
Database Lifecycle Management
Integrate your Database into your
Application Lifecycle Management

Process on the Microsoft Stack

Microsoft Tools

SQL Server 2012 R2

SQL Server Management Studio 2012

Visual Studio 2013

Team Foundation Server 2013

Release Management for VS 2013 Update 4

Redgate Tools

SQL Source Control

SQL Automation Pack (SQL Compare, SQL Data

Compare, SQL CI, and SQL TFS Plugin)

SQL Test

SQL Release

SQL Monitor

Page 2 of 50

Table of Contents
Introduction ..4

Background ...4

Prerequisites ...4

Recommendations ..5

Disclaimer ...5

FAQs ..6

Help! I’m lost! ...6

But I don’t want to use the Brian Keller VM! ...6

I already have MS RM set-up. What’s the minimal work I need to do to add a DB to my system?6

System Overview ..7

Exercise 1 – Source Controlling your Database ..9

Part 1: Linking a Database to source-control ...9

Exercise 2 – Getting your Database into the Continuous Integration Process ... 12

Part 1: Installing the SQL Automation Pack ... 12

Part 2 – Setting up Database CI ... 12

Step 3 – Try it! ... 15

Exercise 3 – DB Unit Testing .. 17

Exercise 4 – Making the FabrikamFiber Website not recreate the database every time 24

Exercise 5 – Microsoft Release Management: Adding the SQL Release tools .. 25

Introduction ... 25

The Scripts ... 25

Adding the tools to MS RM ... 28

Exercise 6 – Microsoft Release Management: Creating database actions ... 31

Exercise 7 – Microsoft Release Management: Creating components for database release 32

Exercise 8 – Creating a Release Path ... 33

Exercise 9 – Microsoft Release Management: Tokenizing the web.config ... 35

Exercise 10 – Microsoft Release Management: Creating the release template ... 37

Exercise 11 – Microsoft Release Management: Adding the DB to the release template 41

Exercise 12 – Microsoft Release Management: Let’s do a database release.. 46

Exercise 13 - DLM Dashboard .. 49

What’s next? .. 49

Feedback .. 50

Page 3 of 50

Page 4 of 50

Introduction

Background

Application developers wouldn’t think about writing code or working on a team that wasn’t using source
control. And, if they’re working on a team and doing agile development, then they’re probably doing
continuous integration as well. These good practices are part of the overall Application Lifecycle Management

process, and we want to leverage these for your database so that you can deploy you database changes safely,

quickly and efficiently.

In this scenario, our team is using TFS for source control and Team Build for Continuous Integration. Let’s get
your database into the development process.

If you have any questions/queries/ideas, please email us at dlm@red-gate.com.

Prerequisites

This lab is designed so that you can follow along with each exercise on a VS ALM VM that Microsoft provides.

The VS ALM VM is also known as the Brian Keller VM. We’ll refer to it as the BK VM or just VM throughout this

document.

The BK VM comes pre-loaded with TFS, Visual Studio, Release Management, and a variety of other goodies to

show off Microsoft ALM technology. It also comes with two demo applications: TailSpinToys and FabrikamFiber.

We’ll be using FabrikamFiber in this lab.

So to get started you will need to:

1) Run Hyper-V Manager – I’m using v 6.3.9600

2) Download the BK VM from Brian Keller’s blog . It’s a 26Gb download, which unzips to 80Gb.
3) Start up the BK VM in Hyper-V manager.

4) Download and install the Redgate SQL Developer Bundle.

5) Using Hyper-V Manager, checkpoint the VM so you can get back to this fresh state if needed.

Make sure you’re able to access the VM through remote desktop. Log on details:

Username: Brian

Password: P2ssw0rd

Please use the Brian account for this lab. Using another account may cause permission issues and distract from

the main purpose of the lab. The password P2ssw0rd is used across the VM.

It may also be useful to have a look at the FabrikamFiber application we will be using. It is a web application for

customer support of an ISP. It is an ASP.NET web application, backed by a SQL Server database. It is source-

controlled in TFS, and builds in TFS. To take a look at it:

1) Open Visual Studio 2013.

2) Open the FabrikamFiber.CallCenter solution.

(C:\Users\Administrator\Source\Workspaces\FabrikamFiber\Dev\Fabri

kamFiber.CallCenter\FabrikamFiber.CallCenter.sln) under Recent on the

Start Page.

mailto:dlm@red-gate.com
http://blogs.msdn.com/b/briankel/archive/2014/09/19/now-available-update-3-refresh-of-visual-studio-2013-alm-virtual-machine.aspx
http://www.red-gate.com/products/sql-development/sql-developer-bundle/

Page 5 of 50

3) Open Team Explorer and Source Control Explorer, to see the files in source control.

4) You can run the solution to see the FabrikamFiber Support dashboard in IE. It looks like this:

The document Embracing Continuous Delivery with Release Management for Visual Studio 2013 contains more

details about this application.

Recommendations

2 monitors: 1 for these instructions and 1 to run the BK VM in full screen mode so you can follow along.

Disclaimer

Produced as of 28th February 2015. Microsoft and Redgate release frequently, so things may be a little out of

date or there may be a better way to do things. If you find any problems, please get in touch with us at

dlm@red-gate.com.

The BK VM expires in 10 days if you don’t activate it, and 180 days if you do. (See “Working with…” document
for details about activation.) Redgate tools expire after 28 days (14 days for some products). If you need more

time, please contact dlm@red-gate.com to extend your trial.

All the work in the following lab will be done in the BK VM because it has all the software we need already

installed on it. For our purposes, our QA, Test, Staging, and Production environments are all on the same

machine. This is a little easier because we don’t have to worry about network communications, firewalls, extra
VMs, etc. The purpose of this lab is to familiarize you with the tools and how you can use them to make your

database development easier. Once you decide to go with our tools, then you can build the infrastructure as you

require. Every environment is unique, and the best practices will depend on your situation.

http://download.microsoft.com/download/B/C/8/BC8558E1-192E-4286-B3B0-320A8B7CE49D/Embracing%20Continuous%20Delivery%20with%20Release%20Management%20for%20Visual%20Studio%202013.docx
mailto:dlm@red-gate.com
http://download.microsoft.com/download/B/C/8/BC8558E1-192E-4286-B3B0-320A8B7CE49D/Working%20with%20the%20Visual%20Studio%202013%20Update%203%20ALM%20Virtual%20Machine.docx
mailto:dlm@red-gate.com

Page 6 of 50

FAQs

Help! I’m lost!

No problem. Just email us at dlm@red-gate.com, and we’ll help you out.

But I don’t want to use the Brian Keller VM!

That’s fine. Most of this lab can be performed on your own infrastructure. Just make sure you have at least:
a) Microsoft SQL Server 2012 with Management Studio.

b) Microsoft Team Foundation source control (aka TFS).

c) Microsoft Team Foundation Build server (aka TF Build).

d) Microsoft Visual Studio 2013 Update 3.

e) Microsoft Release Management (aka MS RM) for Visual Studio 2013 Update 3.

Earlier and later versions of these will probably work too, but I can’t guarantee it.

You will also need:

1) A Microsoft SQL Server database you want to develop and deploy.

2) (Optional) An application that uses this database.

I already have MS RM set-up. What’s the minimal work I need to do to add a DB to my system?

85% of the content is still relevant. You will still need to:

1) Add your DB to source-control (exercise 1).

2) Add your DB to continuous-integration (exercise 2).

3) (Optionally) Unit-test your database (exercise 3).

4) Add SQL Release to MS RM (Microsoft Release Management) (exercises 5, 6, 7).

5) Add the necessary components and actions to your release path.

You will also need to ensure the correct DB is referenced from each of your environments. This will probably

involve rewriting a web.config using variable replacement (see exercise 8).

mailto:dlm@red-gate.com

Page 7 of 50

System Overview

We will create an ALM/DLM (application lifecycle management/database lifecycle management) system. In this

lab, we are most concerned with the database aspects of the release. Briefly, the lifecycle is:

1) Code will be checked-into TFS Source Control.

2) This will trigger a build in TFS Team Build.

3) TFS Team Build produces a build, consisting of both a web-app and a database package.

4) When confirmed, this build enters the MS RM (Microsoft Release Management) pipeline:

a) The build is released to a QA environment.

b) Testers verify this build, and sign-off on build quality.

c) The build is then released to a Staging Environment.

d) A DBA checks the Staging environment, and reviews the release artifacts. He then signs-off on

the quality, and permits a production release.

e) The build is released to Production. The DBA checks the production environment is OK.

This diagram demonstrates the system:

Page 8 of 50

Page 9 of 50

Exercise 1 – Source Controlling your Database

Part 1: Linking a Database to source-control

1) Open SSMS 2012.

2) Click No thanks to the RG Quality Improvement Program.

3) Connect to localhost using windows authentication.

4) Right click on the FabrikamFiber-Express database in the Object Explorer, and select Link to source

control…

5) Select Team Foundation Server (TFS) from the list of Source control systems on the left of the dialog.

6) The Server URL should default to http://vsalm:8080/tfs/defaultcollection. Change defaultcollection at

the end to fabrikamfibercollection, so the URL is http://vsalm:8080/tfs/fabrikamfibercollection.

7) Click Browse for the Database folder.

8) Create a new folder called Database under FabrikamFiber/Dev and provide a comment (e.g. “New folder
to hold database scripts”). It should look like the below. Click OK to the comment, OK to the

confirmation dialog, and Select to confirm the Select Scripts Folder Repository dialog.

9) Migration scripts folder should be left blank. Development model should be left as ‘Dedicated
database’. Now click Link to link the database to source-control.

Best Practice – Only link development databases to source control. Do not source control your

production environment. Changes should be made in Dev, checked into source control, and then

deployed to other environments per your process.

http://vsalm:8080/tfs/defaultcollection
http://vsalm:8080/tfs/fabrikamfibercollection

Page 10 of 50

10) You will now see a success dialog. Click OK to continue.

11) On the Commit changes tab, SQL Source Control should now list all the schema objects that make up the

FabrikamFiber database. Note the blue circles – these indicate that the objects have changes yet to be

committed to TFS. Enter a commit comment, for instance ‘Initial commit of FabrikamFiber schema’ and
click Commit.

Page 11 of 50

12) It will now tell you that the changes were committed successfully. Click OK to continue.

13) Note that the blue circles in the Object Explorer have disappeared.

14) If you look at the Source Control Explorer in Visual Studio, you will now see the schema in TFS source-

control:

Page 12 of 50

Exercise 2 – Getting your Database into the Continuous Integration Process

To setup Continuous Integration (CI), your database must be in source-control. This was done in Exercise 1. If

you have not done Exercise 1, please do it now.

Application Developers have been using CI for years. We want to add your database to this process. CI is

important: you get fast-feedback on commits, a repository of builds corresponding to commits, fast availability

of changes for testers, and many other benefits.

To setup database CI, we will be using TFS Team Build and SQL CI, a Redgate tool which is part of the SQL

Automation Pack.

Part 1: Installing the SQL Automation Pack

1) Download and install the SQL Automation Pack.

Remember – This is not licensed so you only have a 28 day free trial. If you need more time, contact

dlm@red-gate.com for an extension.

2) Install SQL CI

3) Install the Team Build Plugin

a) Close Visual Studio.

b) On the Windows Start Screen, open Intro to SQL Automation Pack 1.

c) Click ‘Open Folder’ beneath TFS Build plugin (see screenshot below).

d) Double-click on TFSBuildPlugin.vsix to install it.

e) Reopen Visual Studio 2013 and the FabrikamFiber solution.

Part 2 – Setting up Database CI

http://www.red-gate.com/products/sql-development/sql-automation-pack/?utm_source=simpletalk&utm_medium=pubpdf&utm_content=integratingdlm&utm_campaign=dlm
http://www.red-gate.com/products/sql-development/sql-automation-pack/?utm_source=simpletalk&utm_medium=pubpdf&utm_content=integratingdlm&utm_campaign=dlm
http://www.red-gate.com/products/sql-development/sql-automation-pack/?utm_source=simpletalk&utm_medium=pubpdf&utm_content=integratingdlm&utm_campaign=dlm
mailto:dlm@red-gate.com

Page 13 of 50

1) In the Visual Studio top menu, select SQL CI > Set up SQL CI…

2) Navigate to FabrikamFiber\Dev\Database.

3) In SQL CI project name, set it to FabrikamFiberDatabase.

4) Click OK.

You will now see the project settings of your database project. This includes things such as the Package name,

and what steps are involved in the build. Note a ‘build’ step is already created for you.

This build step will build a Nuget package from your DB scripts. This Nuget package is a single file (called

something like FabrikamFiberDatabase.1.0.0.23.nupkg), which contains everything that defines your database.

When building this Nuget package, it checks that the DB creation scripts are correct, checking syntax,

constraints, and dependencies by running the scripts against a new temporary database.

5) In Team Explorer, under Pending Changes, we need to check in FabrikamFiberDatabase.sqlciproj. Add a

comment, such as ‘FabrikamFiber database project’, then click Check In.

Page 14 of 50

6) We now need to add a TFS Build Definition that will do a CI build of the application and database.

a) In Team Explorer, under Builds, click New Build Definition. A new build definition window will

now appear.

b) In General, enter Fabrikam CI as the Build definition name.

c) In Trigger, choose Continuous Integration.

d) In Source Settings, change the source control folder from the default $/FabrikamFiber to

$/FabrikamFiber/Dev Also, delete the cloaked entry:

e) In Build Defaults, under Staging location, under Copy build output to the following drop folder,

enter \\vsalm\ffdrops . Note: this folder may not be accessible by default – you may need to

give Brian.Keller access.

f) In Process, under 1. Required -> Items to build, click the ellipsis (…). In the Items to Build dialog,

click Add…, and choose $/FabrikamFiber/Dev/Database/FabrikamFiberDatabase.sqlciproj. Click

Add again, and choose

$/FabrikamFiber/Dev/FabrikamFiber.CallCenter/FabrikamFiber.CallCenter.sln Click OK.

g) Save the build definition by pressing CTRL + S.

file://vsalm/ffdrops

Page 15 of 50

You should now see the Build Definition in Team Explorer - Builds. It will also be visible on the TFS website at

http://vsalm:8080/tfs/FabrikamFiberCollection/FabrikamFiber/_build

Step 3 – Try it!

1) Create a table in the FabrikamFiber-Express database in SSMS. For instance, run this T-SQL:

CREATE TABLE TestTable (TestColumn INT PRIMARY KEY)

2) Check this in with Redgate Source Control. To do this:

a) Right click the FabrikamFiber-Express database in the Object Explorer and select Commit

changes to source control...

b) You may need to click the Refresh Icon so SQL Source Control can see your latest changes.

c) It should show you one change – the new TestTable.

d) Click Commit to commit this. You may wish to enter a comment, e.g. ‘Adding TestTable’:

http://vsalm:8080/tfs/FabrikamFiberCollection/FabrikamFiber/_build

Page 16 of 50

3) A build will now be queued. It builds quickly – it should take only a few seconds to be completed:

Note: You may see the test CreateNullCustomer fail, which fails the build. This is a test failure built into

FabrikamFiber. Either delete the test, repress C# tests running, or implement a fix. Details of the fix can be found

on the internet.

4) If you now double-click on the build, you will go to a Summary page. Click Open Drop Folder to inspect

the build artifacts. The build output contains the website build artifacts, and

FabrikamFiberDatabase.1.0.0.101.nupkg (or similar). Later on, we will be using this Nuget package to do

database deployments.

Page 17 of 50

Exercise 3 – DB Unit Testing

Here, we’ll add database unit testing to the FabrikamFiber database. Database unit-testing is justified for the

same reasons as unit testing of code. It helps prevent regressions, verify new functionality, and ensure

compliance with coding standards. It becomes a gatekeeper that ensures that bad T-SQL is never deployed.

It is not necessary to complete this exercise to proceed to the next exercises.

Redgate SQL Test is an SSMS add-in which uses the tSQLt framework. It is installed as part of the Redgate SQL

Developer Bundle, which you installed earlier.

Part 1 – Adding the tests

1) Open SSMS, and open the FabrikamFiber-Express database in the Object Explorer.

2) Click the SQL Test icon in the SSMS toolbar.

3) In the SQL Test window that appears, click Add Database to SQL Test….

4) Select FabrikamFiber-Express, and click Add Database.

http://www.red-gate.com/products/sql-development/sql-test/
http://tsqlt.org/

Page 18 of 50

5) The next dialog will ask to install the tSQLt Framework. Click OK. Note that it also offers to install

SQLCOP tests by default. These are tests that verify certain T-SQL coding standards, e.g. all tables have a

primary key.

6) Click OK on the confirmation dialog.

7) SQL Test window is now populated with 48 tests. Click on the green arrow, and the tests will run. You

will see 7 fail. The FabrikamFiber database does not meet the SQLCop requirements. We will deal with

these failures later.

Page 19 of 50

Let’s now check these in to source control. If you press the Refresh button on SQL Source Control, lots of objects

need to be checked in.

8) Enter a commit comment, such as ‘Added tSQLt tests’ and click Commit.

The tSQLt tests are now added to source control. Since we have database CI setup, a build will be automatically

triggered. If you open TFS Team Build, you should see it build successfully.

Part 2 – Running the tests in CI

We just ran a DB build successfully. It would be great if we could run the tSQLt tests on every DB build, and fail

the build if there are test failures. This can be achieved using Redgate’s SQL CI.

First, we need to open the project file that we created in Exercise 2:

1) In Visual Studio, got to Team Explorer > Source Control Explorer.

2) Navigate to vsalm > FabrikamFiber > Dev > Database, and open the SQL CI Project file,

FabrikamFiberDatabase.sqlciproj.

3) Under SQL CI Steps, click Add a step and choose Test.

4) The ‘Add test step’ dialog will appear. Enter ‘Test’ as the step name, and click Add.

Page 20 of 50

5) Press CTRL + S to save your build definition.

6) To check-in the change to the project file, go to Team Explorer > Pending Changes, add a comment like

‘Added testing to project file’, and click Check In.

7) The project file change will trigger a build. The build will fail because as in SSMS, the FabrikamFiber

database doesn’t pass all the SQLCop tests.

Page 21 of 50

8) In TFS Team Build, it won’t show us exactly which tests failed. This is something we are looking to

improve. To see a test breakdown, click Open drop folder, and double-click on the trx file. For me, this is

called FabrikamFiberDatabase.1.0.0.100.trx.

Page 22 of 50

Most of these 9 failures are due to poor database design and administration, and some are safe to ignore. In

reality you should investigate and fix failed tests, but let’s just delete the failing tests:

9) Go to SSMS, and the SQL Test window.

10) Delete the 9 tests which failed. To delete a test, click on it and press the DELETE key, or use the right-

click context menu. Note that in SSMS you may only see 7 test failures, because the build has more test

failures than SQL Test within SSMS. You should be sure to delete the “Max degree of parallelism” and
“Auto close” tests.

11) Now, check in these test deletions into source control. Add a comment, such as ‘Deleted failing tests’.

Page 23 of 50

12) A build will now be triggered, which will succeed with no test failures.

Page 24 of 50

Exercise 4 – Making the FabrikamFiber Website not recreate the database every time

The FabrikamFiber Website uses Entity Framework and will automatically delete and recreate the database on

every run. This is undesirable for this lab – we want to be able to work on the database. Let’s make a change to
suppress this behavior.

1) In the FabrikamFiber.Web project, in the file Global.asax.cs, find the line
Database.SetInitializer<FabrikamFiberWebContext>(new FabrikamFiberDatabaseInitializer());

2) Replace this with Database.SetInitializer<FabrikamFiberWebContext>(null);

3) Press CTRL + Shift + B to invoke a build. It should build successfully.

4) Press F5 to run a debug build. The website should work as usual.

5) Go to Team Explorer > Pending Changes and click Check In to check in this change. Add a comment, for

instance ‘Suppressed database creation’.
6) If you go to TFS Team Build, you’ll see it start to build automatically. It should finish successfully in just a

few seconds.

Page 25 of 50

Exercise 5 – Microsoft Release Management: Adding the SQL Release tools

Introduction

In order to perform a DB release, we need to add Redgate SQL Release to MS RM. We do this by writing

PowerShell scripts that use the SQL Release cmdlets, add an invocation of this script in MS RM as a Tool, and

then use this Tool from Actions or Components.

SQL Release provides PowerShell cmdlets for releasing databases safely. Internally, the engine is using Redgate

SQL Compare. For instance, running the below in PowerShell will release a database defined in

c:\db\DatabaseUpdate to a Staging server:

$staging = New-DatabaseConnection -ServerInstance 'staging01\sql2012' -Database 'Staging'

Import-DatabaseUpdate -Path 'C:\db\DatabaseUpdate' | Publish-DatabaseUpdate -Target $staging

In this exercise, we’ll add tools and actions to MS RM so these commands can be used easily from within MS
RM.

The Scripts

We will be using 4 scripts:

PublishDbFromPackage.ps1: This simply deploys from a Nuget package to a database.

RedeploytoStagingFromProduction.ps1: To do a realistic trial deployment against a staging db, we need the

staging db to look like the production db. This script makes the staging db have the same schema as the

production db.

CreateDbUpdateResources.ps1: Given a production database, staging database and a Nuget package, this

confirms that staging matches the schema of production and creates a SQL script that will update the production

database to the schema defined in the Nuget package. The script is not invoked - it is just stored to disk. Also, it

produces a log of changes and warnings, which should be reviewed prior to proceeding with the deployment.

PublishDbFromArtifacts.ps1: This performs a deployment from the update resources created by the

CreateDbUpdateResources script. It checks for drift in the target database from when the update resources

were created and then runs the SQL update script.

Feel free to edit these scripts to meet your own requirements. Learn more about the cmdlets in the SQL Release

Documentation.

PublishDbFromPackage.ps1

param
(
 [Parameter(Mandatory=$true)]
 [string]$PackageFilePathPattern = $null,
 [Parameter(Mandatory=$true)]
 [string]$DatabaseServer = $null,
 [Parameter(Mandatory=$true)]
 [string]$DatabaseName = $null,
 [Parameter(Mandatory=$false)]
 [string]$DatabaseUserName = $null,
 [Parameter(Mandatory=$false)]
 [string]$DatabasePassword = $null
)

http://documentation.red-gate.com/display/SR1/Cmdlet+documentation
http://documentation.red-gate.com/display/SR1/Cmdlet+documentation

Page 26 of 50

$ErrorActionPreference = "Stop"

$possiblePackageFiles = (Get-ChildItem $PackageFilePathPattern)
if ($possiblePackageFiles.Count -ne 1)
{
 [string]$message = "Error: " + $possiblePackageFiles.Count.ToString() + " files match. Precisely 1
file should match pattern."
 throw [System.Exception] $message
}
$PackageFilePath = $possiblePackageFiles.FullName

$DbConnectionString = "Data Source=$DatabaseServer;Initial Catalog=$DatabaseName"

If DatabaseUserName is null or empty, use Windows Authentication. Otherwise, add username and password
if($DatabaseUserName)
{
 $DbConnectionString += ";User ID=$DatabaseUserName;Password=$DatabasePassword"
}

$update = New-DatabaseUpdate -BeforeUpdate $DbConnectionString -AfterUpdate $PackageFilePath
Publish-DatabaseUpdate $update -Target $DbConnectionString -SkipPostUpdateSchemaCheck

PublishDbFromArtifacts.ps1

param
(
 [Parameter(Mandatory=$true)]
 [string]$DatabaseUpdateResourcesPath = $null,
 [Parameter(Mandatory=$true)]
 [string]$DatabaseServer = $null,
 [Parameter(Mandatory=$true)]
 [string]$DatabaseName = $null,
 [Parameter(Mandatory=$false)]
 [string]$DatabaseUserName = $null,
 [Parameter(Mandatory=$false)]
 [string]$DatabasePassword = $null
)

$ErrorActionPreference = "Stop"

$DbConnectionString = "Data Source=$DatabaseServer;Initial Catalog=$DatabaseName"

If DatabaseUserName is null or empty, use Windows Authentication. Otherwise, add username and password
if($DatabaseUserName)
{
 $DbConnectionString += ";User ID=$DatabaseUserName;Password=$DatabasePassword"
}

Import-DatabaseUpdate $DatabaseUpdateResourcesPath | Publish-DatabaseUpdate -Target $DbConnectionString

CreateDbUpdateResources.ps1

param
(
 [Parameter(Mandatory=$true)]
 [string]$PackageFilePathPattern = $null,
 [Parameter(Mandatory=$true)]
 [string]$DatabaseServer = $null,
 [Parameter(Mandatory=$true)]
 [string]$StagingDatabaseName = $null,
 [Parameter(Mandatory=$true)]
 [string]$ProductionDatabaseName = $null,
 [Parameter(Mandatory=$false)]
 [string]$DatabaseUserName = $null,
 [Parameter(Mandatory=$false)]
 [string]$DatabasePassword = $null,
 [Parameter(Mandatory=$true)]
 [string]$DatabaseUpdateResourcesPath = $null
)

$ErrorActionPreference = "Stop"

Match the package file name. Only one file should match
$possiblePackageFiles = (Get-ChildItem $PackageFilePathPattern)

Page 27 of 50

if ($possiblePackageFiles.Count -ne 1)
{
 [string]$message = "Error: " + $possiblePackageFiles.Count.ToString() + " files match. Precisely 1
file should match pattern."
 throw [System.Exception] $message
}
$PackageFilePath = $possiblePackageFiles.FullName

Makes sure the directory we're about to create doesn't already exist.
If (Test-Path $DatabaseUpdateResourcesPath) {
 rmdir $DatabaseUpdateResourcesPath -Recurse -Force
}

Sets up connection strings for the staging and production databases.
$stagingDatabase = "Data Source=$DatabaseServer; `
 Initial Catalog=$StagingDatabaseName; `
 User ID=$DatabaseUserName;Password=$DatabasePassword"
$productionDatabase = "Data Source=$DatabaseServer; `
 Initial Catalog=$ProductionDatabaseName; `
 User ID=$DatabaseUserName;Password=$DatabasePassword"

If DatabaseUserName is null or empty, use Windows Authentication. Otherwise, add username and password
if($DatabaseUserName)
{
 $stagingDatabase += ";User ID=$DatabaseUserName;Password=$DatabasePassword"
 $productionDatabase += ";User ID=$DatabaseUserName;Password=$DatabasePassword"
}

Creates the DatabaseUpdateResources directory.
$databaseUpdate = New-DatabaseUpdate -BeforeUpdate @($stagingDatabase, $productionDatabase) `
 -AfterUpdate $PackageFilePath -Verbose

Stop on any warnings
$highWarnings = $databaseUpdate.Warnings | Where { $_.Severity -eq "High" }
if($highWarnings.Count -gt 0)
{
 [string]$highWarningsDetails = ""
 $highWarnings | ForEach-Object { $highWarningsDetails = $highWarningsDetails + $_.Details + "`n" }
 throw [System.Exception] $highWarningsDetails
}

Export the update to disk
Export-DatabaseUpdate $databaseUpdate -Path $DatabaseUpdateResourcesPath

RedeployToStagingFromProduction.ps1

param
(
 [Parameter(Mandatory=$true)]
 [string]$DatabaseServer = $null,
 [Parameter(Mandatory=$true)]
 [string]$StagingDatabaseName = $null,
 [Parameter(Mandatory=$true)]
 [string]$ProductionDatabaseName = $null,
 [Parameter(Mandatory=$false)]
 [string]$DatabaseUserName = $null,
 [Parameter(Mandatory=$false)]
 [string]$DatabasePassword = $null
)

$ErrorActionPreference = "Stop"

Sets up connection strings for the staging and production databases.
$stagingDatabase = "Data Source=$DatabaseServer; Initial Catalog=$StagingDatabaseName"
$productionDatabase = "Data Source=$DatabaseServer; Initial Catalog=$ProductionDatabaseName "

If DatabaseUserName is null or empty, use Windows Authentication. Otherwise, add username and password
if($DatabaseUserName)
{
 $stagingDatabase += ";User ID=$DatabaseUserName;Password=$DatabasePassword"
 $productionDatabase += ";User ID=$DatabaseUserName;Password=$DatabasePassword"
}

Update staging DB to be like production DB
$databaseUpdate = New-DatabaseUpdate -BeforeUpdate $stagingDatabase -AfterUpdate $productionDatabase
Publish-DatabaseUpdate $databaseUpdate -Target $stagingDatabase -SkipPreUpdateSchemaCheck -
SkipPostUpdateSchemaCheck

Page 28 of 50

Adding the tools to MS RM

1) Download and install the SQL Release (beta).

2) Create a directory called C:\DbDeployment\Scripts\.

3) Add the four files defined above to this directory.

4) Open MS RM, go to Inventory > Tools.

5) Click New, and fill in these details:

a) Name: ‘SQL Release - Publish DB from artifacts’.
b) Description: ‘Import a DB deployment from the specified path. Then publish it to target

database’.
c) Command: ‘powershell’.
d) Arguments: ‘-command ./PublishDbFromArtifacts.ps1 -DatabaseUpdateResourcesPath

'__DatabaseUpdateResourcesPath__' -DatabaseServer '__DatabaseServer__' -DatabaseName

'__DatabaseName__' -DatabaseUserName '__DatabaseUserName__' -DatabasePassword

'__DatabasePassword__' ‘.
e) In Resources, click Add, and add PublishDbFromArtifacts.ps1.

5) In Parameters, select Standard next to DatabasePassword and change this to Encrypted.

http://www.red-gate.com/products/dlm/sql-release

Page 29 of 50

6) Click Save to save this tool.

7) Repeat this procedure for the other 3 files, according to this table:

Name SQL Release – Create DB Update Resources

Description Work out what is needed to make the production database look like the database defined in

the nuget package. Export this deployment to the specified path

Command powershell

Arguments -command ./CreateDbUpdateResources.ps1 -PackageFilePath '__PackageFilePath__' -

DatabaseServer '__DatabaseServer__' -ProductionDatabaseName

'__ProductionDatabaseName__' -StagingDatabaseName '__StagingDatabaseName__' -

DatabaseUserName '__DatabaseUserName__' -DatabasePassword '__DatabasePassword__'

-DatabaseUpdateResourcesPath '__DatabaseUpdateResourcesPath__'

Resources CreateDbUpdateResources.ps1

Name SQL Release - Publish DB from package

Description Publishes a DB from a Nuget package

Command powershell

Page 30 of 50

Arguments -command ./PublishDbFromPackage.ps1 -PackageFilePathPattern

'__PackageFilePathPattern__' -DatabaseServer '__DatabaseServer__' -DatabaseName

'__DatabaseName__' -DatabaseUserName '__DatabaseUserName__' -DatabasePassword

'__DatabasePassword__'

Resources PublishDbFromPackage.ps1

Name SQL Release - Redeploy to staging from production

Description Make the staging DB the same as the production DB

Command powershell

Arguments -command ./RedeployToStagingFromProduction.ps1 -DatabaseServer '__DatabaseServer__'

-ProductionDatabaseName '__ProductionDatabaseName__' -StagingDatabaseName

'__StagingDatabaseName__' -DatabaseUserName '__DatabaseUserName__' -

DatabasePassword '__DatabasePassword__'

Resources RedeployToStagingFromProduction.ps1

We now need to add actions and components corresponding to these tools. This will be done in the next two

exercises.

Page 31 of 50

Exercise 6 – Microsoft Release Management: Creating database actions

In order to invoke tools in a release template, we need to create actions or components that invoke those tools.

We will create actions corresponding to the SQL Release – Publish DB from artifacts and SQL Release –

Redeploy to staging from production tools.

1) In MS RM, go to Inventory > Actions.

2) Click New.

3) In Name, enter ‘SQL Release – Publish DB from artifacts’.
4) In Description, enter ‘Import a DB deployment from the specified path. Then publish it to target

database’.
5) In Categories, choose MS-SQL.

6) In Tool used, choose ‘SQL Release – Publish DB from artifacts’.
7) See that Arguments and Parameters are auto-populated.

8) Click Save & Close.

9) Repeat this process, using these parameters:

a) Name: SQL Release - Redeploy to staging from production.

b) Description: Make the staging DB the same as the production DB.

c) Categories: MS-SQL.

d) Tool used: SQL Release – Redeploy to staging from production.

Page 32 of 50

Exercise 7 – Microsoft Release Management: Creating components for database release

We now need to create components corresponding to releasing the database. A component is a build definition

with an accompanying deployment mechanism. For instance, a component could be a web-app build and

XCOPY.

Firstly, we have a QA environment. Here, we can deploy the database directly from the package to the server.

We create a component that does this as so:

1) Go to Configure Apps > Components.

2) Click New.

3) For Name, enter ‘Fabrikam DB for QA’.
4) For Description, enter ‘Release DB to QA from a package’.
5) Choose Builds with application, and under Path to package enter ‘\’ (i.e. just a backslash).
6) In the Deployment tab, set the Tool as SQL Release – Publish DB from Package.

7) Click Save & Close.

Secondly we have a Staging environment. This component is deployed using a different mechanism: an update

script is created from the package, which is then reviewed by a DBA before being executed. This component is

defined as follows:

1) Go to Configure Apps > Components.

2) Click New.

3) For Name, enter ‘Fabrikam DB for release’.
4) For Description, enter ‘Build deployment artifacts from Nuget package’.
5) Choose Builds with application, and under Path to package enter ‘\’.
6) In the Deployment tab, set the Tool as SQL Release – Create DB Update Resources.

7) Click Save & Close.

Page 33 of 50

Exercise 8 – Creating a Release Path

In MS RM, we need to create a release path. This defines the stages in a release. We want three stages: QA,

Staging and Production

1) In MS RM, go to Configure Paths > Agent-based Release Paths.

2) Click New.

3) Enter ‘Fabrikam DB/Web Release’ as the Name

4) Enter ‘Release of Fabrikam, both DB and Web’ as the Description.

5) Use Add to add 3 stages.

6) In Stage, from left-to-right, set them as being QA, Staging and Prod.

7) Set the stages according to this table:

Stage QA Staging Prod

Environment Int-QA Int-Staging Int-prod

Approver QA Team Ops Team Ops Team

Owner QA Team Ops Team Opt Team

Validator QA Team Ops Team Ops Team

Note: You may not have an ‘Int-Staging’ environment. If not, go to Configure Paths -> Environments and click

New to add one. Click Link Existing to link it to our server VSALM.

8) Click Automated wherever available.

9) Click the green add symbol to add an Approver to the QA stage. Set it as QA Team.

10) Click the green add symbol to add an Approver to the Prod stage. Set it as Ops Team.

11) Click the envelope icon next to the Approval Step approvers. This will set it to send notification emails at

these stages.

12) Click Save & Close.

It should look like this:

Page 34 of 50

Page 35 of 50

Exercise 9 – Microsoft Release Management: Tokenizing the web.config

FabrikamFiber has a web.config where the connectionString is hard-coded against a single database:

FabrikamFiber-Express. We need to have different environments referencing different websites: a QA website

that uses a QA database, a Staging website that uses a Staging database, etc. To achieve this, we can use the

tokenization and variable replacement features of MS RM.

1) Go to Visual Studio, and open the FabrikamFiber.CallCenter solution and FabrikamFiber.Web project.

2) Copy Web.config to Web.config.token.

3) Change the Build action of Web.config.token to content.

4) In Web.config.token, replace the ‘FabrikamFiber-Express’ string in the connectionString with
‘__FabrikamDbName__’ (note the double underscore) in lines 9 and 10.

5) Commit this change to TFS.

6) Check that the build output in the drop folder contains Web.config.token. It should be a file like:

C:\ffdrops\Fabrikam CI\Fabrikam

CI_20130714.2_PublishedWebsites\FabrikamFiber.Web\Web.config.token.

We now need to edit the component in MS RM to do variable replacement in web.config:

1) Open the Fabrikam Call Center component in MS RM in Configure Apps > Components.

2) Go to the Configuration Variables tab.

3) Choose Variable Replacement Mode as Before Installation.

4) Click Add and enter ‘FabrikamDbName’ in Name.

5) Under File Extension Filter, enter ‘*.config.token’. This means the only files ending .config.token will
have this variable-replacement applied.

6) Click Save & Close.

Page 36 of 50

The final step is to copy the web.config.token over web.config during the release. This is part of building the

release process, and will be covered later.

Page 37 of 50

Exercise 10 – Microsoft Release Management: Creating the release template

Now we want to create the Release Template that defines the exact procedure of doing a release of our web-

app/database. This will largely be irrelevant if you already have a release template you want to add a database

to. If this is the case, skim this exercise and skip to Exercise 11.

We will be basing our template on the existing Fabrikam Call Center template. You may wish to browse this

template before continuing with the exercise.

To create our new release template:

1) Go to Configure Apps > Agent-based Release Templates.

2) Click on Fabrikam Call Center, and then Copy.

3) In the resulting Properties dialog, choose these options:

a) Name: 'Fabrikam App and DB’.
b) Description: ‘Call Center. Web app and DB’.
c) Release Path: Fabrikam DB/Web Release.

d) Build definition: http://vsalm:8080/tfs/FabrikamFiber/Fabrikam CI.

e) Can Trigger a Release from a Build? Tick yes.

f) Ignore the Security section and Click Create.

This will create a copy with nearly all web application deployment information filled in for us. Have a look

around the QA, Staging and Prod stages. You will see that the QA and Prod stages have lots of steps, but the

Page 38 of 50

Staging stage is empty. We will fill it in momentarily. First, let’s add the web.config configuration to the QA and

Prod stages:

1) Go to the QA stage.

2) After the Fabrikam Call Center component, add a Delete File(s) or Folder action. To do this, simply drag

it from the toolbox on the left, it is under Windows OS.

3) Set FileFolderName as ‘c:\FabrikamRM\WebSite\UAT\Web.config’.
4) Immediately after this action, drag in a Move File or Folder action.

5) Set FileFolderName as ‘c:\FabrikamRM\WebSite\UAT\Web.config.token’, and DestinationName as

‘c:\FabrikamRM\WebSite\UAT\Web.config’.

6) Do exactly the same in the Prod Stage, except replace UAT with Prod in the folder names:

Page 39 of 50

Now, let’s fill it in the Staging stage:

1) Right-click on Prod in the deployment sequence at the top.

2) Click Copy Deployment Sequence.

3) Right-click on Staging in the deployment sequence.

4) Click Paste Deployment Sequence.

5) In the Paste Deployment Sequence dialog that appears, choose Paste.

The Staging stage will now be populated.

The staging stage will have various things we need to correct. Basically, we need to replace every instance of

‘PROD’ with ‘Staging’, and set the port number to 8001:
1) In Remove Web Site, set ‘FabrikamPROD’ to ‘FabrikamStaging’.
2) In Copy File or Folder:

a) Set SourceFileFolder as ‘C:\FabrikamRM\Website\Staging’.
b) Set DestinationFileFolder as ‘C:\FabrikamRM\Backup\Staging’.

3) In Fabrikam Call Center, set Installation Path to ‘C:\FabrikamRM\WebSite\Staging’.
4) In Delete File(s) or Folder, set FileFolderPath to ‘C:\FabrikamRM\WebSite\Staging\Web.config’.
5) In Move Folder or Folder:

a) Set FileFolderPath to ‘C:\FabrikamRM\WebSite\Staging\Web.config.token’.
b) Set DetsinationName to ‘C:\FabrikamRM\WebSite\Staging\Web.config’.

6) In Create Web Site:

a) Set SiteName to ‘FabrikamStaging’.
b) Set PortNumber to ‘8001’.

Page 40 of 50

c) Set PhysicalPath to ‘C:\FabrikamRM\WebSite\Staging’.
7) In Rollback, Copy File or Folder, set:

a) SourceFileFolder to ‘C:\FabrikamRM\Backup\Staging’.
b) SourceFileFolder to ‘C:\FabrikamRM\Website\Staging’.

8) In Rollback, Create Web Site:

a) Set SiteName to ‘FabrikamStaging’.
b) Set PortNumber to ‘8001’.
c) Set PhysicalPath to ‘C:\FabrikamRM\WebSite\Staging’.

When you’re done, click Save & Close.

Page 41 of 50

Exercise 11 – Microsoft Release Management: Adding the DB to the release template

We now want to add the database operations to the release template. This will largely be a matter of dragging

items from the toolbox to the template, and entering some fields.

Adding the components to the toolbox

1) Go to Configure Apps > Agent-based Release Templates > Fabrikam App and DB.

2) In the Toolbox, right click on Components.

3) Click Add.

4) From the Components dialog, select both components and click Link.

All three components will now be listed in the toolbox:

Adding the component to QA

1) Go to the QA stage.

2) Drag Fabrikam DB for QA to the sequence, as the first step.

3) Set:

a) Set DatabaseServer as ‘.’ (i.e. the local server).
b) Set DatabaseName as ‘FabrikamUAT’.
c) Leave DatabaseUserName and DatabasePassword blank. This means we will use Windows

Authentication to connect to the database. If they are filled-in, SQL Authentication will be used.

d) Set PackageFilePathPattern as ‘FabrikamFiberDatabase*.nupkg’.

Page 42 of 50

Now, as the first step of a QA deployment, SQL Release will deploy from the NuGet package in the build output

to the database FabrikamUAT, which is used by the UAT web-application.

Note: UAT stands for User Acceptance Testing, a type of QA. For our purposes, it is synonymous with QA.

Setting-up the Staging Sequence

The Staging sequence is the most complicated. Four database-related steps are required:

1) Make the Staging DB schema identical to the Production DB schema.

2) Create deployment resources. That is: create the upgrade script needed to perform the deployment to

production. Other resources (for instance, a list of warnings) are also produced.

3) Test this upgrade script by applying it to the Staging DB.

4) Insist on Manual Intervention by the user. I.e., the user must check the resources and authorize

continuation.

Let’s set this up now:

1) Go to the Staging sequence.

2) Drag SQL Release – Redeploy to staging from Production as the first item in the sequence. It will be in

the Toolbox under MS-SQL. Set:

a) DatabaseServer as ‘.’.
b) ProductionDatabaseName as ‘FabrikamProd’.
c) StagingDatabaseName as ‘FabrikamStaging’.
d) DatabaseUserName and DatabasePassword can be left blank.

Page 43 of 50

3) Drag Fabrikam DB for release as the second item in the sequence. It will be in Components in the

Toolbox. Set:

a) PackageFilePath as ‘FabrikamFiberDatbase*.nupkg’.
b) DatabaseServer as ‘.’.
c) ProductionDatabaseName as ‘FabrikamProd’.
d) StagingDatabaseName as ‘FabrikamStaging’.
e) DatabaseUserName and DatabasePassword can be left blank.

f) DatabaseUpdateResourcesPath as ‘C:\DbDeployment\Artifacts’.
4) Drag SQL Release – Publish DB from artifacts as the third item in the sequence. It will be in the Toolbox

under MS-SQL. Set:

a) DatabaseUpdateResourcesPath as ‘C:\DbDeployment\Artifacts’.
b) DatabaseServer as ‘.’.
c) DatabaseName as ‘FabrikamStaging’.
d) DatabaseUserName and DatabasePassword can be left blank.

5) As the last item in the main sequence (i.e after ‘Create Web Site’ but before ‘Rollback’) add a Manual

Intervention. This is under Control Flow in the Toolbox.

a) Set the Recipient as Ops Team.

b) Under Instructions, enter this text:

‘Please verify:

1) Staging website at http://localhost:8001/ is operating successfully.

2) SQL update script at C:\DbDeployment\Artifacts is sensible.

3) Warnings and changes at C:\DbDeployment\Reports are acceptable.’.

Page 44 of 50

Page 45 of 50

Staging is now set up as required.

Setting-up the Production Sequence

In production, we simply need to deploy to the production database from the artifacts we verified.

1) Go to Prod in the sequence.

2) Drag SQL Release – Publish DB from artifacts as the first item in the sequence. It will be in the Toolbox

under MS-SQL. Set:

a) DatabaseUpdateResourcesPath as ‘C:\DbDeployment\Artifacts’.
b) DatabaseServer as ‘.’.
c) DatabaseName as ‘FabrikamProd’.
d) DatabaseUserName and DatabasePassword can be left blank.

3) Click Save & Close.

Page 46 of 50

Exercise 12 – Microsoft Release Management: Let’s do a database release

We’re now ready to do a release. Before we start, create empty databases for FabrikamUAT, FabrikamStaging

and FabrikamProd on the server.

1) In Releases > Releases, click New Agent-based.

2) In the Properties dialog:

a) Set Name as ‘Test Release 01’, and choose the Release Template ‘Fabrikam App and DB’.
b) Leave Target Stage as Prod.

c) Click Latest to select the Latest build.

3) Click Start to start the release.

4) A release process like this should appear. To see future steps, click Include Future Steps (bottom left).

5) Once the QA steps have completed, you’ll have a pending Approval Request. At this point, QA should
check that the QA website passes the tests, and the QA database is correct. A QA representative should

then:

a) Go to My Approval Requests, and select the item.

b) Click Approve.

c) Enter under Comments “All tests passed on QA environment”.

Page 47 of 50

d) Click OK.

6) Now the deployment to Staging will occur. Once it’s completed, you’ll be prompted to approve a
manual intervention step. Go to Approval Requests again, and click on the ... under Details:

Page 48 of 50

a) Go to C:\DbDeployment\Artifacts as instructed. Here you will find Update.sql. Open it. This will

show what steps are necessary to deploy the DB changes.

b) Go to C:\DbDeployment\Artifacts\Reports as instructed. Here, have a look at Changes.html

and Warnings.html. Respectively, these show the changes that will take place when the

production deployment occurs, and any warnings you should know about (for instance, that a

table is being dropped or a column is being deleted).

c) Check the staging database FabrikamStaging and the staging website http://localhost:8001/ .

They should match what you want in production.

d) Back in MS RM, click Approve to continue with the deployment.

e) Enter ‘Staging website looks fine. We're ready to release’ as Comments, and click OK.

7) The Production deployment will now occur. Once it is done, you will again have an approval request

waiting. Once you have verified the production database and website are fine, approve this as well.

Overall, the deployment should look like this:

http://localhost:8001/

Page 49 of 50

Exercise 13 - DLM Dashboard
The DLM Dashboard DLM Dashboard (previously called SQL Lighthouse) provides a visual overview of the state

of all your databases across your environments and monitors schema changes. It can be configured to send an

alert – both for notifications of unexpected changes (drift) and confirmation that intended changes happened

successfully. It also provides a history of SQL changes line by line, who made the changes, and when.

1) Download and install the DLM Dashboard (beta).

What’s next?

The next thing to do is to implement this on your own infrastructure. Obviously, your environment is different to

that described above, and you may want to make some changes/omissions/additions.

Here’s a few things you might want to do:

Invoke a release from Team Foundation Server

You can make MS RM automatically do a release when a build occurs. This requires a couple of steps – search

the internet to find out more.

Customize the release process

There’s probably a lot you want to change about the release process. In particular, notifications may be sent to

various email addresses.

Deploy to multiple databases

You can do this by adding multiple components/actions to your release process. Or you can adapt the

PowerShell to deploy to multiple targets.

Working with data

The above process ignores data. You may require Static Data in your databases. Search Redgate SQL Source

Control help for topics on this. Also, you may wish to use Redgate SQL Data Generator to generate test data for

your QA (and possibly Staging) stages. Search Redgate SQL CI help for information on how to make this part of

your CI process.

Make two builds

In this lab, we have one build for both the application and the database. This is correct for most people,

because:

 You want one united build of your whole application.

 It’s easier to talk about one build and one build number.
 Application-level automated tests may exercise database code/schema, so it’s important to run those

when the database changes.

http://www.red-gate.com/products/dlm/dlm-dashboard

Page 50 of 50

However, you may wish to create a separate build definition just for the db. This may be desirable if multiple

applications use a single db.

Feedback

If you have any feedback on this guide or would like to talk to us about database development and deployment

processes, please email us at dlm@red-gate.com.

mailto:dlm@red-gate.com

