
Reviews: 24 47 54

Database Systems
Spring 2017

Introduction
SL01

I Organization of the course
I The database field, basic definitions
I DB applications, functionality, users and languages
I Data models, schemas, instances, and redundancy
I Main characteristics of the database approach

DBS 2017, SL01 1/68 M. Böhlen, IfI@UZH

Organization of the Course

I Database curricula at IfI
I Literature
I Lectures
I Exercises
I Content

DBS 2017, SL01 2/68 M. Böhlen, IfI@UZH

About me

I I have been a database system person since more than 20 years.
I My previous affiliations (and the first example of a database table):

Affiliations
Start End Institution Country
1990 1994 ETH Zürich CH
1994 1995 University of Arizona USA
1995 2003 Aalborg University DK
2003 2009 Free University of Bozen-Bolzano IT
2009 now University of Zürich CH

expectation: no or little in terms of programming. basics in predicate logic.

DBS 2017, SL01 3/68 M. Böhlen, IfI@UZH

About the Database Systems Course

this week is not representative; overview; gets more technical and concrete.

I Slides can be accessed through the course web page:
http://www.ifi.uzh.ch/dbtg/teaching/courses/DBS.html

I The slides are designed as a working script.
I The textbook is Database Systems by Elmasri and Navathe.
I Use the slides, and optionally the textbook, for preparation

throughout the semester.
I During the lecture we will solve illustrative examples on the board.

Interaction during class is welcome.

I What is important
I Being able to apply your knowledge to relevant examples.
I Being able to be precise about the key concepts of database systems.

DBS 2017, SL01 4/68 M. Böhlen, IfI@UZH

About Database Sytems @IfI

I Database Systems (DBS), Spring, 4th semester

I Praktikum Datenbanksysteme (PDBS), Fall, 5th semester
I Distributed Databases (DDBS), Fall even years, 5th semester

I Seminar Database Systems (SDBS), Spring, 6th or 8th semester
I XML und Datenbanken, (XMLDB), Spring, 6th or 8th semester
I Data Warehousing, Spring (DW), Spring even years, 8th semester
I Temporal and Spatial Data Management (TSDM), Fall odd

years, 9th semester

DBS 2017, SL01 5/68 M. Böhlen, IfI@UZH

Literature and Acknowledgments

Reading List for SL01:
I Database Systems, Chapters 1 and 2, Sixth

Edition, Ramez Elmasri and Shamkant B.
Navathe, Pearson Education, 2010.

These slides were developed by:
I Michael Böhlen, University of Zürich, Switzerland
I Johann Gamper, Free University of Bozen-Bolzano, Italy

The slides are based on the following text books and associated material:
I Database Systems, Sixth Edition, Ramez Elmasri and Shamkant B.

Navathe, Pearson Education, 2010.
I A. Silberschatz, H. Korth, and S. Sudarshan: Database System

Concepts, McGraw Hill, 2006.

DBS 2017, SL01 6/68 M. Böhlen, IfI@UZH

DBS Course/1

I Lectures:
I Tuesday 10:15-12:00 in BIN-0.K.02
I Wednesday 12:15-13:45 in BIN-0.K.02

I The final exam is written and takes place Tuesday, June 20, 10:15 -
12:00 (check official web pages for details).

I All written material (slides, exercises, exam) is in English.

The assessment consists of the completion of 9 out of 12 exercises
and the participation at the final exam. Both parts have to be
passed independently.

I Office hours after appointment with TAs (after exercise hour or by
email).

I There is no re-exam.

DBS 2017, SL01 7/68 M. Böhlen, IfI@UZH

DBS Course/2

I The weekly exercises are a crucial part of the course.
I The exercises take place Tuesday 12:15-13:45. Start is February 28.

During the first week there are no exercises.
I TAs: Oksana Dolmatova (English), Yvonne Mülle (German), Kevin

Wellenzohn (English).
I Please sign up for the exercise groups by the end of this week by

filling the Doodle (cf. course web page). We will balance the load
across groups.

I Hand in of the exercises is Tuesday 12:15 in the exercise room or
before to TA directly.

I Exercises are only valid for the current year.

DBS 2017, SL01 8/68 M. Böhlen, IfI@UZH

DBS Exercises

Ausgabe 1. Uebung:
I nächste Woche
I Vorbesprechung der Übung
I 1 Woche für Bearbeitung
I Besprechung der Lösung

I Exercises
28.2 Relational algebra
07.3 Domain relational calculus
14.3 SQL (metadata, DDL, simple DML), PostgreSQL
21.3 Transformations: RA - DRC - SQL
28.3 Advanced SQL
04.4 Functions and triggers
11.4 Relational database design
25.4 Functional dependencies, multivalued dependencies
02.5 Entity relationship (ER) model
09.5 Physical design and indexing
16.5 Query trees and plans, cost computation
23.5 Transaction processing
30.5 Wrap up

DBS 2017, SL01 9/68 M. Böhlen, IfI@UZH

DBS Syllabus/1

bottom up. start with small well-defined pieces. bigger picture at
the end.

1. Database systems, chapter 1 and 2
I The field, terminology, database system, schema, instance,

functionality, architecture

2. Relational model, algebra, and calculus, chapter 3 and 6
I The relational model, relational algebra, relational calculus

3. SQL, chapter 4
I Data definition language, data manipulation language

4. Constraints, triggers, views, DB access, chapter 5 and 12
I column constraints, table constraints, assertions, referential integrity,

triggers, stored procedures

5. Relational database design, chapter 14 and 15
I design goals, keys, functional dependencies, normal forms, lossless

join decompositions, higher normal forms

logical level (= relational model)

DBS 2017, SL01 10/68 M. Böhlen, IfI@UZH

DBS Syllabus/2

6. Conceptual database design, chapter 7 and 8
I The design process, the entity-relationship model, entity-relationship

to relational model mapping

7. Physical database design, chapter 16 and 17
I Physical Storage media, file and buffer manager, indices, B-trees,

hashing

8. Query processing and optimization, chapter 18 and 19
I Measures of query cost, selection and join operation, transformation

of relational expressions, evaluation plans

9. Transactions, concurrency, recovery, chapter 20, 21, 22
I ACID properties, SQL transactions, concurrency protocols, log-based

recovery

conceptual level (applications
and users)

internal level

DBS 2017, SL01 11/68 M. Böhlen, IfI@UZH

Notational Conventions/1
Relational Algebra (RA):

I constant: ’abc’, 14, 3.14, ...
I attribute: Name, X , ... (upper case)
I relation name: Employee, R, ... (upper case)
I tuple: t, t1, ... (lower case)
I relation: emp, r , s, ... (lower case)
I schema: sch(emp) = Employee(Name, Addr), ...
I database: D, DB, ... (upper case)

Domain Relational Calculus (DRC), First Order Predicate Logic (FOPL):
I constant: ’abc’, 14, ...
I variable: X , Y , ... (upper case)
I predicate: p, q, ... (lower case)

DBS 2017, SL01 12/68 M. Böhlen, IfI@UZH

Notational Conventions/2

SQL:
I constant: ’abc’, 14, ...
I SQL keyword: SELECT, FROM, ... (all cap, blue, bold)
I attribute: Name, Salary , ... (upper case)
I table: r , dept, ... (lower case)

Entity Relationship Model (ER Model):
I constant: ’abc’, 14, ...
I attribute: Name, Gender , ... (green, upper case)
I relationship: workFor , ... (red, lower case)
I entity: Company , Emp, ... (blue, upper case)

DBS 2017, SL01 13/68 M. Böhlen, IfI@UZH

The Database Field

I Professional Resources
I Products
I Activities of Database People
I Basic Terminology and Definitions

DBS 2017, SL01 14/68 M. Böhlen, IfI@UZH

The Field/1

less than 20% acceptance rate; 600 submissions per year; 1-2
years of work for 12 pages; 1-2 publ = PhD; more than 4
publ = academic positions

I Conference Publications
I SIGMOD/PODS
I VLDB
I ICDE
I EDBT/ICDT

I Journal Publications
I ACM Transaction on Database System (TODS)
I The VLDB Journal (VLDBJ)
I Information Systems (IS)
I IEEE Transactions on Knowledge and Data Engineering (TKDE)

I DBLP Bibliography (Michael Ley, Uni Trier, Germany)
I http://dblp.uni-trier.de/db/

I DBWorld mailing list
I http://www.cs.wisc.edu/dbworld/

DBS 2017, SL01 15/68 M. Böhlen, IfI@UZH

The Field/2

DBS 2017, SL01 16/68 M. Böhlen, IfI@UZH

Products

I Commercial Products
I Oracle
I DB2 (IBM)
I SQL Server (Microsoft)
I Teradata
I SAP HANA
I ...

I Open Source Products
I PostgreSQL
I MySQL (Oracle), MariaDB
I MongoDB (NoSQL)
I CouchDB (NoSQL, JSON, MapReduce)
I Cassandra
I MonetDB
I ...

We will use PostgreSQL for this course.

DBS 2017, SL01 17/68 M. Böhlen, IfI@UZH

Oracle’s Solution Stack

x axis: data management –> data analysis
y axis: distribution and heterogeneity
0.5M CHF

Image: Roger Wullschleger, Oracle @ DBTA Workshop on Big Data, Bern, 2012

DBS 2017, SL01 18/68 M. Böhlen, IfI@UZH

Basic Definitions/1

dbs: general tools and techniques to process data; leave
semantics to applications; provide support to applications
by processing data flexibly

About, data, information, and knowledge:

I Data are facts that can be recorded:
I book(’Lord of the Rings’, 3, 10)

I Information = data + meaning
I book:
I title = ’Lord of the rings’,
I volume nr = 3,
I price in USD = 10

I Knowledge = information + application

DBS 2017, SL01 19/68 M. Böhlen, IfI@UZH

Basic Definitions/2

be precise (correct) about difference bet-
ween db and dbms

facts: statements that are true or false

I Mini-world: The part of the real world we are interested in

I Data: Known facts about the mini-world that can be recorded

I Database (DB): A collection of related data

I Database Management System (DBMS): A software package to
facilitate the creation/maintenance/querying of databases

I Database System (DBS): DB + DBMS

I Meta Data: Information about the structure of the DB.
I which tables? which columns? which users? which access rights?
I Meta data is organized as a DB itself.

DBS 2017, SL01 20/68 M. Böhlen, IfI@UZH

Basic Definitions/3

DBS 2017, SL01 21/68 M. Böhlen, IfI@UZH

DBMS Languages/1

I A DBMS offers two types of languages:
I data definition language (DDL) to create and drop tables, etc
I data manipulation language (DML) to select, insert, delete, and

update data
I The standard language for database systems is SQL

I SQL stands for Structured Query Language
I Example SQL query: SELECT * FROM r
I the original name was SEQUEL
I “Intergalactic data speak” [Michael Stonebraker].

I SQL offers a DDL and a DML.

DBS 2017, SL01 22/68 M. Böhlen, IfI@UZH

DBMS Languages/2

I We distinguish between
I High level or declarative (non-procedural) languages
I Low level or procedural languages

I High level or declarative language:
I For example, the SQL language
I Set-oriented (retrieve multiple results)
I Specify what data to retrieve and not how to retrieve it

I Low level or procedural language:
I Retrieve data one record at a time
I Specify how to retrieve data
I Constructs such as looping are needed to retrieve multiple records,

along with positioning pointers.

DBS 2017, SL01 23/68 M. Böhlen, IfI@UZH

Review 1.1

1. Give examples of declarative and procedural approaches from the
real world.

Procedural:
cooking recipe: steps to cook a meal.

Python, C, Java, etc: program is sequence of steps.

Declarative:
Search with Google: what to search and not how to search.

borrow a book from the uzh library: which book not how to find it.

SQL: what to compute not how to compute.

DBS 2017, SL01 24/68 M. Böhlen, IfI@UZH

Applications, Functionality, Users
and Interfaces

I Application Areas of Database Systems
I Functionality of Database Systems
I Users of Database Systems
I DBMS Interfaces

DBS 2017, SL01 25/68 M. Böhlen, IfI@UZH

Applications of Database Systems

I Traditional Applications
I Numeric and Textual Databases

I More Recent Applications:
I Multimedia Databases
I Geographic Information Systems (GIS)
I Data Warehouses
I Real-time and Active Databases
I Many other applications

I Examples:
I Bank (accounts)
I Insurances
I Stores (inventory, sales)
I Reservation systems
I University (students, courses, rooms)
I online sales (amazon.com)
I online newspapers (nzz.ch)

DBS 2017, SL01 26/68 M. Böhlen, IfI@UZH

Typical Activities/Jobs of Database People

I Data modeling (e.g., UZH)
I Handling large volumes of complex data (scientific data,

astrophysics, genome data, etc)
I Distributed databases
I Design of migration strategies
I User interface design
I Development of algorithms
I Design of languages
I New data models and systems

I XML/semi-structured databases
I Stream data processing
I Temporal and spatial databases
I GIS systems

I etc.

DBS 2017, SL01 27/68 M. Böhlen, IfI@UZH

Functionality of Database Systems/1

Typical DBMS functionality:
I Define a particular database in terms of its data types, structures,

and constraints

integer, string,
picture

tuple, table

I Construct or load the initial database contents on a persistent
storage medium

UBS, UZH, Swiss RE, Uni Spital, Google, Facebook, Twitter

I Manipulating the database:
I Retrieval: Querying, generating reports
I Modification: Insertions, deletions and updates to its content
I Accessing the database through Web applications

I Sharing by a set of concurrent users and application programs
while, at the same time, keeping all data valid and consistent

DBS 2017, SL01 28/68 M. Böhlen, IfI@UZH

Functionality of Database Systems/2

Additional DBMS functionality:
I Other features of DBMSs:

I Protection or security measures to prevent unauthorized access
I Active processing to take internal actions on data
I Presentation and visualization of data
I Maintaining the database and associated programs over the lifetime

of the database application (called database, software, and system
maintenance)

DBS 2017, SL01 29/68 M. Böhlen, IfI@UZH

Users of Database Systems/1

Database users have very different tasks. There are those who use and
control the database content, and those who design, develop and
maintain database applications.

I Database administrators:
I Responsible for authorizing access to the database, for coordinating

and monitoring its use, acquiring software and hardware resources,
controlling its use and monitoring efficiency of operations.

I Database Designers:
I Responsible to define the content, the structure, the constraints, and

functions or transactions against the database. They must
communicate with the end-users and understand their needs.

DBS 2017, SL01 30/68 M. Böhlen, IfI@UZH

Users of Database Systems/2

I End-users: They use the data for queries, reports and some of them
update the database content. End-users can be categorized into:

I Casual: access database occasionally when needed
I Naïve: they make up a large section of the end-user population.

I They use previously well-defined functions in the form of “canned
transactions” against the database.

I Examples are bank-tellers or reservation clerks.
I Sophisticated:

I These include business analysts, scientists, engineers, others
thoroughly familiar with the system capabilities.

I Many use tools in the form of software packages that work closely
with the stored database.

I Stand-alone:
I Mostly maintain personal databases using ready-to-use packaged

applications.
I An example is a tax program user that creates its own internal

database or a user that maintains an address book

DBS 2017, SL01 31/68 M. Böhlen, IfI@UZH

DBMS Interfaces/1

I User-friendly interfaces
I Menu-based, forms-based, graphics-based, etc.

I Stand-alone query language interfaces
I Example: Entering SQL queries at the DBMS interactive SQL

interface (e.g. psql in PostgreSQL, sqlplus in Oracle)
I Program interfaces for embedding DML in programming languages
I Web Browser as an interface
I Speech as Input and Output
I Parametric interfaces, e.g., bank tellers using function keys.
I Interfaces for the DBA:

I Creating user accounts, granting authorizations
I Setting system parameters
I Changing schemas or access paths

DBS 2017, SL01 32/68 M. Böhlen, IfI@UZH

DBMS Interfaces/2

I Programmer interfaces for embedding DML in programming
languages:

I Embedded Approach:

move data from DB to application

embedded SQL (for C, C++, etc.)
SQLJ (for Java)

I Procedure Call Approach:

move data from DB to application

JDBC for Java
ODBC for other programming languages

Excel, R, ...

I Database Programming Language Approach:

move code from appl to DB

e.g., ORACLE has PL/SQL, a programming language based on SQL;
language incorporates SQL and its data types as integral components

DBS 2017, SL01 33/68 M. Böhlen, IfI@UZH

DBMS Interfaces/3
I Oracle SQL Developer is a graphical tool for DB development.
I With SQL Developer you can browse database objects, run SQL

statements and SQL scripts, and edit and debug PL/SQL
statements.

DBS 2017, SL01 34/68 M. Böhlen, IfI@UZH

DBMS Interfaces/4
I pgadmin is the administration and development platform for

PostgreSQL.
I The graphical interface supports all PostgreSQL features, from

writing simple SQL queries to developing complex databases.

DBS 2017, SL01 35/68 M. Böhlen, IfI@UZH

DBMS Interfaces/5

I Command line tool psql:

DBS 2017, SL01 36/68 M. Böhlen, IfI@UZH

DBMS Interfaces/6

I There are various database system utilities to perform certain
functions such as:

I Loading data stored in files into a database. Includes data
conversion tools.

I Backing up the database periodically on tape.
I Reorganizing database file structures.
I Report generation utilities.
I Performance monitoring utilities.

Swiss Re: new DB2 release; changes to
query optimizer; increased query perfor-
mance from 1 minute to 1 hour

I Other functions, such as sorting, user monitoring, data compression,
etc.

DBS 2017, SL01 37/68 M. Böhlen, IfI@UZH

Models, Schemas, Instances and
Redundancy

I Data Models
I Database Schema
I Database Instance
I Redundancy

DBS 2017, SL01 38/68 M. Böhlen, IfI@UZH

Data Models
I Data Model:

I A set of concepts to describe the structure of a database, the
operations for manipulating these structures, and certain
constraints that the database should obey.

I Structure and Constraints:
I Different constructs are used to define the database structure
I Constructs typically include elements (and their data types) as well

as groups of elements (e.g. record, table), and relationships among
such groups

I Constraints specify some restrictions on valid data; these constraints
must be enforced at all times

I Operations
I Operations are used for specifying database retrievals and updates

by referring to the constructs of the data model.
I Operations on the data model may include basic model operations

(e.g. generic insert, delete, update) and user-defined operations (e.g.
compute_student_gpa, update_inventory)

DBS 2017, SL01 39/68 M. Böhlen, IfI@UZH

Categories of Data Models

Unterschiedliche Modelle für unterschiedliche Benutzer.

I Conceptual (high-level, semantic) data models:
I Provide concepts that are close to the way many users perceive data.

(Also called entity-based or object-based data models.)
I Physical (low-level, internal) data models:

I Provide concepts that describe details of how data is stored in the
computer. These are usually specified in an ad-hoc manner through
DBMS design and administration manuals

I Implementation (representational) data models:
I Provide concepts that fall between the above two, used by many

commercial DBMS implementations (e.g. the relational data model is
used in many commercial systems).

DBS 2017, SL01 40/68 M. Böhlen, IfI@UZH

Database Schema

I Database Schema:
I The description of a database.
I Includes descriptions of the database structure, data types, and the

constraints on the database.
I Schema Diagram:

I An illustrative display of (most aspects of) a database schema.
I Schema Construct:

I A component of the schema or an object within the schema, e.g.,
Student, Course.

I The database schema changes very infrequently.
I Schema is also called intension.

DBS 2017, SL01 41/68 M. Böhlen, IfI@UZH

Database Instance

I Database Instance:
I The actual data stored in a database at a particular moment in time.

This includes the collection of all the data in the database.
I Also called database state (or occurrence or snapshot).
I The term instance is also applied to individual database components,

e.g., record instance, table instance, entity instance
I Initial Database Instance: Refers to the database instance that is

initially loaded into the system.
I Valid Database Instance: An instance that satisfies the structure

and constraints of the database.
I The database instance changes every time the database is updated.
I Instance is also called extension.

DBS 2017, SL01 42/68 M. Böhlen, IfI@UZH

Example of a Database Description
I Mini-world for the example:

I Part of a UNIVERSITY environment.
I Some mini-world entities (an entity is a specific thing in the

mini-world):
I STUDENTs
I COURSEs
I SECTIONs (of COURSEs)
I DEPARTMENTs
I INSTRUCTORs

I Some mini-world relationships (a relationship relates things of the
mini-world):

I SECTIONs are of specific COURSEs
I STUDENTs take SECTIONs
I COURSEs have prerequisite
I COURSE INSTRUCTORs teach SECTIONs
I COURSEs are offered by DEPARTMENTs
I STUDENTs major in DEPARTMENTs

DBS 2017, SL01 43/68 M. Böhlen, IfI@UZH

Example of a Database Schema

Student
Name StudNr Class Major

Course
CourseName CourseNr CreditHours Department

Prerequisite
CourseNr PrerequisiteNr

Section
SectionID CourseNr Semester Year Instructor

GradeReport
StudNr SectionId Grade

DBS 2017, SL01 44/68 M. Böhlen, IfI@UZH

Example of a Database Instance

good schema?

course(Course)
CourseName CourseNr CreditHours Department

’Intro to Computer Science’ ’CS1310’ 4 ’CS’
’Data Structures’ ’CS3320’ 4 CS

’Discrete Mathematics’ ’MATH2410’ 3 ’MATH’
’Databases’ ’CS3360’ 3 ’CS’

section(Section)
SectionID CourseNr Semester Year Instructor

85 ’MATH2410’ ’Fall’ 04 ’King’
92 ’CS1310’ ’Fall’ 04 ’Anderson’
102 ’CS3320’ ’Spring’ 05 ’Knuth’
112 ’MATH2410’ ’Fall’ 05 ’Chang’
119 ’CS1310’ ’Fall’ 05 ’Anderson’
135 ’CS3380’ ’Fall’ 05 ’Stone’

gradeReport(GradeReport)
StudNr SectionId Grade
17 112 ’B’
17 119 ’C’
8 85 ’A’
8 92 ’A’
8 102 ’B’
8 135 ’A’

prerequisite(Prerequisite)
CourseNr PrerequisiteNr
’CS3380’ ’CS3320’
’CS3380’ ’MATH2410’
’CS3320’ ’CS1310’

DBS 2017, SL01 45/68 M. Böhlen, IfI@UZH

Redundancy

I During the design of a database the number of tables and their
schemas must be determined.

I A key goal of database design is to avoid redundancy.

I Redundancy is present if information is stored multiple times.
I Example of redundancy: storing the same address multiple times
I Redundancy leads to update anomalies and inconsistent data (e.g., a

person has multiple and partially invalid addresses)
I The goal of database design, and specifically of database

normalization, is to eliminate redundancy.
I The term controlled redundancy is used if duplication of

information is allowed and if the duplication is controlled by the
DBMS.

DBS 2017, SL01 46/68 M. Böhlen, IfI@UZH

Review 1.2/1
Consider the university database instance shown above.
1. Explain why this schema contains redundancy.
2. Give an example of a change that leads to update anomalies.
3. Propose a modified schema that eliminates the redundancy.

1. In table Course the department appears redundantly in CourseNr (if in all
cases the beginning of the course number is identical to the department).

2. Changing department from CS to CSSE: Anomaly/inconsistency occurs
if the course number is not changed as well.

if (’Data Structures’, ’CS3320’, 4, ’MATH’) is added then there is no redundancy since
CourseNr and Dept get independent.

DBS 2017, SL01 47/68 M. Böhlen, IfI@UZH

Review 1.2/2

Solution 1 (drop department; suitable if no/few queries about department):
courses
CourseName CourseNr CreditHours

... ’CS1310’ 4

... ’CS3320’ 4

... ’MATH2410’ 3

Solution 2 (split course nr; suitable for queries about department):
courses
CourseName Dept CourseNr CreditH

... ’CS’ 1310 4

... ’CS’ 3320 4

... ’MATH’ 2410 3

prerequisite
CourseDept CourseNr PrecDept PrecNr

’CS’ 3380 ’CS’ 3320
’CS’ 3380 ’MATH’ 2410
’CS’ 3320 ’CS’ 1310

similar for section

should redundancy be eliminated? depends on risk of inconsistency and cost to avoid it.
example: ISBN, AHV

DBS 2017, SL01 48/68 M. Böhlen, IfI@UZH

Main Characteristics of Database
Systems

I Three Schema Architecture
I Data Independence
I Main Characteristics
I Advantages and Disadvantages of Database Systems
I History

DBS 2017, SL01 49/68 M. Böhlen, IfI@UZH

The ANSI/SPARC Three Schema Architecture/1

I Proposed to support DBMS characteristics of:
I Data independence
I Multiple views of the data

I Not explicitly used in commercial DBMS products, but has been
useful in explaining database system organization.

I Defines DBMS schemas at three levels:
I Internal schema at the internal level to describe physical storage

structures and access paths (e.g indexes).
I Typically uses a physical data model.

I Conceptual schema at the conceptual level to describe the structure
and constraints for the whole database for a community of users.

I Uses a conceptual or an implementation data model.
I External schemas at the external level to describe the various user

views.
I Usually uses the same data model as the conceptual schema.

DBS 2017, SL01 50/68 M. Böhlen, IfI@UZH

The ANSI/SPARC Three Schema Architecture/2

I Mappings among schema levels are needed to transform requests
and data.

I Programs refer to an external schema, and are mapped by the DBMS
to the internal schema for execution.

I Data extracted from the internal DBMS level is reformatted to match
the user’s external view (e.g., formatting the results of an SQL query
for display in a Web page)

DBS 2017, SL01 51/68 M. Böhlen, IfI@UZH

The ANSI/SPARC Three Schema Architecture/3

DBS 2017, SL01 52/68 M. Böhlen, IfI@UZH

Data Independence

uzh library: thematisch organisieren oder
nach Sprache organisieren (external view
can be different)

uzh library: weiteres archiv

I Logical Data Independence:
I The capacity to change the conceptual schema without having to

change the external schemas and their associated application
programs.

I Physical Data Independence:
I The capacity to change the internal schema without having to change

the conceptual schema.
I For example, the internal schema may be changed when certain file

structures are reorganized or new indexes are created to improve
database performance

I When a schema at a lower level is changed, only the mappings
between this schema and higher-level schemas need to be changed
in a DBMS that fully supports data independence.

I The higher-level schemas themselves are unchanged.
I Hence, the application programs need not be changed since they refer

to the external schemas.
DBS 2017, SL01 53/68 M. Böhlen, IfI@UZH

Review 1.3

1. Give real world examples of data independence.

- Suche mit Google
- Ausleihen eines Buches aus der UZH Bibliothek
- Bewirtschaftung des Bankkontos
- Zugriff auf Noten an der UZH

In all diesen Fällen
- Verwendung der Daten ohne die Organisation der Daten zu kennen
- hat die Anwendung keinen direkter Zugriff auf die Daten (access
through SQL only)

DBS 2017, SL01 54/68 M. Böhlen, IfI@UZH

Main Characteristics of Database Approach/1
I Insulation between programs and data:

I Called data independence.
I Allows changing data structures and storage organization without

having to change the DBMS access programs.
I Control of redundancy:

I Database systems control (and minimize) redundancy
I The control allows to avoid inconsistent data (happens if only one

copy is updated)
I Data abstraction:

I A data model is used to hide storage details and present the users
with a conceptual view of the database.

I Programs refer to the data model constructs rather than data storage
details

I Support of multiple views of the data:
I Each user may see a different view of the database, which describes

only the data of interest to that user.

DBS 2017, SL01 55/68 M. Böhlen, IfI@UZH

Main Characteristics of Database Approach/2

I Sharing of data and multi-user transaction processing:
I Allowing a set of concurrent users to retrieve from and to update the

database.
I Concurrency control within the DBMS guarantees that each

transaction is correctly executed or aborted
I Recovery subsystem ensures each completed transaction has its effect

permanently recorded in the database
I OLTP (Online Transaction Processing) is a major part of database

applications. This allows hundreds of concurrent transactions to
execute per second.

I Self-describing nature of a database system:
I A DBMS catalog stores the description of a particular database (e.g.

data types, data structures, and constraints)
I The description is called metadata.
I This allows the DBMS software to work with different database

applications.

DBS 2017, SL01 56/68 M. Böhlen, IfI@UZH

Main Characteristics of Database Approach/3
Example of a DBMS catalog (just the idea; oversimplified):

relations
RelationName NrOfColumns

’Student’ 4
’Course’ 4
’Section’ 5

’GradeReport’ 3
’Prerquisite’ 2

columns
ColumnName DataType BelongsToRelation

’Name’ ’CHARACTER(30)’ ’Student’
’StudentNr’ ’CHARACTER(4)’ ’Student’

’Class’ ’INTEGER(1)’ ’Student’
...

I PostgreSQL 8.3.9: 74 objects in the system catalog
I Oracle 10.2: 1821 objects in the system catalog

DBS 2017, SL01 57/68 M. Böhlen, IfI@UZH

DBMS Architecture

SQL

DBMS1

Parser

Analyzer/Rewriter

Optimizer

Executor

Files and Access Methods

Buffer Manager

Disk Manager

Recovery
Manager

Transaction
Manager
Lock

Manager

Data and Index Files

1Image: Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-Hill 2003
DBS 2017, SL01 58/68 M. Böhlen, IfI@UZH

Advantages of Using a DBMS/1

data quality: kritisch für unter-
nehmen. kann nicht/schwer
korrigiert werden. sicherstellung
bei erfassung

I Controlling redundancy in data storage.
I Restricting unauthorized access to data.
I Providing persistent storage for program objects.
I Providing storage structures (e.g., indexes) for efficient query

processing.
I Providing backup and recovery services.
I Providing multiple interfaces to different classes of users.
I Representing complex relationships among data.
I Enforcing integrity constraints on the database (= good data
quality).

I Drawing inferences and actions from the stored data using deductive
and active rules.

DBS 2017, SL01 59/68 M. Böhlen, IfI@UZH

Advantages of Using a DBMS/2

convinced? excited? dbms is not fan-
cy sw. companies cannt do without.
notizzettel, excel, dbs.

I Potential for enforcing standards:
I This is very crucial for the success of database applications in large

organizations. Standards refer to data item names, display formats,
screens, report structures, meta-data (description of data), Web page
layouts, etc.

I Reduced application development time:
I Incremental time to add each new application is reduced.

I Flexibility to change data structures:
I Database structure may evolve as new requirements are defined.

I Availability of current information:
I Extremely important for on-line transaction systems such as airline,

hotel, car reservations.
I Economies of scale:

I Wasteful overlap of resources and personnel can be avoided by
consolidating data and applications across departments.

DBS 2017, SL01 60/68 M. Böhlen, IfI@UZH

When to not use a DBMS

I Main inhibitors of using a DBMS:
I High initial investment and possible need for additional hardware.
I Overhead for providing generality, security, concurrency control,

recovery, and integrity functions.
I When a DBMS may be unnecessary:

I If the database and applications are simple, well defined, and not
expected to change.

I If there are stringent real-time requirements that may not be met
because of DBMS overhead.

I If access to data by multiple users is not required.
I When no DBMS may suffice:

I If the database system is not able to handle the complexity of data
because of modeling limitations

I If the database users need special operations not supported by the
DBMS.

DBS 2017, SL01 61/68 M. Böhlen, IfI@UZH

History of Database Technology/1
I Network Model:

= graph with pointers

I The first network DBMS was implemented by Honeywell in 1964-65
(IDS System).

I Adopted heavily due to the support by CODASYL (Conference on
Data Systems Languages) (CODASYL - DBTG report of 1971).

I Advantages:
I The network model is able to model complex relationships.
I Can handle most situations for modeling using record types and

relationship types.
I Language is navigational; uses constructs like FIND, FIND member,

FIND owner, FIND NEXT within set, GET, etc.
I Programmers can do optimal navigation through the database.

I Disadvantages:
I Navigational and procedural nature of processing
I Database contains a complex array of pointers that thread through a

set of records.
I Little scope for automated query optimization

DBS 2017, SL01 62/68 M. Böhlen, IfI@UZH

History of Database Technology/2
I Hierarchical Data Model:

= tree with pointers

I Initially implemented in a joint effort by IBM and North American
Rockwell around 1965. Resulted in the IMS family of systems.

I IBM’s IMS product had (and still has) a very large customer base
worldwide

I Hierarchical model was formalized based on the IMS system
I Other systems based on this model: System 2k (SAS inc.)

I Advantages:
I Simple to construct and operate
I Corresponds to a number of natural hierarchically organized domains,

e.g., organization chart
I Language is simple; Uses constructs like GET, GET UNIQUE, GET

NEXT, GET NEXT WITHIN PARENT, etc.
I Disadvantages:

I Navigational and procedural nature of processing
I Database is visualized as a linear arrangement of records
I Little scope for "query optimization"

DBS 2017, SL01 63/68 M. Böhlen, IfI@UZH

History of Database Technology/3
I Relational Model:

= table with values (no pointers)

I Proposed in 1970 by E.F. Codd (IBM)
I Heavily researched and experimented within IBM Research and

universities
I First commercial system in 1981-82.
I Today in most commercial products (e.g. DB2, ORACLE, MS SQL

Server, SYBASE, INFORMIX).
I Several free open source implementations, e.g. MySQL, PostgreSQL
I Currently most dominant for developing database applications.
I SQL relational standards: SQL-89 (SQL1), SQL-92 (SQL2), SQL-99,

SQL3, . . .
I Advantages:

I High level of abstraction (conceptual and physical level are separated)
I Elegant mathematical model
I High level (declarative) query languages

I Disadvantages:
I Performance (was slow at the beginning because there is no

navigational access to data)
DBS 2017, SL01 64/68 M. Böhlen, IfI@UZH

History of Database Technology/4
I Object-oriented models:

I Object-oriented database management systems (OODBMSs) were
introduced in late 1980s and early 1990s to cater to the need of
complex data processing in CAD and other applications.

I OBJECTSTORE, VERSANT, GEMSTONE, O2, ORION, IRIS.
I Object Database Standard: ODMG-93, ODMG-version 2.0,

ODMG-version 3.0.
I Pure OODBMSs have disappeared. Many relational DBMSs have

incorporated object database concepts, leading to a new category
called object-relational DBMSs (ORDBMSs).

I Data on the web and E-commerce applications:
I Web contains data in HTML with links among pages.
I This has given rise to a new set of applications and E-commerce is

using standards like XML.
I Script programming languages such as PHP and JavaScript allow

generation of dynamic Web pages that are partially generated from a
database.

DBS 2017, SL01 65/68 M. Böhlen, IfI@UZH

History of Database Technology/5

I New functionality is being added to DBMSs in the following areas:
I Scientific Applications
I XML (eXtensible Markup Language)
I Image Storage and Management
I Audio and Video Data Management
I Data Warehousing and Data Mining
I Spatial Data Management
I Time Series and Historical Data Management
I Key-value stores (NoSQL)

I The above gives rise to new research and development in
incorporating new data types, complex data structures, new
operations and storage and indexing schemes in database systems.

DBS 2017, SL01 66/68 M. Böhlen, IfI@UZH

Summary/1
I Data models, schemas, instances

I data model = structures + constraints + operations
I schema = intension; schema consists of structures and constraints;

schema changes infrequently
I relation instance = relation = extension; relation instance is the

actual data that is compatible with the schema; changes often
I Key characteristics of database systems

I controlled redundancy: database systems is aware of redundancy
and provides support for updates that could violate the consistency of
the data

I data independence: separation of program and data; makes it
possible to, e.g., reorganize internal schema without changing
conceptual schema

I data abstraction: high level query language that is independent of
storage structure

I data dictionary (metadata) that stores information about the
database itself (self-describing)

DBS 2017, SL01 67/68 M. Böhlen, IfI@UZH

Summary/2

I Three-Schema Architecture
I multiple views of the data
I ANSI/SPARC three schema arcitecture
I external, conceptual, and internal schema

I DBMS Languages and Interfaces
I stand-alone command line interfaces: psql, sqlplus, ...
I programming interfaces: ODBC, JDBC
I database development tools: pgadmin, SQL developer

I Architectures and History
I network
I hierarchical
I relational
I object-oriented, object-relational

DBS 2017, SL01 68/68 M. Böhlen, IfI@UZH

Database Systems
Spring 2017

The Relational Model
SL02

Reviews: 14 17 23 35 38 43 55 75 78 82 85

I The Relational Model
I Basic Relational Algebra Operators
I Additional Relational Algebra Operators
I Extended Relational Algebra Operators
I Modification of the Database
I Relational Calculus

DBS 2017, SL02 1/87 M. Böhlen, IfI@UZH

Literature and Acknowledgments

Reading List for SL02:
I Database Systems, Chapters 3 and 6, Sixth Edition, Ramez Elmasri

and Shamkant B. Navathe, Pearson Education, 2010.

These slides were developed by:
I Michael Böhlen, University of Zürich, Switzerland
I Johann Gamper, Free University of Bozen-Bolzano, Italy

The slides are based on the following text books and associated material:
I Fundamentals of Database Systems, Fourth Edition, Ramez Elmasri

and Shamkant B. Navathe, Pearson Addison Wesley, 2004.
I A. Silberschatz, H. Korth, and S. Sudarshan: Database System

Concepts, McGraw Hill, 2006.

DBS 2017, SL02 2/87 M. Böhlen, IfI@UZH

The Relational Model

I schema, attribute, domain, tuple, relation, database
I superkey, candidate key, primary key
I entity constraints, referential integrity

DBS 2017, SL02 3/87 M. Böhlen, IfI@UZH

The Relational Model/1

I The relational model is based on the concept of a relation.
I A relation is a mathematical concept based on the ideas of sets.
I The relational model was proposed by Codd from IBM Research in

the paper:
I A Relational Model for Large Shared Data Banks, Communications of

the ACM, June 1970
I The above paper caused a major revolution in the field of database

management and earned Codd the coveted ACM Turing Award.
I The strength of the relational approach comes from the formal

foundation provided by the theory of relations.
I In practice, there is a standard model based on SQL. There are

several important differences between the formal model and the
practical model, as we shall see.

DBS 2017, SL02 4/87 M. Böhlen, IfI@UZH

The Relational Model/2

I Edgar Codd, a mathematician and IBM
Fellow, is best known for creating the
relational model for representing data
that led to today’s 12 billion database
industry.

I Codd’s basic idea was that relationships
between data items should be based on
the item’s values, and not on separately
specified linking or nesting.

I The idea of relying only on value-based relationships was quite a
radical concept at that time, and many people were skeptical. They
didn’t believe that machine-made relational queries would be able to
perform as well as hand-tuned programs written by expert human
navigators.

http://www.research.ibm.com/resources/news/20030423_edgarpassaway.shtml

DBS 2017, SL02 5/87 M. Böhlen, IfI@UZH

Relation Schema

I R(A1,A2, . . . ,An) is a relation schema

I R is the name of the relation.

I A1,A2, . . . ,An are attributes

I Example of a relation schema:
Customer(CustName,CustStreet,CustCity)

I attr(R) denotes the set of attributes of relation schema with name
R:
attr(Customer) = {CustName,CustStreet,CustCity}

DBS 2017, SL02 6/87 M. Böhlen, IfI@UZH

Attribute

I Each attribute of a relation has a name
I The set of allowed values for each attribute is called the domain of

the attribute
I Attribute values are required to be atomic; that is, indivisible

I The value of an attribute can be an account number, but cannot be a
set of account numbers

I The attribute name designates the role played by a domain in a
relation:

I Used to interpret the meaning of the data elements corresponding to
that attribute

I Example: The domain Date may be used to define two attributes
named “Invoice-date” and “Payment-date” with different meanings

DBS 2017, SL02 7/87 M. Böhlen, IfI@UZH

Domain

I A domain has a logical definition:
I Example: USA_phone_numbers are the set of 10 digit phone

numbers valid in the U.S.
I A domain also has a data-type or a format defined for it.

I The USA_phone_numbers may have a format: (ddd)ddd-dddd where
each d is a decimal digit.

I Dates have various formats such as year, month, date formatted as
yyyy-mm-dd, or as dd mm,yyyy etc.

I The special value null is a member of every domain
I The null value causes complications in the definition of many

operations
I We ignore the effect of null values in our main presentation and

consider their effect later

DBS 2017, SL02 8/87 M. Böhlen, IfI@UZH

Tuple

alternative: (Name/’Adams’, Street/’Spring’, City/’Pittsfield’)
SQL and DBMSs? support both; ordered if only values, unordered if attribute names

I A tuple is an ordered set (= list) of values
I Angle brackets 〈...〉 are used as notation; sometimes regular

parentheses (...) are used as well
I Each value is derived from an appropriate domain
I A customer tuple is a 3-tuple and would consist of three values, for

example:
I (’Adams’, ’Spring’, ’Pittsfield’)

DBS 2017, SL02 9/87 M. Böhlen, IfI@UZH

Relational Instance
I r(R) denotes a relation (or relation instance) r on relation schema

with name R
I Example: customer(Customer)
I A relation instance is a subset of the Cartesian product of the

domains of its attributes. Thus, a relation is a set of n-tuples
(a1, a2, . . . , an) where each ai ∈ Di

I Formally, given sets D1,D2, . . . ,Dn a relation r is a subset of
D1 × D2 × . . .× Dn

I Example:
D1 = CustName = {’Jones’, ’Smith’, ’Curry’, ’Lindsay’, . . .}
D2 = CustStreet = {’Main’, ’North’, ’Park’, . . .}
D3 = CustCity = {’Harrison’, ’Rye’, ’Pittsfield’, . . .}
r = { (’Jones’, ’Main’, ’Harrison’), (’Smith’, ’North’, ’Rye’),

(’Curry’, ’North’, ’Rye’), (’Lindsay’, ’Park’, ’Pittsfield’) }
⊆ CustName × CustStreet × CustCity

DBS 2017, SL02 10/87 M. Böhlen, IfI@UZH

Example of a Relation

relation

tuples

attributes

relation name

account(Account)
AccNr BranchName Balance
’A-101’ ’Downtown’ 500
’A-215’ ’Mianus’ 700
’A-102’ ’Perryridge’ 400
’A-305’ ’Round Hill’ 350
’A-201’ ’Brighton’ 900
’A-222’ ’Redwood’ 700
’A-217’ ’Brighton’ 750

DBS 2017, SL02 11/87 M. Böhlen, IfI@UZH

The Customer Relation

customer
CustName CustStreet CustCity
’Adams’ ’Spring’ ’Pittsfield’
’Brooks’ ’Senator’ ’Brooklyn’
’Curry’ ’North’ ’Rye’
’Glenn’ ’Sad Hill’ ’Woodside’
’Green’ ’Walnut’ ’Stamford’
’Hayes’ ’Main’ ’Harrison’
’Johnson’ ’Alma’ ’Palo Alto’
’Jones’ ’Main’ ’Harrison’
’Lindsay’ ’Park’ ’Pittsfield’
’Smith’ ’North’ ’Rye’
’Turner’ ’Putnam’ ’Stamford’
’Williams’ ’Nassau’ ’Princeton’

DBS 2017, SL02 12/87 M. Böhlen, IfI@UZH

Characteristics of Relations

I Relations are unordered, i.e., the order of tuples is irrelevant (tuples
may be stored and retrieved in an arbitrary order)

I The attributes in R(A1, ...,An) and the values in t = 〈v1, ..., vn〉 are
ordered.
depositor(Depositor)
CustName AccNr
’Hayes’ ’A-102’
’Johnson’ ’A-101’
’Johnson’ ’A-201’
’Jones’ ’A-217’
’Lindsay’ ’A-222’
’Smith’ ’A-215’
’Turner’ ’A-305’

depositor = {
(’Hayes’, ’A-102’), (’Johnson’, ’A-101’),
(’Johnson’, ’A-201’), (’Jones’, ’A-217’),
(’Lindsay’, ’A-222’), (’Smith’, ’A-215’),
(’Turner’, ’A-305’) }

sch(depositor) =
Depositor(CustName,AccNr)

I There exist alternative definitions of a relation where attributes in a
schema and values in a tuple are not ordered (textbooks differ).

DBS 2017, SL02 13/87 M. Böhlen, IfI@UZH

Review 2.1

1. Is r = {(’Tom’, 27, ’ZH’), (’Bob’, 33, ’Rome’, ’IT’)} a relation?

No. Schemas of tuples are different. This is not allowed.

2. For r = {(1, ’a’), (2, ’b’), (3, ’c’)} and sch(r) = R(X ,Y) determine:
I the 2nd attribute of relation r?

Y.

I the 3rd tuple of relation r?

does not exist (no ordering)

I the tuple in r with the smallest value for attribute X?

(1,’a’)

3. What is the difference between a set and a relation? Illustrate with
an example.

set: elements of a set can be anything
relation: all elements are tuples with the same schema
X = {(’a’), ∗, {3}, (1, 2)} is a set but not a relation.

DBS 2017, SL02 14/87 M. Böhlen, IfI@UZH

Database

I A database consists of multiple relations
I Example: Information about an enterprise is broken up into parts,

with each relation storing one part of the information
I account: stores information about accounts
I customer: stores information about customers
I depositor: information about which customer owns which account

I Storing all information as a single relation with schema
I Bank(AccNr ,Balance,CustName, . . .)

results in
I repetition of information: e.g.,if two customers own the same account
I the need for null values: e.g., to represent a customer without an

account

DBS 2017, SL02 15/87 M. Böhlen, IfI@UZH

Summary of the Relational Data Model
I A domain D is a set of atomic data values.

I phone numbers, names, grades, birthdates, departments
I each domain includes the special value null

I With each domain a data type or format is specified.
I 5 digit integers, yyyy-mm-dd, characters

I An attribute Ai describes the role of a domain in a relation schema.
I PhoneNr, Age, DeptName

I A relation schema R(A1, ...,An) is made up of a relation name R and a
list of attributes.

I Employee(Name,Dept, Salary), Department(DName,Manager ,Address)
I A tuple t is an ordered list of values t = (v1, ..., vn) with vi ∈ dom(Ai).

I t = (’Tom’, ’SE’, 23K)
I A relation r ⊆ D1 × ...× Dn over schema R(A1, ...,An) is a set of n-ary

tuples.
I r = {(’Tom’, ’SE’, 23K), (’Lene’, ’DB’, 33K)} ⊆ Names × Departments × Integer
I s = {(’SE’, ’Tom’, ’Boston’), (’DB’, ’Lena’, ’Tucson’)}

I A database DB is a set of relations.
I DB = {r , s}

DBS 2017, SL02 16/87 M. Böhlen, IfI@UZH

Review 2.2
1. Illustrate the following relations graphically:

r = {(1, ’a’), (2, ’b’), (3, ’c’)}, sch(r) = R(X ,Y);
s = {(1, 2, 3)}, sch(s) = S(A,B,C)

r(R)
X Y
1 ’a’
2 ’b’
3 ’c’

s(S)
A B C
1 2 3

2. What kind of object is X = {{(3)}} in the relational model?

X is a database.

3. Are DB1 and DB2 identical databases?
DB1 = {{(1, 5), (2, 3)}, {(4, 4)}}
DB2 = {{(4, 4)}, {(2, 3), (1, 5)}}

Yes. Databases are sets of relations; relations are sets of tuples. Order is not relevant.

DBS 2017, SL02 17/87 M. Böhlen, IfI@UZH

Constraints

constraints restrict the content of tables; this guarantees
a good data quality!

I Constraints are conditions that must be satisfied by all valid relation
instances

I There are four main types of constraints in the relational model:
I Domain constraints: each value in a tuple must be from the domain

of its attribute
I Key constraints
I Entity constraints
I Referential integrity constraints

DBS 2017, SL02 18/87 M. Böhlen, IfI@UZH

Key Constraints/1

why are superkeys not very useful?
superkeys are not minimal; SNr + Name + Gender + ...
or AHVNr + Adr + FirstName + ... are superkeys.

I Let K ⊆ attr(R)
I K is a superkey of R if values for K are sufficient to identify a

unique tuple of each possible relation r
I By “possible” we mean a relation r that could exist in the mini-world

we are modeling.
I Example: {CustName,CustStreet} and {CustName} are both

superkeys of Customer, if no two customers can possibly have the
same name.

I In real life, an attribute such as CustID would be used instead of
CustName to uniquely identify customers, but we omit it to keep our
examples small, and instead assume customer names are unique.

CuName CuStreet
’N. Jeff’ ’Binzmühlestr’
’N. Jeff’ ’Hochstr’
CuName cannot be a key

ID CuName CuStreet
1 ’N. Jeff’ ’Binzmühlestr’
2 ’N. Jeff’ ’Hochstr’

ID can be a key

DBS 2017, SL02 19/87 M. Böhlen, IfI@UZH

Key Constraints/2

candidate keys for students:
SNr, AHVNr, LastName + FirstName + Address, email, ...

I K is a candidate key if K is minimal
Example: {CustName} is a candidate key for Customer, since it is a
superkey and no subset of it is a superkey.

I Primary key: a candidate key chosen as the principal means of
identifying tuples within a relation

I Should choose an attribute whose value never, or very rarely, changes.
I E.g. email address is unique, but may change

DBS 2017, SL02 20/87 M. Böhlen, IfI@UZH

Entity Constraints

student without SNr; bank customer without account
number; employee without insurance nr; resident without
health insurance nr

I The entity constraint requires that the primary key attributes of
each relation may not have null values.

I The reason is that primary keys are used to identify the individual
tuples.

I If the primary key has several attributes none of these attribute
values may be null.

I Other attributes of the relation may also disallow null values
although they are not members of the primary key.

ID Name CuStreet
1 ’N. Jeff’ ’Binzmühlestr’

’T. Hurd’ ’Hochstr’
ID cannot be primary key

ID Name CuStreet
1 ’N. Jeff’ ’Binzmühlestr’
2 ’T. Hurd’ ’Hochstr’

ID can be primary key

DBS 2017, SL02 21/87 M. Böhlen, IfI@UZH

Referential Integrity

Example of referential integrity:
grades only for students with an
S-number

I A relation schema may have an attribute that corresponds to the
primary key of a relation. The attribute is called a foreign key.

I E.g. CustName and AccNr attributes of Depositor are foreign keys to
Customer and Account respectively.

I Only values occurring in the primary key attribute of the referenced
relation (or null values) may occur in the foreign key attribute of the
referencing relation.

I In a graphical representation of the schema a referential integrity
constraint is often displayed as a directed arc from the foreign key
attribute to the primary key attribute.

ID CuName CuStrNr
1 ’N. Jeff’ 2
2 ’N. Jeff’ 4

StreetNr Street
2 ’Binzmühlestr’
3 ’Hochstr’

StreetNr 4 does not exist. CuStrNr = 4 is an invalid reference.

foreign key (can only use known
streets)

primary key (lists all possible
streets)

DBS 2017, SL02 22/87 M. Böhlen, IfI@UZH

Review 2.3/1
1. Determine the candidate keys of relation r :

r(R)
X Y Z
1 2 3
1 4 5
2 2 2

X is not a key

Y is not a candidate key

Z could be a candidate key

XY could be a candidate key

Any superset of Z and XY could be a candidate key (only if no
subset is a candidate key)

DBS 2017, SL02 23/87 M. Böhlen, IfI@UZH

Review 2.3/2
2. Determine possible superkeys of relations r and s. Assume that the

possible superkeys indeed are superkeys: determine possible
candidate, primary, and foreign keys.

r(R)
A B C
’a’ ’d’ ’e’
’b’ ’d’ ’c’
’c’ ’e’ ’e’

s(S)
D E
’d’ ’a’
’e’ ’a’
’a’ ’a’

possible superkeys:

A, AB, AC, ABC, BC, D, DE

possible candidate keys:

A, BC, D

possible primary keys:

A für R, D für S

possible foreign keys:

E with primary key A,
B with primary key D,
E with primary key D

DBS 2017, SL02 24/87 M. Böhlen, IfI@UZH

Query Languages

I Language in which user requests information from the database.
I Categories of languages

I Procedural: specifies how to do it; can be used for query optimization
I Declarative: specifies what to do; not suitable for query optimization

I Pure languages:
I Relational algebra (procedural)
I Tuple relational calculus (declarative)
I Domain relational calculus (declarative)

≈ FOPL

I Pure languages form underlying basis of query languages that people
use (such as SQL).

DBS 2017, SL02 25/87 M. Böhlen, IfI@UZH

goal is to calculate with rela-
tions; equivalent to arithmetic
operations

1 table: Excel; > 1 table: DBMS

The Basic Relational Algebra

I select σ
I project π
I union ∪
I set difference −
I Cartesian product ×
I rename ρ

DBS 2017, SL02 26/87 M. Böhlen, IfI@UZH

Relational Algebra

I The relational algebra is a procedural language
I The relational algebra consists of six basic operators

I select: σ
I project: π
I union: ∪
I set difference: −
I Cartesian product: ×
I rename: ρ

I The operators take one or two relations as inputs and produce a new
relation as a result.

I This property makes the algebra closed (i.e., all objects in the
relational algebra are relations).

DBS 2017, SL02 27/87 M. Böhlen, IfI@UZH

Select Operation

in examples identify:
attribute name; string constant; number constant

I Notation: σp(r)
I p is called the selection predicate
I Definition: t ∈ σp(r)⇔ t ∈ r ∧ p(t)
I p is a condition in propositional calculus consisting of terms

connected by : ∧ (and), ∨ (or), ¬ (not)
I Example: σBranchName=’Perryridge’(account)
I Example: σA=B∧D>5(r)

r
A B C D
’α’ ’α’ 1 7
’α’ ’β’ 5 7
’β’ ’β’ 12 3
’β’ ’β’ 23 10

σA=B∧D>5(r)
A B C D
’α’ ’α’ 1 7
’β’ ’β’ 23 10

DBS 2017, SL02 28/87 M. Böhlen, IfI@UZH

Project Operation

I Notation: πA1,...,Ak (r)
I The result is defined as the relation of k columns obtained by

deleting the columns that are not listed
I Definition: t ∈ πA1,...,Ak (r)⇔ ∃x(x ∈ r ∧ t = x [A1, . . . ,Ak])
I There are no duplicate rows in the result since relations are sets
I Example: πAccNr ,Balance(account)
I Example: πA,C (r)

r
A B C
’α’ 10 1
’α’ 20 1
’β’ 30 1
’β’ 40 2

πA,C (r)
A C
’α’ 1
’β’ 1
’β’ 2

DBS 2017, SL02 29/87 M. Böhlen, IfI@UZH

Union Operation

no duplicates (relations are sets)

I Notation: r ∪ s
I Definition: t ∈ (r ∪ s)⇔ t ∈ r ∨ t ∈ s
I For r ∪ s to be valid r and s must have the same schema (i.e.,

attributes).
I Example: πCustName(depositor) ∪ πCustName(borrower)
I Example: r ∪ s

r
A B
’α’ 1
’α’ 2
’β’ 1

s
A B
’α’ 2
’β’ 3

r ∪ s
A B
’α’ 1
’α’ 2
’β’ 1
’β’ 3

DBS 2017, SL02 30/87 M. Böhlen, IfI@UZH

Set Difference Operation

note: union compatible + rename operations =
same schema

I Notation: r − s
I Definition: t ∈ (r − s)⇔ t ∈ r ∧ t /∈ s
I Set differences must be taken between (union) compatible relations.

I r and s must have the same arity
I attribute domains of r and s must be compatible

I Example: r − s
r
A B
’α’ 1
’α’ 2
’β’ 1

s
A B
’α’ 2
’β’ 3

r − s
A B
’α’ 1
’β’ 1

DBS 2017, SL02 31/87 M. Böhlen, IfI@UZH

Cartesian Product Operation

that’s it. such a language is relationally complete. roughly
what dbms can do.

CP: generate all combinations
show with r1, r2, s1, s2, ..., r1 ◦ s1, ...
2 * 4 = 8
meaningful use of CP requires practice

I Notation: r × s
I Definition: t ∈ (r × s)⇔ x ∈ r ∧ y ∈ s ∧ t = x ◦ y
I We assume that the attribute names of r and s are disjoint. If the

attribute names are not disjoint, then renaming must be used.
I Example: r × s

r
A B
’α’ 1
’β’ 2

s
C D E
’α’ 10 ’a’
’β’ 10 ’a’
’β’ 20 ’b’
’γ’ 10 ’b’

r × s
A B C D E
’α’ 1 ’α’ 10 ’a’
’α’ 1 ’β’ 10 ’a’
’α’ 1 ’β’ 20 ’b’
’α’ 1 ’γ’ 10 ’b’
’β’ 2 ’α’ 10 ’a’
’β’ 2 ’β’ 10 ’a’
’β’ 2 ’β’ 20 ’b’
’β’ 2 ’γ’ 10 ’b’

DBS 2017, SL02 32/87 M. Böhlen, IfI@UZH

Rename Operation

that’s it! use and work with it (requires practice)

I Allows us to name the results of relational algebra expressions by
setting relation and attribute names.

I The rename operator is also used if there are name clashes.
I Various flavors:

I ρr (E) changes the relation name to r .
I ρr(A1,...,An)(E) changes the relation name to r and the attribute

names to A1, ...,Ak .
I ρ(A1,...,An)(E) changes attribute names to A1, ...,Ak .

I Example: ρs(X ,Y ,U,V)(r)
r
A B C D
’α’ ’α’ 1 7
’β’ ’β’ 23 10

s
X Y U V
’α’ ’α’ 1 7
’β’ ’β’ 23 10

DBS 2017, SL02 33/87 M. Böhlen, IfI@UZH

Composition of Operations
I Since the relational algebra is closed, i.e., the result of a relational

algebra operator is always a relation, it is possible to nest
expressions.

I Example: σA=C (r × s)

evaluate from inside to outside

r
A B
’α’ 1
’β’ 2

s
C D E
’α’ 10 ’a’
’β’ 10 ’a’
’β’ 20 ’b’
’γ’ 10 ’b’

r × s
A B C D E
’α’ 1 ’α’ 10 ’a’
’α’ 1 ’β’ 10 ’a’
’α’ 1 ’β’ 20 ’b’
’α’ 1 ’γ’ 10 ’b’
’β’ 2 ’α’ 10 ’a’
’β’ 2 ’β’ 10 ’a’
’β’ 2 ’β’ 20 ’b’
’β’ 2 ’γ’ 10 ’b’

σA=C (r × s)
A B C D E
’α’ 1 ’α’ 10 ’a’
’β’ 2 ’β’ 10 ’a’
’β’ 2 ’β’ 20 ’b’

DBS 2017, SL02 34/87 M. Böhlen, IfI@UZH

Review 2.4/1

1. Identify and correct syntactic mistakes in the following relational
algebra expressions. The schema of relation r is R(A,B).

σr .A>5(r)

r.A ist kein Attributname. Korrektur: σA>5(r)

σA,B(r)

Selektionsprädikat fehlt. Korrektur: πA,B(r)

r × r

Namenskonflikt. Korrektur: ρT (r × ρS[C ,D](r))
ρS[C,D] required to resolve clash of attribute names
ρT gives name to result relation is sometimes omitted

DBS 2017, SL02 35/87 M. Böhlen, IfI@UZH

Review 2.4/2

2. Identify and correct syntactic mistakes in the following relational
algebra expressions. Relation pers has schema
Pers(Name,Age,City).

σName=’Name’(pers)

OK.

σCity=Zuerich(pers)

Zuerich ist ein Wert und kein Attribut.
Korrektur: σCity=’Zuerich’(pers)

σAge>’20’(pers)

Alter ist eine Zahl und keine Zeichenkette.
Korrektur: σAlter>20(pers))

DBS 2017, SL02 36/87 M. Böhlen, IfI@UZH

Banking Example

I Branch(BranchName, BranchCity, Assets)

Filiale

I Customer(CustName, CustStreet, CustCity)

Kunde

I Account(AccNr, BranchName, Balance)

Konten

I Loan(LoanNr, BranchName, Amount)

Kredite

I Depositor(CustName, AccNr)

Kontoinhaber

I Borrower(CustName, LoanNr)

Kreditnehmer

DBS 2017, SL02 37/87 M. Böhlen, IfI@UZH

Review 2.5/1 Branch(BranchName, BranchCity, Assets)
Customer(CustName, CustStreet, CustCity)
Account(AccNr, BranchName, Balance)
Loan(LoanNr, BranchName, Amount)
Depositor(CustName, AccNr)
Borrower(CustName, LoanNr)

I Find all loans larger than $1200.

σAmount>1200(loan)

I Find the loan number for each loan that is larger than $1200.

πLoanNr (σAmount>1200(loan))

I Find the names of all customers who have a loan, an account, or
both, from the bank.

πCustName(borrower) ∪ πCustName(depositor)

DBS 2017, SL02 38/87 M. Böhlen, IfI@UZH

Review 2.5/2 Branch(BranchName, BranchCity, Assets)
Customer(CustName, CustStreet, CustCity)
Account(AccNr, BranchName, Balance)
Loan(LoanNr, BranchName, Amount)
Depositor(CustName, AccNr)
Borrower(CustName, LoanNr)

loan
1 D 50
2 P 20
3 D 10

borrower
tom 1
pam 2
pam 3

I Names of all customers who have a loan at the Perryridge branch.

πCustName(σBranchName=‘Perryridge′(
σLNr=LoanNr ((ρCustName,LNr (borrower))× loan)))

I Find the names of all customers who have a loan at the Perryridge
branch but do not have an account at any branch of the bank.

πCustName(σBranchName=’Perryridge’(
σborrower .LoanNr=loan.LoanNr (borrower × loan)))
−
πCustName(depositor)

DBS 2017, SL02 39/87 M. Böhlen, IfI@UZH

Review 2.5/3 Branch(BranchName, BranchCity, Assets)
Customer(CustName, CustStreet, CustCity)
Account(AccNr, BranchName, Balance)
Loan(LoanNr, BranchName, Amount)
Depositor(CustName, AccNr)
Borrower(CustName, LoanNr)

I Give a different relational algebra expressions that determines the
names of all customers who have a loan at the Perryridge branch.
Compare it to the solution in Review 2.5/2.

πCustName(σLNr=LoanNr (
σBranchName=‘Perryridge′(loan)
×
ρCustName,LNr (borrower)))

sol1: name of all customers, select perryridge customers
sol2: select perryridge customers, determine their names
dbms makes this optimization; application cannot do it!

DBS 2017, SL02 40/87 M. Böhlen, IfI@UZH

Review 2.5/4 Branch(BranchName, BranchCity, Assets)
Customer(CustName, CustStreet, CustCity)
Account(AccNr, BranchName, Balance)
Loan(LoanNr, BranchName, Amount)
Depositor(CustName, AccNr)
Borrower(CustName, LoanNr)

I Determine the largest account balance.

rephrase 1: all non-largest balances and subtract these from all balances.
rephrase 2: all balances for which a larger exists and subtract these from all balances.

X
1
2
3

×
X
1
2
3

=

X Y
1 1
1 2
1 3
2 1
2 2
2 3
3 1
3 2
3 2

r − πX (σX<Y (r × ρ(Y)(r)))

DBS 2017, SL02 41/87 M. Böhlen, IfI@UZH

Formal Definition of Relational Algebra Expressions

I A basic expression in the relational algebra consists of either one of
the following:

I A relation in the database
I A constant relation (e.g., {(1, 2), (5, 3)})

I Let E1 and E2 be relational algebra expressions; the following are all
relational algebra expressions:

I E1 ∪ E2
I E1 − E2
I E1 × E2
I σp(E1), p is a predicate on attributes in E1
I πs(E1), s is a list consisting of some of the attributes in E1
I ρx (E1), x is the new name for the result of E1

DBS 2017, SL02 42/87 M. Böhlen, IfI@UZH

Review 2.6/1
Assume the following schemas:
Train(TrainNr ,StartStat,EndStat)
Link(FromStat,ToStat,TrainNr ,Departure,Arrival)

1. Sketch an instance of the database.

train
TrainNr StartStat EndStat
’IC 706’ ’Zürich’ ’Geneva Airport’
’IR 1798’ ’Zürich’ ’Basel’

link
FromStat ToStat TrainNr Departure Arrival
’Zürich’ ’Lenzburg’ ’IC 706’ 5:21 5:40

’Lenzburg’ ’Aarau’ ’IC 706’ 5:40 5:47
’Aarau’ ’Olten’ ’IC 706’ 5:49 5:58
’Zürich’ ’Lenzburg’ ’IR 1798’ 0:08 0:27

DBS 2017, SL02 43/87 M. Böhlen, IfI@UZH

Review 2.6/2

2. Determine all direct connections (no change of train) from Zürich to
Olten.

πFromStat,B,TrainNr ,Departure,E (
σTrainNr=C∧Departure<D(

σFromStat=‘Zuerich‘(link) ×
σB=‘Olten‘(ρ(A,B,C ,D,E)(link))))

ZH - Lenzburg - Aarau - Olten
Langenthal - Olten - Aarau - Lenzburg - ZH - Flughafen

DBS 2017, SL02 44/87 M. Böhlen, IfI@UZH

Additional Relational Algebra
Operators

We define additional operations that do not add expressive power to
the relational algebra, but that simplify common queries. Thus, these are
redundant relational algebra operators.

I Set intersection ∩
I Join 1

I Division ÷
I Assignment ←

DBS 2017, SL02 45/87 M. Böhlen, IfI@UZH

Set Intersection Operation

Venn diagramm

I Notation: r ∩ s
I Definition: t ∈ (r ∩ s)⇔ t ∈ r ∧ t ∈ s
I Precondition: union compatible

I r, s have the same arity
I attributes of r and s are compatible

I Note: r ∩ s = r − (r − s)
I Example: r ∩ s

r
A B
’α’ 1
’α’ 2
’β’ 1

s
A B
’α’ 2
’β’ 3

r ∩ s
A B
’α’ 2

DBS 2017, SL02 46/87 M. Böhlen, IfI@UZH

Theta Join

in contrast to CP not all combinations.
requires unique attr names to avoid clashes.

I Notation: r 1θ s
I Let r and s be relations on schemas R and S, respectively. θ is a

boolean condition on the attributes of r and s.
I r 1θ s is a relation on schema that includes all attributes from

schema R and all attributes from schema S.
I Example:

I R(A,B,C ,D) and S(B,D,E)
I r 1B<X∧D=Y ρ(X ,Y ,Z)(s)
I Schema of result is (A,B,C ,D,X ,Y ,Z)
I Equivalent to: σB<X∧D=Y (r × ρ(X ,Y ,Z)(s))

r
A B C D
’α’ 1 ’α’ ’a’
’β’ 2 ’γ’ ’a’
’γ’ 4 ’β’ ’b’
’α’ 1 ’γ’ ’a’
’δ’ 2 ’β’ ’b’

s
B D E
1 ’a’ ’α’
3 ’a’ ’β’
1 ’a’ ’γ’
2 ’b’ ’δ’
3 ’b’ ’ε’

σB<X∧D=Y (r × ρ(X ,Y ,Z)(s))
A B C D X Y Z
’α’ 1 ’α’ ’a’ 3 ’a’ ’β’
’β’ 2 ’γ’ ’a’ 3 ’a’ ’β’
’α’ 1 ’γ’ ’a’ 3 ’a’ ’β’
δ 2 ’β’ ’b’ 3 ’b’ ε

DBS 2017, SL02 47/87 M. Böhlen, IfI@UZH

Natural Join

NJ requires common attribute names.

I Notation: r 1 s
I Let r and s be relations on schemas R and S, respectively.
I Attributes that occur in r and s must be identical.
I r 1 s is a relation on a schema that includes all attributes from

schema R and all attributes from schema S that do not occur in
schema R.

I Example:
I r 1 s with R(A,B,C ,D) and S(E ,B,D)
I Schema of result is (A,B,C ,D,E)
I Equivalent to: πA,B,C ,D,E (σB=Y∧D=Z (r × ρ(E ,Y ,Z)(s))

r
A B C D
’α’ 1 ’α’ ’a’
’β’ 2 ’γ’ ’a’
’γ’ 4 ’β’ ’b’
’α’ 1 ’γ’ ’a’
’δ’ 2 ’β’ ’b’

s
B D E
1 ’a’ ’α’
3 ’a’ ’β’
1 ’a’ ’γ’
2 ’b’ ’δ’
3 ’b’ ’ε’

r 1 s
A B C D E
’α’ 1 ’α’ ’a’ ’α’
’α’ 1 ’α’ ’a’ ’γ’
’α’ 1 ’γ’ ’a’ ’α’
’α’ 1 ’γ’ ’a’ ’γ’
’δ’ 2 ’β’ ’b’ ’δ’

DBS 2017, SL02 48/87 M. Böhlen, IfI@UZH

Division Operation

- students who passed all exams
- persons who satisfy all requirements
- countries where all languages are spoken

I Notation: r ÷ s
I Suited for queries that include the phrase “for all”.
I Let r and s be relations on schemas R(A1, . . . ,Am,B1, . . . ,Bn) and

S(B1, . . . ,Bn), respectively
I The result of r ÷ s is a relation with attributes R−S = (A1, . . . ,Am)
I Definition: t ∈ (r ÷ s)⇔ t ∈ πR−S(r) ∧ ∀u ∈ s(t ◦ u ∈ r)
I t ◦ u is the concatenation of tuples t and u

I R-S: all attributes of schema R that are not in schema S
I Example: R = (A,B,C ,D), S = (E ,B,D),R − S = (A,C)

DBS 2017, SL02 49/87 M. Böhlen, IfI@UZH

Division Operation - Examples

I

r
A B
’α’ 1
’α’ 2
’α’ 3
’β’ 1
’γ’ 1
’ε’ 6
’ε’ 1
’β’ 2

s
B
1
2

r ÷ s
A
’α’
’β’

I

r
A B C D E
’α’ ’a’ ’α’ ’a’ 1
’α’ ’a’ ’γ’ ’a’ 1
’α’ ’a’ ’γ’ ’b’ 1
’β’ ’a’ ’γ’ ’a’ 1
’β’ ’a’ ’γ’ ’b’ 3
’γ’ ’a’ ’γ’ ’a’ 1
’γ’ ’a’ ’γ’ ’b’ 1
’γ’ ’a’ ’β’ ’b’ 1

s
D E
’a’ 1
’b’ 1

r ÷ s
A B C
’α’ ’a’ ’γ’
’γ’ ’a’ ’γ’

DBS 2017, SL02 50/87 M. Böhlen, IfI@UZH

Properties of the Division Operation

all combinations
existing combinations
desired combinations of r and s
existing combinations of r and s
missing combinations of r and s

I Property
I Let q = r ÷ s
I Then q is the largest relation satisfying q × s ⊆ r

I Definition in terms of the basic algebra operation
Let r(R) and s(S) be relations, and let S ⊆ R

r ÷ s = πR−S(r)− πR−S((πR−S(r)× s)− πR−S,S(r))

To see why
I R-S,S: all attributes of R that are not in S, followed by all attributes

of S
I Thus, πR−S,S(r) reorders attributes of r
I πR−S(πR−S(r)× s)− πR−S,S(r)) gives those tuples t in πR−S(r) such

that for some tuple u ∈ s, t ◦ u /∈ r .

DBS 2017, SL02 51/87 M. Böhlen, IfI@UZH

Assignment Operation

use assignment to break up complex ex-
pressions into readable pieces

I The assignment operation (←) provides a convenient way to express
complex queries by breaking them up into smaller pieces.

I Write query as a sequential program consisting of
I a series of assignments
I followed by an expression whose value is displayed as a result of the

query.
I Assignment must always be made to a temporary relation variable.

I Example: Write r ÷ s as
temp1← πR−S(r)
temp2← πR−S((temp1× s)− πR−S,S(r))
result ← temp1− temp2

I The result to the right of the ← is assigned to the relation variable on
the left of the ←.

DBS 2017, SL02 52/87 M. Böhlen, IfI@UZH

Bank Example Queries/1 Branch(BranchName, BranchCity, Assets)
Customer(CustName, CustStreet, CustCity)
Account(AccNr, BranchName, Balance)
Loan(LoanNr, BranchName, Amount)
Depositor(CustName, AccNr)
Borrower(CustName, LoanNr)

I Find all customers who have an account and a loan.

πCustName(borrower) ∩ πCustName(depositor)

I Find the name of all customers who have a loan at the bank and the
loan amount

πCustName,Amount(borrower 1 loan)

DBS 2017, SL02 53/87 M. Böhlen, IfI@UZH

Bank Example Queries/2 Branch(BranchName, BranchCity, Assets)
Customer(CustName, CustStreet, CustCity)
Account(AccNr, BranchName, Balance)
Loan(LoanNr, BranchName, Amount)
Depositor(CustName, AccNr)
Borrower(CustName, LoanNr)

r
’Tom’ ’Uptown’
’Tom’ ’Downtown’
’Tom’ ’Perryridge’
’Pam’ ’Uptown’
’Pam’ ’Perryridge’

s
’Uptown’

’Downtown’

I Find all customers who have an account from at least the
“Downtown” and the “Uptown” branches.

I Solution 1
πCustName(σBranchName=’Downtown’(depositor 1 account)) ∩
πCustName(σBranchName=’Uptown’(depositor 1 account))

I Solution 2
r ← πCustName,BranchName(depositor 1 account))
s ← πBranchName(σBranchName=‘Downtown‘∨BranchName=‘Uptown‘(account))
Res ← r ÷ s

DBS 2017, SL02 54/87 M. Böhlen, IfI@UZH

Review 2.7 Branch(BranchName, BranchCity, Assets)
Customer(CustName, CustStreet, CustCity)
Account(AccNr, BranchName, Balance)
Loan(LoanNr, BranchName, Amount)
Depositor(CustName, AccNr)
Borrower(CustName, LoanNr)

I Find all customers who have an account at all branches located in
Brooklyn city.

πCustName,BranchName(depositor 1 account))
÷
πBranchName(σBranchCity=‘Brooklyn‘(branch))

“all branches”: we do not know constants (all branch names); therefore we must
compute them and use a division

DBS 2017, SL02 55/87 M. Böhlen, IfI@UZH

Extended Relational Algebra
Operators

null values
functions (+, *, length, ...)
aggregates are not part of core RA

Extended relational algebra operators add expressive power to the basic
relational algebra.

I Generalized Projection π
I Aggregate Functions ϑ
I Outer Join d|><| , |><|d , d|><|d

DBS 2017, SL02 56/87 M. Böhlen, IfI@UZH

Generalized Projection

I Extends the projection operation by allowing arithmetic functions to
be used in the projection list: πF1,F2,...,Fn(E)

I E is a relational algebra expression
I Each of F1,F2, . . . ,Fn are arithmetic expressions involving constants

and attributes in the schema of E .
I Example: Given relation credit_info(CustName, Limit,CredBal),

find how much more each person can spend:

πCustName,Limit−CreditBal(credit_info)

function: Limit - CreditBalance

DBS 2017, SL02 57/87 M. Böhlen, IfI@UZH

Aggregate Functions and Operations

avg, sum, count. initialized to 0;
min, max: initialized to NULL

I Aggregation function takes a collection of values and returns a
single value as a result.

I avg average value
I min minimum value
I max maximum value
I sum sum of values
I count number of values

I Aggregation operation in relational algebra

G1,G2,...,GnϑF1(A1),F2(A2),...,Fn(An)(E)

E is any relational algebra expression
I G1,G2 . . . ,Gn is a list of attributes on which to group (can be empty)
I Each Fi is an aggregate function
I Each Ai is an attribute name

DBS 2017, SL02 58/87 M. Böhlen, IfI@UZH

Aggregate Operation - Example

duplicates are relevant for aggre-
gate functions.

I Relation r , res ← ρRes(SumC)(ϑsum(C)(r))
r
A B C
’α’ ’α’ 7
’α’ ’β’ 7
’β’ ’β’ 3
’β’ ’β’ 10

res
sumC
27

I Balance per branch:
res ← ρRes(BName,SumBal)(BranchNameϑsum(Balance)(account))

account
BranchName AccNr Balance
’Perryridge’ ’A-102’ 400
’Perryridge’ ’A-201’ 900
’Brighton’ ’A-217’ 750
’Brighton’ ’A-215’ 750
’Redwood’ ’A-222’ 700

res
BName SumBal
’Perryridge’ 1300
’Brighton’ 1500
’Redwood’ 700

DBS 2017, SL02 59/87 M. Böhlen, IfI@UZH

Outer Join

I An extension of the join operation that avoids loss of information.
I Computes the join and then adds tuples from one relation that do

not match tuples in the other relation to the result of the join.
I Uses null values:

I null signifies that the value is unknown or does not exist
I All comparisons involving null are (roughly speaking) false by

definition.
I We shall study precise meaning of comparisons with nulls later

DBS 2017, SL02 60/87 M. Böhlen, IfI@UZH

Outer Join Example/1

I Example relations:
loan
LoanNr BranchName Amount
’L-170’ ’Downtown’ 3000
’L-230’ ’Redwood’ 4000
’L-260’ ’Perryridge’ 1700

borrower
CustName LoanNr
’Jones’ ’L-170’
’Smith’ ’L-230’
’Hayes’ ’L-155’

I Join
loan 1 borrower
LoanNr BranchName Amount CustName
’L-170’ ’Downtown’ 3000 ’Jones’
’L-230’ ’Redwood’ 4000 ’Smith’

DBS 2017, SL02 61/87 M. Böhlen, IfI@UZH

Outer Join Example/2

without outer join? handle two cases:
credits with borrower
credits without borrower
requires NULL as a special constant

I Example relations:
loan
LoanNr BranchName Amount
’L-170’ ’Downtown’ 3000
’L-230’ ’Redwood’ 4000
’L-260’ ’Perryridge’ 1700

borrower
CustName LoanNr
’Jones’ ’L-170’
’Smith’ ’L-230’
’Hayes’ ’L-155’

I Left Outer Join (preserves tuples from left)
loan d|><| borrower
LoanNr BranchName Amount CustName
’L-170’ ’Downtown’ 3000 ’Jones’
’L-230’ ’Redwood’ 4000 ’Smith’
’L-260’ ’Perryridge’ 1700 null

DBS 2017, SL02 62/87 M. Böhlen, IfI@UZH

Outer Join Example/3

in contrast to an inner join, outer joins
are not commutative. implication: much
less possibilities for optimization.

I Example relations:
loan
LoanNr BranchName Amount
’L-170’ ’Downtown’ 3000
’L-230’ ’Redwood’ 4000
’L-260’ ’Perryridge’ 1700

borrower
CustName LoanNr
’Jones’ ’L-170’
’Smith’ ’L-230’
’Hayes’ ’L-155’

I Right Outer Join (preserves tuples from right)
loan |><|d borrower
LoanNr BranchName Amount CustName
’L-170’ ’Downtown’ 3000 ’Jones’
’L-230’ ’Redwood’ 4000 ’Smith’
’L-155’ null null ’Hayes’

DBS 2017, SL02 63/87 M. Böhlen, IfI@UZH

Outer Join Example/4

I Example relations:
loan
LoanNr BranchName Amount
’L-170’ ’Downtown’ 3000
’L-230’ ’Redwood’ 4000
’L-260’ ’Perryridge’ 1700

borrower
CustName LoanNr
’Jones’ ’L-170’
’Smith’ ’L-230’
’Hayes’ ’L-155’

I Full Outer Join (preserves all tuples)
loan d|><|d borrower
LoanNr BranchName Amount CustName
’L-170’ ’Downtown’ 3000 ’Jones’
’L-230’ ’Redwood’ 4000 ’Smith’
’L-260’ ’Perryridge’ 1700 null
’L-155’ null null ’Hayes’

DBS 2017, SL02 64/87 M. Böhlen, IfI@UZH

Modification of the Database

I The content of the database may be modified using the following
operations:

I Deletion
I Insertion
I Updating

I All these operations are expressed using the assignment operator.

DBS 2017, SL02 65/87 M. Böhlen, IfI@UZH

Deletion

I A delete request is expressed similarly to a query, except instead of
displaying tuples to the user, the selected tuples are removed from
the database.

I Can delete only entire tuples; cannot delete values of particular
attributes only.

I A deletion is expressed in relational algebra by:

r ← r − E

where r is a relation and E is a relational algebra query.

DBS 2017, SL02 66/87 M. Böhlen, IfI@UZH

Deletion Examples Branch(BranchName, BranchCity, Assets)
Customer(CustName, CustStreet, CustCity)
Account(AccNr, BranchName, Balance)
Loan(LoanNr, BranchName, Amount)
Depositor(CustName, AccNr)
Borrower(CustName, LoanNr)

I Delete all account records
in the Perryridge branch.
accout ← account − σBranchName=’Perryridge’(account)

I Delete all loan records with amount in the range of 10 to 50
loan← loan − σAmount≥10∧Amount≤50(loan)

I Delete all accounts at branches located in Needham.

delete accounts; delete
owner of accounts

r1 ← σBranchCity=’Needham’(accout 1 branch)
r2 ← πAccNr ,BranchName,Balance(r1)
r3 ← πCustName,AccNr (r2 1 depositor)
account ← account − r2
depositor ← depositor − r3

r1: information about Needham accounts
r2: Needham accounts that shall be deleted
r3: owner of Needham accounts

DBS 2017, SL02 67/87 M. Böhlen, IfI@UZH

Insertion

I To insert data into a relation, we either:
I specify a tuple to be inserted
I write a query whose result is a set of tuples to be inserted

I In relational algebra, an insertion is expressed by:

r ← r ∪ E

where r is a relation and E is a relational algebra expression.
I The insertion of a single tuple is expressed by letting E be a

constant relation containing one tuple.

DBS 2017, SL02 68/87 M. Böhlen, IfI@UZH

Insertion Examples Branch(BranchName, BranchCity, Assets)
Customer(CustName, CustStreet, CustCity)
Account(AccNr, BranchName, Balance)
Loan(LoanNr, BranchName, Amount)
Depositor(CustName, AccNr)
Borrower(CustName, LoanNr)

r1: Perryridge Kreditnehmer; account: new account; de-
positor: new account owner (no duplicates in RA)

I Insert information into the
database specifying that
Smith has $1200 in account
A-973 at the Perryridge branch.
account ← account ∪ {(‘A-973‘, ‘Perryridge‘, 1200)}
depositor ← depositor ∪ {(‘Smith‘, ‘A-973‘)}

I Provide as a gift for all loan customers in the Perryridge branch, a
$200 savings account. Let the loan number serve as the account
number for the new savings account.
r1 ← σBranchName=’Perryridge’(borrower 1 loan)
account ← account ∪ πLoanNr ,BranchName,200(r1)
depositor ← depositor ∪ πCustName,LoanNr (r1)

DBS 2017, SL02 69/87 M. Böhlen, IfI@UZH

Updating

I A mechanism to change a value in a tuple without changing all
values in the tuple; logically this can be expressed by an insertion
and deletion; in actual systems updating is much faster than
inserting and deleting.

I In relational algebra this can be expressed by replacing r by the
result computed by the relational algebra expression E ; often the
expression is the generalized projection.

r ← E
r ← πF1,F2....,Fi ,...(r)

I Each Fi is either
I the ith attribute of r , if the ith attribute is not updated, or,
I if the attribute is to be updated Fi is an expression, which defines the

new value for the attribute

DBS 2017, SL02 70/87 M. Böhlen, IfI@UZH

Update Examples

I Make interest payments by increasing all balances by 5%.

account ← πAccNr ,BranchName,Balance∗1.05(account)

I Pay all accounts with balances over $10,000 6% interest and pay all
others 5%.

account ←
πAccNr ,BranchName,Balance∗1.06(σBalance>100000(account))
∪
πAccNr ,BranchName,Balance∗1.05(σBalance≤100000(account))

DBS 2017, SL02 71/87 M. Böhlen, IfI@UZH

Relational Calculus

I First Order Predicate Logic
I Domain Relational Calculus

venn diagram with significant
overlap of RA, DRC, SQL

DBS 2017, SL02 72/87 M. Böhlen, IfI@UZH

Relational Calculus

I A relational calculus expression creates a new relation, which is
specified in terms of variables that range over:

I tuples of relations (in tuple relational calculus (TRC))
I attributes of relations (in domain relational calculus (DRC)).

I We only consider DRC.
I In a relational calculus expression, there is no order of operations to

specify how to compute the query result.
I A calculus expression specifies only what information the result

should contain; hence relational calculus is a non-procedural or
declarative language.

I Relational calculus is closely related to and a subset of first order
predicate logic.

DBS 2017, SL02 73/87 M. Böhlen, IfI@UZH

First Order Predicate Logic

Syntax:
I logical symbols: ∧, ∨, ¬, ⇒, ∃, ∀, ...
I constant: string, number, ...; ’abc’, 14, ...
I identifier: character sequence starting with a letter
I variable: identifier starting with capital letter; X , Y , ...
I predicate symbol: identifier starting with lower case letter
I build-in predicate symbol: =, <,>,≤,≥, 6=, ...
I term: constant, variable
I atom: predicate, built-in predicate; p(t1, ..., tn), t1 < t2, ...

with terms t1, ..., tn; predicate symbol p
I formula: atom, A ∧ B, A ∨ B, ¬A, A⇒ B, ∃XA, ∀XA, (A), ...

with formulas A, B; variable X

DBS 2017, SL02 74/87 M. Böhlen, IfI@UZH

Review 2.8
Decide which of the following formulas are syntactically correct first order
predicate logic formulas.

I less_than(99, 27)

ok

I loves(mother(’hans’), france ∨ italy)

fct and disj are not terms

I ∀X (danish(X)⇒ danish(′bill_clinton′)

missing) at very end

I ∀P(P(’hans’))

P is not a predicate symbol

I ∀C(neighbour(’england’,C))

ok

I ∃C(neighbour(’italien’,C))

ok

I ∀P(smart(P) ∧ ¬alive(P)⇒ famous(P))

ok

DBS 2017, SL02 75/87 M. Böhlen, IfI@UZH

Selected Properties and Terminology
Terminology

I A variable is free if it is not quantified
I A variable is bound if it is quantified
I Example: ∀X (p(X ,Y ,Y)) ∧ q(X ,Y)

FOPL Equivalences
I ∀X (A) = ¬∃X (¬A)
I A⇒ B = ¬A ∨ B
I A ∧ ∃X (B) = ∃X (A ∧ B) if X is not free in A
I A ∧ ∀X (B) = ∀X (A ∧ B) if X is not free in A
I A ∧ ¬∃X (B) = A ∧ ¬∃X (A ∧ B) if X is not free in A

Set theory
I A− B = A− (A ∩ B)

DBS 2017, SL02 76/87 M. Böhlen, IfI@UZH

Domain Independence

I Relational calculus only permits expressions that are domain
independent, i.e., expressions that permit sensible answers (e.g., no
infinite results).

I Domain independence is not decidable. There exist various syntactic
criteria that ensure domain independence, e.g., safe expressions,
range restricted expressions, etc.

I Examples:
I emp(X) is domain independent
I ¬emp(X) is not domain independent
I stud(X) ∧ ¬emp(X) is domain independent
I X > 6 is not domain independent

DBS 2017, SL02 77/87 M. Böhlen, IfI@UZH

Review 2.9/1
Use first order predicate calculus expressions to express the following
natural language statements:

I Anyone who is dedicated can learn databases.

∀X (dedicated(X)⇒ canlearn(X , ’db’))

I No man is independent.

¬∃X (man(X) ∧ independent(X))

I Dogs that bark do not bite.

(dog(X) ∧ bark(X)⇒ ¬bite(X))
dog
d1
d2
d3

bark
d1
d2

bite
d1
d3

DBS 2017, SL02 78/87 M. Böhlen, IfI@UZH

Review 2.9/2
I Not all men can walk.

¬∀X (man(X)⇒ walk(X))

I Every person owns a computer.

∀X (person(X)⇒ ∃Y (computer(Y) ∧ owns(X ,Y)))

I Lars likes everyone who does not like himself.

∀X (¬likes(X ,X)⇒ likes(′lars ′,X))

DBS 2017, SL02 79/87 M. Böhlen, IfI@UZH

Domain Relational Calculus/1

DRC is relationally complete

Syntax:
I logical symbols: ∧, ∨, ¬, ⇒, ∃, ∀, ...
I constant: string, number, ...; ’abc’, 14, ...
I identifier: character sequence starting with a letter
I variable: identifier starting with capital letter; X , Y , ...
I predicate symbol: identifier starting with lower case letter
I build-in predicate symbol: =, <,>,≤,≥, 6=, ...
I term: constant, variable
I atom: predicate, built-in predicate; p(X , ..., 22), X < 5000, ...
I formula: atom, A ∧ B, A ∨ B, ¬A, A⇒ B, ∃X (A), ∀X (A), (A), ...

I A domain relational calculus query is of the form
{ X1, ...,Xn | formula }

DBS 2017, SL02 80/87 M. Böhlen, IfI@UZH

Domain Relational Calculus/2

I The domain relational calculus is based on specifying a number of
variables that range over single values from domains of attributes.

I In the domain calculus the position of attributes is relevant.
Attribute names are not used.

I Often the anonymous variable _ is used to shorten notation:
r(_,_,X ,_) = ∃U,V ,W (r(U,V ,X ,W))

I Example: To determine first and last names of all employees whose
salary is above $50,000, we write the following DRC expression:
{ FN, LN | ∃Sal(emp(FN,_, LN,_, Sal) ∧ Sal > 50000) }

DBS 2017, SL02 81/87 M. Böhlen, IfI@UZH

Review 2.10/1 branch(BranchName, BranchCity, Assets)
customer(CustName, CustStreet, CustCity)
account(AccNr, BranchName, Balance)
loan(LoanNr, BranchName, Amount)
depositor(CustName, AccNr)
borrower(CustName, LoanNr)

final existential quantification is often omitted

I Find all loans of over $1200.

{L,B,A | loan(L,B,A) ∧ A > 1200}

I Find the loan number for each loan of an amount greater than
$1200.

{L | ∃A(loan(L,_,A) ∧ A > 1200)}

I Find the names of all customers who have a loan, an account, or
both, from the bank.

{N | loan(N,_) ∨ borrower(N,_)}

DBS 2017, SL02 82/87 M. Böhlen, IfI@UZH

Review 2.10/2 branch(BranchName, BranchCity, Assets)
customer(CustName, CustStreet, CustCity)
account(AccNr, BranchName, Balance)
loan(LoanNr, BranchName, Amount)
depositor(CustName, AccNr)
borrower(CustName, LoanNr)

I Find the names of all customers who have a loan at the Perryridge
branch.

{N | ∃L(borrower(N, L) ∧ loan(L,′ Perryridge′,_))}

I Find the names of all customers who have a loan at the Perryridge
branch but do not have an account at any branch of the bank.

{N | ∃L(borrower(N, L) ∧ loan(L,′ Perryridge′,_)) ∧
¬depositor(N,_)}

DBS 2017, SL02 83/87 M. Böhlen, IfI@UZH

Review 2.10/3 Branch(BranchName, BranchCity, Assets)
Customer(CustName, CustStreet, CustCity)
Account(AccNr, BranchName, Balance)
Loan(LoanNr, BranchName, Amount)
Depositor(CustName, AccNr)
Borrower(CustName, LoanNr)

I Determine the largest account balance.

{A | account(_,_,A) ∧ ∀B(account(_,_,B)⇒ B ≤ A)}

what happens if ≤ is replaced by <? empty re-
sult.

DBS 2017, SL02 84/87 M. Böhlen, IfI@UZH

Review 2.11
I Consider the following DRC expressions. Formulate equivalent

relational algebra expressions. Assume column i of relation r has
name rci .

I {X ,Y | p(X) ∧ q(X ,Y)}

πqc1,qc2(σpc1=qc1(p × q))

I {X | p(X , 2) ∧ X > 7}

πpc1(σpc2=2∧pc1>7(p))

I {X | p(X) ∧ ¬∃Y (q(X ,Y))}

p − πqc1(q)

I {X | p(X) ∧ ¬∃Y (p(Y) ∧ Y > X)}

p−πpc1(σqc1=pc1(p× ρq(qc1)(p)))

DBS 2017, SL02 85/87 M. Böhlen, IfI@UZH

Summary/1

I The Relational Model
I attribute, domain, tuple, relation, database, schema

I Basic Relational Algebra Operators
I Selection σ
I Projection π
I Union ∪
I Difference −
I Cartesian product ×
I Rename ρ

I Additional Relational Algebra Operators
I Join (theta, natural) 1
I Division ÷
I Assignment ←

DBS 2017, SL02 86/87 M. Böhlen, IfI@UZH

Summary/2

I Extended Relational Algebra Operators
I Generalized projection π
I Aggregate function ϑ
I Outer joins d|><| , |><|d , d|><|d

I Modification of the database
I insert, delete, update

I Relational Calculus
I domain relational calculus

I Know syntax of RA and DRC expressions.
I Be able to translate natural language queries into RA and DRC

expressions.
I Be able to freely move between RA and DRC.

DBS 2017, SL02 87/87 M. Böhlen, IfI@UZH

Database Systems
Spring 2017

SQL
SL03

I Data Definition Language
I Expressions and Predicates
I Table Expressions, Query Specifications, Query Expressions
I Subqueries, Duplicates, Null Values
I Modification of the Database

Reviews: 6 23 39 44 45 50 52 53 54 61 65 68 74 77 83 94

user friendly packaging of RA
+
requirements from real world applications

goal: concepts + application on concrete ex-
amples; abstract from details of syntax

DBS 2017, SL03 1/97 M. Böhlen, IfI@UZH

Literature and Acknowledgments

Reading List for SL03:
I Database Systems, Chapters 4 and 5 (sections 5.1 and 5.4), Sixth

Edition, Ramez Elmasri and Shamkant B. Navathe, Pearson
Education, 2010.

These slides were developed by:
I Michael Böhlen, University of Zürich, Switzerland
I Johann Gamper, Free University of Bozen-Bolzano, Italy

The slides are based on the following text books and associated material:
I Fundamentals of Database Systems, Fourth Edition, Ramez Elmasri

and Shamkant B. Navathe, Pearson Addison Wesley, 2004.
I A. Silberschatz, H. Korth, and S. Sudarshan: Database System

Concepts, McGraw Hill, 2006.

DBS 2017, SL03 2/97 M. Böhlen, IfI@UZH

History/1

I IBM Sequel language developed as part of System R project at the
IBM San Jose Research Laboratory

I Renamed Structured Query Language (SQL)
I ANSI and ISO standard SQL:

I SQL-86
I SQL-89
I SQL-92 (also called SQL2)

I entry level: roughly corresponds to SQL-89
I intermediate level: half of the new features of SQL-92
I full level

I SQL:2003 (also called SQL3)
I Commercial systems offer most, if not all, SQL-92 features, plus

varying feature sets from later standards and special proprietary
features.

I Not all examples here may (will!) work on your particular system.

DBS 2017, SL03 3/97 M. Böhlen, IfI@UZH

History/2

I Don Chamberlin holds a Ph.D. from
Stanford University.

I He worked at Almaden Research Center
doing research on database languages and
systems.

I He was a member of the System R research
team that developed much of today’s
relational database technology

I He designed the original SQL database language.
I In 2005 Don Chamberlin received an honory doctoral degree from

the University of Zürich for his work on SQL.

http://www.almaden.ibm.com/cs/people/chamberlin/

DBS 2017, SL03 4/97 M. Böhlen, IfI@UZH

Model and Terminology

I SQL is based on multisets (or bags) rather than sets. In a multiset
an element may occur multiple times.

I We write {...} for a set and {{...}} for a bag.
I SQL uses the terms table, column, and row.
I SQL does not distinguish between upper and lower case in identifiers

and keywords.
I Comparison of terminology:

SQL Relational Algebra Domain Relational Calculus
table relation predicate
column attribute argument
row tuple -
query RA expression formula

DBS 2017, SL03 5/97 M. Böhlen, IfI@UZH

Review 3.1
I List reasons for not automatically removing duplicates.

I performance: too expensive to remove; requires sorting
I duplicates can be important for application
I for aggregation duplicates are important

DBS 2017, SL03 6/97 M. Böhlen, IfI@UZH

Data Definition Language

I Domain Types
I Create, dropping and altering tables

schema changes

I Integrity constraints

DBS 2017, SL03 7/97 M. Böhlen, IfI@UZH

Data Definition Language

Allows the specification of not only a set of tables but also information
about each table, including:

security: e.g., add redundancy to
recover lost/corrupted data

I Conceptual schema:
I The schema for each table.
I The domain associated with each column.
I Integrity constraints that all valid instances must satisfy.
I Security and authorization information for each table.

I Physical schema:
I The physical storage structure of each table on disk.
I The set of indices to be maintained for each table.

DBS 2017, SL03 8/97 M. Böhlen, IfI@UZH

Domain Types in SQL

I CHAR(n) Fixed length character string, with user-defined length n.
I VARCHAR(n) Variable length character strings, with user-specified

maximum length n.
I INTEGER Integer (a finite subset of the integers that is

machine-dependent).
I SMALLINT Small integer (a machine-dependent subset of the

integer domain type).
I NUMERIC(p,d) Fixed point number, with user-specified precision

of p digits, with n digits to the right of decimal point.
I REAL, DOUBLE PRECISION Floating point and double-precision

floating point numbers, with machine-dependent precision.
I FLOAT(n) Floating point number, with user-specified precision of

at least n digits.

DBS 2017, SL03 9/97 M. Böhlen, IfI@UZH

Create Table Construct

many additional options, e.g., machine, disk,
fill factor of blocks, partitioning, large attri-
butes (movies, pictures, XML), caching, log-
ging, ordering, chunk size, compression, ...

I An SQL table is defined using the create table command:
create table r(

A1D1,A2D2, . . . ,AnDn,
(integrity-constraint1),
. . . ,
(integrity-constraintk))

I r is the name of the table
I each Ai is an column name in the schema of table
I Di is the data type of values in the domain of column Ai

I Example:
CREATE TABLE branch (
BranchName CHAR(15) NOT NULL,
BranchCity CHAR(30),
Assets INTEGER)

DBS 2017, SL03 10/97 M. Böhlen, IfI@UZH

Integrity Constraints in Create Table/1

I not null
I primary key (A1, . . . ,An)
I foreign key (A1, . . . ,An) references T (B1, . . . ,Bn)

Example: Declare BranchName as the primary key for branch
CREATE TABLE branch (
BranchName CHAR(15),
BranchCity CHAR(30),
Assets INTEGER,
PRIMARY KEY (BranchName))

In SQL a primary key declaration on a column automatically ensures
not null.

DBS 2017, SL03 11/97 M. Böhlen, IfI@UZH

Integrity Constraints in Create Table/2

important for data quality; forces people to enter complete data; data quality must
be ensured when data is entered; later fixes are very expensive or impossible.

Unternehmen mit DB ohne Fremdschlüssel! possible reasons?
there are always exceptions; no address; secret account nr, etc;
shall this be allowed/supported?
no!; only decision you can make is where do you want to deal with the problem; solve it when
collecting and storing the data or solve it when querying the data; many examples in real world
where missing data is not permitted (Kreisbüro, UZH, ...)

Example: Define AccNr as foreign key in table depositor :
CREATE TABLE depositor (
CustName VARCHAR(15),
AccNr INTEGER,
FOREIGN KEY (AccNr) REFERENCES account(AccNr))

DBS 2017, SL03 12/97 M. Böhlen, IfI@UZH

Notation/1

I SQL is a comprehensive language and offers multiple syntactic
constructs to define table and integrity constraints.

I The exact syntax depends on the database system and even the
version.

I We use a small core of SQL that is general and is mostly
independent of the database system and the version.

I Selected peculiarities of the syntax, especially when relevant for the
exercises, will be pointed out.

I In case of syntax problems look up the exact syntax (manual, web,
forum, etc).

DBS 2017, SL03 13/97 M. Böhlen, IfI@UZH

Notation/2

I In SQL small and capital letters are irrelevant (e.g., SELECT, select,
seLEct).

I In some systems the capitalization of identifiers is relevant (e.g.,
table names in MySQL on Linux).

I Small and capital letters are relevant if identifiers are put in quotes
(’CustName’).

I In Oracle and PostgreSQL single quotes must be used (’abcde’).
I In MySQL single (’abcde’) and double (“abcde”) quotes are

permitted.

DBS 2017, SL03 14/97 M. Böhlen, IfI@UZH

Notation/3

I On the course slides we use bold face for reserved words (e.g.,
select).

I On the slides code examples are typeset in blue. Keywords are
capitalized and bold face.

I In program code reserved words are usually capitalized (e.g.,
SELECT).

I The end of an SQL statement is often marked by a semicolon:
SELECT * FROM account;

DBS 2017, SL03 15/97 M. Böhlen, IfI@UZH

Drop and Alter Table Constructs

I The drop table command deletes all information about the dropped
table from the database.

I The alter table command is used to add columns to an existing
table:
alter table r add A D

where A is the name of the column to be added to table r and D is
the domain of A.

I All tuples in the table are assigned null as the value for the new
column.

I The alter table command can also be used to drop columns of a
table:
alter table r drop A

where A is the name of a column of table r

DBS 2017, SL03 16/97 M. Böhlen, IfI@UZH

Expressions and Predicates

maximizing expressiveness while ensuring
performance

I SQL Expressions
I SQL Predicates

DBS 2017, SL03 17/97 M. Böhlen, IfI@UZH

Expressions and Predicates

I Powerful expressions and predicates make computer languages useful
and convenient.

I Database vendors compete on the set of expressions and predicates
they offer (functionality as well as speed).

I In databases the efficient evaluation of predicates is a major concern.
I Consider a table with 1 billion tuples and the following predicates:

I LastName = 'Miller'

simple; eg phone book

I LastName LIKE '%mann'

good plan is difficult

I That is one of the reasons why additions of (user defined) functions
and predicates to DBMS has been limited.

I We show some SQL expressions and predicates to give a rough idea
of common database functionality.

DBS 2017, SL03 18/97 M. Böhlen, IfI@UZH

Expressions/1

I SQL provides a number of expressions to manipulate numbers,
strings, dates, etc.

I In early versions of SQL virtually all operations were on single values
or single columns.

I As of SQL-92 row value constructors (tuples) can be used:
I (C1,C2,C3)=(23,234,'a')

I Thus, in general the result of an expression is a tuple.
I Expressions are built up of

I columns and constants
I functions on built-in data types
I type conversions (cast)
I case, coalesce, nullif, ...
I aggregates (min, count, avg, ...)

DBS 2017, SL03 19/97 M. Böhlen, IfI@UZH

Expressions/2
I Numeric functions: +, - *, /, abs(e), ceil(e), tan(e), log(e),
round(e), sign(e), mod(e,f), ...

I Character functions:
I concatenation: ’abc’ || ’de’ = ’abcde’
I position(’48’ in ’another 48 hours’) = 9
I substring(’anothe’ from 1 for 3) = ’ano’
I upper(e)
I trim(leading ’ ’ from ’ test’) = ’test’

I date and time functions:
I current_date, current_time
I current_timestamp
I current_date + interval ’1’ day
I current_date - date ’1990/3/18’

age in days

I interval ’6’ day - interval ’1’ day = interval ’5’ day
I type conversions:

I cast(’48’ as integer) = 48
I often “natural” type conversions are done implicitly

DBS 2017, SL03 20/97 M. Böhlen, IfI@UZH

Expressions/3

I conditional statement:
case
when cond1 then result1
...
when condN then resultN
else resultX
end

I coalesce(val1, ..., valN)
returns the first value that is not null (and null if all values are equal
to null)

I nullif(e1,e2)
returns null if e1 and e2 are identical; useful if missing information is
not represented with null; nullif(cost, 9999)

DBS 2017, SL03 21/97 M. Böhlen, IfI@UZH

Predicates

step from binary logic to 3-valued logic is a non-trivial

I Predicates evaluate to true, false or unknown
I boolean connectives: and, or, not
I =, <>,<,>,<=, >=
I e [not] between e1 and e2
I e is [not] null
I e in (e1, ..., eN)
I e1 like e2

example: Name like ’_ross%’
wildcards: % 0-n characters, _ 1 character

DBS 2017, SL03 22/97 M. Böhlen, IfI@UZH

Review 3.2
I Rewrite

1. (X,Y,Z)=(1,2,3)
2. (X,Y,Z)<(1,2,3)

to equivalent expressions without row value constructors.

1. X=1 AND Y=2 AND Z=3
2. (X<1) OR (X=1 AND Y<2) OR (X=1 AND Y=2 AND Z<3)

I Identify the problem with the predicate
X>0 AND 1/X>0.1

and propose a solution.

- AND is not evaluated left to right and stopped asap
- AND corresponds to & in Java, not &&
- division by zero is possible
- CASE WHEN x>0 THEN 1/x>0.1 ELSE FALSE END

DBS 2017, SL03 23/97 M. Böhlen, IfI@UZH

Query Expressions

I Table expressions
I Query specifications
I Query Expressions

DBS 2017, SL03 24/97 M. Böhlen, IfI@UZH

Structure of SQL Queries/1

I The main building block of SQL are “queries” (will be defined more
precisely below).

I SQL is used very heavily in the real world.
I SQL is much more than a simple select-from-where, such as

SELECT *
FROM loan
WHERE LName = 'Bohr'

I Many people
I Underestimate SQL
I Do not properly understand the concepts of SQL
I Do not understand how to work with a declarative language and sets

(this requires some practice and getting used to)

DBS 2017, SL03 25/97 M. Böhlen, IfI@UZH

Structure of SQL Queries/2
I A typical SQL query has the form:

select clause
from clause
where clause
group clause
having clause





table
expression





query
specification

union

select clause
from clause
where clause
group clause
having clause





table
expression





query
specification





query
expression

I The result of an SQL query is a (virtual) table.
DBS 2017, SL03 26/97 M. Böhlen, IfI@UZH

Evaluation of Query Specifications
Conceptually, an SQL query specification is processed as follows.

select
from
where
group

having

list of tables
table

subset of table
(some tuples
are dropped)

multiple tables
(grouped table)

subset of groups
(some groups are
dropped)

returns one row per group; possibly
compute aggregate for each group

DBS 2017, SL03 27/97 M. Böhlen, IfI@UZH

Evaluation of SQL Queries

1. Form the cross product of the tables in the from clause

× in RA

2. Eliminate tuples that do not satisfy the where clause

σ in RA

3. Group the remaining tuples according to the group clause

4. Eliminate groups that do not satisfy the having clause

5. Evaluate the expressions in the select clause

π in RA

6. One result tuple is returned for each group

7. Eliminate duplicates if distinct is specified

8. Compute query specifications independently and apply set
operations (union, excpet, intersect)

9. Sort all result tuples according to order clause

DBS 2017, SL03 28/97 M. Böhlen, IfI@UZH

Illustration of SQL Query Evaluation/1

1. FROM: form cross product of all tables in from clause

FROM ...

2. WHERE: eliminates tuples that do not satisfy the condition in the
where clause

... WHERE

3. GROUP BY: groups table according to the columns in the group
clause

GROUP BY

DBS 2017, SL03 29/97 M. Böhlen, IfI@UZH

Illustration of SQL Query Evaluation/2

4. HAVING: eliminates groups that do not satisfy the condition of the
having clause

HAVING

5. SELECT: evaluates the expressions in the select clause and
produces a result tuple for each group

SELECT

DBS 2017, SL03 30/97 M. Böhlen, IfI@UZH

Notation/4
I The SQL allows renaming tables and columns using the as clause:

old-name as new-name

I SQL allows qualified column names (the relation name is put
before the column name):
relationName.colName

I Keyword as is optional and may be omitted
borrower as t ≡ borrower t

I Example:
SELECT borrower.LoanNum AS LoanID, Amount
FROM borrower, loan AS l
WHERE borrower.LoanNum = l.LoanNum

DBS 2017, SL03 31/97 M. Böhlen, IfI@UZH

The from Clause/1

I The from clause lists the tables involved in the query
I Corresponds to the Cartesian product operation of the relational

algebra.
I Cartesian product borrower × loan

FROM borrower, loan

I Customer names and loan numbers (all combinations):
FROM borrower AS t, loan AS s

I Renaming can become necessary if the same table is used multiple
times in the from clause.

I In terms of expressiveness nothing more is needed. For convenience,
SQL offers many join variants.

DBS 2017, SL03 32/97 M. Böhlen, IfI@UZH

The from Clause/2

I SQL supports many different join:
I FROM t1 CROSS JOIN t2

I Cartesian product

I FROM t1 JOIN t2 ON t1.a < t2.b

I Theta join

I FROM t1 LEFT OUTER JOIN t2 ON t1.a = t2.b

I left outer join

I FROM t1 NATURAL INNER JOIN t2

I Natural join

I FROM t1 NATURAL INNER JOIN t2 USING (name)

I Limited natural join (not all pair-wise equal columns are used for the
natural join; only the ones specified in the using clause)

DBS 2017, SL03 33/97 M. Böhlen, IfI@UZH

The from Clause/3

I Table loan
LoanNum BranchName Amount
’L-170’ ’Downtown’ 3000
’L-230’ ’Redwood’ 4000
’L-260’ ’Perryridge’ 1700

I Table borrower
CustName LoanNum
’Jones’ ’L-170’
’Smith’ ’L-230’
’Hayes’ ’L-155’

I Note: borrower information missing for L-260 and loan information
missing for L-155

DBS 2017, SL03 34/97 M. Böhlen, IfI@UZH

The from Clause/4

main advantage: semantics is easier to understand

I FROM loan INNER JOIN borrower ON
loan.LoanNum = borrower.LoanNum

LoanNum BranchName Amount CustName LoanNum
’L-170’ ’Downtown’ 3000 ’Jones’ ’L-170’
’L-230’ ’Redwood’ 4000 ’Smith’ ’L-230’

I FROM loan LEFT OUTER JOIN borrower ON
loan.LoanNum = borrower.LoanNum

LoanNum BranchName Amount CustName LoanNum
’L-170’ ’Downtown’ 3000 ’Jones’ ’L-170’
’L-230’ ’Redwood’ 4000 ’Smith’ ’L-230’
’L-260’ ’Perryridge’ 1700 null null

DBS 2017, SL03 35/97 M. Böhlen, IfI@UZH

The from Clause/5

I FROM loan NATURAL INNER JOIN borrower

LoanNum BranchName Amount CustName
’L-170’ ’Downtown’ 3000 ’Jones’
’L-230’ ’Redwood’ 4000 ’Smith’

I FROM loan NATURAL RIGHT OUTER JOIN borrower

LoanNum BranchName Amount CustName
’L-170’ ’Downtown’ 3000 ’Jones’
’L-230’ ’Redwood’ 4000 ’Smith’
’L-155’ null null ’Hayes’

DBS 2017, SL03 36/97 M. Böhlen, IfI@UZH

The where Clause/1

I The where clause specifies conditions that the result tuples must
satisfy.

I The where clause takes the virtual table produced by the from
clause and filters out those rows that do not satisfy the condition.

I Example: loan number of loans from the Perryridge branch with loan
amounts greater than $1200.
FROM loan
WHERE BrancheName = 'Perryridge'
AND Amount > 1200

LoanNum BranchName Amount
’L-260’ ’Perryridge’ 1700

I The where clause corresponds to the selection predicate.

DBS 2017, SL03 37/97 M. Böhlen, IfI@UZH

The where Clause/2

I In SQL predicates can be combined using the logical connectives
and, or, and not.

I The where clause can be used to specify join and selection
conditions.

I SQL includes a between comparison operator
I Example: Find the loan number of those loans with loan amounts

between $90,000 and $100,000 (that is, ≥ $90,000 and ≤
$100,000)
SELECT LoanNum
FROM loan
WHERE Amount BETWEEN 90000 AND 100000

DBS 2017, SL03 38/97 M. Böhlen, IfI@UZH

Review 3.3
Translate the following RA expressions into equivalent SQL fragments.

1. R × S

FROM r, s

2. (R × S)× T

FROM r, s, t

3. σA>5(R)

FROM r
WHERE A > 5

4. σA>5(σB=4(R))

FROM r
WHERE A > 5 AND B = 4

5. σA=X (R × S)

FROM r, s
WHERE A = X

6. σA>5(R)× σX=7(S)

FROM r, s
WHERE A > 5 AND X = 7

DBS 2017, SL03 39/97 M. Böhlen, IfI@UZH

The group Clause/1
I The group clause takes the table produced by the where clause and

returns a grouped table.
I Example: Accounts grouped by branch.

FROM account
GROUP BY BranchName

account
AccNr BranchName Balance
’A-101’ ’Downtown’ 500
’A-215’ ’Perryridge’ 700
’A-102’ ’Perryridge’ 400
’A-305’ ’Perryridge’ 350
’A-222’ ’Perryridge’ 700
’A-201’ ’Brighton’ 900
’A-217’ ’Brighton’ 750

DBS 2017, SL03 40/97 M. Böhlen, IfI@UZH

The group Clause/2

I The group clause groups multiple tuples together. Conceptually,
grouping yields multiple tables.

I The following statements work on the groups (and not on individual
tuples).

I For each group one or zero result tuples are returned.
I All queries that are not guaranteed to produce at most one result

tuple per group are rejected (compile time error)

DBS 2017, SL03 41/97 M. Böhlen, IfI@UZH

The having Clause/1

I The having clause takes a grouped table as input and returns a
grouped table.

I The having condition is applied to each group.
I Only groups that satisfy the condition are returned.
I The having clause never returns individual tuples of a group.
I The having condition may include grouping columns or aggregated

columns.

DBS 2017, SL03 42/97 M. Böhlen, IfI@UZH

The having Clause/2

I Consider branches with more than one account only:
FROM account
GROUP BY BranchName
HAVING COUNT(AccNr) > 1

I This having clause returns all groups with more than one tuple:
account
AccNr BranchName Balance
’A-215’ ’Perryridge’ 700
’A-102’ ’Perryridge’ 400
’A-305’ ’Perryridge’ 350
’A-222’ ’Perryridge’ 700
’A-201’ ’Brighton’ 900
’A-217’ ’Brighton’ 750

DBS 2017, SL03 43/97 M. Böhlen, IfI@UZH

Review 3.4
I Consider the table expression

FROM r1, r2 WHERE x > y AND y > z

Which is a join condition and which is a selection condition?

depends on schema. assume r1(X,Y) and r2(Z,U). then
- X>Y is a selection condition
- Y>Z is a join condition

I Give an example where an expression in the group clause (rather
than just column names) makes sense.

- GROUP BY (salary + bonus) / 1000 (integer division)
name salary bonus
pam 4200 0
tom 3200 700
lena 200 3900

DBS 2017, SL03 44/97 M. Böhlen, IfI@UZH

Review 3.5 account
AccNr BranchName Balance
’A-101’ ’Downtown’ 500
’A-215’ ’Perryridge’ 700
’A-102’ ’Perryridge’ 400
’A-305’ ’Perryridge’ 350
’A-222’ ’Perryridge’ 700
’A-201’ ’Brighton’ 900
’A-217’ ’Brighton’ 750

I Determine which of the following
table expressions are correct.

FROM account
GROUP BY BranchName
HAVING Balance < 730

FROM account
GROUP BY BranchName
HAVING BranchName = 'Brighton'
OR BranchName = 'Downtown'

FROM account
GROUP BY BranchName
HAVING SUM(Balance) < 1000

stmt1: incorrect. balance
not unique per group.
stmt2: ok. returns 2 groups
and 2 result tuples.
stmt3: ok.

in a select clause it is pos-
sible to have either 1) grou-
ped attributes since they are
unique for each group or
2) aggregated attributes sin-
ce this yields one value per
group

DBS 2017, SL03 45/97 M. Böhlen, IfI@UZH

The select Clause/1

I The select clause lists the columns that shall be in the result of a
query.

I corresponds to the projection operation of the relational algebra
I Example: find the names of all branches in the loan table:

SELECT BranchName
FROM loan

I In the relational algebra, the query would be:
πBranchName(loan)

DBS 2017, SL03 46/97 M. Böhlen, IfI@UZH

The select Clause/2

distinct is super GAU for DBMS:
collect + wait + sort.

I SQL allows duplicates in tables as well as in query results.
I To force the elimination of duplicates, insert the keyword distinct

after select.
I Find the names of all branches in the loan table, and remove

duplicates:
SELECT DISTINCT BranchName
FROM loan

I A * in the select clause denotes “all columns”:
SELECT *
FROM loan

DBS 2017, SL03 47/97 M. Böhlen, IfI@UZH

The select Clause/3

reason: there may only be one result tuple per group; a group column and aggre-
gate ensure that there is only one value.

I In the select clause aggregate functions can be used.
I avg: average value
I min: minimum value
I max: maximum value
I sum: sum of values
I count: number of values

I The aggregate functions operate on multiple rows. They process all
rows of a group and compute an aggregated value for that group.

I Note: Columns in select clause outside of aggregate functions must
appear in group by list

DBS 2017, SL03 48/97 M. Böhlen, IfI@UZH

The select Clause/4

duplicates and nulls: initial aggregate va-
lue: 0 for count; null for others

I Find the average account balance at the Perryridge branch.
SELECT AVG(Balance)
FROM account
WHERE BranchName = 'Perryridge'

all aggregates, except
count(*), consider du-
plicates and ignore nulls

I Find the number of tuples in the customer table.
SELECT COUNT(*)
FROM customer

count(*) considers du-
plicates and nulls

I Find the number of accounts per branch.
SELECT COUNT(DISTINCT CustName), BranchName
FROM account
GROUP BY BranchName

count(distinct ...) ignores duplicates and
nulls; equivalent for other aggregate fcts

DBS 2017, SL03 49/97 M. Böhlen, IfI@UZH

Review 3.6 account
AccNr BranchName Balance
’A-101’ ’Downtown’ 500
’A-215’ ’Perryridge’ 700
’A-102’ ’Perryridge’ 400
’A-305’ ’Perryridge’ 350
’A-222’ ’Perryridge’ 700
’A-201’ ’Brighton’ 900
’A-217’ ’Brighton’ 750

Formulate the following query in SQL:
1. Determine the largest balance

of branches with a at least
one account with a balance
of less than 600

SELECT MAX(Balance), FName
FROM account
GROUP BY BranchName
HAVING MIN(Balance) < 600

DBS 2017, SL03 50/97 M. Böhlen, IfI@UZH

Derived Tables

nesting in the from clause is important because
of orthogonality; makes a language user-friendly.

I SQL allows a query expression to be used in the from clause.
I A derived table is defined by a query expression.
I Find the average account balance of those branches where the

average account balance is greater than $1200.
SELECT BranchName, AvgBalance
FROM (SELECT BranchName, AVG(Balance)

FROM account
GROUP BY account

) AS branchAvg(BranchName, AvgBalance)
WHERE AvgBalance > 1200

DBS 2017, SL03 51/97 M. Böhlen, IfI@UZH

Review 3.7
I Can an empty/missing from clause be useful?

- SELECT CURRENT_DATE;
- SELECT 7*3;
PostgreSQL: missing from clause OK; Oracle select 7*3 from dual;
dual is a dummy table with 1 row and 1 column

I Which schema modifications do not change the result of a query
specification if no * is used in the select list?

adding columns does not change the result (useful in real world)

I Why is the following statement strange?
SELECT DISTINCT BranchName, SUM(Balance)
FROM account
GROUP BY BranchName

grouping returns 1 row per BranchName; there are no duplicates

DBS 2017, SL03 52/97 M. Böhlen, IfI@UZH

Review 3.8
I Consider schema PC(Model,Speed,RAM,Price). Determine

1. the price of the most expensive PC

SELECT MAX(Price) FROM pc ;

2. the price and model of the most expensive PC

SELECT MAX(Price), Model FROM pc ;
illegal; Model is not a grouping attribute

SELECT MAX(Price), Model FROM pc GROUP BY Model ;
wrong; determines for each model the most expensive PC

SELECT MAX(Price), Model
FROM pc, (SELECT MAX(Price) AS TopPrice FROM pc) AS r;
WHERE Price = TopPrice ;

DBS 2017, SL03 53/97 M. Böhlen, IfI@UZH

Review 3.9
I Consider schema Emp(Name, Sal, DName). For each

department with more than 3 employees determine the number of
employees earning more than 40K.

SELECT DName, COUNT(*)
FROM emp
WHERE Sal>40K
GROUP BY DName
HAVING COUNT (*)>3

wrong. considers only emps who earn more than 40K. must apply having before where.

SELECT DName, COUNT(*)
FROM emp

NATURAL JOIN
(SELECT DName
FROM emp
GROUP BY DName
HAVING COUNT(*)>3) AS r

WHERE Sal>40K
GROUP BY DName

DBS 2017, SL03 54/97 M. Böhlen, IfI@UZH

Query Expressions/1

union is expensive (duplicate elimination); union all is very cheap.
semantics:
- no dupl + union: ok
- dupl + union all: ok
- dupl + union: ??? (weird)

I The set operations union, intersect, and except operate on tables
and correspond to the relational algebra operations ∪,∩,−.

I Each of the above operations automatically eliminates duplicates; to
retain all duplicates use the corresponding multiset versions union
all, intersect all, and except all.

Suppose a tuple occurs m times in r and n times in s, then, it
occurs:

I m + n times in r union all s
I min(m, n) times in r intersect all s
I max(0,m − n) times in r except all s

DBS 2017, SL03 55/97 M. Böhlen, IfI@UZH

Query Expressions/2

I Find all customers who have a loan, an account, or both:
SELECT CustName FROM depositor
UNION
SELECT CustName FROM borrower

I Find all customers who have both a loan and an account:
SELECT CustName FROM depositor
INTERSECT
SELECT CustName FROM borrower

I Find all customers who have an account but no loan:
SELECT CustName FROM depositor
EXCEPT
SELECT CustName FROM borrower

DBS 2017, SL03 56/97 M. Böhlen, IfI@UZH

Notation/5

I Renaming of tables and columns with as:
I from depositor as d
I select max(balance) as HighestBalance
I PostgreSQL and MySQL: as can be omitted in from and select clauses
I Oracle: as must be omitted in the from clause
I Oracle: as can be omitted in the select clause

I In MySQL no set difference (EXCEPT) and no set intersection
(INTERSECT) exist.

I In Oracle EXCEPT must be replaced through MINUS.

DBS 2017, SL03 57/97 M. Böhlen, IfI@UZH

Subqueries, Duplicates, and Nulls

I Subqueries
I Duplicates
I Nulls
I Ordering

DBS 2017, SL03 58/97 M. Böhlen, IfI@UZH

Subqueries/1

I SQL provides a mechanism for the nesting of subqueries.
I A subquery is a query expression that is nested within another

query expression.
I Example:

SELECT X FROM p WHERE X IN (SELECT Y FROM q)

Semantics/evaluation: For each tuple of p evaluate the subquery
and check if X is in the result table computed by the subquery.

I Subqueries are common and used heavily in applications.
I A common use of subqueries is to perform tests for set membership,

set comparisons, and set cardinality.
I If the inner query uses attributes of the outer query then the queries

are correlated.

DBS 2017, SL03 59/97 M. Böhlen, IfI@UZH

Subqueries/2 Branch(BranchName, BranchCity, Assets)
Customer(CustName, CustStreet, CustCity)
Account(AccNr, BranchName, Balance)
Loan(LoanNr, BranchName, Amount)
Depositor(CustName, AccNr)
Borrower(CustName, LoanNr)

in predicate: check for each CustName
subquery: 1) compute once, store as temporary table or 2) compute for each tuple of borrower

I Find all customers who have
both an account and a loan
at the bank.
SELECT CustName
FROM borrower
WHERE CustName IN (SELECT CustName

FROM depositor)

I Find all customers who have a loan at the bank but do not have an
account at the bank
SELECT CustName
FROM borrower
WHERE CustName NOT IN (SELECT CustName

FROM depositor)

DBS 2017, SL03 60/97 M. Böhlen, IfI@UZH

Review 3.10
I Give an SQL query that determines customers who have a loan and

an account such that the account number is larger than the loan
number. Describe the evaluation of the query for relations

I Borrower(CustName,LoanNr); borrower = { (A,18), (B,19), (C,2) }
I Depositor(CustName,AccNr); depositor = { (A,17), (B,20), (D,8) }

SELECT CustName
FROM borrower
WHERE CustName IN (SELECT CustName

FROM depositor
WHERE AccNr>LoanNr)

1. for (A,18) the subquery result is {(B)} and in predicate is FALSE
2. for (B,19) the subquery result is {(B)} and in predicate is TRUE
3. for (C,2) the subquery result is {(A), (B), (D)} and in predicate is FALSE

result = CustName
B

DBS 2017, SL03 61/97 M. Böhlen, IfI@UZH

Subqueries/3 Branch(BranchName, BranchCity, Assets)
Customer(CustName, CustStreet, CustCity)
Account(AccNr, BranchName, Balance)
Loan(LoanNr, BranchName, Amount)
Depositor(CustName, AccNr)
Borrower(CustName, LoanNr)I Find all customers who have

both an account and a loan
at the Perryridge branch

SELECT CustName
FROM borrower, loan
WHERE borrower.LoanNum = loan.LoanNum
AND BranchName = 'Perryridge'
AND (BranchName, CustName) IN (

SELECT BranchName, CustName
FROM depositor, account
WHERE depositor.AccNr = account.AccNr)

SQL permits tuple instead of value.

DBS 2017, SL03 62/97 M. Böhlen, IfI@UZH

Subqueries/4 Branch(BranchName, BranchCity, Assets)
Customer(CustName, CustStreet, CustCity)
Account(AccNr, BranchName, Balance)
Loan(LoanNr, BranchName, Amount)
Depositor(CustName, AccNr)
Borrower(CustName, LoanNr)

which stmt is easy/difficult?

Comparing sets:
I Find all branches that have

greater assets than some
branch located in Brooklyn.
SELECT t.BranchName
FROM branch AS t, branch AS s
WHERE t.Assets > s.Assets
AND s.BranchCity = 'Brooklyn'

I Same query using > some clause
SELECT BranchName
FROM branch
WHERE assets > SOME (
SELECT assets
FROM branch
WHERE BranchCity = 'Brooklyn')

DBS 2017, SL03 63/97 M. Böhlen, IfI@UZH

Subqueries/5
I F <comp> some r ⇔ ∃t ∈ r such that (F <comp> t)

Where <comp> can be: <,≤ , >,=, 6=

(5 < some
0
5
6

) = true

(read: 5 < some tuple in the table)

(5 < some 0
5) = false

(5 = some 0
5) = true

≡ (5 IN
0
5) = true

(5 6= some 0
5) = true (since 0 6= 5)

6≡ (5 NOT IN
0
5) = false

(= some) ≡ in
However, (6= some) 6≡ not in

DBS 2017, SL03 64/97 M. Böhlen, IfI@UZH

Review 3.11/1
Consider tables

I p = {(5), (2)}, sch(p) = P(X)
I q = {(2), (3)}, sch(q) = Q(Y)

Determine the results of the following SQL queries:

1. SELECT *
FROM p
WHERE X IN (
SELECT Y FROM q)

{(2)}

2. SELECT *
FROM p
WHERE X = SOME (
SELECT Y FROM q)

{(2)}

DBS 2017, SL03 65/97 M. Böhlen, IfI@UZH

Review 3.11/2
3. SELECT *

FROM p
WHERE X NOT IN (
SELECT Y FROM q)

{(5)} ≡ where not (X in (select Y from q))

4. SELECT *
FROM p
WHERE NOT (X = SOME (
SELECT y FROM q))

{(5)}

5. SELECT *
FROM p
WHERE X <> SOME (
SELECT Y FROM q)

{(2), (5)}

DBS 2017, SL03 66/97 M. Böhlen, IfI@UZH

Subqueries/6

I The exists construct returns the value true if the argument
subquery is nonempty.

I exists r ⇔ r 6= ∅
I not exists r ⇔ r = ∅
I The exists (and not exists) subqueries are used frequently in SQL.

I Several database systems eliminate (rewrite) all subqueries except
subqueries using exists and not exists.

I Besides some there are also any (a synonym for some) and all.
I Avoid in, all, any, some and use exists instead.

DBS 2017, SL03 67/97 M. Böhlen, IfI@UZH

Review 3.12/1
I Translate the following DRC expressions into SQL. Assume column i

of table r has name RCi
I {X | p(X , 3)}

SELECT PC1
FROM p
WHERE PC2 = 3

I {X ,Z | ∃Y (p(X ,Y) ∧ q(X ,Y) ∧ q(Z , 3))}

SELECT PC1, q2.QC2
FROM p, q q1, q q2
WHERE PC1 = q1.QC1
AND PC2 = q1.QC2
AND q2.QC2 = 3

DBS 2017, SL03 68/97 M. Böhlen, IfI@UZH

Review 3.12/2
I Translate the following DRC expressions into SQL. Assume column i

of table r has name RCi
I {X | p(X , 3) ∧ X > 5}

SELECT PC1
FROM p
WHERE PC1 > 5 AND PC2 = 3

I {X ,Y ,Z | p(X ,Y ,Z) ∧ ¬q(Y , 3)}

SELECT *
FROM p
WHERE NOT EXISTS (

SELECT *
FROM q
WHERE QC1 = PC2
AND PC2 = 3)

DBS 2017, SL03 69/97 M. Böhlen, IfI@UZH

Review 3.12
I Translate the following DRC expressions into SQL. Assume column i

of table r has name RCi
I {X | p(X) ∧ ¬∃(p(Y) ∧ Y > X)}

SELECT PC1
FROM p
WHERE NOT EXISTS (

SELECT *
FROM p p2
WHERE p2.PC1 > p.PC1)

I {X | p(X) ∨ (q(X) ∧ ¬r(X))}

SELECT * FROM p
UNION
(SELECT * FROM q

EXCEPT
SELECT * FROM r

DBS 2017, SL03 70/97 M. Böhlen, IfI@UZH

Subqueries/7 Branch(BranchName, BranchCity, Assets)
Customer(CustName, CustStreet, CustCity)
Account(AccNr, BranchName, Balance)
Loan(LoanNr, BranchName, Amount)
Depositor(CustName, AccNr)
Borrower(CustName, LoanNr)

- customers (depositors)
- such that there does not exist
- a branch in Brooklyn
- where
- this customer does not have an account

I Find all customers who have
an account at all branches
located in Brooklyn.
SELECT DISTINCT s.CustName
FROM depositor AS s
WHERE NOT EXISTS (
(SELECT BranchName
FROM branch
WHERE BranchCity = 'Brooklyn')

EXCEPT
(SELECT r.BranchName
FROM depositor AS t, account AS r
WHERE t.AccNr = r.AccNr
AND s.CustName = t.CustName))

DBS 2017, SL03 71/97 M. Böhlen, IfI@UZH

Review 3.13
I Assume table r stores for each person the degrees they have got.

Determine pairs of persons with exactly the same degrees.

N D
X D1
Y D1
Y D3
Z D1
Z D3
U D2
U D3

N1 N2
Y Z

DBS 2017, SL03 72/97 M. Böhlen, IfI@UZH

Review 3.13/2

r(N1,_) ∧ r(N2,_) ∧ N1 < N2 ∧ ∀D(r(N1,D)⇔ r(N2,D))
r(N1,_) ∧ r(N2,_) ∧ N1 < N2 ∧

¬∃D(r(N1,D) ∧ r(N2,D) ∨ r(N2,D) ∧ ¬r(N1,D))

SELECT r1.N, r2.N
FROM r AS r1, r AS r2
WHERE r1.N < r2.N
AND NOT EXISTS (
SELECT *
FROM r AS r3
WHERE r3.N = r1.N
AND NOT EXISTS (SELECT * FROM r AS r4 WHERE r4.N = r2.N AND r4.D = r3.N)
UNION
SELECT *
FROM r AS r3
WHERE r3.N = r1.N
AND NOT EXISTS (SELECT * FROM r AS r4 WHERE r4.N = r2.N AND r4.D = r3.N))

DBS 2017, SL03 73/97 M. Böhlen, IfI@UZH

Review 3.13/3

|X | = nr of degrees of X
|X |+ |Y | = 2 ∗ |X ∩ Y |

X D1 Y D1
X D1 Z D1
Y D3 Y D1
Y D3 Z D1
Y D2 U D2
Z D2 U D2

2 * 1 = 2 6= 1 (X) + 2 (Y)
2 * 1 = 2 6= 1 (X) + 2 (Z)
2 * 2 = 4 6= 2 (Y) + 2 (Z)
2 * 1 = 2 6= 2 (Y) + 2 (U)
2 * 1 = 2 6= 2 (Z) + 2 (U)

SELECT r1.N, r2.N
FROM r AS r1, r AS r2
WHERE r1.D = r2.D
AND r1.N < r2.N
GROUP BY r1.N, r2.N
HAVING 2 * COUNT(*) = (

SELECT COUNT(*) FROM r WHERE r IN (r1.N, r2.N))

DBS 2017, SL03 74/97 M. Böhlen, IfI@UZH

Duplicates/1

I In tables with duplicates, SQL can define how many copies of tuples
appear in the result.

I Multiset versions of some of the relational algebra operators - given
multiset relations r1 and r2:
1. σθ(r1): If there are c1 copies of tuple t1 in r1, and t1 satisfies

selections σθ, then there are c1 copies of t1 in σθ(r1).

2. πA(r): For each copy of tuple t1 in r1, there is a copy of tuple πA(t1)
in πA(r1) where πA(t1) denotes the projection of the single tuple t1.

exactly the same number of tuples in πA(r) and r

3. r1 × r2: If there are c1 copies of tuple t1 in r1 and r2 copies of tuple t2
in r2, there are c1 ∗ c2 copies of the tuple t1, t2 in r1 × r2

DBS 2017, SL03 75/97 M. Böhlen, IfI@UZH

Duplicates/2
I Example: Suppose multiset relations r1(A,B) and r2(C) are as

follows:

r1 = {(1, a) (2, a)} r2 = {(2), (3), (3)}

I Then πB(r1) would be {(a), (a)}, while πB(r1)× r2 would be

{(a, 2), (a, 2), (a, 3), (a, 3), (a, 3), (a, 3)}

I SQL duplicate semantics:

select A1,A2, . . . ,An
from r1, r2, . . . , rm
where P

is equivalent to the multiset version of the expression:

πA1,A2,...,An(σP(r1 × r2 × . . . × rm))

DBS 2017, SL03 76/97 M. Böhlen, IfI@UZH

Review 3.14
I Write a SQL statement that eliminates duplicates from a table

(without using distinct, unique, grouping).

impossible. logically (at SQL level) duplicates cannot be distin-
guished.

I Which of the following statements are semantically equivalent?
I SELECT X FROM p WHERE X IN (SELECT Y FROM q)

{{ (1), (1) }}

I SELECT X FROM p, q WHERE X = Y

{{ (1), (1), (1), (1) }}

I SELECT DISTINCT X FROM p, q WHERE X = Y

{{ (1) }}

DBS 2017, SL03 77/97 M. Böhlen, IfI@UZH

Null Values/1

I It is possible for tuples to have a null value, denoted by null, for
some of their columns

I null signifies an unknown value or that a value does not exist.
I The predicate is null can be used to check for null values.

I Example: Find all loan number which appear in the loan relation with
null values for Amount.
SELECT LoanNum
FROM loan
WHERE Amount IS NULL

I The result of any arithmetic expression involving null is null
I Example: 5 + null returns null

DBS 2017, SL03 78/97 M. Böhlen, IfI@UZH

Null Values/2

schema R(A); r(R) = {(5), (2), (NULL)};
SELECT * FROM r WHERE A = 2. 1st tuple: condition evaluates
to FALSE; 2nd tuple: condition evaluates to TRUE; 3rd tuple: con-
sition evaluates to UNKNOWN. {(2)} is result.

I Any comparison with null returns unknown
I Example: 5 < null or null <> null or null = null

I Three-valued logic using the truth value unknown:
I OR

(unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown

I AND
(true and unknown) = unknown,
(false and unknown) = false
(unknown and unknown) = unknown

I NOT
(not unknown) = unknown

I “P is unknown” evaluates to true if predicate P evaluates to
unknown

DBS 2017, SL03 79/97 M. Böhlen, IfI@UZH

Null Values/3

show that null values are not the same. relate to example instance
shown earlier.

I Intuition for semantics of NULL values:
account
AccNr BranchName Balance
’A-101’ NULL 500
’A-215’ NULL NULL
’A-102’ NULL 400
’A-305’ ’Perryridge’ 350
’A-222’ ’Perryridge’ NULL
’A-201’ ’Brighton’ 900
’A-217’ ’Brighton’ 750

Neither are these NULL values all identical nor are they all different
(cf. above).

DBS 2017, SL03 80/97 M. Böhlen, IfI@UZH

Null Values/4

I Any row (or group) that does not evaluate to true is eliminated by
the where (having) clause.

I Arithmetic operations return NULL if one argument is NULL: 7 +
NULL = NULL.

I Two rows are duplicates if corresponding columns are either equal or
both are NULL (thus, NULL values are equal for this purpose!).

I Grouping groups NULL values together.

DBS 2017, SL03 81/97 M. Böhlen, IfI@UZH

Null Values/5

I Total of all loan amounts
SELECT COUNT(Amount)
FROM loan

I Above statement ignores null amounts
I Result is 0 if there is no non-null amount

all other agg fcts (min, max,
sum, avg) return NULL

I All aggregate operations, except count(*), ignore tuples with null
values on the aggregated columns. (Thus, sum(X) is different from
summing all values in a column!)

exception; in principle NULL + 7 = NULL;
would make aggregates cumbersome in prac-
tice

I If all values in a column are NULL then aggregates over this column
return NULL (except count, which gives 0).

DBS 2017, SL03 82/97 M. Böhlen, IfI@UZH

Review 3.15
I What does the query

SELECT * FROM pc
WHERE Speed > 1GHz OR Speed < 4GHz

Propose an equivalent but better solution for this query

all PCs with a known (not null speed)
SELECT * FROM pc WHERE Speed IS NOT NULL;

I What is the result of the following SQL statement:
SELECT * FROM r WHERE X <> NULL

empty relation with the schema of r is not instead of <> gives expected re-
sult

DBS 2017, SL03 83/97 M. Böhlen, IfI@UZH

Review 3.15
I What is the result of the following SQL statement:
SELECT X, SUM(Y) FROM r GROUP BY X

r
X Y

NULL 5
2 3
3 4

NULL 4
2 2

result
X SUM(Y)
2 5
3 4

NULL 9

exception; all NULLs are grouped together; NULLs are treated as
equal for grouping

DBS 2017, SL03 84/97 M. Böhlen, IfI@UZH

Review 3.15
I Explain similarities and differences between the following statements

over relations with schemas R(X) and S(A):
1. SELECT * FROM r WHERE X NOT IN (

SELECT A FROM s)

2. SELECT * FROM r WHERE NOT EXISTS (
SELECT * FROM s WHERE X = A)

r
X
2
1

s
X
1
3

NULL

- identical if s does not contain null values
- 1. stmt returns empty result if s contains null values
- 2. stmt does not change if s contains NULL values.

DBS 2017, SL03 85/97 M. Böhlen, IfI@UZH

Ordering the Display of Tuples

order by is evaluated after the query ex-
pression just before result is returned to
the application

I List in alphabetic order the names of all customers having a loan in
Perryridge branch
SELECT DISTINCT CustName
FROM borrower, loan
WHERE borrower.LoanNum = loan.LoanNum
AND BranchName = 'Perryridge'
ORDER BY CustName

I We may specify desc for descending order or asc for ascending
order, for each column; ascending order is the default.

I Example: ORDER BY CustName DESC

DBS 2017, SL03 86/97 M. Böhlen, IfI@UZH

Database Modifications

I Insertions
I Deletions
I Updates

DBS 2017, SL03 87/97 M. Böhlen, IfI@UZH

Insertions/1

I Add a new tuple to account (ordering of values is used to determine
columns)
INSERT INTO account
VALUES ('A-9732', 'Perryridge', 1200)

or equivalently (name of columns is used to determine columns)
INSERT INTO account(BranchName,Balance,AccNr)
VALUES ('Perryridge', 1200, 'A-9732')

I Add a new tuple to account with balance set to null
INSERT INTO account
VALUES ('A-9732', 'Perryridge', NULL)

DBS 2017, SL03 88/97 M. Böhlen, IfI@UZH

Insertions/2
I Provide as a gift for all loan customers of the Perryridge branch, a

$200 savings account. Let the loan number serve as the account
number for the new savings account
INSERT INTO account
SELECT LoanNum, BranchName, 200
FROM loan
WHERE BranchName = 'Perryridge'

INSERT INTO depositor
SELECT LoanNum, CustName
FROM loan, borrower
WHERE BranchName = 'Perryridge'
AND loan.AccNr = borrower.AccNr

I The select from where statement is evaluated fully before any of
its results are inserted into the table.

DBS 2017, SL03 89/97 M. Böhlen, IfI@UZH

Deletions/1

I Delete all account tuples at the Perryridge branch
DELETE FROM account
WHERE BranchName = 'Perryridge'

I Delete all accounts at every branch located in the city Needham
DELETE FROM account
WHERE BranchName IN (
SELECT BranchName
FROM branch
WHERE BranchCity = 'Needham')

DBS 2017, SL03 90/97 M. Böhlen, IfI@UZH

Deletions/2

I Delete the record of all accounts with balances below the average at
the bank.
DELETE FROM account
WHERE Balance < (SELECT AVG(Balance)

FROM account)

I Problem: as we delete tuples from deposit, the average balance
changes

I Solution used in SQL is the logical update semantics (guarantees that
sequence in which updates to a table are computed does not matter):
1. First, compute avg balance and find all tuples to delete
2. Next, delete all tuples found above (without recomputing avg or

evaluating the condition again)

DBS 2017, SL03 91/97 M. Böhlen, IfI@UZH

Updates/1

I Increase all accounts with balances over $10,000 by 6%, all other
accounts receive 5%.

I Write two update statements:
UPDATE account
SET Balance = Balance * 1.06
WHERE Balance > 10000

UPDATE account
SET Balance = Balance * 1.05
WHERE Balance <= 10000

I The order is important
I Can be done better using the case statement (next slide)

DBS 2017, SL03 92/97 M. Böhlen, IfI@UZH

Updates/2

I Same query as before: Increase all accounts with balances over
$10,000 by 6%, all other accounts receive 5%.
UPDATE account
SET Balance = CASE

WHEN Balance <= 10000
THEN Balance * 1.05
ELSE Balance * 1.06

END

DBS 2017, SL03 93/97 M. Böhlen, IfI@UZH

Review 3.16
I Consider p(A) = { (1), (2), (3) }. Describe the semantics

and evaluation of the following statement:
UPDATE p t1
SET t1.a = (
SELECT t1.a + SUM(t2.a) FROM p AS t2)

- correlated subquery is evaluated for each row of outer relation;
changes are first determined and then applied

- 1st row: 1 will be updated to 7 (= 1+6)
- 2nd row: 2 will be updated to 8 (= 2+6)
- 3rd row: 3 will be updated to 9 (= 3+6)

- result = {(7), (8), (9)}

DBS 2017, SL03 94/97 M. Böhlen, IfI@UZH

Summary/1

I DDL (data definition language)
I Used to create, alter, and drop tables.
I Table definitions include constraints (domain, not null, primary key,

foreign key).
I Constraints ensure data quality, which in turn gives competitive

advantages to businesses.
I Enforcing constraints is difficult and requires a focused effort.
I Data quality must be considered during data acquisition; the

database system must enforce it; it cannot be fixed later.
I Expressions and predicates

I Database systems have been conservative since the efficient
evaluation must be considered.

I The brute force evaluation of a condition on one billion tuples might
not be good enough.

I Modern database systems are extensible with user defined functions.

DBS 2017, SL03 95/97 M. Böhlen, IfI@UZH

Summary/2
I SQL

I SQL is used very heavily in practice; the intergalactic data speak
[Michael Stonebraker].

I The building block of the DML are query specifications and query
expressions.

I SQL is more than simple select-from-where. The set based semantics
of SQL requires some practice.

I Know the conceptual evaluation/semantics of query expressions.
I Form the cross product of the tables in the from clause
I Eliminate tuples that do not satisfy the where clause
I Group the remaining tuples according to the group clause
I Eliminate groups that do not satisfy the having clause
I Evaluate the expressions in the select clause
I With aggregation one result tuple is produced for each group
I Eliminate duplicates if distinct is specified
I Compute query expressions independently and apply set operations

(union, excpet, intersect)
I Sort all result tuples of order clause is specified

DBS 2017, SL03 96/97 M. Böhlen, IfI@UZH

Summary/3

I The difference between set and multisets (or bags) is relevant.
I Subqueries are natural and help the understanding; it is possible

(and advisable) to only use exists and not exists.
I Large parts of RA, SQL and DRC are equivalent; know how to go

from one to the other.
I Modification statements use the logical update semantics

(compute changes before they are applied).
I The SQL OLAP extensions (cf. Data Warehouse course) further

extend SQL to better support report generation (cross tabs, moving
averages, etc).

DBS 2017, SL03 97/97 M. Böhlen, IfI@UZH

Reviews: 9 12 33 37 39 59

Database Systems
Spring 2017

Database Programming
SL04

I Views
I Recursive Queries
I Integrity Constraints
I Functions and Procedural Constructs
I Triggers
I Accessing Databases

issues that are important in ap-
plications and real systems
connecting DBMS with applica-
tions
embedding DBMS into applica-
tions

DBS 2017, SL04 1/66 M. Böhlen, IfI@UZH

Literature and Acknowledgments

Reading List for SL04:
I Database Systems, Chapters 5 (5.2 and 5.3) and 12, Sixth Edition,

Ramez Elmasri and Shamkant B. Navathe, Pearson Education, 2010.

These slides were developed by:
I Michael Böhlen, University of Zürich, Switzerland
I Johann Gamper, Free University of Bozen-Bolzano, Italy

The slides are based on the following text books and associated material:
I Fundamentals of Database Systems, Fourth Edition, Ramez Elmasri

and Shamkant B. Navathe, Pearson Addison Wesley, 2004.
I A. Silberschatz, H. Korth, and S. Sudarshan: Database System

Concepts, McGraw Hill, 2006.

DBS 2017, SL04 2/66 M. Böhlen, IfI@UZH

Views

I Purpose of views
I Creation and use of views
I Handling views in the DBMS
I Temporary views

DBS 2017, SL04 3/66 M. Böhlen, IfI@UZH

Views/1
I A view is a table whose rows are not stored in the database. The

rows are computed when needed from the view definition.
I This is useful in cases where

I it is not desirable for all users to see the entire logical model (that is,
all the actual tables stored in the database), or

I the user wants to access computed results (rather than the actual
data stored on the disk)

I Consider a person who needs to know a customer’s name, loan
number and branch name, but has no need to see the loan amount.
This person should see a relation described, in SQL, by
SELECT CustName, borrower.LoanNr, BranchName
FROM borrower, loan
WHERE borrower.LoanNr = loan.LoanNr

I A view provides a mechanism to hide data from the view of users, or
to give users direct access to the results of (complex) computations.

DBS 2017, SL04 4/66 M. Böhlen, IfI@UZH

Views/2

I A view is defined using the create view statement which has the
form

CREATE VIEW v AS <query expression>

where <query expression> is any legal SQL expression. The view
name is represented by v .

I Once a view is defined, the view name can be used to refer to the
virtual relation that the view generates.

I When a view is created, the query expression is stored in the
database.

I Any table that is not of the conceptual model but is made visible to
a user as a “virtual table” is called a view.

DBS 2017, SL04 5/66 M. Böhlen, IfI@UZH

Views/3
I A view consisting of branches and their customers:

CREATE VIEW allCustomer AS
(SELECT BranchName, CustName
FROM depositor, account
WHERE depositor.AccNr = account.AccNr)

UNION
(SELECT BranchName, CustName
FROM borrower, loan
WHERE borrower.LoanNr = loan.LoanNr)

I Find all customers of the Perryridge branch:
SELECT CustName
FROM allCustomer
WHERE branche_name = 'Perryridge'

DBS 2017, SL04 6/66 M. Böhlen, IfI@UZH

Views/4

I The view definition is stored in the meta database.

cheap. several 1000
views are OK.

I The meaning of a query expression that includes views is defined
through view expansion.

I The view expansion of an expression repeats the following
replacement step:

repeat
Find any view vi in e1;
Replace view vi by the expression defining vi ;

until no more views are present in e1
I As long as the view definitions are not recursive, this loop will

terminate

DBS 2017, SL04 7/66 M. Böhlen, IfI@UZH

Views/5

I Tables and views can be used interchangeably in queries.

I Tables and views behave differently wrt modification operations.
I Updates to views are restricted. No broad consensus/standard exists

and DBMSs behave differently.
I Roughly, a view shall be updatable if the database system can

determine the reverse mapping from the view schema to the schema
of the underlying base tables.

I The exact definition of updatable views has been enlarged
significantly from SQL-1992 to SQL:1999 (cf. below).

DBS 2017, SL04 8/66 M. Böhlen, IfI@UZH

Review 4.1
Discuss the behavior of following piece of SQL code.
CREATE VIEW goodStudents (sid, gpa) AS
SELECT SID, GPA
FROM students
WHERE GPA > 3.0;

INSERT INTO goodStudents VALUES (51234, 2.8);

I result: student with SID 51234 and GPA 2.8 is inserted into
students

I student cannot be retrieved through view goodStudents
I SQL allows this
I WITH CHECK OPTION can be added to the view definition to

disallow insertion (only allows insertions that can be retrieved
through the view

DBS 2017, SL04 9/66 M. Böhlen, IfI@UZH

Views/6

I In SQL-92 a view is updatable if it is defined on a single table using
projections and selections with no use of aggregate operations.

I An SQL-92 view is not updatable if the defining query expression
satisfies one of the following conditions:
1. the keyword DISTINCT is used in the view definition
2. the select list contains components other than column specifications,

or contains more than one specification of the same column
3. the FROM clause specifies more than one table reference or refers to

a non-updatable view
4. the GROUP BY clause is used in the view definition
5. the HAVING clause is used in the view definition

DBS 2017, SL04 10/66 M. Böhlen, IfI@UZH

Views/7

I In SQL:1999 primary key constraints are taken into account for
defining updatability of views.

I With this also views defined through a join can be updated.
I Intuitively, an column of a view is updatable if it can be traced back

to a unique tuple in one of the underlying tables (i.e., each base
tuple is guaranteed to appear at most once in the view; in
Oracle such tables are termed key-preserved tables).

I There are views that can be modified by updating rows and there
are views into which tuples can be inserted.

I View defined through set operations (union, except, intersect)
cannot be inserted into but might be modifiable.

DBS 2017, SL04 11/66 M. Böhlen, IfI@UZH

Review 4.2
Consider the DDL statements:
CREATE TABLE account(AccNr INTEGER PRIMARY KEY,
BrName CHAR(9), Balance INTEGER);

CREATE TABLE depositor(AccNr INTEGER,
CuName CHAR(9), PRIMARY KEY(AccNr,CuName));

CREATE VIEW v AS
SELECT CuName, BrName
FROM depositor NATURAL JOIN account;

Explain the behavior of the following statements:
1. UPDATE v SET BrName = 'Q';

2. UPDATE v SET CuName = 'Z';

DBS 2017, SL04 12/66 M. Böhlen, IfI@UZH

Review 4.2

1. not allowed in SQL

account
123 P 5
456 D 6

depositor
123 X
123 Y
456 X

v
X P
Y P
X D

2. allowed in SQL

account
123 P 5
456 D 6

depositor
123 X
123 Y
456 X

v
X P
Y P
X D

CuName can be updated (since
it derives from one base tuple;
BrName cannot be updated)

DBS 2017, SL04 13/66 M. Böhlen, IfI@UZH

With Clause/1
I The with clause provides a way of defining temporary views whose

definition is available only to the query in which the with clause
occurs.

I The with clause is useful to structure complex SQL statements and
eliminate code repetitions.

I Find all accounts with the maximum balance
WITH
maxBalance(Val) AS (
SELECT MAX(Balance)
FROM account

)
SELECT AccNr
FROM account, maxBalance
WHERE account.Balance = maxBalance.Val

defines local and temporary
view maxBalance(Val); good
for structuring code; avoids
repetitions of view definition.

DBS 2017, SL04 14/66 M. Böhlen, IfI@UZH

With Clause/2
I Find all branches where the total account deposit is greater than the

average of the total account deposits at all branches.
WITH
braTot(BranchName,Val) AS (
SELECT BranchName, SUM(Balance)
FROM account
GROUP BY BranchName

),
braTotAvg(Val) AS (
SELECT AVG(Val)
FROM braTot

)
SELECT BranchName
FROM braTot, braTotAvg
WHERE braTot.Val > braTotAvg.Val

DBS 2017, SL04 15/66 M. Böhlen, IfI@UZH

Recursion in SQL

I Recursive views in SQL-1999
I Example of a recursive view

DBS 2017, SL04 16/66 M. Böhlen, IfI@UZH

Recursion in SQL/1

fac(X) =
{

1 n = 1
n ∗ fac(n − 1) n > 1

I SQL:1999 permits recursive view definition
I Example: find all employee-manager pairs, where the employee

reports to the manager directly or indirectly (that is manager’s
manager, manager’s manager’s manager, etc.)

WITH RECURSIVE mgr(EmpName,MgrName) AS (
SELECT EmpName, BossName
FROM empl
UNION
SELECT empl.EmpName, mgr.MgrName
FROM empl, mgr
WHERE BossName = mgr.EmpName

)
SELECT * FROM mgr;

View mgr is the transitive closure of the empl relation.

recursive case

base case

DBS 2017, SL04 17/66 M. Böhlen, IfI@UZH

Recursion in SQL/2

I Recursive views make it possible to write queries, such as transitive
closure queries, that cannot be written without recursion or
iteration.

I Intuition: Without recursion, a non-recursive non-iterative program
can perform only a fixed number of joins of empl with itself

I This can give only a fixed number of levels of managers.
I We can always construct a database with a greater number of levels

of managers than a fixed number.

I Computing transitive closure
I The next slide shows a empl relation
I Each step of the iterative process constructs an extended version of

mgr from its recursive definition.
I The final result is called the fixpoint of the recursive view definition.

DBS 2017, SL04 18/66 M. Böhlen, IfI@UZH

Example of Fixpoint Computation/1

Klinger

Jones Rensal

Estovar Duarte

Barinsky Corbin

Alon

empl
EmpName BossName
’Alon’ ’Barinsky’
’Barinsky’ ’Estovar’
’Corbin’ ’Duarte’
’Duarte’ ’Jones’
’Estovar’ ’Jones’
’Jones’ ’Klinger’
’Rensal’ ’Klinger’

DBS 2017, SL04 19/66 M. Böhlen, IfI@UZH

Example of Fixpoint Computation/2

mgr
EmpName MgrName
’Alon’ ’Barinsky’
’Barinsky’ ’Estovar’
’Corbin’ ’Duarte’

direct mgrs (1 step)

’Duarte’ ’Jones’
’Estovar’ ’Jones’
’Jones’ ’Klinger’
’Rensal’ ’Klinger’
’Alon’ ’Estovar’
’Barinsky’ ’Jones’

indirect mgrs (2 steps)

’Corbin’ ’Jones’
’Duarte’ ’Klinger’
’Estovar’ ’Klinger’
’Alon’ ’Jones’
’Barinsky’ ’Klinger’

indirect mgrs (3 steps)

’Corbin’ ’Klinger’
’Alon’ ’Klinger’

Klinger

Jones Rensal

Estovar Duarte

Barinsky Corbin

Alon

DBS 2017, SL04 20/66 M. Böhlen, IfI@UZH

Recursion in SQL/3

I Recursive views are required to be monotonic. That is, if we add
tuples to manager the view contains all of the tuples it contained
before, plus possibly more.

no negation (not exists, except, ...)

I For representing and querying trees there exist also alternative
solutions:

I Nested set model: techniques for representing nested sets (aka trees
or hierarchies) in relational databases.

I Joe Celko: Trees and Hierarchies in SQL for Smarties
I Trees (e.g., XML) are shredded and a clever numbering is used that

allows to quickly determine subtrees, ancestors, siblings, etc of a node.

DBS 2017, SL04 21/66 M. Böhlen, IfI@UZH

Integrity Constraints

I Domain constraints
I Not null constraints
I Primary keys
I Check constraint
I Referential integrity (foreign keys)
I Assertions

Real world: there are always
exceptions; integrity constraints
are never satisfied to 100%

data quality is a company-
wide task; understanding for this
must be established

databases help to enforce good
data quality (through integrity
constraints

technically: integrity constraints
are very expensive (expensive
checks when adding data)

DBS 2017, SL04 22/66 M. Böhlen, IfI@UZH

Integrity Constraints/1

I Integrity constraints guard against damage to the database, by
ensuring that changes to the database do not result in a loss of data
consistency.

I A checking account must have a balance greater than $10,000
I A salary of a bank employee must be at least $4.00 an hour.
I A customer must have a (non-null) phone number.
I A customer can only get a loan if she has an account.

I An integrity constraint is a closed first order formula that must be
true, i.e., that each database instance must satisfy.

I Example: ∀B(account(_,_,B) ⇒ B < 10M)
I The main issue with integrity constraints is how to check them

efficiently.
I SQL offers special-purpose syntax and efficient checking
mechanisms for the most important classes of integrity constraints.

DBS 2017, SL04 23/66 M. Böhlen, IfI@UZH

Integrity Constraints/2

Integrity constraints on single relations:
I domain constraints
I not null
I primary key
I unique
I check(P), where P is a predicate over a single relation

Integrity constraints on multiple relations:
I foreign key
I check(P), where P is a predicate over multiple relations
I assertion

DBS 2017, SL04 24/66 M. Böhlen, IfI@UZH

Domain Constraints

I Domain constraints are the most elementary form of integrity
constraints. They check values inserted in the database, and they
check queries to ensure that the comparisons make sense.

I New domains can be created from existing data types
I Example:

CREATE DOMAIN Dollars INTEGER
CREATE DOMAIN Pounds INTEGER

I We cannot assign or compare a value of type Dollars to a value of
type Pounds.

I However, we can convert values of type Dollar as follows:
CAST(r.Amnt/1.5 AS Pounds)

DBS 2017, SL04 25/66 M. Böhlen, IfI@UZH

Not Null Constraint

I Declare BranchName to be not null:
BranchName CHAR(15) NOT NULL

I Declare the domain Dollars to be not null:
CREATE DOMAIN Dollars INTEGER NOT NULL

DBS 2017, SL04 26/66 M. Böhlen, IfI@UZH

Primary Key

I A primary key ensures that an attribute value is not null and unique
across all rows of a table. Therefore it can be used to identify a
unique row in a table, and is used for query optimization.

I Primary and candidate keys and foreign keys can be specified as part
of the SQL create table statement:

I The primary key clause lists attributes that form the primary key.
I Example:

CREATE TABLE customer (
CustName CHAR(20),
CustStreet CHAR(30),
CustCity CHAR(30),
PRIMARY KEY (CustName))

DBS 2017, SL04 27/66 M. Böhlen, IfI@UZH

The Unique Constraint

a unique constraint provides a
performance guarantee. result of
a join is of size n and not n2. da-
tabase system can use knowled-
ge about unique attribute values
to automatically create indexes

I unique (A1,A2, . . . ,Am)
I The unique specification states that the attributes

A1,A2, . . . ,Am
form a candidate key.

I Candidate keys are permitted to be null (in contrast to primary
keys).

DBS 2017, SL04 28/66 M. Böhlen, IfI@UZH

The check Clause/1

I check (P), where P is a predicate
Example: Declare BranchName as the primary key for branch and
ensure that the values of assets are non-negative.
CREATE TABLE branch (
BranchName CHAR(15),
BranchCity CHAR(30),
Assets INTEGER,
PRIMARY KEY (BranchName),
CHECK (Assets >= 0))

I Note that with subqueries (not exists, etc) the check constraint can
become very general. Implementations limit the predicates that are
allowed in the check clause.

DBS 2017, SL04 29/66 M. Böhlen, IfI@UZH

Referential Integrity/1

I Ensures that a value that appears in one relation for a given set of
attributes also appears for a certain set of attributes in another
relation.

I Example: If “Perryridge” is a branch name appearing in one of the
tuples in the account relation, then there exists a tuple in the branch
relation for branch “Perryridge”.

I Foreign keys can be specified as part of the SQL create table
statement.

I The foreign key clause lists the attributes that comprise the foreign
key and the name of the relation referenced by the foreign key. By
default, a foreign key references the primary key attributes of the
referenced table.

DBS 2017, SL04 30/66 M. Böhlen, IfI@UZH

Referential Integrity/2

Examples of integrity constraints:

CREATE TABLE customer (
CustomerName CHAR(20)
CustStreet CHAR(30),
CustCity CHAR(30),
PRIMARY KEY (CustomerName))

CREATE TABLE branch (
BranchName CHAR(15),
BranchCity CHAR(30),
Assets INTEGER,
PRIMARY KEY (BranchName))

DBS 2017, SL04 31/66 M. Böhlen, IfI@UZH

Referential Integrity/3
Examples of integrity constraints:

CREATE TABLE account (
AccNr CHAR(10),
BranchN CHAR(15),
Balance INTEGER,
PRIMARY KEY (AccNr),
FOREIGN KEY (BranchN) REFERENCES branch)

CREATE TABLE depositor (
CustName CHAR(20),
AccNum CHAR(10),
PRIMARY KEY (CustName, AccNum),
FOREIGN KEY (AccNum) REFERENCES account,
FOREIGN KEY (CustName) REFERENCES customer)

DBS 2017, SL04 32/66 M. Böhlen, IfI@UZH

Review 4.3
Assume tables p(X) and q(Y). p.X is a primary key. q.Y is a foreign key
that references p.X.
1. Use a check constraint to formulate the foreign key constraint.
2. Formulate a query that returns an empty result if the foreign key is

satisfied and a non-empty result otherwise.

IC: ∀A(q(A) ⇒ p(A))
rewritten IC: ¬∃A(q(A) ∧ ¬p(A))

CHECK (NOT EXISTS (
SELECT *
FROM q
WHERE NOT EXISTS (
SELECT *
FROM p
WHERE X = Y)))

SELECT *
FROM q
WHERE NOT EXISTS (

SELECT *
FROM p
WHERE X = Y)

DBS 2017, SL04 33/66 M. Böhlen, IfI@UZH

Assertions/1

I An assertion is a predicate expressing a condition that the database
must satisfy.

I An assertion in SQL takes the form
create assertion <assertion-name> check <predicate>

I When an assertion is made, the system tests it for validity, and tests
it again on every update that might violate the assertion.

I This testing may introduce a significant amount of overhead; hence
assertions should be used with care.

I Asserting
∀X (p(X))

is achieved using
¬∃¬(p(X))

DBS 2017, SL04 34/66 M. Böhlen, IfI@UZH

Assertion/2

I Every loan has at least one borrower who maintains an account with
a minimum balance or $1000
CREATE ASSERTION balance_constraint CHECK
NOT EXISTS (
SELECT *
FROM loan
WHERE NOT EXISTS (
SELECT *
FROM borrower b, depositor d, account a
WHERE loan.LoanNr = b.LoanNr
AND b.CustName = d.CustName
AND d.AccNr = a.AccNr
AND a.Balance >= 1000)))

DBS 2017, SL04 35/66 M. Böhlen, IfI@UZH

Assertion/3

I The sum of all loan amounts for each branch must be less than the
sum of all account balances at the branch.
CREATE ASSERTION sum_constraint CHECK (
NOT EXISTS (
SELECT *
FROM branch b
WHERE
(SELECT SUM(Amount)
FROM loan l
WHERE l.BranchName = b.BranchName)

>=
(SELECT SUM(Balance)
FROM account a
WHERE l.BranchName = b.BranchName)))

DBS 2017, SL04 36/66 M. Böhlen, IfI@UZH

Review 4.4/1
Consider the tables
CREATE TABLE branch(BranchName CHAR(9),
BranchCity CHAR(9), Assets INTEGER);

CREATE TABLE account(AccNr INTEGER PRIMARY KEY,
BranchName CHAR(9), Balance INTEGER);

Explain how to efficiently check the integrity constraint

∀BN(account(_,BN,_) ⇒ branch(BN,_,_))

by considering the different database modifications.

db is consistent before a modification operation is performed (dbms
ensures that db is never in an inconsistent state)
thus, dbms must only check ICs that are affected by the modification;
rewrite (specialize) ICs s.t. they incorporate the modification.

DBS 2017, SL04 37/66 M. Böhlen, IfI@UZH

Review 4.4/2

Rewrite ∀X (a(_,X ,_) ⇒ b(X ,_,_)) to ∀X (¬a(_,X ,_) ∨ b(X ,_,_)).

For ∀X (¬a(_,X ,_) ∨ b(X ,_,_)) only changes to a and b are relevant.

I addition of a(_,’P’,_): check if b(’P’,_,_) is true (present in DB)
I deletion of a(_,’P’,_): OK (no check needed)
I addition of b(’P’,_,_): OK (no check needed)
I deletion of b(’P’,_,_): check if a(_,’P’,_) is false (not present in DB)

DBS 2017, SL04 38/66 M. Böhlen, IfI@UZH

Review 4.5
Create a table for cities and a table for states. For each state its capital
shall be recorded and for each city the state it is located in shall be
recorded. Discuss the properties of the following solution:

CREATE TABLE cities(CName CHAR(9) PRIMARY KEY, State CHAR(9));
CREATE TABLE states(SName CHAR(9) PRIMARY KEY, Capital CHAR(9));
ALTER TABLE cities ADD FOREIGN KEY (State) REFERENCES states(SName);
ALTER TABLE states ADD FOREIGN KEY (Capital) REFERENCES cities(CName);

neither a city nor a state can be added independently. multiple tuples
must be added before ICs can be checked.

I transactions = multiple SQL stmts as one unit
I DBMSs do eager checking (after each modification) if possible

to improve performance
I DEFERRABLE INITIALLY DEFERRED can/must be added

to FK.

DBS 2017, SL04 39/66 M. Böhlen, IfI@UZH

User Defined Functions

I PL/pgSQL value functions
I PL/pgSQL table functions
I External language functions

DBS 2017, SL04 40/66 M. Böhlen, IfI@UZH

User-Defined Functions (UDF)
I User defined functions or stored procedures allow to execute

application logic in the process space of the DBMS.
I This is good for the performance since it reduces the amount of

data that is transferred between client and server.
I The SQL standard defines SQL/PSM (SQL/Persistent Stored

Modules).
I PostgreSQL supports different kinds of user-defined functions:

I Query language functions i.e., written in SQL
I Procedural language functions such as PL/pgSQL
I C-language functions, dynamically loadable objects (shared libraries)

I UDF functions can
I Make arithmetic calculations
I Query tables
I Manipulate tables
I Return single values or tables

DBS 2017, SL04 41/66 M. Böhlen, IfI@UZH

PL/pgSQL Functions/1

goal is to show the main con-
cepts; there is an exercise with
functions; details of the syntax
are not the key part

I Structure
create function somefunc()
returns < retype > as $$

[declare
< declarations >]

begin
< statements >

end;

$$ language plpgsql;

I < retype >
INTEGER
RECORD
TABLE
. . .

DBS 2017, SL04 42/66 M. Böhlen, IfI@UZH

PL/pgSQL Functions/2

I < declarations >

quantity INTEGER := 30;
tbl_row account%ROWTYPE;

tuple with schema of table account

I < statements >

quantity := 4;

IF quantity < 5 THEN
quantity := 5;

END IF;

WHILE quantity < 10 LOOP
quantity := quantity + 1;

END LOOP;

DBS 2017, SL04 43/66 M. Böhlen, IfI@UZH

PL/pgSQL Value Functions/1

I A value function returns a value (or tuple).
I A value function can be used instead of a value in an SQL

statement.
I Returning a single value is fairly straightforward and does not raise

new performance issues.

I Example (cf. next slide): Define a function that, given the name of a
customer, returns the count of the number of accounts owned by
this customer.

DBS 2017, SL04 44/66 M. Böhlen, IfI@UZH

PL/pgSQL Value Functions/2
I Count of the number of accounts owned by a customer:

CREATE FUNCTION accountCnt (CName VARCHAR(9))
RETURNS INTEGER AS
$$
DECLARE
accCnt INTEGER;

BEGIN
SELECT COUNT(*) INTO accCnt
FROM depositor
WHERE depositor.CustName = CName;
RETURN accCnt;

END;
$$ LANGUAGE PLPGSQL;

I Usage: SELECT accountCnt('Bob');

DBS 2017, SL04 45/66 M. Böhlen, IfI@UZH

PL/pgSQL Table Functions/1

I Table functions return a table.
I Table functions can be used instead of a table.
I Table functions allow input parameters.
I The type of the return table must be defined.
I In the simplest case a table function returns the result of an SQL

query as its result.

I Example (cf. next slide): Define a function that returns all accounts
with a balance above an application-specified threshold.

DBS 2017, SL04 46/66 M. Böhlen, IfI@UZH

PL/pgSQL Table Functions/2
I All accounts with a balance above a threshold:

CREATE FUNCTION highAccnts (limitVal INTEGER)
RETURNS TABLE (AccNum CHAR(10),

BrName CHAR(15),
Bal INTEGER) AS

$$
BEGIN
RETURN QUERY
SELECT AccNr, BranchName, Balance
FROM account A
WHERE A.Balance > highAccnts.limitVal;

END;
$$ LANGUAGE PLPGSQL;

I Usage: SELECT * FROM highAccnts(1000);

DBS 2017, SL04 47/66 M. Böhlen, IfI@UZH

PL/pgSQL Table Functions/3

I Table functions may return large tables.
I The cursor mechanism (similar to iterators) was introduced to deal

with result tables.
I A cursor points to the current row and a loop is used to iterate

through all rows of a table.
I With a cursor the return type is a record that represents a row in a

database table.
I Definition of a rowtype for table account: account%ROWTYPE

I Example (cf. next slide): Define a function that returns all accounts
with a balance above an application-specified threshold.

DBS 2017, SL04 48/66 M. Böhlen, IfI@UZH

PL/pgSQL Table Functions/4

code is terrible in terms of performance; scan of
table; query optimization is disabled

I Accounts with balance above a threshold:
CREATE FUNCTION highAccnts (limitVal INTEGER)
RETURNS SETOF account AS
$$
DECLARE

accrow account%ROWTYPE;
BEGIN

FOR accrow IN SELECT * FROM account LOOP
IF accrow.Balance > highAccnts.limitVal

THEN RETURN NEXT accrow;
END IF;

END LOOP;
END;
$$ LANGUAGE PLPGSQL;

I Usage: SELECT * FROM highAccnts(1000);

set of tuples with schema of table account

tuple with schema of table account

DBS 2017, SL04 49/66 M. Böhlen, IfI@UZH

PostgreSQL C-Language Functions/1

I User-defined functions can be written in C (or a number of other
languages).

I Such external functions are compiled into dynamically loadable
objects (also called shared libraries) and are loaded by the server on
demand.

I The dynamic loading feature is what sets external functions apart
from internal functions.

I The code must convert between PostgreSQL types and C types.

DBS 2017, SL04 50/66 M. Böhlen, IfI@UZH

PostgreSQL C-Language Functions/2

I Define a function adding 1 to its argument�
#include "postgres.h"
#include <string.h>
#include "fmgr.h"
#include "utils/geo_decls.h"

PG_FUNCTION_INFO_V1(add_one);

Datum
add_one(PG_FUNCTION_ARGS)
{

int32 arg = PG_GETARG_INT32(0);
PG_RETURN_INT32(arg + 1);

}
� �
DBS 2017, SL04 51/66 M. Böhlen, IfI@UZH

PostgreSQL C-Language Functions/3

func.so is name of library (.so .ddl)

add_one is name of external function in this library

I Compile as dynamic library func.so
I gcc -I/usr/include/postgresql/9.3/server/ -fpic -c func.c
I gcc -shared -o func.so func.o

I Map to a DBMS function
CREATE OR REPLACE FUNCTION incr(INTEGER)
RETURNS INTEGER AS '/home/boehlen/func.so', 'add_one'
LANGUAGE C STRICT;

I Usage:
SELECT incr(5);

DBS 2017, SL04 52/66 M. Böhlen, IfI@UZH

Triggers

I Purpose of triggers
I Definition of triggers

DBS 2017, SL04 53/66 M. Böhlen, IfI@UZH

Triggers/1

I A database trigger is a procedural piece of code that is
automatically executed in response to certain events on a particular
table in a database.

I Triggers are executed when a specified condition occurs during
insert/delete/update.

I Triggers are actions that fire automatically if the condition is
satisfied.

I Triggers follow an event-condition-action (ECA) model
I Event: Database modification (e.g., insert, delete, update)
I Condition: Any expression that evaluates to true/false
I Action: Sequence of SQL statements that will be executed

DBS 2017, SL04 54/66 M. Böhlen, IfI@UZH

Triggers/2

I Example of a trigger: When a new employees is added to a
department, modify the TotSal of the Department to include the
new employees salary
CREATE TRIGGER TotSal1
AFTER INSERT ON employee
FOR EACH ROW
WHEN (NEW.Dno IS NOT NULL)
UPDATE department
SET TotSal = TotSal + NEW.Salary
WHERE Dno = NEW.Dno;

I The above syntax is the one of the SQL standard.

DBS 2017, SL04 55/66 M. Böhlen, IfI@UZH

Triggers/3

Explanation of the trigger:
I We create a trigger TotSal1
I Trigger TotSal1 will execute after insert on employee table.

I Instead of after we could also have before or instead of.
I Instead of insert we could also have update or delete.

I The trigger fires (is executed) for each row that is inserted.
I The trigger fires for each statement if for each statement is

specified instead.
I The when condition determines if a trigger is executed or not.
I The trigger will update department by setting the new TotSal to the

sum of old TotSal and new.Salary where Dno matches new.Dno

DBS 2017, SL04 56/66 M. Böhlen, IfI@UZH

Triggers/4
I In PostgreSQL a trigger consist of two parts:

I A trigger function that defines the action to be performed
I A trigger that defines when the trigger must be fired.

I A trigger function must return NULL or a row with the schema of
the table the trigger was fired for.

CREATE OR REPLACE FUNCTION checkTemp()
RETURNS TRIGGER AS
$$
DECLARE
BEGIN
IF NEW.val < -273 THEN
RAISE EXCEPTION 'invalid value: %', NEW.val;

END IF
RETURN NEW;

END;
$$ LANGUAGE PLPGSQL;

DBS 2017, SL04 57/66 M. Böhlen, IfI@UZH

Triggers/5

PostgreSQL trigger:
I A trigger is associated with a table or view and executes the

specified function when certain events occur.
I A trigger can fire before the operation, after the operation has

completed, or instead of the operation.
I A trigger can fire for each row or for each statement.

A PostgreSQL example of a trigger definition.
CREATE TRIGGER TrigTempCheck
BEFORE INSERT OR UPDATE
ON temperature
FOR EACH ROW
EXECUTE PROCEDURE checkTemp();

DBS 2017, SL04 58/66 M. Böhlen, IfI@UZH

Review 4.6
Compare triggers and integrity constraints.

triggers:
I + powerful (action can be specified); useful to do things that

are otherwise not possible
I + control of steps of processing
I + easy to implement
I - difficult to maintain for user
I - procedural; sequence of execution is relevant

integrity constraints:
I + clean concept; checks state of a database
I + declarative; order of processing not relevant
I + easy to maintain (for user)
I - difficult to implement efficiently (for DBMS)

DBS 2017, SL04 59/66 M. Böhlen, IfI@UZH

Accessing Databases

I ODBC
I JDBC

used heavily by real world applications

DBS 2017, SL04 60/66 M. Böhlen, IfI@UZH

Accessing Databases

I API (application-program interface) for a program to interact with a
database server

I Application makes calls to
I Connect with the database server
I Send SQL commands to the database server
I Fetch tuples of result one-by-one into program variables

I Embedded SQL: many languages allow to embed SQL statements
in their code. The embedded code can be

I static (i.e., code is known at compile time)
I dynamic (i.e., code is unknown at compile time; created at runtime)

I ODBC (Open Database Connectivity) is a Microsoft standard works
with C, C++, C#, and Visual Basic

I JDBC (Java Database Connectivity) is from Sun Microsystems and
works with Java

DBS 2017, SL04 61/66 M. Böhlen, IfI@UZH

ODBC/1

I Open DataBase Connectivity (ODBC) standard
I standard for application program to communicate with a DBMS.
I application program interface (API) to

I open a connection with a database,
I send queries and updates,
I get back results.

I Applications such as GUI, spreadsheets, etc. can use ODBC
I Each database system supporting ODBC provides a “driver” library

that must be linked with the client program.
I When client program makes an ODBC API call, the code in the

library communicates with the server to carry out the requested
action, and fetch results.

DBS 2017, SL04 62/66 M. Böhlen, IfI@UZH

ODBC/2�
int main() {

SQLAllocEnv(&hEnv);
SQLAllocConnect(hEnv, &hDbc);
SQLConnect(hDbc, "pgifi", SQL_NTS, "usr", SQL_NTS, "pwd", SQL_NTS);

SQLAllocStmt(hDbc,&hstmt);
SQLPrepare(hstmt, "select tablename from pg_tables", SQL_NTS);

SQLExecute(hstmt);
SQLBindCol(hstmt, 1, SQL_C_CHAR, (SQLPOINTER)name, 30, NULL);
for (;;) {

if (SQLFetch(hstmt)) break;
printf(" ’%s’\n", name);

}

SQLFreeStmt(hstmt, SQL_DROP);

SQLDisconnect(hDbc); SQLFreeConnect(hDbc); SQLFreeEnv(hEnv);
}
// gcc -c pgODBC.c; gcc -o pgODBC pgODBC.o -lodbc; ./pgODBC
� �
DBS 2017, SL04 63/66 M. Böhlen, IfI@UZH

JDBC/1

I JDBC is a Java API for communicating with database systems
supporting SQL

I JDBC supports a variety of features for querying and updating data,
and for retrieving query results

I JDBC also supports metadata retrieval, such as querying about
relations present in the database and the names and types of
relation attributes

I Model for communicating with the database:
I Open a connection
I Create a “statement” object
I Execute queries using the Statement object to send queries and fetch

results
I Exception mechanism to handle errors

DBS 2017, SL04 64/66 M. Böhlen, IfI@UZH

JDBC/2�
import java.sql.*;

public class pgJDBC {
public static void main(String[] argv) {

Class.forName("org.postgresql.Driver");

Connection conn = DriverManager.getConnection(
"jdbc:postgresql://pg.ifi.uzh.ch/boehlen?ssl=true" +
"&sslfactory=org.postgresql.ssl.NonValidatingFactory",
"boehlen", "xxx");

Statement stmt = conn.createStatement();

ResultSet rset = stmt.executeQuery(
"select tablename from pg_tables where tableowner=’boehlen’");

while (rset.next())
System.out.println(rset.getString(1));

}
}
// javac pgJDBC.java
// java -classpath /usr/share/java/postgresql-jdbc4-9.2.jar:. pgJDBC
� �
DBS 2017, SL04 65/66 M. Böhlen, IfI@UZH

Summary

I Views are essential to break up large tasks (SQL statements) in
small, independent and manageable blocks.

I Recursive queries are used to compute ancestors, descendants,
transitive closures, etc.

I Integrity constraints ensure a good data quality. Enforcing
integrity constraints is not easy: people try to work around.

I Functions and procedural constructs are used heavily by many
applications. For example PostGIS uses functions heavily to add
advanced spatial functionality to PostgreSQL.

I Program access is through ODBC and JDBC. General-purpose
graphical tools exist to interact with databases.

DBS 2017, SL04 66/66 M. Böhlen, IfI@UZH

Database Systems
Spring 2017

Relational Database Design
SL05

I Relational Database Design Goals
I Functional Dependencies
I 1NF, 2NF, 3NF, BCNF
I Dependency Preservation, Lossless Join Decomposition
I Multivalued Dependencies, 4NF

Reviews: 12 16 20 22 31 38 43 45 48 53

as a db designer it is important to understand pros and cons of
normal forms (problems NFs create and solve)

DBS 2017, SL05 1/59 M. Böhlen, IfI@UZH

Literature and Acknowledgments

Reading List for SL05:
I Database Systems, Chapters 14 and 15, Sixth Edition, Ramez

Elmasri and Shamkant B. Navathe, Pearson Education, 2010.

These slides were developed by:
I Michael Böhlen, University of Zürich, Switzerland
I Johann Gamper, Free University of Bozen-Bolzano, Italy

The slides are based on the following text books and associated material:
I Fundamentals of Database Systems, Fourth Edition, Ramez Elmasri

and Shamkant B. Navathe, Pearson Addison Wesley, 2004.
I A. Silberschatz, H. Korth, and S. Sudarshan: Database System

Concepts, McGraw Hill, 2006.

DBS 2017, SL05 2/59 M. Böhlen, IfI@UZH

Relational Database Design
Guidelines

I Goals of Relational Database Design
I Update Anomalies

DBS 2017, SL05 3/59 M. Böhlen, IfI@UZH

Relational Database Design Guidelines/1

I The goal of relational database design is to find a good collection of
relation schemas.

I The main problem is to find a good grouping of the attributes into
relation schemas.

I We have a good collection of relation schemas if we
I Ensure a simple semantics of tuples and attributes
I Avoid redundant data
I Avoid update anomalies
I Avoid null values as much as possible

we get nulls if different things are
combined

I Ensure that exactly the original data is recorded and (natural) joins
do not generate spurious tuples

DBS 2017, SL05 4/59 M. Böhlen, IfI@UZH

Relational Database Design Guidelines/2

I Consider the relation schema:
I EmpProj(SSN, PNum, Hours, EName, PName, PLoc)

I Update Anomaly:
I Changing the name of project location “Houston” to “Dallas” for an

employee forces us to make this change for all other employees
working on this project.

if we want one location per project

I Insert Anomaly:
I Cannot insert a project unless an employee is assigned to it (except

by using null values).

but: no null values allowed for PKs

I Delete Anomaly:
I When a project is deleted, it will result in deleting all the employees

who work on that project.

DBS 2017, SL05 5/59 M. Böhlen, IfI@UZH

Relational Database Design Guidelines/3

SSN, PNum, Hours: no redundancy
EName: redundancy
PName, PLoc: redundancy
intuition for redundancy: same inform stored multiple times

I Consider relation schema
EmpProj(SSN, PNum, Hours, EName, PName, Ploc)

with instance
empproj
SSN PNum Hours EName PName PLoc
1234 1 32.5 ’Smith’ ’ProductX’ ’Bellaire’
1234 2 7.5 ’Smith’ ’ProductY’ ’Sugarland’
6688 3 40.5 ’Narayan’ ’ProductZ’ ’Houston’
4567 1 20.0 ’English’ ’ProductX’ ’Bellaire’
4567 2 20.0 ’English’ ’ProductY’ ’Sugarland’
3334 2 10.0 ’Wong’ ’ProductY’ ’Sugarland’
3334 3 10.0 ’Wong’ ’ProductZ’ ’Houston’
3334 10 10.0 ’Wong’ ’Computerization’ ’Stafford’
3334 20 10.0 ’Wong’ ’Reorganization’ ’Houston’

I Relation schema EmpProj is not a good schema and suffers from
update anomalies.

DBS 2017, SL05 6/59 M. Böhlen, IfI@UZH

Relational Database Design Guidelines/4

I Guideline 1: Each tuple in a relation should only represent one
entity or relationship instance.

I Guideline 2: Design a schema that does not suffer from insertion,
deletion and update anomalies.

I Guideline 3: Relations should be designed such that their tuples will
have as few NULL values as possible; attributes that are NULL shall
be placed in separate relations (along with the primary key).

I Guideline 4: Relations should be designed such that no spurious
(i.e., wrong) tuples are generated if we do a natural join of the
relations.

A B C
1 3 6
2 3 2

6=
A B
1 3
2 3

1

B C
3 6
3 2

=

A B C
1 3 6
1 3 2
2 3 6
2 3 2

DBS 2017, SL05 7/59 M. Böhlen, IfI@UZH

Functional Dependencies

I Definition
I Armstrong’s inference rules
I Soundness and completeness
I Closure and minimal cover

DBS 2017, SL05 8/59 M. Böhlen, IfI@UZH

Keys (Refresher)

I A superkey of a relation schema R(A1,A2, . . . ,An) is a set of
attributes S ⊆ attr(R) with the property that no two tuples t1 and
t2 in any legal relation state r of R will have t1[S] = t2[S]

I A candidate key K is a superkey with the additional property that
removal of any attribute from K will cause the reduced K not to be
a superkey any more.

I One of the candidate keys is arbitrarily chosen to be the primary
key.

I Notation: We underline the primary key attributes:
EmpProj(SSN, PNum, Hours, EName, PName, Ploc)

Thus, (SSN,PNum) is a primary key of EmpProj

DBS 2017, SL05 9/59 M. Böhlen, IfI@UZH

Functional Dependencies/1

FDs generalize keys:
I key determines all other attributes
I FDs determine some other attributes

examples of trivial FDs:
I SSN, LN -> LN
I LN, FN -> FN

I Functional dependencies (FDs) are used to specify formal measures
of the goodness of relational designs.

I Functional dependencies and keys are used to define normal forms
for relations.

I Functional dependencies are constraints that are derived from the
meaning and interrelationships of the attributes.

I A set of attributes X functionally determines a set of attributes Y if
the value of X determines a unique value for Y.

SSN, SNumber , ...

I A functional dependency X → Y is trivial iff Y ⊆ X .

DBS 2017, SL05 10/59 M. Böhlen, IfI@UZH

Functional Dependencies/2

I X → Y denotes a functional dependency.
I X → Y means that X functionally determines Y.
I X → Y holds if whenever two tuples have the same value for X they

have the same value for Y.
I For any two tuples t1 and t2 in any relation instance r(R) :

If t1[X] = t2[X] then t1[Y] = t2[Y]
I X → Y for R specifies a constraint on the schema, i.e., on all

possible relation instances r(R).
I FDs are derived from the real-world constraints on the attributes.

I Notation: instead of {A,B} we write AB (or A,B), e.g.,
AB → BCD (instead of {A,B} → {B,C ,D})

DBS 2017, SL05 11/59 M. Böhlen, IfI@UZH

Review 5.1 r
A B C
1 1 3
2 1 1
3 2 2
4 1 1

Consider the relation instance r(R) and the statements
1. A is a primary key of R
2. B → C is a functional dependency that holds for R
3. C → B is a functional dependency that holds for R
4. BC → A is a functional dependency that relation instance r satisfies

Which of these statements are true?

1. possibly true
2. false
3. possibly true
4. true

DBS 2017, SL05 12/59 M. Böhlen, IfI@UZH

Functional Dependencies/3

Examples of FD constraints:
I Social security number determines employee name

I SSN → EName
I Project number determines project name and location

I PNum→ PName,PLoc
I Employee ssn and project number determines the hours per week

that the employee works on the project
I SSN,PNum→ Hours

DBS 2017, SL05 13/59 M. Böhlen, IfI@UZH

Functional Dependencies/4

I A FD is a property of the semantics of the attributes.
I A FD constraint must hold on every relation instance r(R)
I If K is a candidate key of R, then K functionally determines all

attributes in R (since we never have two distinct tuples with
t1[K] = t2[K])

I Certain FDs can be ruled out based on a given state of the database:
teach
Teacher Course Textbook
’Smith’ ’Data Structures’ ’Bertram’
’Smith’ ’Data Management’ ’Martin’
’Hall’ ’Compilers’ ’Hoffman’
’Brown’ ’Data Structures’ ’Horowitz’

The FD Textbook → Course is possible
The FD Teacher → Course does not hold

DBS 2017, SL05 14/59 M. Böhlen, IfI@UZH

Functional Dependencies/5

I Given a set of FDs F , we can infer additional FDs that hold
whenever the FDs in F hold

I Armstrong’s inference rules (aka Armstrong’s axioms):
I Reflexivity: Y ⊆ X |= X → Y

FN ⊆ FN, LN |= FN, LN → FN

I Augmentation: X → Y |= XZ → YZ

SSN → LN |= SSN, FN → LN, FN

I Transitivity: X → Y ,Y → Z |= X → Z

LN → Tlf , Tlf → Kt |= LN → Kt

I Notation:
I A |= B means that from A we can infer B
I XZ stands for X ∪ Z

I Armstrong’s inference rules are sound and complete
I These rules hold (are correct) and all other rules that hold can be

deduced from these

DBS 2017, SL05 15/59 M. Böhlen, IfI@UZH

Review 5.2
1. Prove W → Y |= WX → Y

I WX → YX (augmentation)
I YX → Y (reflexivity)
I WX → Y (transitivity)

2. Prove X → Y ,Z ⊆ Y |= X → Z

I Y → Z (reflexivity)
I X → Z (transitivity)

3. Disprove XY → Z ,Y →W |= XW → Z

X Y Z W
1 1 1 1
1 2 2 1

DBS 2017, SL05 16/59 M. Böhlen, IfI@UZH

Functional Dependencies/6

I Additional inference rules that are useful:
I Decomposition: X → YZ |= X → Y ,X → Z
I Union: X → Y ,X → Z |= X → YZ
I Pseudotransitivity: X → Y ,WY → Z |= WX → Z

I The last three inference rules, as well as any other inference rules,
can be deduced from Armstrong’s inference rules (because of the
completeness property).

decomposition ex: SSN → FN, LN |= SSN → FN, SSN → LN

pseudotransitivity ex: LN → City , Kanton, City → PLZ |= LN, Kanton→ PLZ

DBS 2017, SL05 17/59 M. Böhlen, IfI@UZH

Functional Dependencies/7

I The closure of a set F of FDs is the set F + of all FDs that can be
inferred from F .

I The closure of a set of attributes X with respect to F is the set X+

of all attributes that are functionally determined by X .
I F + and X+ can be calculated by repeatedly applying Armstrong’s

inference rules to F and X , respectively.

DBS 2017, SL05 18/59 M. Böhlen, IfI@UZH

Functional Dependencies/8

I Two sets of FDs F and G are equivalent if:
I Every FD in F can be inferred from G , and
I Every FD in G can be inferred from F
I Hence, F and G are equivalent if F + = G+

I Definition: F covers G if every FD in G can be inferred from F
(i.e., if G+ ⊆ F +)

I F and G are equivalent if F covers G and G covers F

DBS 2017, SL05 19/59 M. Böhlen, IfI@UZH

Review 5.3
Consider F = {A→ C ,AC → D,E → AD,E → H} and
G = {A→ CD,E → AH}. Are F and G equivalent?

F:
I A+ = ACD
I AC+ = ACD
I E+ = ACDEH
I H+ = H
I D+ = D

G:
I A+ = ACD
I AC+ = ACD
I E+ = ACDEH
I H+ = H
I D+ = D

From F + = G+ we get F = G

DBS 2017, SL05 20/59 M. Böhlen, IfI@UZH

Functional Dependencies/9

I A set of FDs is minimal if it satisfies the following conditions:
1. No pair of FDs has the same left-hand side.
2. We cannot remove any dependency from F and have a set of

dependencies that is equivalent to F .
3. We cannot replace any dependency X → A in F with a dependency

Y → A, where Y ⊂ X and still have a set of dependencies that is
equivalent to F .

I Every set of FDs has an equivalent minimal set
I There can be several equivalent minimal sets
I There is no simple algorithm for computing a minimal set of FDs

that is equivalent to a set F of FDs

intuition is needed

I The first condition can also be changed to “every FD has a single
attribute for its right-hand side” (Elmasri and Navathe does this).
Note: X → YZ ≡ X → Y ,X → Z

DBS 2017, SL05 21/59 M. Böhlen, IfI@UZH

Review 5.4
Consider R(A,B,C) and F = {A→ C ,A→ B,B → A}. Determine the
minimal cover.

I F + = {A→ ∗,B → ∗,C → C}
I F +

min1 = {A→ BC ,B → A}
I F +

min1 = {A→ B,B → AC}
draw graphs

B
??

��
A

��
C

B
??

��

��

A

C

B
??

��

��

A

��
C

DBS 2017, SL05 22/59 M. Böhlen, IfI@UZH

Normal Forms

I First Normal Form (1NF)
I Second Normal Form (2NF)
I Third Normal Form (3NF)
I Boyce-Codd Normal Form (BCNF)

DBS 2017, SL05 23/59 M. Böhlen, IfI@UZH

Normalization/1

I Normalization: The process of decomposing bad relations by
breaking up their attributes into smaller relations that satisfy the
normal forms.

I The normalization process was proposed by Codd in 1972.
I The normalization process applies a series of tests to a relation

schema to verify that the schema qualifies for some normal form.
I A normalized database consists of a good collection of relation

schemas.

data →(normalize) rdb →(denormalize) dw

DBS 2017, SL05 24/59 M. Böhlen, IfI@UZH

Normalization/2

I 1NF
I attribute values must be atomic

I 2NF, 3NF, BCNF
I based on candidate keys and FDs of a relation schema

I 4NF
I based on candidate keys, multi-valued dependencies (MVDs)

I 5NF
I based on candidate keys, join dependencies (JDs)

I Additional properties may be needed to ensure a good relational
design:

I Losslessness of the corresponding join (very important and cannot be
sacrificed)

I Preservation of the functional dependencies (less stringent and may
be sacrificed)

DBS 2017, SL05 25/59 M. Böhlen, IfI@UZH

Normalization/3

I In practice normalization is carried out to guarantee that the
resulting schemas are of high quality

I The normalization process provides a deep understanding of
relations and attributes.

I The database designers need not normalize to the highest possible
normal form

I usually they choose 3NF, BCNF or 4NF
I controlled redundancy is OK/good

I Denormalization:
I The process of storing the join of higher normal form relations as a

base relation (which is in a lower normal form since the join destroys
the normal form)

DBS 2017, SL05 26/59 M. Böhlen, IfI@UZH

First Normal Form (1NF)/1

I Disallows
I composite attributes
I multivalued attributes
I nested relations: attributes whose values for an individual tuple are

relations
I Often 1NF is considered to be part of the definition of a relation
I The following instance of schema

Department(DName,DNum,DMgrSSN,DLoc) is not in 1NF:
department
DName DNum DMgrSSN DLoc
’Research’ 5 334455 {’Bellaire’, ’Sugarland’, ’Houston’ }
’Administration’ 4 987654 { ’Stafford’ }
’Headquarters’ 1 888666 { ’Houston’ }

DBS 2017, SL05 27/59 M. Böhlen, IfI@UZH

First Normal Form (1NF)/2

I Remedy to get 1NF: Form new relations for each multivalued
attribute or nested relation

I The following instance is the equivalent instance in 1NF:
department
DName DNum DMgrSSN DLoc
’Research’ 5 334455 ’Bellaire’
’Research’ 5 334455 ’Sugarland’
’Research’ 5 334455 ’Houston’
’Administration’ 4 987654 ’Stafford’
’Headquarters’ 1 888666 ’Houston’

DBS 2017, SL05 28/59 M. Böhlen, IfI@UZH

Second Normal Form (2NF)/1

I A relation schema R is in second normal form (2NF) iff each
attribute not contained in a candidate key is not partially functional
dependent on a candidate key of R.

I An attribute is partially functional dependent on a candidate key if it
is functionally dependent on a proper subset of the candidate key.

I The following relation is not in 2NF:
empproj
SSN PNum Hours EName PName PLoc
1234 1 32.5 ’Smith’ ’ProductX’ ’Bellaire’
1234 2 7.5 ’Smith’ ’ProductY’ ’Sugarland’
6688 3 40.5 ’Narayan’ ’ProductZ’ ’Houston’
4567 1 20.0 ’English’ ’ProductX’ ’Bellaire’
4567 2 20.0 ’English’ ’ProductY’ ’Sugarland’
3334 2 10.0 ’Wong’ ’ProductY’ ’Sugarland’
3334 3 10.0 ’Wong’ ’ProductZ’ ’Houston’
3334 10 10.0 ’Wong’ ’Computerization’ ’Stafford’
3334 20 10.0 ’Wong’ ’Reorganization’ ’Houston’

DBS 2017, SL05 29/59 M. Böhlen, IfI@UZH

Second Normal Form (2NF)/2

I Remedy to get 2NF: Decompose and set up a new relation for each
partial key with its dependent attributes. Keep a relation with the
original key and any attributes that are functionally dependent on it.

I Consider EmpProj(SSN, PNum, Hours, EName, PName, PLoc)
I Candidate key is SSN and PNum which funtionally determine Hours
I SSN is a partial key with dependent attributes EName
I PNum is a partial key with dependent attributes PName and PLoc

I 2NF normalization
I EmpProj1(SSN, EName)
I EmpProj2(PNum, PName, PLoc)
I EmpProj3(SSN, PNum, Hours)

DBS 2017, SL05 30/59 M. Böhlen, IfI@UZH

Review 5.5
Consider R(A,B,C) and F = {A→ BC ,B → C}. Is R in 2NF? Is R a
good schema?

1. candidate key: A
non-candidate key: B, C; both depend fully on A

2. R is in 2NF (no non-candidate key attribute is partially
functional dependent on a candidate key of R)

3. not a good (redundancy free) schema
A B C
’a’ ’b’ ’c’
’b’ ’b’ ’c’

SSN PhoneNr Kanton
111 987 ’BE’
222 987 ’BE’

DBS 2017, SL05 31/59 M. Böhlen, IfI@UZH

Third Normal Form (3NF)/1

I A relation schema R is in third normal form (3NF) iff for all
X → A ∈ F + at least one of the following holds:

I X → A is trivial
I X is a superkey for R
I A is contained in a candidate key of R

I Intuition: “Each non-key attribute must describe the key, the whole
key, and nothing but the key.” [Bill Kent, CACM 1983]

I A relation that is in 3NF is also in 2NF.

DBS 2017, SL05 32/59 M. Böhlen, IfI@UZH

Third Normal Form (3NF)/2

I The following relation with the functional dependencies SC → T
and T → C is in 3NF:

r
Student Course Textbook
’Smith’ ’Data Structures’ ’Bertram’
’Smith’ ’Data Management’ ’Martin’
’Hall’ ’Compilers’ ’Hoffman’
’Brown’ ’Data Structures’ ’Horowitz’

I SC → T is OK since SC is a candidate key.
I T → C is OK since C is contained in a candidate key.

I This relation is in 3NF but permits redundant information, which
can lead to update anomalies.

DBS 2017, SL05 33/59 M. Böhlen, IfI@UZH

Third Normal Form (3NF)/3

I Consider adding a tuple to the above relation:
r
Student Course Textbook
’Smith’ ’Data Structures’ ’Bertram’
’Smith’ ’Data Management’ ’Martin’
’Hall’ ’Compilers’ ’Hoffman’
’Brown’ ’Data Structures’ ’Horowitz’
’Jones’ ’Data Structures’ ’Bertram’

I Assessment of solution:
I Cons: The fact that Bertram is a textbook for the Data Structures

class is stored twice
I Pros: SC → T and T → C can be checked by looking at relation r

only (dependency preservation, will be discussed later)

DBS 2017, SL05 34/59 M. Böhlen, IfI@UZH

Boyce-Codd Normal Form (BCNF)/1

I A relation schema R is in Boyce-Codd Normal Form (BCNF) iff
for all X → A ∈ F + at least one of the following holds:

I X → A is trivial
I X is a superkey for R

I Intuition: “Each attribute must describe the key, the whole key, and
nothing but the key.” [Chris Date, adaption of Bill Kent for 3NF]

I A relation that is in BCNF is also in 3NF.

I There exist relations that are in 3NF but not in BCNF

DBS 2017, SL05 35/59 M. Böhlen, IfI@UZH

Boyce-Codd Normal Form (BCNF)/2

I The following relations with the functional dependencies SC → T
and T → C are in BCNF:
r1
Course Textbook
’Data Structures’ ’Bertram’
’Data Management’ ’Martin’
’Compilers’ ’Hoffman’
’Data Structures’ ’Horowitz’

r2
Student Textbook
’Smith’ ’Bertram’
’Smith’ ’Martin’
’Hall’ ’Hoffman’
’Brown’ ’Horowitz’
’Jones’ ’Horowitz’

I T → C is OK since T is a candidate key.
I SC → T is not considered since it uses attributes from different

relations (a functional dependency is a constraint between two sets
of attributes in a single relation).

DBS 2017, SL05 36/59 M. Böhlen, IfI@UZH

Boyce-Codd Normal Form (BCNF)/3

I With BCNF less redundancy exists but it is no longer possible to
check all functional dependencies by looking at one relation only.

r1
Course Textbook
’Data Structures’ ’Bertram’
’Data Management’ ’Martin’
’Compilers’ ’Hoffman’
’Data Structures’ ’Horowitz’

r2
Student Textbook’
’Smith’ ’Bertram’
’Smith’ ’Martin’
’Hall’ ’Hoffman’
’Brown’ ’Horowitz’
’Jones’ ’Horowitz’
’Jones’ ’Bertram’

I Assessment of solution:
I Pros: No information is stored redundantly
I Cons: The fact that Jones uses two textbooks for the Data Structures

class and therefore SC → T does not hold cannot be checked
without joining the relations

DBS 2017, SL05 37/59 M. Böhlen, IfI@UZH

Review 5.6
Relation R satisfies BCNF:
r
A B C
’a1’ ’b1’ ’c1’
’a1’ ’b2’

Assume we know that the functional dependency A→ C holds. What
value can we infer for the value that is missing?

I A→ C requires empty value to be c1

I BCNF requires A to be a key

I b1 6= b2 prevents A from being a key

I thus, impossible; r cannot be in BCNF

DBS 2017, SL05 38/59 M. Böhlen, IfI@UZH

Properties of Decompositions
and

Normalization Algorithm

I Dependency Preservation
I Lossless Join Decomposition
I BCNF Normalization Algorithm

DBS 2017, SL05 39/59 M. Böhlen, IfI@UZH

Multiple Relations

I Relational database design by decomposition:
I Universal Relation Schema: A relation schema R(A1,A2, . . . ,An) that

includes all attributes of the database.
I Decomposition: decompose the universal relation schema R into a set

of relation schemas D = R1,R2, . . . ,Rm by using the functional
dependencies.

I Additional conditions:
I Each attribute in R will appear in at least one relation schema Ri in

the decomposition so that no attributes are lost.
I Have each individual relation Ri in the decomposition D in 3NF (or

higher).
I Lossless join decomposition: ensures that the decomposition does

not introduce wrong tuples when relations are joined together.
I Dependency preservation: ensures that all functional dependency

can be checked by considering individual relations Ri only.

DBS 2017, SL05 40/59 M. Böhlen, IfI@UZH

Dependency Preservation/1

I Given a set of dependencies F on R, the projection of F on Ri ,
denoted by F |Ri where attr(Ri) is a subset of attr(R), is the set of
dependencies X → Y in F + such that the attributes in X ∪ Y are
all contained in attr(Ri).

I Hence, the projection of F on each relation schema Ri in the
decomposition D is the set of functional dependencies in F +, the
closure of F, such that all their left- and right-hand side attributes
are in attr(Ri).

DBS 2017, SL05 41/59 M. Böhlen, IfI@UZH

Dependency Preservation/2

I Dependency Preservation:
I A decomposition D = R1,R2, . . . ,Rm of R is
dependency-preserving with respect to F if the union of the
projections of F on each Ri in D is equivalent to F; that is

(F |R1 ∪ . . . ∪ F |Rm)+ = F +

I It is always possible to find a dependency-preserving decomposition
such that each relation is in 3NF.

I It is not always possible to find a dependency-preserving
decomposition such that each relation is in BCNF.

DBS 2017, SL05 42/59 M. Böhlen, IfI@UZH

Review 5.7
Consider R(A,B,C ,D) and F = {A→ B,B → C ,C → D,D → A,
A→ D}. Is the decomposition R1(A,B), R2(B,C), and R3(C ,D)
dependency preserving?

I F + = {A→ ∗,B → ∗,C → ∗,D → ∗}

I G = {A→ B,B → A,B → C ,C → B,C → D,D → C}

I G+ = {A→ ∗,B → ∗,C → ∗,D → ∗}

I thus, dependency preserving (F + = G+)

DBS 2017, SL05 43/59 M. Böhlen, IfI@UZH

Lossless Join Decomposition

I A decomposition D = R1,R2, . . . ,Rm of R is a lossless join
decomposition with respect to the set of dependencies F on R if,
for every relation instance r of R that satisfies F , the following holds:

πR1(r) 1 . . . 1 πattr(Rm)(r) = r

I Note: The word loss in lossless refers to loss of information, not to
loss of tuples. If a join decomposition is not lossless then new
spurious tuples are present in the result of the join.

I R1 and R2 form a lossless join decomposition of R with respect to a
set of functional dependencies F iff

I (R1 ∩ R2)→ (R1− R2) is in F + or
I (R1 ∩ R2)→ (R2− R1) is in F +

DBS 2017, SL05 44/59 M. Böhlen, IfI@UZH

Review 5.8
Consider R(A,B,C), F = {AB → C ,C → B}, R1(A,C), R2(B,C).
1. Is R1,R2 a lossless decomposition of R?
2. Illustrate your answer for r = {(x , 0, a), (y , 2, b), (z , 1, c), (x , 2, c)}.
3. Discuss what happens if we replace tuple (x , 2, c) by (x , 2, b).

A B C
x 0 a
y 2 b
z 1 c
x 2 c

6=

A C
x a
y b
z c
x c

1

B C
0 a
2 b
1 c
2 c

=

A B C
x 0 a
y 2 b
z 1 c
z 2 c
x 2 c
x 1 c

lossy decomposition;
C → B 6∈ F +

A B C
x 0 a
y 2 b
z 1 c
x 2 b

=

A C
x a
y b
z c
x b

1

B C
0 a
2 b
1 c

=

A B C
x 0 a
y 2 b
z 1 c
x 2 b

lossless decomposition;
C → B ∈ F +

R1 ∩ R2 = AC ∩ BC = C , R1− R2 = A, R2− R1 = B, C → A 6∈ F +, C → B ∈ F +

DBS 2017, SL05 45/59 M. Böhlen, IfI@UZH

Algorithm for BCNF Normalization/1
teach
Student Course Textbook
’Smith’ ’Data Structures’ ’Bertram’
’Smith’ ’Data Management’ ’Martin’
’Hall’ ’Compilers’ ’Hoffman’
’Brown’ ’Data Structures’ ’Horowitz’

I Three possible decompositions for relation teach
I (Student, Textbook) and (Student, Course)
I (Course, Textbook) and (Course, Student)
I (Textbook, Course) and (Textbook, Student)

I All three decompositions will loose fd1 (SC → T).
I We have to settle for sacrificing dependency preservation. We cannot

sacrifice the lossless join decomposition.
I Out of the above three, only the 3rd decomposition will not

generate spurious tuples after join (and, thus, is lossless).

DBS 2017, SL05 46/59 M. Böhlen, IfI@UZH

Algorithm for BCNF Normalization/2

Set D := { R };
while a relation schema Q in D is not in BCNF do

find a functional dependency X → Y in Q that violates BCNF;
replace Q in D by two relation schemas (Q − Y) and (X ∪ Y);

Assumption: No null values are allowed for the join attributes.

I The result is a lossless join decomposition of R.
I The resulting schemas do not necessarily preserve all dependencies.

DBS 2017, SL05 47/59 M. Böhlen, IfI@UZH

Review 5.9
Consider R(Course,Teacher ,Hour ,Room, Student,Grade) and the
following functional dependencies:
I C → T each course has only one teacher
I HR → C one course in one room at one time
I HT → R a teacher can only teach in one room at one time
I CS → G students get one grade in one course
I HS → R students can be in one room at one time

Decompose the schema into a lossless BCNF.

C → T : R1(CHRSG), R2(CT)
HR → C : R3(HRSG), R2(CT) R4(HRC)
HS is candidate key: HS, RHS, RHSC, RHSCT, RHSCTG

HS → R: Ra(CTHSG), Rb(HSR)
C → T : Rc(CHSG) Rb(HSR) Rd(CT)
CS → G: Re(CHS) Rb(HSR) Rd(CT) Rf(CSG)

CS → G: Ra(CTHSR) Rb(CSG)
HT → R: Rc(CTHS) Rb(CSG) Rd(HTR)
C → T : Re(CHS) Rb(CSG) Rd(HTR) Rf(CT)

DBS 2017, SL05 48/59 M. Böhlen, IfI@UZH

Discussion of BCNF Normalization

I It is valuable to construct a good schema that is in BCNF.
I The normalization process gives important insights into the

properties of the data.
I A potential difficulty is that the database designer must first specify

all the relevant functional dependencies among the database
attributes.

I The normalization algorithms are not deterministic in general (e.g.,
not a unique minimal cover).

I It is not always possible to find a decomposition into relation
schemas that preserves dependencies and allows each relation
schema in the decomposition to be in BCNF.

DBS 2017, SL05 49/59 M. Böhlen, IfI@UZH

3NF versus BCNF

I It is possible to construct a decomposition that is in BCNF and is
lossless

I It is possible to construct a decomposition that is in 3NF, is lossless,
and preserves dependency.

I It is not always possible to construct a decomposition that is in
BCNF, is lossless, and is dependency preserving.

I 3NF allows redundancies that BCNF does not allow.
I BCNF cannot check all functional dependencies efficiently since

multiple relations must be considered for the check.
I The application needs to determine if a BCNF or 3NF

decomposition should be chosen.

DBS 2017, SL05 50/59 M. Böhlen, IfI@UZH

Multivalued Dependencies

I Definition
I Fourth Normal Form (4NF)

DBS 2017, SL05 51/59 M. Böhlen, IfI@UZH

Multivalued Dependencies/1

Definition:
I A multivalued dependency (MVD) X � Y on relation schema R,

where X and Y are both subsets of R, specifies the following
constraint on any relation instance r of R:
If two tuples t1 and t2 exist in r such that t1[X] = t2[X], then two
tuples t3 and t4 should also exist in r with the following properties,
where we use Z to denote (R − (X ∪ Y)):

I t3[X] = t4[X] = t1[X] = t2[X].
I t3[Y] = t1[Y] and t4[Y] = t2[Y].
I t3[Z] = t2[Z] and t4[Z] = t1[Z].

I A MVD X � Y for R is called a trivial MVD if Y ⊂ X or
X ∪ Y = attr(R).

DBS 2017, SL05 52/59 M. Böhlen, IfI@UZH

Review 5.10
Consider schema R(Brand ,Product,Country). Show an instance that
represents the following facts:
I Nike produces shoes and socks
I Nike produces in Taiwan and China
I Ecco produces shoes
I Ecco produces in Denmark and China

Determine the multivalued dependencies on the resulting instance. How
must the instance be changed so that the multivalued dependency no
longer holds?

Brand Prod Ctry
’Nike’ ’shoes’ ’Italy’
’Nike’ ’socks’ ’Italy’
’Nike’ ’shoes’ ’China’
’Nike’ ’socks’ ’China’
’Ecco’ ’shoes’ ’DK’
’Ecco’ ’shoes’ ’China’

≡
Brand Prod Ctry
’Nike’ { ’shoes’, ’socks’ } { ’Italy’, ’China’ }
’Ecco’ { ’shoes’ } { ’DK’, ’China’ }

DBS 2017, SL05 53/59 M. Böhlen, IfI@UZH

Multivalued Dependencies/2

Inference Rules for Functional and Multivalued Dependencies:
I reflexivity FDs: X ⊇ Y |= X → Y .
I augmentation FDs: X → Y |= XZ → YZ .
I transitivity FDs: X → Y ,Y → Z |= X → Z .
I complementation: X � Y |= X � (R − (X ∪ Y)).
I augmentation MVDs: X � Y ,W ⊇ Z |= WX � YZ .
I transitivity MVDs: X � Y ,Y � Z |= X � (Z − Y).
I replication: X → Y |= X � Y .
I coalescing: X � Y , ∃W (W ∩ Y = ∅,W → Z ,Y ⊇ Z) |= X → Z .

DBS 2017, SL05 54/59 M. Böhlen, IfI@UZH

Fourth Normal Form (4NF)/1

Definition:
I A relation schema R with a set of functional and multivalued

dependencies F is in 4NF iff, for every multivalued dependency
X � Y in F + at least one of the following holds:

I X � Y is trivial
I X is a superkey for R

I F + is called the closure of F and is the complete set of all
dependencies (functional or multivalued) that will hold in every
relation state r of R that satisfies F .

DBS 2017, SL05 55/59 M. Böhlen, IfI@UZH

Fourth Normal Form (4NF)/2
Example of decomposing a relation that is not in 4NF:
1. Relation emp is not in 4NF.
2. Relations emp_projects and emp_dependents are in 4NF.

emp
EName PName DName
’Smith’ ’X’ ’John’
’Smith’ ’Y’ ’Anna’
’Smith’ ’X’ ’Anna’
’Smith’ ’Y’ ’John’
’Brown’ ’W’ ’Jim’
’Brown’ ’X’ ’Jim’
’Brown’ ’Y’ ’Jim’
’Brown’ ’Z’ ’Jim’
’Brown’ ’W’ ’Joan’
’Brown’ ’X’ ’Joan’
’Brown’ ’Y’ ’Joan’
’Brown’ ’Z’ ’Joan’
’Brown’ ’W’ ’Bob’
’Brown’ ’X’ ’Bob’
’Brown’ ’Y’ ’Bob’
’Brown’ ’Z’ ’Bob’

emp_projects
EName PName
’Smith’ ’X’
’Smith’ ’Y’
’Brown’ ’W’
’Brown’ ’X’
’Brown’ ’Y’
’Brown’ ’Z’

emp_dependents
EName DName
’Smith’ ’John’
’Smith’ ’Anna’
’Brown’ ’Jim’
’Brown’ ’Joan’
’Brown’ ’Bob’

are MVDs possible? count as a check: 4
= 2*2 or 4*1; 12 = 4*3 or ...

Smith { X, Y} { John, Anna }
Brown {X, Y, W, Z} { Jim, Jean, Bob }

DBS 2017, SL05 56/59 M. Böhlen, IfI@UZH

Fourth Normal Form (4NF)/3

I If a relation is not in 4NF because of the MVD X � Y we
decompose R into R1(X ∪ Y) and R2(R − Y).

I Such a decomposition is lossless.
I R1 and R2 form a lossless join decomposition of R with respect to a

set of functional and multivalued dependencies iff
I (R1 ∩ R2)� (R1− R2) or
I (R1 ∩ R2)� (R2− R1)

last conditions ensure that from common attributes all the other attributes of a
relation can be derived (the common attributes are a key of one relation)

DBS 2017, SL05 57/59 M. Böhlen, IfI@UZH

Summary/1

I Relational database design goal: eliminate redundancy
I Main concept: functional dependencies

I Functional Dependencies (FDs)
I Definition
I Armstrong’s inference rules: reflexivity, augmentation, transitivity
I equivalence of sets of FDs
I minimal sets of FDs

I Approach: Start with all attributes in a single relation and
decompose it vertically until all functional dependencies are
acceptable

DBS 2017, SL05 58/59 M. Böhlen, IfI@UZH

Summary/2

I Normal forms based on candidate keys and FD
I 1NF, 2NF, 3NF, BCNF

I BCNF normalization algorithm

I Dependency Preservation
I always possible for 3NF; not always possible for BCNF

I Lossless Join Decomposition
I always required

I Multivalued dependencies, 4NF

DBS 2017, SL05 59/59 M. Böhlen, IfI@UZH

Database Systems
Spring 2017

Conceptual Database Design
SL06

I Entities, Entity Types, Entity Sets, Attributes
I Relationships, Relationship Types, Relationship Sets
I Weak Entities, N-ary Relationships
I Subclasses and Superclasses
I ER-to-Relational Mapping Algorithm

Reviews: 11 31 37 38 56 66 75

UML: programs, behavior
ER: data, modeling of a static mini world

DBS 2017, SL06 1/88 M. Böhlen, IfI@UZH

Literature and Acknowledgments

Reading List for SL06:
I Fundamentals of Database Systems, Chapters 7 and 8, Sixth

Edition, Ramez Elmasri and Shamkant B. Navathe, Pearson
Education, 2010. [optional: EWD696, EWD1036]

Edsgar W. Dijkstra; streitbarer Mathematiker/
Informatiker; problem of graphical notation: no
precise definition of correct/wrong

These slides were developed by:
I Michael Böhlen, University of Zürich, Switzerland
I Johann Gamper, Free University of Bozen-Bolzano, Italy

The slides are based on the following text books and associated material:
I Fundamentals of Database Systems, Fourth Edition, Ramez Elmasri

and Shamkant B. Navathe, Pearson Addison Wesley, 2004.
I A. Silberschatz, H. Korth, and S. Sudarshan: Database System

Concepts, McGraw Hill, 2006.

DBS 2017, SL06 2/88 M. Böhlen, IfI@UZH

Overview of Database Design Process

REQUIREMENT ANALYSIS

Data Requirements

Miniworld

Functional Requirements

CONCEPTUAL DESIGNFUNCTIONAL ANALYSIS

Conceptual Schema (in
a high level data model)High level Transaction Specification

LOGICAL DESIGN

Logical Schema
(in the data model of a specific DBMS)

PHYSICAL DESIGN

Internal SchemaTRANSACTION IMPLEMENTATION

Application Programs

APPLICATION PROGRAM DESIGN

DBMS independent

DBMS specific

relational model, RA, RC, SQL

DBS 2017, SL06 3/88 M. Böhlen, IfI@UZH

Example COMPANY Database
I We want to create a database schema design based on the following
requirements of the COMPANY database:

I The company is organized into departments. Each department has a
name, number and an employee who manages the department. We
keep track of the start date of the department manager. A
department may have several locations.

I Each department controls a number of projects. Each project has a
unique name, unique number and is located at a single location.

I We store each employee’s social security number, address, salary, sex,
and birthdate. Each employee works for one department but may
work on several projects. We keep track of the number of hours per
week that an employee currently works on each project. We also keep
track of the direct supervisor of each employee.

I Each employee may have a number of dependents. For each
dependent, we keep track of their name, sex, birthdate, and
relationship to the employee.

DBS 2017, SL06 4/88 M. Böhlen, IfI@UZH

Entities and Attributes

I Entities, entity types, entity sets
I Attributes

DBS 2017, SL06 5/88 M. Böhlen, IfI@UZH

Entities and Attributes
I Entities are specific objects or things in the mini-world that are

represented in the database.
I For example employee John Smith, the Research department, project

ProductX
I Attributes are properties used to describe an entity.

I For example an employee entity may have the attributes Name, SSN,
Address, Sex, BirthDate

I A specific entity will have a value for each of its attributes.
I For example a specific employee entity may have

Name = ’John Smith’,
SSN = ’123456789’,
Address = ’731, Fondren, Houston, TX’,
Sex = ’M’,
BirthDate = ’09-JAN-55‘

I Each attribute has a domain (value set, data type) associated with
it, e.g., enumerated type, integer, string, subrange, . . .

DBS 2017, SL06 6/88 M. Böhlen, IfI@UZH

Types of Attributes/1

I Simple attribute
I Each entity has a single atomic value for the attribute. For example,

SSN or Sex.
I Composite attribute

I The attribute may be composed of several components. For example:
I Address(Apt#, House#, Street, City, State, ZipCode, Country), or
I Name(FirstName, MiddleName, LastName).

I Multi-valued attribute
I An entity may have multiple values for that attribute. For example,

colors of a car or degrees of a student.
I Denoted as {Color} or {PreviousDegree}.

I Derived attribute
I Attributes can be derived (computed) rather than stored. Attribute

NumEmployees is a derived attribute.

DBS 2017, SL06 7/88 M. Böhlen, IfI@UZH

Types of Attributes/2

I Composite and multi-valued attributes may be nested arbitrarily to
any number of levels.

I For example, PreviousDegree of a student is a composite
multi-valued attribute denoted by
{PreviousDegree(College, Year, Degree, Field)}

I Multiple PreviousDegree values can exist
I Each has four subcomponent attributes:

I College, Year, Degree, Field
I A hierarchy of composite attributes:

Address

StreetAddress City State Zip

Number Street ApartmentNumber

DBS 2017, SL06 8/88 M. Böhlen, IfI@UZH

Entity Types and Key Attributes

I Entities with the same basic attributes are grouped or typed into an
entity type.

I For example, the entity types Employees and Projects.
I An attribute of an entity type for which each entity must have a

unique value is called a key attribute of the entity type.
I For example, SSN of Employees.

I A key attribute may be composite.
I VehicleTagNumber is a key of the Cars entity type with components

(Number, State).
I An entity type may have more than one key.

I The Cars entity type may have two keys:
I VehicleIdentificationNumber (popularly called VIN)
I VehicleTagNumber(Number, State), aka license plate number.

I Each key is underlined.

VTagN: Nummernschild
VIdentificationN: Fahrzeugnummer

DBS 2017, SL06 9/88 M. Böhlen, IfI@UZH

Displaying an Entity Type
I In ER diagrams, an entity type is displayed in a rectangular box
I Attributes are displayed in ovals

I Each attribute is connected to its entity type
I Components of a composite attribute are connected to the oval

representing the composite attribute
I Each key attribute is underlined
I Multivalued attributes are displayed in double ovals
I Derived attributes are displayed in dashed ovals

I Entity type Cars with attributes Registration(Number, State),
VehicleID, Make, Model, Year, {Color}

CarsYear Model

Color Make

Registration VehicleID

NumberState

DBS 2017, SL06 10/88 M. Böhlen, IfI@UZH

Review 6.1
Consider schema R(A,B,C ,D,E) with candidate keys {A,BE ,C}.
Represent R as an entity type.

RA

C

D

X

E B

DBS 2017, SL06 11/88 M. Böhlen, IfI@UZH

Entity Set
I The collection of all entities of a particular entity type in the

database is called the entity set.
I The same name (e.g., Cars) is used to refer to both the entity type

and the entity set.
I The entity set is the current state of the entities of that type that

are stored in the database.
I Entity set Cars:

Car1
((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 2004, {red, black})

Car2
((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {blue})

Car3
((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, {white, blue})

.

.

.

DBS 2017, SL06 12/88 M. Böhlen, IfI@UZH

Entity Types for the COMPANY Database/1

I Based on the requirements, we can identify four initial entity types
in the COMPANY database:

I Departments
I Projects
I Employees
I Dependents

I The initial attributes are derived from the requirements description
I Guidelines for determining entity types and attributes:

I The nouns in a descriptions translate to entity types
I “organized into departments”

I Nouns that describe nouns of entity types translate to attributes
I “department has a name, number”

Address? attribute or entity?
attribute if address is mainly a property of employees;
entity if application is managing addresses as independent object

DBS 2017, SL06 13/88 M. Böhlen, IfI@UZH

Entity Types for the COMPANY Database/2

Employees

SSN

BirthDate Name

FirstName LastName

Address Salary

Sex

Departments

Projects

Manager

Departments

Name
Locations

Nummer

NumEmployees

Manager

ManagerStartDate

Projects

Name Nummer
Location

ControllingInstitute

Dependents

Name Sex BDate Beziehung

Employee

derived
multi-valuedkey

e.g., children;
key? none.

because of space attributes are often omitted in
the graphical notation

DBS 2017, SL06 14/88 M. Böhlen, IfI@UZH

Relationships

I Relationships, Relationship Types, Relationship Sets
I Structural Constraints on Relationships
I Recursive Relationships
I Attributes of Relationships

DBS 2017, SL06 15/88 M. Böhlen, IfI@UZH

Relationships and Relationship Types/1

I ER model has three main concepts:
I Entities (and their entity types and entity sets)
I Attributes (simple, composite, multivalued)
I Relationships (and their relationship types and relationship sets)

I The initial design is typically not complete.
I The schema design process is an iterative refinement process.

The initial design is created and iteratively refined.
I Some aspects in the requirements will be represented as
relationships.

DBS 2017, SL06 16/88 M. Böhlen, IfI@UZH

Relationships and Relationship Types/2

I A relationship relates two or more distinct entities with a specific
meaning. For example,

I employee John Smith works on project ProductX, or
I employee Franklin Wong manages the research department.

I Relationships of the same type are grouped or typed into a
relationship type.

I For example, the workOn relationship type in which employees and
projects participate, or the manage relationship type in which
employees and departments participate.

I The degree of a relationship type is the number of participating
entity types.

I Both manage and workOn are binary relationships.

I In ER diagrams, we represent a relationship type as follows:
I Diamond-shaped box is used to display a relationship type
I Connected to the participating entity types via straight lines

DBS 2017, SL06 17/88 M. Böhlen, IfI@UZH

Relationships and Relationship Types/3

I Relationship type:
I Schema description of a relationship
I Identifies the relationship name and the participating entity types
I Identifies relationship constraints

I Relationship set:
I The current set of relationship instances represented in the database
I The current state of a relationship type

I Each instance in the set relates individual participating entities – one
from each participating entity type

DBS 2017, SL06 18/88 M. Böhlen, IfI@UZH

The workFor Relationship
Employees workFor Departments

e1

e2

e3

e4

e5

e6

e7

r1

r2

r3

r4

r5

r6

r7

d1

d2

d3

... ...

...

I entity: e1
I relationship: r1 = workFor(e1,d1)
I entity set: Employees
I relationship set: workFor

DBS 2017, SL06 19/88 M. Böhlen, IfI@UZH

Structural Constraints on Relationships

I Structural constraints on relationship types limit the possible
combinations of entities in relationship sets.

I A cardinality constraint specifies maximum participation
I One-to-one (1:1)
I One-to-many (1:N) or Many-to-one (N:1)
I Many-to-many (M:N)

I A participation constraint specifies minimum participation (also
called existence dependency)

I zero (optional participation, not existence-dependent)
I one or more (mandatory participation, existence-dependent)

DBS 2017, SL06 20/88 M. Böhlen, IfI@UZH

Many-to-one (N:1) Relationship
Employees workFor Departments

e1

e2

e3

e4

e5

e6

e7

r1

r2

r3

r4

r5

r6

r7

d1

d2

d3

... ...

...

I Employees:Departments = N:1
I An employee works for at most 1 department
I A department employs at most N employees

DBS 2017, SL06 21/88 M. Böhlen, IfI@UZH

Many-to-many (M:N) Relationship
Employees workOn Projects

e1

e2

e3

e4

r1

r2

r3

r4

r5

r6

r7

p1

p2

p3

p4

..

.

...

...

I Employees:Projects = M:N
I An employee works on at most N projects
I A project is assigned to at most M employees

DBS 2017, SL06 22/88 M. Böhlen, IfI@UZH

Recursive Relationships/1

I In a recursive relationship type:
I The same entity type participates in different roles.
I For example, the supervise relationships between

I an employee in role of supervisor (or boss) and
I another employee in role of subordinate (or worker).

I In ER diagrams we need to display role names to distinguish
participations.

DBS 2017, SL06 23/88 M. Böhlen, IfI@UZH

Recursive Relationships/2
Employees supervise

e1

e2

e3

e4

e5

e6

e7

r1

r2

r3

r4

r5

r6

2
1

1

2

2

2

1

1

1

1

2

2... ...

I label 1 stands for supervisor role

for each emp an number of edges with a
1 (subordinate; Unterstellter)

I label 2 stand for subordinate role

for each emp at most one edge with a 2
(boss)

I e1 is the supervisor of e2
I e1 is supervised by e5

e5;e1,e4;e2,e3,e6,e7

DBS 2017, SL06 24/88 M. Böhlen, IfI@UZH

Attributes of Relationship Types

I A relationship type can have attributes:
I For example, HoursPerWeek of workOn
I Its value for each relationship instance describes the number of hours

per week that an employee works on a project.
I A value of HoursPerWeek depends on a particular (employee, project)

combination
I Most relationship attributes are used with M:N relationships

I In 1:N relationships, they can be transferred to the entity type on the
N-side of the relationship

DBS 2017, SL06 25/88 M. Böhlen, IfI@UZH

Notation for Constraints on Relationships/1

I Cardinality constraints (of a binary relationship): 1:1, 1:N, N:1, or
M:N

I Cardinality constraints are shown by placing appropriate numbers on
the relationship edges.

Employees manage
1

Departments
1

I Reading is from left-to-right and top-down (usually; there are always
exceptions) and the terms are chosen accordingly.

I Reading: An employee manages 1 department
I Inverse: A department is managed by 1 employee

leitet

DBS 2017, SL06 26/88 M. Böhlen, IfI@UZH

Notation for Constraints on Relationships/2

I Participation constraint on each participating entity type:
total (called existence dependency) or partial.

I Total participation is shown by double line, partial participation by
single line.

Employees workFor
N

Departments
1

I A total participation constraint specifies a minimum participation:
I An employee must workFor a department
I A department must giveWorkTo N employees

I Structural constraints are easy to specify for binary relationship
types but get more subtle for higher order relationship types.

DBS 2017, SL06 27/88 M. Böhlen, IfI@UZH

Relationships for the COMPANY Database/1

I By examining the requirements, six relationship types are identified
I All are binary relationships (degree 2)
I Relationship types with participating entity types:

I workFor (between Employees and Departments)
I manage (also between Employees and Departments)

leiten

I control (between Departments and Projects)
I workOn (between Employees and Projects)
I supervise (between Employees (as subordinate) and Employees (as

supervisor))

führen

I dependentsOf (between Employees and Dependents)

DBS 2017, SL06 28/88 M. Böhlen, IfI@UZH

Relationships for the COMPANY Database/2

reading (usually): from left-to-right and
top-down (choose names accordingly)

Employees

SSN

Bdate Name

Fname
Minit

Lname

Address Salary

Sex

supervise

Supervisee

N

Supervisor

1

workForN

manage
1

Start_date

Departments

1

1

Name
Locations

Number

NrOfEmps

control

1

workOn

M Hours

Projects

N

N

Name Number
Location

dependentsOf

1

Dependents

N

Name Sex Birth_date Relationship

DBS 2017, SL06 29/88 M. Böhlen, IfI@UZH

Discussion of Relationship Types

I In the refined design, some attributes from the initial entity types
are refined into relationships:

I Manager of Departments -> manage
I Projects of Employees -> workOn
I Department of Employees -> workFor
I etc

I More than one relationship type can exist between the same
participating entity types:

I manage and workFor are distinct relationship types between
Employees and Departments.

I These relationship types have different meanings and different
relationship instances.

DBS 2017, SL06 30/88 M. Böhlen, IfI@UZH

Review 6.2/1
Assume a company employs agents to sell products to customers. Agents
are based in a city and they work on commission. Customers negotiate
individual discounts. For products we record production location, price,
and sales quantity. Design an appropriate ER schema.

Orders CustomersNAgents N

Products

N

I attrs of Customers: CID, CName, CCity, Discnt
I attrs of Agents: AID, AName, ACity
I attrs of Products: PID, PName, PCity, Price
I attrs of Orders: Date, Quantity

problems:
I orders without agents?
I orders with multiple products?

orders are only defined implicitly as
(C,P,A) triple.
to improve this orders should be modeled
as independent entity a la Amazom.com

DBS 2017, SL06 31/88 M. Böhlen, IfI@UZH

Review 6.2/2

Ordershold NCustomers 1

place

N

Agents

1

referToN ProductsM

I attrs of Customers: CID, CName, CCity, Discnt
I attrs of Agents: AID, AName, ACity
I attrs of Products: PID, PName, PCity, Price
I attrs of place: Commission
I attrs of Orders: OID, Date, (Discnt)
I attrs of referTo: Quantity

DBS 2017, SL06 32/88 M. Böhlen, IfI@UZH

Review 6.2/3

Orders

heldBy

N

placedBy

N

refersTo
N

Customers

1

Agents

1
Products

N

livesIn

N

serves

N

livesIn
N

producedIn

N

City
1

1
N 1

DBS 2017, SL06 33/88 M. Böhlen, IfI@UZH

Weak Entities and N-ary
Relationships

I Weak Entities
I N-ary Relationships

DBS 2017, SL06 34/88 M. Böhlen, IfI@UZH

Weak Entity Types

I A weak entity type is an entity type that does not have a key
attribute.

I A weak entity must participate in an identifying relationship type
with an owner or identifying entity type.

I Entities are identified by the combination of:
I A partial key of the weak entity type
I The particular entity they are related to in the identifying entity type

I Example:
I A Dependent entity is identified by the dependent’s first name, and

the specific Employee with whom the dependent is related.
I Name of Dependent is the partial key
I Dependent is a weak entity type
I Employee is its identifying entity type via the identifying relationship

type dependentOf.

DBS 2017, SL06 35/88 M. Böhlen, IfI@UZH

The COMPANY Database

Employees

Ssn

Bdate Name

Fname
Minit

Lname

Address Salary

Sex

supervise

Supervisee

N

Supervisor

1

workForN

manage
1

Start_date

Departments

1

1

Name
Locations

Number

NrOfEmps

control

1

workOn

M Hours

Projects

N

N

Name Number
Location

dependentsOf

1

Dependents

N

Name Sex Birth_date Relationship

DBS 2017, SL06 36/88 M. Böhlen, IfI@UZH

Review 6.3
Construct an ER schema for a hospital with patients and medical doctors.
For each patient we keep a log of various tests and examinations.

Patients

haveMedRec treatedBy

Records
Doctors

I attrs of Patients: SSN, Name, Insurance, StartOfInsurance; key: SSN
I attrs of haveMedRec: -
I attrs of Records: Time, TestName, Date, Result; key: Time+TestName
I attrs of treatedBy: -
I attrs of Doctors: DocSSN, Name, Adr, Specialization; key: DocSSN

DBS 2017, SL06 37/88 M. Böhlen, IfI@UZH

Review 6.4
Assume we want to schedule classrooms for the final exams at a
university. The examination unit are sections of courses. Propose an ER
diagram.

Exams

haveSyllabus takesPlace

Sections
Rooms

isPartOf

Courses

I attrs of Patients: SSN, Name,
Insurance, StartOfInsurance; key:
SSN

I attrs of haveMedRec: -
I attrs of Records: Time,

TestName, Date, Result; key:
Time+TestName

I attrs of treatedBy: -
I attrs of Doctors: DocSSN, Name,

Adr, Specialization; key: DocSSN

I Courses(CNr, CName, Dept)
Secs(CNr, SecNr, ExId, NrEnr)
Exs(ExId, Date, Time, RId)
Rooms(RId, Capac, Building)

DBS 2017, SL06 38/88 M. Böhlen, IfI@UZH

Relationships of Higher Degree/1
I Relationship types of degree 2 are called binary.
I Relationship types of degree 3 are called ternary and of degree n are

called n-ary.

supplySuppliersSName Projects ProjName

Parts

PartNr

I Constraints are harder to specify for higher-degree relationships
(n>2) than for binary relationships.

I In an n-ary relationship a cardinality constraint specifies how often
an entity may occur for one specific instance of all other entities.

I In general, an n-ary relationship is not equivalent to n binary
relationships.

I If needed, the binary and n-ary relationships can all be included in
the schema design.

DBS 2017, SL06 39/88 M. Böhlen, IfI@UZH

Relationships of Higher Degree/2

I An n-ary relationship is not equivalent to n binary relationships. The
schema can include binary as well as n-ary relationships.

I The relationship offers cannot be derived from teaches, canTeach,
isTaught.

offersTeachers

Name

M-Nummer Semesters

SemYear

Semester

Year

Course

CourseNr

canTeach isTaught

teaches

DBS 2017, SL06 40/88 M. Böhlen, IfI@UZH

Relationships of Higher Degree/3

I If a particular binary relationship can be derived from a
higher-degree relationship at all times, then it is redundant.

I The teaches binary relationship can be derived from the ternary
relationship offers (based on the meaning of the relationships).

offersTeachers

Name

M-Nummer Semesters

SemYear

Semester

Year

Course

CourseNr

canTeach isTaught

teaches

DBS 2017, SL06 41/88 M. Böhlen, IfI@UZH

Alternative Diagrammatic Notation

I ER diagrams is one popular example for displaying database
schemas.

I Many other notations exist in the literature and in various database
design and modeling tools.

I UML class diagrams are another way of displaying ER concepts.

I Choose a systematic naming (there is no standard), e.g.,
I Plural names for entity types
I Upper case for entity type and lower case for relationship type
I Initial letter capitalized for attribute names

DBS 2017, SL06 42/88 M. Böhlen, IfI@UZH

Summary of Notation for ER Diagrams

Entität

existenzabhängige Entität

Beziehung

Beziehung zu übergeordnetem
Entitätstyp

Attribute

Schlüsselattribute

Mehrwertige Attribute

. . .

zusammengesetzte Attribute

abgeleitete Attribute

RE1 E2 Totale Zugehörigkeit von E2 in R

RE1
1 E2

N Kardinalitätseinschränkung 1:N
für E1:E2 in R

DBS 2017, SL06 43/88 M. Böhlen, IfI@UZH

Data Modeling Tools

I A number of popular tools that conceptual modeling and mapping
into relational schema design.

I Examples: ERWin, S-Designer (Enterprise Application Suite),
ER-Studio, etc.

I Pros:
I Serves as documentation of application requirements
I Easy user interface: mostly graphics editor support
I Simple graphical models are very intuitive

I Cons:
I Graphical models easily get complex and ambiguous
I Mostly represent a relational design in a diagrammatic form rather

than a conceptual ER-based design

DBS 2017, SL06 44/88 M. Böhlen, IfI@UZH

Subclasses and Superclasses

I Sub- and Superclasses
I Disjointness Constraint (disjoint, overlapping)
I Completeness Constraint (total, partial)

DBS 2017, SL06 45/88 M. Böhlen, IfI@UZH

Subclasses and Superclasses/1

I An important extension that was not present in the initial ER model
are subgroupings.

I An entity type may have additional meaningful subgroupings of its
entities

I Example: Employees may be further grouped into:
I Secretaries, Engineers, Technicians, . . .

– Based on the job of an employee
I Managers

– Employees who are managers
I SalariedEmps, HourlyEmps

– Based on the method of pay
I Extended ER diagrams represent these additional subgroupings,

called subclasses.

DBS 2017, SL06 46/88 M. Böhlen, IfI@UZH

Subclasses and Superclasses/2

I Each subgrouping is a subset of Employees
I Each subgrouping is a subclass of Employees
I Employees is the superclass for each of these subclasses
I These are called superclass/subclass relationships:

I Employees/Secretaries
I Employees/Technicians
I Employees/Managers
I . . .

I Superclass/subclass relationships are also called IS-A relationships
I Secretaries IS-A Employees
I Technicians IS-A Employees
I . . .

DBS 2017, SL06 47/88 M. Böhlen, IfI@UZH

Subclasses and Superclasses/3

I An entity that is member of a subclass represents the same
real-world entity as some member of the superclass:

I The subclass member is the same entity in a distinct specific role
I An entity cannot exist in the database merely by being a member of a

subclass; it must also be a member of the superclass
I A member of the superclass can be optionally included as a member

of any number of its subclasses
I Examples:

I A salaried employee who is also an engineer belongs to two
subclasses:

I Engineers, and
I SalariedEmps

DBS 2017, SL06 48/88 M. Böhlen, IfI@UZH

Attribute Inheritance

I An entity that is member of a subclass inherits
I All attributes of the entity as a member of the superclass
I All relationships of the entity as a member of the superclass

I Example:
I Secretaries (as well as Technicians and Engineers) inherit the

attributes Name, SSN, . . . , from Employees
I Every Secretaries entity will have values for the inherited attributes

DBS 2017, SL06 49/88 M. Böhlen, IfI@UZH

Example of Subclasses and Superclasses

Secretaries Technicians Engineers Managers SalariedEmps HourlyEmps

ISA

ISAISA

Employee Name

SSN
BDate

Address
FName

MInit

LName

TypingSpeed TecGrade EngType Salary

PayScale

manage

Projects

belongsTo

TradeUnion

DBS 2017, SL06 50/88 M. Böhlen, IfI@UZH

Specialization and Generalization
I Specialization is the process of defining a set of subclasses of a

superclass
I The set of subclasses is based upon some distinguishing

characteristics of the entities in the superclass
I Example: SECRETARY, ENGINEER, TECHNICIAN is a

specialization of EMPLOYEE based upon job type.
I We may have several specializations of the same superclass
I Generalization is the reverse of the specialization process
I Several classes with common features are generalized into a

superclass.
I Example: CAR, TRUCK generalized into VEHICLE;

I CAR, TRUCK become subclasses of the superclass VEHICLE.
I We can view {CAR, TRUCK} as a specialization of VEHICLE
I Alternatively, we can view VEHICLE as a generalization of CAR and

TRUCK

DBS 2017, SL06 51/88 M. Böhlen, IfI@UZH

Constraints on Specialization/1

I Two basic constraints can apply to a specialization/generalization:
I Disjointness Constraint
I Completeness Constraint

I Disjointness Constraint:
I Specifies that the subclasses of the specialization must be disjoint:

I an entity can be a member of at most one of the subclasses of the
specialization

I Annotate edge in ER diagram with disjoint
I If not disjoint, specialization is overlapping:

I that is the same entity may be a member of more than one subclass
of the specialization

I Annotate edge in ER diagram with overlapping (or no annotation)

DBS 2017, SL06 52/88 M. Böhlen, IfI@UZH

Constraints on Specialization/2

I Completeness Constraint:
I Total specifies that every entity in the superclass must be a member

of some subclass in the specialization/generalization
I Shown in ER diagrams by a double line
I Partial allows an entity not to belong to any of the subclasses
I Shown in ER diagrams by a single line

I Hence, we have four types of specialization/generalization:
I Disjoint, total
I Disjoint, partial
I Overlapping, total
I Overlapping, partial

DBS 2017, SL06 53/88 M. Böhlen, IfI@UZH

Example of Disjoint Partial Specialization

Secretaries Technicians Engineers

ISA

Employee

disjoint

Name

SSN
BDate

Address
FName

MInit

LName

TypingSpeed TecGrade EngType

I An employee my be neither a secretary nor a technician nor an
engineer (partial specialization).

I An employee cannot be a secretary and technician or secretary and
engineer or technician and engineer (disjoint specialization).

DBS 2017, SL06 54/88 M. Böhlen, IfI@UZH

Example of Overlapping Total Specialization

Parts

PartNo Description

ISA

ManufacturedPartsPurchasedParts

DrawingNo
BatchNo

ManufactureDate

SupplierName
ListPrice

I Every part must either be a manufactured part or a purchased part
(total specialization).

I A part may be a manufactured part and a purchased part
(overlapping specialization).

DBS 2017, SL06 55/88 M. Böhlen, IfI@UZH

Review 6.5
Assume employees work on projects. Employees who work on projects are
allowed to use machines. Use an ER diagram to model this.

E

workOn

N

useN

P

N

N

M

N

workOnE N PN

A

1

use

1

M

1

EwP

workOn

N

useN

P

N

N

M

N

EwoP

ISA

E

disjoint

DBS 2017, SL06 56/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping
Algorithm

I Mapping an ER Model to a Relational Model

DBS 2017, SL06 57/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/1

I Algorithm to map a conceptual database design to a relational
database design.

I ER-to-Relational Mapping Algorithm
I Step 1: Mapping of Regular Entity Types
I Step 2: Mapping of Weak Entity Types
I Step 3: Mapping of Binary 1:1 Relation Types
I Step 4: Mapping of Binary 1:N Relationship Types
I Step 5: Mapping of Binary M:N Relationship Types
I Step 6: Mapping of Multivalued attributes
I Step 7: Mapping of N-ary Relationship Types
I Step 8: Mapping Specialization or Generalization

DBS 2017, SL06 58/88 M. Böhlen, IfI@UZH

The ER schema for the COMPANY database

Employees

Ssn

Bdate Name

Fname
Minit

Lname

Address Salary

Sex

supervise

Supervisee

N

Supervisor

1

workForN

manage
1

Start_date

Departments

1

1

Name
Locations

Number

NrOfEmps

control

1

workOn

M Hours

Projects

N

N

Name Number
Location

dependentsOf

1

Dependents

N

Name Sex Birth_date Relationship

DBS 2017, SL06 59/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/2

I Step 1: Mapping of Regular Entity Types.
I For each regular (strong) entity type E in the ER schema, create a

relation schema R that includes all the simple attributes of E.
I A composite attribute is flattened into a set of simple attributes.
I Choose one of the key attributes of E as the primary key for R.
I If the chosen key of E is composite, the set of simple attributes that

form it will together form the primary key of R.

DBS 2017, SL06 60/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/3

Employees

supervise

N1
workForN

manage
1

Departments

1

1
control

1

workOn

M

Projects

N

N
dependentOf

1

Dependents

N

I Example: We create relation schemas
Employee, Department and Project.
. They correspond to the regular entities
in the ER diagram.

I SSN, DNumber , and PNumber
are the primary keys for the relations
employee, department, and
project as shown.

Employee(FName, MInit, LName, SSN, BDate, Address, Sex, Salary)
Department(DName, DNumber)
Project(PName, PNumber, PLocation)

DBS 2017, SL06 61/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/4

I Step 2: Mapping of Weak Entity Types
I For each weak entity type W in the ER diagram with owner entity

type E, create a relation schema R and include all simple attributes
(or simple components of composite attributes) of W as attributes of
R.

I Include as foreign key attributes of R the primary key attributes of
the relations that correspond to the owner entity types.

I The primary key of R is the combination of the primary keys of the
owners and the partial key of the weak entity type W, if any.

DBS 2017, SL06 62/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/5

Employees

supervise

N1
workForN

manage
1

Departments

1

1
control

1

workOn

M

Projects

N

N
dependentOf

1

Dependents

N

I Example: Create relation schema
Dependent for the weak
entity type Dependent.

I Include the primary key SSN of
Employee as a foreign key
attribute of Dependent (renamed
to ESSN).

I The primary key of Dependent
is the combination {ESSN,
DepName} because DepName is the partial key
of Dependent.

Employee(FName, MInit, LName, SSN, BDate, Address, Sex, Salary)
Department(DName, DNumber)
Project(PName, PNumber, PLocation)
Dependent(ESSN, DepName, Sex, BDate, Relationship)

DBS 2017, SL06 63/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/6

I Step 3: Mapping of Binary 1:1 Relation Types
I For each binary 1:1 relationship type r in the ER schema, identify the

relation schemas S and T that correspond to the entity types
participating in r.

I There are three possible approaches:
1. Foreign Key approach: Choose one of the relations, say S, and

include as foreign key in S the primary key of T . It is better to
choose an entity type with total participation in R in the role of S.

2. Merged relation option: An alternate mapping of a 1:1 relationship
type is possible by merging the two entity types and the relationship
into a single relation. This may be appropriate when both
participations are total.

3. Cross-reference or relationship relation option: The third
alternative is to set up a third relation schema R for the purpose of
cross-referencing the primary keys of the two relation schemas S and
T representing the entity types.

DBS 2017, SL06 64/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/7

Employees

supervise

N1
workForN

manage
1

Departments

1

1
control

1

workOn

M

Projects

N

N
dependentOf

1

Dependents

N

I Example: The 1:1 relation manage
is mapped by choosing the participating
entity type Department to serve in the
role of S, because its participation in the
manage relationship type is total.

Employee(FName, MInit, LName, SSN, BDate, Address, Sex, Salary)
Department(DName, DNumber, MgrSSN, MgrStartDate)
Project(PName, PNumber, PLocation)
Dependent(ESSN, DepName, Sex, BDate, Relationship)

DBS 2017, SL06 65/88 M. Böhlen, IfI@UZH

Review 6.6
Illustrate the problems that occur if the 1:1 relationship manage is
mapped through a foreign key in relation schema Employee.

good solution (no NULL values):
department = { (’ifi’, 4, GlinzAHV, 2009), (’ibw’, 2, PfaffAHV, 2011) }
employee = { (’Glinz’, ...), (’Stiller’, ...), (’Pfaff’, ...) }

bad solution (many NULL values):
department = { (’ifi’,4), (’ibw’,2) }
employee = { (’Glinz’, ..., GlinzAHV, 2009), (’Stiller’, ..., NULL, NULL), (’Pfaff’, ...,
PfaffAHV, 2011) }

DBS 2017, SL06 66/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/8

I Step 4: Mapping of Binary 1:N Relationship Types
I For each binary 1:N relationship type r, identify the relation schemas

S and T that correspond to the entity types participating in r. S is
the N-side.

I Include as foreign key in S the primary key of T that represents the
other entity type participating in r.

I Include simple attributes of the 1:N relation type as attributes of S.

DBS 2017, SL06 67/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/9

Employees

supervise

N1
workForN

manage
1

Departments

1

1
control

1

workOn

M

Projects

N

N
dependentOf

1

Dependents

N

I Example: 1:N relationship types
workFor, control and supervise.

I For example for workFor we
include the primary key DNumber
of the Department relation schema
as foreign key in the Employee
relation schema and call it DNo.

Employee(FName, MInit, LName, SSN, BDate, Address, Sex, Salary, SuperSSN, DNo)
Department(DName, DNumber, MgrSSN, MgrStartDate)
Project(PName, PNumber, PLocation, DNum)
Dependent(ESSN, DepName, Sex, BDate, Relationship)

DBS 2017, SL06 68/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/10

I Step 5: Mapping of Binary M:N Relationship Types.
I For each regular binary M:N relationship type r, create a new relation

schema S to represent r.
I Include as foreign key attributes in S the primary keys of the relations

that represent the participating entity types; their combination will
form the primary key of S.

I Also include any simple attributes of the M:N relationship type (or
simple components of composite attributes) as attributes of S.

DBS 2017, SL06 69/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/11

Employees

supervise

N1
workForN

manage
1

Departments

1

1
control

1

workOn

M

Projects

N

N
dependentOf

1

Dependents

N

I Example: The M:N relationship type
worksOn from the ER diagram is
mapped by creating a relation schema WorksOn.

I The primary keys of Project and
Employee are included as foreign
keys in WorksOn and renamed PNo and ESSN, respectively.

I Attribute Hours in WorksOn represents the Hours attribute in the ER
schema. The primary key of WorksOn is the combination of the
foreign key attributes ESSN, PNo.

Employee(FName, MInit, LName, SSN, BDate, Address, Sex, Salary, SuperSSN, DNo)
Department(DName, DNumber, MgrSSN, MgrStartDate)
Project(PName, PNumber, PLocation, DNum)
Dependent(ESSN, DepName, Sex, BDate, Relationship)
WorksOn(ESSN, PNo, Hours)

DBS 2017, SL06 70/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/12

I Step 6: Mapping of Multivalued attributes.
I For each multivalued attribute A, create a new relation schema R.
I R includes an attribute A, plus the primary key attribute K of the

relation that represents the entity or relationship type that has A as
an attribute.

I The primary key of R is the combination of A and K . If the
multivalued attribute is composite, we include its simple components.

DBS 2017, SL06 71/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/13

Employees

supervise

N1
workForN

manage
1

Departments

1

1
control

1

workOn

M

Projects

N

N
dependentOf

1

Dependents

N

I Example: The relation DeptLoc is
created.

I The attribute DLocation represents the
multivalued attribute Locations of
Department, while DNumber , as
foreign key, represents the primary key
of the Department relation.

I The primary key of R is the combination of DNumber , DLocation.

Employee(FName, MInit, LName, SSN, BDate, Address, Sex, Salary, SuperSSN, DNo)
Department(DName, DNumber, MgrSSN, MgrStartDate)
Project(PName, PNumber, PLocation, DNum)
Dependent(ESSN, DepName, Sex, BDate, Relationship)
WorksOn(ESSN, PNo, Hours)
DeptLoc(DNumber, DLocation)

DBS 2017, SL06 72/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/14

I Step 7: Mapping of N-ary Relationship Types.
I For each n-ary relationship type r, where n>2, create a relation

schema S.
I Include as foreign key attributes in S the primary keys of the relations

that represent the participating entity types.
I Also include any simple attributes of the n-ary relationship type (or

simple components of composite attributes) as attributes of S.

DBS 2017, SL06 73/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/15

I Example: The relationship type supply

supplySuppliersSName Projects ProjName

Parts

PartNr

I This can be mapped to the relation schema Supply shown in the
relational schema, whose primary key is the combination of the three
foreign keys SName, PartNo, ProjName.

Supplier(SName, ...)
Project(ProjName, ...)
Part(PartNo, ...)
Supply(SName, ProjName, PartNo, Quantity)

DBS 2017, SL06 74/88 M. Böhlen, IfI@UZH

Review 6.7
Use the ER model to model job applications. Candidates submit
applications to companies and possibly get invited to an interview.

appliesCands N CompsN

Interviews

1

appliesCands N CompsN

invited

1

Interviews

1

Applications

invited

1

Interviews

1

appliesCands N CompsN

Interviews

1

DBS 2017, SL06 75/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/16

I Step8: Options for Mapping Specialization or Generalization.
I Convert each specialization with m subclasses S1, S2, . . . ,Sm and

superclass C, where the attributes of C are k, a1, . . . , an and k is the
primary key, into relational schemas using one of the four following
options:

I Option 8A: Multiple relations for superclass and subclasses
I Option 8B: Multiple relations for subclass relations only
I Option 8C: Single relation with one type attribute
I Option 8D: Single relation with multiple type attributes

DBS 2017, SL06 76/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/17

I Option 8A: Multiple relations for superclass and subclasses
I Create a relation schema L for C with attributes

Attrs(L) = {k, a1, . . . , an} and PK (L) = k.
I Create a relation schema Li for each subclass Si , 1 < i < m, with

attributes Attrs(Li) = {k} ∪ {attributes of Si} and PK (Li) = k.
I This option works for any specialization (total or partial, disjoint of

overlapping).

DBS 2017, SL06 77/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/18
I Example: Specialization of EMPLOYEE

Secretaries Technicians Engineers

ISA

Employee

disjoint

Name

SSN
BDate

Address
FName

MInit

LName

TypingSpeed TecGrade EngType

Employee(SSN, FName, MInit, LName, BirthDate, Address, JobType)
Secretary(SSN, TypingSpeed)
Technician(SSN, TGrade)
Engineer(SSN, EngType)

DBS 2017, SL06 78/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/19

I Option 8B: Multiple relations for subclass relations only
I Create a relation Li for each subclass Si , 1 < i < m, with attributes

Attr(Li) = {attributes of Si} ∪ {k, a1, . . . , an} and PK (Li) = k.
I This option only works for a specialization whose subclasses are total

(i.e., every entity in the superclass must belong to at least one of the
subclasses).

DBS 2017, SL06 79/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/20

I Example: Specialization of Parts

Parts

PartNo Description

ISA

ManufacturedPartsPurchasedParts

DrawingNo
BatchNo

ManufactureDate

SupplierName
ListPrice

Manufactured(PartNo, Desc, DrawNo, BatchNo, ManufDate)
Purchased(PartNo, Desc, SuppName, ListPrice)

DBS 2017, SL06 80/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/21

I Option 8C: Single relation with one type attribute
I Create a single relation L with attributes Attr(L) = {k, a1, . . . , an, t}

∪ {attributes of S1} ∪ {attributes of Sm} and PK (L) = k.
I The attribute t is called a type attribute that indicates the subclass

to which each tuple belongs.
I This option only works for a specialization whose subclasses are

disjoint and might generate many null values for attributes of
subclasses.

DBS 2017, SL06 81/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/22

I Example: Use JobType as a type attribute in Employee to
distinguish between secretary, technician, and engineer.

Secretaries Technicians Engineers

ISA

Employee

disjoint

Name

SSN
BDate

Address
FName

MInit

LName

TypingSpeed TecGrade EngType

Employee(SSN, FName, MInit, LName,..., JobType, TypingSpeed, TGrade, EngType)

DBS 2017, SL06 82/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/23

I Option 8D: Single relation with multiple type attributes
I Create a single relation L with attributes Attr(L) = {k, a1, . . . , an,

t1, ..., tm} ∪ {attributes of S1}∪ {attributes of Sm} and
PK (L) = k.

I Each ti is a Boolean attribute that indicates whether a tuple belongs
to subclass Si .

I This option works for a specialization whose subclasses are
overlapping (but will also work for disjoint specialization).

DBS 2017, SL06 83/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/24

I Example:

Vehicles

VehicleID
Price

LicensePlateNo

ISA

CarsTrucks

NaxSpeed
NoOfPassengers

NoOfAxes
Tonnage

VEHICLE(
VehicleID, Price, LicensePlateNo,
CarFlag, MaxSpeed, NoPassengers,
TruckFlag, NoAxes, Tonnage)

DBS 2017, SL06 84/88 M. Böhlen, IfI@UZH

ER-to-Relational Mapping Algorithm/27

DBS 2017, SL06 85/88 M. Böhlen, IfI@UZH

Summary of Mapping Constructs and Constraints

Correspondence between ER and Relational Models

ER Model Relational Model
Entity type Entity relation
1:1 or 1:N relationship type Foreign key (or relationship relation)
M:N relationship type Relationship relation and two foreign keys
n-ary relationship type Relationship relation and n foreign keys
Simple attribute Attribute
Composite attribute Set of simple component attributes
Multivalued attribute Relation and foreign key
Key attribute Primary (or secondary) key

DBS 2017, SL06 86/88 M. Böhlen, IfI@UZH

Summary/1

I ER model concepts:
I entity type, entity set, entity
I attribute, attribute value
I relationship type, relationship set, relationship
I structural constraints: cardinality, participation
I subclasses and superclasses

I During the conceptual modeling process a number of clarifying
decisions/assumptions must be made

I It is important to make all necessary decisions (even if alternatives
exist) and go on. Make decisions explicit (i.e., write them down).

I There is not a unique ER model.
I In order to clarify the semantics it can hep to consider relation

instances

DBS 2017, SL06 87/88 M. Böhlen, IfI@UZH

Summary/2

I ER-to-Relational Mapping Algorithm
I Step 1: Mapping of Regular Entity Types
I Step 2: Mapping of Weak Entity Types
I Step 3: Mapping of Binary 1:1 Relation Types
I Step 4: Mapping of Binary 1:N Relationship Types.
I Step 5: Mapping of Binary M:N Relationship Types.
I Step 6: Mapping of Multivalued attributes.
I Step 7: Mapping of N-ary Relationship Types.
I Step 8: Mapping Specialization or Generalization.

I The mapping algorithm is mechanical and without conceptual
difficulty. Make sure you know how to apply it.

DBS 2017, SL06 88/88 M. Böhlen, IfI@UZH

Database Systems
Spring 2017

Physical Database Design
SL07

I Disk Storage and Files
I Physical Storage Media
I Accessing the Storage
I Organization of Files

I Index Structures
I Types of Indexes
I B+ Tree
I Hashing
I Index Definition in SQL

Reviews: 15 20 26 37 48 71 78 95

Verwaltung des Speichers:
- OS files (PostgreSQL)
- raw disk (Oracle)

DBS 2017, SL07 1/104 M. Böhlen, IfI@UZH

Literature and Acknowledgments

Reading List for SL07:
I Database Systems, Chapters 16 and 17, Sixth Edition, Ramez

Elmasri and Shamkant B. Navathe, Pearson Education, 2010.

These slides were developed by:
I Michael Böhlen, University of Zürich, Switzerland
I Johann Gamper, Free University of Bozen-Bolzano, Italy

The slides are based on the following text books and associated material:
I Database Systems, Sixth Edition, Ramez Elmasri and Shamkant B.

Navathe, Pearson Education, 2010.
I A. Silberschatz, H. Korth, and S. Sudarshan: Database System

Concepts, McGraw Hill, 2006.

DBS 2017, SL07 2/104 M. Böhlen, IfI@UZH

Disk Storage and Files

I Physical Storage Media
I Storage Access
I File Organization

DBS 2017, SL07 3/104 M. Böhlen, IfI@UZH

Physical Storage Media/1

I Several types of storage media exist in computer systems and are
relevant for DBMS

I The storage media can be organized into a storage hierarchy.
I Classification of storage media

I Speed with which data can be accessed
I Cost per unit of data
I Reliability

I data loss on power failure or system crash
I physical failure of the storage device

I Volatile vs. non-volatile storage
I Volatile storage: Loses contents when power is switched off
I Non-Volatile storage: Contents persist when power is switched off

DBS 2017, SL07 4/104 M. Böhlen, IfI@UZH

Physical Storage Media/2

I Cache
I Volatile
I Fastest and most costly form of storage
I Managed by the computer system hardware

I Main memory
I Volatile
I Fast access (x0 to x00 of nanosecs; 1 nanosec = 10−9 secs)
I Generally only a part of a database is loaded into memory

I Capacities of up to a few Gigabytes (or even Terabytes) widely used
currently

I Capacities have gone up and per-byte costs have decreased steadily
and rapidly (roughly factor of 2 every 2 to 3 years)

I If entire database is kept in memory we have a main memory database

DBS 2017, SL07 5/104 M. Böhlen, IfI@UZH

Physical Storage Media/3

I Flash memory (SSD)
I Non-volatile
I Reads are roughly as fast as main memory
I Writes are slow (few microseconds) and more complicated

I Data cannot be overwritten, but a block must be erased and written
over simultaneously

I Cost per unit of storage roughly similar to main memory
I Widely used in embedded devices such as digital cameras
I Also known as EEPROM (Electrically Erasable Programmable

Read-Only Memory)

DBS 2017, SL07 6/104 M. Böhlen, IfI@UZH

Physical Storage Media/4

I Magnetic disk
I Non-volatile
I Data is stored on spinning disk, and read/written magnetically
I Much slower access than main memory
I Much larger capacities than main memory; typically up to roughly x00

GB - 2 TB currently
I Growing rapidly with technology improvements (factor 2 to 3 every 2

years)
I Primary medium for the long-term storage of data; typically stores

entire DB.
I Data must be moved from disk to main memory for access, and

written back for storage
I Direct data access, i.e., data on disk can be read in any order, unlike

magnetic tape
I Hard disks vs. floppy disks

DBS 2017, SL07 7/104 M. Böhlen, IfI@UZH

Physical Storage Media/5

I Optical disk
I Non-volatile
I Data is read optically from a spinning disk using a laser
I Reads and writes are slower than with magnetic disk
I Different types

I CD-ROM (640 MB) and DVD (4.7 to 17 GB) most popular forms
I Write-one, read-many (WORM) optical disks used for archival storage
I Multiple write versions also available (CD-RW, DVD-RW, and

DVD-RAM)
I Juke-box systems, with large numbers of removable disks, a few

drives, and a mechanism for automatic loading/unloading of disks
available for storing large volumes of data.

DBS 2017, SL07 8/104 M. Böhlen, IfI@UZH

Physical Storage Media/6

I Tape storage
I Non-volatile
I Much slower than disk due to sequential access only
I Very high capacity (up to tens of terabytes)
I Used primarily for backup and for archival data
I Tape can be removed from drive
I Tape storage costs are much cheaper than disk storage costs.
I Tape juke-boxes available for storing massive amounts of data

I Hundreds of terabytes (1 terabyte = 1012 bytes) to even a petabyte
(1 petabyte = 1015 bytes)

DBS 2017, SL07 9/104 M. Böhlen, IfI@UZH

Physical Storage Media/7
I The storage media can be organized in a hierarchy according to their

speed and cost
I Primary storage: Fastest media, but

volatile
I e.g., cache, main memory

I Secondary storage:
Non-volatile,moderately fast access

I e.g., flash memory, magnetic disks
I also called on-line storage

I Tertiary storage: Non-volatile, slow
access time

I e.g., magnetic tape, optical storage
I also called off-line storage

I DBMS must explicitly deal with storage media at all levels of the
hierarchy

phone book, library, encycopedia, Google, Wikipedia

DBS 2017, SL07 10/104 M. Böhlen, IfI@UZH

Magnetic Hard Disks/1
I Most DBs are stored on magnetic disks for the following reasons:

I Generally, DBs are too large to fit entirely in main memory
I Data on disks is non-volatile
I Disk storage is cheaper than main memory

I Simplified and schematic structure of a magnetic disk

choosing a different disk is
cheap (electronic switch); mo-
ving disk head is expensive

DBS 2017, SL07 11/104 M. Böhlen, IfI@UZH

Magnetic Hard Disks/2

I Disk controller: Interface between the computer system and the
HW of the disk drive. Performs the following tasks:

I Translates high-level commands, such as read or write a sector, into
actions of the disk HW, such as moving the disk arm or
reading/writing the sector.

I Adds a checksum to each sector
I Ensures successful writing by reading back a sector after writing it

DBS 2017, SL07 12/104 M. Böhlen, IfI@UZH

Magnetic Hard Disks/3

I Performance measures of hard disks
I Access time: the time it takes from when a read or write request is

issued to when the data transfer begins. Is composed of:
I Seek time: time it takes to reposition the arm over the correct track
I Avg. seek time is 1/2 the worst case seek time (2-10 ms on typical

disks)
I Rotational latency: time it takes for the sector to be accessed to

appear under the head
I Avg. latency is 1/2 the worst case latency (e.g., 4-11 ms for

5400-15000 rpm)

rotations per minute

I Data-transfer rate: rate at which data can be retrieved from or
stored to disk (e.g., 25-100 MB/s)

I Multiple disks may share a single controller
I Mean time to failure (MTTF): average time the disk is expected

to run continuously without any failure
I Typically several years

DBS 2017, SL07 13/104 M. Böhlen, IfI@UZH

Storage Access Through Blocks/1

I A block is a contiguous sequence of sectors from a single track.
I Blocks are separated by interblock gaps, which hold control

information created during disk initialization.
I Logically, a block is a unit of storage allocation and data transfer.

I Data between disk and main memory is transferred in blocks.
I A database file is partitioned into fixed-length blocks.
I Typical block sizes range from 4 to 16 kilobytes

I Smaller blocks: more transfers from disk
I Larger blocks: more space wasted due to partially filled blocks

DBS 2017, SL07 14/104 M. Böhlen, IfI@UZH

Review 7.1
Consider relations r(A) and s(A). r is ordered, s is unordered. Block size
B = 2KB. Tuple size t = 100Bytes. |r | = |s| = 800′000 tuples. The
values of A are uniformly distributed between 5M and 10M. The time for
1 IO is 0.025 sec. Determine the execution times for the following queries
where x = r or x = s: σA=6M(x), σA<5′000′500(x), σA6=6M(x).

I 2K/100 = 20 tuples/block
I 800’000/20 = 40’000 blocks
I σA=6M(r): binary search on contiguous blocks 0.025 ∗ lg 40′000sec
I σA=6M(s): scan half of s on avg if A is unique 0.025 ∗ 20′000 = 500sec
I σA<5′000′500(r):

I avg distance between values = 5M/800′000 = 6.25
I nr of qualifying tuples = 500/6.25 = 80
I nr of qualifying blocks = d80/20e = 4
I 0.025 ∗ 4 = 0.1sec

I σA<5′000′500(s): 0.025 ∗ 40′000 = 1000sec
I σA6=6M(.): scan relation 0.025 ∗ 40′000 = 1000sec

DBS 2017, SL07 15/104 M. Böhlen, IfI@UZH

Storage Access Through Blocks/2

I A major goal of DBMSs: Make the transfer of data between disk
and main memory as efficient as possible by

I Optimizing/Minimizing the disk-block access time
I Minimizing the number of block transfers
I Keeping as many blocks as possible in memory (→ buffer manager)

I Techniques to optimize disk-block access:
1. Disk arm scheduling
2. Appropriate file organization
3. Write buffers and log disks

DBS 2017, SL07 16/104 M. Böhlen, IfI@UZH

Storage Access Through Blocks/3

I Disk arm scheduling algorithms: Order pending accesses to tracks
so that disk arm movement is minimized

I Elevator algorithm
I Disk controller orders the requests by track (from outer to inner or

vice versa)
I Move disk arm in that direction, processing the next request in that

direction, till no more requests in that direction
I Then reverse the direction (i.e., inner to outer) and repeat the

previous two steps

DBS 2017, SL07 17/104 M. Böhlen, IfI@UZH

Storage Access Through Blocks/4

I File organization: Optimize block access time by organizing the
blocks to correspond to how data will be accessed

I e.g., store related information on the same or nearby cylinders.
I Files may get fragmented over time

I e.g., if data is inserted to or deleted from the file
I e.g., if free blocks on disk are scattered, which means that a newly

created file has its blocks scattered over the disk
I Sequential access to a fragmented file results in increased disk arm

movement
I Some systems have utilities to defragment the file system, in order to

speed up file access

DBS 2017, SL07 18/104 M. Böhlen, IfI@UZH

Storage Access Through Blocks/5

Updated blocks can be written asychnronously to increase the write
speed.

I Non-volatile write buffers: Speed up disk writes by writing blocks
to a non-volatile, battery backed up RAM or flash memory
immediately; the controller then writes to disk whenever the disk has
no other requests or request has been pending for some time.

I Even if power fails, the data is safe.
I Writes can be reordered to minimize disk arm movement.
I Database operations that require data to be safely stored before

continuing can continue immediately.
I Log disk: A disk devoted to write a sequential log of block updates

I Used exactly like non-volatile RAM
I Write to log disk is very fast since no seeks are required
I No need for special hardware.

DBS 2017, SL07 19/104 M. Böhlen, IfI@UZH

Review 7.2/1
Consider a disk as follows: block size B = 512 Bytes, interblock gap size
G = 128 Bytes, blocks per track B/T = 20, tracks per surface T/S =
400, double-sided disks D = 15, seek time st = 30 msec, 2400 rotations
per minute. Determine the following values:

1. total capacity per track

20 *(512 + 128) = 12.8 KB

2. useful capacity per track

20 * 512 = 10.24 KB

3. number of cylinders

= number of tracks = 400

4. useful capacity per cylinder

2 * 15 * 10.24 = 307KB

DBS 2017, SL07 20/104 M. Böhlen, IfI@UZH

Review 7.2/2

5. transfer rate tr

tr = 12’000 * 2400/(60*1000) = 512 Bytes/msec

6. block transfer time btt

btt = B/tr = 512/512 = 1msec

7. rotational delay rd

rd = 0.5 * (60 * 1000 / 2400) = 12.5msec (time for half a rotation)

8. bulk transfer rate btr

btr = tr *(B/B+G) = 512 * 0.8 = 409.6 Bytes/msec

9. block read time

st + rd + btt = 30 + 12.5 + 1 = 43.5msec

10. time for 20 random reads

20 * 43.5 = 870msec

11. time for 20 sequential reads

20 * btt + st + rd = 62.5msec [or 20 * B/btr + st + rd = 67.5]

DBS 2017, SL07 21/104 M. Böhlen, IfI@UZH

Buffer Manager/1

I Buffer: Portion of main memory available to store copies of disk
blocks.

I Buffer Manager: Subsystem that is responsible for buffering disk
blocks in main memory.

I The overall goal is to minimize the number of disk accesses.
I Buffer manager is similar to a virtual-memory manager of an

operating system.

DBS 2017, SL07 22/104 M. Böhlen, IfI@UZH

Buffer Manager/2

I Programs call the buffer manager when they need a block from disk.
I Buffer manager algorithm

1. Programs call the buffer manager when they need a block from disk.
I The requesting program is given the address of the block in main

memory.
2. If the block is not in the buffer:

I The buffer manager allocates space in the buffer for the new block
(replacing/throwing out some other block, if required).

I The block that is thrown out is written back to disk only if it was
modified since the most recent time that it was written to/fetched
from the disk.

I Once space is allocated in the buffer, the buffer manager reads the
block from the disk to the buffer, and passes the address of the block
in memory to the requesting program.

I There exist different strategies/policies to replace buffers

swapping is not an efficient option

DBS 2017, SL07 23/104 M. Böhlen, IfI@UZH

Buffer Replacement Policies/1

we know that we
do not need the
block again for a
long time

I LRU strategy: Replace the block least recently used
I Idea: Use past pattern of block references to predict future references
I Applied successfully by most operating systems

I MRU strategy: Replace the block most recently used

I LRU can be a bad strategy in DBMS for certain access patterns
involving repeated scans of data

I Queries in DBs have well-defined access patterns (such as sequential
scans), and a database system can use the information in a user’s
query to predict future references

DBS 2017, SL07 24/104 M. Böhlen, IfI@UZH

Buffer Replacement Policies/2

I Example: compute a join with nested loops
for each tuple tr of r do

for each tuple ts of s do
if the tuples tr and ts match then ...;

I Different access pattern for r and s
I An r-block is no longer needed, after the last tuple is processed (even

if it has been used recently), thus should be removed immediately
I An s-block is needed again after all other s-blocks are processed, thus

MRU is the best strategy
I A mixed strategy with hints on replacement strategy provided by the

query optimizer is preferable

DBS 2017, SL07 25/104 M. Böhlen, IfI@UZH

Review 7.3
Assume a relation r with 3 tuples and a relation s with 3 tuples. Assume
a block can fit 2 tuples. Illustrate how a nested loop join processes tuples
and how to use blocks if 2 blocks are available for the join.

r = {r1, r2, r3}, s = {s1, s2, s3}
B1 B2

r1 s1 Br1 Bs1
r1 s2
r1 s3 Bs2
r2 s1 Bs1
r2 s2
r2 s3 Bs2
r3 s1 Br2 Bs1
r3 s2
r3 s3 Bs2

B1 B2
r1 s1 Br1 Bs1
r1 s2
r2 s1
r2 s2
r1 s3 Bs2
r2 s3
r3 s1 Br2 Bs1
r3 s2
r3 s3 Bs2

NL: 8 block reads; BNL: 6 block reads

DBS 2017, SL07 26/104 M. Böhlen, IfI@UZH

Buffer Replacement Policies/3

I Pinned block: Memory block that is not allowed to be written back
to disk.

I e.g., the r-block before processing the last tuple tr
I Toss immediate strategy: Frees the space occupied by a block as

soon as the final tuple of that block has been processed
I e.g., the r-block after processing the last tuple tr

I MRU + pinned block is the best choice for the join

DBS 2017, SL07 27/104 M. Böhlen, IfI@UZH

Buffer Replacement Policies/4

I Buffer replacement policies in DBMS can use various
information

I Queries have well-defined access patterns (e.g., sequential scans)
I Information in a query to predict future references
I Statistical information regarding the probability that a request will

reference a particular relation.
I e.g., the data dictionary is frequently accessed.
I Heuristic: keep data dictionary blocks in main memory buffer

DBS 2017, SL07 28/104 M. Böhlen, IfI@UZH

File Organization

I File: A file is logically a sequence of records, where
I a record is a sequence of fields;
I the file header contains information about the file.

I Usually, a relational table is mapped to a file and a tuple to a record.
I A DBMS has the choice to

I Use the file system of the operating system (reuse code).
I Manage disk space on its own (OS independent, better optimization,

e.g., Oracle)
I Two approaches to represent files (or records) on disk blocks:

I Fixed length records (fixed-length records are simple, inflexible, and
inefficient in terms of memory)

I Variable length records (variable-length records are complex, flexible,
and efficient in terms of memory)

DBS 2017, SL07 29/104 M. Böhlen, IfI@UZH

Fixed-Length Records/1

I Store record i starting from byte m ∗ (i − 1), where m is the size of
each record.

I Record access is simple but records may cross blocks
I spanned organization: records can be split and span accross block

boundaries using pointers
I unspanned organization: records may not cross block boundaries;

leave free space in blocks if records do not fit
I Deletion of record i is more complicated. Several alternatives exist:

I Move records i + 1, ..., n to i , ..., n − 1
I Move record n to i
I Do not move records, but link all free

records in a free list

DBS 2017, SL07 30/104 M. Böhlen, IfI@UZH

Fixed-Length Records/2

I Free list
I Store the address of the first deleted record in the file header.
I Use this first record to store the address of the second deleted record,

and so on

I Note the additional field to store
pointers.

I More space efficient representations
are possible: No pointers need to be
stored in records that contain data.

DBS 2017, SL07 31/104 M. Böhlen, IfI@UZH

Variable-Length Records/1

I Variable-length records arise in DBMS in several ways:
I Records types that allow variable lengths for one or more fields.
I Storage of multiple record types in a file.
I Record types that allow repeating fields (used in some older models).

I There exist different methods to represent variable-length records:
I Slotted page structure is the most flexible organization of

variable-length records.
I A slotted page structure maintains a directory of slots for each page.

DBS 2017, SL07 32/104 M. Böhlen, IfI@UZH

Variable-Length Records/2

I Slotted page structure
I Slotted page header contains:

I number of record entries
I end of free space in the block
I location and size of each record

I Records can be moved around in a page to keep them contiguous with
no empty space between them; entry in the header must be updated.

I Pointers should not point directly to record - instead they should
point to the entry for the record in header.

DBS 2017, SL07 33/104 M. Böhlen, IfI@UZH

Organization of Records in Files/1

There are different ways to logically organize records in a file (this is
called the primary file organization):

I Heap file organization: A record can be placed anywhere in the file
where there is space; there is no ordering in the file.

books unordered

I Sequential file organization: Store records in sequential order
based on the value of the search key of each record.

books ordered by
author

I Hash file organization: A hash function is computed on some
attribute of each record; the result specifies in which block of the
file the record is placed.

books grouped by area (novels, cs, German lite-
rature, ...)

I Generally, each relation is stored in a separate file.

DBS 2017, SL07 34/104 M. Böhlen, IfI@UZH

Organization of Records in Files/2

I Sequential file: The records in the file are ordered by a search key
(one or more attributes)

I Records are chained together by pointers
I Suitable for applications that require sequential processing of the

entire file
I To be efficient, records should also be stored physically in search key

order (or close to it).
I Example: account(account-number,branch-name,balance)

DBS 2017, SL07 35/104 M. Böhlen, IfI@UZH

Organization of Records in Files/3

I It is difficult to maintain the physical order as records are inserted
and deleted.

I Deletion: Store a deletion marker with each record; use pointer chains
to build a free list

I Insertion:
I Locate the position where the record

is to be inserted
I If there is free space insert there
I If no free space, insert the record in

an overflow block
I Need to reorganize the file from time

to time to restore (physical) sequential
order

DBS 2017, SL07 36/104 M. Böhlen, IfI@UZH

Review 7.4/1
Assume a disk with the following characteristics: block size B = 512
Bytes, blocks per track = 20, tracks per surface = 400, number of
double-sided disks = 15, rotations per minute = 2400 rpm, seek time =
30 msec.
Assume a relation Emp(N 30 Bytes, SSN 9 Bytes, A 40 Bytes, P 9
Bytes) with 20’000 tuples.
Determine the following values:

1. HD capacity

20 ∗ 512 ∗ 400 ∗ 2 ∗ 15 = 122.9MB

2. size of 1 Emp tuple

30 + 9 + 40 + 9 + 1 = 89Bytes (1 as, e.g., a deletion marker)

DBS 2017, SL07 37/104 M. Böhlen, IfI@UZH

Review 7.4/2

3. blocking factory (bfr) of Emp (= number of tuples per block)

bfr = bB/89c = 5tuples/block

4. number of blocks used by Emp (unspanned organization)

20′000/5 = 4000blocks

5. number of blocks used by Emp (spanned organization)

20′000 ∗ (89/(512− 4)) = 3505blocks (4 Bytes for pointer to next
block)

6. average time for a linear search in Emp (contiguous file)

2000 ∗ btt + st + rd = 2.04sec (half of blocks on avg, btt=1msec,
st=30msec, rd=12.5msec

DBS 2017, SL07 38/104 M. Böhlen, IfI@UZH

Index Structures for Files

I Basic Concepts, Types of Indexes
I B+ Tree
I Hashing
I Ordered Indexing versus Hashing
I Index Definition in SQL

size of dictionary/index (for, e.g., 10GB
data)?

size of index is 1 to 10 times the size
of the data (i.e., 10-100GB in this case);
variance is very large (e.g., Google)

DBS 2017, SL07 39/104 M. Böhlen, IfI@UZH

Basic Concepts/1

I Indexing mechanism are used to speed up access to data
I e.g., author catalog in library, book index

I Index file: Consists of records (called index entries) of the form
(search key, pointer) where

I search key is an attribute or set of attributes used to look up records
in a data file

I pointer is a pointer to a record (database tuple) in a data file
I Duplicated search keys in an index file are allowed
I Index files are typically much smaller than the original file

library + index
phones + phone book
encyclopedia + toc
dissertation + glossary
WWW + Google index)

DBS 2017, SL07 40/104 M. Böhlen, IfI@UZH

Basic Concepts/2

I Evaluation of an index must include
I Access Time
I Insertion Time
I Deletion Time
I Space overhead
I Access Type supported efficiently, e.g.,

I Records with a specific value in the attribute, e.g., persons who were
born 1970

I Reocrds with an attribute value falling in a specific range of values,
e.g., persons who were born between 1970 and 1976

DBS 2017, SL07 41/104 M. Böhlen, IfI@UZH

Basic Concepts/3

I Depending on the ordering of the data and the index file we can
have a

I clustering index (same order of data and index)
I non-clustering index (different order of data and index)

I Depending on what we put into the index we have a
I sparse index (index entry for some tuples only)
I dense index (index entry for each tuple)

I A clustering index is usually sparse

Duden, Lexikon, Wörterbuch (Ordnung
der Daten = Ordnung Index)

I A non-clustering index must be dense

Glossar/Schlagwortverzeichnis,
Telefonbuch (Ordnung der
Daten is different from Ordnung
Index)

I Note: terminology is not consistent across textbooks

DBS 2017, SL07 42/104 M. Böhlen, IfI@UZH

Clustering Index/1
I Clustering index

I In a clustering index the search key order corresponds to the
sequential order of the records in the data file.

I If the search key is a candidate key (and therefore unique) it is also
called a primary index.

Schlagwortverzeichnis
der Wörter (alphabe-
tisch geordnet)

Lexikon (alphabetisch
geordnet)

DBS 2017, SL07 43/104 M. Böhlen, IfI@UZH

Clustering Index/2

there can be at most one clustering (pri-
mary) index! important decision (i.e.,
how to order your data).

I Index file:
I The index file is a sequential (ordered) file.
I For a clustering index both index and data are stored on sequential

files (index file and data file)
I Designed for both efficient sequential access and random access
I One of the oldest indexing techniques in DB

DBS 2017, SL07 44/104 M. Böhlen, IfI@UZH

Non-Clustering Indexes/1

Example: books ordered according to
ISBN and index ordered according to au-
thor last name.

I Non-Clustering indexes are used to quickly find all records whose
values in a certain field satisfy some condition.

I Example: Consider an account relation that is stored sequentially by
account number

I Find all accounts in a particular branch
I Find all accounts with a specified balance or range of balances

I The above query can only be answered by retrieving and checking all
records (very inefficient).

I An additional (non-clustering) index is needed to answer such
queries efficiently.

DBS 2017, SL07 45/104 M. Böhlen, IfI@UZH

Non-Clustering Indexes/2
I Non-clustering index: Index whose search key specifies an order
different from the sequential order of the file

I Non-clustering indexes are also called secondary indexes.
I Non-clustering indexes must be dense, i.e., they must include an

index entry for every search key value and a pointer to every record
in the data file.

Autorenverzeichnis (al-
phabetisch geordnet)

Library ordered accor-
ding to ISBN)

DBS 2017, SL07 46/104 M. Böhlen, IfI@UZH

Non-Clustering Indexes/3
I Two options for data pointers

I Duplicate index entries: an index record for every data record
I Buckets: An index record for each search key value; index record

points to a bucket that contains pointers to all the actual records
with that particular search key value

I Example: Non-Clustering index on the balance field of the account
relation using buckets

DBS 2017, SL07 47/104 M. Böhlen, IfI@UZH

Review 7.5
I Relation R(A,B, ...) with 6M tuples.
I Clustering index on A. Non-clustering index on B.
I 200 index entries per block. 50 tuples per block.
I Values of A and B are uniformly distributed in [0, 100M].
I Use indexes to answer Q1 = σ[A > 75M](r) and Q2 = σ[B > 75M](r).

Determine the number of IOs. Interpret the result.

I 6M/200 = 30’000 index blocks.
I 6M/50 = 120’000 data blocks.
I Strategy:

1. find starting point (first block) with binary search
2. scan index to the end
3. for each entry fetch all tuples

I Q1 : log2(30′000) + 30′000/4 + 120′000/4 = 37’015 blocks
I Q2 : log2(30′000) + 30′000/4 + 1.5M = 1’507’515 blocks

DBS 2017, SL07 48/104 M. Böhlen, IfI@UZH

Sparse Index/1

I Sparse index
I Contains index records for only some search key values.
I Sparse index has (much) fewer entries than records in a table.
I Applicable when records are sequentially ordered on the search key

DBS 2017, SL07 49/104 M. Böhlen, IfI@UZH

Sparse Index/2

Dictionary: one entry per page (at the top of the page)

I Often a sparse index contains an index entry for every block in file.
I The index entry stores the least search key value of the block it

points to.

DBS 2017, SL07 50/104 M. Böhlen, IfI@UZH

Dense Index/1

I Dense index:
I An index record appears for each record in the data file.
I Dense index can get large (but still is much smaller than the data

file).
I Handling gets easier if there is exactly one entry for each record.
I Alternative definition (used in some textbooks/systems: the index

contains a record for each search key; the index record points to the
first data record with that search key value; the remaining data
records with that search key are stored sequentially

DBS 2017, SL07 51/104 M. Böhlen, IfI@UZH

Clustering versus Non-Clustering Indexes

I Indexes offer substantial benefits for lookups
I Updating indexes imposes overhead on DB modifications: whenever

data are modified, all index on this data must be updated too
I Clustering indexes can be dense or sparse
I Non-clustering indexes must be dense
I Sequential scan using clustering index is efficient
I A sequential scan using a non-clustering index is expensive since

each record access may fetch a new block from disk
I A sparse index uses less space than a dense index
I The maintenance overhead for insertion and deletion is less for a

sparse index than for a dense index
I In general a sparse index is slower than a dense index for locating

records.

DBS 2017, SL07 52/104 M. Böhlen, IfI@UZH

Multilevel Index/1

I If an index grows the handling becomes more expensive
I A search for a data record requires several disk block reads from the

index file
I Binary search might be used on index file: log2b disk block reads,

where b is the total number of index blocks
I If overflow blocks are used in the index file, binary search is not

applicable, and sequential scan is required: b disk block reads are
required

I To reduce the number of index block I/Os, treat clustering index
kept on disk as a sequential file (like any other data file) and
construct a sparse index on it

I ⇒ multilevel index

DBS 2017, SL07 53/104 M. Böhlen, IfI@UZH

Multilevel Index/2

I Multilevel index
I Inner index: The main index file for

the data
I Outer index: A sparse index on the

index
I If even outer index is too large to fit in

main memory, yet another level of
index can be created, etc.

DBS 2017, SL07 54/104 M. Böhlen, IfI@UZH

Multilevel Index/3

I Index search: querying
I Start at the root
I Check all entries (the entries are sorted) and follow the appropriate

pointer
I Repeat until you arrive at a leaf where the pointer points to the tuple

I Index update: deletion and insertion
I Indexes at all levels must be updated on insertion and deletion in the

data file
I Update starts with the inner index
I Algorithms are extensions of the single-level algorithms

DBS 2017, SL07 55/104 M. Böhlen, IfI@UZH

B+ Tree/1

I The B+ tree is a multi-level index and is an alternative to
sequential index files

I Advantage of B+ tree index files
I Automatically maintains as many levels of index as appropriate
I Automatically reorganizes itself with small, local changes in the face

of insertions and deletions
I reorganization of entire file is not required to maintain performance

I Disadvantage of B+ tree
I Extra insertion and deletion overhead as well as space overhead

I Advantages of B+ trees by far outweigh disadvantages, and they are
used extensively

DBS 2017, SL07 56/104 M. Böhlen, IfI@UZH

B+ Tree/2

I B+ tree: a rooted tree with the following properties
P0 K1 P1 ... Km−1 Pm−1

P1 K1 ... Pm−1 Km−1 Pm

I Balanced tree, i.e., all paths from root to leaf are of the same length
(at most dlogdm/2e(K)e for K search key values)

I A node contains up to m − 1 search key values and m pointers, and
the search key values within a node are sorted

I Nodes are between half and completely full
I Internal nodes have between dm/2e and m children
I Leaf nodes have between d(m − 1)/2e and m - 1 search key values
I Root node: If it is a leaf, it can have between 0 and m − 1 search

key values; otherwise, it has at least 2 children

DBS 2017, SL07 57/104 M. Böhlen, IfI@UZH

Terminology and Notation

I A pair (Pi ,Ki) in a leaf node is an entry
I A pair (Ki ,Pi) in an internal (i.e., non-leaf) node is an entry
I L[i] denotes the value of the ith entry in node L
I Data pointers are stored at leaf nodes only
I Leaf nodes are linked together: the last pointer in a node points to

the next leaf node.

I Note that there are many small variations of B+ tree; textbooks
differ; stick to approach described on these slides.

DBS 2017, SL07 58/104 M. Böhlen, IfI@UZH

B+ Tree Node Structure/1

P1 K1 P2 K2 ... Pm−1 Km−1 PmI Leaf nodes
I K1, . . . ,Km−1 are the search key values
I P1, ...,Pm−1 are pointers to records or buckets of records (for leaf

nodes)
I The search keys in a node are ordered: K1 < K2 < K3 < ... < Km−1
I Pi points to the database tuples with search keys X equal to Ki
I P1,. . . ,Pm−1 either point to a file record with search key value Ki

(unique) or to a bucket of pointers to file records with search key
value Ki (non-unique)

I Bucket structure is only needed if search key does not form a primary
key

I Pointer Pm points to next leaf node in search key order

DBS 2017, SL07 59/104 M. Böhlen, IfI@UZH

B+ Tree Node Structure/2

P0 K1 P1 K2 P2 ... Km−1 Pm−1I Internal nodes
I Form a multi-level sparse index on the leaf nodes
I P0, ...,Pm−1 are pointers to children (for non-leaf nodes)
I Pi points to a subtree with search keys X such that Ki ≤ X < Ki+1

I P0 points to the subtree where all search key values are less than K1
I For 1 ≤ i < m − 1: Pointer Pi points to the subtree where all search

key values are greater than or equal to Ki and less than Ki+1
I Pointer Pm−1 points to the subtree where all search key values are

greater than or equal to Km−1

DBS 2017, SL07 60/104 M. Böhlen, IfI@UZH

Example of B+ Tree/1

I B+ tree for account file (m=5 pointers per node)
I Leaf nodes: between 2 and 4 search key values (d(m − 1)/2e and

m − 1)
I Non-leaf nodes other than root: between 3 and 5 children (d(m/2e

and m))
I Root node: at least 2 children

Perryridge

Brighton Downtown Mianus Perryridge Redwood Round Hill

DBS 2017, SL07 61/104 M. Böhlen, IfI@UZH

Example of B+ Tree/2

I B+ tree for account file (m=3)
I Leaf nodes: between 1 and 2 search key values (d(m − 1)/2e and

m − 1)
I Non-leaf nodes other than root: between 2 and 3 children (d(m/2e

and m))
I Root node: at least 2 children

Perryridge

Mianus Redwood

Brighton Downtown Mianus Perryridge Redwood Round Hill

DBS 2017, SL07 62/104 M. Böhlen, IfI@UZH

Observations about B+ Trees/1

I B+ tree for account file
I Since the inter-node connections are done by pointers, logically close

blocks need not be physically close
I gives flexibility
I increases times for seeks and latency

I The non-leaf levels of the B+ tree form a hierarchy of sparse indexes
(= multilevel index on leaf nodes)

I The B+ tree contains a relatively small number of levels
I dlogdm/2e(K)e for K search key values in the file

DBS 2017, SL07 63/104 M. Böhlen, IfI@UZH

Observations about B+ Trees/2

I Search is efficient, since only a small number of index blocks
need to be read

I Compare to the log2(b) disk block reads for binary search in
sequential index files

I Typically the root node and perhaps the first level nodes are kept in
main memory, which further reduces the disk block reads.

I Insertions and deletions to the main file can be handled
efficiently, as the index can be restructured in logarithmic time

DBS 2017, SL07 64/104 M. Böhlen, IfI@UZH

Queries on B+ Trees/1

I Steps to find all records with a search key value of k (we
assume a dense index):
1. Set C = root node
2. while C is not a leaf node do

Search for the largest search key value ≤ k
if such a value exists, assume it is Ki
then set C = the node pointed to by Pi
else set C = the node pointed to by P0

3. If there is a key value Ki in C such that Ki = k
then follow pointer Pi to the desired record or bucket
else no record with search key value k exists

DBS 2017, SL07 65/104 M. Böhlen, IfI@UZH

Queries on B+ Trees/2

I Example: Find all records with a search key value equal to Mianus
I Start from the root node
I No search key ≤ Mianus exists, thus follow P0
I Mianus is the largest search key ≤ Mianus, thus follow P1
I search key = Mianus exists, thus follow the first data pointer to fetch

record

Perryridge

Mianus Redwood

Brighton Downtown Mianus Perryridge Redwood Round Hill

DBS 2017, SL07 66/104 M. Böhlen, IfI@UZH

Queries on B+ Trees/3

I In processing a query, a path is traversed in the tree from the root
to some leaf node

I For K search key values in the data file, the path length is at most
dlogdm/2e(K)e

I A node generally corresponds to a disk block, typically 4KB, and m
is typically ≈ 400 (10 bytes per index entry)

I With 1 million search key values and m = 400, at most
log200(1, 000, 000) = 3 nodes are accessed in a lookup

I Contrast this with a balanced binary tree (or binary search) with 1
million search key values: around 20 nodes are accessed in a lookup

I This difference is significant since every node access may need a disk
I/O, costing around 20 milliseconds.

DBS 2017, SL07 67/104 M. Böhlen, IfI@UZH

Intuition for B+ Tree Insertions/1
I Insert a record with search key value of k

1. Find the leaf node in which the search key value would appear
2. If the search key value is already there then

I Add record to the data file
3. If the search key value is not there and leaf is not full then

I Add record to the data file
I Insert (pointer, key-value) pair in the leaf node such that the search

keys are still in order
4. If search value is not there and leaf is full then

4.1 Take all entries (including the new one being inserted) in sorted order;
place the first half in the original node and the rest in a new node

4.2 Insert the smallest entry of the new node into the parent of the node
being split

4.3 If the parent is full then split it and propagate the split further up
I Splitting proceeds upwards until a node that is not full is
found

I In the worst case the root node may be split, increasing the height of
the tree by 1

DBS 2017, SL07 68/104 M. Böhlen, IfI@UZH

B+ Tree Insertion Algorithm

Algo: B+TreeInsert(L,k,p)
if L is not yet full then

insert (k,p) into L
else

create new node L’;
if L is a leaf then

L := L + (k, p); k ′ := Ld(m + 1)/2e ;
move entries greater or equal to k’ from L to L’;

else
L := L + (k, p); k ′ := Ldm/2e ;
move entries greater or equal to k’ from L to L’;
delete entry with value k’ from L’

if L is not the root then B+TreeInsert(parent(L),k’,L’) ;
else create new root with children L and L’ and value k’ ;

DBS 2017, SL07 69/104 M. Böhlen, IfI@UZH

B+ Tree Insertions/3

I Example:
I B+ tree before insertion of Clearview

Perryridge

Mianus Redwood

Brighton Downtown Mianus Perryridge Redwood Round Hill

I B+ tree after insertion of Clearview

Perryridge

Clearview Mianus Redwood

Brighton Clearview Downtown Mianus Perryridge Redwood Round Hill

DBS 2017, SL07 70/104 M. Böhlen, IfI@UZH

Review 7.6/1
Assume an empty B+ tree of order 4. Show the B+ tree after the
following insertions: +2 +3 +5 ; +7 ; +11 +17 ; +19 +23 ; +29 +31 ;
+8 +9 ; Show the B+ tree at the points indicated by a semicolon.

+2 +3 +5:
2 3 5

+7:
5

2 3 5 7
+11 +17:

5 11

2 3 5 7 11 17

DBS 2017, SL07 71/104 M. Böhlen, IfI@UZH

Review 7.6/2
+19 +23:

5 11 19

2 3 5 7 11 17 19 23

+29 +31

11

5

2 3 5 7

19 29

11 17 19 23 29 31

+8 +9

11

5 8

2 3 5 7 8 9

19 29

11 17 19 23 29 31

DBS 2017, SL07 72/104 M. Böhlen, IfI@UZH

Intuition for B+ Tree Deletions/1

I Deletion of a record with search key k
1. Find leaf node with (pointer, key-value) entry; remove entry
2. If the node has too few entries due to the removal, and the entries in

the node and a sibling fit into a single node then
I Coalesce siblings, i.e., insert all search key values in the two nodes

into a single node (the one on the left if it exists; the right otherwise)
and delete the other node

I Delete the entry in parent node that is between the two nodes by
applying the deletion procedure recursively

3. If the node has too few entries due to the removal, and the entries in
the node and a sibling do not fit into a single node then

I Redistribute the pointers between the node and a sibling such that
both have more than the minimum number of entries

I Update the corresponding search key value in the parent of the node
I Node deletions may cascade upwards till a node with dm/2e or more

pointers is found. If the root node has only one pointer after
deletion, it is deleted and the child becomes the root.

DBS 2017, SL07 73/104 M. Böhlen, IfI@UZH

B+ Tree Deletion Algorithm
Algo: B+TreeDelete(L,k,p)
delete (p,k) from L;
if L is root with one child then root := child;
else if L has too few entries then

L’ is previous sibling of L [next if there is no previous] ;
k’ is value in parent that is between L and L’;
if entries L and L’ fit on one page then

if L is leaf then move entries from L to L’;
else move k’ and all entries from L to L’;
B+TreeDelete(parent(L),k’,L)

else
if L is leaf then

move last [first] entry of L’ to L;
replace k’ in parent(L) by value of first entry in L [L’];

else
move [first] last entry of L’ to L;
replace k’ in parent(L) by value of first entry of L [L’];
replace value of first entry in L [L’] by k’;

DBS 2017, SL07 74/104 M. Böhlen, IfI@UZH

B+ Tree Deletions/3

I Example: Before deleting Downtown

Perryridgs

Downtown Mianus Redwood

Brighton Clearview Downtown Mianus Perryridge Redwood Round Hill

I After deleting Downtown
Perryridgs

Mianus Redwood

Brighton Clearview Mianus Perryridge Redwood Round Hill

I The removal of the leaf node containing Downtown do not result in
its parent having too little pointers. So the cascaded deletions
stopped with the deleted leaf node’s parent.

DBS 2017, SL07 75/104 M. Böhlen, IfI@UZH

B+ Tree Deletions/4
I Example: Before deleting Perryridge

Perryridge

Mianus Redwood

Brighton Clearview Mianus Perryridge Redwood Round Hill

I After deleting Perryridge
Mianus Perryridge

Brighton Clearview Mianus Redwood Round Hill

I Node with Perryridge becomes underfull and is merged with its
sibling.

I As a result Perryridge node’s parent becomes underfull, and is
coalesced with its sibling (and an entry is deleted from their
parent).

I Root node then has only one child and is deleted.

DBS 2017, SL07 76/104 M. Böhlen, IfI@UZH

B+ Tree Deletions/5

I Example: Before deleting Perryridge

Perryridge

Downtown Mianus Redwood

Brighton Clearview Downtown Mianus Perryridge Redwood Round Hill

I After deleting Perryridge
Mianus

Downtown Perryridge

Brighton Clearview Downtown Mianus Redwood Round Hill

I Parent of leaf containing Perryridge became underfull and borrowed
a pointer from its left sibling (redistribute entries).

I Search key value in the parent’s parent changes as a result.

DBS 2017, SL07 77/104 M. Böhlen, IfI@UZH

Review 7.7/1
Consider the final B+ tree from review 7.6. Show the B+ trees after the
following operations: -19 ; -17 -11 ; -9 ; -2 ; Show the B+ tree at the
points indicated by a semicolon.

11

5 8

2 3 5 7 8 9

19 29

11 17 19 23 29 31

-19:

11

5 8

2 3 5 7 8 9

29

11 17 23 29 31

DBS 2017, SL07 78/104 M. Böhlen, IfI@UZH

Review 7.7/2
Consider the final B+ tree from review 7.6. Show the B+ trees after the
following operations: -19 ; -17 -11 ; -9 ; -2 ; Show the B+ tree at the
points indicated by a semicolon.

-17, -11:

5 8 11

2 3 5 7 8 9 23 29 31

-9:

5 11

2 3 5 7 8 23 29 31

-2:

7 11

3 5 7 8 23 29 31

DBS 2017, SL07 79/104 M. Böhlen, IfI@UZH

Static Hashing/1

I Disadvantage of sequential and B+ tree index file
organization

I B+ tree: index structure must be accessed to locate data
I Sequential file: binary search on large file might be required
I This leads to additional block IO

I Hashing
I provides a way to avoid index structures and to access data directly
I provides also a way of constructing indexes

I A bucket is a unit of storage containing one or more records
(typically a disk block; possibly multiple contiguous disk blocks).

DBS 2017, SL07 80/104 M. Böhlen, IfI@UZH

Static Hashing/2

I Hash file organization
I We obtain the bucket where a record is stored directly from its search

key value using a hash function.
I Constant access time
I Avoids the use of an index

I Hash function h: A function from the set of all search key values K
to the set of all bucket addresses B.

I Function h is used to locate records for access, insertion, and deletion.
I Records with different search key values may map to the same bucket;

thus entire bucket has to be searched sequentially to locate a record.

DBS 2017, SL07 81/104 M. Böhlen, IfI@UZH

Static Hashing/3

I Example: Hash file organization of account file, using branch-name
as key

I 10 buckets
I Binary representation of the ith

character is assumed to be i, e.g.
binary(B) = 2

I Hash function h
I Sum of the binary representations

of the characters modulo 10, e.g.,
I h(Perryridge) = 5
I h(Round Hill) = 3
I h(Brighton) = 3

DBS 2017, SL07 82/104 M. Böhlen, IfI@UZH

Hash Functions/1

I Worst hash function maps all search key values to the same bucket
I This makes access time proportional to the number of search key

values in the file.
I An ideal hash function has the following properties:

I The distribution is uniform, i.e., each bucket is assigned the same
number of search key values from the set of all possible values.

I The distribution is random, so in the average case each bucket will
have the same number of records assigned to it irrespective of the
actual distribution of search key values in the file.

DBS 2017, SL07 83/104 M. Böhlen, IfI@UZH

Hash Functions/2

I Example: 26 buckets and a hash function that maps branch names
beginning with the i-th letter of the alphabet to the i-th bucket

I Simple, but not a uniform distribution, since we expect more branch
names to begin, e.g., with B and R than Q and X.

I Example: Hash function on the search key balance by splitting the
balance into equal ranges: 1 - 10000, 10001 - 20000, etc.

I Uniform but not random distribution
I Typical hash function: Perform computation on the internal binary

representation of the search key.
I e.g., for a string search key, add the binary representations of all

characters in the string and return the sum modulo the number of
buckets

DBS 2017, SL07 84/104 M. Böhlen, IfI@UZH

Bucket Overflow/1

I Bucket overflow: If a bucket has not enough space, a bucket
overflow occurs; two reasons for bucket overflow

I Insufficient buckets: the number of buckets nB must be chosen to
be nB > n/f, where n = total number of records and f = number of
records in bucket

I Skew in distribution of records: A bucket may overflow even when
other buckets still have space. This can occur due to two reasons:

I multiple records have same search key value
I hash function produces non-uniform distribution of key values

I Although the probability of bucket overflow can be reduced, it
cannot be eliminated!

I Handled by using overflow buckets

DBS 2017, SL07 85/104 M. Böhlen, IfI@UZH

Bucket Overflow/2

I Overflow chaining (closed hashing)
I If a record is inserted into bucket b, and b is already full, an overflow
bucket is provided, where the record is inserted

I The overflow buckets of a given bucket are chained together in a list.

DBS 2017, SL07 86/104 M. Böhlen, IfI@UZH

Hash Indexes

I Hash index: organizes the search key values with their associated
record pointers into a hash file structure.

I Buckets contain search keys and pointers to the data records
I Multiple (search key, pointer)-pairs might be required (different from

index-sequential file)

I Example: Index on account
I h: Sum of digits in

account-number modulo 7

DBS 2017, SL07 87/104 M. Böhlen, IfI@UZH

Deficiencies of Static Hashing/1

I In static hashing, the fixed set B of bucket addresses presents a
serious problem

I Databases grow and shrink with time
I If initial number of buckets is too small, performance will degrade due

to too much overflows.
I If file size at some point in the future is anticipated and number of

buckets allocated accordingly, significant amount of space is wasted
initially.

I If database shrinks, again space will be wasted
I One option is periodic re-organization of the file with a new hash

function, but it is very expensive.
I These problems can be avoided by using techniques that allow the

number of buckets to be modified dynamically
I ⇒ dynamic hashing

DBS 2017, SL07 88/104 M. Böhlen, IfI@UZH

Deficiencies of Static Hashing/2
I Dynamic hashing: Allows the hash function to be modified

dynamically.
I Extendable hashing: one form of dynamic hashing

I Hash function h generates values over a large range - typically b-bit
integers, with b = 32.

I At any time use only a prefix of h to index into the bucket address
table

I Let the size of the prefix be i bits, 0 ≤ i ≤ 32
I Bucket address table has size = 2i

I Value of i grows and shrinks as the size of DB grows and shrinks;
initially i = 0

I The actual number of buckets is ≤ 2i

I Multiple entries in the bucket address table may point to the same
bucket.

I All such entries have a common hash prefix, ij ≤ i, which is stored
with each bucket j

I The number of buckets changes dynamically due to coalescing and
splitting of buckets.

DBS 2017, SL07 89/104 M. Böhlen, IfI@UZH

Extendable Hashing
I General structure of extendable hashing

I i indicates the number of bits that are used from the hash value.
I Consecutive entries may point to the same bucket (leads to a smaller

prefix associated with this bucket).
I In this structure, i2 = i3 = i = 2, whereas i1 = i − 1 = 1 (thus, two

entries point to bucket 1)

DBS 2017, SL07 90/104 M. Böhlen, IfI@UZH

Lookup in Extendable Hashing

I Lookup: Locate the bucket containing search key value Kj
1. Compute h(Kj) = X
2. Use the first i (hash prefix) high order bits of X as a displacement

into the bucket address table, and follow the pointer to the
appropriate bucket

DBS 2017, SL07 91/104 M. Böhlen, IfI@UZH

Updates in Extendable Hashing/1

I Insertion of a record with search key value Kj
1. Use lookup to locate the bucket, say bucket j
2. If there is room in bucket j then

I Insert the record in the bucket.
3. Else

I The bucket must be split and insertion re-attempted

DBS 2017, SL07 92/104 M. Böhlen, IfI@UZH

Updates in Extendable Hashing/2

I Split a bucket j when inserting search key value Kj
I If i > ij (more than one pointer to bucket j) then

I Allocate a new bucket z, and set ij and iz to the old ij + 1.
I Update bucket address table entries that point to j according to

prefix (some will now point to z)
I Remove and reinsert each record in bucket j.
I Recompute new bucket for Kj and insert record in the bucket (further

splitting is required if the bucket is still full).
I If i = ij (only one pointer to bucket j) then

I Increment i and double the size of the bucket address table.
I Replace each entry in the table by two entries that point to the same

bucket.
I Recompute new bucket address table entry for Kj

I Overflow buckets needed instead of splitting (or in addition) in some
cases, e.g., too many records with same hash value.

DBS 2017, SL07 93/104 M. Böhlen, IfI@UZH

Updates in Extendable Hashing/3

I Deletion of a key value K
1. Locate K in its bucket and remove it (search key from bucket and

record from the file).
2. The bucket itself can be removed if it becomes empty (with

appropriate updates to the bucket address table).
3. Coalescing of buckets can be done (can coalesce only with a buddy

bucket having same value of ij and same ij -1 prefix, if it is present).
4. Decreasing bucket address table size is also possible.

I Note: Decreasing bucket address table size is an expensive
operation and should be done only if number of buckets becomes
much smaller than the size of the table

DBS 2017, SL07 94/104 M. Böhlen, IfI@UZH

Review 7.8/1
Consider the following hash function: h(Brighton) = 0010, h(Downtown)
= 1010, h(Mianus) = 1100, h(Perryridge) = 1111, h(Redwood) = 0011.
Assume a bucket size of two and extendable hashing with an address
table size of 1. Show the hash table after the following modifications:

I insert 1 Brighton and 2 Downtown records
I insert 1 Mianus record
I insert 1 Redwood record
I insert 3 Perryridge records

DBS 2017, SL07 95/104 M. Böhlen, IfI@UZH

Review 7.8/2

0 0 1

1
Brighton

1
Downtown
Downtown

2

1
Brighton

2
Downtown
Downtown

2
Mianus

2

1
Brighton
Redwood

2
Downtown
Downtown

2
Mianus

3

1
Brighton
Redwood

2
Downtown
Downtown

3
Mianus

3
Perryridge
Perryride

3
Perryridge

DBS 2017, SL07 96/104 M. Böhlen, IfI@UZH

Extendable Hashing: Discussion

I Benefits of extendable hashing
I Hash performance does not degrade with growth of file
I Minimal space overhead
I No buckets are reserved for future growth, but are allocated

dynamically.
I Disadvantages of extendable hashing

I Extra level of indirection to find desired record
I Bucket address table may itself become very big (larger than

memory)
I Need a tree structure to locate desired record in the structure

I Changing size of bucket address table is expensive

DBS 2017, SL07 97/104 M. Böhlen, IfI@UZH

Ordered Indexing versus Hashing

I Cost of periodic re-organization
I Hashmaps (e.g., Google’s sparse and dense hash maps) do not

provide constant insert/lookup time because of reorganization
I Relative frequency of insertions and deletions

I B+ trees are better than hashing if there are many database updates
I Is it desirable to optimize average access time at the expense of

worst-case access time?
I Hashing has a better average time but no worst case guarantees

I Expected type of queries:
I Hashing is generally better at retrieving records having a specified

value of the key.
I If range queries are common, ordered indexes are to be preferred

I There is no ordering in hash organization, and hence there is no
notion of "next record in sort order".

DBS 2017, SL07 98/104 M. Böhlen, IfI@UZH

Berkeley DB

DBS 2017, SL07 99/104 M. Böhlen, IfI@UZH

Index Definition in SQL

I SQL-92 does not define syntax for indexes because these are not
considered part of the logical data model

I All DBMSs (must) provide support for indexes
I Create an index:

create index <IdxName> on <RelName> (<AttrList>)
E.g,: create index BrNaIdx on branch (branch-name)

I Create unique index to indirectly specify and enforce the condition
that the search key is a candidate key.

I Not really required if SQL unique integrity constraint is supported
I To drop an index: drop index <index-name>

E.g,: drop index BrNaIdx

DBS 2017, SL07 100/104 M. Böhlen, IfI@UZH

Indexes in PostgreSQL

I CREATE [UNIQUE] INDEX name ON table_name
”(” col [DESC] { "," col [DESC] } ”)” [. . .]

I CREATE INDEX MjIdx ON enroll (Major)

I CREATE INDEX MjIdx ON enroll USING HASH (Major)

I CREATE INDEX MjMnIdx ON Enroll (Major, Minor)

I Properties of indexes:
I Indexes are automatically maintained as data are inserted, deleted,

and updated.
I Indexes slow down database modification statements.
I Creating an index can take a long time.

DBS 2017, SL07 101/104 M. Böhlen, IfI@UZH

Indexes in Oracle
I B+ tree indexes in Oracle

CREATE [UNIQUE] INDEX name ON table_name
”(” col [DESC] { "," col [DESC] } ”)” [pctfree n] [. . .]

I pct_free specifies how many percent of a index page are left unfilled
initially (dafult to 10%)

I In index definitions UNIQUE should not be used because it is a logical
concept.

I Oracle creates a B+ Tree index for each unique (and primary key)
declaration.

CREATE TABLE BOOK
ISBN INTEGER, Author VARCHAR2(30), . . .);

CREATE INDEX book_auth ON book(Author);

I Creating a hash-partitioned global index:
CREATE INDEX CustLNameIX ON customers(LName)
GLOBAL PARTITION BY HASH (LName)
PARTITIONS 4;

DBS 2017, SL07 102/104 M. Böhlen, IfI@UZH

Summary/1

I Physical storage media
I storage hierarchy: cache, RAM, flash, disk, optical disk, tape, ...

I Accessing the storage
I block-based access:

I know characteristics of disks
I compute number of IOs
I compute execution time

I buffer manager
I Organization of files

I fixed-length record, variable-length record
I heap file (unordered), sequential file (ordered), hash file

DBS 2017, SL07 103/104 M. Böhlen, IfI@UZH

Summary/2

I Definition of and differences between index types
I clustering and non-clustering index
I dense and sparse index

I B+ tree
I universal database access structure; also for range predicates
I definition (node, leaf, non-leaf, entry)
I insertion and deletion

I Hashing
I static and extendable hashing
I no index structure needed for primary index (hash function gives

record location directly)
I good for equality predicates (used heavily in applications)

I Index definition in SQL

DBS 2017, SL07 104/104 M. Böhlen, IfI@UZH

Database Systems
Spring 2017

Query Processing and Query
Optimization

SL08
I Query Processing

I Sorting, Partitioning
I Selection, Join

I Query Optimization
I Cost estimation
I Rewriting of relational algebra expressions
I Rule- and cost-based query optimization

Reviews: 15 22 31 32 38 44 56 63 73

DBS 2017, SL08 1/82 M. Böhlen, IfI@UZH

Literature and Acknowledgments

Reading List for SL08:
I Database Systems, Chapter 18, Sixth Edition, Ramez Elmasri and

Shamkant B. Navathe, Pearson Education, 2010.

These slides were developed by:
I Michael Böhlen, University of Zürich, Switzerland
I Johann Gamper, Free University of Bozen-Bolzano, Italy

The slides are based on the following text books and associated material:
I Database Systems, Sixth Edition, Ramez Elmasri and Shamkant B.

Navathe, Pearson Education, 2010.
I A. Silberschatz, H. Korth, and S. Sudarshan: Database System

Concepts, McGraw Hill, 2006.

DBS 2017, SL08 2/82 M. Böhlen, IfI@UZH

PostgreSQL Example/1

DBS 2017, SL08 3/82 M. Böhlen, IfI@UZH

PostgreSQL Example/2

DBS 2017, SL08 4/82 M. Böhlen, IfI@UZH

Query Processing and Optimization

I One of the most important tasks of a DBMS is to figure out an
efficient evaluation plan (also termed execution plan or access
plan) for high level statements.

I It is particularly important to have evaluation strategies for:
I Selections (search conditions)
I Joins (combining information in relational database)

I Query processing is a
3-step process:
1. Parsing and translation

(from SQL to RA)
2. Optimization (refine RA

expression)
3. Evaluation (exec RA

operators)

DBS 2017, SL08 5/82 M. Böhlen, IfI@UZH

Query Processing

I Measuring the query costs
I Sorting
I Optimizing selections
I Optimizing joins

DBS 2017, SL08 6/82 M. Böhlen, IfI@UZH

Measuring the Query Costs/1

I Query cost is generally measured as the total elapsed time for
answering a query.

I Many factors contribute to time cost and are considered in real
DBMS, including

I CPU cost and network communication
I Disk access

I Difference between sequential and random I/O
I Buffer Size

I Having more memory reduces need for disk access
I Amount of real memory available for buffers depends on other

concurrent OS procsesses, and is difficult to determine ahead of
actual execution.

I We often use worst case estimates, assuming only the minimum
amount of memory needed for the operation is available

DBS 2017, SL08 7/82 M. Böhlen, IfI@UZH

Measures of Query Cost/2

I Typically disk access is the predominant cost, which is relatively
easy to estimate. The cost of disk accesses is measured by taking
into account

I Number of seeks * average-seek-cost
I Number of blocks read * average-block-read-cost
I Number of blocks written * average-block-write-cost

I Cost to write a block is greater than cost to read a block, since data is
read back after being written to ensure that the write was successful

I For simplicity
I we just use number of block transfers from disk as the cost

measure, and
I we do not include cost of writing output to disk

DBS 2017, SL08 8/82 M. Böhlen, IfI@UZH

Sorting

I Sorting is important for for several reasons:
I SQL queries can specify that the output is sorted
I Several relational operations can be implemented efficiently if the

input relations are first sorted, e.g., joins
I Often sorting is a crucial first step for efficient algorithms

I We may build an index on the relation, and then use the index to
read the relation in sorted order.

I With an index sorting is only logical and not physical. This might lead
to one disk block access for each tuple (can be very expensive)

I It may be desirable/necessary to order the records physically.
I Relation fits in memory: Use techniques like quicksort
I Relation does not fit in main memory: Use external sorting, e.g.,
external sort-merge is a good choice

DBS 2017, SL08 9/82 M. Böhlen, IfI@UZH

External Sort-Merge/1
I Step 1: Create N sorted runs (M is # blocks in buffer)

1. Let i be 0 initially.
2. Repeatedly do the following until the end of the relation

2.1 Read M blocks of the relation (or the rest) into memory
2.2 Sort the in-memory blocks
2.3 Write sorted data to run file Ri ;
2.4 Increment i.

I Step 2: Merge runs (N-way merge) (assume N < M)
(Use N blocks in memory to buffer input runs, and 1 block to buffer
output)
1. Read the first block of each run Ri into its buffer page
2. Repeat until all input buffer pages are empty

2.1 Select the first record (in sort order) among all buffer pages
2.2 Write the record to the output buffer. If the output buffer is full write

it to disk.
2.3 Delete the record from its input buffer page.
2.4 If the buffer page becomes empty then

read the next block (if any) of the run into the buffer

DBS 2017, SL08 10/82 M. Böhlen, IfI@UZH

External Sort-Merge/2

I If N ≥ M, several merge passes (step 2) are required:
I In each pass, contiguous groups of M − 1 runs are merged
I A pass reduces the number of runs by a factor of M − 1, and creates

runs longer by the same factor.
I E.g. If M = 11, and there are 90 runs, one pass reduces the number

of runs to 9, each run being 10 times the size of the initial runs
I Repeated passes are performed until all runs have been merged into

one.

DBS 2017, SL08 11/82 M. Böhlen, IfI@UZH

External Sort-Merge/3

I Example: M = 3, 1 block = 1 tuple

DBS 2017, SL08 12/82 M. Böhlen, IfI@UZH

External Sort-Merge/4

I Cost analysis
I br = number of blocks in r
I Initial number of runs: br/M
I Total number of merge passes required: dlogM−1(br/M)e

I The number of runs decreases by a factor of M-1 in each merge pass
I Disk accesses for initial run creation and in each pass is 2br

I Exception: For final pass there is no write cost
I Thus total number of disk accesses for external sorting:

Cost = br (2 dlogM−1(br/M) e + 1)

I Example: Cost analysis of previous example
I 12 (2 * 2 + 1) = 60 disk block transfers

DBS 2017, SL08 13/82 M. Böhlen, IfI@UZH

Selection Evaluation Strategies/1

I The selection operator:
I select * from r where θ
I σθ(r)

is used to retrieve those records that satisfy the selection condition

I The strategy/algorithm for the evaluation of the selection operator
depends

I on the type of the selection condition
I on the available index structures

DBS 2017, SL08 14/82 M. Böhlen, IfI@UZH

Review 8.1
Assume a B+ tree index on (BrName, BrCity). What would be the best
way to evaluate the query:

σBrCity<′Brighton′ ∧ Assets<5000 ∧ BrName=′Downtown′(branch)

1. use index to locate 1st tuple with BrName = ’Downtown’
2. retrieve successive data tuples as long as BrCity is less than

’Brighton’
3. for each tuple we check if Asset < 5000 (only such tuples are

returned)
index:
BrName BrCity ptr
CS Oerlikon p1
CS Uster p1
CS ZH p1
UBS Aarau p1
UBS Bern p1

DBS 2017, SL08 15/82 M. Böhlen, IfI@UZH

Selection Evaluation Strategies/2

Types of selection conditions:

I Equality queries: σa=v (r)

I Range queries: σa≤v (r) or σa≥v (r)
I Can be implemented by using

I linear file scan
I binary search
I using indices

I Conjunctive selection: σθ1∧θ2···∧θn(r)

I Disjunctive selection: σθ1∨θ2···∨θn(r)

DBS 2017, SL08 16/82 M. Böhlen, IfI@UZH

Selection Evaluation Strategies/3

Basic search methods for selection operator:

I File scan
I Class of search algorithms that read the file line by line to locate

and retrieve records that fulfill a selection condition, i.e., σθ(r)
I Lowest-level operator to access data

I Index scan
I Class of search algorithms that use an index
I Assume B+ tree index and equality conditions, i.e., σa=v (r)

DBS 2017, SL08 17/82 M. Böhlen, IfI@UZH

Selection Evaluation Strategies/4

I A1 Linear search: Scan each file block and test all records to see
whether they satisfy the selection condition.

I Fairly expensive, but always applicable (regardless of indexes,
ordering, selection condition, etc)

I Fetching a contiguous range of blocks from disk has been optimized
by disk manufacturers and is cheap in terms of seek time and
rotational delay (pre-fetching)

I Cost estimate (br = number of blocks in file):
I Worst case: Cost = br
I If the selection is on a key attribute: Average cost = br/2 (stop

when finding record)

DBS 2017, SL08 18/82 M. Böhlen, IfI@UZH

Selection Evaluation Strategies/5

I A2 Binary search: Apply binary search to locate records that
satisfy selection condition.

I Only applicable if
I the blocks of a relation are stored contiguously (very rare), and
I the selection condition is a comparison on the attribute on which the

file is ordered
I Cost estimate for σA=v (r):

I dlog2(br)e — cost of locating the first tuple by a binary search on the
blocks

I Plus number of blocks containing records that satisfy selection
condition

DBS 2017, SL08 19/82 M. Böhlen, IfI@UZH

Selection Evaluation Strategies/6

I A3 Primary index + equality on candidate key
I Retrieve a single record that satisfies the equality condition
I Cost = HTi + 1 (height of B+ tree + 1 data block)

I A4 Primary index + equality on non-candidate key
I Retrieve multiple records, where records are on consecutive blocks
I Cost = HTi + # blocks with records with given search key

I A5 Secondary index + equality on search-key
I Retrieve a single record if the search-key is a candidate key

I Cost = HTi + 1
I Retrieve multiple records if search-key is not a candidate key

I Cost = HTi + # buckets with search-key value + # retrieved records
I Can be very expensive, since each record may be on a different block
I Linear file scan may be cheaper if many records have to be fetched

DBS 2017, SL08 20/82 M. Böhlen, IfI@UZH

Selection Evaluation Strategies/7

I A6 Primary index on A + non-equality condition
I σA≥v : Use index to find first tuple ≥ v ; then scan relation sequentially
I σa≤v : Scan relation sequentially until first tuple > v ; do not use index.

I A7 Secondary index on A + non-equality condition
I σA≥v : Use index to find first index entry ≥ v ; scan index sequentially

from there, to find pointers to records.
I σA≤v : Scan leaf pages of index finding record pointers until first entry
> v

I Requires in the worst case one I/O for each record; linear file scan
may be cheaper if many records are to be fetched

DBS 2017, SL08 21/82 M. Böhlen, IfI@UZH

Review 8.2
Consider relations r1(A,B,C), r2(C ,D,E), r3(E ,F) with keys
underlined and cardinalities |r1| = 1000, |r2| = 1500, |r3| = 750.

I Estimate the size of r1 1 r2 1 r3
I Give an efficient strategy for computing the result and compute its

cost

I |r1 1 r2| ≤ 1000
I |(r1 1 r2) 1 r3| ≤ 1000
I (primary) index on r2.C and r3.E (create if necessary)
for each tuple t in r do

look up 1 tuple in r2 using index on r2.C;
look up 1 tuple in r3 using index on r3.E

I cost of joins: |r1| ∗ (HTr2.C + HTr2.C) (independent of size of
r2 and r3)

I cost index creation:
O(br1∗logM(br1/M))+O(br2∗logM(br2/M))+O(br2)+O(br3)

DBS 2017, SL08 22/82 M. Böhlen, IfI@UZH

Join Evaluation Strategies

I There exist several different algorithms for the evaluation of join
operations:

I Nested loop join
I Block nested loop join
I Indexed nested loop join
I Merge join
I Hash join

I Choice based on cost estimate
I Examples use the following relations:

I customer = (CustName, CustStreet, CustCity)
I Number of records: nc = 10′000
I Number of blocks: bc = 400

I depositor = (CustName, AccNumber)
I Number of records: nd = 5′000
I Number of blocks: bd = 100

DBS 2017, SL08 23/82 M. Böhlen, IfI@UZH

Nested Loop Join/1

I Compute the theta join: r 1θ s
for each tuple tr in r do

for each tuple ts in s do
if pair (tr ,t − s) satisfies join condition θ then

add tr ◦ ts to result

I r is called the outer relation, s the inner relation of the join.
I Always applicable. Requires no indices and can be used with any

kind of join condition.
I Expensive since it examines every pair of tuples.

DBS 2017, SL08 24/82 M. Böhlen, IfI@UZH

Nested Loop Join/2

I Order of r and s important: Relation r is read once, relation s is
read up to |r | times

I Worst case: Only one block of each relation fits in main memory
Cost = nr ∗ bs + br

I If the smaller relation fits entirely in memory, use that as the inner
relation.
Cost = bs + br

I Example:
I Depositor as outer relation d 1 c:

5’000 * 400 + 100 = 2’000’100 block accesses
I Customer as outer relation c 1 d :

10’000 * 100 + 400 = 1’000’400 block accesses
I Smaller relation (depositor) fits into memory:

400 + 100 = 500 blocks

DBS 2017, SL08 25/82 M. Böhlen, IfI@UZH

Block Nested Loop Join/1

I Simple nested loop algorithm is not used directly since it is not
block-based.

I Variant of nested loop join in which every block of the inner relation
(s) is paired with every block of the outer relation (r).

for each block Br in r do
for each block Bs in r do

for each tuple tr in r do
for each tuple ts in s do

if pair (tr ,t − s) satisfies join condition θ then
add tr ◦ ts to result

DBS 2017, SL08 26/82 M. Böhlen, IfI@UZH

Block Nested Loop Join/2

I r 1 s
I Worst case: Cost = br ∗ bs + br

I Each block in the inner relation s is read once for each block in the
outer relation (instead of once for each tuple in the outer relation)

I Best case: Cost = bs + br
I Example: Compute depositor 1 customer, with depositor as the

outer relation.
I Block nested loop join:

Cost = 100 * 400 + 100 = 40’100 blocks (worst case)

DBS 2017, SL08 27/82 M. Böhlen, IfI@UZH

Block Nested Loop Join/3

I Improvements to nested loop and block nested loop algorithms (M
is the number of main memory blocks):

I Block nested loop: Use M-2 disk blocks for outer relation and two
blocks to buffer inner relation and output; join each block of the inner
relation with M-2 blocks of the outer relation.

I Cost = dbr/(M − 2)e ∗ bs + br

I If equi-join attribute forms a key on inner relation, stop inner loop on
first match.

I Scan inner loop forward and backward alternately, to make use of the
blocks remaining in buffer (with LRU replacement).

DBS 2017, SL08 28/82 M. Böhlen, IfI@UZH

Indexed Nested Loop Join/1

I Index lookups can replace file scans if
I join is an equi-join or natural join and
I index is available on the inner relation’s join attribute
I index can be constructed just to compute a join

I For each tuple tr in the outer relation r, use the index to look up
tuples in s that satisfy the join condition with tuple tr .

I Worst case: Buffer has space for only one page of r, and, for each
tuple in r perform an index lookup on s.

I Cost = nr ∗ c + br
I c is the cost of traversing the index and fetching all matching s tuples

for one tuple of r
I c can be estimated as cost of a single selection on s using the join

condition.
I If indexes are available on join attributes of both r and s, use

relation with fewer tuples as the outer relation.

DBS 2017, SL08 29/82 M. Böhlen, IfI@UZH

Indexed Nested Loop Join/2

I Example: Compute depositor x customer, with depositor as the
outer relation.

I Let customer have a primary B+ tree index on the join attribute
CustName, which contains 20 entries in each index node.

I Since customer has 10’000 tuples, the height of the tree is 4, and one
more access is needed to find the actual data

I depositor has 5’000 tuples and 100 blocks
I Indexed nested loops join:

Cost = 5’000 * 5 + 100 = 25’100 disk accesses.

DBS 2017, SL08 30/82 M. Böhlen, IfI@UZH

Review 8.3/1
Consider e 1SSN=MgrSSN d with rd = 50 (number of tuples in relation d),
re = 5000, bd = 10 (number of blocks for relation d), be = 2000, nb = 6
(number of available buffer blocks).
Compute the number of IOs for the following evaluation strategies:
1. Block NL, e 1 d , 4 blocks for e (1 block for d , 1 block for result)

dbe/4e ∗ bd + be = 7′000

2. Block NL, e 1 d , 4 blocks for D

be ∗ bd + be = 22′000

DBS 2017, SL08 31/82 M. Böhlen, IfI@UZH

Review 8.3/2
3. Block NL, d 1 e, 4 blocks for D

dbd/4e ∗ be + bd = 6′010

4. Indexed NL, e 1 d

we assume a B+ index on d.MgrSSN of height 4
be + ne(4 + 1) = 17′000

5. Indexed NL, d 1 e

bd + nd(4 + 1) = 260

DBS 2017, SL08 32/82 M. Böhlen, IfI@UZH

Merge Join/1

I Basic idea of merge join: Use two pointers pr and ps that are
initialized to the first tuple in r and s and move in a synchronized
way through the sorted relations.

I Algorithm
1. Sort both relations on their

join attributes (if not already
sorted on the join attribute).

2. Scan r and s in sort order
and return matching tuples.

3. Move the tuple pointer of the
relation that is less far
advanced in sort order (more
complicated if the join
attributes are not unique -
every pair with same value on
join attribute must be
matched).

DBS 2017, SL08 33/82 M. Böhlen, IfI@UZH

Merge Join/2

I Applicable for equi-joins and natural joins only
I If all tuples for any given value of the join attributes fit in memory

I One file scan of r and s is enough
I Cost = br + bs (+ the cost of sorting if relations are not sorted)

I Otherwise, a block nested loop join must be performed between the
tuples with the same attributes

I If the relation are not sorted appropriately we first have to sort
them. The combined operator is called a sort-merge join.

DBS 2017, SL08 34/82 M. Böhlen, IfI@UZH

Hash Join/1

partition books on subject; partition 0 =
cs, partition 1 = psy, partition 2 = eco

I Applicable for equi-joins and natural joins only.
I Partition tuples of r and s using the same hash function h, which

maps the values of the join attributes to the set 0, 1, ..., n
I Partitions of r-tuples: r0, r1, ..., rn

I All tr ε r with h(tr [JoinAttrs]) = i
are put in ri

I Partitions of s-tuples: s0, s1, .., sn
I All ts ε s with h(ts [JoinAttrs]) = i

are put in si

I r -tuples in ri need only to be compared
with s-tuples in si

I an r -tuples and s-tuples that satisfy the join condition have the same
hash value i, and are mapped to ri and si , respectively.

DBS 2017, SL08 35/82 M. Böhlen, IfI@UZH

Hash Join/2

1st hash functions: partition books based on category
(cs, psy, eco, ...); 2nd hash function must partition on
something different than category

I Algorithm for the hash join of r and s
1. Partition the relation s using hash function h. (When partitioning a

relation, one block of memory is reserved as the output buffer for
each partition.)

2. Partition r similarly.
3. For each i :

3.1 Load si into memory and build an in-memory hash index on it using
the join attribute. This hash index uses a different hash function than
the earlier one h.

3.2 Read the tuples in ri from the disk (block by block). For each tuple tr
probe (locate) each matching tuple ts in si using the in-memory hash
index. Output the concatenation of their attributes as result tuple.

I Relation s is called the build input and r is called the probe input.

DBS 2017, SL08 36/82 M. Böhlen, IfI@UZH

Hash Join/3

PostgreSQL uses hash join if build relation fits into me-
mory; uses external sort merge otherwise; implementation
restriction

I Cost analysis of hash join
I Partitioning of the two relations: 2 * (br + bs)

I Complete reading of the two relations plus writing back
I The build and probe phases read each of the partitions once: br + bs
I Cost = 3 ∗ (br + bs)

I Example: customer 1 depositor
I Assume that memory size is 20 blocks
I bd = 100 and bc = 400.
I depositor is to be used as build input. Partition it into five partitions,

each of size 20 blocks. This partitioning can be done in one pass.
I Similarly, partition customer into five partitions, each of size 80. This

is also done in one pass.
I Partition size of probe relation needs not to fit into main memory!

I Therefore total cost = 3 * (100 + 400) = 1500 block transfers
I Ignores cost of writing partially filled blocks

DBS 2017, SL08 37/82 M. Böhlen, IfI@UZH

Review 8.4
Consider bc = 400, nc = 10′000, bd = 100, nd = 5′000, disk IO time =
10 msec, memory access time = 60 nsec. Compare the execution times
for NL and sort merge (best case).

I # of IOs = bc + bd for both cases (best case = enough
memory, relations already sorted)

I # of tuple comparisons in memory
I NL = nc ∗ nd
I SM = nc + nd (unique attribute values)

I exact time NL:
10 ∗ (bc + bd) + 60 ∗ 10−6(nc ∗ nd) = 5msec + 3msec = 8msec

I exact time SM:
10∗(bc +bd)+60∗10−6(nc +nd) = 5msec+0.9msec = 5.9msec

I often IO time >> MEM time (and MEM is omitted for
complexity)

I sometime MEM can become relevant (CPU versus IO bound)

DBS 2017, SL08 38/82 M. Böhlen, IfI@UZH

Query Optimization

I Cost estimation
I Transformation of relational algebra expressions (rewrite rules)
I Rule-based (aka heuristic) query optimization
I Cost-based query optimization

DBS 2017, SL08 39/82 M. Böhlen, IfI@UZH

Query Optimization/1

I Alternative ways of evaluating a query because of
I Equivalent expressions
I Different algorithms for each operation

I A query evaluation plan (query plan) is an annotated RA
expression that specifies for each operator how to evaluate it.

I The cost difference between a good and a bad query evaluation plan
can be enormous

I e.g., performing r × s followed by a selection r.A = s.B is much
slower than performing a join on the same condition

I The query optimizer needs to estimate the cost of operations
I Depends critically on statistical information about relations
I Estimates statistics for intermediate results to compute cost of

complex expressions

DBS 2017, SL08 40/82 M. Böhlen, IfI@UZH

Query Optimization/2

I Step 1: Parsing and translation
I Translate the query into its internal form (query tree)
I The query tree corresponds to a relational algebra (RA) expression
I Each RA expression can be written as a tree where the algebra

operator is the root and the argument relations are the children.
I Example:

I SQL query: select balance from account where balance < 2500
I RA expression: σbalance<2500(πbalance(account))
I Tree:

σbalance<2500
|

πbalance
|

account

DBS 2017, SL08 41/82 M. Böhlen, IfI@UZH

Query Optimization/3

I Step 2: Optimization
I An RA expression may have many (semantically) equivalent

expressions
I The following two RA expressions are equivalent:

I σbalance<2500(πbalance(account))
I πbalance(σbalance<2500(account))

I Each RA operation can be evaluated using one of several different
algorithms.

I Thus, an RA expression can be evaluated in many ways.

DBS 2017, SL08 42/82 M. Böhlen, IfI@UZH

Query Optimization/4

I Step 2: Optimization
I Evaluation plan: Annotated RA expression that specifies for each

operator detailed instructions on how to evaluate it.
I use index on balance to find

accounts with balance < 2500
I can perform complete relation

scan and discard accounts with
balance ≥ 2500

πbalance
|
σbalance<2500; use index 1
|
account

I Goal of query optimization: Among all equivalent evaluation plans
choose the one with lowest cost.

I Cost is estimated using statistical information from the database
catalog, e.g., number of tuples in each relation, size of tuples, etc.

I Step 3: Evaluation
I The query-execution engine takes an evaluation plan, executes that

plan, and returns the answers.

DBS 2017, SL08 43/82 M. Böhlen, IfI@UZH

Review 8.5
Display the trees that correspond to the following algebra expressions:

I RA1 = πA(R1 1 σX=Y (R2 1 πB,C (R3− R4) 1 R5))
I RA2 = πA(R1) ∪ σX>5(R2)

∪

πA σX>5

R3 R4

πA

1

r1 σX=Y

1

1 r5

r2 πB,C

−

r3 r4

DBS 2017, SL08 44/82 M. Böhlen, IfI@UZH

Query Optimization/5

I Example: Find the names of all customers who have an account at
any branch located in Brooklyn.

I πCustName(σBranchCity=′Brooklyn′(branch ./ (account ./ depositor)))
I Produces a large intermediate relation
I Transformation into a more efficient expression
πCustName(σBranchCity=′Brooklyn′ (branch) ./ (account ./ depositor))

DBS 2017, SL08 45/82 M. Böhlen, IfI@UZH

Query Optimization/6

I Goal of query optimizer: Find the most efficient query evaluation
plan for a given query.

I Cost-based optimization:
1. Generate logically equivalent expressions by using equivalence rules to

rewrite an expression into an equivalent one
2. Annotate resulting expressions with information about

algorithms/indexes for each operator
3. Choose the cheapest plan based on estimated cost

I Rule-based/heuristic optimization:
1. Generate logically equivalent expressions, controlled by a set of

heuristic query optimization rules
I In general, it is not possible to identify the optimal query tree since

there are too many. Instead, a reasonably efficient one is chosen.

how many? r1 1 ... 1 rn. all permutations. exponentially many!

DBS 2017, SL08 46/82 M. Böhlen, IfI@UZH

Statistical Information/1

I The cost of an operation depends on the size and other statistics of
its inputs, which is partially stored in the database catalog and can
be used to estimate statistics on the results of various operations.

I nr : number of tuples in a relation r.
I br : number of blocks containing tuples of r.
I sr : size of a tuple of r.
I fr : blocking factor of r, i.e., the number of tuples of r that fit into

one block.
I V(A, r): number of distinct values that appear in r for attribute A;

same as the size of πA(r).
I SC(A, r): selection cardinality of attribute A of relation r ; average

number of records that satisfy equality on A.

SC(A, r) = nr/V (A, r)

DBS 2017, SL08 47/82 M. Böhlen, IfI@UZH

Statistical Information/2

I fi : average fan-out of internal nodes of index i, for tree-structured
indexes such as B+ trees.

I HTi : number of levels in index i, i.e., the height of i.
I For a B+-tree on attribute A of relation r , HTi = dlogfi (V (A, r))e
I For a hash index, HTi is 1.
I LBi : number of lowest-level index blocks in i , i.e, the number of

blocks at the leaf level of the index.
I For accurate statistics, the catalog information has to be updated

every time a relation is modified.
I Many systems update statistics only during periods of light system

load (or when requested explicitly), thus statistics is not completely
accurate.

I Plan with lowest estimated cost might not be the cheapest
I PostgreSQL: run ANALYZE once a day

DBS 2017, SL08 48/82 M. Böhlen, IfI@UZH

Rewriting Relational Algebra Expressions

I Two relational algebra expressions are equivalent if on every legal
database instance the two expressions generate the same set of
tuples

I Note: order of tuples is irrelevant
I Two expressions in the multiset version of the relational algebra are

said to be equivalent if on every legal database instance the two
expressions generate the same multiset of tuples

I An equivalence rule states that two different expressions are
equivalent and can replace each other

DBS 2017, SL08 49/82 M. Böhlen, IfI@UZH

Equivalence Rules/1
I E ,E1, . . . = RA expressions
θ, θ1, . . . = predicates/conditions

I ER1 Conjunctive selection operations can be deconstructed into a
sequence of individual selections.

no good index

σθ1∧θ2(E) = σθ1(σθ2(E))

index for θ2

I ER2 Selection operations are commutative.

index for θ2

σθ1(σθ2(E)) = σθ2(σθ1(E))

index for θ1

I ER3 Only the last in a sequence of projections is needed, the others
can be omitted (Li are lists of attributes).

drop columns as early as
possible

πL1(πL2(. . . (πLn(E)) . . .)) = πL1(E)

drop many co-
lumns in one ta-
ble scan

I ER4 Selections can be combined with Cartesian product and theta
joins
(a) σθ(E1 x E2) = E1 ./θ E2
(b) σθ1(E1 ./θ2 E2) = E1 ./θ1∧θ2 E2

DBS 2017, SL08 50/82 M. Böhlen, IfI@UZH

Equivalence Rules/2

I ER5 Theta joins (and natural joins) are commutative.
E1 ./θ E2 = E2 ./θ E1

inner relation small: either hash join whe-
re build = inner relation or NL join where
inner relation in memory

I ER6 Associativity
(a) Natural join operations are associative:

(E1 ./ E2) ./ E3 = E1 ./ (E2 ./ E3)
(b) Theta joins are associative in the following way:

(E1 ./θ1 E2) ./θ2∧θ3 E3 = E1 ./θ1∧θ3 (E2 ./θ2 E3)
where θ2 involves attributes from only E2 and E3.
Any of these conditions might be empty, hence, the Cartesian

product operation is also associative

I Commutativity and associativity of join operations are important for
join reordering.

DBS 2017, SL08 51/82 M. Böhlen, IfI@UZH

Equivalence Rules/3

I ER7 The selection operation distributes over the theta join
operation under the following conditions:

I (a) When all attributes in θo involve only the attributes of one of the
expressions (E1) being joined:

θo has poor selectivity,
Bal > 100, Lang = Engl

σθo (E1 ./θ E2) = σθo (E1) ./θ E2

θo has high selectivity,
Bal > 1Billion, Lang =
Danish

I (b) When θ1 involves only the attributes of E1 and θ2 involves only
the attributes of E2:

poor selectivity

σθ1∧θ2(E1 ./θ E2) = σθ1(E1) ./θ σθ2(E2)

high selectivity
of θ1, θ2

DBS 2017, SL08 52/82 M. Böhlen, IfI@UZH

Equivalence Rules/4

I ER8 The projection operation distributes over the theta join
operation as follows:

I Let L1 and L2 be sets of attributes from E1 and E2, respectively.

I (a) if θ involves only attributes from L1 ∪ L2:
πL1∪L2(E1 1θ E2) = πL1(E1) 1θ πL2(E2)

I (b) Consider a join E1 1θ E2.
I Let L3 be attributes of E1 that are involved in join condition θ, but

are not in L1 ∪ L2, and
I Let L4 be attributes of E2 that are involved in join condition θ, but

are not in L1 ∪ L2, and
πL1∪L2(E1 1θ E2) = πL1∪L2(πL1∪L3(E1) 1θ πL2∪L4(E2))

DBS 2017, SL08 53/82 M. Böhlen, IfI@UZH

Equivalence Rules/5

A

B

C

I ER9 The set operations union and intersection are commutative
E1 ∪ E2 = E2 ∪ E1
E1 ∩ E2 = E2 ∩ E1

Set difference is not commutative

I ER10 Set union and intersection are associative.
(E1 ∪ E2) ∪ E3 = E1 ∪ (E2 ∪ E3)
(E1 ∩ E2) ∩ E3 = E1 ∩ (E2 ∩ E3)

DBS 2017, SL08 54/82 M. Böhlen, IfI@UZH

Equivalence Rules/6

I ER11 The selection operation distributes over ∪,∩ and −.
σθ(E1 − E2) = σθ(E1)− σθ(E2)
σθ(E1 ∪ E2) = σθ(E1) ∪ σθ(E2)
σθ(E1 ∩ E2) = σθ(E1) ∩ σθ(E2)

Also σθ(E1 − E2) = σθ(E1)− E2
and similarly for ∩ in place of −, but not for ∪

I ER12 The projection operation distributes over union
πL(E1 ∪ E2) = πL(E) ∪ πL(E2)

DBS 2017, SL08 55/82 M. Böhlen, IfI@UZH

Review 8.6
Determine the equivalences that hold. Give counterexamples for the false
ones.
1. σθ(XϑF (A)) = XϑF (σθ(A)), attr(θ) ⊆ attr(X)

2. πX (A− B) = πX (A)− πX (B)

3. A d|><| (B d|><|C) = (A d|><|B) d|><|C

4. A ∩ B = A ∪ B − (A− B)− (B − A)

DBS 2017, SL08 56/82 M. Böhlen, IfI@UZH

Rewrite Examples/1

I Example 1: Bank database
I branch = (BranchName, BranchCity, Assets)
I account = (AccNumber, BranchName, Balance)
I depositor = (CustName, AccNumber)

I Query: Find the names of all customers who have an account at
some branch located in Brooklyn.
πCustName(σBranchCity=′Brooklyn′(branch 1 (account 1 depositor)))

I Transformation using rule ER7(a):
πCustName

(σBranchCity=′Brooklyn′(branch) 1 (account 1 depositor))
I Performing the selection as early as possible reduces the size of the

intermediate relation to be joined.

DBS 2017, SL08 57/82 M. Böhlen, IfI@UZH

Rewrite Examples/2

I Example 2: Multiple transformations are often needed
I Query: Find the names of all customers with an account at Brooklyn

whose balance is below $1000.
πCustName(σBranchCity=′Brooklyn′∧Balance<1000

(branch 1 (account 1 depositor)))
I Rewrite using rule ER6(a) (join associativity):
πCustName(σBranchCity=′Brooklyn′∧balance<1000

(branch 1 account) 1 depositor)
I Rewrite using rule ER7(b) (perform selection early)
σBranchCity=′Brooklyn′(branch) 1 σBalance<1000(account)

DBS 2017, SL08 58/82 M. Böhlen, IfI@UZH

Rewrite Examples/3

I Example 2 (continued)
I Tree representation after multiple transformations

DBS 2017, SL08 59/82 M. Böhlen, IfI@UZH

Rewrite Examples/4

I Example 3: Projection operation
I Query:
πCustName((σBranchCity=′Brooklyn′(branch) 1 account) 1 depositor)

I When we compute
σBranchCity=′Brooklyn′(branch) 1 account
we obtain an intermediate relation with schema
(BranchName, BranchCity, Assets, AccNumber, Balance)

I Push projections using equivalence rules ER8(a) and ER8(b); thus,
eliminate unneeded attributes from intermediate results:
πCustName

(πAccNumber (σBranchCity=′Brooklyn′(branch) 1 account)
1 depositor)

DBS 2017, SL08 60/82 M. Böhlen, IfI@UZH

Rewrite Examples/5

I Example 4: Join ordering
I For all relations r1, r2, and r3:

(r1 1 r2) 1 r3 = r1 1 (r2 1 r3)
I If r2 1 r3 is quite large and r1 1 r2 is small, we choose

(r1 1 r2) 1 r3
so that we compute and store a smaller temporary relation.

DBS 2017, SL08 61/82 M. Böhlen, IfI@UZH

Rewrite Examples/6

I Example 5: Join ordering
I Consider the expression
πCustName(σBranchCity=′Brooklyn′(branch) 1 account 1 depositor)

I Could compute account 1 depositor first, and join result with
σBranchCity=′Brooklyn′(branch)

but account 1 depositor is likely to be a large relation.
I Since it is more likely that only a small fraction of the bank’s

customers have accounts in branches located in Brooklyn, it is
better to compute first

σBranchCity=′Brooklyn′(branch) 1 account

DBS 2017, SL08 62/82 M. Böhlen, IfI@UZH

Review 8.7
Show how to rewrite and optimize the following SQL query:
SELECT e.LName
FROM employee e, worksOn w, project p
WHERE p.PName = 'A'
AND p.PNum = w.PNo
AND w.ESSN = e.SSN
AND e.BDate = '31.12.1957'

1. πE (σP∧PW ∧WE∧E ((E ×W)× P)
2. πE (σP∧PW ∧WE∧E ((P ×W)× E)) ER5, ER6a
3. πE (σPσPWσWEσE ((P ×W)× E)) ER1
4. πE (σWEσPWσPσE ((P ×W)× E)) ER2
5. πE (σWE (σPW (σP(P)×W)× σE (E))) ER7
6. πE ((σP(P) 1PW W) 1WE σE (E)) ER4
7. πE .LN((πP.PNum(σP(P)) 1PW πW .PNo,W .ESSN(W)) 1WE πE .SSN,E .LN(σE (E))) ER8

DBS 2017, SL08 63/82 M. Böhlen, IfI@UZH

Enumeration of Equivalent Expressions

I Query optimizers use the equivalence rules to systematically
generate expressions that are equivalent to the given expression

I repeat
For each expression found so far, use all applicable
equivalence rules, and add newly generated expressions
to the set of expressions found so far

until no more expressions can be found
I This approach is very expensive in space and time
I Reduce space requirements by sharing common subexpressions:

I When E1 is generated from E2 by an equivalence rule, usually only
the top level of the two are different, subtrees below are the same and
can be shared (e.g. when applying join associativity)

I Time requirements are reduced by not generating all expressions
(e.g. take cost estimates into account)

DBS 2017, SL08 64/82 M. Böhlen, IfI@UZH

Evaluation Plan

I Evaluation plan (query plan/query tree): Defines exactly what
algorithm is used for each operation, and how the execution of the
operations is coordinated.

DBS 2017, SL08 65/82 M. Böhlen, IfI@UZH

Choosing Evaluation Plans

I When choosing the best evaluation plan, the query optimizer must
consider the interaction of evaluation techniques:

I Choosing the cheapest algorithm for each operation independently
may not yield best overall algorithm, e.g.

I merge join may be costlier than hash join, but may provide a sorted
output which reduces the cost for an outer level aggregation.

I nested loop join may provide opportunity for pipelining
I Practical query optimizers combine elements of the following two

broad approaches:
1. Cost-based optimization: Search all plans and choose the best plan

in a cost-based fashion.
2. Rule-based optimization: Uses heuristics to choose a plan.

DBS 2017, SL08 66/82 M. Böhlen, IfI@UZH

Heuristic Optimization/1

I Heuristic optimization transforms the query-tree by using a set of
heuristic rules that typically (but not in all cases) improve execution
performance.

I Overall goal of heuristic rules:
I Try to reduce the size of (intermediate) relations as early as

possible
I Heuristic rules

I Perform selection early (reduces the number of tuples)
I Perform projection early (reduces the number of attributes)
I Perform most restrictive selection and join operations before other

similar operations.
I Some (old) systems use only heuristics
I Modern database systems combine heuristics (consider some plans

only) with cost-based optimization (determine database specific cost
of each plan).

DBS 2017, SL08 67/82 M. Böhlen, IfI@UZH

Heuristic Optimization/2

I Example: Consider the expression σθ(r 1 s), where θ is on attributes
in s only.

I Selection early rule would push down the selection operator,
producing r 1 σθ(s).

I This is not necessarily the best plan if
I relation r is extremely small compared to s,
I and there is an index on the join attributes of s,
I but there is no index on the attributes used by θ.

I The early select would require a scan of all tuples in s, which is
probably more expensive than the join

DBS 2017, SL08 68/82 M. Böhlen, IfI@UZH

Heuristic Optimization/3

I Steps in typical heuristic optimization
1. Break up conjunctive selections into a sequence of single selection

operations (rule ER1).
2. Move selection operations down the query tree for the earliest

possible execution (rules ER2, ER7(a), ER7(b), ER11).
3. Execute first those selection and join operations that will produce the

smallest relations (rule ER6).
4. Replace Cartesian product operations that are followed by a selection

condition by join operations (rule ER4(a)).
5. Deconstruct and move as far down the tree as possible lists of

projection attributes, creating new projections where needed (rules
ER3, ER8(a), ER8(b), ER12).

6. Identify those subtrees whose operations can be pipelined, and
execute them using pipelining.

DBS 2017, SL08 69/82 M. Böhlen, IfI@UZH

Cost-Based Optimization/1

Basic working of a cost-based query optimizer:
I Algorithm

1. Use transformations (equivalence rules) to generate multiple
candidate evaluation plans from the original evaluation plan.

2. Cost formulas estimate the cost of executing each operation in each
candidate evaluation plan.

I Cost formulas are parameterized by
- statistics of the input relations;
- dependent on the specific algorithm used by the operator;
- CPU time, I/O time, communication time, main memory usage, or
a combination.

3. The candidate evaluation plan with the least total cost is selected
for execution.

DBS 2017, SL08 70/82 M. Böhlen, IfI@UZH

Cost-Based Optimization/2

I Cost-based optimization can be used to determine the best join
order.

I A good ordering of joins is important for reducing the size of
temporary results (|r |, ..., |r |n).

I Consider finding the best join-order for r1 1 r2 1 ...rm
I There are (2(m − 1))!/(m − 1)! different join orders for above

expression.
I With m = 3, the number is 12
I With m = 7, the number is 665,280
I With m = 10, the number is greater than 17.6 billion

DBS 2017, SL08 71/82 M. Böhlen, IfI@UZH

Cost-Based Optimization/3

I Cost-based optimization is expensive, but worthwhile for queries on
large datasets

I Typical queries have a small number m of operations; generally
m < 10

I With dynamic programming time complexity of optimization with
bushy trees is O(3m).

I With m = 10, this number is 59000 instead of 17.6 billion!
I Space complexity is O(2m)

DBS 2017, SL08 72/82 M. Böhlen, IfI@UZH

Review 8.8
Consider a DB with the following characteristics:

I |r1(A,B,C)| = 1000,V (C , r1) = 900
I |r2(C ,D,E)| = 1500,V (C , r2) = 1100,V (E , r2) = 50
I |r3(E ,F)| = 750,V (E , r3) = 100

Estimate the size of r1 1 r2 1 r3 and determine an efficient evaluation
strategy.

DBS 2017, SL08 73/82 M. Böhlen, IfI@UZH

Cost-Based Optimization Example/1

I Example: σSSN=0810643773(Emp)
I Statistics:

I |Emp| = 10’000 tuples
I 5 tuples per block
I Secondary B+-tree index of depth 4 on SSN
I SSN is primary key

I Plan p1: full table scan
I cost(p1) = (10’000/5)/2 = 1’000 blocks

I Plan p2: B+-tree lookup
I cost(p2) = 4 + 1 = 5 blocks

DBS 2017, SL08 74/82 M. Böhlen, IfI@UZH

Cost-Based Optimization Example/2

I Example: σDNo>15(Emp)
I Statistics:

I |Emp| = 10’000 tuples
I 5 tuples per block
I Primary index on DNo of depth 2
I 50 different departments

I Plan p1: full table scan
I cost (p1) = 10’000/5 = 2’000 blocks

I Plan p2: index search
I cost(p2) = 2 + (50-15)/50*(10’000/5) = 1’400 blocks

DBS 2017, SL08 75/82 M. Böhlen, IfI@UZH

Cost-Based Optimization Example/3

I Emp 1DNo=DNum Dept
I Statistics:

I |Emp| = 10’000 tuples ; 5 Emp tuples per block
I |Dept| = 125; 10 Dept tuples per block
I Hash index on Emp(DNo)
I 4 EmpDept result tuples per block

I Plan p1: Block nested loop with Emp as outer loop
I cost(p1) = (10’000/5) + (10’000/5) * (125/10) + (10’000/4)

= 30’500 IOs
I (10.000/4 is cost of writing final output)

I Plan p2: Indexed nested loop with Dept as outer loop and hashed
lookup in Emp

I cost(p2) = (125/10) + 125 * (10’000/125/5) + (10’000/4)
= 4’513 IOs

I 10’000/125/5 is the average number of blocks/department

DBS 2017, SL08 76/82 M. Böhlen, IfI@UZH

PostgreSQL Query Optimization/1

DBS 2017, SL08 77/82 M. Böhlen, IfI@UZH

PostgreSQL Query Optimization/2

DBS 2017, SL08 78/82 M. Böhlen, IfI@UZH

PostgreSQL Query Optimization/3

DBS 2017, SL08 79/82 M. Böhlen, IfI@UZH

PostgreSQL Query Optimization/4

DBS 2017, SL08 80/82 M. Böhlen, IfI@UZH

Summary/1

I Query evaluation techniques:

I Physical sorting:
I Physical sorting is a basic and important technique
I The same sort order should be useful to many operators and not just

one (global optimization versus local optimization)

I Evaluation techniques for selections:
I Use primary index if available; secondary index is much worse
I Equality conditions are selective and should be optimized
I Linear scan with sequential IO is the base line for selections

I Evaluation techniques for joins:
I nested loop: base line; avoid whenever possible
I sort merge: robust and fast
I hash join: fastest; only for equality

DBS 2017, SL08 81/82 M. Böhlen, IfI@UZH

Summary/2

I Query optimization techniques

I Equivalence rules for relational algebra expressions (must hold for
multisets)

I Rule-based query optimization is based on heuristics (usually the
goal is to keep intermediate results as small as possible)

I Cost-based query optimization uses statistical information to find
the cheapest (or reasonably cheap) plan

DBS 2017, SL08 82/82 M. Böhlen, IfI@UZH

Database Systems
Spring 2017

Transaction Processing
SL09

I Transactions

ex: booking a trip (reserve flight, hotel, car: sequence?)

I ACID Properties, Schedules, Serializability, Recoverability
I Concurrency Control

Mehrbenutzerbetrieb

I Lock-based Protocols, Transactions in SQL, Deadlock Handling
I Recovery System

error handling, Wiederherstellung

I Log-Based Recovery, Deferred/Immediate Modifications

Reviews: 23 41 42 45 46 50 51 52 74

DBS 2017, SL09 1/78 M. Böhlen, IfI@UZH

Literature and Acknowledgments

Reading List for SL09:
I Database Systems, Chapters 20, 21, and 22, Sixth Edition, Ramez

Elmasri and Shamkant B. Navathe, Pearson Education, 2010.

These slides were developed by:
I Michael Böhlen, University of Zürich, Switzerland
I Johann Gamper, Free University of Bozen-Bolzano, Italy

The slides are based on the following text books and associated material:
I Database Systems, Sixth Edition, Ramez Elmasri and Shamkant B.

Navathe, Pearson Addison Wesley, 2004.
I A. Silberschatz, H. Korth, and S. Sudarshan: Database System

Concepts, McGraw Hill, 2006.

DBS 2017, SL09 2/78 M. Böhlen, IfI@UZH

Transaction Concept

I Transaction: A logical unit of program execution (i.e., a sequence
of actions) that accesses and possibly updates various data items. A
transaction is never executed partially and it includes one or more
DB access operations (insertion, deletion, modification, retrieval)

I For a transaction the following must hold:
I A transaction must see a consistent database
I During transaction execution the DB may be inconsistent.
I When the transaction is committed, the DB must be consistent

I Two main issues to deal with:
I Concurrent execution of multiple transactions
I Various failures, e.g., hardware failures and system crashes

Finalizing a transaction is necessary. DBMS will finali-
ze transaction when connection/session is closed; it can
commit or rollback all changes. 100k tuples inserted, lo-
gout: what happens?!

DBS 2017, SL09 3/78 M. Böhlen, IfI@UZH

Transactions

I Transaction States
I ACID Properties
I Schedules
I Serializability
I Recoverability

DBS 2017, SL09 4/78 M. Böhlen, IfI@UZH

Transaction States

Finalising a transaction is necessary (either commit or
abort); example: insert 100K tuple, quit pgadmin, db and
application may decide to keep or throw away the inserted
tuples

I Active: (initial state) The transaction
stays in this state during execution.

I Partially committed: After the final
statement has been executed.

I Committed: Transaction has
successfully completed and changes are
permanent.

I Failed: After the discovery that normal
execution can no longer proceed.

I Aborted: After the transaction has been rolled back and the DB
restored to its state prior to the start of the transaction. Two
possible options after a transaction has been aborted:

I Restart the transaction
I Kill the transaction

DBS 2017, SL09 5/78 M. Böhlen, IfI@UZH

ACID Properties/1

I To preserve integrity of data, a transaction must meet the ACID
properties:

I Atomicity: A transaction’s changes to the state are atomic, i.e.,
either all operations of the transaction are properly reflected in the
DB or none are. (⇒ recovery manager)

I Consistency: A transaction is a correct transformation of a state.The
actions (taken as a group) do not violate any of the integrity
constraints associated with the state. (⇒ application programs and
integrity checker)

I Isolation: Although multiple transactions may execute concurrently,
it appears to each transaction that all other transactions are either
executed before or after. (⇒ concurrency manager)

I Durability: After a transaction completes (commits) successfully, the
changes it has made to the database persist, even if there are system
failures. (⇒ recovery manager)

DBS 2017, SL09 6/78 M. Böhlen, IfI@UZH

ACID Properties/2

I Example: Transaction to transfer $50 from account A to account B:
1. read (A)

A is unit in DB; tuple or attr or table; mostly attr for us

2. A := A - 50
3. write (A)
4. read (B)
5. B := B + 50
6. write (B)

I ACID properties:
I Consistency requirement: the sum of A and B is unchanged by the

execution of the transaction.
I Atomicity requirement: if the transaction fails after step 3 and

before step 6, the system should ensure that the updates are not
reflected in the DB, else an inconsistency will result.

DBS 2017, SL09 7/78 M. Böhlen, IfI@UZH

ACID Properties/3

I Example (contd.)
I Durability requirement: once the user has been notified that the

transaction has completed (i.e., the $50 are transferred), the updates
to the DB by the transaction must persist despite failures.

I Isolation requirement: if between steps 3 and 6, another transaction
is allowed to access the partially updated DB, it will see an
inconsistent DB (the sum A + B will be less than it should be). This
might result in an inconsistent DB state after the completion of both
transaction, e.g., if the second transaction performs updates on A and
B.

I These problems can be avoided trivially by running transactions
serially, i.e., one after the other.

I However, executing multiple transactions concurrently has significant
benefits in performance.

we want either < T1; T2 > (T1 followed by T2) or
< T2; T1 > (T2 followed by T1). which one is irrele-
vant. there is no absolute time (changing order is OK;
no fairness; similar to printing or teller machine)

DBS 2017, SL09 8/78 M. Böhlen, IfI@UZH

ACID Properties/4

I The recovery manager of a DBMS implements the support for
atomicity and durability.

I The concurrency control system restricts the interactions between
concurrent transactions in order to ensure isolation.

I Advantages of running multiple transactions concurrently in the
system:

I increased processor and disk utilization, leading to better
transaction throughput: one transaction can use the CPU while
another reads from or writes to the disk

I reduced average response time for transactions: short transactions
need not wait behind long ones.

I It is the task of application programs to ensure consistency:
I Each transaction preserves DB consistency.
I Serial execution of a set of transactions preserves DB consistency.

DBS 2017, SL09 9/78 M. Böhlen, IfI@UZH

Schedules/1

I Schedule (or history): Sequence of instructions from a set of
concurrent transactions that indicate the chronological order in
which these instructions are executed.

I Must consist of all instructions of all transactions.
I Must preserve the order of instructions within each individual

transaction.
I Serial schedule: Transactions execute one after the other.

I One transaction is completely finished before another transaction
starts.

DBS 2017, SL09 10/78 M. Böhlen, IfI@UZH

Schedules/2

I Example: Consider the following transactions:
I T1 transfers $50 from A to B

A: 200 to 150, B: 300 to 350

I T2 transfers 10% of the balance from A to B

A: 150 to 135, B: 350 to 365

I The following is a serial schedule, i.e.,
< T1;T2 >, in which T1 is followed by T2.

I Integrity constraint
I Sum of A + B is preserved

DBS 2017, SL09 11/78 M. Böhlen, IfI@UZH

Schedules/3

200 to 150

300 to 350

150 to 135

350 to 365

I Example: (contd.)
I The following schedule is not a serial schedule, but it is equivalent

to the previous one (i.e., gives the same result).
I In both schedules the sum of A + B is preserved.

DBS 2017, SL09 12/78 M. Böhlen, IfI@UZH

Schedules/4

200

200 to 150
300 to 350

200 to 180

300

300 to 320

I Example: (contd.)
I The following concurrent schedule does not preserve the value of the

sum A + B.

DBS 2017, SL09 13/78 M. Böhlen, IfI@UZH

Serializability

I Serializable schedule: A schedule is serializable if it is equivalent to
a serial schedule.

I There exist different forms of schedule equivalence.
I Examples are conflict equivalent and view equivalent.
I We consider conflict equivalence.

I In order to reason about transactions we model transactions as
sequences of basic read and write operations:

I We assume that transactions may perform arbitrary computations
on data in local buffers in between reads and writes.

read(X); X can change; write(X)

DBS 2017, SL09 14/78 M. Böhlen, IfI@UZH

Conflict Serializability/1

I Instructions li and lj of transactions Ti and Tj conflict iff there
exists a data item Q accessed by li and lj and at least one of these
instructions is a write operation on Q, i.e.,

I li = write(Q) and lj = write(Q)
I li = read(Q) and lj = write(Q)
I li = write(Q) and lj = read(Q)

I li = read(Q) and lj = read(Q) do not conflict since the order in
which the two instructions are executed does not matter.

old and new value are different

DBS 2017, SL09 15/78 M. Böhlen, IfI@UZH

Conflict Serializability/2

I The goal is to determine transformations of schedules that
generate equivalent schedules.

I Assume a schedule S and two consecutive instructions Ii and Ii+1
from different transactions. Instructions Ii and Ii+1 can be swapped
if they are non-conflicting, i.e., if

I both are read instructions, or
I they refer to different DB items, or
I one of them is not a DB operation (i.e., not a read or write)

DBS 2017, SL09 16/78 M. Böhlen, IfI@UZH

Conflict Serializability/3

I Conflict equivalent schedules: If a schedule S can be transformed
into a schedule S’ by a series of nonconflicting swaps of consecutive
instructions then S and S’ are conflict equivalent.

I Conflict serializable schedule: A schedule S is conflict serializable
iff it is conflict equivalent to a serial schedule.

DBS 2017, SL09 17/78 M. Böhlen, IfI@UZH

Conflict Serializability/4

I Example: A schedule that is not conflict serializable

T3 T4
read(Q)

write(Q)
write(Q)

I We are unable to swap instructions in the above schedule to obtain
the serial schedule <T3;T4 > or the serial schedule <T4;T3 >.

DBS 2017, SL09 18/78 M. Böhlen, IfI@UZH

Conflict Serializability/5

I Example: The following schedule is conflict serializable, since it can
be transformed into <T1;T2 > by nonconflicting swaps.

T1 T2
read(A)
write(A)

read(A)
write(A)

read(B)
write(B)

read(B)
write(B)

DBS 2017, SL09 19/78 M. Böhlen, IfI@UZH

Beyond Conflict Serializability/1

I Example: The following schedule is not conflict serializable by
non-conflicting swaps.

T3 T4 T6
read(Q)

write(Q)
write(Q)

write(Q)

I The above schedule is equivalent to the serial schedule
<T3,T4,T6 >.

I The schedule includes blind writes, i.e., write operations without
having performed a read operation.

DBS 2017, SL09 20/78 M. Böhlen, IfI@UZH

Beyond Conflict Serializability/2
I The schedule given below produces the same outcome as the serial

schedule <T1,T5 >, yet it is not conflict equivalent to it.
T1 T5

read(A)
A:= A - 50
write (A)

read(B)
B:= B - 10
write (B)

read(B)
B:= B + 50
write (B)

read(A)
A:= A + 10
write (A)

I Determining such equivalence requires to analyse operations other
than read and write.

DBS 2017, SL09 21/78 M. Böhlen, IfI@UZH

Testing for Conflict Serializability/1
I Consider a schedule S of transactions T1,T2, ...,Tn (we use ri(X) to

denote that transaction Ti reads item X).
I Precedence graph (conflict graph): A directed graph with a node

Ti for each transaction and with an edge Ti → Tj iff one of the
following conditions holds:

I Ti executes write(Q) before Tj executes read(Q)
I Ti executes read(Q) before Tj executes write(Q)
I Ti executes write(Q) before Tj executes write(Q)

I A schedule is conflict serializable if and only if its precedence
graph is acyclic

I Example of cyclic precedence graph:

DBS 2017, SL09 22/78 M. Böhlen, IfI@UZH

Review 9.1
Draw conflict graphs for the following schedules:
1. w1(A);w2(B)
2. r1(A); r2(A)
3. r1(A); r2(A);w1(A);w2(A)
4. r1(A);w1(A); r2(A);w2(A)

1. T1 T2
T1 T2

2. T1 T2
T1 T2

3. T1 < − > T2
T1 T2

4. T1 − > T2
T1 T2

DBS 2017, SL09 23/78 M. Böhlen, IfI@UZH

Testing for Conflict Serializability/2

I Example: A conflict serializable schedule with 5 transactions and
precedence graph

DBS 2017, SL09 24/78 M. Böhlen, IfI@UZH

Testing for Conflict Serializability/3

I Cycle-detection algorithms exist which
take O(n2) time, where n is the # of
vertices in the graph.

I If the precedence graph is acyclic, the
serializability order can be obtained by
a topological sorting of the graph. This
is a linear order consistent with the
partial order of the graph

I e.g., a serializability order for the
schedule in the previous example
would be T5 → T1 → T3 → T2 → T4

I Topological sorting
example

DBS 2017, SL09 25/78 M. Böhlen, IfI@UZH

Concurrency Control versus Serializability Tests

I Testing a schedule for serializability after it has executed is too late.
I Goal: Develop concurrency control protocols that will assure

serializability.
I Concurrency control protocols will generally not examine the

precedence graph as it is being created; instead a protocol will
impose a discipline (i.e., a set of rules) that avoids non-seralizable
schedules.

I Tests for serializability help to understand why a concurrency control
protocol is correct.

I Examples of concurrency control protocols are lock-based protocols
and multiversion concurrency control.

DBS 2017, SL09 26/78 M. Böhlen, IfI@UZH

Recoverability/1

I Need to address the effect of transaction failures on concurrently
running transactions.

I Recoverable schedule: For each pair of transactions Ti and Tj
such that Tj reads a data item previously written by Ti , the commit
operation of Ti must appear before the commit operation of Tj .

I DBMS must ensure that schedules are recoverable.

I Example: The following schedule is
not recoverable if T9 commits
immediately after the read operation.

I If T8 aborts, T9 would have read an
inconsistent DB state.

T8 T9
read(A)
write(A)

read(A)
read(B)

T9 depends on T8

T9 must commit after T8; T8 commit => T9 commit or abort; T8 abort => T9 abort

DBS 2017, SL09 27/78 M. Böhlen, IfI@UZH

Recoverability/2

I Cascading rollback: A single transaction failure leads to a series of
transaction rollbacks.

I Consider the following schedule where none of the transactions has
yet committed (so the schedule is recoverable)

I If T10 fails, T11 and
T12 must also be
rolled back.

T10 T11 T12
read(A)
read(B)
write(A)

read(A)
write(A)

read(A)

I Main problem: Can lead to the undoing of a significant amount of
work.

DBS 2017, SL09 28/78 M. Böhlen, IfI@UZH

Recoverability/3

I Cascadeless schedules: For each pair of transactions Ti and Tj
such that Tj reads a data item previously written by Ti , the commit
operation of Ti appears before the read operation of Tj . This avoids
cascading rollbacks.

I Every cascadeless schedule is also recoverable
I It is desirable to restrict the schedules to those that are cascadeless

DBS 2017, SL09 29/78 M. Böhlen, IfI@UZH

Purpose of Transaction Manager

I Ensure ACID properties (A, I, and D)
I If only one transaction can execute at a time we get serial schedules,

which provides a poor throughput (number of transactions per time
unit).

I Transaction acquires a lock on the entire DB before it starts and
releases the lock after it has committed.

I Concurrency control schemes are a tradeoff between the amount of
concurrency they allow and the amount of overhead that they incur.

I Desirable properties of a schedule:
I serializable
I recoverable
I preferably cascadeless

DBS 2017, SL09 30/78 M. Böhlen, IfI@UZH

Concurrency Control

I Lock-Based Protocols
I Pitfalls of Lock-Based Protocols
I Two-Phase Locking (2PL)
I Transactions in SQL
I Transaction in DBMSs

DBS 2017, SL09 31/78 M. Böhlen, IfI@UZH

Lock-Based Protocols/1

I One way to ensure serializability is to require that data items be
accessed in a mutually exclusive manner, i.e., while one transaction
is accessing a data item, no other transaction can modify it.

I Locking is the most common mechanism to implement this
requirement.

I Locking: Mechanism to control concurrent access to a data item.
I Lock requests are made to concurrency control manager.

I Transaction can proceed only after request is granted.

DBS 2017, SL09 32/78 M. Böhlen, IfI@UZH

Lock-Based Protocols/2

I Data items can be locked in two modes:
I exclusive mode (X): Data item can be both read as well as written.

X-lock is requested using X-lock(A) instruction.
I shared mode (S): Data item can only be read. S-lock is requested

using S-lock(A) instruction.

I Locks can be released: U-lock(A)
I Locking protocol: A set of rules followed by all transactions while

requesting and releasing locks.
I Locking protocols restrict the set of possible schedules.

I Ensure serializable schedules by delaying transactions that might
violate serializability.

DBS 2017, SL09 33/78 M. Böhlen, IfI@UZH

Lock-Based Protocols/3
I Lock-compatibility matrix tells whether two locks are compatible

or not.
I Any number of transactions

can hold shared locks on a
data item

I If any transaction holds an
exclusive lock on a data item
no other transaction may
hold any lock on that item.

lock 1

lock 2
S X

S TRUE FALSE
X FALSE FALSE

I Locking Rules/Protocol
I A transaction may be granted a lock on an item if the requested lock

is compatible with locks already held on the item by other
transactions.

I If a lock cannot be granted, the requesting transaction is made to
wait until all incompatible locks held by other transactions have been
released. The lock is then granted.

DBS 2017, SL09 34/78 M. Böhlen, IfI@UZH

Pitfalls of Lock-Based Protocols/1

I Too early unlocking can lead to non-serializable schedules.
I Too late unlocking can lead to deadlocks.

I Example
I Transaction T1 transfers $50 from account B to account A.
I Transaction T2 displays the total amount of money in accounts A

and B, that is, the sum A + B.

DBS 2017, SL09 35/78 M. Böhlen, IfI@UZH

Pitfalls of Lock-Based Protocols/2
I Example (contd.): Early unlocking can cause non-serializable
schedules, and therefore potentially incorrect results.

I e.g., A = $100, B = $200
I displaying A + B shows $250
I < T1;T2 > and < T2;T1 >

display $300

T1 T2
1. X-lock(B)
2. read B
3. B := B-50
4. write B
5. U-lock(B)
6. S-lock(A)
7. read A
8. U-lock(A)
9. S-lock(B)
10. read B
11. U-lock(B)
12. display A + B
13. X-lock(A)
14. read A
15. A := A+50
16. write A
17. U-lock(A)

DBS 2017, SL09 36/78 M. Böhlen, IfI@UZH

Pitfalls of Lock-Based Protocols/3

I Example (contd.): Late unlocking can lead to deadlocks
(transactions block each other)

T1 T2
1. X-lock(B)
2. read B
3. B := B-50
4. write B
5. S-lock(A)
6. read A
7. S-lock(B)
8. X-lock(A)

has got B, waits for Ahas got A, waits for B

I Neither T1 nor T2 can make progress:
I S-lock(B) causes T2 to wait for T1 to release its lock on B.
I X-lock(A) causes T1 to wait for T2 to release its lock on A

I To handle a deadlock one of T1 or T2 must be rolled back and its
locks released.

DBS 2017, SL09 37/78 M. Böhlen, IfI@UZH

Two-Phase Locking Protocol/1

I Two-Phase Locking Protocol: A locking protocol that ensures
conflict-serializable schedules. It works in two phases:

I Phase 1: Growing Phase
I transaction may obtain locks
I transaction may not release locks

I Phase 2: Shrinking Phase
I transaction may release locks
I transaction may not obtain locks

I Lock point: Transition point form phase 1 into phase 2, i.e., when
the first lock is released.

DBS 2017, SL09 38/78 M. Böhlen, IfI@UZH

Two-Phase Locking Protocol/2
I Example: Schedule with locking instructions following the

Two-Phase Locking Protocol
T1 T2

1. X-lock(B)
2. read B
3. B := B-50
4. write B
5. X-lock(A)
6. U-lock(B)
7. S-lock(B)
8. read(B)
9. read(A)
10. A := A+50
11. write(A)
12. U-lock(A)
13. S-lock(A)
14. read(A)
15. display A + B
16. U-lock(B)
17. U-lock(A)

T1: grows from 1. to 5.;
shrinks from 6. to 17.

T2 grows from 7. to 15.;
shrinks from 16. to 17.

DBS 2017, SL09 39/78 M. Böhlen, IfI@UZH

Two-Phase Locking Protocol/3
I Properties of the Two-Phase Locking Protocol

I Ensures serializability
I It can be shown that the transactions can be serialized in the order of

their lock points (i.e., the point when a transaction acquired its final
lock).

I Does not ensure freedom from deadlocks
I Cascading rollback is possible

I Modifications of the two-phase locking protocol
I Strict two-phase locking (S2PL)

I A transaction must hold all its exclusive locks until it
commits/aborts

I Avoids cascading rollback
I Rigorous two-phase locking (SS2PL)

simple to implement; no
knowledge about tran-
saction required

I All locks are held till commit/abort.
I Transactions can be serialized in the order in which they commit.

DBS 2017, SL09 40/78 M. Böhlen, IfI@UZH

Review 9.2
Use Venn diagrams to relate
1. serial schedules (SS)
2. schedules (S)
3. conflict serializable schedules (CSS)
4. correct schedules (CS)
5. two-phase locking schedules (2PL)

and give representative examples.

SS

2PL

CSS

CS

DBS 2017, SL09 41/78 M. Böhlen, IfI@UZH

Review 9.3
Consider transactions
T1: r(A); r(B); if A=0 then B:=B+1; w(B)
T2: r(B); r(A); if B=0 then A:=A+1; w(A)
Add lock and unlock instructions that follow 2PL. Show a 2PL schedule
that leads to a deadlock?

T1 T2
S-l(A) S-l(B)
r(A) r(B)
X-l(B) X-l(A)
r(B) r(A)
if A = ... if B = ...
w(B) w(A)
U-l(A) U-l(B)
U-l(B) U-l(A)

T1 T2
S-l(A)

S-l(B)
r(B)

r(A)
X-l(B)

X-l(B)
DEADLOCK

DBS 2017, SL09 42/78 M. Böhlen, IfI@UZH

Transactions in SQL/1

I The SQL standard defines three undesired phenomena of
transactions:

I dirty read: a transaction sees changes from other uncommitted
transactions

I nonrepeatable read: if a transactions retrieves a row twice it gets
different answers

I phantom reads: if a transaction retrieves a range of rows twice it
retrieves a different answer

DBS 2017, SL09 43/78 M. Böhlen, IfI@UZH

Transactions in SQL/2

I The SQL standard uses the undesired phenomena to define four
isolation levels as follows:

Phenomena
Isolation level

Dirty read Nonrepeatable
read

Phantom
read

read uncommitted yes yes yes
read committed no yes yes
repeatable read no no yes
serializable no no no

DBS 2017, SL09 44/78 M. Böhlen, IfI@UZH

Review 9.4/1

Assume r(a) = {(1), (2), (3)} and isolation levels read committed, read
uncommitted, and serializability. What is the behavior of schedule:

T1: UPDATE p SET a=5 WHERE a=1

T2: SELECT * FROM p;

RC: {(1),(2),(3)}, RU: {(5),(2),(3)}, SER: block

T1: COMMIT;

RC: done, RU: done, SER: done and T2 unblocked{(5),(2),(3)}

T2: SELECT * FROM p;

RC: {(5),(2),(3)}, RU: {(5),(2),(3)}, SER: {(5),(2),(3)}

DBS 2017, SL09 45/78 M. Böhlen, IfI@UZH

Review 9.4/2
Assume relation r(a) = {(1), (2), (3)} and isolation level read committed.
What is the behavior of the following schedule:
T1: UPDATE p SET a=5 WHERE a=1;
T2: UPDATE p SET a=5 WHERE a=1;
T1: COMMIT;

1 tuple updated (T1)

blocked (T2)

committed(T1)
no row found for update (T2)

DBS 2017, SL09 46/78 M. Böhlen, IfI@UZH

Transactions in DBMSs/1

I Database systems do not always make serializable the default
isolation level.

I The SQL commands COMMIT and ROLLBACK finish the running
transaction.

I Some database systems issue autocommits after each statement or
at the end of sessions.

I PostgreSQL has a command BEGIN to start a transaction.
I Applications programs (graphical tools, etc) might implement their

own transaction handling by issuing COMMIT and ROLLBACK.
I SQL does not permit to mix DDL and DML statement inside a

transaction.

DBS 2017, SL09 47/78 M. Böhlen, IfI@UZH

Transactions in DBMSs/2

I In order to increase performance (throughput) more and more
DBMSs offer MVCC (multiversion concurrency control) rather than
2PL.

I Systems that use MVCC (Oracle, PostgreSQL) and 2PL (DB2,
MySQL) behave differently.

I With MVCC the isolation level serializable does not permit dirty
reads, nonrepeatable reads, and phantom reads (as required by the
SQL standard), but true serializability is not guaranteed.

I With MVCC explicit locks must be used by the application to get
serializability: SELECT * FROM p FOR UPDATE;

DBS 2017, SL09 48/78 M. Böhlen, IfI@UZH

Transactions in DBMSs/3
I DB2:

I DB2 uses 2PL
I To rule out phantom reads tables are locked.
I With 2PL the isolation level serializable corresponds to true

serializability
I DB2 deviates from the SQL terminology and offers the following

isolation levels: repeatable read (RR), read stability (rs), cursor
stability (cs), and uncommitted read (ur)

I Example:
UPDATE command options USING C off;
SET current ISOLATION LEVEL RR;
SELECT SUM(a) FROM p;
INSERT INTO p VALUES (6);
SELECT SUM(a) FROM p;
COMMIT;

DBS 2017, SL09 49/78 M. Böhlen, IfI@UZH

Review 9.5/1
Assume relation r(a) = {(1), (2), (3)} and isolation level serializable with
2PL. What is the behavior of the following schedule:
T1: INSERT INTO p VALUES(5);
T2: SELECT * FROM p;
T1: COMMIT;
T2: COMMIT;

blocked (T2)

committed(T1)
{1, 2, 3, 5} (T2)

DBS 2017, SL09 50/78 M. Böhlen, IfI@UZH

Review 9.5/2
Assume relation r(a) = {(1), (2), (3)} and 2PL with isolation level set to
serializability. What is the behavior of the following schedule:
T1: INSERT INTO p VALUES (5);
T2: SELECT * FROM p;
T1: COMMIT;
T2: SELECT * FROM p;
T1: INSERT INTO p VALUES (3);
T2: COMMIT;
T1: COMMIT;

T2: blocked

T2: { 2, 3, 6, 1 }

T2: { 2, 3, 6, 1 }

T1: blocked

T1: insertion executed

DBS 2017, SL09 51/78 M. Böhlen, IfI@UZH

Review 9.5/3
Assume relation r(a) = {(1), (2), (3)} and 2PL with isolation level set to
serializability. What is the behavior of the following schedule:
T1: SELECT SUM(a) FROM p;

6

T1: INSERT INTO p VALUES (6);

done

T2: SELECT SUM(a) FROM p;

blocked

T2: INSERT INTO p VALUES (6);

blocked

T1: SELECT SUM(a) FROM p;

12

T2: SELECT SUM(a) FROM p;

blocked

T2: COMMIT;

blocked

T1: SELECT SUM(a) FROM p;

12

T1: COMMIT;

done; T2: 12; done (insert); 18; done (commit)

T1: SELECT SUM(a) FROM p;

18

T2: SELECT SUM(a) FROM p;

18
transaction order: < T1, T2; T1’; T2’ > or < T1, T2; T2’; T1’ >

DBS 2017, SL09 52/78 M. Böhlen, IfI@UZH

Deadlock Handling/1

I Consider the following two transactions:
T1: write (A) T2: write(B)

write(B) write(A)
I Schedule with deadlock

T1 T2
X-lock(A)
write(A)

X-lock(B)
write(B)
waits for X-lock on A

waits for X-lock on B

DBS 2017, SL09 53/78 M. Böhlen, IfI@UZH

Deadlock Handling/2

I Deadlock: A system is in a deadlock state if there is a set of
transactions such that every transaction in the set is waiting for
another transaction in the set.

I A deadlock has to be resolved by rolling back some of the
transactions involved in the deadlock.

I Deadlocks are addressed in two ways:
I Deadlock prevention protocols are used
I Deadlocks are detected and resolved

DBS 2017, SL09 54/78 M. Böhlen, IfI@UZH

Deadlock Prevention Protocols

I Deadlock prevention protocols ensure that the system will never
enter into a deadlock state.

I Two deadlock prevention protocols are wait-die and wound-wait.
They use transaction timestamps to prevent deadlocks.

I With both protocols rolled-back transactions are restarted with their
original timestamp. Since older transactions have precedence over
newer ones starvation is avoided.

I Timeout-based protocols can be used to avoid deadlocks:
I A transaction waits for a lock only for a specified amount of time.

After that, the wait times out and the transaction is rolled back.
I Thus deadlocks are not possible.
I Simple to implement; but starvation is possible. Also difficult to

determine good value of the timeout interval.

DBS 2017, SL09 55/78 M. Böhlen, IfI@UZH

Deadlock Detection and Recovery/1

I Deadlocks can be described as a wait-for graph, which consists of a
pair G = (V,E),

I V is a set of vertices representing all the transactions
I E is a set of edges; each element is an ordered pair Ti → Tj .

I If Ti → Tj is in E, there is a directed edge from Ti to Tj , implying
that Ti is waiting for Tj to release a data item.

I If Ti requests a data item being held by Tj , edge Ti → Tj is
inserted in the wait-for graph. This edge is removed when Tj is no
longer holding a data item needed by Ti .

I The system is in a deadlock state if and only if the wait-for graph
has a cycle. Must invoke a deadlock-detection algorithm periodically
to look for cycles.

DBS 2017, SL09 56/78 M. Böhlen, IfI@UZH

Deadlock Detection and Recovery/2

I Wait-for graph without a cycle
I Wait-for graph with a

cycle

DBS 2017, SL09 57/78 M. Böhlen, IfI@UZH

Deadlock Detection and Recovery/3

I When a deadlock is detected, the system must recover from the
deadlock.

I The most common solution is to roll back one or more transactions
to break the deadlock. Three actions are required:
1. Selection of a victim: For rollback select the transaction(s) that will

incur minimum cost.
2. Rollback: Determine how far to roll back transaction

I Total rollback: Abort the transaction and then restart it.
I Partial rollback: roll back transaction only as far as necessary to break

deadlock.
3. Check Starvation: happens if same transaction is always chosen as

victim.
I Include the number of rollbacks in the cost factor to avoid starvation

DBS 2017, SL09 58/78 M. Böhlen, IfI@UZH

Recovery System

I Log-Based Recovery
I Deferred DB Modifications
I Immediate DB Modifications
I Checkpoints

DBS 2017, SL09 59/78 M. Böhlen, IfI@UZH

Recovery System/1

I Recovery system: Ensures atomicity and durability of transactions
in the presence of failures (and concurrent transactions).

I Atomicity and durability properties of transactions:
I A transaction either completes fully with a permanent result (i.e.,

committed transaction)
I or does not happen at all and has no effect on the DB (i.e.,

aborted/rolled-back transaction if some error occurs)
I Transactions are aborted or rolled-back if some error occurs

DBS 2017, SL09 60/78 M. Böhlen, IfI@UZH

Recovery System/2

I Recovery algorithms have two parts
1. Actions taken during normal transaction processing to ensure enough

information exists to recover from failures
2. Actions taken after a failure to recover the DB contents to a state

that ensures atomicity, consistency and durability
I Problems of recovery procedures

I The DBMS does not know which instruction was last executed.
I Buffers may not have been written to the disk yet.
I Observable (external) writes cannot be undone, e.g., writes to the

screen or the printer. Possible solutions include:
I Delay external writes until the end of the transaction (if possible).
I forbid external writes.
I Relax atomicity.

DBS 2017, SL09 61/78 M. Böhlen, IfI@UZH

Recovery System/3

I To ensure atomicity the DBMS must first output information
describing the modifications to “stable storage” without modifying
the DB itself.

I A log is the most popular structure for recording DB modifications
on stable storage

I Consists of a sequence of log records that record all the update
activities in the DB

I Each log record describes a significant event during transaction
processing

DBS 2017, SL09 62/78 M. Böhlen, IfI@UZH

Log-Based Recovery/1

I Types of log records
I < Ti , start >: if transaction Ti has started
I < Ti ,Xj ,V1,V2 >: before Ti executes a write(Xj), where V1 is the

old value before the write and V2 is the new value after the write
I < Ti , commit >: if Ti has committed
I < Ti , abort >: if Ti has aborted
I < checkpoint >

DBS 2017, SL09 63/78 M. Böhlen, IfI@UZH

Log-Based Recovery/2

I A log allows us to
I write DB modifications to the disk
I undo DB modifications (using the old value)
I redo DB modifications (using the new value)

I Properties of logs
I Logs must be placed on stable storage
I Logs are large because they record all DB activities
I Checkpoints are used to reduce the size of logs

I Transactions that committed before a checkpoint don’t have to be
redone

DBS 2017, SL09 64/78 M. Böhlen, IfI@UZH

Log-Based Recovery/3

I When a failure occurs the following two operations can be
executed

I Undo: restore DB to state prior to execution
I undo(Ti) restores the value of all data items updated by transaction

Ti to the old values.
I undo must be idempotent, i.e., executing it several times must be

equivalent to executing it once
I Redo: perform the changes to the DB over again

I redo(Ti) (re)executes all actions of transaction Ti , i.e., sets the value
of all data items updated by Ti to the new values.

I redo must be idempotent.

I Two approaches using logs
I Deferred database modifications
I Immediate database modifications

DBS 2017, SL09 65/78 M. Böhlen, IfI@UZH

Deferred DB Modifications/1

I Deferred DB Modification Scheme: All DB modifications are
recorded in the log but are deferred until the transaction is ready to
commit (i.e., after partial commit)

I A transaction is ready to commit if the commit log-record has been
written to stable storage, i.e., when transitioning to the committed
state

I This schema is also known as NOUNDO/REDO

DBS 2017, SL09 66/78 M. Böhlen, IfI@UZH

Deferred DB Modifications/2

I Actions after a rolled back transaction
I The log is ignored; nothing has to be undone

I Actions after a crash
I A transaction Ti needs to be redone if and only if a < Ti , start > and

a < Ti , commit > record is in the log
I To redo transactions the log has to be scanned forward.

I The old value in the log record is not needed for deferred DB
updates.

I Any failure that does not result in the loss of information on
non-volatile storage can be handled.

DBS 2017, SL09 67/78 M. Böhlen, IfI@UZH

Deferred DB Modifications/3

I Example: Transactions T0 and T1 (T0 executes before T1)

T0: read(A) T1: read(C)
A = A - 50 C = C- 100
write(A) write(C)
read(B)
B = B + 50
write(B)

DBS 2017, SL09 68/78 M. Böhlen, IfI@UZH

Deferred DB Modifications/4

I Possible order of actual outputs to the log and the DB

Log DB
< T0, start >
< T0,A, 950 >
< T0,B, 2050 >
< T0, commit >

A = 950
B = 2050

< T1, start >
< T1,C , 600 >
< T1, commit >

C = 600

DBS 2017, SL09 69/78 M. Böhlen, IfI@UZH

Deferred DB Modifications/5
I Example (contd.): Consider the log after some system crashes and

the corresponding recovery actions

(a) No redo actions need to be taken
(b) redo(T0) must be performed since < T0, commit > is present
(c) redo(T0) must be performed followed by redo(T1) since
< T0, commit > and < T1, commit > are present

DBS 2017, SL09 70/78 M. Böhlen, IfI@UZH

Immediate DB Modifications/1

I Immediate DB Modification Scheme: DB modifications can be
written to disk before a transaction commits. However, before doing
so the modifications have to be written to the log first.

I Known as UNDO/REDO.

DBS 2017, SL09 71/78 M. Böhlen, IfI@UZH

Immediate DB Modifications/2

I Actions after a rolled back transaction
I The effects on the DB have to be undone.

I Actions after a crash
I Transaction Ti needs to be undone if the log contains a

< Ti , start > record, but does not contain a < T1, commit > record
I for undo the log must be scanned backwards

I Transaction Ti needs to be redone if the log contains the record
< T1, start > and < T1, commit >

I for redo the log must be scanned forwards
I undo must be done before redo

I Any failure that does not result in the loss of information on
non-volatile storage can be handled.

DBS 2017, SL09 72/78 M. Böhlen, IfI@UZH

Immediate DB Modifications/3

I Example (contd.): Consider the log after some system crashes and
the corresponding recovery actions

(a) undo(T0): B is restored to 2000 and A to 1000
(b) undo(T1) and redo(T0): C is restored to 700, and then A and B
are set to 950 and 2050, respectively
(c) redo(T0) and redo(T1): A and B are set to 950 and 2050,
respectively; then C is set to 600

DBS 2017, SL09 73/78 M. Böhlen, IfI@UZH

Review 9.6
List advantages and disadvantages of respectively, deferred and
immediate database updates.

DBS 2017, SL09 74/78 M. Böhlen, IfI@UZH

Checkpoints/1

I Problems in recovery procedure
I Searching the entire log is time-consuming
I We might unnecessarily redo transactions which have already output

their updates to the DB

I Streamline recovery procedure by periodically performing
checkpointing
1. Output all log records currently residing in main memory onto stable

storage.
2. Output all modified buffer blocks to the disk.
3. Write a log record < checkpoint > onto stable storage

I Any transaction Ti with a < T1, commit > record before a
< checkpoint > record in the log need not be considered after a
system crash

DBS 2017, SL09 75/78 M. Böhlen, IfI@UZH

Checkpoints/2

I Recovery procedure: Only the most recent transaction Ti that
started before the checkpoint, and transactions that started after Ti
need to be considered.
1. Scan backwards from end of log to find the most recent

< checkpoint > record
2. Continue scanning backwards till a record < Ti , start > is found.
3. Need only consider the part of log following < Ti , start > record.

Earlier part of log can be ignored and can be erased.
4. Scan forward the log (starting from Ti).
5. For all transactions Tj with no < Tj , commit > record, execute

undo(Tj).
I Done only in case of immediate modification

6. For all transactions Tj with < Tj , commit > record, execute
redo(Tj).

DBS 2017, SL09 76/78 M. Böhlen, IfI@UZH

Checkpoints/3
I Example:

I T1 can be ignored (updates already output to disk due to
checkpoint)

I T2 and T3 redone.
I T4 undone

DBS 2017, SL09 77/78 M. Böhlen, IfI@UZH

Summary
I Transactions

I ACID properties of transactions:
A(tomicity), C(onsistency), I(soltaion), D(urability)

I Transaction states
I Schedules (correct; serializable; conflict serializable; serial)
I Conflict (or precedence) graph
I Recoverability, cascading rollback

I Concurrency Control
I Lock-based protocols
I Two-phase locking (2PL, strict, rigorous)
I Transactions (SQL, DBMSs)
I Deadlocks (prevention; detection and recovery)

I Recovery
I Log-based recovery
I Deferred DB modifications
I Immediate DB modifications
I Checkpoints

DBS 2017, SL09 78/78 M. Böhlen, IfI@UZH

Database Systems
Spring 2017

1. Exam and syllabus
2. DBS courses at IfI
3. BSc theses, etc.
4. Beyond the DBS course

DBS 2017, SL10 1/25 M. Böhlen, IfI@UZH

Exam and Syllabus

DBS 2017, SL10 2/25 M. Böhlen, IfI@UZH

The Exam

I The final exam is written and takes place
Tuesday, June 20, 10:15 - 12:00 in BIN 1.B.01 and BIN 0.K.02

(see VVZ web page for details).

I Auxiliary material during exam: 1 A4 sheet with notes.

I Course web page: http://www.ifi.uzh.ch/dbtg/
I The textbook is Database Systems by Elmasri and Navathe, 6th

edition.

DBS 2017, SL10 3/25 M. Böhlen, IfI@UZH

What is Important

I Being precise is important.

I Solving relevant examples is important.

I Understanding material in detail; apply to new examples.

I It is not sufficient to “know about it” or to “reproduce”.

I You must understand and apply techniques learned during the
course.

I Exercises are representative for exam and are the best preparation.

I Simple and readable solutions are important (this has an impact on
your grade).

DBS 2017, SL10 4/25 M. Böhlen, IfI@UZH

Preparation Material

I Exercise with solutions (practice to do exercises yourself before you
look at solution)

I Lectures with reviews

I Slides

I Textbook

I Exams of the last five years (note that the material has evolved;
e.g., definition of B+ tree; mapping from ER to relational DB)

I Open door policy in the database group

DBS 2017, SL10 5/25 M. Böhlen, IfI@UZH

Syllabus/1

I Relational model, algebra, and calculus
I Elmasri and Navathe: chapters 3 and 6
I relational model
I relational algebra (RA):
σ, π, ∪, −, ×
ρ, ←
1, 1θ, d|><| , |><|d , d|><|d , ϑ, ÷,

I domain relational calculus (DRC), FOPL

I practice Cartesian product
I practice quantifiers
I move between RA, DRC, natural language
I be precise (e.g., qualified names do not exist in RA; use renaming)

DBS 2017, SL10 6/25 M. Böhlen, IfI@UZH

Syllabus/2

I SQL
I Elmasri and Navathe: chapters 4 and 5
I data definition language, data manipulation language
I query expressions, query specifications, orthogonality
I subqueries
I duplicates
I null values
I logical update semantics

I practice formulation of declarative queries
I consider effects of duplicates and NULL values
I solve and try out SQL solutions with PostgreSQL

I important is systematic plan: input, output, modular SQL code
I avoid trial and error

I be conservative with SQL features

DBS 2017, SL10 7/25 M. Böhlen, IfI@UZH

Syllabus/3

I Constraints, triggers, views, DB programming
I Elmasri and Navathe: chapters 5, 12 and 25
I views, with clause
I column constraints, table constraints, assertions, referential integrity
I functions, triggers, stored procedures
I expressiveness, recursion

I know key concepts and their properties
I know when and how to use these concepts; use as appropriate; helps

to solve specific problems or break down solutions into smaller parts
I details of extended SQL syntax are not the crucial part

DBS 2017, SL10 8/25 M. Böhlen, IfI@UZH

Syllabus/4

I Relational database design
I Elmasri and Navathe: chapters 14 and 15
I design goals, redundancy, keys
I functional dependencies, Armstrong’s inference rules
I 1NF, 2NF, 3NF, BCNF, 4NF
I normalization algorithm
I dependency preservation, lossless join decompositions
I closure, equivalence, minimal cover

I definition of FDs and MVDs
I definition of normal forms, dependency preservation and losless join

decomposition
I application of inference rules and normalization algorithm

DBS 2017, SL10 9/25 M. Böhlen, IfI@UZH

Syllabus/5

I Conceptual database design
I Elmasri and Navathe: chapters 7 and 8
I conceptual design process: ER model, entities, attributes, relationships
I weak entities, specializations
I 8 step ER-to-relational mapping

I ER diagrams: construct ER diagrams from real world descriptions
I no unique solution; make clarifying assumptions during design
I analyze strengths and weaknesses of an ER diagram
I extend and modify ER diagrams
I use and apply 8 step mapping algorithm

DBS 2017, SL10 10/25 M. Böhlen, IfI@UZH

Syllabus/6

I Physical database design
I Elmasri and Navathe: chapters 16 and 17
I seek time, latency, block read time
I file and buffer manager
I indexing: secondary and primary index
I B+ tree
I extendable hashing

I compute basic characteristics (nr of blocks, nr of IOs, etc)
I know definitions of B+ tree and extendable hashing
I apply algorithms on concrete examples
I use B+ tree definitions and algorithms from slides (other solutions

are not valid)

DBS 2017, SL10 11/25 M. Böhlen, IfI@UZH

Syllabus/7

I Query processing and optimization
I Elmasri and Navathe: chapters 18
I measures of query cost
I sorting (external sort merge)
I selection (scan, binary search, index)
I join (nested loop, block nested loop, sort merge, hash join)
I algebra trees, evaluation plans
I heuristic and cost-based query optimization

I compute cost of operations
I algorithms for sorting, selection and join
I transformation (rewriting) of relational algebra expressions
I interpretation of query plans

DBS 2017, SL10 12/25 M. Böhlen, IfI@UZH

Syllabus/7

I Transaction processing
I Elmasri and Navathe: chapters 20, 21, 22
I transactions, schedules, serializability, recoverability, ACID properties
I concurrency control, locking, protocols, deadlocks
I transactions in SQL
I recovery, database log

I schedules, deadlocks, recoverability
I conflict, conflict serializability, conflict graphs
I lock-based protocols, 2PL and variants
I immediate and deferred database, redo, undo

DBS 2017, SL10 13/25 M. Böhlen, IfI@UZH

Database System Courses at IfI

DBS 2017, SL10 14/25 M. Böhlen, IfI@UZH

Database Systems Courses @IfI

I Database Systems, Spring (sem4)
I Praktikum Datenbanksysteme, Fall (sem5)
I Distributed Databases, Fall (sem5)
I Seminar in Database Systems, Spring (sem6, sem8, sem12)
I XML and Databases, Spring (sem8, sem6)
I Data Warehousing, Spring (sem8, sem6; even years only)
I Nonstandard Databases, Fall (sem9, sem7)

I BSc thesis, MSc thesis, independent studies (Vertiefung,
Facharbeit, etc)

DBS 2017, SL10 15/25 M. Böhlen, IfI@UZH

Andreas Geppert: Praktikum Datenbanksysteme

I Since 2016 Andreas Geppert is with SwissRe.
I From 2001 until 2016 Andreas Geppert was with

Credit Suisse (as database architect).
I Before this he was a senior researcher in the

Database Technology Research Group.
I He received his diploma in Computer Science from the University of

Karlsruhe (Germany) in 1989 and his PhD in computer science from
the University of Zurich (1994).

I From August 1998 to August 1999 he was a visiting scientist at the
IBM Almaden Research Center.

I Praktikum Datenbanksysteme
I Apply/practice your SQL knowledge on a case study
I Dienstag 16:00 - 18:00

DBS 2017, SL10 16/25 M. Böhlen, IfI@UZH

Andreas Geppert: Praktikum Datenbanksysteme

I Syllabus
I relational database systems
I conceptual and logical design
I query languages
I triggers, stored procedures
I application development in Java (JDBC)

I Characteristic
I Application development with PostgreSQL
I Independent work with guidance

I Application (use case)
I reservation system for car sharing (from the database to the web)
I management of the car park, members and stations

DBS 2017, SL10 17/25 M. Böhlen, IfI@UZH

Can Türker: XML and Databases

I Dr. Can Türker heads the Data Integration Group
of the Functional Genomics Center Zurich (FGCZ).
He holds a Ph.D. degree in computer science (1999)
and is (co-)author of the several lecture books in the area of
databases, among others ’Object-Relational Databases’ and
’SQL:1999 & SQL:2003’.

I Lecture Hours: Thursday 8-10am
I Course content: XML is introduced with related technologies and it

is shown how XML can be used for storing, accessing, querying, and
updating data. The mapping between XML and databases as well as
specific requirements arising from the usage of XML for data
management are elaborated not only conceptually but are also
demonstrated practically using todays major database systems.

I Prerequisite: The course expects background knowledge in database
systems (especially in SQL).

DBS 2017, SL10 18/25 M. Böhlen, IfI@UZH

Can Türker: XML and Databases

Goal: This lecture deals with the interplay of two essential technologies,
namely XML and databases.

DBS 2017, SL10 19/25 M. Böhlen, IfI@UZH

Topics for BSc Theses, MSc
Theses, etc in the DBS Area

DBS 2017, SL10 20/25 M. Böhlen, IfI@UZH

BSc and MSc Theses in the DBS Area
I We are happy to supervise BSc and MSc theses in the DBS area
I Relevant for all specializations and degrees
I Typically close interaction with an assistant with weekly meetings
I Algorithms, software development, scientific writing

I Extension of PostgreSQL (parser, analyzer, query optimizer)
I Incorporation of a load balancing algorithm into Apache Hadoop
I Work with real world data (e.g., feedbase.ch)
I Matrix factorization

I Work goes into details
I Contact assistant by email and ask for a meeting to discuss theses

DBS 2017, SL10 21/25 M. Böhlen, IfI@UZH

Beyond the DBS Course

DBS 2017, SL10 22/25 M. Böhlen, IfI@UZH

Beyond the DBS Course

I Jennifer Widom’s (Stanford) recipe for database research:
1. pick a fundamental assumption underlying database systems
2. drop it
3. solve resulting problem

I drop: fixed structure (schema) of the data
I leads to: semistructured databases, XML databases

I drop: data sets are persistent and disk-resident
I leads to: stream processing systems

I drop: tuple presence is certain
I leads to: probabilistic databases

DBS 2017, SL10 23/25 M. Böhlen, IfI@UZH

Beyond the DBS Course

I drop: banking applications with short update transactions
I leads to: data warehouses, OLAP

I drop: sophisticated SQL queries
I leads to: key values stores, NoSQL

I drop: centralized processing of entire database
I leads to: MapReduce, Hadoop

I drop: data is stored row by row
I leads to: column stores

DBS 2017, SL10 24/25 M. Böhlen, IfI@UZH

