Database Availability and Integrity in NoSQL

Fahri Firdausillah [M031010012]

What is NoSQL

- Stands for Not Only SQL
- Mostly addressing some of the points: nonrelational, distributed, horizontal scalable, schema-free, easy replication support, eventually consistent, and huge data amount
- This presentation will talk much about replication and horizontal scalable for database availability, then eventually consistent and schema-free for integrity

List of NoSQL Products

Cassandra used on:

- Digg, Facebook, Twitter, Reddit, Rackspace, Cloudkick, Cisco
- Hadoop used on:
 - Amazon Web Services, Pentaho, Yahoo!, The New York Times
- CouchDB used on:
 - CERN, BBC, Interactive Mediums
- MongoDB used on:
 - Foursquare, bit.ly, SourceForge, Fotopedia, Joomla Ads
 - Riak used on:

Widescript, Western Communications, Ask Sponsored Listings

Database Availability Outline

- Database Availability Means
- CAP Theorem (BASE vs ACID)
- Partitioning and Replication
- Replication Diagram
- "Ring" of Consistent Hashing
- Next → Database Integrity

What is NoSQL

- Stands for Not Only SQL
- Mostly addressing some of the points: nonrelational, distributed, horizontal scalable, schema-free, easy replication support, eventually consistent, and huge data amount
- This presentation will talk much about horizontal scalable for <u>database availability</u> and eventually consistent for <u>database</u> integrity

What is NoSQL

- Stands for Not Only SQL
- Mostly addressing some of the points: nonrelational, distributed, horizontal scalable, schema-free, easy replication support, eventually consistent, and huge data amount
- This presentation will talk much about horizontal scalable for <u>database availability</u> and eventually consistent for <u>database</u> integrity

Database Availability Mean

- IBM divide database availability into 3 section:
 - High Availability: database and application is available in scheduled period, when maintenance period system is temporarily down.
 - Continuous Operation: system available all the time with no scheduled outages.
 - Continuous Availability: combination of HA & CO, data is always available, and maintenance ^{*}Database Availability Censiderations. ^{IBM} Red Book [2001] the system

CAP Theorem (1)

Consistency

Consistency, Availability and Partition Tolerance.

A shared-data system can have at most two of those

Partition tolerance

Relational Key-Value Column-Oriented Document-Oriented

RDBMs (Oracle, MySQL), Aster Data, Green Plum, Vertica

Pick Any Two

Availability

Δ

three. * Visual Guide to NoSQL Systems, Nathan Hurst, 2010 ¹⁸

DR. MemoscheDB. Scalari

CAP Theorem (2)

- Consistent, Available (CA) Systems have trouble with partitions and typically deal with it with replication.
- Consistent, Partition-Tolerant (CP) Systems have trouble with availability while keeping data.
- Available, Partition-Tolerant (AP) Systems achieve "eventual consistency" through replication and verification consistent across partitioned nodes.

ACID and **BASE**

• ACID

Atomicity: All or nothing

Consistency: Any transaction should result in valid tables

Isolation: separate transactions

Durability: Database will survive a system failures.

ACID and BASE cont'd

BASE

Basically Available - system seems to work all the time

- Soft State it doesn't have to be consistent all the time
- Eventually Consistent becomes consistent at some later time

Horizontal Scale

 Data explosion (especially in web application) force database system to scale

Ist solution : Vertical scale

Improving server specification by adding more processor, RAM, and storage device. <u>Limited and expensive</u>.

• 2rd solution : Horizontal scale

Adding more cheap computer as server expansion. Do sharding and partitioning which is hard to implement and expensive using relational databases (RDBMS)

Partitioning & Replication

Partitioning

- Sharing the data between different nodes (data host)
- Each node placed on a ring
- Advantage : ability to scale incrementally
- Issues : non-uniform data distribution

Replication

- Multiple nodes
- Multiple datacenters
- High availability and durability

Ring of Consistent Hashing

When a New Node Join

H, A, X, B, C, D will update the membership synchronously

And then asynchronously propagate the membership changes to other nodes

When Existing Node Leaves Network

Asynchronously propagate the membership changes to other nodes

Database Integrity Outline

- Database Integrity Means
- Do We Really Need Consistency?
- Eventually Consistent
- Variations of Eventually Consistency
- Problem in Strict Schema
- Schema-Free

Database Integrity Means

- Ensure data entered into the database is accurate, valid, and consistent. Three basic types of integrity constraints:
 - Entity integrity, allowing no two rows to have the same identity within a table.
 - Domain integrity, restricting data to predefined data types.
 - Referential integrity, requiring the existence of a related row in another table, e.g. a customer for a given customer ID.

Do We Really Need Consistency?

- In strict OLTP environment (e.g. banking and ERP) data consistency is heart of the system.
- But even in Amazon (e-commerce) real-time consistency is not really needed.
- In large shared data environment such Facebook, Digg, Yahoo, Google, etc. data consistency can be relaxed
- Systems with strong ACID have poor performance.

Eventually Consistent

- Specific form of weak consistency
- If no new updates are made, eventually all accesses will return the last updated value.
- System does not guarantee subsequent accesses will return the updated value.
- A number of conditions need to be met before the value will be returned.

Variations of Eventually Consistency

- Causal consistency
- Read-your-writes consistency
- Session consistency
- Monotonic read consistency
- Monotonic write consistency

Problem in Strict Schema

- Agile methodology is about changing adoption
- Dynamic Frameworks (e.g. Ruby on Rails, Django, and Grails, Symfony) are now widely used
- In many cases it is hard to migrate across database
- Adding more colur Symfony. **Jango**

Schema-Free

- Enable to add column in row level. Not restricted to column level.
- Each rows only use column they need (saving space).
- All we need to do is defining Namespace for tables. Then we can just add column, even another table in particular column.

cars off the criteriutilities

PK* PK cars off the

No more integration
headache

Conclusion & (not a) Summary

- NoSQL is yet another form of database.
- NoSQL don't intend to replace RDBMS.
- It is database alternative in Large data shared environment.
- Relaxing consistency will boost database availability and performance.
- There is no Free Lunch and Silver Bullet in database technologies.

