
Database Availability and
Integrity
in NoSQL

Fahri Firdausillah
[M031010012]

What is NoSQL
 Stands for Not Only SQL

 Mostly addressing some of the points: non-
relational, distributed, horizontal scalable,
schema-free, easy replication support,
eventually consistent, and huge data
amount

 This presentation will talk much about
replication and horizontal scalable for
database availability, then eventually
consistent and schema-free for database
integrity

List of NoSQL Products
 Cassandra used on:

 Digg, Facebook, Twitter, Reddit, Rackspace, Cloudkick,
Cisco

 Hadoop used on:

 Amazon Web Services, Pentaho, Yahoo!, The New York
Times

 CouchDB used on:

 CERN, BBC, Interactive Mediums

 MongoDB used on:

 Foursquare, bit.ly, SourceForge, Fotopedia, Joomla Ads

 Riak used on:

 Widescript, Western Communications, Ask Sponsored
Listings

Database Availability Outline
 Database Availability Means

 CAP Theorem (BASE vs ACID)

 Partitioning and Replication

 Replication Diagram

 “Ring” of Consistent Hashing

 Next …. → Database Integrity

What is NoSQL
 Stands for Not Only SQL

 Mostly addressing some of the points: non-
relational, distributed, horizontal scalable,
schema-free, easy replication support,
eventually consistent, and huge data
amount

 This presentation will talk much about
horizontal scalable for database availability
and eventually consistent for database
integrity

What is NoSQL
 Stands for Not Only SQL

 Mostly addressing some of the points: non-
relational, distributed, horizontal scalable,
schema-free, easy replication support,
eventually consistent, and huge data
amount

 This presentation will talk much about
horizontal scalable for database availability
and eventually consistent for database
integrity

Database Availability Mean
● IBM divide database availability into 3

section:
● High Availability: database and

application is available in scheduled
period, when maintenance period system is
temporarily down.

● Continuous Operation: system available
all the time with no scheduled outages.

● Continuous Availability: combination of
HA & CO, data is always available, and
maintenance is done without shutdown the
system

* Database Availability Considerations. IBM RedBook [2001]

CAP Theorem (1)

* Visual Guide to NoSQL Systems, Nathan Hurst, 2010 [8]

Consistency,
Availability and
Partition
Tolerance.

A shared-data
system can have at
most two of those
three.

CAP Theorem (2)
Consistent, Available (CA) Systems have
trouble with partitions and typically deal with it
with replication.

Consistent, Partition-Tolerant (CP) Systems
have trouble with availability while keeping data.

Available, Partition-Tolerant (AP) Systems
achieve “eventual consistency” through
replication and verification consistent across
partitioned nodes.

ACID and BASE
 ACID

Atomicity: All or nothing

Consistency: Any transaction should
result in valid tables

Isolation: separate transactions

Durability: Database will survive a
system failures.

ACID and BASE cont'd
 BASE

Basically Available - system seems to
work all the time

 Soft State - it doesn't have to be
consistent all the time

 Eventually Consistent - becomes
consistent at some later time

Horizontal Scale

Data explosion (especially in web
application) force database system to
scale

1st solution : Vertical scale
Improving server specification by adding more processor,
RAM, and storage device. Limited and expensive.

2nd solution : Horizontal scale
Adding more cheap computer as server expansion. Do
sharding and partitioning which is hard to implement and
expensive using relational databases (RDBMS)

Partitioning & Replication
 Partitioning

− Sharing the data between different nodes (data
host)

− Each node placed on a ring
− Advantage : ability to scale incrementally
− Issues : non-uniform data distribution

 Replication
− Multiple nodes
− Multiple datacenters
− High availability and durability

Data Replication

Ring of Consistent Hashing

When a New Node Join
Network

When Existing Node Leaves
Network

Database Integrity Outline
 Database Integrity Means
 Do We Really Need Consistency?
 Eventually Consistent
 Variations of Eventually Consistency
 Problem in Strict Schema
 Schema-Free

Database Integrity Means
 Ensure data entered into the database is

accurate, valid, and consistent. Three basic
types of integrity constraints:
 Entity integrity, allowing no two rows to have

the same identity within a table.
 Domain integrity, restricting data to predefined

data types.
 Referential integrity, requiring the existence of

a related row in another table, e.g. a customer for
a given customer ID.

Do We Really Need
Consistency?

 In strict OLTP environment (e.g. banking and
ERP) data consistency is heart of the system.

 But even in Amazon (e-commerce) real-time
consistency is not really needed.

 In large shared data environment such Facebook,
Digg, Yahoo, Google, etc. data consistency can
be relaxed

 Systems with strong ACID have poor
performance.

Eventually Consistent
 Specific form of weak consistency
 If no new updates are made, eventually

all accesses will return the last updated
value.

 System does not guarantee subsequent
accesses will return the updated value.

 A number of conditions need to be met
before the value will be returned.

Variations of Eventually
Consistency

 Causal consistency
 Read-your-writes consistency
 Session consistency
 Monotonic read consistency
 Monotonic write consistency

Problem in Strict Schema
 Agile methodology is about changing

adoption

 Dynamic Frameworks (e.g. Ruby on Rails,
Django, and Grails, Symfony) are now widely
used

 In many cases it is hard to migrate across
database

 Adding more column leaves null values on
previous record.

Schema-Free
 Enable to add column in row level. Not

restricted to column level.

 Each rows only use column they need (saving
space).

 All we need to do is defining Namespace for
tables. Then we can just add column, even
another table in particular column.

 No more integration
headache

Conclusion & (not a) Summary
 NoSQL is yet another form of database.
 NoSQL don't intend to replace RDBMS.
 It is database alternative in Large data

shared environment.
 Relaxing consistency will boost

database availability and performance.
 There is no Free Lunch and Silver Bullet

in database technologies.

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

