Datalogic Matrix & built-in EtherNet/IP

Installation and User Guide

December 2011

REVISION 1.00

Master Revision History

Revision	Date	Author(s)	Change Description
1.00	01/12/2011	J.Wendorf, D.Natati	Initial Revision

Table of Contents

I. I	NTRODUCTION	5
A.	OVERVIEW	
B.	Reference Terms	5
C.	References	5
II.	ETHERNET/IP OVERVIEW	6
III.	OBJECT MODEL	10
A.	IDENTITY OBJECT (0x01)	11
1.	CLASS ATTRIBUTES (INSTANCE 0)	11
2.	INSTANCE ATTRIBUTES (INSTANCE 1)	11
3.	COMMON SERVICES	11
4.	INSTANCE ATTRIBUTE SEMANTICS	12
В.	MESSAGE ROUTER OBJECT (0x02)	14
C.	ASSEMBLY OBJECT (0x04)	15
1.	CLASS ATTRIBUTES (INSTANCE 0)	15
2.	INSTANCE ATTRIBUTES (INSTANCE 0x64 – "INPUT INSTANCE 1")	15
3.	INSTANCE ATTRIBUTES (INSTANCE 0x65 – "INPUT INSTANCE 2")	15
4.	INSTANCE ATTRIBUTES (INSTANCE 0x70 – "OUTPUT INSTANCE 1")	16
5.	INSTANCE ATTRIBUTES (INSTANCE 0x71 – "OUTPUT INSTANCE 2")	16
6.	INSTANCE ATTRIBUTES (INSTANCE 0x80 – "CONFIGURATION INSTANCE")	16
7.	INSTANCE ATTRIBUTES (INSTANCE 0x81 – "HEARTBEAT / INPUT ONLY INSTANCE")	16
8.	COMMON SERVICES	16
<i>9</i> .	CLASS ATTRIBUTE SEMANTICS	16
10. D	INSTANCE ATTRIBUTE SEMANTICS	16
D.	CONNECTION MANAGER OBJECT (0X06)	I /
E.	ICP OBJECT (0XF5)	18
1.	CLASS ATTRIBUTES (INSTANCE U)	18
2.	INSTANCE ATTRIBUTES (INSTANCE 1)	18
3. 1	LUGTANGE A TTENEVICES	18
4. E	INSTANCE ATTRIBUTE SEMANTICS	19
Г. 1	ETHERNET LINK OBJECT $(UXF0)$	22
1. 2	LASS ATTRIBUTES (INSTANCE U)	22
2. 2	INSTANCE ATTRIBUTES (INSTANCE I)	22
Э. Л	LINGTANCE A TTRIDUTE SEMANTICS	22 22
4. G	INSTANCE ATTRIBUTE SEMANTICS	22 24
U. 1	$C_{\text{LASS}} \wedge TTDIDUTES (INSTANCE 0)$	24 24
2	$INSTANCE \Delta TTRIBUTES (INSTANCE 1)$	2 4 24
2.	COMMON SERVICES	2 24
э. 4	CLASS ATTRIBUTE SEMANTICS	···· 27 24
	INSTANCE A TRIBUTE SEMANTICS	24
5. 6	ITEM DATA HANDSHAKING EXAMPLE (NO FRAGMENTATION)	23
7	ITEM DATA HANDSHAKING EXAMPLE (WITH FRAGMENTATION)	27
,. Н	GENERAL PURPOSE INPUT OBJECT (0x65)	20
1	CLASS ATTRIBUTES (INSTANCE 0)	29
2	INSTANCE ATTRIBUTES (INSTANCE 1)	
3.	Common Services	
4.	INSTANCE ATTRIBUTE SEMANTICS	29
		-

I.	GENERAL PURPOSE OUTPUT OBJECT (0x66)	30
1.	CLASS ATTRIBUTES (INSTANCE 0)	30
2.	INSTANCE ATTRIBUTES (INSTANCE 1)	30
3.	COMMON SERVICES	30
4.	INSTANCE ATTRIBUTE SEMANTICS	30
J.	STATISTICS OBJECT (0x67)	
1.	CLASS ATTRIBUTES (INSTANCE 0)	
2.	INSTANCE ATTRIBUTES (INSTANCE 1)	
3.	COMMON SERVICES	
4.	INSTANCE ATTRIBUTE SEMANTICS	
К.	DIAGNOSTICS OBJECT (0x68)	
1.	CLASS ATTRIBUTES (INSTANCE 0)	
2.	INSTANCE ATTRIBUTES (INSTANCE 1)	
3.	COMMON SERVICES	
4.	INSTANCE ATTRIBUTE SEMANTICS	
IV.	CONFIGURING THE MATRIX FOR ETHERNET/IP	
V. (CONFIGURING LOGIX5561™ TO USE ETHERNET/IP	40
Δ	CONFIGURING THE ETHERNET A DAPTER	40
A. B	CONFIGURING THE ETHERNET ADAPTER	40 44
A. B. C	CONFIGURING THE ETHERNET ADAPTER Accessing the I/O Data Sample Ladder Logic	40 44 46
A. B. C.	CONFIGURING THE ETHERNET ADAPTER ACCESSING THE I/O DATA SAMPLE LADDER LOGIC USING FXPLICIT MESSAGING	40 44 46 49
A. B. C. VI.	CONFIGURING THE ETHERNET ADAPTER ACCESSING THE I/O DATA SAMPLE LADDER LOGIC USING EXPLICIT MESSAGING	40 44 46 49
A. B. C. VI.	CONFIGURING THE ETHERNET ADAPTER ACCESSING THE I/O DATA SAMPLE LADDER LOGIC USING EXPLICIT MESSAGING SAMPLE LADDER LOGIC	
A. B. C. VI. A. B.	CONFIGURING THE ETHERNET ADAPTER. ACCESSING THE I/O DATA SAMPLE LADDER LOGIC. USING EXPLICIT MESSAGING. SAMPLE LADDER LOGIC. CONFIGURING THE MSG INSTRUCTION.	40 44 46 49 50
A. B. C. VI. A. B. VII.	CONFIGURING THE ETHERNET ADAPTER. ACCESSING THE I/O DATA SAMPLE LADDER LOGIC. USING EXPLICIT MESSAGING. SAMPLE LADDER LOGIC. CONFIGURING THE MSG INSTRUCTION. TROUBLESHOOTING PROCEDURES.	40 44 46 49 50 52
A. B. C. VI. A. B. VII. APPE	CONFIGURING THE ETHERNET ADAPTER. ACCESSING THE I/O DATA SAMPLE LADDER LOGIC. USING EXPLICIT MESSAGING SAMPLE LADDER LOGIC. CONFIGURING THE MSG INSTRUCTION TROUBLESHOOTING PROCEDURES. ENDIX A – ETHERNET/IP ERROR CODES	40 44 46 49 50 52 53
A. B. C. VI. A. B. VII. APPE	CONFIGURING THE ETHERNET ADAPTER. ACCESSING THE I/O DATA SAMPLE LADDER LOGIC. USING EXPLICIT MESSAGING SAMPLE LADDER LOGIC. CONFIGURING THE MSG INSTRUCTION. TROUBLESHOOTING PROCEDURES. ENDIX A – ETHERNET/IP ERROR CODES GENERAL STATUS CODES	40 44 46 49 50 52 53 53
A. B. C. VI. A. B. VII. APPE A. B	CONFIGURING THE ETHERNET ADAPTER. ACCESSING THE I/O DATA SAMPLE LADDER LOGIC. USING EXPLICIT MESSAGING SAMPLE LADDER LOGIC. CONFIGURING THE MSG INSTRUCTION. TROUBLESHOOTING PROCEDURES. ENDIX A – ETHERNET/IP ERROR CODES GENERAL STATUS CODES	40 44 46 49 50 52 53 53 53
A. B. C. VI. A. B. VII. APPE A. B.	CONFIGURING THE ETHERNET ADAPTER. ACCESSING THE I/O DATA SAMPLE LADDER LOGIC. USING EXPLICIT MESSAGING SAMPLE LADDER LOGIC. CONFIGURING THE MSG INSTRUCTION TROUBLESHOOTING PROCEDURES. ENDIX A – ETHERNET/IP ERROR CODES GENERAL STATUS CODES . FORWARD OPEN (CONNECTION ALLOCATION) ERROR CODES.	40 44 46 49 49 50 50 50 52 53 53 55
A. B. C. VI. A. B. VII. APPE A. B. APPE	Configuring the Ethernet Adapter. Accessing the I/O Data Sample Ladder Logic. USING EXPLICIT MESSAGING Sample Ladder Logic. Configuring the MSG instruction. TROUBLESHOOTING PROCEDURES. ENDIX A – ETHERNET/IP ERROR CODES General Status Codes. Forward Open (Connection Allocation) Error Codes. ENDIX B – ETHERNET/IP SCANNER DEMO.	40 44 46 49 50 52 53 55 56
A. B. C. VI. A. B. VII. APPE A. B. APPE 1.	CONFIGURING THE ETHERNET ADAPTER. ACCESSING THE I/O DATA SAMPLE LADDER LOGIC. USING EXPLICIT MESSAGING SAMPLE LADDER LOGIC. CONFIGURING THE MSG INSTRUCTION TROUBLESHOOTING PROCEDURES. ENDIX A – ETHERNET/IP ERROR CODES GENERAL STATUS CODES FORWARD OPEN (CONNECTION ALLOCATION) ERROR CODES ENDIX B – ETHERNET/IP SCANNER DEMO OVERVIEW	40 44 46 49 50 52 53 53 55 56
A. B. C. VI. A. B. VII. APPE A. B. APPE 1. 2.	CONFIGURING THE ETHERNET ADAPTER. ACCESSING THE I/O DATA SAMPLE LADDER LOGIC. USING EXPLICIT MESSAGING SAMPLE LADDER LOGIC. CONFIGURING THE MSG INSTRUCTION TROUBLESHOOTING PROCEDURES. ENDIX A – ETHERNET/IP ERROR CODES GENERAL STATUS CODES FORWARD OPEN (CONNECTION ALLOCATION) ERROR CODES. ENDIX B – ETHERNET/IP SCANNER DEMO OVERVIEW SUCCESSFUL COMMUNICATIONS.	40 44 46 49 50 50 50 53 53 55 56 56 56
A. B. C. VI. A. B. VII. APPE A. B. APPE 1. 2. 3.	CONFIGURING THE ETHERNET ADAPTER ACCESSING THE I/O DATA SAMPLE LADDER LOGIC USING EXPLICIT MESSAGING SAMPLE LADDER LOGIC CONFIGURING THE MSG INSTRUCTION TROUBLESHOOTING PROCEDURES ENDIX A – ETHERNET/IP ERROR CODES GENERAL STATUS CODES FORWARD OPEN (CONNECTION ALLOCATION) ERROR CODES ENDIX B – ETHERNET/IP SCANNER DEMO OVERVIEW SUCCESSFUL COMMUNICATIONS MATRIX TRIGGERING THROUGH ETHERNET/IP	40 44 46 49 50 52 53 53 53 55 56 56 57 58

I. Introduction

A. Overview

The Matrix 410TM is the modular, flexible and versatile compact bar code 2D reader for industrial applications embedding 1.3 and 2.0 megapixel sensors. Matrix 410TM features excellent performances in reading and verifying, easy setup, thanks to the X-PRESSTM interface and patented Blue DiamondsTM system, ease of use, extreme flexibility, high versatility and industrial strength. The integration of EtherNet/IP and TCP-IP protocol expands the networking and remote diagnostic capabilities of the reader. The possibility of sending diagnostic or statistical messages, even through the Web, provides a great advantage for service and maintenance and reduces plant downtime costs.

B. Reference Terms

Matrix-Refers to the Matrix family of devicesReader-Refers to the Matrix deviceClient-Refers to the ControlLogix PLC

C. References

- Volume I: CIP Common Specification, Release 1.0, ©2003 ODVA
- Volume 2: EtherNet/IP Adaptation of CIP, Release 1.0, ©2003 ODVA
- To find more information on the ControlLogix system, including EtherNet/IP go to http://ab.rockwellautomation.com/

II. EtherNet/IP Overview

A LITTLE BACKGROUND

Most people who work in an office associate the term "Ethernet" with the physical cable behind their desk. This cable connects their office PC to the printers and servers of the local network and the infinite web sites on the Internet. This cable is only the physical part of Ethernet, the media carrying Ethernet messages to your PC. On this wire is a whole series of communication protocols such as IP, the Internet Protocol; TCP, the Transport Control Protocol; and various Microsoft protocols such as NetBEUI. This suite of protocols works well for the office environment. It allows users to share files, access printers, send email, search the Internet and perform all the other communications used in the office environment.

The needs of the factory floor are much different with some very special requirements. Instead of accessing files and printers, factory floor controllers must access data embedded in drive systems, operator workstations and I/O devices. Instead of letting a user wait while a task is being performed, factory floor data communications needs are real-time or very close to real time. Terminating the fill operation on a bottle requires much more time-precise communications than accessing the next page of an Internet site.

Traditionally, Ethernet had only limited acceptance in Industrial Automation. Until recently the expense, lack of intelligent switches and routers and the domination of large vendors with proprietary protocols prevented the wide acceptance of Ethernet on the factory floor. Now with prices falling, PCs with inherent Ethernet capability moving in droves onto the factory floor and intelligent switches and routers, Ethernet is gaining acceptance. Only the lack of a widely accepted, flexible application layer targeted to Industrial Automation has prevented its complete acceptance.

ETHERNET/IP

Ethernet/IP is the application layer protocol that can meet this challenge. Four independent groups have joined forces to develop and promote EIP as a public domain Ethernet application layer for Industrial Automation. These groups include the Open DeviceNet Vendor Association (ODVA), the Industrial Open Ethernet Association (IOANA), Control Net International (CI) and the Industrial Ethernet Association (IEA). The goals of this effort illustrate how EIP provides a wide-ranging, comprehensive, certifiable standard suitable to a wide variety of automation devices:

Ethernet/IP uses all the transport and control protocols used in traditional Ethernet including the Transport Control Protocol (TCP), the Internet Protocol (IP) and the media access and signaling technologies found in off-the-shelf Ethernet interface cards. Building on these standard PC technologies means that EIP works transparently with all the standard off-the-shelf Ethernet devices found in today's marketplace. It also means that EIP can be easily supported on standard PCs and all their derivatives. Even more importantly, basing EIP on a standard technology platform ensures that EIP will move forward as the base technologies evolve in the future.

ETHERNET/IP IS A CERTIFIABLE STANDARD

The groups supporting EIP plan to ensure a comprehensive, consistent standard by careful, multivendor attention to the specification and through certified test labs as has been done with DeviceNet and ControlNet. Certification programs modeled after the programs for DeviceNet and ControlNet will ensure the consistency and quality of field devices. EIP is built on a widely accepted protocol layer

EIP is constructed from a very widely implemented standard used in DeviceNet and ControlNet called the Control and Information Protocol (CIP) and is illustrated on the attached drawing. This standard organizes networked devices as a collection of objects. It defines the access, object behavior and extensions which allow widely disparate devices to be accessed using a common mechanism. Over 300 vendors now support the CIP protocol in present day products. Using this technology in EIP means that EIP is based on a widely understood, widely implemented standard that does not require a new technology shakedown period.

CIP OVERVIEW

The Communications and Information Protocol (CIP) is a communications protocol for transferring automation data between two devices. In the CIP Protocol, every network device represents itself as a series of objects. Each object is simply a grouping of the related data values in a device. For example, every CIP device is required to make an Identity object available to the network. The identity object contains related identity data values called attributes. Attributes for the identity object include the vendor ID, date of manufacture, device serial number and other identity data. CIP does not specify at all how this object data is implemented, only what data values or attributes must be supported and that these attributes must be available to other CIP devices.

The Identity object is an example of a required object. There are three types of objects defined by the CIP protocol:

REQUIRED OBJECTS

Required objects are required by the specification to be included in every CIP device. These objects include the Identity object, a Message Router object and a Network object. The identity object contains related identity data values called attributes. Attributes for the identity object include the vendor ID, date of manufacturer, device serial number and other identity data.

A Network object contains the physical connection data for the object. For a CIP device on DeviceNet the network object contains the MacID and other data describing the interface to the CAN network. For EIP devices, the network object contains the IP address and other data describing the interface to the Ethernet port on the device.

APPLICATION OBJECTS

Application objects are the objects that define the data encapsulated by the device. These objects are specific to the device type and function. For example, a Motor object on a Drive System has attributes describing the frequency, current rating and motor size. An Analog Input object on an I/O device has attributes that define the type, resolution and current value for the analog input. These application layer objects are predefined for a large number of common device types. All CIP devices with the same device type (Drive Systems, Motion Control, Valve Transducer...etc) must contain the identical series of application objects. The series of application objects for a particular device type is known as the device profile. A large number of profiles for many device types have been defined. Supporting a device profile allows a user to easily understand and switch from a vendor of one device type to another vendor with that same device type.

A device vendor can also group Application Layer Objects into assembly objects. These super objects contain attributes of one or more Application Layer Objects. Assembly objects form a convenient package for transporting data between devices. For example, a vendor of a Temperature Controller with multiple temperature loops may define assemblies for each of the temperature loops and an assembly with data from both temperature loops. The user can than pick the assembly that is most suited for the application and how often to access each assembly. For example, one temperature assembly may be configured to report every time it changes state while the second may be configured to report every one-second regardless of a change in state.

Assemblies are usually predefined by the vendor but CIP also defines a mechanism in which the user can dynamically create an assembly from application layer object attributes.

VENDOR SPECIFIC OBJECTS

Objects not found in the profile for a device class are termed Vendor Specific. These objects are included by the vendor as additional features of the device. The CIP protocol provides access to these vendor extension objects in exactly the same method as either application or required objects. This data is strictly of the vendors choosing and is organized in whatever method makes sense to the device vendor.

In addition to specifying how device data is represented to the network, the CIP protocol specifies a number of different ways in which that data can be accessed such as cyclic, polled and change-of-state.

ADVANTAGES TO EIP

The advantages of the CIP protocol layer over EIP are numerous. The consistent device access means that a single configuration tool can configure CIP devices on different networks from a single access point without using vendor specific software. The classification of all devices as objects decreases the training and startup required when new devices are brought online. EIP provides improved response time and greater data throughput than DeviceNet and ControlNet. EIP links devices from the sensor bus level to the control level to the enterprise level with a consistent application layer interface.

There are numerous application layer competitors to EIP including Modbus/TCP from Groupe Schneider, PROFInet from Siemens, HSE Fieldbus from the Fieldbus foundation and other vendors. Unfortunately space prevents a detailed review of each of these products. However, none of these competitors can provide the vendor support, flexibility and total architecture support offered by the implementation of CIP over Ethernet.

USER CHALLENGES

EIP implementation is not without challenges. Two of the most important challenges to the first time user include training and network configuration. One common problem is the lack of trained staff who understand both the IT fundamentals and the automation network. A collaborative effort between the IT and Automation staffs is required to successfully implement the first Ethernet/IP system. A second challenge is proper network configuration. Planning your Ethernet factory automation infrastructure is essential. Careful identification of all your control loops, choosing the correct routers, switches and paths and documenting your network properly are requisites for a communications network which meets your production goals and requires little ongoing maintenance.

The Object Model is the logical grouping of attributes accessible from the Matrix.

The MATRIX supports 6 required objects

- Identity Object (0x01)
- Message Router Object (0x02)
- Assembly Object (0x04)
- Connection Manager Object (0x06)
- TCP Object (0xF5)
- Ethernet Link Object (0xF6)

The MATRIX supports 5 vendor specific objects

- Item Object (0x64)
- General Purpose Input Object (0x65)
- General Purpose Output Object (0x66)
- Statistics Object (0x67)
- Diagnostics Object (0x68)

The following are the ODVA data types

Data Type	Description
USINT	Unsigned Short Integer (8-bits)
UINT	Unsigned Integer (16-bit)
UDINT	Unsigned Double Integer (32-bit)
STRING	Character String (1 byte per character)
BYTE	Bit String (8-bits)
WORD	Bit String (16-bits)
DWORD	Bit String (32-bits)

A. Identity Object (0x01)

1. Class Attributes (Instance 0)

Attribute	Name	Data Type	Data Value	Access
ID				Rule
1	Revision	UINT	1	Get

2. Instance Attributes (Instance 1)

Attribute	Name	Data Type	Data Value	Access
ID				Rule
1	Vendor ID	UINT	850 _{DEC}	Get
2	Device Type	UINT	$00_{\rm HEX}$	Get
3	Product Code	UINT	3000 _{DEC}	Get
4	Product Major Revision	USINT	01	Get
	Product Minor Revision	USINT	01	
5	Status Word (see below for	WORD	See Below	Get
	definition)			
6	Serial Number	UDINT	Unique	Get
			32 Bit Value	
7	Product Name			Get
	Structure of:			
	Product Name Size	USINT	26	
	Product Name String	USINT []	"Unattended	
			Scanning System"	
64 _{HEX}	Product Model Number			Get
	Structure of:			
	Product Model Number Size	USINT	20	
	Product Model Number String	USINT []	"Product Model	
			Number"	

3. Common Services

	Implemented f	or	
Service Code	Class Level	Instance Level	Service Name
$0E_{\text{HEX}}$	Yes	Yes	Get_Attribute_Single
$05_{\rm HEX}$	No	Yes	Reset

4. Instance Attribute Semantics

Vendor ID

Vendor IDs are used to identify the manufacturer of a product. Vendor IDs are managed by ODVA. The Vendor ID for Datalogic. is 850.

Device Type

Device Types are used to identify the device profile used for a product. Device profiles define the minimum set of attributes and objects required for conformance. The list of Device Types is managed by ODVA. 0 (Generic Device) is the Device Type for this product.

Product Code

The Product Code is a number (0-65535) used to identify a vendor's product within the device type. The product code refers to the behavior of the product on a given network and doesn't affect functionality not seen by the network. The Product Code for this series of devices is 3000.

Product Major/Minor Revision

The Major and Minor Revision identify the revision of the item the Identity Object represents. Zero is invalid for either field. The current revision of the product is 1.01.

Status Word

The Status Word represents the status of the complete device. Only bit zero ("Owned") is monitored for this device.

Bit	Name	Definition
0	Owned	0 - No I/O Connection Allocated
		1 - I/O Connection Allocated
1 – 15	Unused	Unused

Serial Number

The Serial Number is a 32-bit number used in conjunction with the Vendor ID to form a unique number on DeviceNet. Each vendor is responsible for guaranteeing the uniqueness of the serial number across all of its devices.

Product Name

The Product Name is a string (up to 32 characters) that identifies a product on the network. The same Product Code may have a variety of product name strings. The Product Name for this family of products is "Unattended Scanning System". The first byte in the access of this attribute contains the length of the string (26 bytes).

Product Model Number

The Product Model Number is a vendor specific attribute used to identify the reader. The string length varies from 0 to 128 characters. The Product Model Number is set prior to shipping the product. The default string is "Product Model Number" with a length of 20 bytes.

B. Message Router Object (0x02)

C. Assembly Object (0x04)

1. Class Attributes (Instance 0)

Attribute	Name	Data	Data Value	Access
ID		Туре		Rule
1	Revision	UINT	1	Get
2	Max Instance	UINT	81 _{HEX}	Get

2. Instance Attributes (Instance 0x64 – "Input Instance 1")

Attribute	Name	Data				Access
ID		1 ype				Rule
3	Polled Input Data		(Structure i	tem locatior	ı)	Get
	Structure of:		Class	Instance	Attribute	
	Item Sequence Number	USINT	0x64	0x01	0x04	
	Item Status	UINT	0x64	0x01	0x02	
	Item Data Size	UINT	0x64	0x01	0x03	
	Local Presence And Input Bits	BYTE	0x65	0x01	0x03	
	Failure Mask	BYTE	0x68	0x01	0x01	

3. Instance Attributes (Instance 0x65 – "Input Instance 2")

Attribute	Name	Data				Access
ID		Туре				Rule
3	Polled Input Data		(Structure i	tem location	ı)	Get
	Structure of:		Class	Instance	Attribute	
	Item Sequence Number	USINT	0x64	0x01	0x04	
	Item Status	UINT	0x64	0x01	0x02	
	Item Data Size	UINT	0x64	0x01	0x03	
	Local Presence And Input Bits	BYTE	0x65	0x01	0x03	
	Failure Mask	BYTE	0x68	0x01	0x01	
	Fragment Sequence Number	USINT	0x64	0x01	0x05	
	Fragment Data Size	UINT	0x64	0x01	0x08	
	Fragment Data []	BYTES []	0x64	0x01	0x09	

Attribute ID	Name	Data Type				Access Rule
3	Polled Output Data		(Structi	ıre item loc	aiton)	Get /
	Structure of:		Class	Instance	Attribute	Set
	Last Item Sequence Number Received	USINT	0x64	0x01	0x06	
	Remote Presence And Output Bits	UINT	0x66	0x01	0x03	

4. Instance Attributes (Instance 0x70 – "Output Instance 1")

5. Instance Attributes (Instance 0x71 – "Output Instance 2")

Attribute	Name	Data				Access
ID		Туре				Rule
3	Polled Output Data		(Structi	ıre item loc	ation)	Get /
	Structure of:		Class	Instance	Attribute	Set
	Last Item Sequence Number Received	USINT	0x64	0x01	0x06	
	Remote Presence And Output Bits	UINT	0x66	0x01	0x03	
	Last Fragment Sequence Number Received	USINT	0x64	0x01	0x07	

6. Instance Attributes (Instance 0x80 – "Configuration Instance")

Many I/O clients include a configuration path when opening an I/O connection to the server. There is no configuration data, but the instance number is necessary.

7. Instance Attributes (Instance 0x81 – "Heartbeat / Input Only Instance")

This instance allows clients to monitor input data without providing output data. Since there is no consume data, no attributes are supported.

8. Common Services

	Implemented for		
Service Code	Class Level	Instance Level	Service Name
0E _{HEX}	Yes	Yes	Get_Attribute_Single
$10_{\rm HEX}$	No	Yes	Set_Attribute_Single

9. Class Attribute Semantics

Max Instance

The Max Instance attribute lists the highest instance number (currently 0x81) that exists in the Assembly Object.

10. Instance Attribute Semantics

All Instance attributes in the Assembly Object are composed of attributes from other objects. See the attribute definitions in their respective objects.

D. Connection Manager Object (0x06)

E. TCP Object (0xF5)

1. Class Attributes (Instance 0)

Attribute ID	Name	Data Type	Data Value	Access Rule
1	Revision	UINT	1	Get

2. Instance Attributes (Instance 1)

Attribute	Name	Data Type	Data Value	Access Rule
ID				
1	Status	DWORD	1	Get
2	Configuration Capability	DWORD	0	Get
3	Configuration Control	DWORD	0	Get
4	Physical Link Object			Get
	Structure of:			
	Path Size	UINT	2	
	Path	WORDS []	0x20F6 0x2401	
5	Interface Configuration			Get
	Structure of:			
	IP Address	UDINT	0	
	Network Mask	UDINT	0	
	Gateway Address	UDINT	0	
	Name Server	UDINT	0	
	Name Server 2	UDINT	0	
	Domain Name Size	UINT	0	
	Domain Name	STRING	0	
6	Host Name			Get
	Structure of:			
	Host Name Size	UINT	0	
	Host Name	STRING	0	

3. Common Services

	Implemented for	ſ	
Service Code	Class Level Instance Level		Service Name
0E _{HEX}	Yes	Yes	Get_Attribute_Single

4. Instance Attribute Semantics

<u>Status</u>

The Status attribute is a bitmap that indicates the status of the TCP/IP network interface. This attribute value is fixed at 1.

Bit(s)	Name	Definition
0-3	Interface	0 – Interface Configuration attribute not configured
	Configuration	1 – Interface Configuration attribute contains a valid configuration
	Status	2 - 15 Reserved for future use
4 - 31	Reserved	Unused

Configuration Capability

The Configuration Capability attribute is a bitmap that indicates the device's support for optional network configurations. This attribute value is fixed at 0 since network configuration information is not available to the 6x00 EtherNet/IP Reader.

Bit(s)	Name	Definition
0	BOOTP Client	1 (TRUE) indicates the device is capable of obtaining its
		network configuration via BOOTP
1	DNS Client	1 (TRUE) indicates the device is capable of resolving host
		names by querying a DNS server
2	DHCP Client	1 (TRUE) indicates the device is capable of obtaining its
		network configuration via DHCP
3	DHCP-DNS Update	1 (TRUE) indicates the device is capable of sending its host
		name in the DHCP request
4	Configuration	1 (TRUE) indicates the Interface Configuration attribute is
	Settable	settable. This device does not allow this
5 - 31	Reserved	Unused

Configuration Control

The Configuration Control attribute is a bitmap used to control network configuration attributes. This attribute value is fixed at 0 since network configuration information is not available to the 6x00 EtherNet/IP Reader.

Bit(s)	Name	Definition
0-3	Startup Configuration	0 - The device uses the interface configuration values stored in
		non-volatile memory
		1 – The device obtains the interface configuration values via
		BOOTP at startup
		2 – The device obtains the interface configuration values via
		DHCP at startup
		3 - 15 Reserved for future use
4	DNS Enable	1 (TRUE) the device shall resolve host names by querying a
		DNS server
5-31	Reserved	Unused

Physical Link Object

This attribute identifies the object associated with the underlying physical communications interface. The first byte is the path size in words, followed by the path to the object. Ethernet is always used for this application, so the path value is fixed.

Interface Configuration

This attribute contains the configuration parameters required to operate as a TCP/IP node. The following are the fields of the Interface Configuration structure. These values are modifiable via Visiset only, so the attributes are read only.

Name	Data Type	Meaning
IP Address	UDINT	The device's IP Address
Network Mask	UDINT	The device's network mask. The network mask is used
		when the IP network has been partitioned into subnets. The
		network mask is used to determine whether an IP address
		is located on another subnet.
Gateway Address	UDINT	The IP address of the device's default gateway. When a
		destination IP address is on a different subnet, packets are
		forwarded to the default gateway for routing to the
		destination subnet.
Name Server	UDINT	The IP address of the primary name server. The name
		server is used to resolve host names. For example, that
		might be contained in a CIP connection path.
Name Server 2	UDINT	The IP address of the secondary name server. The
		secondary name server is used when the primary name
		server is not available, or is unable to resolve a host name.
Domain Name Size	UINT	The length of the Domain Name in bytes.

Name	Data Type	Meaning	
Domain Name	STRING	The default domain name. The default domain name is	
		used when resolving host names that are not fully	
		qualified. For example, if the default domain name is	
		"odva.org", and the device needs to resolve a host name of	
		"plc", then the device will attempt to resolve the host name	
		as "plc.odva.org".	

Host Name

The Host Name attribute contains the device's host name. The host name is used when the device supports DHCP-DNS. Since this device doesn't support DHCP-DNS, this attribute is NULL.

F. Ethernet Link Object (0xF6)

1. Class Attributes (Instance 0)

Attribute ID	Name	Data Type	Data Value	Access Rule
1	Revision	UINT	1	Get

2. Instance Attributes (Instance 1)

Attribute ID	Name	Data Type	Data Value	Access Rule
1	Interface Speed	UDINT	100	Get
2	Interface Flags	DWORD	3	Get
3	Physical Address	USINT []	0	Get

3. Common Services

	Implemented	for	
Service Code	Class Level	Instance Level	Service Name
0E _{HEX}	Yes	Yes	Get_Attribute_Single

4. Instance Attribute Semantics

Interface Speed

The Interface Speed attribute indicates whether the device is running at 10Mbps, 100Mbps, 1Gbps, etc... The attribute resolution is in Mbps, so if the interface is running at 100Mbps, the attribute value is 100.

Interface Flags

The Interface Flags attribute contains status and configuration information about the physical interface as follows:

Bit(s)	Name	Definition
0	Link Status	Indicates whether or not the Ethernet 802.3 communications
		interface is connected to an active network. 0 indicates an
		inactive link; 1 indicates an active link. The determination of
		link status is implementation specific. In some cases devices can
		tell whether the link is active via hardware/driver support. In
		other cases, the device may only be able to tell whether the link
		is active by the presence of incoming packets.
1	Half/Full Duplex	0 indicates the interface is running half duplex; 1 indicates full
		duplex. Note that if the Link Status flag is 0, then the value of
		the Half/Full Duplex flag is indeterminate.
2 - 31	Reserved	Set to zero.

Physical Address

The Physical Address attribute contains the interface's MAC layer address. The Physical Address is an array of octets (bytes). The recommended display format is "XX-XX-XX-XX-XX-XX" starting with the first octet. This attribute is read only.

G. Item Object (0x64)

1. Class Attributes (Instance 0)

Attribute ID	Name	Data Type	Data Value	Access Rule
1	Revision	UINT	1	Get
2	Maximum Item Data Buffer Size	UINT	450	Get
3	Maximum Fragment Data Buffer Size	UINT	450	Get

2. Instance Attributes (Instance 1)

Attribute	Name	Data	Data	Access
ID		Туре	Value	Rule
1	Expected Number Of Barcodes Per Item	USINT	1	Get
2	Item Status	UINT	0	Get
3	Item Data Size	UINT	0	Get
4	Item Sequence Number	USINT	0	Get
5	Fragment Sequence Number	USINT	0	Get
6	Last Item Sequence Number Received	USINT	0	Get / Set
7	Last Fragment Sequence Number Received	USINT	0	Get / Set
8	Fragment Data Size	UINT	0	Get
9	Fragment Data []	BYTES []	0	Get

3. Common Services

	Implemented	for	
Service Code	Class Level	Instance Level	Service Name
$05_{\rm HEX}$	No	Yes	Reset ¹
0E _{HEX}	Yes	Yes	Get Attribute Single
10 _{HEX}	No	Yes	Set Attribute Single

4. Class Attribute Semantics

Maximum Item Data Buffer Size

The Maximum Item Data Buffer Size is the maximum length of Item Data. If this attribute is greater than the Maximum Fragment Data Buffer Size, fragmentation is used to pass the Item Data. The valid range is 1 - 65535. The default size is 450.

¹ This Service Code is used to flush the Item Buffer Queue.

^{© 2011} Datalogic S.p.A. - All Right Reserved

Maximum Fragment Data Buffer Size

The Maximum Fragment Data Buffer Size is the length of the fragment buffer. This value must be less than or equal to the Maximum Item Data Buffer Size. The valid range is 1 - 450. The default size is 450 (no fragmentation is used).

5. Instance Attribute Semantics

Expected Number Of Barcodes Per Item

The Matrix supports Item Data packets with multiple barcodes. The Expected Number of Barcodes Per Item is the number of barcodes embedded in the Item Data. The default size is one barcode.

Item Status

The Item Status Code is the status of the current Item Data packet and is returned with every Item Data transfer. The table below shows the status codes and their meanings.

Item Status Code	Item Status Name
0x0000	Good Read
0x0001	Complete, No Read
0x0002	Partial Read
0x0003	Multiple Read
0x0004	Wrong Read

Item Data Size

The Item Data Size is the total size of the Item Data. If the Item Data Size is greater than the Maximum Fragment Data Buffer Size, fragmentation is used (see the fragmentation example at the end of this section).

Item Sequence Number

The Item Sequence Number is incremented by one on every new Item Data production. The Item Sequence Number is set to zero at power up. Once an Item Data packet is ready to transmit, the Item Sequence Number is set to one. The Item Sequence Number reloads to one since zero is an invalid number.

Fragment Sequence Number

The Fragment Sequence Number is set to one on the first fragment of the Item Data production. The Fragment Sequence Number is incremented by one on every new fragment. If fragmentation isn't used, this value is fixed at one.

Last Item Sequence Number Received

The Last Item Sequence Number Received is written with the Item Sequence Number by the EtherNet/IP client to acknowledge the receipt of the Item Data. If fragmentation is used, this value isn't written until the complete message is received.

Last Fragment Sequence Number Received

The Last Fragment Sequence Number Received is written with the Fragment Sequence Number by the EtherNet/IP client to acknowledge the receipt of an individual fragment. If fragmentation isn't used, this value doesn't need to be written.

Fragment Data Size

The Fragment Data Size is the length of the data (in bytes) stored in the Fragment Data attribute. If fragmentation is used, this value equals the Maximum Fragment Data Buffer Size until the last fragment.

Fragment Data

This attribute stores the Fragment Data. If the Item Data Size is less than the Maximum Fragment Data Buffer Size, this attribute stores the complete Item Data. If the Item Data Size is greater than the Maximum Fragment Data Buffer Size, this attribute stores the individual fragments of data.

6. Item Data Handshaking Example (No Fragmentation)

The following is an example of how to send 3 Item Data packets, each 300 bytes, with a fragment size of 450.

To Datalogic	e barcode	To EtherNet/IP Client from Datalogic Barcode Reader					
reauer from							
Last Item	Last Fragment	Item	Fragment				
Sequence	Sequence	Sequence	Sequence	Item	Fragment	Fragment	
Number	Number	Number	Number	Size	Size	Data Buffer	Description
0	0	0	0	0	0	NULL	Power Up
		1	1	300	300	[0-299]	Datalogic sends complete Item Data 1
1	1						EIP Client acknowledges Item Data 1
		2	1	300	300	[0-299]	Datalogic sends complete Item Data 2
2	1						EIP Client acknowledges Item Data 2
		3	1	300	300	[0-299]	Datalogic sends complete Item Data 3
3	1						EIP Client acknowledges Item Data 3

7. Item Data Handshaking Example (With Fragmentation)

The following is an example of how to send 2 Item Data packets, each 800 bytes, with a fragment size of 128.

To Datalogic	barcode	To EtherNet/IP Client from Datalogic Barcode Reader					
Last Item	Last Fragment	Item	Fragment				
Sequence	Sequence	Sequence	Sequence	Item	Fragment	Fragment	
Number	Number	Number	Number	Size	Size	Data Buffer	Description
0	0	0	0	0	0	NULL	Power Un
	, , , , , , , , , , , , , , , , , , ,	1	1	800	128	[0-127]	Datalogic sends fragment 1. Item Data Buffer 1
0	1						EIP Client acknowledges fragment 1
		1	2	800	128	[128-255]	Datalogic sends fragment 2, Item Data Buffer 1
0	2						EIP Client acknowledges fragment 2
		1	3	800	128	[256-383]	Datalogic sends fragment 3, Item Data Buffer 1
0	3						EIP Client acknowledges fragment 3
		1	4	800	128	[384-511]	Datalogic sends fragment 4, Item Data Buffer 1
0	4						EIP Client acknowledges fragment 4
		1	5	800	128	[512-639]	Datalogic sends fragment 5, Item Data Buffer 1
0	5						EIP Client acknowledges fragment 5
		1	6	800	128	[640-767]	Datalogic sends fragment 6, Item Data Buffer 1
0	6						EIP Client acknowledges fragment 6
		1	7	800	32	[768-799]	Datalogic sends fragment 7, Item Data Buffer 1
1	7						EIP Client acknowledges whole Item Data Buffer 1
		2	1	800	128	[0-127]	Datalogic sends fragment 1, Item Data Buffer 2
1	1						EIP Client acknowledges fragment 1
		2	2	800	128	[128-255]	Datalogic sends fragment 2, Item Data Buffer 2
1	2						EIP Client acknowledges fragment 2
		2	3	800	128	[256-383]	Datalogic sends fragment 3, Item Data Buffer 2
1	3						EIP Client acknowledges fragment 3
		2	4	800	128	[384-511]	Datalogic sends fragment 4, Item Data Buffer 2
1	4						EIP Client acknowledges fragment 4
		2	5	800	128	[512-639]	Datalogic sends fragment 5, Item Data Buffer 2
1	5						EIP Client acknowledges fragment 5
		2	6	800	128	[640-767]	Datalogic sends fragment 6, Item Data Buffer 2
1	6						EIP Client acknowledges fragment 6
		2	7	800	32	[768-799]	Datalogic sends fragment 7, Item Data Buffer 2
2	7						EIP Client acknowledges whole Item Data Buffer 2

H. General Purpose Input Object (0x65)

1. Class Attributes (Instance 0)

Attribute	Name	Data	Data	Access
ID		Type	Value	Rule
1	Revision	UINT	1	Get

2. Instance Attributes (Instance 1)

Attribute	Name	Data	Data	Access
ID		Type	Value	Rule
3	Presence and Input Bits	BYTE	0	Get

3. Common Services

	Implemented	for	
Service Code	Class Level	Instance Level	Service Name
0E _{HEX}	Yes	Yes	Get Attribute Single

4. Instance Attribute Semantics

Presence and Input Bits

The Presence and Input Bits attribute is a bitmap used to monitor the status of the discrete inputs on the Matrix reader.

Bit(s)	Name	Definition
0	State of Input Bit 0	1 = ON; 0 = OFF
1	State of Input Bit 1	1 = ON; 0 = OFF
2	State of Input Bit 2	1 = ON; 0 = OFF
3	State of Input Bit 3	1 = ON; 0 = OFF
4	State of Input Bit 4	1 = ON; 0 = OFF
5	State of Input Bit 5	1 = ON; 0 = OFF
6	State of Input Bit 6	1 = ON; 0 = OFF
7	Local Presence Bit	1 = ON; 0 = OFF (Used when the presence input is
		connected to the Matrix reader.)

I. General Purpose Output Object (0x66)

1. Class Attributes (Instance 0)

Attribute	Name	Data	Data	Access
ID		Type	Value	Rule
1	Revision	UINT	1	Get

2. Instance Attributes (Instance 1)

Attribute	Name	Data	Data	Access
ID		Type	Value	Rule
3	Presence and Output Bits	BYTE	0	Get / Set

3. Common Services

	Implemented	for	
Service Code	Class Level	Instance Level	Service Name
$0E_{\text{HEX}}$	Yes	Yes	Get Attribute Single
$10_{\rm HEX}$	No	Yes	Set Attribute Single

4. Instance Attribute Semantics

Presence and Output Bits

The Presence and Output Bits attribute is a bitmap used to control the state of the discrete outputs on the Matrix reader.

Bit(s)	Name	Definition
0	State of Output Bit 0	1 = ON; 0 = OFF
1	State of Output Bit 1	1 = ON; 0 = OFF
2	State of Output Bit 2	1 = ON; 0 = OFF
3	State of Output Bit 3	1 = ON; 0 = OFF
4	State of Output Bit 4	1 = ON; 0 = OFF
5	State of Output Bit 5	1 = ON; 0 = OFF
6	State of Output Bit 6	1 = ON; 0 = OFF
7	Remote Presence Bit	1 = ON; 0 = OFF (Used when the presence input is
		provided by the EtherNet/IP client.)

J. Statistics Object (0x67)

1. Class Attributes (Instance 0)

Attribute	Name	Data	Data	Access
ID		Type	Value	Rule
1	Revision	UINT	1	Get

2. Instance Attributes (Instance 1)

Attribute	Name	Data	Data	Access
ID		Туре	Value	Rule
1	Good Read Count	UDINT	0	Get
2	No Read Count	UDINT	0	Get
3	Partial Read Count	UDINT	0	Get
4	Multiple Read Count	UDINT	0	Get
5	Wrong Read Count	UDINT	0	Get
6	Item Count	UDINT	0	Get
7	Missed Item Count	UDINT	0	Get

3. Common Services

	Implemented	for	
Service Code	Class Level	Instance Level	Service Name
05 _{HEX}	No	Yes	Reset ¹
0E _{HEX}	Yes	Yes	Get Attribute Single

4. Instance Attribute Semantics

Attribute	Description		
Good Read Count	Successful read count		
No Read Count	Presence indicated a barcode, but no barcode data was read		
Partial Read Count Only part of the barcode was read			
Multiple Read Count	Multiple barcodes were successfully read		
Wrong Read Count	Unexpected number of barcodes read		
Item Count	Number of items processed		
Missed Item Count	Number of items lost due to queue overflows		

¹ Reset Instance 1, Attributes I-7 to 0.

^{© 2011} Datalogic S.p.A. – All Right Reserved

K. Diagnostics Object (0x68)

1. Class Attributes (Instance 0)

Attribute ID	Name	Data Type	Data Value	Access Rule
1	Revision	UINT	1	Get

2. Instance Attributes (Instance 1)

Attribute	Name	Data Type	Data	Access
ID			Value	Rule
1	Failure Mask	USINT	0	Get
	0x01 – "Input Failure			
	0x02 – "Communications Failure"			
	0x04 – "Reader Failure"			
	0x08 – "SW Error"			
	0x10 – "Remote Failure"			
2	Failure Subcause	UINT	0	Get
3	Failure String			Get
	Structure of:			
	String Length	USINT	0	
	Message String	USINT[128]	0	

3. Common Services

	Implemented	for	
Service Code	Class Level	Instance Level	Service Name
0E _{HEX}	Yes	Yes	Get Attribute Single

4. Instance Attribute Semantics

Failure Mask

The Failure Mask is set when an error occurs with the reader. Below is the table of Failure Mask codes.

Failure Mask Code	Name
0x01	Input Failure
0x02	Communications Failure
0x04	Reader Failure
0x08	Software Error
0x10	Remote Failure

Failure Subcause

The Failure Subcause is an integer value set by Datalogic on a failure. See Datalogic for a list of Failure Subcauses and their meanings.

Failure String

The Failure String is set by Datalogic on a failure. See Datalogic for a list of Failure Strings and their meanings.

IV. Configuring the Matrix for EtherNet/IP

• **VISISET** is the Windows application used to configure Matrix: opening it the following initial window appears

• Select "**Options**" on the main bar

then the desired communication option (the example below shows an Ethernet setup)

EXIC			
g Environment	Communication		
Communication Chan	nel		
Serial port	C USB	Ethernet	
IP Address [IP Port Number [172.27.101.227 51235 File IF	Port Number 51234	
IP Address [IP Port Number [172.27.101.227 51235 File IF Look For Devices On N	Port Number 51234	
IP Address [IP Port Number [Device ID	172.27.101.227 51235 Look For Devices On N	Port Number 51234	
IP Address [IP Port Number [Device ID HI Slave5	172.27.101.227 51235 File IF Look For Devices On N IP Address 172.27.101.145	Port Number 51234	
IP Address [IP Port Number [Device ID HI Slave5 HI Slave7	172.27.101.227 51235 File IF Look For Devices On N IP Address 172.27.101.145 172.27.101.147	Port Number 51234	
IP Address [IP Port Number] Device ID HI Slave5 HI Slave7 LR Master	172.27.101.227 51235 File IF Look For Devices On N IP Address 172.27.101.145 172.27.101.147 172.27.101.90	Port Number 51234	

• then click on "Connect":

O VisiSet								
File	Edit	Connect	Disconnect	Device	Options	Tools	Help	

Visiset connects the device and the "Welcome" window appears,

VisiSet		
File Edit Connect Disconnect	Device Options Tools Help	
MAIN MENU	Device: Matrix 410	~
M. Setup Wizard	Model: ATS-000 Communication Port: Ethernet	
F. Calibration Tool		
V. Symbol Verification	MACNUM: 00:07:BE:00:72:9D	
A. Run Mode	IP Address: 172.27.101.227	
B. Capture Image	Subnet Mask: 255.255.0.0 Gateway: 172.27.2.254	
C. Decode Last Image	DNS1: 172.27.0.32	
D. View Last Image		
E. Download Last Image		
H. Upload Bitmap Image		
Q. Image Buffer		
3. Button Function Menu		
Commentions Def Matrix at 170 07		*
Connection: Der_Matrix on 172.27.	.101.227 Reader Status: OFF LINE MODE LOG : OFF	11

 Upon opening Visiset, click on "Device", then "Get Configuration from Temporary Memory". The "Parameter Setup" window appears:

File Device Mode				
Get Send Send	Defaults	Permanent	Interactive	
LEDs And Keypad Image Processing Match Code Symbol Verifica	2D Codes Miscellaneo tion Commu	1D Codes us nication Rea	Postal Codes Data Collection ading System Layout	
CBX Gateway Display Operating Modes	Diagnostics Calibratio	Ethernet	WebSentinel	
OPERATING MODE				
Operating Mode	Phas	e Mode		
Reading Phase ON	Ext.	Ext. Trig. Leading Edge		
Acquisition Trigger	Conti	Continuous		
Acquisition Trigger Status	Alwaj	Always Enabled		
Reading Phase OFF	Ext. 1	Ext. Trig. Trailing Edge		
Image Acquisition Buffer Size	20	20		
ACQUISITION TRIGGER DELAY	1	1		
Status	Disat	Disabled		

• Select the "Ethernet" tab; here check/set the correct "Ethernet System" parameters, according your LAN.

Note:

- If the selected connection option is "Ethernet" (like on pictures of pag.36), the device has already properly ethernet-connected then keep the "Ethernet System" parameters unchanged;
- If the selected connection option is "Serial port", the "Ethernet System" parameters have the default values, then the user has to properly set them.

Below an example of a static IP addressing.

Parameter Setup				
File Device Mode				
Get Send Send Defa	aults Permanent Interactive			
LEDs And Keypad 2D Coo Image Processing Mis Match Code Symbol Verification Operating Modes CBX Gateway Display Dia	des 1D Codes Postal Codes scellaneous Data Collection Communication Reading System Layout Calibration Digital I/O agnostics Ethernet WebSentinel			
ETHERNET SYSTEM				
Status	Enabled			
DHCP Client	Disabled			
IP Address	172.27.101.227			
Subnet Mask	255.255.0.0			
Gateway Address	172.27.2.254			
DNS1 Address	172.27.0.32			
DATA SOCKET				
Status	Enabled			
Header String	<2>			
Terminator String	<13><10>			
Protocol	TCP			
Port	51236			
Туре	Server			
IMAGE SOCKET				
Status	Disabled			
IMAGE FTP CLIENT				
Status	Disabled			
ETHERNET IP				

• Go to the "ETHERNET IP" section, then select the option "Status = Enabled": the window below appears

Parameter Setup				
File Device Mode				
Get Send Send Defa	aults Permanent Interactive			
LEDs And Keypad 2D Co Image Processing Mit Match Code Symbol Verification	odes 1D Codes Postal Codes iscellaneous Data Collection Communication Reading System Layout Calibration Digital I/O			
CBX Gateway Display Dia	agnostics Ethernet WebSentinel			
Status Header String	Enabled			
Terminator String	<13><10>			
Protocol	TCP			
Port	51236			
Туре	Server			
IMAGE SOCKET				
Status	Disabled			
IMAGE FTP CLIENT				
Status	Disabled			
ETHERNET IP				
Status	Enabled			
Header String	<2>			
Terminator String	<13><10>			
MODBUS TCP				
Status	Disabled			
HTTP SERVER				
Status	Disabled			

- Select the desired "Header String" and "Terminator String" parameters to format the EIP string according to the application requirements. The example above formats the string as.
 <STX>......string......<<CR><LF> (2, 13 and 10 are as decimal values)
- To save the parameters to the device, click on "Send" button.

Your Datalogic Matrix is now configured to use EtherNet/IP.

V. Configuring Logix5561TM to use EtherNet/IP

A. Configuring the Ethernet Adapter

Right click on the I/O Configuration Folder and select "New Module"

Choose the appropriate Ethernet Module for your application. For this example: "1756-ENBT 1756 10/100 Mbps Ethernet Bridge, Twisted-Pair Media"

Joddio	Description	Vendor	-
- 1756-EN2F - 1756-EN2T - 1756-EN2TR - 1756-EN3TR - 1756-ENBE/A	1756 10/100 Mbps Ethernet Bridge, Fiber Media 1756 10/100 Mbps Ethernet Bridge, Twisted-Pair Media 1756 10/100 Mbps Ethernet Bridge, 2-Port, Twisted-Pair Media 1756 10/100 Mbps Ethernet Bridge, 2-Port, Twisted-Pair Media 1756 10/100 Mbps Ethernet Bridge, Eiher Media	Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley	~
- 1756-ENBT	1756 10/100 Mbps Ethernet Bridge, Twisted-Pair Media	Allen-Bradley	1
- 1756-ENET/A - 1756-ENET/B - 1756-EWEB/A - 1756-RIO - 1756-SYNCH/	1756 Ethernet Communication Interface 1756 Ethernet Communication Interface 1756 10/100 Mbps Ethernet Bridge w/Enhanced Web Services 1756 Remote I/O (RIO) Interface & SynchLink Interface	Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley	
	<u> </u>	nd Add Fav	>) orite

• Fill in the desired IP Address for the Ethernet adapter and assign a name to the adapter. For this example the IP Address is "172.27.101.230" and the name is "EIP".

Module	Properties: Local:1 (1756-E	NBT 4.1)
General Conn	ection Module Info Internet Protocol Port Configu	Iration RSNetWorx
Type: Vendor: Parent: Na <u>m</u> e: Descrigition: Module Defin Revision: Electronic Ke Rack Connee Time Sync C	1756-ENBT 1756 10/100 Mbps Ethemet Bridge, Tv Allen-Bradley Local EIP EIP port 4.1 eying: Disable Keying ction: None connection: None	visted-Pair Media Change Iype Ethemet Address Private Network: 192.168.1. IP Address: 172 . 27 . 101 . 230 Host Name: Slot: 1
Status: Offline		OK Cancel <u>Apply H</u> elp

Click on "OK"

 Right click on the new adapter in the I/O Configuration list and choose "ETHERNET-MODULE Generic Ethernet Module"

Module	Description	Vendor
- 1788-EWEB/A	1788 10/100 Mbps Ethernet Bridge w/Enhanced Web Services	Allen-Br
- 1794-AENF/A	1794 10/100 Mbps Ethernet Adapter, Fiber Media	Allen-Br
1794-AENT	1794 10/100 Mbps Ethernet Adapter, Twisted-Pair Media	Allen-Br
- Drivelogix5730 Ethe	rnet 10/100 Mbps Ethernet Port on DriveLogix5730	Allen-Br
ETHERNET-BRIDGE	Generic EtherNet/IP CIP Bridge	Allen-Br
ETHERNET-MODULE	E Generic Ethernet Module	Allen-Br
EtherNet/IP	SoftLogix5800 EtherNet/IP	Allen-Br
PSSCENA	Ethernet Adapter, Twisted-Pair Media	Parker H
- Stratix 8000	26 Port Managed Switch	Allen-Br
- Stratix 8000	22 Port Managed Switch	Allen-Br
- Stratix 8000	18 Port Managed Switch	Allen-Br
< <u> </u>		
	<u> </u>	Add Favorite
By Category By Vend	lor Favorites	

 Fill in the Connection Parameters and IP Address for the Datalogic Reader and assign a Name. For this example, the IP Address is "172.27.101.227" and the Name is "MatrixEIPBuilt_in". This example configures ControlLogix for access Assembly Instance 0x65 (138 bytes) for inputs and Assembly instance 0x71 (3 bytes) for outputs.

Type: Vendor: Parent:	ETHERNET-MODULE Generic Ethern Allen-Bradley EIP	et Module			
Na <u>m</u> e:	MatrixEIPBuilt_in	Connection Para	ameters Assembly		
Description:	Matrix imager device running		Instance:	Size:	
		Input:		130	(8-bit)
		O <u>u</u> tput:	113	3	(8-bit)
Comm Format	Data - SINT	Configuration:	128	0 🏩	(8-bit)
IP Address 7 F	ess: 172 . 27 . 101 . 227	<u>S</u> tatus Input:			
<u>○H</u> ost Na	me:	Status Output:			

Select the Request Packet Interval to 200 milliseconds. The range supported by the Datalogic reader is 25 – 3200 milliseconds.

General	Connection	Module Info						
<u>R</u> eques	ted Packet In	terval (RPI):	200.0 🚖	ns (1.0-32	00.0 ms)			
	oit Module							
Use	Unicast <u>C</u> onn	ection over E	inection Fails Wi EtherNet/IP	nie in riun Mo	ide			
Modu	le Fault							
<u> </u>								
	()				ancel	Applu	Help	

B. Accessing the I/O Data

By default, the Datalogic input data is stored in an array of bytes "DL.I.Data[]" and the Datalogic output data is stored in an array of bytes "DL.O.Data[]". To store the data in a useful data structures, User-Defined data structures need to be defined.

Input Data Structure

ime:	DL_InputStruct			
scription:	A	Datalogic Input ssembly Instance 0x65		
embers:	Data Type	Data Style	Type Size: 140 byte(s)	External Access
ItemSeqNum	SINT	Decimal	Item Sequence Number	Read/Write
ItemStatus	INT	Decimal	Item Status	Read/Write
ItemDataSize	INT	Decimal	Item Data Size	Read/Write
InputBits	SINT	Hex	Local Presence and In	Read/Write
FailureMask	SINT	Hex	Failure Mask	Read/Write
FragSeqNum	SINT	Decimal	Fragment Sequence N	Read/Write
FragDataSize	INT	Decimal	Fragment Data Size	Read/Write
Exa-Data	SINT[128]	ASCII	Fragment Data	Read/Write
FragData				

Output Data Structure

ame:)L_OutputStruct			
escription:	otion: Datalogic Output Assembly Instance 0x71			
			~	
embers:	Data Tune	Data	Type Size: 4 byte(s)	External Access
embers: Name LastItemSeqNur	Data Type	Data Style Decimal	Type Size: 4 byte(s) Description Last Item Sequence N	External Access
embers: Name LastItemSeqNur OutputBits	Data Type SINT SINT	Data Style Decimal Hex	Type Size: 4 byte(s) Description Last Item Sequence N Remote Presence And	External Access Read/Write

C. Sample Ladder Logic

The sample ladder logic "IO_Sample.ACD" stores all input data into the user-defined structure and handles the handshake required to read barcodes out of the Datalogic Reader.

VI. Using Explicit Messaging

A. Sample Ladder Logic

The sample ladder logic "EM_Sample.ACD" reads the Vendor ID from the Datalogic reader every 500 milliseconds.

B. Configuring the MSG instruction

The MSG instruction is used to send explicit messages to node on a given network. This example performs a Get_Attribute_Single to Class 1, Instance 1, Attribute 1 to the Datalogic Reader. The result is stored in a unsigned integer tag called "VendorID".

To check the MSG configuration settings, select "Controller Tags" on the left column of the sample project, then double-click on it:

ope: TOCPU_L61 Y S	how: All Lags	22		Y. CINEY	ryeme riker	~	10.0
Name	181 A	Value 🔶	Force 🗲	Style	Data Type	Description	
∃ CompVendorID		0		Decimal	INT		
+ Datalogic_device:C		{}	{}		AB:ETHERN		
E-Datalogic_device:I		{}	{}		AB:ETHERN		
± Datalogic_device:0		{}	{}		AB:ETHERN		
+ GetAttrMsg		{}	{}		MESSAGE		
+ VendorID		0		Decimal	INT		

Select "GetAttrMsg", right-click on it then select "Configure GetAttrMsg":

Configuration	on [*] Communication T	ag		
Service Type: Ser <u>v</u> ice Code: Instance:	Get Attribute Single e (Hex) <u>C</u> lass: 1 Attri <u>b</u> ut	1 (Hex)	<u>S</u> ource Element: Source L <u>e</u> ngth: <u>D</u> estination	0 (Bytes) VendorID
				Ne <u>w</u> Lag

The communication tab configures the path to "Datalogic_device". This is the name of the Datalogic Reader device.

onfiguration* Co	mmunication	[ag		
⊙ <u>P</u> ath: Dat	alogic_device			<u>B</u> rowse
Data	alogic_device			
O Broadcast:		/		
Communication © CIP O I CIP With Source ID	Method) <u>H</u> + <u>C</u> hannel: <u>S</u> ource L	ink: 0	Destination	n Link: 0 🔅 1 <u>N</u> ode: 0 🔅 (Octal)
Connected		🗹 Cach <u>e</u> C	Connections e	4
Enable 🔾 E	nable Waiting	🔾 Start	Done	Done Length: 2
Error Co or Path:	Extend	led Error Code:		🔲 Timed Out 🗲

VII. Troubleshooting Procedures

The Diagnostic Object supplies a Failure Mask, Failure Subcause, and Failure String for diagnostics. Contact Datalogic for the meaning of the Failure Subcause and Failure String. Datalogic defines the particular causes of the Failure Mask. The Failure Mask has 5 defined values:

- 0x01 "Input Failure"
- 0x02 "Communications Failure"
- 0x04 "Reader Failure"
- 0x08 "Software Error"
- 0x10 "Remote Failure"

This following section covers general EtherNet/IP issues. For issues related to Ethernet networking (other than general TCP/IP configuration of the Datalogic reader), contact your Information Technology (IT) department. For issues related to the Matrix reader, contact Datalogic.

Problem:	TCP Connect / Ping Failure
Possible Causes:	IP Address Incorrect
	Subnet Mask Incorrect
	Gateway Address Incorrect
Solution:	Using Visiset, verify the Ethernet configuration. Test the configuration via a
	ping to the device.

Problem:	I/O Connection Failed
Possible Causes:	Connection configuration incorrect
	Connection is already allocated
Solution:	Make sure the connection isn't already allocated (see error code section).
	Verify the path and size is correct for both the inputs and outputs.

Problem:	I/O Connection times out	
Possible Causes: Multicast Traffic not routed properly		
	Requested Packet Interval (RPI) set too fast	
Solution:	Make sure the RPI is greater than 25 milliseconds.	
	Make sure Multicast traffic is routed properly.	

Problem:	Barcode doesn't update
Possible Causes:	Handshaking protocol isn't working
Solution:	Make sure the Last Item Sequence Number Received is equal to the Item
	Sequence Number.
	Make sure trigger is working properly using the EtherNet/IP Reader Demo.

Appendix A – EtherNet/IP Error Codes

A. General Status Codes

(The following is from Volume 1, Appendix B of the ODVA CIP Specification.)

The following table lists the Status Codes that may be present in the General Status Code field of an Error Response message. Note that the Extended Code Field is available for use in further describing any General Status Code. Extended Status Codes are unique to each General Status Code within each object. Each object shall manage the extended status values and value ranges (including vendor specific). All extended status values are reserved unless otherwise indicated within the object definition.

General	Status Name	Description of Status
Status Code		
(in hex)	<i>a</i>	
00	Success	Service was successfully performed by the object specified.
01	Connection failure	A connection related service failed along the connection path.
02	Resource unavailable	Resources needed for the object to perform the requested service were unavailable
03	Invalid parameter value	See Status Code 0x20, which is the preferred value to use for this condition.
04	Path segment error	The path segment identifier or the segment syntax was not understood by the processing node. Path processing shall stop when a path segment error is encountered.
05	Path destination unknown	The path is referencing an object class, instance or structure element that is not known or is not contained in the processing node. Path processing shall stop when a path destination unknown error is encountered.
06	Partial transfer	Only part of the expected data was transferred.
07	Connection lost	The messaging connection was lost.
08	Service not supported	The requested service was not implemented or was not defined for this Object Class/Instance.
09	Invalid attribute value	Invalid attribute data detected
0A	Attribute list error	An attribute in the Get_Attribute_List or Set_Attribute_List response has a non-zero status.
0B	Already in requested mode/state	The object is already in the mode/state being requested by the service
0C	Object state conflict	The object cannot perform the requested service in its current mode/state
0D	Object already exists	The requested instance of object to be created already exists.
0E	Attribute not settable	A request to modify a non-modifiable attribute was received.
0F	Privilege violation	A permission/privilege check failed
10	Device state conflict	The device's current mode/state prohibits the execution of the requested service.
11	Reply data too large	The data to be transmitted in the response buffer is larger than the allocated response buffer
12	Fragmentation of a primitive value	The service specified an operation that is going to fragment a primitive data value, i.e. half a REAL data type
13	Not enough data	The service did not supply enough data to perform the specified operation.
14	Attribute not supported	The attribute specified in the request is not supported
15	Too much data	The service supplied more data than was expected
16	Object does not exist	The object specified does not exist in the device.
17	Service fragmentation sequence not in progress	The fragmentation sequence for this service is not currently active for this data.
18	No stored attribute data	The attribute data of this object was not saved prior to the requested service

General	Status Name	Description of Status
Status Code		
(in hex)		
19	Store operation failure	The attribute data of this object was not saved due to a failure during
		the attempt.
1A	Routing failure, request	The service request packet was too large for transmission on a
	packet too large	network in the path to the destination. The routing device was forced
		to abort the service.
1B	Routing failure, response	The service response packet was too large for transmission on a
	packet too large	network in the path from the destination. The routing device was
		forced to abort the service.
1C	Missing attribute list entry	The service did not supply an attribute in a list of attributes that was
	data	needed by the service to perform the requested behavior.
1D	Invalid attribute value list	The service is returning the list of attributes supplied with status
		information for those attributes that were invalid.
<u>1E</u>	Embedded service error	An embedded service resulted in an error.
1F	Vendor specific error	A vendor specific error has been encountered. The Additional Code
		Field of the Error Response defines the particular error encountered.
		Use of this General Error Code should only be performed when none
		of the Error Codes presented in this table or within an Object Class
20	T 1.1 4	definition accurately reflect the error.
20	Invalid parameter	A parameter associated with the request was invalid. This code is
		used when a parameter does not meet the requirements of this
		Specification and/or the requirements defined in an Application
21	Write and volue or	An attempt was made to write to a write and modium (a g WORM
21	medium already written	drive DPOM) that has already been written or to modify a value that
	medium aneady written	cannot be changed once established
22	Invalid Reply Received	An invalid reply is received (e.g. reply service code does not match
22	invalia reepiy received	the request service code or renly message is shorter than the
		minimum expected reply size) This status code can serve for other
		causes of invalid replies.
23 - 24		Reserved by CIP for future extensions
25	Key Failure in path	The Key Segment that was included as the first segment in the path
-	i j i i i Fili	does not match the destination module. The object specific status
		shall indicate which part of the key check failed.
26	Path Size Invalid	The size of the path which was sent with the Service Request is either
		not large enough to allow the Request to be routed to an object or too
		much routing data was included.
27	Unexpected attribute in	An attempt was made to set an attribute that is not able to be set at
	list	this time.
28	Invalid Member ID	The Member ID specified in the request does not exist in the specified
		Class/Instance/Attribute
29	Member not settable	A request to modify a non-modifiable member was received
2A	Group 2 only server	This error code may only be reported by DeviceNet group 2 only
	general failure	servers with 4K or less code space and only in place of Service not
		supported, Attribute not supported and Attribute not settable.
2B – CF		Reserved by CIP for future extensions
D0 - FF	Reserved for Object Class	This range of error codes is to be used to indicate Object Class
	and service errors	specific errors. Use of this range should only be performed when none
		of the Error Codes presented in this table accurately reflect the error
		that was encountered.

B. Forward Open (Connection Allocation) Error Codes

(The following is from Volume 1, Chapter 3, Section 3-5.6.1 of the ODVA CIP Specification.)

The following error codes are returned with the reply to a Connection Manager Service Request that resulted in an error. These error codes shall be used to help diagnose the problem with a Service Request. The error code shall be split into an 8 bit general status and one or more 16-bit words of extended status. Unless specified otherwise, only the first word of extended status shall be required.

General	Extended Status	Explanation
Status		
0x00		Service completed successfully.
0x01	0x0100	Connection in Use or Duplicate Forward Open.
0x01	0x0103	Transport Class and Trigger combination not supported
0x01	0x0106	Ownership Conflict
0x01	0x0107	Connection not found at target application.
0x01	0x0108	Invalid Connection Type. Indicates a problem with either the Connection
		Type or Priority of the Connection.
0x01	0x0109	Invalid Connection Size
0x01	0x0110	Device not configured
0x01	0x0111	RPI not supported. May also indicate problem with connection time-out
		multiplier, or production inhibit time.
0x01	0x0113	Connection Manager cannot support any more connections
0x01	0x0114	Either the Vendor Id or the Product Code in the key segment did not match
		the device
0x01	0x0115	Product Type in the key segment did not match the device
0x01	0x0116	Major or Minor Revision information in the key segment did not match the
		device
0x01	0x0117	Invalid Connection Point
0x01	0x0118	Invalid Configuration Format
0x01	0x0119	Connection request fails since there is no controlling connection currently
		open.
0x01	0x011A	Target Application cannot support any more connections
0x01	0x011B	RPI is smaller than the Production Inhibit Time.
0x01	0x0203	Connection cannot be closed since the connection has timed out
0x01	0x0204	Unconnected Send timed out waiting for a response.
0x01	0x0205	Parameter Error in Unconnected Send Service
0x01	0x0206	Message too large for Unconnected message service
0x01	0x0207	Unconnected acknowledge without reply
0x01	0x0301	No buffer memory available
0x01	0x0302	Network Bandwidth not available for data
0x01	0x0303	No Tag filters available
0x01	0x0304	Not Configured to send real-time data
0x01	0x0311	Port specified in Port Segment Not Available
0x01	0x0312	Link Address specified in Port Segment Not Available
0x01	0x0315	Invalid Segment Type or Segment Value in Path
0x01	0x0316	Path and Connection not equal in close
0x01	0x0317	Either Segment not present or Encoded Value in Network Segment is
		invalid.
0x01	0x0318	Link Address to Self Invalid
0x01	0x0319	Resources on Secondary Unavailable
0x01	0x031A	Connection already established
0x01	0x031B	Direct connection already established
0x01	0x031C	Miscellaneous
0x01	0x031D	Redundant connection mismatch
0x01	0x031E	No more consumer resources available in the producing module
0x01	0x031F	No connection resources exist for target path
0x01	0x320 - 0x7FF	Vendor specific

Appendix B – EtherNet/IP Scanner Demo

1. Overview

The "Ethernet/IP Scanner Demo" simulates some basic functions of the Master EIP and tests the following:

- Item Data
- Statistic Counters
- Diagnostics (Failure Mask, Failure Sub Cause, Failure String)
- Discrete Outputs
- Supported Messaging (I/O and/or Explicit)

EtherNet/IP Scanner Demo		×
Da	talogic S.p.A Data Demo	
Elapsed Time 0:00:00 Uncon	n Status nected 192 168 0 200	Connect DS6300
Litem Data (Count 0)		
Statistic Counters	-	
Good Read Count	Diagnostics Failure Mask	Clear Item Data
No Read Count	Failure Subcause	Bead Status
Partial Read Count	Failure String	incua status
Multiple Read Count		Supported Messaging
Wrong Read Count		
Item Count	Outputs	Help/About
Missed Item Count	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	
Clear Statistic Counters		Exit

If EIP enabled on Matrix, click on the "Connect...."¹ button to start the communication with the device

¹ The connection button has the "**Connect DS6300**" label because it refers the first Datalogic reader supporting the Ethernet/IP implementation. No trouble at all connecting all the others EIP devices

2. Successful Communications

If all communications are successful, the screen should be similar to the following.

EtherNet/IP Scanner Demo		
Da	talogic S.p.A Data Demo	
Elapsed Time Connectio	n Status Server IP Address 192 168 0 200	Disconnect
Litem Data (Count 1)		
Statistic Counters	7	
Good Read Count 1	Diagnostics Failure Mask 0x04	Clear Item Data
No Read Count 1	Failure Subcause 3	
Partial Read Count 1	Failure String DIAG 3	Multiple Read
Multiple Read Count 1	Inputs Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	Supported Messaging — Explicit
Wrong Read Count 0	OFF OFF OFF OFF OFF OFF OFF	Implicit (I/O)
Item Count 4 Missed Item Count 0	Outputs Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	Help/About
Clear Statistic Counters		Exit

The data strings coming from the reader are shown on the "Item Data" window, with data size and content. The example above shows the received string "ITEM 3", 6 bytes length.

3. Matrix triggering through Ethernet/IP

Matrix readers allow to start the reading phase through Ethernet/IP, running the Phase Mode or the One Shot operating mode.

In order to use this feature the following steps are necessary:

- 1. open the Matrix Parameter Setup
- 2. enable Ethernet/IP

ONE SHOT

- 3. select the "Operating Modes" tab then set
 - a. "Operating Mode = One Shot"
 - b. "Acquisition Trigger = Ethernet IP Input Leading Edge"

(the picture below shows the setup)

Get	Send	Send Defau	ults	Permanent	Interactive
2D Codes	1D Codes	Postal Cod	les Imag	ge Processing	Miscellaneous
Data Colle	otion Ma	atch Code	Symbol V	erification	Communication
Reading Sys Operating M	tem Layout lodes	Ethernet CB Calibration	X Gateway Digital	Display E 1/0 L)iagnostics OCR EDs And Keypad
OPERATING	MODE				
Operating Mode		One Shot			
Acquisition Trigger		Ethernet Ip Input Leading Edge			
Image Acquisition Buffer Size		2			
ACQUISITION TRIGGER DELAY			1		
Status			Disabled		

- 4. click on "Send" to save the configuration and run the device
- 5. launch the Ethernet/IP Scanner Demo and verify the good connection

6. click on the "**Bit 6**" box of the "Outputs" area: the box toggles to the "ON" status, the reading phase runs and the data string comes to the "Item Data" window

EtherNet/IP Scanner	r Demo	
D	atalogic S.p.A Data Demo	
Elapsed Time 0:03:31 Connecti	hected Server IP Address	Disconnect
- Item Data (Count 3) Size: 10 Data: 0x02 0.15 mm 0x0D 0x Size: 10 Data: 0x02 0.15 mm 0x0D 0x Size: 10 Data: 0x02 0.15 mm 0x0D 0x	04 04	
Statistic Counters Good Read Count 3	Diagnostics	Cloer Itom Data
No Read Count 4	Failure Mask 0x00	
Partial Read Count 0	Failure String	Good Read
Multiple Read Count 0	Inputs Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 OFF OFF OFF OFF OFF OFF OFF OFF	– Supported Messaging – Explicit Implicit (I/O)
Item Count 7	Outputs Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	Help/About
Missed Item Count 0	OFF OFF OFF OFF OFF OFF	Exit

- 7. click on the "Bit 6" box again to come back to the "OFF" status
- 8. repeat the steps 6 and 7 to read again. The picture above shows 3 data strings, 10 bytes long: <02hex>0.15 mm<0Dhex><0Ahex>

Note that: IF the step 3b is "Acquisition Trigger = Ethernet IP Input Leading Edge" THEN the "bit 6 ON→OFF change" triggers the Matrix ELSE IF the step 3b is "Acquisition Trigger = Ethernet IP Input Trailing Edge" THEN the "bit 6 OFF→ON change" triggers the Matrix

PHASE MODE

- 3. select the "Operating Modes" tab then set
 - a. "Operating Mode = Phase Mode"
 - b. "Reading Phase ON = Ethernet IP Input Leading Edge"
 - c. "Reading Phase OFF = Ethernet IP Input Trailing Edge"

(the picture below shows the setup)

File Device	Mode					
Get	Send	Send Defa	ults	Perma	nent	Interactive
2D Codes	1D Codes	Postal Co	des	Image Proc	essing	Miscellaneous
Data Collecti	on Ma	atch Code	Symb	ol Verificatio	n	Communication
Reading Syste	m Layout	Ethernet CE	3X Gatev	way Displ	ay Dia	ignostics 0CR
Operating Mo	des	Calibration	Di	gital I/O	LEI	Os And Keypad
OPERATING M	ODE					
Operating Mode		Phas	Phase Mode			
Reading Phase ON		Ethe	Ethernet IP Input Leading Edge			
Acquisition Trigger		Continuous				
Acquisition Trigger Status		Alwa	Always Enabled			
Reading Phase OFF		Ethe	Ethernet IP Input Trailing Edge			
Image Acquisition Buffer Size		2	2			
ACQUISITION TRIGGER DELAY		1				
Status		Disa	Disabled			

- 4. click on "Send" to save the configuration
- 5. launch the Ethernet/IP Scanner Demo and verify the good connection

6. click on the "Bit 7" box of the "Outputs" area: the box toggles to the "ON" status, the reading phase starts

₽EtherNet/IP Scanner	Demo	
Da	atalogic S.p.A Data Demo	
Elapsed Time 0:00:26 Connection Con	nected Server IP Address	Disconnect
Item Data (Count 1) Size: 12 Data: 0x02 02-ABC-DL 0x0D	0xQA	
Statistic Counters Good Read Count 1 No Read Count 0 Partial Read Count 0	Diagnostics Failure Mask 0x00 Failure Subcause 0 Failure String	Clear Item Data Read Status Good Read
Multiple Read Count 0 Wrong Read Count 0	Inputs Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 OFF OFF OFF OFF OFF OFF OFF OFF	Supported Messaging Explicit Implicit (I/O)
Item Count	Outputs Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	Help/About
	OFF OFF OFF OFF OFF OFF OFF	Evit

7. click on the "Bit 7" box again: the box toggles to the "OFF" status, the reading phase ends.

The data string comes to the "Item Data" window now or on the previous step according to the Operating Modes options.

The picture above shows 3 data strings, 12 bytes long: <02hex>02-ABC-DL<0Dhex><0Ahex>

Note that:
IF the step 3b and 3c are
"Reading Phase ON = Ethernet IP Input Leading Edge"
"Reading Phase OFF = Ethernet IP Input Trailing Edge"
THEN
the "bit 7 $ON \rightarrow OFF$ starts the reading phase
the "bit 7 OFF \rightarrow ON ends the reading phase
ELSE
IF the step 3b and 3c are
"Reading Phase ON = Ethernet IP Input Trailing Edge"
"Reading Phase OFF = Ethernet IP Input Leading Edge"
THEN
the "bit 7 OFF \rightarrow ON starts the reading phase
the "bit 7 ON \rightarrow OFF ends the reading phase

Summarizing:

- The EIP Master can drive the Matrix reading through Output bits
 The bit 6 controls the "One Shot" Operating Mode
 - The bit 7 controls the "Phase Mode" Operating Mode
- The "Outputs" area of the EIP Scanner Demo refers the 1st byte of the Output Area of the EIP Master
- The "Outputs" boxes of the EIP Scanner Demo refer the bits of the 1st byte of the Output Area of the EIP Master

4. I/O Connection Failure

If the I/O connection allocation fails, an error message pop up window appears. See the error code section of this document for the cause of the error. The error code in the example indicates the I/O connection is allocated already.

EtherNet/IP Scanner Demo		_ 🗆 🗙
Da	talogic S.p.A Data Demo	
Elapsed Time Connection	n Status Server IP Address ected 192 168 0 200	Disconnect
Item Data (Count 0)	DL EIP DEMO	
Statistic Counters Good Read Count 0	Diagnostics OK Failure Mask 0x00	Clear Item Data
No Head Count 0 Partial Read Count 0	Failure Subcause 0 Failure String	Read Status Good Read
Multiple Read Count 0	Inputs Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 OFF OFF OFF OFF OFF OFF OFF OFF	Supported Messaging Explicit
Item Count 0	Outputs Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	Help/About
Clear Statistic Counters	OFF OFF OFF OFF OFF OFF OFF OFF	Exit