
Unit 12

Database Recovery

12-1

Wei-Pang Yang, Information Management, NDHU 12-2

Contents

 12.1 Introduction

 12.2 Transactions

 12.3 Transaction Failures and Recovery

 12.4 System Failures and Recovery

 12.5 Media Failures and Recovery

12-3

12.1 Introduction

Wei-Pang Yang, Information Management, NDHU 12-4

Database Recovery: Introduction

 The Problem of Database Recovery

• To restore the database to a state that

is known to be correct after some

failures.

 Possible Failures

• programming errors, e.g. divide by 0,

QTY < 0

• hardware errors, e.g. disk crashed

• operator errors, e.g. mounting a

wrong tape

• power supply, fire, ...

 Principle of Recovery:
Backup is necessary

Wei-Pang Yang, Information Management, NDHU 12-5

Database Recovery (cont.)

 Basic approach

1. Dump database periodically.

2. Write a log record for every change.

e.g. E#, old_value, new_value, …

3. If a failure occurs:

CASE1 : DB is damaged

==> archive copy + redo log = current DB.

CASE2 : DB is not damaged but contents unreliable

==> undo some log.

8:00

update

log

10:00 8:00 -10:00

12-6

12.2 Transactions

• unit of Work
• unit of Recovery
• unit of Concurrency (Unit 13)

Wei-Pang Yang, Information Management, NDHU 12-7

Transactions: Concepts

• A logical unit of work.

• Atomic from the point of view of the end-user.

• An all-or-nothing proposition.

<e.g.> TRANSFER : PROC; /* transfer account */

GET (FROM, TO, AMOUNT);

FIND UNIQUE (ACCOUNT WHERE ACC#=FROM);

ASSIGN (BALANCE - AMOUNT) TO BALANCE;

IF BALANCE < 0

THEN
DO;
PUT ('INSUFFICIENCY FUNDS');
ROLLBACK;
END;

ELSE

DO;
FIND UNIQUE (ACCOUNT WHERE ACC# = TO);
ASSIGN (BALANCE + AMOUNT) TO BALANCE;
PUT ('TRANSFER COMPLETE');
COMMIT;

END;
END;

Wei-Pang Yang, Information Management, NDHU 12-8

Transactions: Example

<e.g.> [CASCADE CHANGE ON S.S# TO SP.S#]

CHANGE: PROC OPTIONS (MAIN)

EXEC SQL WHENEVER SQLERROR GOTO UNDO;

GET LIST (SX, SY);

(i) EXEC SQL UPDATE S

SET S# =: SY;

WHERE S# =:SX;

(ii) EXEC SQL UPDATE SP

SET S# =: SY;

WHERE S# =: SX;

EXEC SQL COMMIT;

GO TO FINISH;

UNDO: EXEC SQL ROLLBACK;

FINISH: RETURN;

END

S#

S1
S001

S

S#

S1
S001

SP

Wei-Pang Yang, Information Management, NDHU 12-9

Transactions: Structure

 Structure of a Transaction
BEGIN TRANSACTION;

/* application specified sequence of operations*/
.
.

COMMIT; /* signal successful termination */
(or ROLLBACK; /* signal unsuccessful termination*/)

 Implicit

BEGIN TRANSACTION, COMMIT, ROLLBACK may be implicit:

Program initiation BEGIN TRANSACTION
Normal termination COMMIT
Abnormal termination ROLLBACK

 Program and Transaction:

one program may contain several transactions.

program

initiation BEGIN

TRANSACTION

COMMIT BEGIN

TRANSACTION

ROLLBACK

Time

Tx1 Tx2

BEGIN

TRANSACTION

COMMIT program

termination

Tx3

Wei-Pang Yang, Information Management, NDHU 12-10

Transactions: Manager

 Transaction cannot be nested:

 Transaction Manager:

Transaction should not be lost, or partially done, or done more than once

<e.g.> Consider the CASCADE example,

if the system crashed between two updates

==> the first update must be undone !

Tx2

Tx1

Time

BEGIN

TRANSACTION

BEGIN

TRANSACTION
COMMIT

failure

• Does Tx2 need to be rolled back ?

Wei-Pang Yang, Information Management, NDHU 12-11

Transactions: Commit and Rollback

• COMMIT:

• signal successful end-of-transaction.

• all updates made by that transaction can now be made permanent. (e.g. buffer to disk)

• ROLLBACK:

• signal unsuccessful end-of-transaction.

• the database may be in an inconsistent state.

• all update made by that transaction so far must be 'rolled back or undone'

• How to undone an update ?

• system maintain a log or journal on tape or disk on which details of all update are

recorded.

Begin Tx

update write

Commit End Tx

Wei-Pang Yang, Information Management, NDHU 12-12

Transactions: Synchronization Point (SynchPoint)

• Represents the boundary between two consecutive transactions.

• Corresponds to the end of logical unit of work.

• A point at which the database is in a state of consistency.

• Established by COMMIT, ROLLBACK, and program initiation.

• When a synchpoint is established:

• All updates since the previous synchpoint are committed (COMMIT)

or undone (ROLLBACK)

• All database positioning is lost. (e.g. cursor).

• All record locks are released.

program

initiation
BEGIN

TRANSACTION

COMMIT BEGIN

TRANSACTION

ROLLBACK
program

termination

SynchPoint SynchPoint SynchPoint

.

.

.

Wei-Pang Yang, Information Management, NDHU 12-13

Types of Transaction Failure

 Type 1 Transaction Failures:
• detected by the application program itself.

e.g. Insufficient Funds (balance < 0)

• How to handle ?
Issue the ROLLBACK command after the detection. (ref. p.12-7)

 Type2 Transaction Failures:

• not explicitly handled by the application

e.g. divide by zero, arithmetic overflow, ...

 System Failures (Soft crash):

• affect all transactions currently in progress,

• but do not damage the database. e.g. CPU failure.

 Media Failures (Hard crash):

• damage the database.

• affect all transactions currently using that portion.
e.g. disk head crash.

Application

program

處理

§ 12.3

§ 12.4

§ 12.5

12-14

12.3 Type 2 Transaction Failures and Recovery

Wei-Pang Yang, Information Management, NDHU 12-15

Transaction Failures and Recovery

 Transaction Failures:

failures caused by unplanned, abnormal program termination.

<e.g.> arithmetic overflow
divided by zero
storage protection violation
log overflow...

 How to recover transaction failures ?

• System force a rollback.

• the rollback is coordinated by Recovery Manager.

• working backward through the log

• to undo changes (replace new value by old value)

• until the “BEGIN TRANSACTION” is encountered.

Wei-Pang Yang, Information Management, NDHU 12-16

UNDO Logic and REDO Logic

 UNDO Logic

=> cause the rollback procedure to be restarted from the beginning.

• Idempotent Property : [Gray '78]

UNDO (UNDO (UNDO (... (x))) = UNDO (x) for all x

i.e. undoing a given change any number of times is the same
as undoing it exactly once.

 REDO Logic

REDO (REDO (REDO (...(x))) = REDO (x) for all x.

UNDO

failure failure again

Wei-Pang Yang, Information Management, NDHU 12-17

Log

 On-line log (active log) v.s. Off-line log (archive log) :

• log data: 200 million byte/day ==> infeasible to be stored entirely on-line

• active log: stored on disk if full ==> dump to tape ==> archive log.

 Log Compression

• Archive log can be compressed
=> reduce storage, and then increasing efficiency

• How to compress archive log ?

• log records for transactions that failed to commit can be deleted (since they have
been rolled back).

• old values are no longer needed for the transactions that did commit (since they will
never have to be undone).

• changes can be consolidated (only the final value is kept)

Log: 100 –10 90 r

100 -10 90 cancel

只可能做 redo

program

initiation BEGIN

TRANSACTION

COMMIT BEGIN

TRANSACTION

ROLLBACK

Time
Tx1 Tx2

BEGIN

TRANSACTION

COMMIT program

termination

Tx3

Wei-Pang Yang, Information Management, NDHU 12-18

Long Transaction

• Transaction is unit of work, and unit of recovery.

• Transaction should be short.

=> reduce the amount that has to be undone.

• long transaction => subdivided into multiple transactions.

<e.g.> T1: Update all supplier records, S.

T11: Update all supplier records for supplier name is 'A%'.

T12: Update all supplier records for supplier name is 'B%'.

T1,26: Update all supplier records for supplier name is 'Z%'.

.

.

.

12-19

12.4 System Failures and Recovery

Wei-Pang Yang, Information Management, NDHU 12-20

System Failures and Recovery

 Critical point : contents of main storage are lost, in particular, the

database buffers are lost. e.g. CPU failure.

 How to recover ?
(1) UNDO the transactions in progress at the time of failure.

(2) REDO the transactions that successfully complete but did not write
to the physical disk.

 <e.g.>

e.g. T3 ,T5

tc tf
Time

T1

T2
T3
T4

T5
check point system failure

T1: no need to be undone or redone

T2, T4: must be redone

T3, T5: must be undone

?

?

Wei-Pang Yang, Information Management, NDHU 12-21

System Failures and Recovery

 How does the system know: which transaction to redo and which to undo?

<1> Taking a check point:

• at certain prescribed intervals

• involves:

(1) writing the contents of the database buffers out to the physical
database. e.g. disk

(2) writing a special checkpoint record (contains a list of transactions
which are in progress) e.g. {T2, T3} in progress

e.g. T3 ,T5

e.g. T1

<e.g.> tc tf
Time

T1

T2
T3
T4

T5
check point system failure

T1: no need to be undone or redone

T2, T4: must be redone

T3, T5: must be undone

?

?

Wei-Pang Yang, Information Management, NDHU 12-22

System Failures and Recovery (cont.)

<2> Decide undo and redo list
Decide the undo list and redo list by the following procedure :

STEP1:

UNDO-list = list of transactions given in the checkpoint record = {T2, T3}

REDO-list = { }

STEP2:

Search forward through the log, starting from the checkpoint, to the end of log:

• if a 'BEGIN TRANSACTION' is found => add to UNDO-list {T2, T3, T4, T5}

• if a 'COMMIT' is found => remove from UNDO-list to REDO-list

UNDO-list = {T3, T5}

REDO-list = {T2, T4}

<3> Undo: System works backward through the log, undoing the UNDO-List.

<4> Redo: System then works forward through the log, redoing the REDO-List

做一半的，要undo

應該已做完，不確定有無 write to disk

Wei-Pang Yang, Information Management, NDHU 12-23

Write-Ahead Log Protocol

 Write-Ahead Log Protocol (i.e. Log first protocol)

Note: 'write a change to database' and 'write the log record to log' are two

distinct operations

=> failure may occur between them!

• Before writing a record to physical database, the log record must first be

written to physical log.

• Before committing a transaction, all log records must first be written to

physical log.

TimeWrite

log database Time

Write db

Commit

Write log

Write db

Write log
Write Commit

log

Wei-Pang Yang, Information Management, NDHU 12-24

Write-Ahead Log Protocol (cont.)

tc tf
Time

T1

T2
T3
T4

T5
check point system failure

T1: no need to be undone or redone

T2, T4: must be redone

T3, T5: must be undone

?

?

 Why log need to write ahead? (Think!)

Time

Write db

Commit

Write log

Write db

Write log
Write Commit

log

Case 1 Case 2

12-25

12.5 Media Failures and Recovery

Wei-Pang Yang, Information Management, NDHU 12-26

Types of Transaction Failure

 Type 1 Transaction Failures:
• detected by the application program itself.

e.g. Insufficient Funds (balance < 0)

• How to handle ?
Issue the ROLLBACK command after the detection. (ref. p.12-7)

 Type2 Transaction Failures:

• not explicitly handled by the application

e.g. divide by zero, arithmetic overflow, ...

 System Failures (Soft crash):

• affect all transactions currently in progress,

• but do not damage the database. e.g. CPU failure.

 Media Failures (Hard crash):

• damage the database.

• affect all transactions currently using that portion.
e.g. disk head crash.

Application

program

處理

§ 12.3

§ 12.4

§ 12.5

Wei-Pang Yang, Information Management, NDHU 12-27

Media Failures and Recovery

 Critical point:

Some portion of the secondary storage is
damaged.

 How to recover?

(1) load the database to new device from the

most recent archive copy (old DB.)

(2) use the log (both active and archive) to

redo all the transactions that are
completed since that dump was taken.

Note: Assume log dose not fail.
(Duplex log to avoid log failure.)

Old DB log

New DB Report

Wei-Pang Yang, Information Management, NDHU

end of unit 12

