of the DreamHome case study given
in Appendix A. This figure is presented at the start of this chapter to show the reader an
example of the type of model that we can build using ER modeling. At this stage, the
reader should not be concerned about fully understanding this diagram, as the concepts and
notation used in this figure are discussed in detail throughout this chapter.

Entity Types

Entity type A group of objects with the same properties, which are identified by

the enterprise as having an independent existence.

The basic concept of the ER model is the entity type, which represents a group of ‘objects’
in the ‘real world’ with the same properties. An entity type has an independent existence

11.1

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

344 | Chapter 11 z Entity–Relationship Modeling

Figure 11.1 An Entity–Relationship (ER) diagram of the Branch view of DreamHome.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

11.1 Entity Types | 345

and can be objects with a physical (or ‘real’) existence or objects with a conceptual (or
‘abstract’) existence, as listed in Figure 11.2. Note that we are only able to give a working
definition of an entity type as no strict formal definition exists. This means that different
designers may identify different entities.

Entity occurrence A uniquely identifiable object of an entity type.

Each uniquely identifiable object of an entity type is referred to simply as an entity
occurrence. Throughout this book, we use the terms ‘entity type’ or ‘entity occurrence’;
however, we use the more general term ‘entity’ where the meaning is obvious.

We identify each entity type by a name and a list of properties. A database normally
contains many different entity types. Examples of entity types shown in Figure 11.1
include: Staff, Branch, PropertyForRent, and PrivateOwner.

Diagrammatic representation of entity types

Each entity type is shown as a rectangle labeled with the name of the entity, which is
normally a singular noun. In UML, the first letter of each word in the entity name is upper
case (for example, Staff and PropertyForRent). Figure 11.3 illustrates the diagrammatic rep-
resentation of the Staff and Branch entity types.

Figure 11.2

Example of entities

with a physical

or conceptual

existence.

Figure 11.3

Diagrammatic

representation of the

Staff and Branch

entity types.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

346 | Chapter 11 z Entity–Relationship Modeling

Relationship Types

Relationship type A set of meaningful associations among entity types.

A relationship type is a set of associations between one or more participating entity types.
Each relationship type is given a name that describes its function. An example of a rela-
tionship type shown in Figure 11.1 is the relationship called POwns, which associates the
PrivateOwner and PropertyForRent entities.

As with entity types and entities, it is necessary to distinguish between the terms ‘rela-
tionship type’ and ‘relationship occurrence’.

Relationship A uniquely identifiable association, which includes one occurrence

occurrence from each participating entity type.

A relationship occurrence indicates the particular entity occurrences that are related.
Throughout this book, we use the terms ‘relationship type’ or ‘relationship occurrence’.
However, as with the term ‘entity’, we use the more general term ‘relationship’ when the
meaning is obvious.

Consider a relationship type called Has, which represents an association between Branch

and Staff entities, that is Branch Has Staff. Each occurrence of the Has relationship associates
one Branch entity occurrence with one Staff entity occurrence. We can examine examples
of individual occurrences of the Has relationship using a semantic net. A semantic net is
an object-level model, which uses the symbol • to represent entities and the symbol to
represent relationships. The semantic net in Figure 11.4 shows three examples of the Has

relationships (denoted r1, r2, and r3). Each relationship describes an association of a
single Branch entity occurrence with a single Staff entity occurrence. Relationships are rep-
resented by lines that join each participating Branch entity with the associated Staff entity.
For example, relationship r1 represents the association between Branch entity B003 and
Staff entity SG37.

11.2

Figure 11.4

A semantic net

showing individual

occurrences of the

Has relationship

type.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

11.2 Relationship Types | 347

Note that we represent each Branch and Staff entity occurrences using values for the
their primary key attributes, namely branchNo and staffNo. Primary key attributes uniquely
identify each entity occurrence and are discussed in detail in the following section.

If we represented an enterprise using semantic nets, it would be difficult to understand
due to the level of detail. We can more easily represent the relationships between
entities in an enterprise using the concepts of the Entity–Relationship (ER) model. The
ER model uses a higher level of abstraction than the semantic net by combining sets of
entity occurrences into entity types and sets of relationship occurrences into relationship
types.

Diagrammatic representation of relationships types

Each relationship type is shown as a line connecting the associated entity types, labeled
with the name of the relationship. Normally, a relationship is named using a verb (for
example, Supervises or Manages) or a short phrase including a verb (for example, LeasedBy).
Again, the first letter of each word in the relationship name is shown in upper case.
Whenever possible, a relationship name should be unique for a given ER model.

A relationship is only labeled in one direction, which normally means that the name of
the relationship only makes sense in one direction (for example, Branch Has Staff makes
more sense than Staff Has Branch). So once the relationship name is chosen, an arrow sym-
bol is placed beside the name indicating the correct direction for a reader to interpret the
relationship name (for example, Branch Has Staff) as shown in Figure 11.5.

Degree of Relationship Type

Degree of a The number of participating entity types in a relationship.

relationship type

The entities involved in a particular relationship type are referred to as participants in that
relationship. The number of participants in a relationship type is called the degree of that

Figure 11.5

A diagrammatic

representation of

Branch Has Staff

relationship type.

11.2.1

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

348 | Chapter 11 z Entity–Relationship Modeling

relationship. Therefore, the degree of a relationship indicates the number of entity types
involved in a relationship. A relationship of degree two is called binary. An example of a
binary relationship is the Has relationship shown in Figure 11.5 with two participating
entity types namely, Staff and Branch. A second example of a binary relationship is the
POwns relationship shown in Figure 11.6 with two participating entity types, namely
PrivateOwner and PropertyForRent. The Has and POwns relationships are also shown in Fig-
ure 11.1 as well as other examples of binary relationships. In fact the most common degree
for a relationship is binary as demonstrated in this figure.

A relationship of degree three is called ternary. An example of a ternary relationship
is Registers with three participating entity types, namely Staff, Branch, and Client. This
relationship represents the registration of a client by a member of staff at a branch. The
term ‘complex relationship’ is used to describe relationships with degrees higher than
binary.

Diagrammatic representation of complex relationships

The UML notation uses a diamond to represent relationships with degrees higher than
binary. The name of the relationship is displayed inside the diamond and in this case the
directional arrow normally associated with the name is omitted. For example, the ternary
relationship called Registers is shown in Figure 11.7. This relationship is also shown in
Figure 11.1.

A relationship of degree four is called quaternary. As we do not have an example of
such a relationship in Figure 11.1, we describe a quaternary relationship called Arranges

with four participating entity types, namely Buyer, Solicitor, FinancialInstitution, and Bid in
Figure 11.8. This relationship represents the situation where a buyer, advised by a soli-
citor and supported by a financial institution, places a bid.

Figure 11.6

An example of a

binary relationship

called POwns.

Figure 11.7

An example of a

ternary relationship

called Registers.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

11.2 Relationship Types | 349

Recursive Relationship

Recursive A relationship type where the same entity type participates more

relationship than once in different roles.

Consider a recursive relationship called Supervises, which represents an association of
staff with a Supervisor where the Supervisor is also a member of staff. In other words,
the Staff entity type participates twice in the Supervises relationship; the first participation
as a Supervisor, and the second participation as a member of staff who is supervised
(Supervisee). Recursive relationships are sometimes called unary relationships.

Relationships may be given role names to indicate the purpose that each participating
entity type plays in a relationship. Role names can be important for recursive relationships
to determine the function of each participant. The use of role names to describe the
Supervises recursive relationship is shown in Figure 11.9. The first participation of the Staff

entity type in the Supervises relationship is given the role name ‘Supervisor’ and the sec-
ond participation is given the role name ‘Supervisee’.

Figure 11.8

An example of

a quaternary

relationship called

Arranges.

Figure 11.9

An example of a

recursive relationship

called Supervises

with role names

Supervisor and

Supervisee.

11.2.2

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

350 | Chapter 11 z Entity–Relationship Modeling

Role names may also be used when two entities are associated through more than one
relationship. For example, the Staff and Branch entity types are associated through two
distinct relationships called Manages and Has. As shown in Figure 11.10, the use of role
names clarifies the purpose of each relationship. For example, in the case of Staff Manages

Branch, a member of staff (Staff entity) given the role name ‘Manager’ manages a branch
(Branch entity) given the role name ‘Branch Office’. Similarly, for Branch Has Staff, a
branch, given the role name ‘Branch Office’ has staff given the role name ‘Member of
Staff’.

Role names are usually not required if the function of the participating entities in a
relationship is unambiguous.

Attributes

Attribute A property of an entity or a relationship type.

The particular properties of entity types are called attributes. For example, a Staff entity
type may be described by the staffNo, name, position, and salary attributes. The attributes
hold values that describe each entity occurrence and represent the main part of the data
stored in the database.

A relationship type that associates entities can also have attributes similar to those of
an entity type but we defer discussion of this until Section 11.5. In this section, we con-
centrate on the general characteristics of attributes.

Attribute domain The set of allowable values for one or more attributes.

Figure 11.10

An example of

entities associated

through two distinct

relationships called

Manages and Has

with role names.

11.3 PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

11.3 Attributes | 351

Each attribute is associated with a set of values called a domain. The domain defines
the potential values that an attribute may hold and is similar to the domain concept in the
relational model (see Section 3.2). For example, the number of rooms associated with a
property is between 1 and 15 for each entity occurrence. We therefore define the set of
values for the number of rooms (rooms) attribute of the PropertyForRent entity type as the set
of integers between 1 and 15.

Attributes may share a domain. For example, the address attributes of the Branch,
PrivateOwner, and BusinessOwner entity types share the same domain of all possible
addresses. Domains can also be composed of domains. For example, the domain for the
address attribute of the Branch entity is made up of subdomains: street, city, and postcode.

The domain of the name attribute is more difficult to define, as it consists of all possible
names. It is certainly a character string, but it might consist not only of letters but also of
hyphens or other special characters. A fully developed data model includes the domains of
each attribute in the ER model.

As we now explain, attributes can be classified as being: simple or composite; single-
valued or multi-valued; or derived.

Simple and Composite Attributes

Simple An attribute composed of a single component with an independent

attribute existence.

Simple attributes cannot be further subdivided into smaller components. Examples of
simple attributes include position and salary of the Staff entity. Simple attributes are some-
times called atomic attributes.

Composite An attribute composed of multiple components, each with an inde-

attribute pendent existence.

Some attributes can be further divided to yield smaller components with an independent
existence of their own. For example, the address attribute of the Branch entity with the
value (163 Main St, Glasgow, G11 9QX) can be subdivided into street (163 Main St), city

(Glasgow), and postcode (G11 9QX) attributes.
The decision to model the address attribute as a simple attribute or to subdivide the

attribute into street, city, and postcode is dependent on whether the user view of the data
refers to the address attribute as a single unit or as individual components.

Single-Valued and Multi-Valued Attributes

Single-valued An attribute that holds a single value for each occurrence of an

attribute entity type.

11.3.1

11.3.2

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

352 | Chapter 11 z Entity–Relationship Modeling

The majority of attributes are single-valued. For example, each occurrence of the Branch

entity type has a single value for the branch number (branchNo) attribute (for example
B003), and therefore the branchNo attribute is referred to as being single-valued.

Multi-valued An attribute that holds multiple values for each occurrence of an

attribute entity type.

Some attributes have multiple values for each entity occurrence. For example, each occur-
rence of the Branch entity type can have multiple values for the telNo attribute (for ex-
ample, branch number B003 has telephone numbers 0141-339-2178 and 0141-339-4439)
and therefore the telNo attribute in this case is multi-valued. A multi-valued attribute may
have a set of numbers with upper and lower limits. For example, the telNo attribute of the
Branch entity type has between one and three values. In other words, a branch may have a
minimum of a single telephone number to a maximum of three telephone numbers.

Derived Attributes

Derived An attribute that represents a value that is derivable from the value of

attribute a related attribute or set of attributes, not necessarily in the same

entity type.

The values held by some attributes may be derived. For example, the value for the duration

attribute of the Lease entity is calculated from the rentStart and rentFinish attributes also of
the Lease entity type. We refer to the duration attribute as a derived attribute, the value of
which is derived from the rentStart and rentFinish attributes.

In some cases, the value of an attribute is derived from the entity occurrences in the
same entity type. For example, the total number of staff (totalStaff) attribute of the Staff

entity type can be calculated by counting the total number of Staff entity occurrences.
Derived attributes may also involve the association of attributes of different entity types.

For example, consider an attribute called deposit of the Lease entity type. The value of the
deposit attribute is calculated as twice the monthly rent for a property. Therefore, the value
of the deposit attribute of the Lease entity type is derived from the rent attribute of the
PropertyForRent entity type.

Keys

Candidate The minimal set of attributes that uniquely identifies each occurrence

key of an entity type.

A candidate key is the minimal number of attributes, whose value(s) uniquely identify each
entity occurrence. For example, the branch number (branchNo) attribute is the candidate

11.3.3

11.3.4

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

11.3 Attributes | 353

key for the Branch entity type, and has a distinct value for each branch entity occurrence.
The candidate key must hold values that are unique for every occurrence of an entity type.
This implies that a candidate key cannot contain a null (see Section 3.2). For example,
each branch has a unique branch number (for example, B003), and there will never be
more than one branch with the same branch number.

Primary The candidate key that is selected to uniquely identify each occurrence

key of an entity type.

An entity type may have more than one candidate key. For the purposes of discussion
consider that a member of staff has a unique company-defined staff number (staffNo) and
also a unique National Insurance Number (NIN) that is used by the Government. We
therefore have two candidate keys for the Staff entity, one of which must be selected as the
primary key.

The choice of primary key for an entity is based on considerations of attribute length,
the minimal number of attributes required, and the future certainty of uniqueness. For
example, the company-defined staff number contains a maximum of five characters
(for example, SG14) while the NIN contains a maximum of nine characters (for example,
WL220658D). Therefore, we select staffNo as the primary key of the Staff entity type and
NIN is then referred to as the alternate key.

Composite key A candidate key that consists of two or more attributes.

In some cases, the key of an entity type is composed of several attributes, whose values
together are unique for each entity occurrence but not separately. For example, consider
an entity called Advert with propertyNo (property number), newspaperName, dateAdvert, and
cost attributes. Many properties are advertised in many newspapers on a given date.
To uniquely identify each occurrence of the Advert entity type requires values for the
propertyNo, newspaperName, and dateAdvert attributes. Thus, the Advert entity type has a com-
posite primary key made up of the propertyNo, newspaperName, and dateAdvert attributes.

Diagrammatic representation of attributes

If an entity type is to be displayed with its attributes, we divide the rectangle representing
the entity in two. The upper part of the rectangle displays the name of the entity and the
lower part lists the names of the attributes. For example, Figure 11.11 shows the ER
diagram for the Staff and Branch entity types and their associated attributes.

The first attribute(s) to be listed is the primary key for the entity type, if known. The
name(s) of the primary key attribute(s) can be labeled with the tag {PK}. In UML, the
name of an attribute is displayed with the first letter in lower case and, if the name has more
than one word, with the first letter of each subsequent word in upper case (for example,
address and telNo). Additional tags that can be used include partial primary key {PPK}
when an attribute forms part of a composite primary key, and alternate key {AK}. As

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

354 | Chapter 11 z Entity–Relationship Modeling

shown in Figure 11.11, the primary key of the Staff entity type is the staffNo attribute and
the primary key of the Branch entity type is the branchNo attribute.

For some simpler database systems, it is possible to show all the attributes for each
entity type in the ER diagram. However, for more complex database systems,
we just display the attribute, or attributes, that form the primary key of each entity type.
When only the primary key attributes are shown in the ER diagram, we can omit the
{PK} tag.

For simple, single-valued attributes, there is no need to use tags and so we simply dis-
play the attribute names in a list below the entity name. For composite attributes, we list
the name of the composite attribute followed below and indented to the right by the names
of its simple component attributes. For example, in Figure 11.11 the composite attribute
address of the Branch entity is shown, followed below by the names of its component
attributes, street, city, and postcode. For multi-valued attributes, we label the attribute name
with an indication of the range of values available for the attribute. For example, if we
label the telNo attribute with the range [1..*], this means that the values for the telNo

attribute is one or more. If we know the precise maximum number of values, we can label
the attribute with an exact range. For example, if the telNo attribute holds one to a max-
imum of three values, we can label the attribute with [1..3].

For derived attributes, we prefix the attribute name with a ‘/’. For example, the derived
attribute of the Staff entity type is shown in Figure 11.11 as /totalStaff.

Strong and Weak Entity Types

We can classify entity types as being strong or weak.

Strong An entity type that is not existence-dependent on some other entity

entity type type.

Figure 11.11

Diagrammatic

representation of

Staff and Branch

entities and their

attributes.

11.4

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

11.5 Attributes on Relationships | 355

An entity type is referred to as being strong if its existence does not depend upon the
existence of another entity type. Examples of strong entities are shown in Figure 11.1 and
include the Staff, Branch, PropertyForRent, and Client entities. A characteristic of a strong
entity type is that each entity occurrence is uniquely identifiable using the primary key
attribute(s) of that entity type. For example, we can uniquely identify each member of staff
using the staffNo attribute, which is the primary key for the Staff entity type.

Weak entity An entity type that is existence-dependent on some other entity

type type.

A weak entity type is dependent on the existence of another entity type. An example of
a weak entity type called Preference is shown in Figure 11.12. A characteristic of a weak
entity is that each entity occurrence cannot be uniquely identified using only the attributes
associated with that entity type. For example, note that there is no primary key for the
Preference entity. This means that we cannot identify each occurrence of the Preference

entity type using only the attributes of this entity. We can only uniquely identify each
preference through the relationship that a preference has with a client who is uniquely
identifiable using the primary key for the Client entity type, namely clientNo. In this
example, the Preference entity is described as having existence dependency for the Client

entity, which is referred to as being the owner entity.
Weak entity types are sometimes referred to as child, dependent, or subordinate

entities and strong entity types as parent, owner, or dominant entities.

Attributes on Relationships

As we mentioned in Section 11.3, attributes can also be assigned to relationships.
For example, consider the relationship Advertises, which associates the Newspaper and
PropertyForRent entity types as shown in Figure 11.1. To record the date the property was
advertised and the cost, we associate this information with the Advertises relationship as
attributes called dateAdvert and cost, rather than with the Newspaper or the PropertyForRent

entities.

Figure 11.12

A strong entity type

called Client and a

weak entity type

called Preference.

11.5

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

356 | Chapter 11 z Entity–Relationship Modeling

Diagrammatic representation of attributes on relationships

We represent attributes associated with a relationship type using the same symbol as an
entity type. However, to distinguish between a relationship with an attribute and an entity,
the rectangle representing the attribute(s) is associated with the relationship using a
dashed line. For example, Figure 11.13 shows the Advertises relationship with the attributes
dateAdvert and cost. A second example shown in Figure 11.1 is the Manages relationship
with the mgrStartDate and bonus attributes.

The presence of one or more attributes assigned to a relationship may indicate that
the relationship conceals an unidentified entity type. For example, the presence of the
dateAdvert and cost attributes on the Advertises relationship indicates the presence of an
entity called Advert.

Structural Constraints

We now examine the constraints that may be placed on entity types that participate in a
relationship. The constraints should reflect the restrictions on the relationships as per-
ceived in the ‘real world’. Examples of such constraints include the requirements that a
property for rent must have an owner and each branch must have staff. The main type of
constraint on relationships is called multiplicity.

Multiplicity The number (or range) of possible occurrences of an entity type

that may relate to a single occurrence of an associated entity type

through a particular relationship.

Multiplicity constrains the way that entities are related. It is a representation of the
policies (or business rules) established by the user or enterprise. Ensuring that all
appropriate constraints are identified and represented is an important part of
modeling an enterprise.

As we mentioned earlier, the most common degree for relationships is binary. Binary
relationships are generally referred to as being one-to-one (1:1), one-to-many (1:*), or

Figure 11.13

An example of a

relationship called

Advertises with

attributes dateAdvert

and cost.

11.6

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

11.6 Structural Constraints | 357

many-to-many (*:*). We examine these three types of relationships using the following
integrity constraints:

n a member of staff manages a branch (1:1);

n a member of staff oversees properties for rent (1:*);

n newspapers advertise properties for rent (*:*).

In Sections 11.6.1, 11.6.2, and 11.6.3 we demonstrate how to determine the multipli-
city for each of these constraints and show how to represent each in an ER diagram. In
Section 11.6.4 we examine multiplicity for relationships of degrees higher than binary.

It is important to note that not all integrity constraints can be easily represented in an
ER model. For example, the requirement that a member of staff receives an additional
day’s holiday for every year of employment with the enterprise may be difficult to repres-
ent in an ER model.

One-to-One (1:1) Relationships

Consider the relationship Manages, which relates the Staff and Branch entity types. Fig-
ure 11.14(a) displays two occurrences of the Manages relationship type (denoted r1 and r2)
using a semantic net. Each relationship (rn) represents the association between a single
Staff entity occurrence and a single Branch entity occurrence. We represent each entity
occurrence using the values for the primary key attributes of the Staff and Branch entities,
namely staffNo and branchNo.

Determining the multiplicity

Determining the multiplicity normally requires examining the precise relationships
between the data given in a enterprise constraint using sample data. The sample data may
be obtained by examining filled-in forms or reports and, if possible, from discussion with
users. However, it is important to stress that to reach the right conclusions about a con-
straint requires that the sample data examined or discussed is a true representation of all
the data being modeled.

Figure 11.14(a)

Semantic net

showing two

occurrences

of the Staff

Manages Branch

relationship type.

11.6.1

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

358 | Chapter 11 z Entity–Relationship Modeling

In Figure 11.14(a) we see that staffNo SG5 manages branchNo B003 and staffNo SL21
manages branchNo B005, but staffNo SG37 does not manage any branch. In other words,
a member of staff can manage zero or one branch and each branch is managed by one
member of staff. As there is a maximum of one branch for each member of staff involved
in this relationship and a maximum of one member of staff for each branch, we refer to
this type of relationship as one-to-one, which we usually abbreviate as (1:1).

Diagrammatic representation of 1:1 relationships

An ER diagram of the Staff Manages Branch relationship is shown in Figure 11.14(b). To
represent that a member of staff can manage zero or one branch, we place a ‘0..1’ beside
the Branch entity. To represent that a branch always has one manager, we place a ‘1..1’
beside the Staff entity. (Note that for a 1:1 relationship, we may choose a relationship name
that makes sense in either direction.)

One-to-Many (1:*) Relationships

Consider the relationship Oversees, which relates the Staff and PropertyForRent entity types.
Figure 11.15(a) displays three occurrences of the Staff Oversees PropertyForRent relationship

Figure 11.14(b)

The multiplicity of

the Staff Manages

Branch one-to-one

(1:1) relationship.

Figure 11.15(a)

Semantic net

showing three

occurrences of the

Staff Oversees

PropertyForRent

relationship type.

11.6.2

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

11.6 Structural Constraints | 359

type (denoted r1, r2, and r3) using a semantic net. Each relationship (rn) represents the
association between a single Staff entity occurrence and a single PropertyForRent entity
occurrence. We represent each entity occurrence using the values for the primary key
attributes of the Staff and PropertyForRent entities, namely staffNo and propertyNo.

Determining the multiplicity

In Figure 11.15(a) we see that staffNo SG37 oversees propertyNos PG21 and PG36, and
staffNo SA9 oversees propertyNo PA14 but staffNo SG5 does not oversee any properties for
rent and propertyNo PG4 is not overseen by any member of staff. In summary, a member
of staff can oversee zero or more properties for rent and a property for rent is overseen by
zero or one member of staff. Therefore, for members of staff participating in this relation-
ship there are many properties for rent, and for properties participating in this relationship
there is a maximum of one member of staff. We refer to this type of relationship as one-
to-many, which we usually abbreviate as (1:*).

Diagrammatic representation of 1:* relationships

An ER diagram of the Staff Oversees PropertyForRent relationship is shown in Figure 11.15(b).
To represent that a member of staff can oversee zero or more properties for rent, we
place a ‘0..*’ beside the PropertyForRent entity. To represent that each property for rent is
overseen by zero or one member of staff, we place a ‘0..1’ beside the Staff entity. (Note
that with 1:* relationships, we choose a relationship name that makes sense in the 1:*
direction.)

If we know the actual minimum and maximum values for the multiplicity, we can dis-
play these instead. For example, if a member of staff oversees a minimum of zero and a
maximum of 100 properties for rent, we can replace the ‘0..*’ with ‘0..100’.

Many-to-Many (*:*) Relationships

Consider the relationship Advertises, which relates the Newspaper and PropertyForRent entity
types. Figure 11.16(a) displays four occurrences of the Advertises relationship (denoted r1,
r2, r3, and r4) using a semantic net. Each relationship (rn) represents the association be-
tween a single Newspaper entity occurrence and a single PropertyForRent entity occurrence.

Figure 11.15(b)

The multiplicity of

the Staff Oversees

PropertyForRent

one-to-many (1:*)

relationship type.

11.6.3

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

360 | Chapter 11 z Entity–Relationship Modeling

We represent each entity occurrence using the values for the primary key attributes of the
Newspaper and PropertyForRent entity types, namely newspaperName and propertyNo.

Determining the multiplicity

In Figure 11.16(a) we see that the Glasgow Daily advertises propertyNos PG21 and PG36,
The West News also advertises propertyNo PG36 and the Aberdeen Express advertises
propertyNo PA14. However, propertyNo PG4 is not advertised in any newspaper. In other
words, one newspaper advertises one or more properties for rent and one property for rent
is advertised in zero or more newspapers. Therefore, for newspapers there are many pro-
perties for rent, and for each property for rent participating in this relationship there
are many newspapers. We refer to this type of relationship as many-to-many, which we
usually abbreviate as (*:*).

Diagrammatic representation of *:* relationships

An ER diagram of the Newspaper Advertises PropertyForRent relationship is shown in Fig-
ure 11.16(b). To represent that each newspaper can advertise one or more properties for

Figure 11.16(a)

Semantic net

showing four

occurrences of

the Newspaper

Advertises

PropertyForRent

relationship type.

Figure 11.16(b)

The multiplicity of

the Newspaper

Advertises

PropertyForRent

many-to-many (*:*)

relationship.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

11.6 Structural Constraints | 361

rent, we place a ‘1..*’ beside the PropertyForRent entity type. To represent that each prop-
erty for rent can be advertised by zero or more newspapers, we place a ‘0..*’ beside the
Newspaper entity. (Note that for a *:* relationship, we may choose a relationship name that
makes sense in either direction.)

Multiplicity for Complex Relationships

Multiplicity for complex relationships, that is those higher than binary, is slightly more
complex.

Multiplicity The number (or range) of possible occurrences of an entity

(complex type in an n-ary relationship when the other (n−1) values are

relationship) fixed.

In general, the multiplicity for n-ary relationships represents the potential number of
entity occurrences in the relationship when (n−1) values are fixed for the other participat-
ing entity types. For example, the multiplicity for a ternary relationship represents the
potential range of entity occurrences of a particular entity in the relationship when the
other two values representing the other two entities are fixed. Consider the ternary Registers

relationship between Staff, Branch, and Client shown in Figure 11.7. Figure 11.17(a) displays
five occurrences of the Registers relationship (denoted r1 to r5) using a semantic net.
Each relationship (rn) represents the association of a single Staff entity occurrence, a
single Branch entity occurrence, and a single Client entity occurrence. We represent each
entity occurrence using the values for the primary key attributes of the Staff, Branch, and
Client entities, namely, staffNo, branchNo, and clientNo. In Figure 11.17(a) we examine the
Registers relationship when the values for the Staff and Branch entities are fixed.

Figure 11.17(a)

Semantic net

showing five

occurrences of the

ternary Registers

relationship with

values for Staff

and Branch entity

types fixed.

11.6.4

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

362 | Chapter 11 z Entity–Relationship Modeling

Determining the multiplicity

In Figure 11.17(a) with the staffNo/branchNo values fixed there are zero or more clientNo

values. For example, staffNo SG37 at branchNo B003 registers clientNo CR56 and CR74, and
staffNo SG14 at branchNo B003 registers clientNo CR62, CR84, and CR91. However, SG5
at branchNo B003 registers no clients. In other words, when the staffNo and branchNo values
are fixed the corresponding clientNo values are zero or more. Therefore, the multiplicity of
the Registers relationship from the perspective of the Staff and Branch entities is 0..*, which
is represented in the ER diagram by placing the 0..* beside the Client entity.

If we repeat this test we find that the multiplicity when Staff/Client values are fixed is 1..1,
which is placed beside the Branch entity and the Client/Branch values are fixed is 1..1, which
is placed beside the Staff entity. An ER diagram of the ternary Registers relationship show-
ing multiplicity is in Figure 11.17(b).

A summary of the possible ways that multiplicity constraints can be represented along
with a description of the meaning is shown in Table 11.1.

Cardinality and Participation Constraints

Multiplicity actually consists of two separate constraints known as cardinality and
participation.

Figure 11.17(b)

The multiplicity of the

ternary Registers

relationship.

Table 11.1 A summary of ways to represent multiplicity constraints.

Alternative ways to represent
multiplicity constraints

0..1

1..1 (or just 1)

0..* (or just *)

1..*

5..10

0, 3, 6–8

Meaning

Zero or one entity occurrence

Exactly one entity occurrence

Zero or many entity occurrences

One or many entity occurrences

Minimum of 5 up to a maximum of 10 entity occurrences

Zero or three or six, seven, or eight entity occurrences

11.6.5

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

11.6 Structural Constraints | 363

Cardinality Describes the maximum number of possible relationship occurrences

for an entity participating in a given relationship type.

The cardinality of a binary relationship is what we previously referred to as a one-to-
one (1:1), one-to-many (1:*), and many-to-many (*:*). The cardinality of a relationship
appears as the maximum values for the multiplicity ranges on either side of the relation-
ship. For example, the Manages relationship shown in Figure 11.18 has a one-to-one (1:1)
cardinality and this is represented by multiplicity ranges with a maximum value of 1 on
both sides of the relationship.

Participation Determines whether all or only some entity occurrences participate

in a relationship.

The participation constraint represents whether all entity occurrences are involved in a
particular relationship (referred to as mandatory participation) or only some (referred to
as optional participation). The participation of entities in a relationship appears as the min-
imum values for the multiplicity ranges on either side of the relationship. Optional partic-
ipation is represented as a minimum value of 0 while mandatory participation is shown as
a minimum value of 1. It is important to note that the participation for a given entity in a
relationship is represented by the minimum value on the opposite side of the relationship;
that is the minimum value for the multiplicity beside the related entity. For example, in
Figure 11.18, the optional participation for the Staff entity in the Manages relationship is
shown as a minimum value of 0 for the multiplicity beside the Branch entity and the
mandatory participation for the Branch entity in the Manages relationship is shown as a
minimum value of 1 for the multiplicity beside the Staff entity.

Figure 11.18

Multiplicity described

as cardinality and

participation

constraints for the

Staff Manages

Branch (1:1)

relationship.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

364 | Chapter 11 z Entity–Relationship Modeling

A summary of the conventions introduced in this section to represent the basic concepts
of the ER model is shown on the inside front cover of this book.

Problems with ER Models

In this section we examine problems that may arise when creating an ER model. These
problems are referred to as connection traps, and normally occur due to a misinterpreta-
tion of the meaning of certain relationships (Howe, 1989). We examine two main types of
connection traps, called fan traps and chasm traps, and illustrate how to identify and
resolve such problems in ER models.

In general, to identify connection traps we must ensure that the meaning of a relation-
ship is fully understood and clearly defined. If we do not understand the relationships we
may create a model that is not a true representation of the ‘real world’.

Fan Traps

Fan trap Where a model represents a relationship between entity types, but the

pathway between certain entity occurrences is ambiguous.

A fan trap may exist where two or more 1:* relationships fan out from the same entity.
A potential fan trap is illustrated in Figure 11.19(a), which shows two 1:* relationships
(Has and Operates) emanating from the same entity called Division.

This model represents the facts that a single division operates one or more branches and
has one or more staff. However, a problem arises when we want to know which members

Figure 11.19(a)

An example of a

fan trap.

Figure 11.19(b)

The semantic net of

the ER model shown

in Figure 11.19(a).

11.7.1

11.7

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

11.7 Problems with ER Models | 365

of staff work at a particular branch. To appreciate the problem, we examine some occur-
rences of the Has and Operates relationships using values for the primary key attributes of
the Staff, Division, and Branch entity types as shown in Figure 11.19(b).

If we attempt to answer the question: ‘At which branch does staff number SG37 work?’
we are unable to give a specific answer based on the current structure. We can only deter-
mine that staff number SG37 works at Branch B003 or B007. The inability to answer this
question specifically is the result of a fan trap associated with the misrepresentation of the
correct relationships between the Staff, Division, and Branch entities. We resolve this fan trap
by restructuring the original ER model to represent the correct association between these
entities, as shown in Figure 11.20(a).

If we now examine occurrences of the Operates and Has relationships as shown in
Figure 11.20(b), we are now in a position to answer the type of question posed earlier.
From this semantic net model, we can determine that staff number SG37 works at branch
number B003, which is part of division D1.

Chasm Traps

Chasm Where a model suggests the existence of a relationship between entity

trap types, but the pathway does not exist between certain entity occurrences.

Figure 11.20(a)

The ER model shown

in Figure 11.19(a)

restructured to

remove the fan trap.

Figure 11.20(b)

The semantic net of

the ER model shown

in Figure 11.20(a).

11.7.2

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

366 | Chapter 11 z Entity–Relationship Modeling

A chasm trap may occur where there are one or more relationships with a minimum multi-
plicity of zero (that is optional participation) forming part of the pathway between related
entities. A potential chasm trap is illustrated in Figure 11.21(a), which shows relationships
between the Branch, Staff, and PropertyForRent entities.

This model represents the facts that a single branch has one or more staff who oversee
zero or more properties for rent. We also note that not all staff oversee property, and
not all properties are overseen by a member of staff. A problem arises when we want
to know which properties are available at each branch. To appreciate the problem, we
examine some occurrences of the Has and Oversees relationships using values for the
primary key attributes of the Branch, Staff, and PropertyForRent entity types as shown in
Figure 11.21(b).

If we attempt to answer the question: ‘At which branch is property number PA14
available?’ we are unable to answer this question, as this property is not yet allocated to a
member of staff working at a branch. The inability to answer this question is considered
to be a loss of information (as we know a property must be available at a branch), and
is the result of a chasm trap. The multiplicity of both the Staff and PropertyForRent entities
in the Oversees relationship has a minimum value of zero, which means that some prop-
erties cannot be associated with a branch through a member of staff. Therefore to solve
this problem, we need to identify the missing relationship, which in this case is the Offers

relationship between the Branch and PropertyForRent entities. The ER model shown in
Figure 11.22(a) represents the true association between these entities. This model ensures
that, at all times, the properties associated with each branch are known, including pro-
perties that are not yet allocated to a member of staff.

If we now examine occurrences of the Has, Oversees, and Offers relationship types, as
shown in Figure 11.22(b), we are now able to determine that property number PA14 is
available at branch number B007.

Figure 11.21(b)

The semantic net of

the ER model shown

in Figure 11.21(a).

Figure 11.21(a)

An example of a

chasm trap.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

11.7 Problems with ER Models | 367

Figure 11.22(a)

The ER model shown

in Figure 11.21(a)

restructured

to remove the

chasm trap.

Figure 11.22(b) The semantic net of the ER model shown in Figure 11.22(a).

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

368 | Chapter 11 z Entity–Relationship Modeling

Chapter Summary

n An entity type is a group of objects with the same properties, which are identified by the enterprise as
having an independent existence. An entity occurrence is a uniquely identifiable object of an entity type.

n A relationship type is a set of meaningful associations among entity types. A relationship occurrence is a
uniquely identifiable association, which includes one occurrence from each participating entity type.

n The degree of a relationship type is the number of participating entity types in a relationship.

n A recursive relationship is a relationship type where the same entity type participates more than once in
different roles.

n An attribute is a property of an entity or a relationship type.

n An attribute domain is the set of allowable values for one or more attributes.

n A simple attribute is composed of a single component with an independent existence.

n A composite attribute is composed of multiple components each with an independent existence.

n A single-valued attribute holds a single value for each occurrence of an entity type.

n A multi-valued attribute holds multiple values for each occurrence of an entity type.

n A derived attribute represents a value that is derivable from the value of a related attribute or set of attributes,
not necessarily in the same entity.

n A candidate key is the minimal set of attributes that uniquely identifies each occurrence of an entity type.

n A primary key is the candidate key that is selected to uniquely identify each occurrence of an entity type.

n A composite key is a candidate key that consists of two or more attributes.

n A strong entity type is not existence-dependent on some other entity type. A weak entity type is existence-
dependent on some other entity type.

n Multiplicity is the number (or range) of possible occurrences of an entity type that may relate to a single
occurrence of an associated entity type through a particular relationship.

n Multiplicity for a complex relationship is the number (or range) of possible occurrences of an entity type in
an n-ary relationship when the other (n−1) values are fixed.

n Cardinality describes the maximum number of possible relationship occurrences for an entity participating
in a given relationship type.

n Participation determines whether all or only some entity occurrences participate in a given relationship.

n A fan trap exists where a model represents a relationship between entity types, but the pathway between
certain entity occurrences is ambiguous.

n A chasm trap exists where a model suggests the existence of a relationship between entity types, but the
pathway does not exist between certain entity occurrences.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

Exercises | 369

Exercises

11.10 Create an ER diagram for each of the following descriptions:

(a) Each company operates four departments, and each department belongs to one company.
(b) Each department in part (a) employs one or more employees, and each employee works for one

department.
(c) Each of the employees in part (b) may or may not have one or more dependants, and each dependant

belongs to one employee.
(d) Each employee in part (c) may or may not have an employment history.
(e) Represent all the ER diagrams described in (a), (b), (c), and (d) as a single ER diagram.

11.11 You are required to create a conceptual data model of the data requirements for a company that specializes
in IT training. The company has 30 instructors and can handle up to 100 trainees per training session. The
company offers five advanced technology courses, each of which is taught by a teaching team of two or more
instructors. Each instructor is assigned to a maximum of two teaching teams or may be assigned to do
research. Each trainee undertakes one advanced technology course per training session.

(a) Identify the main entity types for the company.
(b) Identify the main relationship types and specify the multiplicity for each relationship. State any assump-

tions you make about the data.
(c) Using your answers for (a) and (b), draw a single ER diagram to represent the data requirements for the

company.

11.12 Read the following case study, which describes the data requirements for a video rental company. The video
rental company has several branches throughout the USA. The data held on each branch is the branch address
made up of street, city, state, and zip code, and the telephone number. Each branch is given a branch number,
which is unique throughout the company. Each branch is allocated staff, which includes a Manager. The
Manager is responsible for the day-to-day running of a given branch. The data held on a member of staff is
his or her name, position, and salary. Each member of staff is given a staff number, which is unique through-
out the company. Each branch has a stock of videos. The data held on a video is the catalog number, video
number, title, category, daily rental, cost, status, and the names of the main actors and the director. The

Review Questions

11.1 Describe what entity types represent in an ER
model and provide examples of entities with
a physical or conceptual existence.

11.2 Describe what relationship types represent in
an ER model and provide examples of unary,
binary, ternary, and quaternary relationships.

11.3 Describe what attributes represent in an ER
model and provide examples of simple,
composite, single-valued, multi-valued, and
derived attributes.

11.4 Describe what the multiplicity constraint
represents for a relationship type.

11.5 What are integrity constraints and how does
multiplicity model these constraints?

11.6 How does multiplicity represent both the
cardinality and the participation constraints
on a relationship type?

11.7 Provide an example of a relationship type with
attributes.

11.8 Describe how strong and weak entity types
differ and provide an example of each.

11.9 Describe how fan and chasm traps can occur
in an ER model and how they can be
resolved.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

370 | Chapter 11 z Entity–Relationship Modeling

catalog number uniquely identifies each video. However, in most cases, there are several copies of each video
at a branch, and the individual copies are identified using the video number. A video is given a category such
as Action, Adult, Children, Drama, Horror, or Sci-Fi. The status indicates whether a specific copy of a video
is available for rent. Before hiring a video from the company, a customer must first register as a member of
a local branch. The data held on a member is the first and last name, address, and the date that the member
registered at a branch. Each member is given a member number, which is unique throughout all branches of
the company. Once registered, a member is free to rent videos, up to a maximum of ten at any one time. The
data held on each video rented is the rental number, the full name and number of the member, the video num-
ber, title, and daily rental, and the dates the video is rented out and returned. The rental number is unique
throughout the company.

(a) Identify the main entity types of the video rental company.
(b) Identify the main relationship types between the entity types described in (a) and represent each rela-

tionship as an ER diagram.
(c) Determine the multiplicity constraints for each relationships described in (b). Represent the multiplicity

for each relationship in the ER diagrams created in (b).
(d) Identify attributes and associate them with entity or relationship types. Represent each attribute in the ER

diagrams created in (c).
(e) Determine candidate and primary key attributes for each (strong) entity type.
(f) Using your answers (a) to (e) attempt to represent the data requirements of the video rental company as

a single ER diagram. State any assumptions necessary to support your design.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

12
Chapter

Enhanced Entity–

Relationship Modeling

Chapter Objectives

In this chapter you will learn:

n The limitations of the basic concepts of the Entity–Relationship (ER) model and

the requirements to represent more complex applications using additional data

modeling concepts.

n The most useful additional data modeling concepts of the Enhanced

Entity–Relationship (EER) model called specialization/generalization, aggregation,

and composition.

n A diagrammatic technique for displaying specialization/generalization, aggregation,

and composition in an EER diagram using the Unified Modeling Language (UML).

In Chapter 11 we discussed the basic concepts of the Entity–Relationship (ER) model. These
basic concepts are normally adequate for building data models of traditional, administrative-
based database systems such as stock control, product ordering, and customer invoicing.
However, since the 1980s there has been a rapid increase in the development of many new
database systems that have more demanding database requirements than those of the tradi-
tional applications. Examples of such database applications include Computer-Aided
Design (CAD), Computer-Aided Manufacturing (CAM), Computer-Aided Software
Engineering (CASE) tools, Office Information Systems (OIS) and Multimedia Systems,
Digital Publishing, and Geographical Information Systems (GIS). The main features of these
applications are described in Chapter 25. As the basic concepts of ER modeling are often
not sufficient to represent the requirements of the newer, more complex applications, this
stimulated the need to develop additional ‘semantic’ modeling concepts. Many different
semantic data models have been proposed and some of the most important semantic con-
cepts have been successfully incorporated into the original ER model. The ER model sup-
ported with additional semantic concepts is called the Enhanced Entity–Relationship
(EER) model. In this chapter we describe three of the most important and useful additional
concepts of the EER model, namely specialization/generalization, aggregation, and com-
position. We also illustrate how specialization/generalization, aggregation, and composi-
tion are represented in an EER diagram using the Unified Modeling Language (UML)
(Booch et al., 1998). In Chapter 11 we introduced UML and demonstrated how UML could
be used to diagrammatically represent the basic concepts of the ER model.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

372 | Chapter 12 z Enhanced Entity–Relationship Modeling

Structure of this Chapter

In Section 12.1 we discuss the main concepts associated with specialization/generalization
and illustrate how these concepts are represented in an EER diagram using the Unified
Modeling Language (UML). We conclude this section with a worked example that demon-
strates how to introduce specialization/generalization into an ER model using UML. In
Section 12.2 we describe the concept of aggregation and in Section 12.3 the related con-
cept of composition. We provide examples of aggregation and composition and show how
these concepts can be represented in an EER diagram using UML.

Specialization/Generalization

The concept of specialization/generalization is associated with special types of entities
known as superclasses and subclasses, and the process of attribute inheritance. We
begin this section by defining what superclasses and subclasses are and by examining
superclass/subclass relationships. We describe the process of attribute inheritance and
contrast the process of specialization with the process of generalization. We then describe
the two main types of constraints on superclass/subclass relationships called participa-
tion and disjoint constraints. We show how to represent specialization/generalization in
an Enhanced Entity–Relationship (EER) diagram using UML. We conclude this section
with a worked example of how specialization/generalization may be introduced into
the Entity–Relationship (ER) model of the Branch user views of the DreamHome case
study described in Appendix A and shown in Figure 11.1.

Superclasses and Subclasses

As we discussed in Chapter 11, an entity type represents a set of entities of the same type
such as Staff, Branch, and PropertyForRent. We can also form entity types into a hierarchy
containing superclasses and subclasses.

Superclass An entity type that includes one or more distinct subgroupings of its

occurrences, which require to be represented in a data model.

Subclass A distinct subgrouping of occurrences of an entity type, which require

to be represented in a data model.

Entity types that have distinct subclasses are called superclasses. For example, the
entities that are members of the Staff entity type may be classified as Manager, SalesPersonnel,
and Secretary. In other words, the Staff entity is referred to as the superclass of the Manager,
SalesPersonnel, and Secretary subclasses. The relationship between a superclass and any

12.1

12.1.1

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

12.1 Specialization/Generalization | 373

one of its subclasses is called a superclass/subclass relationship. For example, Staff/Manager

has a superclass/subclass relationship.

Superclass/Subclass Relationships

Each member of a subclass is also a member of the superclass. In other words, the entity
in the subclass is the same entity in the superclass, but has a distinct role. The relationship
between a superclass and a subclass is one-to-one (1:1) and is called a superclass/subclass
relationship (see Section 11.6.1). Some superclasses may contain overlapping subclasses,
as illustrated by a member of staff who is both a Manager and a member of Sales Per-
sonnel. In this example, Manager and SalesPersonnel are overlapping subclasses of the Staff

superclass. On the other hand, not every member of a superclass need be a member of a
subclass; for example, members of staff without a distinct job role such as a Manager or a
member of Sales Personnel.

We can use superclasses and subclasses to avoid describing different types of staff with
possibly different attributes within a single entity. For example, Sales Personnel may have
special attributes such as salesArea and carAllowance. If all staff attributes and those specific
to particular jobs are described by a single Staff entity, this may result in a lot of nulls
for the job-specific attributes. Clearly, Sales Personnel have common attributes with other
staff, such as staffNo, name, position, and salary. However, it is the unshared attributes that
cause problems when we try to represent all members of staff within a single entity. We
can also show relationships that are only associated with particular types of staff (sub-
classes) and not with staff, in general. For example, Sales Personnel may have distinct
relationships that are not appropriate for all staff, such as SalesPersonnel Uses Car.

To illustrate these points, consider the relation called AllStaff shown in Figure 12.1. This
relation holds the details of all members of staff no matter what position they hold. A con-
sequence of holding all staff details in one relation is that while the attributes appropriate to
all staff are filled (namely, staffNo, name, position, and salary), those that are only applicable

Figure 12.1

The AllStaff relation

holding details of

all staff.

12.1.2

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

374 | Chapter 12 z Enhanced Entity–Relationship Modeling

to particular job roles are only partially filled. For example, the attributes associated
with the Manager (mgrStartDate and bonus), SalesPersonnel (salesArea and carAllowance), and
Secretary (typingSpeed) subclasses have values for those members in these subclasses. In
other words, the attributes associated with the Manager, SalesPersonnel, and Secretary sub-
classes are empty for those members of staff not in these subclasses.

There are two important reasons for introducing the concepts of superclasses and sub-
classes into an ER model. Firstly, it avoids describing similar concepts more than once,
thereby saving time for the designer and making the ER diagram more readable. Secondly,
it adds more semantic information to the design in a form that is familiar to many people.
For example, the assertions that ‘Manager IS-A member of staff’ and ‘flat IS-A type of
property’, communicates significant semantic content in a concise form.

Attribute Inheritance

As mentioned above, an entity in a subclass represents the same ‘real world’ object as in
the superclass, and may possess subclass-specific attributes, as well as those associated
with the superclass. For example, a member of the SalesPersonnel subclass inherits all the
attributes of the Staff superclass such as staffNo, name, position, and salary together with those
specifically associated with the SalesPersonnel subclass such as salesArea and carAllowance.

A subclass is an entity in its own right and so it may also have one or more subclasses.
An entity and its subclasses and their subclasses, and so on, is called a type hierarchy.
Type hierarchies are known by a variety of names including: specialization hierarchy
(for example, Manager is a specialization of Staff), generalization hierarchy (for example,
Staff is a generalization of Manager), and IS-A hierarchy (for example, Manager IS-A
(member of) Staff). We describe the process of specialization and generalization in the
following sections.

A subclass with more than one superclass is called a shared subclass. In other words,
a member of a shared subclass must be a member of the associated superclasses. As a con-
sequence, the attributes of the superclasses are inherited by the shared subclass, which may
also have its own additional attributes. This process is referred to as multiple inheritance.

Specialization Process

Specialization The process of maximizing the differences between members of

an entity by identifying their distinguishing characteristics.

Specialization is a top-down approach to defining a set of superclasses and their
related subclasses. The set of subclasses is defined on the basis of some distinguishing
characteristics of the entities in the superclass. When we identify a set of subclasses of
an entity type, we then associate attributes specific to each subclass (where necessary),
and also identify any relationships between each subclass and other entity types or sub-
classes (where necessary). For example, consider a model where all members of staff are

12.1.3

12.1.4

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

12.1 Specialization/Generalization | 375

represented as an entity called Staff. If we apply the process of specialization on the
Staff entity, we attempt to identify differences between members of this entity such as
members with distinctive attributes and/or relationships. As described earlier, staff with
the job roles of Manager, Sales Personnel, and Secretary have distinctive attributes and
therefore we identify Manager, SalesPersonnel, and Secretary as subclasses of a specialized
Staff superclass.

Generalization Process

Generalization The process of minimizing the differences between entities by

identifying their common characteristics.

The process of generalization is a bottom-up approach, which results in the identification
of a generalized superclass from the original entity types. For example, consider a model
where Manager, SalesPersonnel, and Secretary are represented as distinct entity types. If we
apply the process of generalization on these entities, we attempt to identify similarities
between them such as common attributes and relationships. As stated earlier, these entities
share attributes common to all staff, and therefore we identify Manager, SalesPersonnel, and
Secretary as subclasses of a generalized Staff superclass.

As the process of generalization can be viewed as the reverse of the specialization pro-
cess, we refer to this modeling concept as ‘specialization/generalization’.

Diagrammatic representation of specialization/generalization

UML has a special notation for representing specialization/generalization. For example,
consider the specialization/generalization of the Staff entity into subclasses that represent
job roles. The Staff superclass and the Manager, SalesPersonnel, and Secretary subclasses
can be represented in an Enhanced Entity–Relationship (EER) diagram as illustrated in
Figure 12.2. Note that the Staff superclass and the subclasses, being entities, are repres-
ented as rectangles. The subclasses are attached by lines to a triangle that points toward
the superclass. The label below the specialization/generalization triangle, shown as
{Optional, And}, describes the constraints on the relationship between the superclass and
its subclasses. These constraints are discussed in more detail in Section 12.1.6.

Attributes that are specific to a given subclass are listed in the lower section of the
rectangle representing that subclass. For example, salesArea and carAllowance attributes
are only associated with the SalesPersonnel subclass, and are not applicable to the Manager

or Secretary subclasses. Similarly, we show attributes that are specific to the Manager

(mgrStartDate and bonus) and Secretary (typingSpeed) subclasses.
Attributes that are common to all subclasses are listed in the lower section of the

rectangle representing the superclass. For example, staffNo, name, position, and salary attri-
butes are common to all members of staff and are associated with the Staff superclass. Note
that we can also show relationships that are only applicable to specific subclasses. For
example, in Figure 12.2, the Manager subclass is related to the Branch entity through the

12.1.5

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

376 | Chapter 12 z Enhanced Entity–Relationship Modeling

Manages relationship, whereas the Staff superclass is related to the Branch entity through the
Has relationship.

We may have several specializations of the same entity based on different distinguish-
ing characteristics. For example, another specialization of the Staff entity may produce the
subclasses FullTimePermanent and PartTimeTemporary, which distinguishes between the types
of employment contract for members of staff. The specialization of the Staff entity type into
job role and contract of employment subclasses is shown in Figure 12.3. In this figure, we
show attributes that are specific to the FullTimePermanent (salaryScale and holidayAllowance)
and PartTimeTemporary (hourlyRate) subclasses.

As described earlier, a superclass and its subclasses and their subclasses, and so on, is
called a type hierarchy. An example of a type hierarchy is shown in Figure 12.4, where the
job roles specialization/generalization shown in Figure 12.2 are expanded to show a shared
subclass called SalesManager and the subclass called Secretary with its own subclass called
AssistantSecretary. In other words, a member of the SalesManager shared subclass must be
a member of the SalesPersonnel and Manager subclasses as well as the Staff superclass. As
a consequence, the attributes of the Staff superclass (staffNo, name, position, and salary), and
the attributes of the subclasses SalesPersonnel (salesArea and carAllowance) and Manager

(mgrStartDate and bonus) are inherited by the SalesManager subclass, which also has its own
additional attribute called salesTarget.

AssistantSecretary is a subclass of Secretary, which is a subclass of Staff. This means that
a member of the AssistantSecretary subclass must be a member of the Secretary subclass and
the Staff superclass. As a consequence, the attributes of the Staff superclass (staffNo, name,
position, and salary) and the attribute of the Secretary subclass (typingSpeed) are inherited by
the AssistantSecretary subclass, which also has its own additional attribute called startDate.

Figure 12.2

Specialization/

generalization of

the Staff entity

into subclasses

representing

job roles.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

12.1 Specialization/Generalization | 377

Figure 12.3 Specialization/generalization of the Staff entity into subclasses representing job roles and contracts of employment.

Figure 12.4

Specialization/

generalization of the

Staff entity into job

roles including a

shared subclass

called SalesManager

and a subclass

called Secretary

with its own

subclass called

AssistantSecretary.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

378 | Chapter 12 z Enhanced Entity–Relationship Modeling

Constraints on Specialization/Generalization

There are two constraints that may apply to a specialization/generalization called par-
ticipation constraints and disjoint constraints.

Participation constraints

Participation Determines whether every member in the superclass must partici-

constraint pate as a member of a subclass.

A participation constraint may be mandatory or optional. A superclass/subclass relation-
ship with mandatory participation specifies that every member in the superclass must also
be a member of a subclass. To represent mandatory participation, ‘Mandatory’ is placed
in curly brackets below the triangle that points towards the superclass. For example, in
Figure 12.3 the contract of employment specialization/generalization is mandatory parti-
cipation, which means that every member of staff must have a contract of employment.

A superclass/subclass relationship with optional participation specifies that a member of
a superclass need not belong to any of its subclasses. To represent optional participation,
‘Optional’ is placed in curly brackets below the triangle that points towards the superclass.
For example, in Figure 12.3 the job role specialization/generalization has optional par-
ticipation, which means that a member of staff need not have an additional job role such
as a Manager, Sales Personnel, or Secretary.

Disjoint constraints

Disjoint Describes the relationship between members of the subclasses and

constraint indicates whether it is possible for a member of a superclass to be a

member of one, or more than one, subclass.

The disjoint constraint only applies when a superclass has more than one subclass. If the
subclasses are disjoint, then an entity occurrence can be a member of only one of the
subclasses. To represent a disjoint superclass/subclass relationship, ‘Or’ is placed next
to the participation constraint within the curly brackets. For example, in Figure 12.3 the
subclasses of the contract of employment specialization/generalization is disjoint, which
means that a member of staff must have a full-time permanent or a part-time temporary
contract, but not both.

If subclasses of a specialization/generalization are not disjoint (called nondisjoint),
then an entity occurrence may be a member of more than one subclass. To represent a
nondisjoint superclass/subclass relationship, ‘And’ is placed next to the participation con-
straint within the curly brackets. For example, in Figure 12.3 the job role specialization/
generalization is nondisjoint, which means that an entity occurrence can be a member of
both the Manager, SalesPersonnel, and Secretary subclasses. This is confirmed by the pres-
ence of the shared subclass called SalesManager shown in Figure 12.4. Note that it is
not necessary to include the disjoint constraint for hierarchies that have a single subclass

12.1.6

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

12.1 Specialization/Generalization | 379

at a given level and for this reason only the participation constraint is shown for the
SalesManager and AssistantSecretary subclasses of Figure 12.4.

The disjoint and participation constraints of specialization and generalization are
distinct, giving rise to four categories: ‘mandatory and disjoint’, ‘optional and disjoint’,
‘mandatory and nondisjoint’, and ‘optional and nondisjoint’.

Worked Example of using Specialization/
Generalization to Model the Branch View of
DreamHome Case Study

The database design methodology described in this book includes the use of specialization/
generalization as an optional step (Step 1.6) in building an EER model. The choice to
use this step is dependent on the complexity of the enterprise (or part of the enterprise)
being modeled and whether using the additional concepts of the EER model will help the
process of database design.

In Chapter 11 we described the basic concepts necessary to build an ER model to re-
present the Branch user views of the DreamHome case study. This model was shown as
an ER diagram in Figure 11.1. In this section, we show how specialization/generalization
may be used to convert the ER model of the Branch user views into an EER model.

As a starting point, we first consider the entities shown in Figure 11.1. We examine
the attributes and relationships associated with each entity to identify any similarities or
differences between the entities. In the Branch user views’ requirements specification
there are several instances where there is the potential to use specialization/generalization
as discussed below.

(a) For example, consider the Staff entity in Figure 11.1, which represents all members
of staff. However, in the data requirements specification for the Branch user views of
the DreamHome case study given in Appendix A, there are two key job roles men-
tioned namely Manager and Supervisor. We have three options as to how we may
best model members of staff. The first option is to represent all members of staff as a
generalized Staff entity (as in Figure 11.1), the second option is to create three distinct
entities Staff, Manager, and Supervisor, and the third option is to represent the Manager

and Supervisor entities as subclasses of a Staff superclass. The option we select is based
on the commonality of attributes and relationships associated with each entity. For
example, all attributes of the Staff entity are represented in the Manager and Supervisor

entities, including the same primary key, namely staffNo. Furthermore, the Supervisor

entity does not have any additional attributes representing this job role. On the other
hand, the Manager entity has two additional attributes, namely mgrStartDate and bonus.
In addition, both the Manager and Supervisor entities are associated with distinct rela-
tionships, namely Manager Manages Branch and Supervisor Supervises Staff. Based on this
information, we select the third option and create Manager and Supervisor subclasses
of the Staff superclass, as shown in Figure 12.5. Note that in this EER diagram, the
subclasses are shown above the superclass. The relative positioning of the subclasses
and superclass is not significant, however; what is important is that the specialization/
generalization triangle points toward the superclass.

12.1.7

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

380 | Chapter 12 z Enhanced Entity–Relationship Modeling

Figure 12.5

Staff superclass

with Supervisor

and Manager

subclasses.

The specialization/generalization of the Staff entity is optional and disjoint (shown as
{Optional, Or}), as not all members of staff are Managers or Supervisors, and in addition
a single member of staff cannot be both a Manager and a Supervisor. This representation
is particularly useful for displaying the shared attributes associated with these subclasses
and the Staff superclass and also the distinct relationships associated with each subclass,
namely Manager Manages Branch and Supervisor Supervises Staff.

(b) Next, consider for specialization/generalization the relationship between owners
of property. The data requirements specification for the Branch user views describes
two types of owner, namely PrivateOwner and BusinessOwner as shown in Figure 11.1.
Again, we have three options as to how we may best model owners of property. The
first option is to leave PrivateOwner and BusinessOwner as two distinct entities (as shown
in Figure 11.1), the second option is to represent both types of owner as a generalized
Owner entity, and the third option is to represent the PrivateOwner and BusinessOwner

entities as subclasses of an Owner superclass. Before we are able to reach a decision
we first examine the attributes and relationships associated with these entities.
PrivateOwner and BusinessOwner entities share common attributes, namely address

and telNo and have a similar relationship with property for rent (namely PrivateOwner

POwns PropertyForRent and BusinessOwner BOwns PropertyForRent). However, both types
of owner also have different attributes; for example, PrivateOwner has distinct attri-
butes ownerNo and name, and BusinessOwner has distinct attributes bName, bType, and
contactName. In this case, we create a superclass called Owner, with PrivateOwner and
BusinessOwner as subclasses as shown in Figure 12.6.

The specialization/generalization of the Owner entity is mandatory and disjoint (shown
as {Mandatory, Or}), as an owner must be either a private owner or a business owner, but
cannot be both. Note that we choose to relate the Owner superclass to the PropertyForRent

entity using the relationship called Owns.
The examples of specialization/generalization described above are relatively straight-

forward. However, the specialization/generalization process can be taken further as illus-
trated in the following example.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

12.1 Specialization/Generalization | 381

(c) There are several persons with common characteristics described in the data require-
ments specification for the Branch user views of the DreamHome case study. For
example, members of staff, private property owners, and clients all have number and
name attributes. We could create a Person superclass with Staff (including Manager and
Supervisor subclasses), PrivateOwner, and Client as subclasses, as shown in Figure 12.7.

We now consider to what extent we wish to use specialization/generalization to repres-
ent the Branch user views of the DreamHome case study. We decide to use the special-
ization/generalization examples described in (a) and (b) above but not (c), as shown in
Figure 12.8. To simplify the EER diagram only attributes associated with primary keys or

Figure 12.6

Owner superclass

with PrivateOwner

and BusinessOwner

subclasses.

Figure 12.7

Person superclass

with Staff (including

Supervisor

and Manager

subclasses),

PrivateOwner, and

Client subclasses.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

382 | Chapter 12 z Enhanced Entity–Relationship Modeling

Figure 12.8 An Enhanced Entity–Relationship (EER) model of the Branch user views of DreamHome with

specialization/generalization.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

12.2 Aggregation | 383

relationships are shown. We leave out the representation shown in Figure 12.7 from the
final EER model because the use of specialization/generalization in this case places too
much emphasis on the relationship between entities that are persons rather than empha-
sizing the relationship between these entities and some of the core entities such as Branch

and PropertyForRent.
The option to use specialization/generalization, and to what extent, is a subjective

decision. In fact, the use of specialization/generalization is presented as an optional step
in our methodology for conceptual database design discussed in Chapter 15, Step 1.6.

As described in Section 2.3, the purpose of a data model is to provide the concepts and
notations that allow database designers and end-users to unambiguously and accurately
communicate their understanding of the enterprise data. Therefore, if we keep these goals
in mind, we should only use the additional concepts of specialization/generalization when
the enterprise data is too complex to easily represent using only the basic concepts of the
ER model.

At this stage we may consider whether the introduction of specialization/generaliza-
tion to represent the Branch user views of DreamHome is a good idea. In other words, is
the requirement specification for the Branch user views better represented as the ER model
shown in Figure 11.1 or as the EER model shown in Figure 12.8? We leave this for the
reader to consider.

Aggregation

Aggregation Represents a ‘has-a’ or ‘is-part-of’ relationship between entity types,

where one represents the ‘whole’ and the other the ‘part’.

A relationship represents an association between two entity types that are conceptually
at the same level. Sometimes we want to model a ‘has-a’ or ‘is-part-of’ relationship, in
which one entity represents a larger entity (the ‘whole’), consisting of smaller entities (the
‘parts’). This special kind of relationship is called an aggregation (Booch et al., 1998).
Aggregation does not change the meaning of navigation across the relationship between
the whole and its parts, nor does it link the lifetimes of the whole and its parts. An
example of an aggregation is the Has relationship, which relates the Branch entity (the
‘whole’) to the Staff entity (the ‘part’).

Diagrammatic representation of aggregation

UML represents aggregation by placing an open diamond shape at one end of the
relationship line, next to the entity that represents the ‘whole’. In Figure 12.9, we redraw
part of the EER diagram shown in Figure 12.8 to demonstrate aggregation. This EER dia-
gram displays two examples of aggregation, namely Branch Has Staff and Branch Offers

PropertyForRent. In both relationships, the Branch entity represents the ‘whole’ and therefore
the open diamond shape is placed beside this entity.

12.2

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

384 | Chapter 12 z Enhanced Entity–Relationship Modeling

Composition

Composition A specific form of aggregation that represents an association

between entities, where there is a strong ownership and coincid-

ental lifetime between the ‘whole’ and the ‘part’.

Aggregation is entirely conceptual and does nothing more than distinguish a ‘whole’ from
a ‘part’. However, there is a variation of aggregation called composition that represents a
strong ownership and coincidental lifetime between the ‘whole’ and the ‘part’ (Booch et al.,
1998). In a composite, the ‘whole’ is responsible for the disposition of the ‘parts’, which
means that the composition must manage the creation and destruction of its ‘parts’. In
other words, an object may only be part of one composite at a time. There are no examples
of composition in Figure 12.8. For the purposes of discussion, consider an example of a
composition, namely the Displays relationship, which relates the Newspaper entity to the
Advert entity. As a composition, this emphasizes the fact that an Advert entity (the ‘part’)
belongs to exactly one Newspaper entity (the ‘whole’). This is in contrast to aggregation,
in which a part may be shared by many wholes. For example, a Staff entity may be ‘a part
of’ one or more Branches entities.

Figure 12.9

Examples of

aggregation:

Branch Has Staff

and Branch Offers

PropertyForRent.

12.3

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

Chapter Summary | 385

Diagrammatic representation of composition

UML represents composition by placing a filled-in diamond shape at one end of the rela-
tionship line next to the entity that represents the ‘whole’ in the relationship. For example,
to represent the Newspaper Displays Advert composition, the filled-in diamond shape is
placed next to the Newspaper entity, which is the ‘whole’ in this relationship, as shown in
Figure 12.10.

As discussed with specialization/generalization, the options to use aggregation and
composition, and to what extent, are again subjective decisions. Aggregation and com-
position should only be used when there is a requirement to emphasize special relation-
ships between entity types such as ‘has-a’ or ‘is-part-of’, which has implications on the
creation, update, and deletion of these closely related entities. We discuss how to repres-
ent such constraints between entity types in our methodology for logical database design
in Chapter 16, Step 2.4.

If we remember that the major aim of a data model is to unambiguously and accurately
communicate an understanding of the enterprise data. We should only use the additional
concepts of aggregation and composition when the enterprise data is too complex to eas-
ily represent using only the basic concepts of the ER model.

Figure 12.10

An example of

composition:

Newspaper

Displays Advert.

Chapter Summary

n A superclass is an entity type that includes one or more distinct subgroupings of its occurrences, which
require to be represented in a data model. A subclass is a distinct subgrouping of occurrences of an entity type,
which require to be represented in a data model.

n Specialization is the process of maximizing the differences between members of an entity by identifying their
distinguishing features.

n Generalization is the process of minimizing the differences between entities by identifying their common
features.

n There are two constraints that may apply to a specialization/generalization called participation constraints
and disjoint constraints.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

386 | Chapter 12 z Enhanced Entity–Relationship Modeling

n A participation constraint determines whether every member in the superclass must participate as a mem-
ber of a subclass.

n A disjoint constraint describes the relationship between members of the subclasses and indicates whether it
is possible for a member of a superclass to be a member of one, or more than one, subclass.

n Aggregation represents a ‘has-a’ or ‘is-part-of’ relationship between entity types, where one represents the
‘whole’ and the other the ‘part’.

n Composition is a specific form of aggregation that represents an association between entities, where there is
a strong ownership and coincidental lifetime between the ‘whole’ and the ‘part’.

Exercises

12.9 Consider whether it is appropriate to introduce the enhanced concepts of specialization/generalization,
aggregation, and/or composition for the case studies described in Appendix B.

12.10 Consider whether it is appropriate to introduce the enhanced concepts of specialization/generalization,
aggregation, and/or composition into the ER model for the case study described in Exercise 11.12. If appro-
priate, redraw the ER diagram as an EER diagram with the additional enhanced concepts.

Review Questions

12.1 Describe what a superclass and a subclass
represent.

12.2 Describe the relationship between a superclass
and its subclass.

12.3 Describe and illustrate using an example the
process of attribute inheritance.

12.4 What are the main reasons for introducing the
concepts of superclasses and subclasses into an
ER model?

12.5 Describe what a shared subclass represents

and how this concept relates to multiple
inheritance.

12.6 Describe and contrast the process of
specialization with the process of
generalization.

12.7 Describe the two main constraints that apply to
a specialization/generalization relationship.

12.8 Describe and contrast the concepts of
aggregation and composition and provide an
example of each.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

13
Chapter

Normalization

Chapter Objectives

In this chapter you will learn:

n The purpose of normalization.

n How normalization can be used when designing a relational database.

n The potential problems associated with redundant data in base relations.

n The concept of functional dependency, which describes the relationship between

attributes.

n The characteristics of functional dependencies used in normalization.

n How to identify functional dependencies for a given relation.

n How functional dependencies identify the primary key for a relation.

n How to undertake the process of normalization.

n How normalization uses functional dependencies to group attributes into relations

that are in a known normal form.

n How to identify the most commonly used normal forms, namely First Normal Form

(1NF), Second Normal Form (2NF), and Third Normal Form (3NF).

n The problems associated with relations that break the rules of 1NF, 2NF, or 3NF.

n How to represent attributes shown on a form as 3NF relations using normalization.

When we design a database for an enterprise, the main objective is to create an accurate
representation of the data, relationships between the data, and constraints on the data
that is pertinent to the enterprise. To help achieve this objective, we can use one or
more database design techniques. In Chapters 11 and 12 we described a technique called
Entity–Relationship (ER) modeling. In this chapter and the next we describe another
database design technique called normalization.

Normalization is a database design technique, which begins by examining the relation-
ships (called functional dependencies) between attributes. Attributes describe some prop-
erty of the data or of the relationships between the data that is important to the enterprise.
Normalization uses a series of tests (described as normal forms) to help identify the
optimal grouping for these attributes to ultimately identify a set of suitable relations that
supports the data requirements of the enterprise.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

388 | Chapter 13 z Normalization

13.1

While the main purpose of this chapter is to introduce the concept of functional depen-
dencies and describe normalization up to Third Normal Form (3NF), in Chapter 14 we take
a more formal look at functional dependencies and also consider later normal forms that
go beyond 3NF.

Structure of this Chapter

In Section 13.1 we describe the purpose of normalization. In Section 13.2 we discuss
how normalization can be used to support relational database design. In Section 13.3
we identify and illustrate the potential problems associated with data redundancy in a
base relation that is not normalized. In Section 13.4 we describe the main concept asso-
ciated with normalization called functional dependency, which describes the relationship
between attributes. We also describe the characteristics of the functional dependencies
that are used in normalization. In Section 13.5 we present an overview of normalization
and then proceed in the following sections to describe the process involving the three most
commonly used normal forms, namely First Normal Form (1NF) in Section 13.6, Second
Normal Form (2NF) in Section 13.7, and Third Normal Form (3NF) in Section 13.8.
The 2NF and 3NF described in these sections are based on the primary key of a relation.
In Section 13.9 we present general definitions for 2NF and 3NF based on all candidate
keys of a relation.

Throughout this chapter we use examples taken from the DreamHome case study
described in Section 10.4 and documented in Appendix A.

The Purpose of Normalization

Normalization A technique for producing a set of relations with desirable properties,

given the data requirements of an enterprise.

The purpose of normalization is to identify a suitable set of relations that support the data
requirements of an enterprise. The characteristics of a suitable set of relations include the
following:

n the minimal number of attributes necessary to support the data requirements of the
enterprise;

n attributes with a close logical relationship (described as functional dependency) are
found in the same relation;

n minimal redundancy with each attribute represented only once with the important
exception of attributes that form all or part of foreign keys (see Section 3.2.5), which
are essential for the joining of related relations.

The benefits of using a database that has a suitable set of relations is that the database
will be easier for the user to access and maintain the data, and take up minimal storage

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

13.2 How Normalization Supports Database Design | 389

space on the computer. The problems associated with using a relation that is not appropri-
ately normalized is described later in Section 13.3.

How Normalization Supports
Database Design
Normalization is a formal technique that can be used at any stage of database design.
However, in this section we highlight two main approaches for using normalization, as
illustrated in Figure 13.1. Approach 1 shows how normalization can be used as a bottom-
up standalone database design technique while Approach 2 shows how normalization can
be used as a validation technique to check the structure of relations, which may have been
created using a top-down approach such as ER modeling. No matter which approach is
used the goal is the same that of creating a set of well-designed relations that meet the data
requirements of the enterprise.

Figure 13.1 shows examples of data sources that can be used for database design.
Although, the users’ requirements specification (see Section 9.5) is the preferred data
source, it is possible to design a database based on the information taken directly from
other data sources such as forms and reports, as illustrated in this chapter and the next.

13.2

Figure 13.1 How normalization can be used to support database design.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

390 | Chapter 13 z Normalization

Figure 13.2

Staff and Branch

relations.

Figure 13.1 also shows that the same data source can be used for both approaches; how-
ever, although this is true in principle, in practice the approach taken is likely to be deter-
mined by the size, extent, and complexity of the database being described by the data
sources and by the preference and expertise of the database designer. The opportunity to
use normalization as a bottom-up standalone technique (Approach 1) is often limited by
the level of detail that the database designer is reasonably expected to manage. However,
this limitation is not applicable when normalization is used as a validation technique
(Approach 2) as the database designer focuses on only part of the database, such as a
single relation, at any one time. Therefore, no matter what the size or complexity of the
database, normalization can be usefully applied.

Data Redundancy and Update Anomalies

As stated in Section 13.1 a major aim of relational database design is to group attributes
into relations to minimize data redundancy. If this aim is achieved, the potential benefits
for the implemented database include the following:

n updates to the data stored in the database are achieved with a minimal number of opera-
tions thus reducing the opportunities for data inconsistencies occurring in the database;

n reduction in the file storage space required by the base relations thus minimizing costs.

Of course, relational databases also rely on the existence of a certain amount of data
redundancy. This redundancy is in the form of copies of primary keys (or candidate keys)
acting as foreign keys in related relations to enable the modeling of relationships between
data.

In this section we illustrate the problems associated with unwanted data redundancy by
comparing the Staff and Branch relations shown in Figure 13.2 with the StaffBranch relation

13.3

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

13.3 Data Redundancy and Update Anomalies | 391

shown in Figure 13.3. The StaffBranch relation is an alternative format of the Staff and
Branch relations. The relations have the form:

Staff (staffNo, sName, position, salary, branchNo)
Branch (branchNo, bAddress)
StaffBranch (staffNo, sName, position, salary, branchNo, bAddress)

Note that the primary key for each relation is underlined.
In the StaffBranch relation there is redundant data; the details of a branch are repeated for

every member of staff located at that branch. In contrast, the branch details appear only
once for each branch in the Branch relation, and only the branch number (branchNo) is
repeated in the Staff relation to represent where each member of staff is located. Relations
that have redundant data may have problems called update anomalies, which are
classified as insertion, deletion, or modification anomalies.

Insertion Anomalies

There are two main types of insertion anomaly, which we illustrate using the StaffBranch

relation shown in Figure 13.3.

n To insert the details of new members of staff into the StaffBranch relation, we must
include the details of the branch at which the staff are to be located. For example,
to insert the details of new staff located at branch number B007, we must enter the
correct details of branch number B007 so that the branch details are consistent with
values for branch B007 in other tuples of the StaffBranch relation. The relations shown
in Figure 13.2 do not suffer from this potential inconsistency because we enter only
the appropriate branch number for each staff member in the Staff relation. Instead, the
details of branch number B007 are recorded in the database as a single tuple in the
Branch relation.

n To insert details of a new branch that currently has no members of staff into the
StaffBranch relation, it is necessary to enter nulls into the attributes for staff, such as
staffNo. However, as staffNo is the primary key for the StaffBranch relation, attempting to
enter nulls for staffNo violates entity integrity (see Section 3.3), and is not allowed. We
therefore cannot enter a tuple for a new branch into the StaffBranch relation with a null
for the staffNo. The design of the relations shown in Figure 13.2 avoids this problem

Figure 13.3

StaffBranch relation.

13.3.1

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

392 | Chapter 13 z Normalization

because branch details are entered in the Branch relation separately from the staff details.
The details of staff ultimately located at that branch are entered at a later date into the
Staff relation.

Deletion Anomalies

If we delete a tuple from the StaffBranch relation that represents the last member of staff
located at a branch, the details about that branch are also lost from the database. For ex-
ample, if we delete the tuple for staff number SA9 (Mary Howe) from the StaffBranch

relation, the details relating to branch number B007 are lost from the database. The design
of the relations in Figure 13.2 avoids this problem, because branch tuples are stored sep-
arately from staff tuples and only the attribute branchNo relates the two relations. If we
delete the tuple for staff number SA9 from the Staff relation, the details on branch num-
ber B007 remain unaffected in the Branch relation.

Modification Anomalies

If we want to change the value of one of the attributes of a particular branch in the
StaffBranch relation, for example the address for branch number B003, we must update
the tuples of all staff located at that branch. If this modification is not carried out on all the
appropriate tuples of the StaffBranch relation, the database will become inconsistent. In this
example, branch number B003 may appear to have different addresses in different staff tuples.

The above examples illustrate that the Staff and Branch relations of Figure 13.2 have
more desirable properties than the StaffBranch relation of Figure 13.3. This demonstrates
that while the StaffBranch relation is subject to update anomalies, we can avoid these
anomalies by decomposing the original relation into the Staff and Branch relations. There
are two important properties associated with decomposition of a larger relation into
smaller relations:

n The lossless-join property ensures that any instance of the original relation can be
identified from corresponding instances in the smaller relations.

n The dependency preservation property ensures that a constraint on the original
relation can be maintained by simply enforcing some constraint on each of the smaller
relations. In other words, we do not need to perform joins on the smaller relations to
check whether a constraint on the original relation is violated.

Later in this chapter, we discuss how the process of normalization can be used to derive
well-formed relations. However, we first introduce functional dependencies, which are
fundamental to the process of normalization.

Functional Dependencies

An important concept associated with normalization is functional dependency, which
describes the relationship between attributes (Maier, 1983). In this section we describe

13.3.2

13.3.3

13.4

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

13.4 Functional Dependencies | 393

functional dependencies and then focus on the particular characteristics of functional
dependencies that are useful for normalization. We then discuss how functional depen-
dencies can be identified and use to identify the primary key for a relation.

Characteristics of Functional Dependencies

For the discussion on functional dependencies, assume that a relational schema has
attributes (A, B, C, . . . , Z) and that the database is described by a single universal rela-
tion called R = (A, B, C, . . . , Z). This assumption means that every attribute in the database
has a unique name.

Functional Describes the relationship between attributes in a relation. For

dependency example, if A and B are attributes of relation R, B is functionally

dependent on A (denoted A → B), if each value of A is associated

with exactly one value of B. (A and B may each consist of one or

more attributes.)

Functional dependency is a property of the meaning or semantics of the attributes in a
relation. The semantics indicate how attributes relate to one another, and specify the func-
tional dependencies between attributes. When a functional dependency is present, the
dependency is specified as a constraint between the attributes.

Consider a relation with attributes A and B, where attribute B is functionally depend-
ent on attribute A. If we know the value of A and we examine the relation that holds this
dependency, we find only one value of B in all the tuples that have a given value of A, at
any moment in time. Thus, when two tuples have the same value of A, they also have the
same value of B. However, for a given value of B there may be several different values of
A. The dependency between attributes A and B can be represented diagrammatically, as
shown Figure 13.4.

An alternative way to describe the relationship between attributes A and B is to say that
‘A functionally determines B’. Some readers may prefer this description, as it more natur-
ally follows the direction of the functional dependency arrow between the attributes.

Determinant Refers to the attribute, or group of attributes, on the left-hand side of

the arrow of a functional dependency.

When a functional dependency exists, the attribute or group of attributes on the left-
hand side of the arrow is called the determinant. For example, in Figure 13.4, A is the
determinant of B. We demonstrate the identification of a functional dependency in the
following example.

13.4.1

Figure 13.4

A functional

dependency

diagram.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

394 | Chapter 13 z Normalization

Example 13.1 An example of a functional dependency

Consider the attributes staffNo and position of the Staff relation in Figure 13.2. For a specific
staffNo, for example SL21, we can determine the position of that member of staff as
Manager. In other words, staffNo functionally determines position, as shown in Figure 13.5(a).
However, Figure 13.5(b) illustrates that the opposite is not true, as position does not func-
tionally determine staffNo. A member of staff holds one position; however, there may be
several members of staff with the same position.

The relationship between staffNo and position is one-to-one (1:1): for each staff number
there is only one position. On the other hand, the relationship between position and staffNo

is one-to-many (1:*): there are several staff numbers associated with a given position.
In this example, staffNo is the determinant of this functional dependency. For the pur-
poses of normalization we are interested in identifying functional dependencies between
attributes of a relation that have a one-to-one relationship between the attribute(s) that
makes up the determinant on the left-hand side and the attribute(s) on the right-hand side
of a dependency.

When identifying functional dependencies between attributes in a relation it is import-
ant to distinguish clearly between the values held by an attribute at a given point in time
and the set of all possible values that an attribute may hold at different times. In other
words, a functional dependency is a property of a relational schema (intension) and not a
property of a particular instance of the schema (extension) (see Section 3.2.1). This point
is illustrated in the following example.

Figure 13.5

(a) staffNo

functionally

determines position

(staffNo → position);

(b) position does

not functionally

determine staffNo

(position x→ staffNo).

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

13.4 Functional Dependencies | 395

Example 13.2 Example of a functional dependency that holds for all time

Consider the values shown in staffNo and sName attributes of the Staff relation in Figure
13.2. We see that for a specific staffNo, for example SL21, we can determine the name of
that member of staff as John White. Furthermore, it appears that for a specific sName, for
example, John White, we can determine the staff number for that member of staff as SL21.
Can we therefore conclude that the staffNo attribute functionally determines the sName

attribute and/or that the sName attribute functionally determines the staffNo attribute? If the
values shown in the Staff relation of Figure 13.2 represent the set of all possible values for
staffNo and sName attributes then the following functional dependencies hold:

staffNo → sName

sName → staffNo

However, if the values shown in the Staff relation of Figure 13.2 simply represent a set
of values for staffNo and sName attributes at a given moment in time, then we are not so
interested in such relationships between attributes. The reason is that we want to identify
functional dependencies that hold for all possible values for attributes of a relation as these
represent the types of integrity constraints that we need to identify. Such constraints indi-
cate the limitations on the values that a relation can legitimately assume.

One approach to identifying the set of all possible values for attributes in a relation is to
more clearly understand the purpose of each attribute in that relation. For example, the
purpose of the values held in the staffNo attribute is to uniquely identify each member of
staff, whereas the purpose of the values held in the sName attribute is to hold the names of
members of staff. Clearly, the statement that if we know the staff number (staffNo) of a
member of staff we can determine the name of the member of staff (sName) remains true.
However, as it is possible for the sName attribute to hold duplicate values for members of
staff with the same name, then for some members of staff in this category we would not
be able to determine their staff number (staffNo). The relationship between staffNo and
sName is one-to-one (1:1): for each staff number there is only one name. On the other hand,
the relationship between sName and staffNo is one-to-many (1:*): there can be several staff
numbers associated with a given name. The functional dependency that remains true after
consideration of all possible values for the staffNo and sName attributes of the Staff relation is:

staffNo → sName

An additional characteristic of functional dependencies that is useful for normalization
is that their determinants should have the minimal number of attributes necessary to main-
tain the functional dependency with the attribute(s) on the right hand-side. This require-
ment is called full functional dependency.

Full Indicates that if A and B are attributes of a relation, B is fully func-

functional tionally dependent on A if B is functionally dependent on A, but not

dependency on any proper subset of A.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

396 | Chapter 13 z Normalization

A functional dependency A → B is a full functional dependency if removal of any
attribute from A results in the dependency no longer existing. A functional dependency
A → B is a partially dependency if there is some attribute that can be removed from A and
yet the dependency still holds. An example of how a full functional dependency is derived
from a partial functional dependency is presented in Example 13.3.

Example 13.3 Example of a full functional dependency

Consider the following functional dependency that exists in the Staff relation of
Figure 13.2:

staffNo, sName → branchNo

It is correct to say that each value of (staffNo, sName) is associated with a single value of
branchNo. However, it is not a full functional dependency because branchNo is also func-
tionally dependent on a subset of (staffNo, sName), namely staffNo. In other words, the
functional dependency shown above is an example of a partial dependency. The type of
functional dependency that we are interested in identifying is a full functional dependency
as shown below.

staffNo → branchNo

Additional examples of partial and full functional dependencies are discussed in
Section 13.7.

In summary, the functional dependencies that we use in normalization have the follow-
ing characteristics:

n There is a one-to-one relationship between the attribute(s) on the left-hand side
(determinant) and those on the right-hand side of a functional dependency. (Note that
the relationship in the opposite direction, that is from the right- to the left-hand side
attributes, can be a one-to-one relationship or one-to-many relationship.)

n They hold for all time.

n The determinant has the minimal number of attributes necessary to maintain the
dependency with the attribute(s) on the right-hand side. In other words, there must be a
full functional dependency between the attribute(s) on the left- and right-hand sides of
the dependency.

So far we have discussed functional dependencies that we are interested in for the pur-
poses of normalization. However, there is an additional type of functional dependency
called a transitive dependency that we need to recognize because its existence in a
relation can potentially cause the types of update anomaly discussed in Section 13.3.
In this section we simply describe these dependencies so that we can identify them when
necessary.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

13.4 Functional Dependencies | 397

Transitive A condition where A, B, and C are attributes of a relation such that

dependency if A → B and B → C, then C is transitively dependent on A via B

(provided that A is not functionally dependent on B or C).

An example of a transitive dependency is provided in Example 13.4.

Example 13.4 Example of a transitive functional dependency

Consider the following functional dependencies within the StaffBranch relation shown in
Figure 13.3:

staffNo → sName, position, salary, branchNo, bAddress

branchNo → bAddress

The transitive dependency branchNo → bAddress exists on staffNo via branchNo. In other
words, the staffNo attribute functionally determines the bAddress via the branchNo attribute
and neither branchNo nor bAddress functionally determines staffNo. An additional example
of a transitive dependency is discussed in Section 13.8.

In the following sections we demonstrate approaches to identifying a set of functional
dependencies and then discuss how these dependencies can be used to identify a primary
key for the example relations.

Identifying Functional Dependencies

Identifying all functional dependencies between a set of attributes should be quite simple
if the meaning of each attribute and the relationships between the attributes are well
understood. This type of information may be provided by the enterprise in the form of dis-
cussions with users and/or appropriate documentation such as the users’ requirements
specification. However, if the users are unavailable for consultation and/or the documenta-
tion is incomplete, then, depending on the database application, it may be necessary for
the database designer to use their common sense and/or experience to provide the missing
information. Example 13.5 illustrates how easy it is to identify functional dependencies
between attributes of a relation when the purpose of each attribute and the attributes’
relationships are well understood.

Example 13.5 Identifying a set of functional dependencies for the
StaffBranch relation

We begin by examining the semantics of the attributes in the StaffBranch relation shown
in Figure 13.3. For the purposes of discussion we assume that the position held and the
branch determine a member of staff’s salary. We identify the functional dependencies
based on our understanding of the attributes in the relation as:

13.4.2

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

398 | Chapter 13 z Normalization

staffNo → sName, position, salary, branchNo, bAddress

branchNo → bAddress

bAddress → branchNo

branchNo, position → salary

bAddress, position → salary

We identify five functional dependencies in the StaffBranch relation with staffNo, branchNo,
bAddress, (branchNo, position), and (bAddress, position) as determinants. For each functional
dependency, we ensure that all the attributes on the right-hand side are functionally depen-
dent on the determinant on the left-hand side.

As a contrast to this example we now consider the situation where functional depen-
dencies are to be identified in the absence of appropriate information about the meaning of
attributes and their relationships. In this case, it may be possible to identify functional
dependencies if sample data is available that is a true representation of all possible data
values that the database may hold. We demonstrate this approach in Example 13.6.

Example 13.6 Using sample data to identify functional dependencies

Consider the data for attributes denoted A, B, C, D, and E in the Sample relation of Fig-
ure 13.6. It is important first to establish that the data values shown in this relation are
representative of all possible values that can be held by attributes A, B, C, D, and E. For the
purposes of this example, let us assume that this is true despite the relatively small amount
of data shown in this relation. The process of identifying the functional dependencies
(denoted fd1 to fd4) that exist between the attributes of the Sample relation shown in
Figure 13.6 is described below.

Figure 13.6

The Sample relation

displaying data for

attributes A, B, C, D,

and E and the

functional

dependencies (fd1

to fd4) that exist

between these

attributes.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

13.4 Functional Dependencies | 399

To identify the functional dependencies that exist between attributes A, B, C, D, and E,
we examine the Sample relation shown in Figure 13.6 and identify when values in one col-
umn are consistent with the presence of particular values in other columns. We begin with
the first column on the left-hand side and work our way over to the right-hand side of the
relation and then we look at combinations of columns, in other words where values in two
or more columns are consistent with the appearance of values in other columns.

For example, when the value ‘a’ appears in column A the value ‘z’ appears in column
C, and when ‘e’ appears in column A the value ‘r’ appears in column C. We can therefore
conclude that there is a one-to-one (1:1) relationship between attributes A and C. In other
words, attribute A functionally determines attribute C and this is shown as functional
dependency 1 (fd1) in Figure 13.6. Furthermore, as the values in column C are consistent
with the appearance of particular values in column A, we can also conclude that there is
a (1:1) relationship between attributes C and A. In other words, C functionally determines
A and this is shown as fd2 in Figure 13.6. If we now consider attribute B, we can see
that when ‘b’ or ‘d’ appears in column B then ‘w’ appears in column D and when ‘f’
appears in column B then ‘s’ appears in column D. We can therefore conclude that there is
a (1:1) relationship between attributes B and D. In other words, B functionally determines
D and this is shown as fd3 in Figure 13.6. However, attribute D does not functionally
determine attribute B as a single unique value in column D such as ‘w’ is not associated
with a single consistent value in column B. In other words, when ‘w’ appears in column D
the values ‘b’ or ‘d’ appears in column B. Hence, there is a one-to-many relationship
between attributes D and B. The final single attribute to consider is E and we find that
the values in this column are not associated with the consistent appearance of particular
values in the other columns. In other words, attribute E does not functionally determine
attributes A, B, C, or D.

We now consider combinations of attributes and the appearance of consistent values in
other columns. We conclude that unique combination of values in columns A and B such
as (a, b) is associated with a single value in column E, which in this example is ‘q’. In other
words attributes (A, B) functionally determines attribute E and this is shown as fd4 in
Figure 13.6. However, the reverse is not true, as we have already stated that attribute E

does not functionally determine any other attribute in the relation. We complete the exam-
ination of the relation shown in Figure 13.6 by considering all the remaining combinations
of columns.

In summary, we describe the function dependencies between attributes A to E in the
Sample relation shown in Figure 13.6 as follows:

A → C (fd1)
C → A (fd2)
B → D (fd3)
A, B → E (fd4)

Identifying the Primary Key for a Relation using
Functional Dependencies

The main purpose of identifying a set of functional dependencies for a relation is to
specify the set of integrity constraints that must hold on a relation. An important integrity

13.4.3

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

400 | Chapter 13 z Normalization

constraint to consider first is the identification of candidate keys, one of which is selected
to be the primary key for the relation. We demonstrate the identification of a primary key
for a given relation in the following two examples.

Example 13.7 Identifying the primary key for the StaffBranch relation

In Example 13.5 we describe the identification of five functional dependencies for the
StaffBranch relation shown in Figure 13.3. The determinants for these functional depen-
dencies are staffNo, branchNo, bAddress, (branchNo, position), and (bAddress, position).

To identify the candidate key(s) for the StaffBranch relation, we must identify the attrib-
ute (or group of attributes) that uniquely identifies each tuple in this relation. If a relation
has more than one candidate key, we identify the candidate key that is to act as the primary
key for the relation (see Section 3.2.5). All attributes that are not part of the primary key
(non-primary-key attributes) should be functionally dependent on the key.

The only candidate key of the StaffBranch relation, and therefore the primary key, is
staffNo, as all other attributes of the relation are functionally dependent on staffNo.
Although branchNo, bAddress, (branchNo, position), and (bAddress, position) are determinants
in this relation, they are not candidate keys for the relation.

Example 13.8 Identifying the primary key for the Sample relation

In Example 13.6 we identified four functional dependencies for the Sample relation. We
examine the determinant for each functional dependency to identify the candidate key(s)
for the relation. A suitable determinant must functionally determine the other attributes in
the relation. The determinants in the Sample relation are A, B, C, and (A, B). However, the
only determinant that functionally determines all the other attributes of the relation is (A,
B). In particular, A functionally determines C, B functionally determines D, and (A, B) func-
tionally determines E. In other words, the attributes that make up the determinant (A, B)
can determine all the other attributes in the relation either separately as A or B or together
as (A, B). Hence, we see that an essential characteristic for a candidate key of a relation is
that the attributes of a determinant either individually or working together must be able to
functionally determine all the other attributes in the relation. This is not a characteristic of
the other determinants in the Sample relation (namely A, B, or C) as in each case they can
determine only one other attribute in the relation. As there are no other candidate keys for
the Sample relation (A, B) is identified as the primary key for this relation.

So far in this section we have discussed the types of functional dependency that are most
useful in identifying important constraints on a relation and how these dependencies can
be used to identify a primary key (or candidate keys) for a given relation. The concepts of
functional dependencies and keys are central to the process of normalization. We continue
the discussion on functional dependencies in the next chapter for readers interested in a
more formal coverage of this topic. However, in this chapter, we continue by describing
the process of normalization.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

13.5 The Process of Normalization | 401

The Process of Normalization

Normalization is a formal technique for analyzing relations based on their primary key (or
candidate keys) and functional dependencies (Codd, 1972b). The technique involves a
series of rules that can be used to test individual relations so that a database can be nor-
malized to any degree. When a requirement is not met, the relation violating the require-
ment must be decomposed into relations that individually meet the requirements of
normalization.

Three normal forms were initially proposed called First Normal Form (1NF), Second
Normal Form (2NF), and Third Normal Form (3NF). Subsequently, R. Boyce and E.F.
Codd introduced a stronger definition of third normal form called Boyce–Codd Normal
Form (BCNF) (Codd, 1974). With the exception of 1NF, all these normal forms are based
on functional dependencies among the attributes of a relation (Maier, 1983). Higher nor-
mal forms that go beyond BCNF were introduced later such as Fourth Normal Form (4NF)
and Fifth Normal Form (5NF) (Fagin, 1977, 1979). However, these later normal forms
deal with situations that are very rare. In this chapter we describe only the first three nor-
mal forms and leave discussions on BCNF, 4NF, and 5NF to the next chapter.

Normalization is often executed as a series of steps. Each step corresponds to a specific
normal form that has known properties. As normalization proceeds, the relations become
progressively more restricted (stronger) in format and also less vulnerable to update
anomalies. For the relational data model, it is important to recognize that it is only First
Normal Form (1NF) that is critical in creating relations; all subsequent normal forms are
optional. However, to avoid the update anomalies discussed in Section 13.3, it is generally
recommended that we proceed to at least Third Normal Form (3NF). Figure 13.7 illustrates
the relationship between the various normal forms. It shows that some 1NF relations are
also in 2NF and that some 2NF relations are also in 3NF, and so on.

In the following sections we describe the process of normalization in detail. Figure 13.8
provides an overview of the process and highlights the main actions taken in each step of
the process. The number of the section that covers each step of the process is also shown
in this figure.

In this chapter, we describe normalization as a bottom-up technique extracting infor-
mation about attributes from sample forms that are first transformed into table format,

Figure 13.7

Diagrammatic

illustration of the

relationship between

the normal forms.

13.5

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

402 | Chapter 13 z Normalization

which is described as being in Unnormalized Form (UNF). This table is then subjected
progressively to the different requirements associated with each normal form until ultimately
the attributes shown in the original sample forms are represented as a set of 3NF relations.
Although the example used in this chapter proceeds from a given normal form to the one
above, this is not necessarily the case with other examples. As shown in Figure 13.8, the
resolution of a particular problem with, say, a 1NF relation may result in the relation being
transformed to 2NF relations or in some cases directly into 3NF relations in one step.

To simplify the description of normalization we assume that a set of functional depen-
dencies is given for each relation in the worked examples and that each relation has a de-
signated primary key. In other words, it is essential that the meaning of the attributes and
their relationships is well understood before beginning the process of normalization. This
information is fundamental to normalization and is used to test whether a relation is in a
particular normal form. In Section 13.6 we begin by describing First Normal Form (1NF).
In Sections 13.7 and 13.8 we describe Second Normal Form (2NF) and Third Normal

Figure 13.8

Diagrammatic

illustration of the

process of

normalization.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

13.6 First Normal Form (1NF) | 403

Forms (3NF) based on the primary key of a relation and then present a more general
definition of each in Section 13.9. The more general definitions of 2NF and 3NF take into
account all candidate keys of a relation rather than just the primary key.

First Normal Form (1NF)

Before discussing First Normal Form, we provide a definition of the state prior to First
Normal Form.

Unnormalized Form (UNF) A table that contains one or more repeating groups.

First Normal A relation in which the intersection of each row and column contains

Form (1NF) one and only one value.

In this chapter, we begin the process of normalization by first transferring the data from
the source (for example, a standard data entry form) into table format with rows and
columns. In this format, the table is in Unnormalized Form and is referred to as an unnor-
malized table. To transform the unnormalized table to First Normal Form we identify and
remove repeating groups within the table. A repeating group is an attribute, or group of
attributes, within a table that occurs with multiple values for a single occurrence of the
nominated key attribute(s) for that table. Note that in this context, the term ‘key’ refers to
the attribute(s) that uniquely identify each row within the unnormalized table. There are
two common approaches to removing repeating groups from unnormalized tables:

(1) By entering appropriate data in the empty columns of rows containing the repeating
data. In other words, we fill in the blanks by duplicating the nonrepeating data, where
required. This approach is commonly referred to as ‘flattening’ the table.

(2) By placing the repeating data, along with a copy of the original key attribute(s), in a
separate relation. Sometimes the unnormalized table may contain more than one
repeating group, or repeating groups within repeating groups. In such cases, this
approach is applied repeatedly until no repeating groups remain. A set of relations is
in 1NF if it contains no repeating groups.

For both approaches, the resulting tables are now referred to as 1NF relations contain-
ing atomic (or single) values at the intersection of each row and column. Although both
approaches are correct, approach 1 introduces more redundancy into the original UNF
table as part of the ‘flattening’ process, whereas approach 2 creates two or more relations
with less redundancy than in the original UNF table. In other words, approach 2 moves the
original UNF table further along the normalization process than approach 1. However, no
matter which initial approach is taken, the original UNF table will be normalized into the
same set of 3NF relations.

We demonstrate both approaches in the following worked example using the
DreamHome case study.

13.6

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

404 | Chapter 13 z Normalization

Example 13.9 First Normal Form (1NF)

A collection of (simplified) DreamHome leases is shown in Figure 13.9. The lease on top
is for a client called John Kay who is leasing a property in Glasgow, which is owned by
Tina Murphy. For this worked example, we assume that a client rents a given property
only once and cannot rent more than one property at any one time.

Sample data is taken from two leases for two different clients called John Kay and
Aline Stewart and is transformed into table format with rows and columns, as shown in
Figure 13.10. This is an example of an unnormalized table.

Figure 13.9

Collection of

(simplified)

DreamHome leases.

Figure 13.10

ClientRental

unnormalized table.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

13.6 First Normal Form (1NF) | 405

We identify the key attribute for the ClientRental unnormalized table as clientNo. Next, we
identify the repeating group in the unnormalized table as the property rented details, which
repeats for each client. The structure of the repeating group is:

Repeating Group = (propertyNo, pAddress, rentStart, rentFinish, rent, ownerNo, oName)

As a consequence, there are multiple values at the intersection of certain rows and
columns. For example, there are two values for propertyNo (PG4 and PG16) for the client
named John Kay. To transform an unnormalized table into 1NF, we ensure that there is a
single value at the intersection of each row and column. This is achieved by removing the
repeating group.

With the first approach, we remove the repeating group (property rented details) by
entering the appropriate client data into each row. The resulting first normal form
ClientRental relation is shown in Figure 13.11.

In Figure 13.12, we present the functional dependencies (fd1 to fd6) for the ClientRental

relation. We use the functional dependencies (as discussed in Section 13.4.3) to identify
candidate keys for the ClientRental relation as being composite keys comprising (clientNo,

Figure 13.11

First Normal Form

ClientRental relation.

Figure 13.12

Functional

dependencies of the

ClientRental relation.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

406 | Chapter 13 z Normalization

propertyNo), (clientNo, rentStart), and (propertyNo, rentStart). We select (clientNo, propertyNo) as
the primary key for the relation, and for clarity we place the attributes that make up the
primary key together at the left-hand side of the relation. In this example, we assume that
the rentFinish attribute is not appropriate as a component of a candidate key as it may con-
tain nulls (see Section 3.3.1).

The ClientRental relation is defined as follows:

ClientRental (clientNo, propertyNo, cName, pAddress, rentStart, rentFinish, rent,
ownerNo, oName)

The ClientRental relation is in 1NF as there is a single value at the intersection of each row
and column. The relation contains data describing clients, property rented, and property
owners, which is repeated several times. As a result, the ClientRental relation contains
significant data redundancy. If implemented, the 1NF relation would be subject to the
update anomalies described in Section 13.3. To remove some of these, we must transform
the relation into Second Normal Form, which we discuss shortly.

With the second approach, we remove the repeating group (property rented details)
by placing the repeating data along with a copy of the original key attribute (clientNo) in a
separate relation, as shown in Figure 13.13.

With the help of the functional dependencies identified in Figure 13.12 we identify a
primary key for the relations. The format of the resulting 1NF relations are as follows:

Client (clientNo, cName)
PropertyRentalOwner (clientNo, propertyNo, pAddress, rentStart, rentFinish, rent,

ownerNo, oName)

The Client and PropertyRentalOwner relations are both in 1NF as there is a single value at
the intersection of each row and column. The Client relation contains data describing clients
and the PropertyRentalOwner relation contains data describing property rented by clients and
property owners. However, as we see from Figure 13.13, this relation also contains some
redundancy and as a result may suffer from similar update anomalies to those described in
Section 13.3.

Figure 13.13

Alternative 1NF

Client and

PropertyRentalOwner

relations.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

13.7 Second Normal Form (2NF) | 407

To demonstrate the process of normalizing relations from 1NF to 2NF, we use only the
ClientRental relation shown in Figure 13.11. However, recall that both approaches are
correct, and will ultimately result in the production of the same relations as we continue
the process of normalization. We leave the process of completing the normalization of the
Client and PropertyRentalOwner relations as an exercise for the reader, which is given at the
end of this chapter.

Second Normal Form (2NF)

Second Normal Form (2NF) is based on the concept of full functional dependency, which
we described in Section 13.4. Second Normal Form applies to relations with composite
keys, that is, relations with a primary key composed of two or more attributes. A relation
with a single-attribute primary key is automatically in at least 2NF. A relation that is not
in 2NF may suffer from the update anomalies discussed in Section 13.3. For example,
suppose we wish to change the rent of property number PG4. We have to update two tuples
in the ClientRental relation in Figure 13.11. If only one tuple is updated with the new rent,
this results in an inconsistency in the database.

Second Normal A relation that is in First Normal Form and every non-primary-key

Form (2NF) attribute is fully functionally dependent on the primary key.

The normalization of 1NF relations to 2NF involves the removal of partial dependen-
cies. If a partial dependency exists, we remove the partially dependent attribute(s) from the
relation by placing them in a new relation along with a copy of their determinant. We
demonstrate the process of converting 1NF relations to 2NF relations in the following
example.

Example 13.10 Second Normal Form (2NF)

As shown in Figure 13.12, the ClientRental relation has the following functional
dependencies:

fd1 clientNo, propertyNo → rentStart, rentFinish (Primary key)
fd2 clientNo → cName (Partial dependency)
fd3 propertyNo → pAddress, rent, ownerNo, oName (Partial dependency)
fd4 ownerNo → oName (Transitive dependency)
fd5 clientNo, rentStart → propertyNo, pAddress,

rentFinish, rent, ownerNo, oName (Candidate key)
fd6 propertyNo, rentStart → clientNo, cName, rentFinish (Candidate key)

Using these functional dependencies, we continue the process of normalizing the
ClientRental relation. We begin by testing whether the ClientRental relation is in 2NF by
identifying the presence of any partial dependencies on the primary key. We note that the

13.7

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

408 | Chapter 13 z Normalization

Figure 13.14

Second Normal Form

relations derived

from the ClientRental

relation.

client attribute (cName) is partially dependent on the primary key, in other words, on only
the clientNo attribute (represented as fd2). The property attributes (pAddress, rent, ownerNo,
oName) are partially dependent on the primary key, that is, on only the propertyNo attribute
(represented as fd3). The property rented attributes (rentStart and rentFinish) are fully depen-
dent on the whole primary key; that is the clientNo and propertyNo attributes (represented
as fd1).

The identification of partial dependencies within the ClientRental relation indicates
that the relation is not in 2NF. To transform the ClientRental relation into 2NF requires the
creation of new relations so that the non-primary-key attributes are removed along with
a copy of the part of the primary key on which they are fully functionally dependent.
This results in the creation of three new relations called Client, Rental, and PropertyOwner,
as shown in Figure 13.14. These three relations are in Second Normal Form as every non-
primary-key attribute is fully functionally dependent on the primary key of the relation.
The relations have the following form:

Client (clientNo, cName)
Rental (clientNo, propertyNo, rentStart, rentFinish)
PropertyOwner (propertyNo, pAddress, rent, ownerNo, oName)

Third Normal Form (3NF)

Although 2NF relations have less redundancy than those in 1NF, they may still suffer
from update anomalies. For example, if we want to update the name of an owner, such as
Tony Shaw (ownerNo CO93), we have to update two tuples in the PropertyOwner relation of
Figure 13.14. If we update only one tuple and not the other, the database would be in
an inconsistent state. This update anomaly is caused by a transitive dependency, which
we described in Section 13.4. We need to remove such dependencies by progressing to
Third Normal Form.

13.8

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

13.8 Third Normal Form (3NF) | 409

Third Normal A relation that is in First and Second Normal Form and in which no

Form (3NF) non-primary-key attribute is transitively dependent on the primary

key.

The normalization of 2NF relations to 3NF involves the removal of transitive
dependencies. If a transitive dependency exists, we remove the transitively dependent
attribute(s) from the relation by placing the attribute(s) in a new relation along with a copy
of the determinant. We demonstrate the process of converting 2NF relations to 3NF
relations in the following example.

Example 13.11 Third Normal Form (3NF)

The functional dependencies for the Client, Rental, and PropertyOwner relations, derived in
Example 13.10, are as follows:

Client

fd2 clientNo → cName (Primary key)

Rental

fd1 clientNo, propertyNo → rentStart, rentFinish (Primary key)
fd5′ clientNo, rentStart → propertyNo, rentFinish (Candidate key)
fd6′ propertyNo, rentStart → clientNo, rentFinish (Candidate key)

PropertyOwner

fd3 propertyNo → pAddress, rent, ownerNo, oName (Primary key)
fd4 ownerNo → oName (Transitive dependency)

All the non-primary-key attributes within the Client and Rental relations are functionally
dependent on only their primary keys. The Client and Rental relations have no transitive
dependencies and are therefore already in 3NF. Note that where a functional dependency
(fd) is labeled with a prime (such as fd5′), this indicates that the dependency has altered
compared with the original functional dependency shown in Figure 13.12.

All the non-primary-key attributes within the PropertyOwner relation are functionally
dependent on the primary key, with the exception of oName, which is transitively depen-
dent on ownerNo (represented as fd4). This transitive dependency was previously identified
in Figure 13.12. To transform the PropertyOwner relation into 3NF we must first remove
this transitive dependency by creating two new relations called PropertyForRent and Owner,
as shown in Figure 13.15. The new relations have the form:

PropertyForRent (propertyNo, pAddress, rent, ownerNo)
Owner (ownerNo, oName)

The PropertyForRent and Owner relations are in 3NF as there are no further transitive depen-
dencies on the primary key.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

410 | Chapter 13 z Normalization

The ClientRental relation shown in Figure 13.11 has been transformed by the process of
normalization into four relations in 3NF. Figure 13.16 illustrates the process by which the
original 1NF relation is decomposed into the 3NF relations. The resulting 3NF relations
have the form:

Client (clientNo, cName)
Rental (clientNo, propertyNo, rentStart, rentFinish)
PropertyForRent (propertyNo, pAddress, rent, ownerNo)
Owner (ownerNo, oName)

The original ClientRental relation shown in Figure 13.11 can be recreated by joining
the Client, Rental, PropertyForRent, and Owner relations through the primary key/foreign
key mechanism. For example, the ownerNo attribute is a primary key within the Owner rela-
tion and is also present within the PropertyForRent relation as a foreign key. The ownerNo

attribute acting as a primary key/foreign key allows the association of the PropertyForRent

and Owner relations to identify the name of property owners.
The clientNo attribute is a primary key of the Client relation and is also present within

the Rental relation as a foreign key. Note in this case that the clientNo attribute in the Rental

relation acts both as a foreign key and as part of the primary key of this relation. Similarly,
the propertyNo attribute is the primary key of the PropertyForRent relation and is also present
within the Rental relation acting both as a foreign key and as part of the primary key for
this relation.

In other words, the normalization process has decomposed the original ClientRental

relation using a series of relational algebra projections (see Section 4.1). This results in a
lossless-join (also called nonloss- or nonadditive-join) decomposition, which is reversible
using the natural join operation. The Client, Rental, PropertyForRent, and Owner relations are
shown in Figure 13.17.

Figure 13.15

Third Normal Form

relations derived

from the

PropertyOwner

relation.

Figure 13.16

The decomposition

of the ClientRental

1NF relation into

3NF relations.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

13.9 General Definitions of 2NF and 3NF | 411

General Definitions of 2NF and 3NF

The definitions for 2NF and 3NF given in Sections 13.7 and 13.8 disallow partial or
transitive dependencies on the primary key of relations to avoid the update anomalies
described in Section 13.3. However, these definitions do not take into account other can-
didate keys of a relation, if any exist. In this section, we present more general definitions
for 2NF and 3NF that take into account candidate keys of a relation. Note that this require-
ment does not alter the definition for 1NF as this normal form is independent of keys and
functional dependencies. For the general definitions, we define that a candidate-key
attribute is part of any candidate key and that partial, full, and transitive dependencies are
with respect to all candidate keys of a relation.

Second Normal A relation that is in First Normal Form and every non-candidate-

Form (2NF) key attribute is fully functionally dependent on any candidate key.

Third Normal A relation that is in First and Second Normal Form and in which

Form (3NF) no non-candidate-key attribute is transitively dependent on any

candidate key.

When using the general definitions of 2NF and 3NF we must be aware of partial and
transitive dependencies on all candidate keys and not just the primary key. This can
make the process of normalization more complex; however, the general definitions place
additional constraints on the relations and may identify hidden redundancy in relations that
could be missed.

The tradeoff is whether it is better to keep the process of normalization simpler by
examining dependencies on primary keys only, which allows the identification of the most
problematic and obvious redundancy in relations, or to use the general definitions and
increase the opportunity to identify missed redundancy. In fact, it is often the case that

Figure 13.17

A summary of the

3NF relations

derived from the

ClientRental relation.

13.9

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

412 | Chapter 13 z Normalization

whether we use the definitions based on primary keys or the general definitions of 2NF and
3NF, the decomposition of relations is the same. For example, if we apply the general
definitions of 2NF and 3NF to Examples 13.10 and 13.11 described in Sections 13.7 and
13.8, the same decomposition of the larger relations into smaller relations results. The
reader may wish to verify this fact.

In the following chapter we re-examine the process of identifying functional dependen-
cies that are useful for normalization and take the process of normalization further by dis-
cussing normal forms that go beyond 3NF such as Boyce–Codd Normal Form (BCNF).
Also in this chapter we present a second worked example taken from the DreamHome case
study that reviews the process of normalization from UNF through to BCNF.

Chapter Summary

n Normalization is a technique for producing a set of relations with desirable properties, given the data require-
ments of an enterprise. Normalization is a formal method that can be used to identify relations based on their
keys and the functional dependencies among their attributes.

n Relations with data redundancy suffer from update anomalies, which can be classified as insertion, deletion,
and modification anomalies.

n One of the main concepts associated with normalization is functional dependency, which describes the rela-
tionship between attributes in a relation. For example, if A and B are attributes of relation R, B is functionally
dependent on A (denoted A → B), if each value of A is associated with exactly one value of B. (A and B may
each consist of one or more attributes.)

n The determinant of a functional dependency refers to the attribute, or group of attributes, on the left-hand
side of the arrow.

n The main characteristics of functional dependencies that we use for normalization have a one-to-one rela-
tionship between attribute(s) on the left- and right-hand sides of the dependency, hold for all time, and are
fully functionally dependent.

n Unnormalized Form (UNF) is a table that contains one or more repeating groups.

n First Normal Form (1NF) is a relation in which the intersection of each row and column contains one and
only one value.

n Second Normal Form (2NF) is a relation that is in First Normal Form and every non-primary-key attribute
is fully functionally dependent on the primary key. Full functional dependency indicates that if A and B are
attributes of a relation, B is fully functionally dependent on A if B is functionally dependent on A but not on
any proper subset of A.

n Third Normal Form (3NF) is a relation that is in First and Second Normal Form in which no non-primary-
key attribute is transitively dependent on the primary key. Transitive dependency is a condition where A, B,
and C are attributes of a relation such that if A → B and B → C, then C is transitively dependent on A via B
(provided that A is not functionally dependent on B or C).

n General definition for Second Normal Form (2NF) is a relation that is in First Normal Form and every
non-candidate-key attribute is fully functionally dependent on any candidate key. In this definition, a
candidate-key attribute is part of any candidate key.

n General definition for Third Normal Form (3NF) is a relation that is in First and Second Normal Form in
which no non-candidate-key attribute is transitively dependent on any candidate key. In this definition, a
candidate-key attribute is part of any candidate key.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

Exercises | 413

Exercises

13.13 Continue the process of normalizing the Client and PropertyRentalOwner 1NF relations shown in Figure 13.13
to 3NF relations. At the end of this process check that the resultant 3NF relations are the same as those pro-
duced from the alternative ClientRental 1NF relation shown in Figure 13.16.

13.14 Examine the Patient Medication Form for the Wellmeadows Hospital case study shown in Figure 13.18.

(a) Identify the functional dependencies represented by the attributes shown in the form in Figure 13.18.
State any assumptions you make about the data and the attributes shown in this form.

(b) Describe and illustrate the process of normalizing the attributes shown in Figure 13.18 to produce a set
of well-designed 3NF relations.

(c) Identify the primary, alternate, and foreign keys in your 3NF relations.

13.15 The table shown in Figure 13.19 lists sample dentist/patient appointment data. A patient is given an appoint-
ment at a specific time and date with a dentist located at a particular surgery. On each day of patient appoint-
ments, a dentist is allocated to a specific surgery for that day.

(a) The table shown in Figure 13.19 is susceptible to update anomalies. Provide examples of insertion,
deletion, and update anomalies.

(b) Identify the functional dependencies represented by the attributes shown in the table of Figure 13.19.
State any assumptions you make about the data and the attributes shown in this table.

(c) Describe and illustrate the process of normalizing the table shown in Figure 13.19 to 3NF relations.
Identify the primary, alternate, and foreign keys in your 3NF relations.

13.16 An agency called Instant Cover supplies part-time/temporary staff to hotels within Scotland. The table shown
in Figure 13.20 displays sample data, which lists the time spent by agency staff working at various hotels.
The National Insurance Number (NIN) is unique for every member of staff.

Review Questions

13.1 Describe the purpose of normalizing data.
13.2 Discuss the alternative ways that normalization

can be used to support database design.
13.3 Describe the types of update anomaly that

may occur on a relation that has redundant
data.

13.4 Describe the concept of functional
dependency.

13.5 What are the main characteristics of functional
dependencies that are used for normalization?

13.6 Describe how a database designer typically
identifies the set of functional dependencies
associated with a relation.

13.7 Describe the characteristics of a table in
Unnormalized Form (UNF) and describe how
such a table is converted to a First Normal
Form (1NF) relation.

13.8 What is the minimal normal form that a
relation must satisfy? Provide a definition for
this normal form.

13.9 Describe the two approaches to converting
an Unnormalized Form (UNF) table to
First Normal Form (1NF) relation(s).

13.10 Describe the concept of full functional
dependency and describe how this concept
relates to 2NF. Provide an example to
illustrate your answer.

13.11 Describe the concept of transitive dependency
and describe how this concept relates to 3NF.
Provide an example to illustrate your answer.

13.12 Discuss how the definitions of 2NF and 3NF
based on primary keys differ from the general
definitions of 2NF and 3NF. Provide an
example to illustrate your answer.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

414 | Chapter 13 z Normalization

(a) The table shown in Figure 13.20 is susceptible to update anomalies. Provide examples of insertion, dele-
tion, and update anomalies.

(b) Identify the functional dependencies represented by the attributes shown in the table of Figure 13.20.
State any assumptions you make about the data and the attributes shown in this table.

(c) Describe and illustrate the process of normalizing the table shown in Figure 13.20 to 3NF. Identify pri-
mary, alternate and foreign keys in your relations.

Figure 13.18

The Wellmeadows

Hospital Patient

Medication Form.

Figure 13.19

Table displaying

sample

dentist/patient

appointment data.

Figure 13.20

Table displaying

sample data for the

Instant Cover

agency.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

14
Chapter

Advanced Normalization

Chapter Objectives

In this chapter you will learn:

n How inference rules can identify a set of all functional dependencies for a

relation.

n How inference rules called Armstrong’s axioms can identify a minimal set of

useful functional dependencies from the set of all functional dependencies for

a relation.

n Normal forms that go beyond Third Normal Form (3NF), which includes

Boyce–Codd Normal Form (BCNF), Fourth Normal Form (4NF), and Fifth

Normal Form (5NF).

n How to identify Boyce–Codd Normal Form (BCNF).

n How to represent attributes shown on a report as BCNF relations using

normalization.

n The concept of multi-valued dependencies and 4NF.

n The problems associated with relations that break the rules of 4NF.

n How to create 4NF relations from a relation which breaks the rules of 4NF.

n The concept of join dependency and 5NF.

n The problems associated with relations that break the rules of 5NF.

n How to create 5NF relations from a relation which breaks the rules of 5NF.

In the previous chapter we introduced the technique of normalization and the concept of
functional dependencies between attributes. We described the benefits of using normal-
ization to support database design and demonstrated how attributes shown on sample
forms are transformed into First Normal Form (1NF), Second Normal Form (2NF), and
then finally Third Normal Form (3NF) relations. In this chapter, we return to consider
functional dependencies and describe normal forms that go beyond 3NF such as
Boyce–Codd Normal Form (BCNF), Fourth Normal Form (4NF), and Fifth Normal Form
(5NF). Relations in 3NF are normally sufficiently well structured to prevent the problems
associated with data redundancy, which was described in Section 13.3. However, later
normal forms were created to identify relatively rare problems with relations that, if not
corrected, may result in undesirable data redundancy.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

416 | Chapter 14 z Advanced Normalization

14.1

Structure of this Chapter

With the exception of 1NF, all normal forms discussed in the previous chapter and in
this chapter are based on functional dependencies among the attributes of a relation.
In Section 14.1 we continue the discussion on the concept of functional dependency
which was introduced in the previous chapter. We present a more formal and
theoretical aspect of functional dependencies by discussing inference rules for functional
dependencies.

In the previous chapter we described the three most commonly used normal forms: 1NF,
2NF, and 3NF. However, R. Boyce and E.F. Codd identified a weakness with 3NF and
introduced a stronger definition of 3NF called Boyce–Codd Normal Form (BCNF) (Codd,
1974), which we describe in Section 14.2. In Section 14.3 we present a worked example
to demonstrate the process of normalizing attributes originally shown on a report into a set
of BCNF relations.

Higher normal forms that go beyond BCNF were introduced later, such as Fourth
(4NF) and Fifth (5NF) Normal Forms (Fagin, 1977, 1979). However, these later normal
forms deal with situations that are very rare. We describe 4NF and 5NF in Sections 14.4
and 14.5.

To illustrate the process of normalization, examples are drawn from the DreamHome
case study described in Section 10.4 and documented in Appendix A.

More on Functional Dependencies

One of the main concepts associated with normalization is functional dependency, which
describes the relationship between attributes (Maier, 1983). In the previous chapter we
introduced this concept. In this section we describe this concept in a more formal and
theoretical way by discussing inference rules for functional dependencies.

Inference Rules for Functional Dependencies

In Section 13.4 we identified the characteristics of the functional dependencies that are
most useful in normalization. However, even if we restrict our attention to functional
dependencies with a one-to-one (1:1) relationship between attributes on the left- and right-
hand sides of the dependency that hold for all time and are fully functionally dependent,
then the complete set of functional dependencies for a given relation can still be very large.
It is important to find an approach that can reduce that set to a manageable size. Ideally,
we want to identify a set of functional dependencies (represented as X) for a relation
that is smaller than the complete set of functional dependencies (represented as Y) for
that relation and has the property that every functional dependency in Y is implied by the
functional dependencies in X. Hence, if we enforce the integrity constraints defined by the
functional dependencies in X, we automatically enforce the integrity constraints defined in
the larger set of functional dependencies in Y. This requirement suggests that there must

14.1.1

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

14.1 More on Functional Dependencies | 417

be functional dependencies that can be inferred from other functional dependencies. For
example, functional dependencies A → B and B → C in a relation implies that the func-
tional dependency A → C also holds in that relation. A → C is an example of a transitive
functional dependency and was discussed previously in Sections 13.4 and 13.7.

How do we begin to identify useful functional dependencies on a relation? Normally,
the database designer starts by specifying functional dependencies that are semantically
obvious; however, there are usually numerous other functional dependencies. In fact, the
task of specifying all possible functional dependencies for ‘real’ database projects is more
often than not, impractical. However, in this section we do consider an approach that helps
identify the complete set of functional dependencies for a relation and then discuss how to
achieve a minimal set of functional dependencies that can represent the complete set.

The set of all functional dependencies that are implied by a given set of functional
dependencies X is called the closure of X, written X

+ . We clearly need a set of rules to
help compute X+ from X. A set of inference rules, called Armstrong’s axioms, specifies
how new functional dependencies can be inferred from given ones (Armstrong, 1974). For
our discussion, let A, B, and C be subsets of the attributes of the relation R. Armstrong’s
axioms are as follows:

(1) Reflexivity: If B is a subset of A, then A → B

(2) Augmentation: If A → B, then A,C → B,C

(3) Transitivity: If A → B and B → C, then A → C

Note that each of these three rules can be directly proved from the definition of functional
dependency. The rules are complete in that given a set X of functional dependencies, all
functional dependencies implied by X can be derived from X using these rules. The rules
are also sound in that no additional functional dependencies can be derived that are not
implied by X. In other words, the rules can be used to derive the closure of X+.

Several further rules can be derived from the three given above that simplify the prac-
tical task of computing X+. In the following rules, let D be another subset of the attributes
of relation R, then:

(4) Self-determination: A → A

(5) Decomposition: If A → B,C, then A → B and A → C

(6) Union: If A → B and A → C, then A → B,C

(7) Composition: If A → B and C → D then A,C → B,D

Rule 1 Reflexivity and Rule 4 Self-determination state that a set of attributes always
determines any of its subsets or itself. Because these rules generate functional dependencies
that are always true, such dependencies are trivial and, as stated earlier, are generally not
interesting or useful. Rule 2 Augmentation states that adding the same set of attributes to
both the left- and right-hand sides of a dependency results in another valid dependency.
Rule 3 Transitivity states that functional dependencies are transitive. Rule 5 Decomposition
states that we can remove attributes from the right-hand side of a dependency. Applying
this rule repeatedly, we can decompose A → B, C, D functional dependency into the set of
dependencies A → B, A → C, and A → D. Rule 6 Union states that we can do the opposite:
we can combine a set of dependencies A → B, A → C, and A → D into a single functional

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

418 | Chapter 14 z Advanced Normalization

dependency A → B, C, D. Rule 7 Composition is more general than Rule 6 and states that
we can combine a set of non-overlapping dependencies to form another valid dependency.

To begin to identify the set of functional dependencies F for a relation, typically we first
identify the dependencies that are determined from the semantics of the attributes of the
relation. Then we apply Armstrong’s axioms (Rules 1 to 3) to infer additional functional
dependencies that are also true for that relation. A systematic way to determine these
additional functional dependencies is to first determine each set of attributes A that appears
on the left-hand side of some functional dependencies and then to determine the set of
all attributes that are dependent on A. Thus, for each set of attributes A we can determine
the set A+ of attributes that are functionally determined by A based on F; (A+ is called the
closure of A under F).

Minimal Sets of Functional Dependencies

In this section, we introduce what is referred to as equivalence of sets of functional
dependencies. A set of functional dependencies Y is covered by a set of functional
dependencies X, if every functional dependency in Y is also in X

+; that is, every depen-
dency in Y can be inferred from X. A set of functional dependencies X is minimal if it
satisfies the following conditions:

n Every dependency in X has a single attribute on its right-hand side.

n We cannot replace any dependency A → B in X with dependency C → B, where C is a
proper subset of A, and still have a set of dependencies that is equivalent to X.

n We cannot remove any dependency from X and still have a set of dependencies that is
equivalent to X.

A minimal set of dependencies should be in a standard form with no redundancies. A
minimal cover of a set of functional dependencies X is a minimal set of dependencies Xmin

that is equivalent to X. Unfortunately there can be several minimal covers for a set of
functional dependencies. We demonstrate the identification of the minimal cover for the
StaffBranch relation in the following example.

Example 14.1 Identifying the minimal set of functional dependencies
of the StaffBranch relation

We apply the three conditions described above on the set of functional dependencies
for the StaffBranch relation listed in Example 13.5 to produce the following functional
dependencies:

staffNo → sName

staffNo → position

staffNo → salary

staffNo → branchNo

staffNo → bAddress

14.1.2

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

14.2 Boyce–Codd Normal Form (BCNF) | 419

branchNo → bAddress

bAddress → branchNo

branchNo, position → salary

bAddress, position → salary

These functional dependencies satisfy the three conditions for producing a minimal set of
functional dependencies for the StaffBranch relation. Condition 1 ensures that every depen-
dency is in a standard form with a single attribute on the right-hand side. Conditions 2 and
3 ensure that there are no redundancies in the dependencies either by having redundant
attributes on the left-hand side of a dependency (Condition 2) or by having a dependency
that can be inferred from the remaining functional dependencies in X (Condition 3).

In the following section we return to consider normalization. We begin by discussing
Boyce–Codd Normal Form (BCNF), a stronger normal form than 3NF.

Boyce–Codd Normal Form (BCNF)

In the previous chapter we demonstrated how 2NF and 3NF disallow partial and transitive
dependencies on the primary key of a relation, respectively. Relations that have these types
of dependencies may suffer from the update anomalies discussed in Section 13.3.
However, the definition of 2NF and 3NF discussed in Sections 13.7 and 13.8, respectively,
do not consider whether such dependencies remain on other candidate keys of a relation,
if any exist. In Section 13.9 we presented general definitions for 2NF and 3NF that dis-
allow partial and transitive dependencies on any candidate key of a relation, respectively.
Application of the general definitions of 2NF and 3NF may identify additional redundancy
caused by dependencies that violate one or more candidate keys. However, despite these
additional constraints, dependencies can still exist that will cause redundancy to be present
in 3NF relations. This weakness in 3NF, resulted in the presentation of a stronger normal
form called Boyce–Codd Normal Form (Codd, 1974).

Definition of Boyce–Codd Normal Form

Boyce–Codd Normal Form (BCNF) is based on functional dependencies that take into
account all candidate keys in a relation; however, BCNF also has additional constraints
compared with the general definition of 3NF given in Section 13.9.

Boyce–Codd Normal A relation is in BCNF, if and only if, every determinant is a

Form (BCNF) candidate key.

To test whether a relation is in BCNF, we identify all the determinants and make
sure that they are candidate keys. Recall that a determinant is an attribute, or a group of
attributes, on which some other attribute is fully functionally dependent.

14.2

14.2.1

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

420 | Chapter 14 z Advanced Normalization

The difference between 3NF and BCNF is that for a functional dependency A → B, 3NF
allows this dependency in a relation if B is a primary-key attribute and A is not a candi-
date key, whereas BCNF insists that for this dependency to remain in a relation, A must be
a candidate key. Therefore, Boyce–Codd Normal Form is a stronger form of 3NF, such that
every relation in BCNF is also in 3NF. However, a relation in 3NF is not necessarily in BCNF.

Before considering the next example, we re-examine the Client, Rental, PropertyForRent,
and Owner relations shown in Figure 13.17. The Client, PropertyForRent, and Owner relations
are all in BCNF, as each relation only has a single determinant, which is the candidate key.
However, recall that the Rental relation contains the three determinants (clientNo, propertyNo),
(clientNo, rentStart), and (propertyNo, rentStart), originally identified in Example 13.11, as
shown below:

fd1 clientNo, propertyNo → rentStart, rentFinish

fd5′ clientNo, rentStart → propertyNo, rentFinish

fd6′ propertyNo, rentStart → clientNo, rentFinish

As the three determinants of the Rental relation are also candidate keys, the Rental relation
is also already in BCNF. Violation of BCNF is quite rare, since it may only happen under
specific conditions. The potential to violate BCNF may occur when:

n the relation contains two (or more) composite candidate keys; or

n the candidate keys overlap, that is have at least one attribute in common.

In the following example, we present a situation where a relation violates BCNF and
demonstrate the transformation of this relation to BCNF. This example demonstrates the
process of converting a 1NF relation to BCNF relations.

Example 14.2 Boyce–Codd Normal Form (BCNF)

In this example, we extend the DreamHome case study to include a description of client
interviews by members of staff. The information relating to these interviews is in the
ClientInterview relation shown in Figure 14.1. The members of staff involved in interview-
ing clients are allocated to a specific room on the day of interview. However, a room may
be allocated to several members of staff as required throughout a working day. A client is
only interviewed once on a given date, but may be requested to attend further interviews
at later dates.

The ClientInterview relation has three candidate keys: (clientNo, interviewDate), (staffNo,
interviewDate, interviewTime), and (roomNo, interviewDate, interviewTime). Therefore the
ClientInterview relation has three composite candidate keys, which overlap by sharing the

Figure 14.1

ClientInterview

relation.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

14.2 Boyce–Codd Normal Form (BCNF) | 421

common attribute interviewDate. We select (clientNo, interviewDate) to act as the primary key
for this relation. The ClientInterview relation has the following form:

ClientInterview (clientNo, interviewDate, interviewTime, staffNo, roomNo)

The ClientInterview relation has the following functional dependencies:

fd1 clientNo, interviewDate → interviewTime, staffNo, roomNo (Primary key)
fd2 staffNo, interviewDate, interviewTime → clientNo (Candidate key)
fd3 roomNo, interviewDate, interviewTime → staffNo, clientNo (Candidate key)
fd4 staffNo, interviewDate → roomNo

We examine the functional dependencies to determine the normal form of the
ClientInterview relation. As functional dependencies fd1, fd2, and fd3 are all candidate keys
for this relation, none of these dependencies will cause problems for the relation. The
only functional dependency that requires discussion is (staffNo, interviewDate) → roomNo

(represented as fd4). Even though (staffNo, interviewDate) is not a candidate key for the
ClientInterview relation this functional dependency is allowed in 3NF because roomNo is a
primary-key attribute being part of the candidate key (roomNo, interviewDate, interviewTime).
As there are no partial or transitive dependencies on the primary key (clientNo, interviewDate),
and functional dependency fd4 is allowed, the ClientInterview relation is in 3NF.

However, this relation is not in BCNF (a stronger normal form of 3NF) due to the pre-
sence of the (staffNo, interviewDate) determinant, which is not a candidate key for the
relation. BCNF requires that all determinants in a relation must be a candidate key for the
relation. As a consequence the ClientInterview relation may suffer from update anomalies.
For example, to change the room number for staff number SG5 on the 13-May-05 we must
update two tuples. If only one tuple is updated with the new room number, this results in
an inconsistent state for the database.

To transform the ClientInterview relation to BCNF, we must remove the violating func-
tional dependency by creating two new relations called Interview and StaffRoom, as shown
in Figure 14.2. The Interview and StaffRoom relations have the following form:

Interview (clientNo, interviewDate, interviewTime, staffNo)
StaffRoom (staffNo, interviewDate, roomNo)

Figure 14.2

The Interview and

StaffRoom BCNF

relations.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

422 | Chapter 14 z Advanced Normalization

We can decompose any relation that is not in BCNF into BCNF as illustrated. However,
it may not always be desirable to transform a relation into BCNF; for example, if there
is a functional dependency that is not preserved when we perform the decomposition
(that is, the determinant and the attributes it determines are placed in different relations).
In this situation, it is difficult to enforce the functional dependency in the relation, and an
important constraint is lost. When this occurs, it may be better to stop at 3NF, which
always preserves dependencies. Note in Example 14.2, in creating the two BCNF relations
from the original ClientInterview relation, we have ‘lost’ the functional dependency, roomNo,
interviewDate, interviewTime → staffNo, clientNo (represented as fd3), as the determinant for
this dependency is no longer in the same relation. However, we must recognize that if the
functional dependency, staffNo, interviewDate → roomNo (represented as fd4) is not removed,
the ClientInterview relation will have data redundancy.

The decision as to whether it is better to stop the normalization at 3NF or progress to
BCNF is dependent on the amount of redundancy resulting from the presence of fd4 and
the significance of the ‘loss’ of fd3. For example, if it is the case that members of staff
conduct only one interview per day, then the presence of fd4 in the ClientInterview relation
will not cause redundancy and therefore the decomposition of this relation into two BCNF
relations is not helpful or necessary. On the other hand, if members of staff conduct
numerous interviews per day, then the presence of fd4 in the ClientInterview relation will
cause redundancy and normalization of this relation to BCNF is recommended. However,
we should also consider the significance of losing fd3; in other words, does fd3 convey
important information about client interviews that must be represented in one of the result-
ing relations? The answer to this question will help to determine whether it is better to
retain all functional dependencies or remove data redundancy.

Review of Normalization up to BCNF

The purpose of this section is to review the process of normalization described in the pre-
vious chapter and in Section 14.2. We demonstrate the process of transforming attributes
displayed on a sample report from the DreamHome case study into a set of Boyce–Codd
Normal Form relations. In this worked example we use the definitions of 2NF and 3NF
that are based on the primary key of a relation. We leave the normalization of this worked
example using the general definitions of 2NF and 3NF as an exercise for the reader.

Example 14.3 First normal form (1NF) to Boyce–Codd Normal
Form (BCNF)

In this example we extend the DreamHome case study to include property inspection
by members of staff. When staff are required to undertake these inspections, they are
allocated a company car for use on the day of the inspections. However, a car may be
allocated to several members of staff as required throughout the working day. A member
of staff may inspect several properties on a given date, but a property is only inspected
once on a given date. Examples of the DreamHome Property Inspection Report are

14.3

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

14.3 Review of Normalization up to BCNF | 423

presented in Figure 14.3. The report on top describes staff inspections of property PG4 in
Glasgow.

First Normal Form (1NF)

We first transfer sample data held on two property inspection reports into table format with
rows and columns. This is referred to as the StaffPropertyInspection unnormalized table and
is shown in Figure 14.4. We identify the key attribute for this unnormalized table as
propertyNo.

We identify the repeating group in the unnormalized table as the property inspection and
staff details, which repeats for each property. The structure of the repeating group is:

Repeating Group = (iDate, iTime, comments, staffNo, sName, carReg)

Figure 14.3

DreamHome

Property Inspection

reports.

Figure 14.4

StaffPropertyInspection

unnormalized table.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

424 | Chapter 14 z Advanced Normalization

As a consequence, there are multiple values at the intersection of certain rows and columns.
For example, for propertyNo PG4 there are three values for iDate (18-Oct-03, 22-Apr-04,
1-Oct-04). We transform the unnormalized form to first normal form using the first approach
described in Section 13.6. With this approach, we remove the repeating group (property
inspection and staff details) by entering the appropriate property details (nonrepeating
data) into each row. The resulting first normal form StaffPropertyInspection relation is shown
in Figure 14.5.

In Figure 14.6, we present the functional dependencies (fd1 to fd6) for the
StaffPropertyInspection relation. We use the functional dependencies (as discussed in Sec-
tion 13.4.3) to identify candidate keys for the StaffPropertyInspection relation as being com-
posite keys comprising (propertyNo, iDate), (staffNo, iDate, iTime), and (carReg, iDate, iTime).
We select (propertyNo, iDate) as the primary key for this relation. For clarity, we place the
attributes that make up the primary key together, at the left-hand side of the relation.
The StaffPropertyInspection relation is defined as follows:

StaffPropertyInspection (propertyNo, iDate, iTime, pAddress, comments, staffNo, sName,
carReg)

Figure 14.5

The First Normal

Form (1NF)

StaffPropertyInspection

relation.

Figure 14.6

Functional

dependencies of the

StaffPropertyInspection

relation.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

14.3 Review of Normalization up to BCNF | 425

The StaffPropertyInspection relation is in first normal form (1NF) as there is a single value
at the intersection of each row and column. The relation contains data describing the
inspection of property by members of staff, with the property and staff details repeated
several times. As a result, the StaffPropertyInspection relation contains significant redun-
dancy. If implemented, this 1NF relation would be subject to update anomalies. To remove
some of these, we must transform the relation into second normal form.

Second Normal Form (2NF)

The normalization of 1NF relations to 2NF involves the removal of partial dependencies
on the primary key. If a partial dependency exists, we remove the functionally depend-
ent attributes from the relation by placing them in a new relation with a copy of their
determinant.

As shown in Figure 14.6, the functional dependencies (fd1 to fd6) of the
StaffPropertyInspection relation are as follows:

fd1 propertyNo, iDate → iTime, comments, staffNo,
sName, carReg (Primary key)

fd2 propertyNo → pAddress (Partial dependency)
fd3 staffNo → sName (Transitive dependency)
fd4 staffNo, iDate → carReg

fd5 carReg, iDate, iTime → propertyNo, pAddress,
comments, staffNo, sName (Candidate key)

fd6 staffNo, iDate, iTime → propertyNo, pAddress, comments (Candidate key)

Using the functional dependencies, we continue the process of normalizing the
StaffPropertyInspection relation. We begin by testing whether the relation is in 2NF by
identifying the presence of any partial dependencies on the primary key. We note that the
property attribute (pAddress) is partially dependent on part of the primary key, namely the
propertyNo (represented as fd2), whereas the remaining attributes (iTime, comments, staffNo,
sName, and carReg) are fully dependent on the whole primary key (propertyNo and iDate),
(represented as fd1). Note that although the determinant of the functional dependency
staffNo, iDate → carReg (represented as fd4) only requires the iDate attribute of the primary
key, we do not remove this dependency at this stage as the determinant also includes
another non-primary-key attribute, namely staffNo. In other words, this dependency is not
wholly dependent on part of the primary key and therefore does not violate 2NF.

The identification of the partial dependency (propertyNo → pAddress) indicates that the
StaffPropertyInspection relation is not in 2NF. To transform the relation into 2NF requires
the creation of new relations so that the attributes that are not fully dependent on the
primary key are associated with only the appropriate part of the key.

The StaffPropertyInspection relation is transformed into second normal form by removing
the partial dependency from the relation and creating two new relations called Property and
PropertyInspection with the following form:

Property (propertyNo, pAddress)
PropertyInspection (propertyNo, iDate, iTime, comments, staffNo, sName, carReg)

These relations are in 2NF, as every non-primary-key attribute is functionally dependent
on the primary key of the relation.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

426 | Chapter 14 z Advanced Normalization

Third Normal Form (3NF)

The normalization of 2NF relations to 3NF involves the removal of transitive dependencies.
If a transitive dependency exists, we remove the transitively dependent attributes from the
relation by placing them in a new relation along with a copy of their determinant. The
functional dependencies within the Property and PropertyInspection relations are as follows:

Property Relation
fd2 propertyNo → pAddress

PropertyInspection Relation
fd1 propertyNo, iDate → iTime, comments, staffNo, sName, carReg

fd3 staffNo → sName

fd4 staffNo, iDate → carReg

fd5′ carReg, iDate, iTime → propertyNo, comments, staffNo, sName

fd6′ staffNo, iDate, iTime → propertyNo, comments

As the Property relation does not have transitive dependencies on the primary key, it
is therefore already in 3NF. However, although all the non-primary-key attributes within
the PropertyInspection relation are functionally dependent on the primary key, sName is
also transitively dependent on staffNo (represented as fd3). We also note the functional
dependency staffNo, iDate → carReg (represented as fd4) has a non-primary-key attribute
carReg partially dependent on a non-primary-key attribute, staffNo. We do not remove this
dependency at this stage as part of the determinant for this dependency includes a primary-
key attribute, namely iDate. In other words, this dependency is not wholly transitively
dependent on non-primary-key attributes and therefore does not violate 3NF. (In other
words, as described in Section 13.9, when considering all candidate keys of a relation, the
staffNo, iDate → carReg dependency is allowed in 3NF because carReg is a primary-
key attribute as it is part of the candidate key (carReg, iDate, iTime) of the original
PropertyInspection relation.)

To transform the PropertyInspection relation into 3NF, we remove the transitive depen-
dency (staffNo → sName) by creating two new relations called Staff and PropertyInspect with
the form:

Staff (staffNo, sName)
PropertyInspect (propertyNo, iDate, iTime, comments, staffNo, carReg)

The Staff and PropertyInspect relations are in 3NF as no non-primary-key attribute is wholly
functionally dependent on another non-primary-key attribute. Thus, the StaffPropertyInspection

relation shown in Figure 14.5 has been transformed by the process of normalization into
three relations in 3NF with the following form:

Property (propertyNo, pAddress)
Staff (staffNo, sName)
PropertyInspect (propertyNo, iDate, iTime, comments, staffNo, carReg)

Boyce–Codd Normal Form (BCNF)

We now examine the Property, Staff, and PropertyInspect relations to determine whether
they are in BCNF. Recall that a relation is in BCNF if every determinant of a relation is a

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

14.3 Review of Normalization up to BCNF | 427

candidate key. Therefore, to test for BCNF, we simply identify all the determinants and
make sure they are candidate keys.

The functional dependencies for the Property, Staff, and PropertyInspect relations are as
follows:

Property Relation
fd2 propertyNo → pAddress

Staff Relation
fd3 staffNo → sName

PropertyInspect Relation
fd1′ propertyNo, iDate → iTime, comments, staffNo, carReg

fd4 staffNo, iDate → carReg

fd5′ carReg, iDate, iTime → propertyNo, comments, staffNo

fd6′ staffNo, iDate, iTime → propertyNo, comments

We can see that the Property and Staff relations are already in BCNF as the determinant in
each of these relations is also the candidate key. The only 3NF relation that is not in BCNF
is PropertyInspect because of the presence of the determinant (staffNo, iDate), which is not
a candidate key (represented as fd4). As a consequence the PropertyInspect relation may
suffer from update anomalies. For example, to change the car allocated to staff number
SG14 on the 22-Apr-03, we must update two tuples. If only one tuple is updated with the
new car registration number, this results in an inconsistent state for the database.

To transform the PropertyInspect relation into BCNF, we must remove the dependency
that violates BCNF by creating two new relations called StaffCar and Inspection with the
form:

StaffCar (staffNo, iDate, carReg)
Inspection (propertyNo, iDate, iTime, comments, staffNo)

The StaffCar and Inspection relations are in BCNF as the determinant in each of these
relations is also a candidate key.

In summary, the decomposition of the StaffPropertyInspection relation shown in Figure 14.5
into BCNF relations is shown in Figure 14.7. In this example, the decomposition of the

Figure 14.7

Decomposition

of the

StaffPropertyInspection

relation into BCNF

relations.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

428 | Chapter 14 z Advanced Normalization

original StaffPropertyInspection relation to BCNF relations has resulted in the ‘loss’ of the
functional dependency: carReg, iDate, iTime → propertyNo, pAddress, comments, staffNo, sName,
as parts of the determinant are in different relations (represented as fd5). However, we
recognize that if the functional dependency, staffNo, iDate → carReg (represented as fd4)
is not removed, the PropertyInspect relation will have data redundancy.

The resulting BCNF relations have the following form:

Property (propertyNo, pAddress)
Staff (staffNo, sName)
Inspection (propertyNo, iDate, iTime, comments, staffNo)
StaffCar (staffNo, iDate, carReg)

The original StaffPropertyInspection relation shown in Figure 14.5 can be recreated from the
Property, Staff, Inspection, and StaffCar relations using the primary key/foreign key
mechanism. For example, the attribute staffNo is a primary key within the Staff relation and
is also present within the Inspection relation as a foreign key. The foreign key allows the
association of the Staff and Inspection relations to identify the name of the member of staff
undertaking the property inspection.

Fourth Normal Form (4NF)

Although BCNF removes any anomalies due to functional dependencies, further research
led to the identification of another type of dependency called a Multi-Valued
Dependency (MVD), which can also cause data redundancy (Fagin, 1977). In this section,
we briefly describe a multi-valued dependency and the association of this type of depen-
dency with Fourth Normal Form (4NF).

Multi-Valued Dependency

The possible existence of multi-valued dependencies in a relation is due to First Normal
Form, which disallows an attribute in a tuple from having a set of values. For example, if we
have two multi-valued attributes in a relation, we have to repeat each value of one of the
attributes with every value of the other attribute, to ensure that tuples of the relation are
consistent. This type of constraint is referred to as a multi-valued dependency and results
in data redundancy. Consider the BranchStaffOwner relation shown in Figure 14.8(a), which

Figure 14.8(a)

The

BranchStaffOwner

relation.

14.4

14.4.1

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

14.4 Fourth Normal Form (4NF) | 429

displays the names of members of staff (sName) and property owners (oName) at each
branch office (branchNo). In this example, assume that staff name (sName) uniquely
identifies each member of staff and that the owner name (oName) uniquely identifies each
owner.

In this example, members of staff called Ann Beech and David Ford work at branch
B003, and property owners called Carol Farrel and Tina Murphy are registered at branch
B003. However, as there is no direct relationship between members of staff and property
owners at a given branch office, we must create a tuple for every combination of member
of staff and owner to ensure that the relation is consistent. This constraint represents
a multi-valued dependency in the BranchStaffOwner relation. In other words, a MVD exists
because two independent 1:* relationships are represented in the BranchStaffOwner relation.

Multi-Valued Represents a dependency between attributes (for example, A, B,

Dependency and C) in a relation, such that for each value of A there is a set of

(MVD) values for B and a set of values for C. However, the set of values for

B and C are independent of each other.

We represent a MVD between attributes A, B, and C in a relation using the following
notation:

A ⎯>> B

A ⎯>> C

For example, we specify the MVD in the BranchStaffOwner relation shown in Figure 14.8(a)
as follows:

branchNo ⎯>> sName

branchNo ⎯>> oName

A multi-valued dependency can be further defined as being trivial or nontrivial. A
MVD A ⎯>> B in relation R is defined as being trivial if (a) B is a subset of A or
(b) A ∪ B = R. A MVD is defined as being nontrivial if neither (a) nor (b) is satisfied.
A trivial MVD does not specify a constraint on a relation, while a nontrivial MVD does
specify a constraint.

The MVD in the BranchStaffOwner relation shown in Figure 14.8(a) is nontrivial as
neither condition (a) nor (b) is true for this relation. The BranchStaffOwner relation is
therefore constrained by the nontrivial MVD to repeat tuples to ensure the relation re-
mains consistent in terms of the relationship between the sName and oName attributes. For
example, if we wanted to add a new property owner for branch B003 we would have to
create two new tuples, one for each member of staff, to ensure that the relation remains
consistent. This is an example of an update anomaly caused by the presence of the non-
trivial MVD.

Even though the BranchStaffOwner relation is in BCNF, the relation remains poorly
structured, due to the data redundancy caused by the presence of the nontrivial MVD. We
clearly require a stronger form of BCNF that prevents relational structures such as the
BranchStaffOwner relation.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

430 | Chapter 14 z Advanced Normalization

Definition of Fourth Normal Form

Fourth Normal A relation that is in Boyce–Codd normal form and does not contain

Form (4NF) nontrivial multi-valued dependencies.

Fourth Normal Form (4NF) is a stronger normal form than BCNF as it prevents relations
from containing nontrivial MVDs, and hence data redundancy (Fagin, 1977). The normal-
ization of BCNF relations to 4NF involves the removal of the MVD from the relation by
placing the attribute(s) in a new relation along with a copy of the determinant(s).

For example, the BranchStaffOwner relation in Figure 14.8(a) is not in 4NF because of the
presence of the nontrivial MVD. We decompose the BranchStaffOwner relation into the
BranchStaff and BranchOwner relations, as shown in Figure 14.8(b). Both new relations are
in 4NF because the BranchStaff relation contains the trivial MVD branchNo ⎯>> sName,
and the BranchOwner relation contains the trivial MVD branchNo ⎯>> oName. Note that
the 4NF relations do not display data redundancy and the potential for update anomalies
is removed. For example, to add a new property owner for branch B003, we simply create
a single tuple in the BranchOwner relation.

For a detailed discussion on 4NF the interested reader is referred to Date (2003),
Elmasri and Navathe (2003), and Hawryszkiewycz (1994).

Fifth Normal Form (5NF)

Whenever we decompose a relation into two relations the resulting relations have the
lossless-join property. This property refers to the fact that we can rejoin the resulting
relations to produce the original relation. However, there are cases were there is the require-
ment to decompose a relation into more than two relations. Although rare, these cases
are managed by join dependency and Fifth Normal Form (5NF). In this section we briefly
describe the lossless-join dependency and the association with 5NF.

Lossless-Join Dependency

Lossless-join A property of decomposition, which ensures that no spurious tuples

dependency are generated when relations are reunited through a natural join

operation.

Figure 14.8(b)

The BranchStaff and

BranchOwner 4NF

relations.

14.5

14.5.1

14.4.2

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

14.5 Fifth Normal Form (5NF) | 431

In splitting relations by projection, we are very explicit about the method of decomposi-
tion. In particular, we are careful to use projections that can be reversed by joining the
resulting relations, so that the original relation is reconstructed. Such a decomposition is
called a lossless-join (also called a nonloss- or nonadditive-join) decomposition, because
it preserves all the data in the original relation and does not result in the creation of
additional spurious tuples. For example, Figures 14.8(a) and (b) show that the decomposi-
tion of the BranchStaffOwner relation into the BranchStaff and BranchOwner relations has the
lossless-join property. In other words, the original BranchStaffOwner relation can be recon-
structed by performing a natural join operation on the BranchStaff and BranchOwner rela-
tions. In this example, the original relation is decomposed into two relations. However,
there are cases were we require to perform a lossless-join decompose of a relation into
more than two relations (Aho et al., 1979). These cases are the focus of the lossless-join
dependency and Fifth Normal Form (5NF).

Definition of Fifth Normal Form

Fifth Normal Form (5NF) A relation that has no join dependency.

Fifth Normal Form (5NF) (also called Project-Join Normal Form (PJNF)) specifies that a
5NF relation has no join dependency (Fagin, 1979). To examine what a join dependency
means, consider as an example the PropertyItemSupplier relation shown in Figure 14.9(a).
This relation describes properties (propertyNo) that require certain items (itemDescription),
which are supplied by suppliers (supplierNo) to the properties (propertyNo). Furthermore,
whenever a property (p) requires a certain item (i) and a supplier (s) supplies that item (i)
and the supplier (s) already supplies at least one item to that property (p), then the supplier
(s) will also supply the required item (i) to property (p). In this example, assume that a
description of an item (itemDescription) uniquely identifies each type of item.

Figure 14.9

(a) Illegal state for

PropertyItemSupplier

relation and

(b) legal state for

PropertyItemSupplier

relation.

14.5.2

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

432 | Chapter 14 z Advanced Normalization

To identify the type of constraint on the PropertyItemSupplier relation in Figure 14.9(a),
consider the following statement:

If Property PG4 requires Bed (from data in tuple 1)
Supplier S2 supplies property PG4 (from data in tuple 2)
Supplier S2 provides Bed (from data in tuple 3)

Then Supplier S2 provides Bed for property PG4

This example illustrates the cyclical nature of the constraint on the PropertyItemSupplier

relation. If this constraint holds then the tuple (PG4, Bed, S2) must exist in any legal state
of the PropertyItemSupplier relation as shown in Figure 14.9(b). This is an example of a type
of update anomaly and we say that this relation contains a join dependency (JD).

Join Describes a type of dependency. For example, for a relation R with

dependency subsets of the attributes of R denoted as A, B, . . . , Z, a relation R

satisfies a join dependency if and only if every legal value of R is

equal to the join of its projections on A, B, . . . , Z.

As the PropertyItemSupplier relation contains a join dependency, it is therefore not
in 5NF. To remove the join dependency, we decompose the PropertyItemSupplier relation
into three 5NF relations, namely PropertyItem (R1), ItemSupplier (R2), and PropertySupplier

(R3) relations, as shown in Figure 14.10. We say that the PropertyItemSupplier relation with
the form (A, B, C) satisfies the join dependency JD (R1(A, B), R2(B, C), R3(A, C)).

It is important to note that performing a natural join on any two relations will produce
spurious tuples; however, performing the join on all three will recreate the original
PropertyItemSupplier relation.

For a detailed discussion on 5NF the interested reader is referred to Date (2003), Elmasri
and Navathe (2003), and Hawryszkiewycz (1994).

Figure 14.10

PropertyItem,

ItemSupplier, and

PropertySupplier

5NF relations.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

Exercises | 433

Review Questions

14.1 Describe the purpose of using inference rules to
identify functional dependencies for a given
relation.

14.2 Discuss the purpose of Armstrong’s axioms.
14.3 Discuss the purpose of Boyce–Codd Normal

Form (BCNF) and discuss how BCNF differs
from 3NF. Provide an example to illustrate
your answer.

14.4 Describe the concept of multi-valued
dependency and discuss how this concept
relates to 4NF. Provide an example to illustrate
your answer.

14.5 Describe the concept of join dependency and
discuss how this concept relates to 5NF.
Provide an example to illustrate your
answer.

Exercises

14.6 On completion of Exercise 13.14 examine the 3NF relations created to represent the attributes shown in the
Wellmeadows Hospital form shown in Figure 13.18. Determine whether these relations are also in BCNF. If
not, transform the relations that do not conform into BCNF.

14.7 On completion of Exercise 13.15 examine the 3NF relations created to represent the attributes shown in the
relation that displays dentist/patient appointment data in Figure 13.19. Determine whether these relations are
also in BCNF. If not, transform the relations that do not conform into BCNF.

14.8 On completion of Exercise 13.16 examine the 3NF relations created to represent the attributes shown in the
relation displaying employee contract data for an agency called Instant Cover in Figure 13.20. Determine
whether these relations are also in BCNF. If not, transform the relations that do not conform into BCNF.

14.9 The relation shown in Figure 14.11 lists members of staff (staffName) working in a given ward (wardName)
and patients (patientName) allocated to a given ward. There is no relationship between members of staff and

Chapter Summary

n Inference rules can be used to identify the set of all functional dependencies associated with a relation. This
set of dependencies can be very large for a given relation.

n Inference rules called Armstrong’s axioms can be used to identify a minimal set of functional dependencies
from the set of all functional dependencies for a relation.

n Boyce–Codd Normal Form (BCNF) is a relation in which every determinant is a candidate key.

n Fourth Normal Form (4NF) is a relation that is in BCNF and does not contain nontrivial multi-valued depen-
dencies. A multi-valued dependency (MVD) represents a dependency between attributes (A, B, and C) in a
relation, such that for each value of A there is a set of values of B and a set of values for C. However, the set
of values for B and C are independent of each other.

n A lossless-join dependency is a property of decomposition, which means that no spurious tuples are gener-
ated when relations are combined through a natural join operation.

n Fifth Normal Form (5NF) is a relation that contains no join dependency. For a relation R with subsets of
attributes of R denoted as A, B, . . . , Z, a relation R satisfies a join dependency if and only if every legal value
of R is equal to the join of its projections on A, B, . . . , Z.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

434 | Chapter 14 z Advanced Normalization

Figure 14.11

The WardStaffPatient

relation.

patients in each ward. In this example assume that staff name (staffName) uniquely identifies each member of
staff and that the patient name (patientName) uniquely identifies each patient.

(a) Describe why the relation shown in Figure 14.11 is not in 4NF.
(b) The relation shown in Figure 14.11 is susceptible to update anomalies. Provide examples of insertion,

deletion, and update anomalies.
(c) Describe and illustrate the process of normalizing the relation shown in Figure 14.11 to 4NF.

14.10 The relation shown in Figure 14.12 describes hospitals (hospitalName) that require certain items
(itemDescription), which are supplied by suppliers (supplierNo) to the hospitals (hospitalName). Furthermore,
whenever a hospital (h) requires a certain item (i) and a supplier (s) supplies that item (i) and the supplier (s)
already supplies at least one item to that hospital (h), then the supplier (s) will also supply the required item
(i) to the hospital (h). In this example, assume that a description of an item (itemDescription) uniquely
identifies each type of item.

(a) Describe why the relation shown in Figure 14.12 is not in 5NF.
(b) Describe and illustrate the process of normalizing the relation shown in Figure 14.12 to 5NF.

Figure 14.12

The

HospitalItemSupplier

relation.

PD
Fi

ll
PD

F
Edi

to
r w

ith
 F

re
e W

rit
er

 an
d

Too
ls

http://www.pdfill.com

