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What is NoSQL
 Stands for Not Only SQL

 Mostly addressing some of the points: non-
relational, distributed,  horizontal scalable, 
schema-free, easy replication support,  
eventually consistent, and huge data 
amount

 This presentation will talk much about 
replication and horizontal scalable for 
database availability, then eventually 
consistent and schema-free for database 
integrity



List of NoSQL Products
 Cassandra used on:

 Digg, Facebook, Twitter, Reddit, Rackspace,  Cloudkick, 
Cisco

 Hadoop used on:

 Amazon Web Services,  Pentaho, Yahoo!, The New York 
Times

 CouchDB used on:

 CERN, BBC, Interactive Mediums

 MongoDB used on:

 Foursquare, bit.ly, SourceForge, Fotopedia, Joomla Ads

 Riak used on:

 Widescript, Western Communications, Ask Sponsored 
Listings



Database Availability Outline
 Database Availability Means

 CAP Theorem (BASE vs ACID)

 Partitioning and Replication

 Replication Diagram

 “Ring” of Consistent Hashing

 Next …. → Database Integrity
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Database Availability Mean
● IBM divide database availability into 3 

section:
● High Availability: database and 

application is available in scheduled 
period, when maintenance period system is 
temporarily down.

● Continuous Operation: system available 
all the time with no scheduled outages.

● Continuous Availability: combination of 
HA & CO, data is always available, and 
maintenance is done without shutdown the 
system

* Database Availability Considerations. IBM RedBook [2001]



CAP Theorem (1)

* Visual Guide to NoSQL Systems, Nathan Hurst, 2010 [8]

Consistency, 
Availability and 
Partition 
Tolerance. 

A shared-data 
system can have at 
most two of those 
three.



CAP Theorem (2)
Consistent, Available (CA) Systems have 
trouble with partitions and typically deal with it 
with replication.

Consistent, Partition-Tolerant (CP) Systems 
have trouble with availability while keeping data.

Available, Partition-Tolerant (AP) Systems 
achieve “eventual consistency” through 
replication and verification consistent across 
partitioned nodes.



ACID and BASE
 ACID

Atomicity: All or nothing

Consistency: Any transaction should 
result in valid tables

Isolation: separate transactions

Durability: Database will survive a 
system failures. 



ACID and BASE cont'd
 BASE

Basically Available - system seems to 
work all the time

 Soft State - it doesn't have to be 
consistent all the time

 Eventually Consistent - becomes 
consistent at some later time



Horizontal Scale

Data explosion (especially in web 
application) force database system to 
scale

1st solution : Vertical scale 
Improving server specification by adding more processor, 
RAM, and storage device. Limited and expensive.

2nd  solution : Horizontal scale
Adding more cheap computer as server expansion. Do 
sharding and partitioning which is hard to implement and 
expensive using relational databases (RDBMS)



Partitioning & Replication
 Partitioning

− Sharing the data between different nodes (data 
host)

− Each node placed on a ring
− Advantage : ability to scale incrementally
− Issues : non-uniform data distribution

 Replication
− Multiple nodes
− Multiple datacenters
− High availability and durability



Data Replication



Ring of Consistent Hashing



When a New Node Join 
Network



When Existing Node Leaves 
Network



Database Integrity Outline
 Database Integrity Means
 Do We Really Need Consistency?
 Eventually Consistent
 Variations of Eventually Consistency
 Problem in Strict Schema
 Schema-Free



Database Integrity Means
 Ensure data entered into the database is 

accurate, valid, and consistent. Three basic 
types of integrity constraints:
 Entity integrity, allowing no two rows to have 

the same identity within a table.
 Domain integrity, restricting data to predefined 

data types.
 Referential integrity, requiring the existence of 

a related row in another table, e.g. a customer for 
a given customer ID.



Do We Really Need 
Consistency?

 In strict OLTP environment (e.g. banking and 
ERP) data consistency is heart of the system.

 But even in Amazon (e-commerce) real-time 
consistency is not really needed.

 In large shared data environment such Facebook, 
Digg, Yahoo, Google, etc. data consistency can 
be relaxed

 Systems with strong ACID have poor 
performance.



Eventually Consistent
 Specific form of weak consistency
 If no new updates are made, eventually 

all accesses will return the last updated 
value.

 System does not guarantee subsequent 
accesses will return the updated value.

 A number of conditions need to be met 
before the value will be returned.



Variations of Eventually 
Consistency

 Causal consistency
 Read-your-writes consistency
 Session consistency
 Monotonic read consistency
 Monotonic write consistency



Problem in Strict Schema
 Agile methodology is about changing 

adoption

 Dynamic Frameworks (e.g. Ruby on Rails, 
Django, and Grails, Symfony) are now widely 
used

 In many cases it is hard to migrate across 
database

 Adding more column leaves null values on 
previous record.



Schema-Free
 Enable to add column in row level. Not 

restricted to column level.

 Each rows only use column they need (saving 
space).

 All we need to do is defining Namespace for 
tables. Then we can just add column, even 
another table in particular column.

 No more integration 
headache



Conclusion & (not a) Summary
 NoSQL is yet another form of database.
 NoSQL don't intend to replace RDBMS.
 It is database alternative in Large data 

shared environment.
 Relaxing consistency will boost 

database availability and performance.
 There is no Free Lunch and Silver Bullet 

in database technologies.



Thank You
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