DataMan® Communications and
Programming Guide

04/18/2017
Version: 5.7.0.37

Legal Notices

Legal Notices

The software described in this document is furnished under license, and may be used or copied only in accordance with
the terms of such license and with the inclusion of the copyright notice shown on this page. Neither the software, this
document, nor any copies thereof may be provided to, or otherwise made available to, anyone other than the licensee.
Title to, and ownership of, this software remains with Cognex Corporation or its licensor. Cognex Corporation assumes
no responsibility for the use or reliability of its software on equipment that is not supplied by Cognex Corporation.
Cognex Corporation makes no warranties, either express or implied, regarding the described software, its
merchantability, non-infringement or its fitness for any particular purpose.

The information in this document is subject to change without notice and should not be construed as a commitment by
Cognex Corporation. Cognex Corporation is not responsible for any errors that may be presentin either this document or
the associated software.

Companies, names, and data used in examples herein are fictitious unless otherwise noted. No part of this document
may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, nor
transferred to any other media or language without the written permission of Cognex Corporation.

Copyright © 2017. Cognex Corporation. All Rights Reserved.

Portions of the hardware and software provided by Cognex may be covered by one or more U.S. and foreign patents, as
well as pending U.S. and foreign patents listed on the Cognex web site at: hitp://www.cognex.com/patents.

The following are registered trademarks of Cognex Corporation:

Cognex, 2DMAX, Advantage, AlignPlus, Assemblyplus, Check it with Checker, Checker, Cognex Vision for Industry,
Cognex VSOC, CVL, DataMan, Displaylnspect, DVT, EasyBuilder, Hotbars, IDMax, In-Sight, Laser Killer, MVS-8000,
OmniView, PatFind, PatFlex, Patinspect, PatMax, PatQuick, SensorView, SmartView, SmartAdvisor, SmartLearn,
UltraLight, Vision Solutions, VisionPro, VisionView

The following are trademarks of Cognex Corporation:

The Cognex logo, 1DMax, 3D-Locate, 3DMax, BGAIl, CheckPoint, Cognex VSoC, CVC-1000, FFD, iLearn, In-Sight
(design insignia with cross-hairs), In-Sight 2000, InspectEdge, Inspection Designer, MVS, NotchMax, OCRMax,
PatMax RedLine, ProofRead, SmartSync, ProfilePlus, SmartDisplay, SmartSystem, SMD4, VisiFlex, Xpand

Other product and company trademarks identified herein are the trademarks of their respective owners.

http://www.cognex.com/patents

Table of Contents

Table of Contents

Legal NotiCes .. . 2
Table of Contents 3
SYMbOIS 5
About This Manual 6
NetworKing . . 7
Connecting Your DataMan to the NetWork .. 7
Connecting Your Corded DataMan Reader to the Network 7
Connecting Your DataMan Intelligent Base Stationtothe Network 7
Direct Connection t0 Y our ComMPULET . .. L 8
Connecting Your Reader Across Subnets . .. 14
Connecting Your DataMan to the Network Wirelessly 14
Troubleshooting a Network Connection e 17
Industrial Network Protocols 18
EtherN et P .. 18
DM C . 18
Reader Configuration COAE e 18
SetUP TO0l . 19
Getting Started ... 19
Object Model il 22
Rockwell ControlLogix EXamples ..o 33
Rockwell CompactLogix Examples ... 46
SLMP ProtOCOl il 56
DM C . 56
Reader Configuration COAE e 56
SetUP TO0l . 57
SLMP ProtOCOl SCanNer 57
Getting Started ..l 57
Network ConfigUIratioN ... 58
Data Block Configuration ... il 59

I I aCe .. 60
EXaMDlES il 68
ModbUS T C P il 72
DM C C . 72
Reader Configuration Code ... 72
SetUP TOO0l il 73
Modbus TCP Handler 73
Getting Started ..l 73
Network Configuration . 74
DataBlock Configuration 75

Nt aCe . 76
OratiON 80
EXAMIPIES 84

P ROFINET . 88
DM C 88
Reader Configuration Code .. 88

Table of Contents

SEUUP TOON . .. 89
Getting Started ...l 89
MOAUIES . . 93
OratiON 98
SieMENS EXamMPIES . . 100
Industrial Protocols for the Wireless DataMan 109
ProtoCOl OpEratioN . L 109
Ethernet AdAress 109
PLC THQQOMNG . . .o 109
SOt EVONES 109
DM C C 109
OffliNe BURfIING - 110
Status of Industrial ProtoCols 110
DataMan Application Development ... 112
DMCC OVEIVIEW oo e e e 112
COMIMaANd Sy N aX 112
Command Header SYNtaX ... o L 112
Header EXamples ..o L 112
DMCC Application Development ... L 114
DataMan SDK CoNteNtS 114
USING the SDK 114
Helper Utilties .. 118
Using the Helper Utilities ... o L 119
Script-Based Data Formatting 119
DM C C SUPIOI L 119
Error Management . 122
Formatting SCript .. . 122
OU DU 140
Code Completion and Snippets 142
Custom Communication Protocol AP .. e 144
Event Callback 164
BV Nt Ty DS oo 164
EXaMIP S 165

Symbols

Symbols

The following symbols indicate safety precautions and supplemental information.

A WARNING: This symbol indicates the presence of a hazard that could resultin death, serious personal injury or
electrical shock.

A CAUTION: This symbol indicates the presence of a hazard that could resultin property damage.

@ Note: Notes provide supplemental information about a subject.

Q Tip: Tips provide helpful suggestions and shortcuts that may not otherwise be apparent.

About This Manual

About This Manual

The DataMan Communications and Programming Guide provides information on how to integrate DataMan readers into
your particular environment, including:

« Network configuration

« Industrial network protocols

« Integration with PLCs

« DataMan Control Commands (DMCC) API

The DataMan reader connected to a network can be triggered to acquire images by several methods. It can be done by:
« the DataMan Setup Tool,

« itcan be triggered by
« trigger bits

« manipulating objects through/by industrial protocols

« orthrough a DMCC command.

This document provides a detailed description on how to do each.

Networking

Networking

You can connect your DataMan device via a simple Ethernet connection. You can either set the IP address and subnet
mask of your DataMan device manually or let them be configured automatically using DHCP.

Connecting Your DataMan to the Network

Connecting Your Corded DataMan Reader to the Network

Supply power to the reader using a Power over Ethernet (PoE) injector. Cognex recommends the following connection
sequence:

1. Connect the PoE injector to the Ethernet network (both ends of the patch cable).
2. Connectthe power cord (AC 230V/110V) to the PoE injector.

3. Connectthe reader to the PoE injector.
Ethernet

RS-232 M12toRJ45

. J(optional}l |

POE injector

————

an 2

a o

To disconnect the reader:
1. Disconnect the reader from the PoE injector.
2. Disconnect the power cord from the PoE injector.

3. Disconnect the PoE injector from the Ethernet network.

Connecting Your DataMan Intelligent Base Station to the Network

1. If you use DMA-IBASE-00, power up your base station using one of these two options:

- Ifyou wantto connect the Ethernet cable directly to the network or your PC, power up the base station
using a 24V power supply.

Networking

« Ifyou wantto use a Power Over Ethernet (POE) adapter, that will power up your base station. If you use
the DMA-IBASE-BT-01 base station, use direct connection with a 24V power supply. DMA-IBASE-BT-01
offers a 3-pin terminal block:

W =

3-pin terminal block

Pin # Signal
1 +24V
2 Shield
3 GND

@ Note: Never connect the terminal block and barrel connector power supply at the same time.

2. Connectyour base station to your PC with an Ethernet cable.
DMA-IBASE-00 DMA-IBASE-BT-01

Ethernet connection

3. The base station becomes visible as connected through Ethernet, and it routes data through the wireless (WiFi or
Bluetooth) interface to the reader.

I (((I)%Iuetooth
\
~ rs-2327 [
- USB

—————
B
s i

|

Ethernet

NETWORK

Direct Connection to Your Computer

When connecting a DataMan device directly to an Ethernet port on a PC, both the PC and the DataMan device must be
configured for the same subnet. This can be done automatically though Link Local Addressing or you can manually

Networking

configure your reader and your PC.

Link Local Addressing automatically requests and assigns an IP address. In the DataMan Setup Tool, this corresponds
to the DHCP Server communication option. This is the default, you do not have to make any changes.

You can also manually configure your DataMan device to reside on the same subnet as the PC or the other way round:
configure your PC to reside on the same subnet as your DataMan. These options are detailed in the following sections.

Configuring the DataMan to Reside on the Same Subnet as the PC

Perform the following steps to configure your DataMan device:
1. Use the ipconfig utility to determine the IP Address and subnet mask of your PC. In the Start menu, click Run...
2. Inthe Open field, type “cmd” and click OK.

Run

Type the name of a program, folder, document, or
Internet resource, and Windows will open & for you,

Open: | omd v

[OK ” Cancel][Browse... l

3. In the command prompt window, type “ipconfig” and press Enter. A listing of all network adaptors on the PC is
shown.

osoft Uisual Studio 9.6

4. Record your PC’s IP Address and Subnet Mask. In this example,
« IP Addressis 169.254.3.215
« Subnet Mask is 255.255.0.0

Networking

5. Go to Reader Maintenance in the DataMan Setup Tool, select the device to be used from the list, and use the
Network Settings dialog to manually configure the network settings on the target DataMan reader.

Metwork Settings

1 Use DHCF Server
i®) Use Static IP Address |

IP Address | 1]
Subnet Mask | |
Default Gateway | |
Authenticate
Username |a-:|min |
Password | |
| Apply |

6. To force the network settings on your DataMan:
a. SelectUse Static IP Address.

b. Enteran IP Address and Subnet Mask that will be on the same subnet as the PC. Make sure this IP
address is not yetin use (for example, test by pinging it).

« Example IP Address: 169.254.135.200
« Subnet Mask: 255.255.0.0

@ Note: The default Subnet Mask is 255.255.255.0. You can set it back to default by scanning the
Reset Scanner to Factory Defaults Configuration Code.

10

Networking

Authentication should be left blank unless Authentication has been enabled on the DataMan.
Authentication is disabled by default.

Metwaork Settings

_Jse DHCF Server
i® Use Static |P Address |

IP Address [164.254.135.200 [
Subnet Mask [255.255.255.0 [
Default Gateway | C |

Authenticate

IUsername |a|:|min |

Password | |

| Apply |

Click OK. Your DataMan device is configured to the network settings specified, and it reboots
automatically.

Your DataMan reader appears under the Discovered Devices node after the address has been resolved.

This can take up to 60 seconds.

8. Ifthe device does not appear after 1 or 2 minutes, press the Refresh button in the DataMan Setup Tool’s
Connect page. This will force the DataMan Setup Tool to scan for DataMan devices connected to the PC or
connected to the same network.

Configuring the PC to Reside on the Same Subnet as the DataMan

Ifitis preferred that the DataMan network settings remain unchanged, you must already know the IP Address and Subnet
Mask of the DataMan or you must connect to the DataMan via RS-232 to find them out. The DataMan IP Address and
Subnet Mask can be found under Communication Settings.

11

Networking

oy | §F = C DataMan SetupTool - DM363-1C8878 [10.86.80.105] = =2
Home Settings Actions System View Help A
roA = —1 —4
R = 019 o
® PR @ o P E B & £ ©FE
Back Forward | Quick TestMode Read Lightand Imager Symbology Character Data Data Formatting Scripting Buffering & Communication System Table .
Setup Seffings Setups Seftings Settings Recognition Validation Transfer Seftings Seftings View Mé‘:ﬂiﬂf"
History Panes
Q&A * * [DM3gz1C9872 O 4px |3
W Show Al * c icati Setii E;
Communication Settings ommunicauon Setngs T
=
@ Howdot configure the netwark
Network
settings of the reader? 3 stwe M
(2 Use DHCP Server
- (®) Use Static IP Address
IP Address 10.86.80.105
Subnet Mask 255,285 255.0
Default Gateway 10.86.820.206
Untrained 1

Once the IP Address and Subnet Mask of the DataMan device are known, the PC’s network settings can be changed.

Perform the following steps to configure your PC (examples here are of Windows XP):

1.
Connections.

In the Start Menu, right click My Network Places, click the Properties menu option to launch Network

2. Rightclick on the network adapter connected to the DataMan and select the Properties menu option.

* Network Connections
Flle Edt View Favortes Took Advarced Hebp

€ © I Psewcr [Foders [

Address | @) Network Connections

Type
Network Tasks

[&) Create anew
Cornection

& Change Windows
Firewal sattings

@ Disable this network
device

€ Repar ths connection

W) Renseme this
connection

© View status of this
connection

[§) change settings of this

connection

Diakup Disconnected

Disabled
Conrected

L&N or High-Speed Inter ..
L&N or High-Speed Inter...

Other Places

B Corrrclpanel
& My Network Places
&) My Documents

i My Computer

12

3. Under the General tab, scroll down and select Internet Protocol (TCP/IP), and click Properties.

Connect using:

BB Broadcom NetXtreme 57xx Gigabit C

This connection uses the following items:
¥ 421005 Packet Scheduler
) "™ Network Monitor Driver
%" Intemnet Protocol (TCP/IP)

< >

-
Description

Transmission Control Protocol/Internet Protocol. The default
wide area network protocol that provides communication
acioss diverse interconnected networks

[7] Show icon in notification area when connected
Notify me when this connection has limited or no connectivity

+ Local Area Connection Prope...@@

General | Advanced

Networking

4. Under the General tab, select the Use the following IP address option and enter an IP Address and Subnet
Mask that are on the same subnet as your DataMan. Click OK.

Click Close. The network settings of your PC will change to the new specified values.

Internet Protocol (TCP/IP) Properties E

Genetal

X

You can get IP settings asngned aul i your network, supports
this capabilty. Otherwese, you need to ask your network administrator for
the appropriate [P settings.

) Obtain an IP address sutomatically
() Use the following IP address

IP addeess 169 . 254 . 135 . 189
Subnet mask 265.266. 0 .0
Defaul gateway:

() Use the lolowing DNS server addresses:
Prefemed DNS server

Alemnate DNS server

Reboot the DataMan device. It appears under the Discovered Devices node on the Connect page after the
network address has been resolved.

If the device does not appear after 1 or 2 minutes, click the Refresh button on the DataMan Setup Tool’s Connect
page. The DataMan Setup Tool scans for DataMan devices connected to the PC or connected to the same

network.

13

Networking

Connecting Your Reader Across Subnets
The following options can be used to connect to the DataMan device with the DataMan Setup Tool across subnets if you

already know the IP Address of the device.

1. In the DataMan Setup Tool’s Reader Maintenance page, click Add Network Device.

% | DataMan SetupTool = = b
m View Help A
Connect = . .
Click the Refresh button below to scan for problematic devices |§|
Reader Maintenance -
5 RefrestfwmAdd Network Deviee]] [Show AllDevices Current Grouping Interface Type ~ | Current Filter | Filter... []
Reader Groups
MName Type = Address Firmware Version | Status Open in
Image Playback ! ‘.I:l Cerial
0 -
P [“ MNetwork
About
Exit
Select a device from the list to see available options.

2. Enter the actual IP Address of the target DataMan device.

Add f Edit Metwaork Device

IP Address: il 254.135.200 X

0K || Cancel

3. Click OK. The reader appears under the Network node. Double click the new node or select it and click the
Connect button. If the device is available, the reader will be connected.

Connecting Your DataMan to the Network Wirelessly
You can connect to your DataMan reader via the wireless network as well. For this, you need to use the WiFi slide-in with

the device.

Ad-hoc Connection
The default factory settings for the wireless configuration of the device are:

« ad-hoc connection
« no encryption and no authentication

« SSID: the name of the device

14

Networking

This means that you can connect to your DataMan without the base station or a router.

Ad-hoc Mode

-~ ‘// o\ ~

‘/ Wireless \\ I ,)

To connect to your DataMan reader in ad-hoc mode, perform the following steps:
1. Make sure that the DataMan device is (re)set to factory settings.

2. Search for the DataMan device among the available wi-fi connections and connectto it.

r -
Currently connected to: %
'-:b Internet access
Wireless Network Connection 2 ~
DM8500-135721 -8

il

(@ Information sent over this network
might be visible to others.

1'.'!'!‘.
q'ﬁ‘
-t

Open Network and Sharing Center

L

= ————

3. Open the DataMan Setup Tool.
4. Search for the device and connect to it.

5. Once you are connected to your DataMan device in the DataMan Setup Tool, you can configure the wireless
connection.

a. Authentication: only Open Mode can be selected.

b. Encryption method: WEP-40 and WEP-104. You can enter a passphrase for these methods.

Infrastructure Mode

You can set Wireless Infrastructure mode in the DataMan Setup Tool as well.

15

Networking

1. Connectto your device in the DataMan Setup Tool.

2. In the WiFi tab of Communication Settings, select Infrastructure mode from the Network Type combo box. A
warning appears if the SSID name is identical to the device name, as this designates misconfiguration of the
device.

Infrastructure Mode

- Wireless .]) ~

)

Ethernet

3. Selectfrom the following authentication modes:

Authentication mode Encryption mode Requirements
Open System WEP-40, WEP-104 passphrase
WPA-PSK, WPA2-PSK TKIP, AES, TKIP/AES passphrase
EAP-TLS (see the section below) TKIP, AES, TKIP/AES « Client's certificate

« CA'’s certificate
« Client's private key

« Client's username

PEAP-MSCHAPV2 (see the section | TKIP, AES, TKIP/AES o CA’s certificate

below L,
) « Client's username

« Client's password

EAP-TLS Authentication Mode

Encryption methods: TKIP, AES, TKIP/AES are supported. All of these methods require specifying several PEM files,
which are created by the user’s local system administrator, and contain certificate information.

These certificates will be used to encrypt the communication between the Wi-Fi Access Point and the reader.
The following certificates are required:

« Client's certificate. This must be different for each reader. It may be publicly accessible (e.g. on a company
webpage).

« CA's certificate (CA = Certificate Authority). One such file will be created for each authentication server within the
company. It may be publicly accessible.

« Client's private key. This must be different for each reader. It must not be publicly accessible; must be stored and
handled confidentially.

Uploading a Certificate File to DataMan
You can upload these files in the DataMan Setup Tool one by one: click the folder button beside the fields, select the
proper file and the file content will be uploaded to the device.

A short message shows if a certificate is specified. The text “<not set>" appears in the field if there is no key or certificate
specified.

16

Networking

Security Options
Authentication mode (EAP-TLS v
Encryption method [TKIP/AES v]
Client's certificate Certificate (1388 bytes) {i} M
Client’s private key Private key (637 bytes) [Zj
CA's certificate Certificate (307 bytes) M M
Client's user name dm&¢00-sn02

Removing a Certificate File from DataMan

Click the red X button beside the corresponding field to delete an existing certificate from your device. The certificates
are saved into device backups, and may be completely restored.

PEAP-MSCHAPV2 Authentication Mode

Encryption methods: TKIP, AES, TKIP/AES are supported. All these methods require a PEM file containing the CA’s
certificate, the client’'s user name, and a password.

Security Options
Authentication mode [PEAP-MSCHAPVZ ']
Encryption method | TKIP/AES v
CA's certificate Certficate (907 bytes) B)x)
Client's user name dm&c00-sn02
Client's password — | Show

Client's password again e

A Client passwords do not match

Certificate Files

The DataMan Setup Tool currently applies the following restrictions about the PEM files:
« Their format must be the industry-standard PEM format (generated by OpenSSL toolkit).
« The PEM dialect may be either PKCS8 or SSLeay.
« Only unencrypted private key and certificate files are allowed.

« The Client’s private key and certificate must contain exactly one section; the CA’s certificate may contain one or
more certificates.

« The user must know the user name stored within her/his own certificate file; and exactly the same name must be
included in the Client’s user name text box. In other words, Setup Tool does notlook into the certificate files and
does not extract this user name information.

When the user leaves the Wireless tab page, a reboot confirmation window pops up, and the settings are saved
to the device.

Troubleshooting a Network Connection

Based on your network configuration, the DataMan Setup Tool may not be able to communicate with the reader and it
will not appear in the list of Network devices. If you know the IP address of the reader, use the Add Network Device
option in the DataMan Setup Tool. This method allows your DataMan reader to appear in the list of Network devices so
that you can connect to it through the DataMan Setup Tool and your USB connection.

17

Industrial Network Protocols

Industrial Network Protocols

DataMan uses industrial network protocols that are based on standard Ethernet protocols. These protocols: EtherNet/IP,
PROFINET, MC Protocol and Modbus/TCP are enhanced to provide more reliability than standard Ethernet.

EtherNet/IP

DataMan supports EtherNet/IP™, an application level protocol based on the Common Industrial Protocol (CIP).
EtherNet/IP provides an extensive range of messaging options and services for the transfer of data and I/O over Ethernet.
All devices on an EtherNet/IP network present their data to the network as a series of data values called attributes.
Attributes can be grouped with other related data values into sets, these are called Assemblies.

By default the DataMan device has the EtherNet/IP protocol disabled. The protocol can be enabled via DMCC, scanning
a parameter code, or in the DataMan Setup Tool.

@ Note: If you have a wireless DataMan reader, read the section on Industrial Protocols for the Wireless DataMan.

DMCC

The following commands can be used to enable/disable EtherNet/IP on the DataMan reader. The commands may be
issued via RS-232 or Telnet connection.

@ Note: Because you have to make changes to the Telnet client provided by Windows to communicate with DataMan,
itis recommended that you use third party clients such as PuTTY.

Enable:

| | >SET ETHERNET-IP.ENABLED ON
| | >CONFIG.SAVE
| | >REBOOT

Disable:

| | >SET ETHERNET-IP.ENABLED OFF
| | >CONFIG.SAVE
| | > REBOOT

Reader Configuration Code

Scanning the following reader configuration codes will enable/disable EtherNet/IP on your corded reader.

@ Note: You must reboot the device for the change to take effect.

Enable: Disable:

Scanning the following reader configuration codes will enable/disable EtherNet/IP on your DataMan 8000 base station.

@ Note: You must reboot the device for the change to take effect.

18

Industrial Network Protocols

Disable:

Setup Tool

EtherNet/IP can be enabled by checking Enabled on the EtherNet/IP tab of the Industrial Protocols. Make sure to save
the new selection by choosing “Save Settings” before disconnecting from the reader.

@ Note: The new settings take effect only after the reader is rebooted.

Getting Started

Preparing to use EtherNet/IP involves the following main steps:
« Make sure that you have the Rockwell Software tool on your machine.
« Setup the Rockwell Software tool so that it recognizes your DataMan device.
« Install the DataMan Electronic Data Sheet (EDS) for the DataMan reader.
Perform the following steps to set up EtherNet/IP:
1. Verify that the Rockwell Software is on your PC.

2. Make sure that you select the Add on Profile installation and the Samples installation. The Add on Profile is only
used with Rockwell ControlLogix or CompactLogix PLCs.

3. Install the Rockwell Add on Profiles by navigating to the following directory.

@ Note: Adjust the path for the specific DataMan Setup Tool version that you are using.

& FiherMellP L= @@

Bis Edt Wew Fgvorkes Tools Help "
Qe - © - (T JOseach [Foders [T~
Biddress |2 €:\Program Fles\Cogne:iDataani Sstup Tool v3.5.01Tooks|Etherst 1P v B4 so
A Name Sive Typs sk Mochifiad
File and Folder Tasks & CIEDS Fil Folder 3[af2010 2:00 PM
o] et ol Fie Folder 3/9/2010 2:00 P4
(g Mave this Folder =1 »

4. Selectthe Rockwell AOP directory:

19

Industrial Network Protocols

8 Rockwell ADP (=13
| Bl Edt Yew Fgeoites Jook Hep o
Qe -) POsewn [oroses [
| agddress |20 CA\Program Flesiognexiit sbaniSetup Tool va.5.00Tookftherhiet IR ockwed A0F ~ Es
Sze Type Date Modified
File and Folder Tasks Fib Fldar 39/2010 2:00 P
File Folder LU0 200 PH
Off Faname i flo File Folder 332010 2:00 FH
Gl Move this fle IED Sehiplnformstion YS[Z010 157 FM
1Y) Coprithis e TIZEE Apphcation IHI0N0 15T PM
& Publsh this Fls o the 12808 Apphcstion Extersion 3/9/2010 1:57 PM
Wb (8] MPSel Description: Component of MPSebup (1368 Applcstion Extersion 3/9[2010 1:57 M
i mpsed K g o 10 12848 Applcation Extersion /S2010 1:57 P
P Duslatn this ke (IMPSe fre Crested: WoEo02-00eM 13565 Applcaton Extersion /92010 1:57 PM
(SlMPSel Sw: 712 KB 13608 Apphostion Extersion /2010 1:57 P
S TTEE 1K AppkestonExtersion 3/9/2010 1:57 P
JE (22N | 12868 Apphcstion Extersion 9J2010 1:57 bM
(SMPsetuprce.dl 12868 Applcston Extersion 33/2010 1:57 P
(AMPSetpPTE O 13268 Apphostion Exteraion 39/2010 1:57 PM
(8 shiclder. ZZER Apphoston Extersion XIf2010 1:57 PH
w £ »

If you have not already installed the Rockwell AOP, now run MPSetup.exe.

From the Start menu, go to Programs -> Rockwell Software -> RSLinx -> Tools -> EDS Hardware Install Tool.

-

1) Muriper Netwarks ¥
L= "
WD) Pusci Programeng Took]
) SenialOosem "
) hskia P Suike . By Rsten Sl

) Fluke Metworis L e s ¥ hﬂmﬂuﬂ:mw-m
B) Gemn 3 L= |l ¥y surn Classic Laurch Control Panel
) Proores Confgurstion Lnkiy b Y FSlogic SO00 Took L3

Run the ESD Install tool.

@ Note: If you have an existing EDS file, uninstall it first, then install the latest version of the EDS.

Run the DataMan Setup Tool and update the DataMan firmware.

20

9.

10.

11.
12.

Industrial Network Protocols

Check if the firmware has been loaded into the unit by clicking in the Setup Tool View -> System Info.
|DM2s00-1C1DR2 O

System Info

Device DMae00v

Serial number 141406XN 000525

Device name DMae00-1C1D32

Communications module Serial

MAC address 00-D0-24-1C-1D-82

Firmware version 540 crl_a3

Startup version 126

Bootloader version 122

Installed hardware Liguid Lens

Feature keys Verfication, IDMax, ImageDownload, Validation,

Omnidirectional, ImageFittering, LadderfndPicket,
2DCodeCuality, 10CodeQuality, LaserClass2, Scripting

Copy to Clipboard

In the DataMan Setup Tool, go to the Industrial Protocols pane under Settings -> Communication Settings and
check the Enabled checkbox on the EtherNet/IP™ tab.

X @ & o P E B 8 OB

Jead Lightand Imager Symbology Character Data Data Formatting Scripting Buffering & | Communication| System Table
etups Seftings Settings Recognition Validation Tranzfer Settings Seftings View !
Panes

o
':."‘ Netwaork Settings

DM363-1C98728 b

Industnal Protocols 1-.!; Non-Printing Characters
LI
EtherNet/IP™ | PROFINET |SLMP Protocal | ModbusTcP | 8] Custom Commands
E @ Industrial Protocols

In order for the changes to take effect, you must save your settings and cycle power. Go to System and click
Save Settings.

Reboot your reader.

Your DataMan is visible now in the RSWHO.

21

Industrial Network Protocols

3+ RSLinx Classic Gateway - [RS¥ho - 1] (=] 3]
ﬁﬁkg&m;mmmwmwmp - 8w

= & 2|8 8k ¥

[Aucbowse [_Feiwsh | %5 Wl NotBiowsing
AB_ETHIP-1, Ethemet - | e ® -
w1 1020121120, 1TS6-ENCTR, 1756-ENZTRL) ! ij i "t.ﬁ ; =
> L0Z0.121.74, DetaMen 200 Zeries Reader, | g o 12y | 10.26.121.74 10.28.121.580 10.28.020.84 10.25.123.... 10.28.124.20
F° 10.28.121.80, Dakaban G000 Series Resder L7SE-ENZTRIA Datadan D, DstaManD... DataManD... IneSight S0 [neSight M.
[l 10,28, 121,84, DataMan
I 10.25.123.192, IneSight S000 Seviers, [n-Sigl e
€ > W

Fior Hedp, press Fl L) DZf24f11 | 03:53 FM

If your DataMan is visible, but the icon is a question mark, repeat the ESD Installation.
13. Open one of the sample jobs and integrate your DataMan into your program using the Add on Profile.

14. Alternatively, you can add the DataMan as a Module on your network.

+ Alen-Braday
= Cogrees Corporation
DiataMan 200 Series 1D Rmader

Diataldan SO0 Series

Datalan 8000 Series 10 Reader

Trv-Sight 1700 Series Wisaoh Syshem

Tr-Sight SO00 Series Wision System

In-Saghit Micro Series Wision System
+ Parker Hanrdfin Corp.

frd. | AddFavode |

By Categody ByVendor | Favoites |

Object Model

The ID Reader Object is a vendor specific object class. This means thatitis not part of the CIP common (public)
architecture but rather an extension. Itis a custom object that Cognex has added to the EtherNet/IP architecture on the
DataMan device. All the data and functionality of this object model are available in the DataMan reader. This includes
triggering, status, events, errors and result data.

The ID Reader Object is identified by its vender specific class code:

DataMan ID Reader Object Class Code: 0x79

Objects are made up of attributes (data) and services (functionality). These can be defined at the class level (common to
all instances of the class) or the instance level (unique to an individual instance). There are common attributes and
services defined by the CIP specification that apply to all objects (often these are optional). Vendors may also define
their own attributes and services for their vendor specific classes.

22

Industrial Network Protocols

The ID Reader Object attributes and services can be individually accessed via explicit messaging. Also a number of the
ID Reader Object attributes are exposed in the DataMan assembly objects which allow them to be accessed as a group
via implicit messaging.

DataMan Reader System

Identity Object

Reader
Object

Ethernet Link Object

Other Internal
Objects

TCP/IP Object

Assembly Object

Instance 21
Outputs

Instance 11
Inputs

Attributes
The DataMan ID Reader Object (Class Code: 0x79) has the following attributes:
Attribute | Access Name Data Type Description
ID Rule
0x9 Set AcqTriggerEnable BOOL 0 = EtherNet/IP triggering is disabled
1 = EtherNet/IP triggering is enabled
OxA Set AcqTrigger BOOL Acquire an image when this attribute changes from 0 to 1.
0xB Get AcqStatusRegister BYTE Bit0: Trigger Ready
Bit1: Trigger Ack
Bit2: Acquiring
Bit3: Missed Acquisition
Bit4-7: Reserved
0xC Set UserData ARRAY of [User defined data that may be used as an input to the
BYTE acquisition/decode
0oxD Set BufferResultsEnable BOOL When true, it enables buffering of the decode results.
OxE Get DecodeStatusRegister BYTE Bit0: Decoding
Bit1: Decode completed (toggle)
Bit2: Results buffer overrun
Bit3: Results available
Bit4: Reserved
Bit5: Reserved
Bit6: Reserved
Bit7: General fault indicator
OxF Set ResultsAck BOOL Acknowledges that the client received the decode results

23

Industrial Network Protocols

Attribute | Access Name Data Type Description
ID Rule
0x10 Get DecodeResults STRUCT of | The last decode results
ResultsID UINT Decode results identifier.
Corresponds to the TriggerID of the decoded image.
ResultCode UINT Decode result summary code value

Bit0: 1=Read, 0=No read

Bit1: 1=Validated, 0=Not Validated
Bit2: 1=Verified, 0=Not Verified
Bit3: 1=Acquisition trigger overrun
Bit4: 1=Acquisition buffer overrun
Bit5-15: Reserved (future use)

ResultExtended UINT Extended result information
ResultLength UINT Current number of result data bytes
ResultData ARRAY of |Resultdata from last decode
BYTE
0x12 Set SoftEvents BYTE SoftEvents act as virtual inputs (execute action on 0 to 1
transition)

Bit0: Train code

Bit1: Train match string

Bit2: Train focus

Bit3: Train brightness

Bit4: Un-Train

Bit5: Reserved (future use)
Bit6: Execute DMCC command
Bit7: Set match string

0x15 Get TriggerlD UNIT Trigger identifier. ID of the next trigger to be issued.
0x16 Set UserDataOption UINT Optional user data information

0x17 Set UserDataLength UINT Current number of user data bytes

0x18 Get SoftEventAck BYTE Acknowledgment of SoftEvents.

Bit0: Train code ack

Bit1: Train match string ack

Bit2: Train focus ack

Bit3: Train brightness ack

Bit4: Un-Train ack

Bit5: Reserved (future use)

Bit6: Execute DMCC command ack
Bit7: Set match string ack

SoftEvents

SoftEvents act as “virtual” inputs. When the value of a SoftEvent changes from 0 -> 1, the action associated with the event
will be executed. When the action completes, the corresponding SoftEventAck bit will change from 1 -> 0 to signal
completion.

The SoftEvent and SoftEventAck form a logical handshake. After SoftEventAck changes to 1 the original SoftEvent
should be set back to 0. When that occurs, SoftEventAck will automatically be set back to 0.

The “ExecuteDMCC” and “SetMatchString” soft event actions require user supplied data. This data must be written to the
UserData & UserDatalLength area of the Input Assembly prior to invoking the soft event. Since both of these soft events
depend on the UserData, only one may be invoked at a time.

General Fault Indicator
When a communication related fault occurs the “GeneralFault” bit will change from 0 -> 1. Currently the only fault
conditions supported are soft event operations. If a soft event operation fails, the fault bit will be set. The fault bit will

24

Industrial Network Protocols

remain set until the next successful soft event operation. Or, until TriggerEnable is setto 0 and then back to 1.

SoftEvent —’—I—I |—’—‘—
SoftEventAck [] [] ,_|—

GeneralFault | L
“ W
I a— " — Y

SoftEvent SoftEvent cycle #2 SoftEvent
cycle #1 (failure occured) cycle #3

Services
The ID Reader Object supports the following Common CIP services.

Service Code Service Name Description
0x05 Reset Resets the ID Reader object.
O0x0E Get_Attribute_Single Returns the contents of the specified attribute.
0x10 Set_Attribute_Single Modifies the specified attribute.

The ID Reader Object supports the following vendor specific services.

Service Code Service Name Description
0x32 Acquire Triggers a single acquisition.
0x34 SendDMCC Sends a DMCC command to the device.
0x35 GetDecodeResults Gets the content of the DecodeResults attribute.

Acquire Service

The Acquire Service will cause an acquisition to be triggered (if the acquisition system is ready to acquire an image). If
the acquisition could not be triggered, then the Missed Acquisition bit of the AcqStatusRegister will be set until the next
successful acquisition.

SendDMCC Service

The SendDMCC Service sends a DMCC command string to the device. The request data consists of the DMCC
command string that is to be sent to the reader. The reply data will contain the string result of the DMCC command.
Additionally the service provides a numeric result status for the call. Most of these result codes relate to the basic
success/failure of the service execution. However, the service also maps the actual DMCC status codes. This allows the
PLC to interpret the service request without having to parse the actual DMCC return string.

DMCC commands transferred via the Industrial Ethernet protocols (EtherNet/IP, Profinet, etc) will automatically be routed
to the wifi reader.

The commands cannot be executed while the wifi reader is powered down, hibernating, or out-of-range.

Service Return Description DMCC Return Code
Code

0 Success — No error 0

Bad Command -

25

Industrial Network Protocols

Service Return Description DMCC Return Code
Code
4 No Answer — System too busy -
100 Unidentified error 100
101 Command invalid 101
102 Parameter invalid 102
103 Checksum incorrect 103
104 Parameter rejected/altered due to 104
reader state

@ Note: The string must be in the CIP STRING2 format (16-bit integer indicating the string length in characters
followed by the actual string characters, no terminating null required).

GetDecodeResults Service

The GetDecodeResults service reads data from the DecodeResults attribute of the ID Reader Object. This service takes
parameters indicating the “size” (number of bytes to read) and the “offset” (offset into the DecodeResults attribute to
begin reading). This gives the service the flexibility to be used with PLC’s that have different restrictions on the amount of
data allowed in an explicit message. It also allows the user to access very large codes that cannot be completely
transferred with implicit messaging (assembly object).

GetDecodeResults Request Data Format

Name Type Description
Size UINT The number of bytes of the DecodeResults attribute to read.
Offset UINT The offset into the DecodeResults attribute. This specifies the first byte of the
DecodeResults attribute to begin reading (0 based offset).

Acquisition Sequence

DataMan can be triggered to acquire images by several methods. It can be done implicitly via the Assembly object. Or
done explicitly via the ID Reader object. When using explicit messaging it can be done in a single step by accessing the
Acquire Service, it can also be done by directly manipulating the ID Reader object attributes (AcqTrigger and
AcqStatusRegister) and finally it can be done via DMCC command. The ID Reader attributes will be discussed here but
these same values can be accessed via the assembly objects.

On startup, the AcqTriggerEnable attribute will be False. It must be set to True to enable triggering. When the device is
ready to accept triggers, the Trigger Ready bit in the AcqStatusRegister will be setto True.

While the AcqStatusRegister “Trigger Ready” bitis True, each time the ID Reader object sees the AcqTrigger attribute
change from 0 to 1, it will initiate an image acquisition. When setting this via the assembly objects, the attribute should be
held in the new state until that same state value is seen in the Trigger Ack bit of the AcqStatusRegister (this is a
necessary handshake to guarantee that the change is seen by the ID Reader object).

During an acquisition, the Trigger Ready bitin the AcqStatusRegister will be cleared and the Acquiring bit will be set to
True. When the acquisition is completed, the Acquiring bit will be cleared. The Trigger Ready bit will again be set True
once the device is ready to begin a new image acquisition.

If results buffering is enabled, the device will allow overlapped acquisition and decoding operations. Trigger Ready will
be set high after acquisition is complete but while decoding is still in process. This can be used to achieve faster overall
trigger rates. If result buffering is not enabled, the Trigger Ready bit will remain low until both the acquisition and decode
operations have completed.

26

Industrial Network Protocols

As a special case, an acquisition can be cancelled by clearing the Trigger signal before the read operation has
completed. This allows for the cancellation of reads in Presentation and Manual mode if no code is in the field of view. To
ensure that a read is not unintentionally cancelled, itis advised that the PLC hold the Trigger signal True until both
TriggerAck and ResultsAvailable are True (or DecodeComplete toggles state).

Trigger EN]

Trigger Ready _ I [1 31 [

Trigger 11 L1 v 1 31

Trigger Ack [1 1 [1 v 1 R

Acquiring L N —
Y

Missed Acq
~ / A ” .
~ v Y ~
Acquisition #1 Acquisition #2 Missed Acq Acquisition #3
| Client |
| DataMan |

To force a reset of the trigger mechanism set the AcqTriggerEnable attribute to False, until the AcqStatusRegister is 0.
Then, AcqTriggerEnable can be setto True to re-enable acquisition.

Decode / Result Sequence

After an image is acquired it is decoded. While being decoded, the Decoding bit of the DecodeStatusRegister is set.
When the decode is complete, the Decoding bitis cleared and the Decode Completed bitis toggled.

The BufferResultsEnable attribute determines how decode results are handled by the ID Reader Object. If the
BufferResultsEnable attribute is set to False, then the decode results are immediately placed into the DecodeResults
attribute and Results Available is set to True.

If the BufferResultsEnable attribute is set to True the new results are queued. The earlier decode results remain in the
DecodeResults attribute until they are acknowledged by the client setting the ResultsAck attribute to True. After the
Results Available bit is cleared, the client should set the ResultsAck attribute back to False to allow the next queued
results to be placed in to the DecodeResults attribute. This is a necessary handshake to ensure the results are received
by the DataMan reader’s client (PLC).

Behavior of DecodeStatusRegister

Bit| Bit Name Results if Buffering Disabled Results if Buffering Enabled
1 |Decoding | Set when decoding an image. Setwhen decoding an image.
2 |Decode [Toggled on completion of an image decode. Toggled on completion of an image decode.
Complete
3 [Results |Remains setto zero. Setwhen decode results could not be queued because
Buffer the client failed to acknowledge a previous result.
Overflow Cleared when the decode resultis successfully
queued.
4 |Results |Setwhen new results are placed in the Setwhen new results are placed in the DecodeResults
Available [DecodeResults attribute. Stays set until the attribute. Stays set until the results are acknowledged
results are acknowledged by setting by setting ResultsAck to true.
ResultsAck to true.

27

Industrial Network Protocols

Trigger Ready |1 | I 2 |
Trigger ll—\ ,2—|
Trigger Ack li_l |2_|

Acquiring 4’1—| IZ—‘
Decoding Il—‘

Decode Cmplt |1

Results Avail

bt

|1 |
Results Ack ,1_‘
e

—
Read #1 Read #2

Client

DataMan

Results Buffering

There is an option to enable a queue for decode results. If enabled this allows a finite number of decode result data to
queue up until the client (PLC) has time to read them. This is useful to smooth out data flow if the client (PLC) slows
down for short periods of time.

Also, if result buffering is enabled, the device will allow overlapped acquisition and decode operations. Depending on
the application this can be used to achieve faster over all trigger rates. See Acquisition Sequence description above for
further detail.

In general, if reads are occurring faster than results can be sent out the primary difference between buffering or not
buffering is determining which results get discarded. If buffering is not enabled the most recent results are kept and the
earlier result (which was not read by the PLC fast enough) is lost. Essentially the more recent result will simply over write
the earlier result. If buffering is enabled (and the queue becomes full) the most recent results are discarded until room
becomes available in the results queue.

Note: If the queue has overflowed and then buffering is disabled, there will be a greater than 1 difference between

@ the TriggerID and ResultID values. This difference represents the number of reads that had occurred but could not
be queue because the queue was full (number of lost reads equals TriggerID - ResultID - 1). After the next read, the
ResultlD value will return to the typical operating value of TriggerID - 1.

Assembly Object

Assemblies are combinations of selected attributes (data items) from CIP objects with in a device. The device vendor
defines assemblies according to their needs. They combine data together in useful groupings according to the
requirements of the application.

The designation of Input & Output assembly can be confusing. DataMan is an I/O adapter class device. The convention
for adapters is that Input Assemblies produce (transmit) data for another device (i.e. DataMan -> PLC) and Output
Assemblies consume (receive) data from another device (i.e. PLC -> DataMan). Essentially, DataMan acts as an 1/O
module for another device such as a PLC.

28

Industrial Network Protocols

Assembly objects use implicit messaging. In the abstract, they are just blocks of data which are transmitted as the raw
payload of implicit messaging packets. These implicit messaging packets are produced (transmitted) repeatedly ata

predefined chosen rate (100ms, 200ms, etc).

DataMan readers have a single input assembly and single output assembly. These assemblies combine selected
attributes (data) of the DataMan ID Reader Object into groupings that minimize network bandwidth and still allow for
efficient control and processing. The data in these assemblies can also be accessed individually from the ID Reader
Object. However, using the assembly objects is much more efficient. This is the reason that they are the primary means
of runtime communication between a DataMan reader and a PLC.

Input Assembly
The Input assembly provides status information, process state, and decode results.
Instance | Byte Bit7 Bit 6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit 0
11 0 Reserved Missed Acq | Acquiring | Trigger Ack | Trigger
Ready
1 General Reserved Results | Results Buffer| Decode | Decoding
Fault Available Overrun Complete
Toggle
2 | Soft Event| Soft Event | Soft Event | Soft Event| Soft Event Soft Event Soft Event | Soft Event
Ack 7 Ack 6 Ack 5 Ack 4 Ack 3 Ack 2 Ack 1 Ack 0

3-5 Reserved

6 Trigger ID (16-bitinteger)

7

8 Result ID (16-bitinteger)

9

10 Result Code (16-bit integer)

11

12 Result Extended (16-bit integer)

13

14 Result Data Length (16-bit integer)

15

16 Result Data 0

499 Result Data 483

Output Assembly

The Output assembly contains control signals, software event signals, and any user data required for the trigger &

decode.

29

Industrial Network Protocols

Instance | Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
21 Reserved Results Buffer Trigger Trigger
Ack Results Enable
Enable
Soft Event | Soft Event | Soft Event | Soft Event | Soft Event | Soft Event | Soft Event | Soft Event
7 6 5 4 3 2 1 0
2 Reserved
3
4 User Data Option (16-bit integer)
5
6 User Data Length (16-bit integer)
7
8 User Data 0
499 User Data 491

PCCC Object

DataMan has limited support for the Rockwell PCCC object. This allows legacy PLC’s (PLC-5, SLC, etc) to communicate
with DataMan using their native PCCC command set and explicit messaging. The PCCC object allows DataMan to look
like a Rockwell PLC-5 logic controller.

PCCC commands are organized to work with “data tables” that exist in legacy logic controllers. Each data table is an
array of a give data type (BYTE, INT, FLOAT, etc). The commands are oriented to read/write one or more data items of a
given data table. Items are addressed by specifying the data table and the index of the item in the table (indexes base
from 0). For instance to read the 6th integer in PLC data table you would send the PCCC command to read N7:5. “N”
specifies an integer table, “7” is the table number in the PLC (each table has a unique numeric identifier — assigned
when the user PLC program was created), and “5” is the index into the table (note indexes begin at 0).

The PCCC objectin DataMan maps the read and write requests to ID Reader assemblies (or in one special case to the
DMCC service). Read commands return data from the Input assembly (instance 11). Write commands send data to the
Output assembly (instance 21). In essence, the PCCC Object gives the outward appearance of PLC-5 data tables butis
actually accessing the assembly data. Currently, the implementation only supports an Integer data table (N7) and an
ASCII data table (A9). There is one special case of String data table (ST10:0) for DMCC.

Table Data Type Table Size
N7 Integer (16-bit) 250 elements
A9 ASCII (8-bit) 500 elements
ST10 String 1 element

30

Industrial Network Protocols

The ResultCode value is located at word offset 5 (counting from 0) of the Input Assembly. To access this value, you
would issue the following PLC command:

Integer Table N7 Input Assembly
PLC Command
Word 0 Word 0
PCCC Read 1 element Word 1 Word 1
@ “N7:5"
Word 5 P — Word 5
Word 6 Word 6
Word 7 Word 7
Wordn Word n

The decode ResultData begins at byte offset 16 (counting from 0) of the Input Assembly. To read the first 4 bytes of result
data, you would issue the following PLC command:

ASCII Table A9
PLC Command Input Assembly
Byte O Byte O
PCCC Read 4 elements @
“A9:16" Byte 1 Byte 1
the 16 < _______ B‘y’te 16
Byte 17 < —————— Byte 17
Byte 18 (- ————— - Byte 18
Byte 19 (- - - ——— - Byte 19
Byte n Byte n

31

Industrial Network Protocols

The UserData begins at word offset 4 (counting from 0) of the Output Assembly. To write 4 words of UserData, you would
issue the following PLC command:

Integer Table N7
PLC Command g Output Assembly
Word 0 Word O
PCCC Write 4 elements
@ “N7:4"
Word4d |------ > Word 4
Wwords |- —---- > Word 5
Word6 |------ > Word 6
word7 |- --- > Word 7
Word 8 Word 8
Word n Word n

The bit to trigger an acquisition is in byte offset 0 of the Output Assembly. To write to this byte, you would issue the
following PLC command:

PLC Command ASClI Table A9 Output Assembly

PCCC Write 1 element / Byte0 | -----2 > Byte O
@ “A9:0" Byte 1 Byte 1

Byte 2 Byte 2

Byte 3 Byte 3

Byte 4 Byte 4

Byte 5 Byte 5

Byte n Byte n

The PCCC Object supports a special case mapping of a string table element (ST10:0) to the DMCC service. Any string
written to ST10:0 will be passed to the DMCC service for processing. This allows PCCC write string commands to be
used to invoke DMCC commands.

@ Note: The string table is only one elementin size. Writing to the other elements will return an error

32

Industrial Network Protocols

PLC Command String Table ST10

PCCC Write 1 element @ / String O - v

“ST10:0"
~~al bmcc
Service

4

Rockwell ControlLogix Examples

Implicit Messages transmit time-critical application specific I/O data, and can be point-to-point or multicast. Explicit
messages require a response from the receiving device. As a result, explicit messages are better suited for operations
that occur less frequently. An instruction to send a DMCC command is an example of an explicit message.

Implicit Messaging
EtherNet/IP implicit messaging allows a DataMan reader’s inputs and outputs to be mapped into tags in the ControlLogix

PLC. Once these connections are established the data is transferred cyclically at a user defined interval (10ms, 50ms,
100ms, etc).

The figure below represents Ethernet-based I/O through EtherNet/IP:

ControlLogix DataMan ID Reader
DataMan:| |« P P
Assembly ID Reader Object
DataMan:0O _’_Output - i
Assembly
Y Y Y
Acquisition Decode DMCC
Subsystem Subsystem Subsystem

The Input Assembly and Output Assembly map various attributes (data) from the ID Reader object: The Input Assembly is
the collection of DataMan reader data values sent to the PLC (PLC inputs); and the Output Assembly is the collection of
data values received by the DataMan reader from the PLC (PLC outputs).

Establishing an Implicit Messaging Connection

To setup an EtherNet/IP implicit messaging connection between a DataMan and a ControlLogix controller, the DataMan
reader must first be added to the ControlLogix I/O Configuration tree. The most efficient method is to use the Add-On-
Profile. This example assumes that the Add-On-Profile has already been installed. If you do not have the Add-On-Profile,
see section Using the Generic EtherNet/IP Profile.

To establish an implicit messaging connection with a ControlLogix PLC:

33

Industrial Network Protocols

1. Open RSLogix5000 and load your project (or select “File -> New...” to create a new one).

From the I/O Configuration node, select the Ethernet node under the project Ethernet Module, right-click on the
icon and select New Module... from the menu:

= £3 1/O Configuration
- €3 1756 Backplane, 1756-A7
fa (0] 1756-L61 Test
- § [1]1756-EN2T/A Test
L Ethernet
1% New Modue...

=
|

2. From the Select Module dialog, choose your model of DataMan ID Reader from the list.

@ Note: This option will only be available after the DataMan Add-On Profile has been installed.

+ Aler-Br adiey

= Cogrees Corporation
DiataMan 200 Series 10 Reader
Diatalian S00 Saries

Datalan 8000 Series 1D Reader

Tre-Sight 17001 Series Wision System

Ir-Saghit S000 Series Wision System

In-Sight Micro Series Wigion System
+ Parker Hanrdfin Corp.

Erd. | AddFavode |

@ Note: The remainder of the steps is identical regardless of which DataMan model is selected.

3. After the selection is made, the configuration dialog for the DataMan ID Reader system will be displayed. Give the
module a name and enter the DataMan’s IP address. The defaultis a bidirectional (send/receive) connection
consisting of control, status, and 32 bytes of result data with keying disabled. To change this default connection,
select the “Change...” button. If no change is required skip over the next step.

34

Industrial Network Protocols

B Hew Module 3
Genesal | Conmection | Moskde bnfo | Versdoe |
Type: Drstabdan SO0 Senes |0 Reade
Viendod Cognen: Cosporation
Pavent LocsEMNE Ethesned Addbes
Hoagiee My MO0 () Pieabe Metwork: 1921681,
Deescoghion: (5} |P Az w., 2. w, d
() Hiond W e
Modhde Dalron
Seer ==
ol y [Cramge]
Electronic Eeyangr Computible Moduls
Connection: Dt (Bchrechional)
gt Fepulls from Sendor. SINT.32
Outpet Data o Sensor. Contral Only
I — Ok] Caed | Heo |

4. Change the connection configuration.

Selecting the “Change...” button will bring up the Module Definition dialog. This dialog is used to alter the
connection configuration. You can change:

« DataMan revision
« Electronic keying
« Connection type (bidirectional/receive-only)
« Amount of data received (from the DataMan)

« Amount of data sent (to the DataMan)

Module Definition

Electronc Eeyng |anlﬁ|:'-‘€m j
Connection: Dol (Bt ecticnal) x|
nput Resuts from Sengor. | SINT-32 |
Cutput Dot to Sensor: Ciontrol Oniy -

Cancel Help

Electronic Keying: Defines the level of module type checking thatis performed by the PLC before a connection
will be established.

Exact Match — All of the parameters must match or the connection will be rejected.
« Vendor

« Product Type

35

Industrial Network Protocols

« Catalog Number
« Major Revision
« Minor Revision
Compatible Module — The following criteria must be met, or else the inserted module will reject the connection:
« The Module Types must match
« Catalog Number must match
« Major Revision must match
« The Minor Revision of the module must be equal to or greater than the one specified in the software.
Disable Keying — The controller will not employ keying at all.
Connection: Defines the type of data flow.
Data (Bidirectional) — The connection will send data (to the DataMan) and receive data (from the DataMan).

Input (Results only) — The connection will only receive data (from the DataMan). Generally used in situations
where more than one PLC needs to receive data from the same DataMan device.

Input Results from Sensor: Defines the amount of data received on the connection (from the DataMan). The
minimum amount is the Status data only. The connection can be configured to also receive read result data. The
amount of result data received is defined in fixed increments (16 bytes, 32 bytes, 64 bytes etc). The size should
be selected to return no more than the largest code size to be read by the application. Setting the size larger
wastes network bandwidth and diminishes performance.

Module Definition 3

Bewsin =

Ebectron: Kevng |l:h:-uh'l: Keyrg j
Conmnection Dol (Bucirectional) |
Input Flesults from Sencor |SNT 404 :E
Crtput Data to Sensor: Status Only]

Output Data to Sensor: Defines the amount of data transmitted on the connection (to the DataMan). The
minimum amount is the Control data only. The connection can be configured to also send user data. The amount
of user data sentis defined in fixed increments (16 bytes, 32 bytes, 64 bytes etc). To enable User Data output,
right-click the DataMan module and then go to Properties -> Change -> Output Data to Sensor.

36

Industrial Network Protocols

Module Definition (x|
Bievishors h = ==

Elechion Keyng [Disabie Keprg -
Connction Dl (Bicectional) =]

Input Rosulls from Sensor. | SINT-484 |
Cnput Data bo Servcr [srat.ee -|

5. The final step is configuring the connection rate. The rate at which data is transmitted/received is defined as the
Requested Packet Interval (RPI). The RPI defines how frequently the data is transmitted/received over the
connection. To optimize network performance this rate should be set no lower than absolutely required by a
given application. In general it should be set no lower than %z the expected maximum read rate of the user
application. Setting it lower wastes bandwidth and does notimprove processing performance.

6. Selectthe “Connection” tab of the “New Module” dialog to set the rate.

B Hew Maodule &

General® Connection” | Module lefa | Vende |

Bequested Packet Interval [RP1) 00 me(1.0-7500)
™ |nkiit Moduls
I Mmee Fault On Coriraler If Corvacton Fails Whils im Fun Mods

Iodule Faul

Statuic Croating

7. After adding the module to ControlLogix, the I/O tree should appear as follows:
=3 1O Configuration
- B 1756 Backplane, 1756-A7
ﬂil [1] 1756-L61 ControlLogix_Implcit_aAll_S00
= ﬂ [3] 1796-EN2T MyENZT

- == Ethernet
8 1756-ENZT MyENZT
® DataMan 500 Series MyDMS00

37

Industrial Network Protocols

8. When the DataMan module is added to the I/O tree RSLogix 5000 creates tags that map to the DataMan reader
Input and Output Data (i.e. the Input & Output Assembly Objects in the DataMan Reader). These tags can be
found under the “Controller Tags” node of the project tree.

@ Note: The base name of these tags is the name you gave to the DataMan Module that you added to the 1/O
Configuration in the earlier steps.

= 1 Comtrolier ControlLogee_Impack_ad_Y| || Scopec |88 Cortrollogi img »| Show.. | Showa
%ﬁ::ﬁm o ofvae | st |DataType
_ Powwer-Uip Hanler LIS MHWI (K] mDﬂN'I_
=5 Tasks || — MyDME00 Siahe [ICC: Do,
= G MainTask || MOS0 Status. TriggeiFeady 0 Decamnal BiooL
= LR MainProgram || MyDMBI0 Stahis Triggechck 0 | Decimal BOOL
|, ;mm Prograsis. | Phesses 1] Nl MyOMBOCH Stahus Aeeuiing 0| Dacimal BOMOL
£3 Ungrouped Aues | | MM S0 Shetus Missedieg 0| Decimal BOOL
£ Add-On Instrusctions || MyDME00 Status. Decoding 0 | Decamal BOOL
= £5 Data Types | | MyDMEDCL Stohe DecodeCompleted 0 | Deimal 800U
% Ligg User-Defined | | WD ME00 L Status. Fiesult:BufierDvemun 0 | Decimal BOOL
Y At Cofid | MyDMSIC Shotus Finsullsdvalobile 0 |Decima BO0L
i : iy || MyOMBOCH Stahe: GrssralF sl 0 | Decimal BOOL
+ O Modue-Defined || MyDME00E Status TramCodwdck 0| Decamad BO0L
[Trends - MpDMSO0 St Tram sbehS ringéck 0 Dmcarnal BooL
= 33 1O Configuration | | M OMSO0L Stahes. TranFocushek 0 | Decanal BO0L
= I 1756 Badkpline, 1756-47 | | MyOMEI0H Status TramBrighinesstick 0 | Diecimal BOOL
I %] E;}:Eﬁ‘zfm?-‘ [| MyOMEOCH Ststue Unkrsine 0| Decimal BOOL
= 2z Ethernat - MpDME00 Status. ExecuteDmechck 0 | Decimal BOOL
ﬂ 1756-EM2T MyEMET | |1 MpDMEOCH Status, S et alchSimgack 0 | Decamal BOOL
B Dstader 500 Series ||| + DM Stastue. Triggesd D 0| Dacamad INT
- + My ME00] Status FesulliD 0| Decamal INT
- + MO ME00] Status. FiesultCode 0 Decarnal INT
| | + MO MO0 St ResullE ended 0 Dscarnal INT
+ MyDMSRH Ststus RendLengh 0| Decimal INT
||+ MO0 Recuats feea} BSEN SINT|454]
| |= Myoms000 (ees) CC: DistaMan,
| = MyDME0RD Contrl {ees} CC:DalaMan,
P 3 [MyDMEI0 D, Condrol TrggesE nable 0 Decamal BooL
|| DM S0 0, Condrold Trgges 0| Decimal BooL
| | MOME0 D Conirod ResubsBulferE rabls 0| Decimal BOOL
| WD MS00 0. Controd Rasiedel: 0| Dscarnal BiooL
| | DM 5000, Conlrol TrairCide 0| Decarnal gooL
| | MEIMED 0. Contrel T stehtireg 0 |Decmat ROOL
- MyDME000. Control TrarF oous 0 Decarnal BoOL
- MyDME00 0 Control TrarBnghiness 0| Decamal BgooL
|| MDMEI0 0, Contral Urksain 0| Decimal BOOL

The tags are organized in two groups: Status and Control. The Status group represents all the data being
received (from the DataMan). The Control group represents all the data being sent (to the DataMan).

These tags are the symbolic representation of the DataMan Assembly Object contents. The PLC ladder is written
to access these tag values. By monitoring or changing these tag values the PLC ladder is actually monitoring and
changing the DataMan Assembly Object contents.

@ Note: There is a time delay between the DataMan and these PLC tag values (base on the configured RPI).
All PLC ladder must be written to take that time delay into account.

Accessing Implicit Messaging Connection Data

The section above details establishing an implicit message connection between a ControlLogix and a DataMan ID
Reader. This example assumes that the DataMan Add-On-Profile is being utilized. One aspect of the Add-On-Profile is
that it will automatically generate ControlLogix tags representing the connection data.

38

Industrial Network Protocols

The generated tags are divided into two groups: Status & Control. The Status group represents all the data being
received (from the DataMan). The Control group represents all the data being sent (to the DataMan).

A description of the Status tag group follows. This is the data received by the ControlLogix from the DataMan reader.

— MypDMS001 e CC:D atablan
= MOS0 Shstus {aan} CC:D stablan

MyDMS00 Status. TrggeReads 0 Decimal BOOL
My M50 Stabus. Traggeick 0 Decimal gooL
MyDMSO0 Stabiss Acquemng 0 Decimal gooL
MpDMS00L Status Missediog 0 Decimal BOOL
MyDMS0L Stahus. Dacodng 0 Decienal BOOL
MpDMS00] Status DecodeCompleted 0 Decemal BOOL
MyDMS00] Stabus. ResukzBuffeDvenn 0 Decanal BOOL
MyDMS00 Status, Resukztyvalable 0 Decinal Bo0L
My M 500 Stabus. Gener sl aul 0 Decenal BooL
MyD M S00 L Stabus. TranCodesch 0 Decanal BOOL
MyDMSIEL Stabes, Tranb atchStmghck 0 Decinal B00L
MyDMS00 Status. TranFocushck 0 Decimal BOOL
MyDMS00L Status. TranBnghtnesshck 0 Decmal BoOL
D M5S0 L Stabus Unirandck 0 Decanal BOOL
MpDMS00 Status ExeciteDmochek 0 Decimal BOOL
MyDMS00L Status SetMstchSinghck 0 Decinal BOOL

+ MyDMS00I Stabus. Trigged D 0 Decimal INT

+ MpD M50 Stabes ResuD 0 Decenal INT

+ MyDMS00. Status ResukCode 0 Decenal INT

+ MypDMS00] Status ResukEtended 0 Decimal INT

+ MyDMS00I Stabus ResukLength 0 Decimal IMT

+ MOS0 ResukData (-} AS0H SINT[434]

« TriggerReady: Indicates when the DataMan reader can accept a new trigger. This tag is True when the Control
tag “TriggerEnable” has been set and the sensor is not currently acquiring an image.

« TriggerAck: Indicates when the DataMan reader has been triggered (i.e. the Control tag “Trigger” has been set to
True). This tag will stay set until the Trigger tag is cleared.

« Acquiring: Indicates when the DataMan reader is currently acquiring an image; either by setting the Trigger bit or
by an external trigger.

« MissedAcq: Indicates when the DataMan reader misses an acquisition trigger; cleared when the next successful
acquisition occurs.

« Decoding: Indicates when the DataMan reader is decoding an acquired image.
« DecodeCompleted: Tag value is toggled (10 or 0->1) on the completion of a decode.

« ResultsBufferOverrun: Indicates when the DataMan reader has discarded a set of decode results because the
results queue is full. Cleared when the next set of results are successfully queued.

« ResultsAvailable: Indicates when a set of decode results are available (i.e. the ResultlD, ResultCode,
ResultLength and ResultsData tags contain valid data).

« GeneralFault: Indicates when a fault has occurred (i.e. Soft event “SetMatchString” or “ExecuteDMCC” error has
occurred).

« TrainCodeAck: Indicates that the soft event “TrainCode” has completed.
« TrainMatchStringAck: Indicates that the soft event “TrainMatchString” has completed.
« TrainFocusAck: Indicates that the soft event “TrainFocus” has completed.

« TrainBrightnessAck: Indicates that the soft event “TrainBrightness” has completed.

39

Industrial Network Protocols

« UnTrainAck: Indicates that the soft event “UnTrain” has completed.
« ExecuteDmccAck: Indicates that the soft event “ExecuteDMCC” has completed.
« SetMatchStringAck: Indicates that the soft event “SetMatchString” has completed.

« TriggerID: Value of the next trigger to be issued. Used to match triggers issued with corresponding result data
received later.

« ResultlD: The value of TriggerID when the trigger that generated these results was issued. Used to match
TriggerID’s with result data.

« ResultCode: Indicates success/failure of this set of results.
« Bit0 ,1=read 0=no read

« Bit1 ,1=validated O=not validated (or validation notin use)
« Bit 2 ,1=verified 0=not verified (or verification notin use)
« Bit 3 ,1=acquisition trigger overrun
« Bit4 ,1=acquisition buffer overflow (not the same as result buffer overflow).
« Bits 5-15, reserved (future use)
« ResultExtended: Currently unused.
« ResultLength: Number of bytes of result data contained in the ResultData tag.

« ResultData: Decode result data.
A description of the Control tag group follows. This is the data sent from the ControlLogix to the DataMan reader.

Mame & |Value *|Shie |Data Type |
— MyDM200:0 Hamal! CC:Dataan...
= MyDM200:0. Control Haaol) CC:Databan...
MyDM 200:0.Control. TriggeiE nable 0 Decimal |BOOL
MyDM200:0.Control. Trigger 0 Decmal BOOL
MyDM200:0. Control ResultsBulferE nable 0 Decimal |BOOL
MyDM200:0. Control R esultshck 0 Decmal BOOL
MyDM200:0.Control TranCode 0 Decinal BOOL
MyDM 200:0.Control. TrainM atchSting 0 Decimal |BOOL
MyDM200:0. Control. TrainF ocus 0 Decimal BOOL
MyDM200:0. Cordrol TranBrighlness 0 Decimal BOOL
MyDM200:0.Control. Untrain 0 Decimal BOOL
MyDM200:0. Control ExecareDMCC 0 Deacimal BOOL
MyDM200:0. Control SetMatchString 0 Decimal |BOOL
+ MyDM200:0.Control U s(D ataOplion 0 Decimal |INT
+ MyDM200:0. Control U seiD atal argth 0 Decimal |INT
+ MyDM200:0. UseiData {..-} ASCH SINT[484]

« TriggerEnable: Setting this tag enables EtherNet/IP triggering. Clearing this field disables the EtherNet/IP
triggering.

40

Industrial Network Protocols

« Trigger: Setting this tag triggers an acquisition when the following conditions are met:

« The TriggerEnable tag is set.
« No acquisition/decode is currently in progress.
« The device is ready to trigger.

« ResultsBufferEnable: When set, the decode results will be queued. Results are pulled from the queue (made
available) each time the current results are acknowledged. until acknowledged by the PLC. The Decode ID,
Decode Result and Decode ResultsData fields are held constant until the ResultsAck field has acknowledged
them and been set. The DataMan reader will respond to the acknowledgement by clearing the ResultsValid bit.
Once the ResultsAck field is cleared the next set of decode results will be posted.

« ResultsAck: The ResultsAck tag is used to acknowledge that the PLC has read the latest results. When
ResultsAck is set, the ResultsAvailable tag will be cleared. If results buffering is enabled the next set of results will
be made available when the ResultsAck tag is again cleared.

« TrainCode: Changing this tag from 0 to 1 will cause the train code operation to be invoked.

« TrainMatchString: Changing this tag from 0 to 1 will cause the train match string operation to be invoked.
« TrainFocus: Changing this tag from 0 to 1 will cause the train focus operation to be invoked.

« TrainBrightness: Changing this tag from 0 to 1 will cause the train brightness operation to be invoked.

« Untrain: Changing this tag from 0 to 1 will cause the un-train operation to be invoked.

« ExecuteDMCC: Changing this tag from 0 to 1 will cause the DMCC operation to be invoked. A valid DMCC
command string must be written to UserData prior to invoking this soft event.

« SetMatchString: Changing this tag from 0 to 1 will cause the set match string operation to be invoked. The match
string data must be written to UserData prior to invoking this soft event.

« UserDataOption: Currently unused.
« UserDatalength: Number of bytes of user data contained in the UserData tag.

« UserData: This data is sent to the DataMan reader to support acquisition and/or decode.

Note:
You must manually add UserData to the output assembly by configuring the DataMan module in RSLogix 5000.

Perform the following steps on a CompactLogix or ControlLogix PLC:
1. Rightclick the DataMan module and select Properties.
@ 2. Under Module Definition, click Change.

3. The Module Definition window pops up. Under the Output Data to Sensor drop-down menu, select SINT-
484.

4. Click OK. RSLogix 500 is now updating the Module Definition.
The output assembly controller tags will now list UserData as part of the output assembly.

Verifying Implicit Messaging Connection Operation

The DataMan reader has been added as an I/O device in a ControlLogix project. After this project is downloaded to the
controller, the I/0O connection will be established. Once a successful connection has been established, cyclic data
transfers will be initiated, at the requested RPI.

To verify a proper I/O connection, follow these steps:

41

Industrial Network Protocols

1. Download the project created above to the ControlLogix controller.

2. Upon the completion of the download, the project I/O indicator should be “I/O OK”. This signifies that the I/O
connection has been completed successfully.

& RSLogix 5000 - ControlLogix_Implicit_all[175
File Edt Wiew Search Logic Communications Tools '

Bl 2| 5[%|@] o] [Ree
Rem Prog 0. T Progiam Mode Ll
Mo Forces k. IS Controler OK '

= [_Baltey
3]

To verify the correct, 2-way transfer of /O data, in RSLogix, go to the controller tags and change the state of the
TriggerEnable bitfrom 0 to 1:

— MyDM200.0 e CCDataMan...
— MyOM200.0. Coniiol (s CCDataMan...
MyDM200.0. Control TriggerE nable 1 Decinal BOOL
MyOM200.0. Corirol Trigger 0 Decimal BOOL
MyDM200.0. Cortrol ResutsBulferE nable 0 Decimsl BODL
~ MyDM200.0.Control Resutsck 0 Decimal BODL
-~ MyDM200:0 Control TrainCode 0 Decimal BOOL
| MyDM200.0.Conirol TranMatchSting 0 Decimal BOOL
- MyDM200:0.Control TranF ocus 0 Decimal BOOL
MyDM200:0.Control TranBrightness 0 Decimal BOOL
MyOM200.0.Cortrel Unirain 0 Decimd BOOL
MyDM200.0.Conrol ExecuteDMCC 0 Decimd BOOL
| MyDM200.0 Contrel SetMatchSting 0 Decimal BOOL
| 4+ MyDM200.0 Cortrol UserD ataDption 0 Decimal INT
+ MyDM200:0 Cortrol UserD ataLength 0 Decimal INT

3. The TriggerReady tag changes to 1.

4. Triggering is now enabled. Whenever the Trigger tag is changed from 0 to 1, the DataMan reader will acquire an
image. Note that the current TriggerID value is 1. The results of the next trigger to be issued should come back
with a corresponding ResultlD of 1.

42

Industrial Network Protocols

5. Atfter the acquisition/decode has completed, the DecodeCompleted tag will toggle and the ResultsAvailable tag
will go to 1. In the example shown here a successful read has occurred (ResultCode bit 0 = 1) and the read has
returned 16 bytes of data (ResultLength=16). The data can be found in the ResultData tag.

= MyDW 200 {aa) CC:Databan. .
= MyDM 2001 Ststus] CC:Databdan. .
MyDM200:1. Status. TriggeiReady 1 Decimal BOOL
MyDM200:1. Status, Triggethck. 0 Decimal |BODL
MyDM 2001 Status Acquinng 0 Decimal | BOOL
MyDM200:1 Status Misseddcq 0 Decimnal |BOOL
— MyDMS00 ! CC:Databan_
— MyDMS00 Status oo} CC:DalaMan_
MyDMS00:1. Status. TriggeReady 1 |Decimal BOOL
MyDMS00:1 . Stabus. Triggectick 0 |Decimal BOOL
MyDM5001, Stabus Acquinng 0 |Decimal BOOL
MyDM S0 Stabus Missedicg 0 | Decirmal BOOL
My M 500 Stabus. D ecodng 0 | Decrnal BOOL
MyDMS001.Status DecodeCompleted 1|Decimal |BOOL
MyDMS00:1. Status. R esultsBulferD vemun 0 | Decimal BOOL
MyDMS00 Status, Resultsdyailable 1 |Decimal BOOL
MyDM500: Stabus G eneralF ault 0 |Decimal BOOL
MyDMS001 Stabes TranCodebok 0 | Decirnal BOOL
MyD M50 Stabie Traind stehStnghck 0 | Decirnal BOOL
MyDMS00L Status. TranF ocustck 0 | Decirnal BOOL
MyDMS00:1 . Stabus. TrainBghinessick 0 | Decimal BOOL
MyDMS00:, 5 tabus. U ntraind.ch 0 |Decimal BOOL
MyDM 5001 Status. ExecuteDmechck 0 | Decimal BOOL
MyD M50 Stabus. Setd stchS tnghck 0 | Decirmal BOOL
+ MyDM5001 Status. TrgoedD 297 | Decimnal INT
+ MyDM5001 5tatus ResutiD 296 | Decimal IMT
+ MyDM500:1. S5tatus. ResuliCode 1 Decimal INT
+ MyDMS00] Status. ResultE sended 0 | Decimal INT
+ MyDMS00 Status Result sngth 5 Decimal INT
+ MyDMS00 ResulData {...}|ASCH SINT[484)

Explicit Messaging
Unlike implicit messaging, explicit messages are sent to a specific device and that device always responds with a
reply to that message. As a result, explicit messages are better suited for operations that occur infrequently.
Explicit messages can be used to read and write the attributes (data) of the ID Reader Object. They may also be
used for acquiring images, sending DMCC commands and retrieving result data.

Issuing DMCC Commands

One of the more common explicit messages sentto a DataMan ID Reader is an instruction to execute a DMCC
command. Explicit messages are sent from ControlLogix to a DataMan using MSG instructions. There are two
different paths for invoking DMCC messages with explicit messaging; via the PCCC Object or via the ID Reader
Object “SendDMCC” service. In this example we show the SendDMCC service.

The CIP STRING2 format is required for transmission across EtherNet/IP (thatis, 16-bitlength value followed by
actual string characters, no null terminator). But Logix stores strings in a slightly different format (i.e. 32-bit length
value followed by actual string characters, no null terminator). Therefore some of the sample ladder involves
converting to/from the two different string formats.

43

6.

Industrial Network Protocols

@ Note: This example is intended as a demonstration of DataMan explicit messaging behavior. This same
operation could be written in much more efficient ladder but would be less useful as a learning tool.

Add the following tags to the ControlLogix Controller Tags dialog:

Narme | Data Type 15%
Send_DMCC_Command BOOL Decimal

+ - DMCC_Command_String STRING

+-DMCC_Result_Sting STRING

+-Message_Data SINT[128) Decimal

+ Message_Result SINT[128] |Decimal
Meszage_Pending BOOL _ Decimal

+-MSG_DMCC MESSAGE

Send_DMCC_Command: Boolean flag used to initiate the command.
DMCC_Command_String: String containing the DMCC command to execute.
DMCC_Result_String: String receiving the DMCC command results
Message_Data: Temp buffer holding the data to send via the MSG instruction.
Message_Result: Temp buffer holding the data received via the MSG instruction.
Message_Pending: Boolean flag used to indicate that a message is in process.

MSG_DMCC: Data structure required by the Logix MSG instruction.

7. Add the following two rungs to the MainRoutine of your ControlLogix project:

Send DRI command
Suudﬂdl:_:'_‘__i:mu'ld Mg-u.lp:{u\:qu AP

o o

Whirve

Soucs DMOC Comeand_Siving LEN
2+

Dt B rTagr D]
HE

e

ey File
Source DMOC_Coemard_Sring DATAN)
Dost segsage_Datall)
Ladth ClaC,_Contaraind_§Rrira LEM

e
s

Ndes age i
Miessage Control MSG_DCC ﬁh
-

Weiiags Patdifg
QY

Gt DMCC cofraarsd rigeceby
Sond DRI _Command Medsage Pording MSO _DMOC DN r—uw
} JE by

3 ¢
<& El
Sorce ez iage_Retl]
iw

Deat DRICC_Fegull_Sirng LEW
0

il

T

Caxgry File

Sorge e e Pezuk(l)
Dest DMACC_Feoull_String DATAN)
Lengih DMCC_Resul_Steing LEMN

44

Industrial Network Protocols

8. Editthe MSG instruction. Configure it for “CIP Generic”, service 0x34 “SendDMCC?”, class 0x79 “ID Reader
Object’ and instance 1. Set the source to “Message_Data” and the destination to “Message_Result".

Messape Configuration - MSG_DMCC

Confagasion | Comenurication| Tag |

Message Iipe | S ~ |

m. [uea | SouceElment [Mestage D0l |
. Soucelongh [128 E MBytes]

Ew [Med D [B e Destnation |Metsagn_Renkt |

Irtarcce [1 Aagute]0 [Hex] Hews Tag . I

O Enable O ErableWaling O Stat ® Dore Done Lengthe 5

2 Emce Coder Entonded Emor Code: ™ Tined Qut +
Emoe Path
Emoe Tt

o] _cons | ||

9. On the MSG instruction “Communication” tab, browse for and select the DataMan which you added to the project
I/O Configuration tree. This tells Logix where to send the explicit message.

Message Configuration - MSG_DMCC
Corfiganion Cemmurication | Tag |

Path |ont2_leb10_27. 2. 10.27.80.92 Browere..
eni2_hb10_27, 2.10.27 8092

B Messape Path Browser

Paty [MyDMZ00
eni2_lab10 27,2, 10.27.90.92

I Connecl 755100 Contipmonon
= I 1755 Backplar, 175547
Mo 11)1796-L61 ConmolLogi_Explict
= 9§ (ITHENT A eanZ_lib10_27

O Enable

= 25 Etwemnet
O Ewot Cos 1TSEENIT M ent2 lab10_27
Emce Path i |
Emor Tt

10. Download to the ControlLogix and place in “Run Mode”.

11. To operate:

« Place a DMCC command in the “DMCC_Command_String” tag. For example “||>GET
TRIGGER.TYPESrSI”. Note the rl at the end of the string. This is how Logix represents a CRLF.

» Toggle the “Send_DMCC_Command” tag to 1.

« When the “Send_DMCC_Command” tag goes back to 0 execution is complete. The DMCC command
results will be found in “DMCC_Result_String”.

45

Industrial Network Protocols

Rockwell CompactLogix Examples

CompactLogix differs very little from ControlLogix in terms of programming. The ControlLogix examples apply equally to
CompactLogix systems. There is only a slight difference in adding the DataMan device in the project I/O tree.

The I/0O Configuration tree in a CompactLogix project looks a bit different from a ControlLogix project. Regarding the
Ethernet connection, the difference is that the Ethernet logic module is actually embedded in the CompactLogix
processor module. Itis displayed in the I/O Configuration tree as if it were a separate module on the backplane. This
module is also configured exactly like a ControlLogix Ethernet module.

The DataMan module is added in the same way for CompactLogix as for ControlLogix. Right-click on the Ethernet node
in the 1/0O Configuration tree and select “New Module”.
- £5] 1/O Configuration
- % Backplane, CompactLogix System
B9 1769-L32E CompactLogix_Implicit_Al
o ' 1769-L32E Ethernet Port LocalENE

ﬂc-:mpact&:] New Module...

From the “Select Module” dialog, choose your model of DataMan ID Reader from the list.

+ - Aler-Bradey
= Cognex Corporation
DataMan 200 Series 1D Reader

Diatatan S00 Serkes

DiataMan 8000 Series 10 Reader

In=Sight 1700 Series Wisson Sysbem

IneSight 5000 Series Wision System

In-Sight Micro Series Wigaon Syshem
+ Parker Hanndin Corp,

fird. | AddFavore |

By Category ByVendor | Favortes |

After the selection is made, the configuration dialog for the DataMan ID Reader system will be displayed. From this point
on, configuration and programming are done exactly as shown in the ControlLogix section above.

Rockwell SLC 5/05 Examples

This section outlines a PCCC (PC3) Communications configuration between a DataMan reader and the PLC. This
example uses the Allen-Bradley SLC5/05 and Rockwell 500 software.

46

Industrial Network Protocols

Setting up the PLC for Ethernet Communication

1. From within the RSLogix 500 software program, open the .RSS file, then open the Channel Configuration dialog
(Project Folder > Controller Folder > Channel Configuration)

x
Gearseesd | Chan, 1 - Sysbon | Chars 0- System | Chans 0- U |
Churwnd 1
Diwvar m
™ wiibe Protecied
Posstheulnk D el [
Edit ReccosceTwres Temeod [x1 pec) |Iﬂ
bmﬂrli
 Chaered O
Syatem Diver [DF Full Dughes Ut D pso
Blcde: | Syertem - FMMEH
™ ‘wieks Pchicied Mode Anerdon Charcacter [1in
Posthou Lk 10 fdec) [1 System Mode Chasctn [5
E i RencoscaDvrad T [« 1oec] Im Uwuodlﬂarm[u_'
bwmrblu
C o | e | oo || b |

2. The Allen-Bradley SLC has 2 channels available for configuration: Channel 1 (Ethernet); and Channel 0 (DF1
Full Duplex - serial). Click on the Chan. 1 - System tab.

3. Configure Channel 1 (Ethernet) as necessary. Consult with a network administrator for proper settings.

— e
T x|
Gerweal Chan 1-Syntem | Chan, - System | Chan 01- Uses |
Divee [Dhere 7]
|- CiHP0) Lk 1D |0
umm-ulmwnmwsﬁ
Padvessi1Z0FITT ""TLT.‘?..”’“F:_‘
mmlmmnu
Gatevay Addbann [1011 27 208 205
- Protocal Contal
Al Meg Connection Timeou jx a5)| 15000
Bl Py Timecuit (= TS [30
inachvity Timeout (Ml [0
Cortact |'
Locator: |
o] o | | Heae |

4. Configure the Timeouts as required.

Message Instruction (MSG)

Message instructions may now be constructed within the application. Refer to the RSLogix 500 documentation for
expanded instructions for developing messages.

The following setup parameters can be configured within a Message (MSG) Instruction.

47

Industrial Network Protocols

T MG
=1 Fosl % rie M :E,'.‘ _-_'l—
Type Fosi=T o Posn
Fasd & rne Fasd LMy
Turpet Dawica FLCS
L& l¥a masita Lassad -_!E\ -J—
Contral Block b sl
Conbrpl Dok Langth]|
Tabag b reRn
L

Type: Peer-To-Peer. This cannot be modified.

Read/Write: Select the function you want to perform on a DataMan reader. Read retrieves data from the
DataMan; Write sends data to the DataMan.

Target Device: Choose PLC5 to talk to a DataMan reader. This tells the SLC which communication protocol to
use. The DataMan reader acts much like a ControlLogix controller (see Rockwell document 13862).

Local/Remote: Choose Local to indicate that the DataMan reader is on the same network as the SLC; Remote
tells the SLC that you will be communicating to a DataMan on another network. For remote communication, you
must direct the message through another device acting as a gateway to that secondary network. Typically, this
could be an Allen-Bradley ControlLogix controller. (Refer to the Rockwell documentation on how to address
devices on other networks through a gateway.)

Control Block: This is a temporary integer file that the MSG instruction uses to store data (i.e., IP address,
message type, etc.). This is typically not the user data to be sent.

Control Block Length: This is automatically computed by the MSG instruction.

Setup Screen: Selecting Sefup Screen will open the Message Instruction Setup dialog.

The following setup parameters can be configured within an MSG Instruction Setup screen.

0/

This Cortnoles Coondrod Bits

Communication Command: [PLCS Fead Iigrstm i tirwed oot (T} [0]
Data TobleAddveses: (W70] Tobe raied (NFE [0]

Size inElemente: [2 | dwwsiting Eseution [Ew [0]

Chaonek: 1| Continuous Run [0 [o]

- Emor [ERE [0]
T““""‘M“ : Mozsage dane [DH] [1]
peragr Tewsoud: [33 | Muzzage Transmiing (5T [0]

Dotn TobloAcvess: W71 | Misstage Ersbied (ENE[D

Wmluﬂmim.ﬁ
Local / Riemols MudHog: fres | |

Emor
Enow CiodafHex} 0

Emer Diaceriplaon
Ho ey

This Controller section:

Communication Command: Should be the same command (READ/WRITE) that was chosen on the first screen
(as seen in MSG Instruction screen).

48

Industrial Network Protocols

. Data Table Address: This is the location of the data file on the SLC where data will be written to (READ) or sent
from (WRITE) (as seen in MSG Instruction screen). In this instance, 'N7:0', 'N' indicates the integer file, '7' indicates
the file number 7, and '0' indicates the offset into that file (in this case, start at the 0th element). The figure below
shows an example of the Integer Table accessed from the RSLogix 500 main screen.

« Size in Elements: This is the number of elements (or individual data) to read. In this example, two elements are
being read.

« Channel: Depends on the configuration of the SLC. In the SLC, Channel 1 is the Ethernet port.

« Message Timeout: Choose an appropriate length of time in which the DataMan reader will be able to respond. If
the DataMan does not respond within this length of time, the MSG instruction will error out. This parameter cannot
be changed from this screen. Message Timeout is determined by the parameters entered in the Channel 1 setup
dialog.

. Data Table Address: This is the location on the DataMan reader where data will be read from or written to. In
this instance, 'N7:1', 'N' indicates that the data is of type integer (16-bit); '7' is ignored by the DataMan (data is
always being written to the Output Assembly, and read from the Input Assembly); and the '1'is the element offset
from the start of the target buffer. For example: If the message were a READ, 'N7:2' would instruct to read the 3rd
integer (the “2'indicates the 3rd element, due to the SLC's 0-based index) from the Input Assembly (because a
READ gets data from the DataMan's Input Assembly). If the message were a WRITE, 'N7:12' would indicate to
write a (16-bit) integer value to the 13 integer location of the Output Assembly.

Note: The ST10:0 destination address is a special case used for sending DMCC commands to a DataMan reader.
Any string sent to ST10:0 will be interpreted as a DMCC command.

@ « Local/Remote: Setto Local or Remote, depending on the application.

« MultiHop: This setting is dependent on the information previously entered. For successful In-Sight
communication, this should YES at this time.

Sending DMCC Commands from an SLC 5/0

1. Configure the SLC5/05 as necessary.
2. Create a String Table that will hold your DMCC commands.

Fi= [10
T [Tang -
Mo | DMCT

e DCE ¢ avmarads

Clowertz |10

Abdages

paa
T Bap when Deieieg Lo sd Maroey

Fes
= oty
Lecd
B
Conalart e ¥ Hens
Mefarncy Miochis ok umen Dhapble
¥ Lancel ldelp

49

Industrial Network Protocols

3. Add the required DMCC command strings to the Data File.

¢ Data File ST10 -- DMCC -- DMCC commands |- E [i.
ST10:2 L5 1 >Trigger on*d*J
ST10:3 1]
STl0:4 1]
ET10:5 1]
ET10z6 1]
[5TL0:7 o
ST10: 8 o
ST10:9 o ~
ol Be

51100) Roduc| =
Syl |] ' | I
Dezc | |
STI0 =) Propedies | Usage | Hob |

4. Add a new Message (MSG) instruction to your ladder logic and configure it as shown in the following example:

Imrnke DMCC somwmund DMCC commmund
via POCC MEG eontrol bock
Bl1OD MG
0000 J E Bl Write Message —CEN ——
13 Typa FPoarTo-Fear
FaudWrite Write =l DM 3—
Tazget Dvice PLCS
LocalRamote Locad p—LERD—
Control Block HIT58
Comtrol Block Langth 1]
Sabap feveen

5. Enter the MSG Setup Screen and configure it as follows:

MSG - H1T:5%B - (% Elements)
Geoneral | Mulicp |
Thes Controlien Corinol Bits
Commurc.aten Command ﬁP] Ipracwe f lemed ok [T}
Dot Table Addeas To b rsteined (N
Size in Elments |1 Aweaking Execution [Ewh
Charmait- 1 Contiruaay Fun [C0}
Emcr [ER]
Target Dervica Messags dors [DN]
Merzoge Temeout Modtage Tianmmbtng (5T}
Duats Tabls Addoer [ST1 Meszage Enabied [EN]
Wwaking o Qusus Soate
Locdl /Remete: [Loca | MutHes [Fems |
Emor
Encr CodefHesd O
Emor Descopton
Mo emari

50

Industrial Network Protocols

This Parameter Description

Controller
Data Table ST10:0 First element from the String Table (ST) created above.
Address
Size in 1 Always setto 1. PCCC MSG only allows 1 string (therefore 1 command) to be sent
Elements ata time.
Channel 1 Set this to the Ethernet channel of your controller.

Target Device Parameter Description
Message Timeout | (From channel configuration dialog)
Data Table ST10:0 This is the destination address. For DMCC commands, this will always be
Address ST10:0.

6. Click the MultiHop tab and configure it as required (i.e. set IP address of DataMan).

7. When everything is configured, close the MSG window.

8. Save yourladder logic, download it to the controller, then go online and set the controller in RUN mode.
9. Trigger the message to send it to the DataMan reader.

Message Instruction Results

Famd Malloew Blode
Commanld b0 In-Sigh

—M
— e nlWride Maape e LN -
Tyie Foar-To-Foen
Fanl e Wite st D i
T argnt Davuca FLiS
LezalFaimats Laszad IR
Canirsl Eleeh XiTQ
Conlre] [loch Langth =l
Tabwg rian

The Enable (EN) bit of the message instruction will be setto 1 when the input to the instruction is set high. The Done
(DN) bit will be setto 1 when DataMan has replied that the DMCC command was received and executed with success. If
the Error bit (ER) is enabled (setto 1), there has been a problem with the message instruction. If an error occurs, click the
Setup Screen for the MSG instruction. The Error Code will be shown at the bottom of the window.

Using the Generic EtherNet/IP Profile

For devices without a specific Add-On-Profile Rockwell provides a Generic EtherNet/IP profile. This profile allows you to
create implicit messaging connections but lacks the automatic tag generation feature of a specific product Add-On-
Profile.

Establishing a Generic Implicit Messaging Connection

To setup an EtherNet/IP implicit messaging connection between a DataMan and a ControlLogix controller, the DataMan
reader must first be added to the ControlLogix I/O Configuration tree. This can be accomplished with the Rockwell
provided generic profile.

To establish a generic implicit messaging connection with a ControlLogix PLC:

51

Industrial Network Protocols

1. Open RSLogix5000 and load your project (or select “File->New...” to create a new one).

2. From the I/O Configuration node, select the Ethernet node under the project Ethernet Module, right-click on the
icon and select New Module from the menu:

Modubo Dafinktion

[e Nt [T r=— =
R e ol i PN B i Tl =]
Wl M Trgen Tanvilr. | NPT =]
Cmpad Dl B e ool ey =]

1 o 1] Carmed || Hulgy

—_

3. From the Select Module dialog, choose the Allen-Bradley Generic Ethernet Module.

B Select Module

Bl | Drpscription Wando
1TESERBTIA 1728 10100 Mbps Ethermt Bridos, Twisted-Par Mada Alen-Bradey A
1TES-EWERSA 1738 107100 Mops Ethernet Bridod w/Enhanood Web Serv. . Allen-Bradey
FTH-RENT A 179 10J100 Mbps Ethernet Adagbor, Tvisted-Par Moda Allen-Bradiey
VTH-RENT B 1794 107100 Mbps Ethernet Adapbor, Tvisted-Par Moda Alen-Bradiey
DuataMen 200 Songs 1D Roader ot Coips
DervelogueSTI0 Exh.... 10F100 Mbos Ethornot Port on DviveLoghS7 30 Alen-Bradey
ETHERMET-BRIDGE Gentric Ethertiet /1P CIP Bridoe L

fE L T -0 brebel Ethebrmbt Mo Ss

Enhaebiotfie SofrLogSai0 Ethenkot/iP Alat-Br oy
I Soght 1700 Sori. .. ViEhin Sendo e Coipe
EreSoght 3400 Sori.... Vishin Sendoe et Ciotip
I Soght S000 Sori. .. Vieain Sendoe e Coipe
PH-PESCENATA Exhiengt Adaobor, Tedmed-Par Moda Parker Hannl ¥

1 I I L3

Find. | &3d Fareciite |
ByCatogory | ByVerde | Favostes |
[Cocsl | Hob |

52

Industrial Network Protocols

4. After the selection is made, the configuration dialog for the Generic Ethernet Module will be displayed. Configure
the following:

« Give the module a name.
« Enter your DataMan’s IP address.
« Setthe Comm Format to “Data — INT”. This tells the module to treat the data as an array of 16-bitintegers.

« Input Assembly: Setinstance 11. Set the size to the amount of Input Assembly data you want the PLC to
receive. Basic “Status” data requires 8 integers. The amount beyond that will be the actual decode result
data. In the example below the size is set to 24 (8 for status + 16 for result data). This connection will
receive the status info plus 32 bytes of result data.

« Output Assembly: Setinstance 21. Set the size to 4 integers. This size is sufficient to send all required
“Control” data to the DataMan.

« Configuration Assembly: Setinstance 1. Set size to zero (no used).

Typa ETHERME T MODULE Garsrz E ot Moduly
Werdor Alerrliradey
Pasert: erid_kb10 27 . -
0 orrcion Pasametin
e [u,,cnu.w e
Dacngtione Ity Siom
gt n 4 _,:-‘ [1Eke]
owe [[e
Ciomen Eomnat D aka - INT -] — =
A Hioat Hates oot | o £ e
@ Paddese [10 . 7 0. 9 [
™ Hont Name: |
' Dpen Meoduls Progeste: | [| Cancel I Heds |

5. The final step is configuring the connection rate. The rate at which data is transmitted/received is defined as the
Requested Packet Interval (RPI). The RPI defines how frequently the data is transmitted/received over the
connection. To optimize network performance this rate should be set no lower than absolutely required by a
given application. In no case should it be set to lower than %2 the median scan rate of the PLC ladder program.
Setting it lower wastes bandwidth and does not improve processing performance.

B jlodule Properties: ent2_lab10_27 (ETHEFHET-MODULE 1.1)

Goneeal Cormection | Mode ek |

Fioquesied Pocket ntsevl (RP1) [DOO—me (1.0~ 300.0me)
™ Mhapn Fank O Contoolien I Cormaction Fais 'whils in Run Mods

Mokl F ak

Stah: Offiee ok | coxd | ne |

53

Industrial Network Protocols

6. After adding the generic module to ControlLogix, the I/O tree should appear as follows.
== 1O Configuration
- & 1756 Backplane, 1756-47
S{I [1] 1756-L61 Controllogix_Irmplcit_Al
- j [3] 1756-EN2T/A ent2_|abl0_27

- &5 Ethernet
j 1756-ENZTjA ent2_labl0_27
2 JE THERNET-MODULE MyDM200

7. When the Generic Module is added to the I/O tree RSLogix 5000 creates tags that map to the DataMan reader
Input and Output Data (i.e. the Input & Output Assembly Objects in the DataMan Reader). These tags can be
found under the “Controller Tags” node of the project tree.

@ Note: The base name of these tags is the name you gave to the Generic Module that you added to the I/O
Configuration earlier.

=1 Controller ControlLogix_ Scope: |ﬁl_’.¢1rnl_ogm_£;.qj Shw.. Show All
B v o] [o[vabe ¢[Se [DaaTpo
1 Power-Up Hander ||+ MyDM200.C {ee:} ABETHERMET_MODULE:C:0
S £ Tasks — MyDM200: {ane} AB.ETHERNET_MODULE_INT_46Bytes-0
= 53 MainTask + MyDOM2001.0ata | {...} Decimal INT[24]
L MainProgram | |} | MyDM200:0 el AB:ETHERNET_MODULE_INT_8Bytes0-0
1) Unscheckied Progra + MyDM200:0 Data {-..} Decimal INT[4]

The tags are organized in three groups: Config “MyDM200:C”, Input “MyDM200:I", and Output “MyDM200:0”. You can
ignore the Config tags (no used). The Input tags represent all the data being received (from the DataMan). The Ouput
tags represent all the data being sent (to the DataMan).

These tags are the data table representation of the DataMan Assembly Object contents. The PLC ladder is written to
access these tag values. By monitoring or changing these tag values the PLC ladder is actually monitoring and changing
the DataMan Assembly Object contents.

@ Note: There is a time delay between the DataMan and these PLC tag values (based on the configured RPI). All
PLC ladder must be written to take that time delay into account.

Accessing Generic Implicit Messaging Connection Data

The section above details establishing an implicit message connection between a ControlLogix and a DataMan ID
Reader using the Generic Module profile. Unlike the DataMan Add-On-Profile the Generic profile does not automatically
generate named tags representing the individual data items within an Assembly Object. Instead it simply generates an
array of data according to the size of the connection you defined.

To access individual data items within an Assembly Object you must manually select the correct tag offset and data
subtype (if necessary) within the tag array that the Generic profile provided. This can be awkward and error prone since it
requires you to manually reference the vendor documentation which defines the Assembly Objects.

Note: The start of the Input tags “MyDM200:1.Data[0]" maps directly to the start of the DataMan Input Assembly.
@ Likewise, the start of the Output tags “MyDM200:0.Data[0]" maps directly to the start of the DataMan Output
Assembly.

Examples
Input Assembly “TriggerReady”: Bit 0 of word 0 of the Input Assembly. From the Input tag array for the DataMan select bit
0 of word 0.

54

Industrial Network Protocols

— MyDM200 Ty AB:ETHERNET_MODULE_INT_48Bytes:l:0
— MyDM200:. Data {...} Decimal |INT[24]
— MyDM200:.Datal0)] 0|Decimal INT
MyDM200:1.0ata(0}0 [W] Decimal BOOL
MyDM200:1.D ata{0} 1 0 Decimal |BOOL
MyDM200:. Data(0}.2 0|Decimal |BOOL
MyDM200:1.D ata[0].3 0|Decimal |BOOL
MyDM200:1.Data{0] 4 0 Decimal |BOOL
MyDM200:. Data(0).5 0|Decimal |BOOL
MyDM200:1.D 3ta{0}6 0|Decimal |BOOL
MyDM200:1. D ata0] 7 0 Decimal | BOOL
MyDM200:1.D ata[0}.8 0|Decimal |BOOL
MyDM200:1.D ata{0}.9 0|Decimal |BOOL
MyDM200:1. D ata[0] 10 0 Decimal | BOOL
MyDM200:1.0 atal0] 11 0|Decimal |BOOL
MyDM200:1.D ataf0} 12 0|Decimal |BOOL
MyDM200:1.Data{0] 13 0|Decimal |BOOL
MyDM200:1.D ata{0] 14 0|Decimal |BOOL
MyDM200:1. D ata[0].15 0 Decinal BOOL

Input Assembly “ResultLength”: Word 7 of the Input Assembly. From the Input tag array for the DataMan select word 7.

— MyDM200:] () AB:ETHERNET_MODULE_INT_48Bytes:1:0
= MyDM200:1. Data {...} Decimal INT[24]
+ MyDM200:1. Data|0] 0 Decimal INT
+ MyDM200:1. Data(1] 0 Decimal |INT
+ MyDM200:1. Datal2] 0 Decimal |INT
+ MyDM200:1. Datal3) 0 Decimal |INT
+ MyDM200:1. Datald] 0 Decimal |INT
+ MyDM200:1. D atal5) 0 Decimal |INT
+ MyDM200:1. D atal6) 0 Decimal |INT
+ MyDM200:.Datal7] | 0 Decimal |INT
+ MyDM200:1. Datal8) 0 Decimal |INT

Output Assembly “Trigger”: Bit 1 of word 0 of the OutputAssembly. From the Output tag array for the DataMan select bit 1
of word 0.

55

Industrial Network Protocols

SLMP Protocol

The SLMP Protocol uses standard Ethernet hardware and software to exchange I/O data, alarms, and diagnostics. ltis
Mitsubishi Electric’s publicly available, standardized communication format for communicating with Q, iQ and L Series
PLCs through Ethernet or serial connections. DataMan supports SLMP Protocol on Ethernet only.

By default the DataMan has SLMP Protocol disabled. The protocol can be enabled in Setup Tool, via DMCC, or by
scanning a parameter code.

@ Note: If you have a wireless DataMan reader, read the section Industrial Protocols for the Wireless DataMan.

DMCC

The following commands can be used to enable/disable SLMP Protocol. The commands can be issued via RS-232 or
Telnet connection.

@ Note: Because you have to make changes to the Telnet client provided by Windows to communicate with DataMan,
itis recommended you use third party clients such as PuTTY.

Enable:

| |>SET SLMP-PROTOCOL.ENABLED ON
| | >CONFIG.SAVE
| | >REBOOT

Disable:

| |>SET SLMP-PROTOCOL.ENABLED OFF
| | >CONFIG. SAVE
| | >REBOOT

Reader Configuration Code

Scanning the following reader configuration codes will enable/disable SLMP Protocol for your corded reader.

@ Note: You must reboot the device for the change to take effect.

Enable: Disable:

Scanning the following reader configuration codes will enable/disable SLMP protocol on your DataMan 8000 base
station.

@ Note: You must reboot the device for the change to take effect.

56

Industrial Network Protocols

Disable:

Setup Tool

SLMP Protocol can be enabled by checking Enabled on the Industrial Protocols pane’s SLMP Protocol tab. Make sure to
save the new selection by choosing “Save Settings” before disconnecting from the reader.

@ Note: You must reboot your reader for the new settings to take effect.

SLMP Protocol Scanner

SLMP Protocol on DataMan is implemented as a client type device also referred to as a scanner. All communication is
initiated by the DataMan reader in the form of read and write requests. The PLC acts as a passive server reacting to the
read and write requests. Since the PLC cannot initiate communication, it relies on the reader to periodically ask (scan)
the PLC for any actions or information that the PLC requires (such as triggering or retrieving read results).

Getting Started

By default, SLMP Protocol is not enabled on the DataMan reader. The protocol must be enabled and the protocol
configuration parameters must be set to correctly interact with a PLC. Protocol configuration is accomplished via the
DataMan Setup Tool.

1. From the Windows Start menu, start the DataMan Setup Tool.

2. Under Settings -> Communication Settings, click Industrial Protocols.

57

Industrial Network Protocols

3. Selectthe SLMP Protocol tab.

Industnal Protocols

EtherP et/ IP™ I PROFIMET | SLMP Protocol | Modbus TCP |
IP &ddress | o | Metwork Mumber | DE|
Host Port [hex] O SDDDE PC Mumber [hex] O
Timeout [ms] | 1DDDE| Destination Module
Poll Interval [ms] | 1000 |[0x3FF =Local station [-]
PLC Series |Qc|:~|_| E”
) Mumber of L
MName Selected Device (Oiffaet D:E:::; Description
Control [Nune - |0 2|0 4| Vision control bloc...
Status [Nnne - |0 ol 1| Vision status block...
PLC Input [Nune - |0 &[0 | User data block st
PLC QOutput [Nune - |0 (0 +1| Inspection results ...
Command [Nune - |0 (0 +|Command string st...
Command R__. [Nune - (0 =0 +1| Command resuft da...
Status:

4. Enable the protocol and set the proper configuration settings.

SLMP Protocol configuration consists of two aspects; defining the network information and defining the data to be
exchanged. All configuration parameters are accessed via the SLMP Protocol tab.

You must modify the “IP Address” to match the address of your PLC. Also, modify “Network Number”, “PC Number” and
“Destination Module” if they differ from your network.

@ Note: Make sure that you select System -> Save Settings to save any changes made to the SLMP Protocol
configuration settings. Also, the reader must be rebooted for the new settings to take effect.

Network Configuration

The network configuration defines all the information that the DataMan reader needs to establish a connection with a
PLC.

Name Default Range Description
IP Address <empty > | Any valid IP address IP Address of the PLC to connect to
Host Port (Hex) |3000 Any Hex port number Port number of the SLMP Protocol channel on the PLC
1000-FFFF

58

Industrial Network Protocols

Name Default Range Description
Timeout (ms) 1000 5-30000 Time to in milliseconds for a response from the PLC to an
SLMP Protocol message.
Poll Interval 1000 10 - 30000 Requested time in milliseconds between successive polls of
(ms) the Control Block from the PLC.
PLC Series QCPU QCPU or LCPU Defines frame type used. Currently only 3E supported.
Network 0 0-239 SLMP Protocol network number to communicate with (0 =
Number local network)
PC Number OxFF 1-120 = station on CC-Link | Station identifier on the specified network of the destination
IE module.

field network adapter

126 = Master station on CC-
Link
IE field network

255 = Direct connect to
local
station

Destination 0x3FF 0x3ff = Local station Module identifier of the device to connect to.
Module (default)

0x3d0 = Control system
CPU

0x3d1 = Standby system
CPU

0x3d2 = System A CPU
0x3d3 = System B CPU

0x3e0 =CPU 1
0x3e1=CPU 2
0x3e2=CPU 3
0x3e3 =CPU 4

Data Block Configuration

The data block configuration defines the data that will be exchanged between the DataMan reader and the PLC. Six data
blocks are available. Each block has a predefined function.

Not all data blocks are required. Configure only those data blocks which are needed by your application. Typically the
Control and Status blocks are defined because they control most data flow. However, there are some use cases where
even these blocks are notrequired.

A data block is configured by defining the PLC Device type (thatis, memory type), Device offset and Number of Devices
contained in the data block. If either the Device type or Number of Devices is undefined, that block will not be used (that
is, no data will be exchanged for that block).

Block Name Supported Device Types Offset Number of Devices
Control <none>,D,W,R,ZR, M, X,Y,L,F,B 0-65535 0, if type <none>
32, if bittype
2, ifword type
(read-only)

59

Industrial Network Protocols

Block Name Supported Device Types Offset Number of Devices

Status <none>,D,W,R,ZR,M, X,Y,L,F,B 0-65535 0, iftype <none>
32, if bittype
2, ifword type
(read-only)

PLC Input None, D, W, R, ZR 0-65535 0-960

PLC Output None, D, W, R, ZR 0-65535 0-960

Command None, D, W, R, ZR 0-65535 0-960

Command None, D, W, R, ZR 0-65535 0-960

Result

Interface

This section describes the interface to the DataMan reader as seen by the PLC via SLMP Protocol. The interface model
consists of 6 data blocks grouped in 3 logical pairs:

« Control and Status
« Input Data and Output Data

« String Command and String Response

Not all of the blocks are required. You may select which blocks are appropriate for your particular application. However,
Control and Status will generally be included for most applications.

You can define the starting address and device type for each interface block that you choose to use in your application.
Undefined blocks will not be exchanged. For any transfer (read or write) the entire block is sent, even if only one field
within the block has changed value. The protocol implementation will minimize network use by grouping as many value
changes as logically possible into a single transfer.

Control Block

The Control block contains bit type data. However, the block may be defined to exist in either bit or word memory in the
PLC. This block consists of the control signals sent from the PLC to the reader. Itis used by the PLC to initiate actions
and acknowledge certain data transfers.Control Block

Bitz | Bité | Bit5 | Bit4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved Results Ack Buffer Trigger Trigger

Results Enable

Enable
Bit15 | Bit14 | Bit13 | Bit12 Bit 11 Bit 10 Bit 9 Bit 8
Reserved

Bit23 | Bit22 | Bit21 | Bit20 Bit 19 Bit 18 Bit 17 Bit 16
Reserved Initiate Set User

String Cmd Data

Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
Soft Event7 | SoftEvent6 | Soft Event5 | Soft Event4 | SoftEvent3 | SoftEvent2 | SoftEvent1 | Soft Event0

60

Industrial Network Protocols

Control Block Field Descriptions

Bit

Name

Description

0

Trigger
Enable

This field is set to enable triggering via the Trigger bit. Clear this field to disable the network
triggering mechanism.

Trigger

Setting this bit triggers an acquisition.

@ Note: The Trigger Ready bit must be set high before triggering an acquisition.

Buffer
Results
Enable

When this bit is set, each read result set (ResultID, ResultCode, ResultLength and
ResultData fields) will be held in the Output Block until it is acknowledged. Once
acknowledged, the next set of read results will be made available from the buffer. If new read
results arrive before the earlier setis acknowledged the new set will be queued in the
reader’s buffer. Up to 6 sets of read results can be held in the reader’s buffer. Refer to
Section Operation for a description of the acknowledgement handshake sequence.

ResultsAck

Set by the PLC to acknowledge that it has received the latest results (ResultiD, ResultCode,
ResultLength and ResultData fields). When the reader sees this bit transition from 0->1 it
clears the ResultsAvailable bit. This forms a logical handshake between the PLC and reader.
If result buffering is enabled, the acknowledgement will cause the next set of queued results
to be moved from the buffer. See section Operation for a description of the acknowledgement
handshake sequence.

4-15

Reserved

Future use

16

SetUserData

Set by the PLC to signal that new UserData is available. After reading the new UserData the
reader sets Set UserDataAck to signal that the transfer is complete. This forms a logical
handshake between the PLC and reader.

17

Initiate
StringCmd

Set by the PLC to signal that a new StringCommand is available. After processing the
command the reader sets StringCmdAck to signal that the command result is available. This
forms a logical handshake between the PLC and reader.

18-23

Reserved

Future use

24-31

SoftEvents

Bits act as virtual discrete inputs. When a bit transitions from 0->1 the associated action is
executed. After executing the action the reader sets the corresponding SoftEventAck to signal
that the action is complete. This forms a logical handshake between the PLC and reader.
Bit0: Train code

Bit1: Train match string

Bit2: Train focus

Bit3: Train brightness

Bit4: Un-Train

Bit5: Reserved (future use)

Bit6: Execute DMCC command

Bit7: Set match string

Status Block

The status block contains bit type data. However, the block may be defined to exist in either bit or word memory in the
PLC. This block consists of the status signals sent from the reader to the PLC. Itis used by the reader to signal status and
handshake certain data transfers.

Bit 7 Bit6 | Bit5 | Bit4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved Missed Acquiring Trigger Trigger
Acq Ack Ready
Bit 15 Bit 14 | Bit13 | Bit 12 Bit 11 Bit10 Bit 9 Bit 8
General Reserved Results Results Buffer | Decode Complete | Decoding
Default Available Overrun Toggle
Bit 23 Bit 22 | Bit 21 | Bit 20 Bit 19 Bit 18 Bit17 Bit 16
Reserved String Cmd Set User
Ack Data Ack

61

Industrial Network Protocols

Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
Soft Event | Soft Event | SoftEvent | SoftEvent | Soft Event Soft Event Soft Event Soft Event
Ack 7 Ack 6 Ack 5 Ack 4 Ack3 Ack 2 Ack 1 Ack 0
Status Block Field Descriptions
Bit Name Description
0 Trigger [Indicates when the reader is ready to accept a new Trigger. The reader sets this bit when
Ready | TriggerEnable has been set and the reader is ready to accept a new trigger.
1 Trigger [Indicates when the reader recognizes that Trigger has been set. This bit will remain set until the
Ack Trigger bit has been cleared.
Acquiring | Set to indicate that the reader is in the process of acquiring an image.
Missed |Indicates that the reader missed a requested acquisition trigger. The bit is cleared when the next
Acq acquisition is issued.
4-7 Reserved | Future use
8 Decoding | Set to indicate that the reader is in the process of decoding an image.
9 Decode |Indicates new result data is available. Bit toggles state (0->1 or 1->0) each time new result data
Complete [pecomes available.
Toggle
10 Results |Setto indicate that the reader has discarded a set of read results because the PLC has not
Buffer |acknowledged the earlier results. Cleared when the next set of result data is successfully
Overrun [queued in the buffer. This bit only has meaning if result buffering is enabled.
11 Results |Setto indicate that new result data is available. Bit will remain set until acknowledged with
Available | ResultsAck even if additional new read results become available.
12-14 |Reserved |Future use
15 General |Setto indicate that an Ethernet communications fault has occurred. Currently only used by soft
Fault [eventoperations. Bit will remain set until the next successful soft event or until TriggerEnable is
setlow and then high again.
16 Set User [Setto indicate that the reader has received new UserData. Bit will remain set until the
Data Ack | corresponding SetUserData bit is cleared. This forms a logical handshake between the PLC and
reader.
17 String [Setto indicate that the reader has completed processing the latest string command and that the
Cmd Ack |command response is available. Bit will remain set until the corresponding Initiate StringCmd bit
is cleared. This forms a logical handshake between the PLC and reader.
18-23 |Reserved |Future use
24-31 SoftEvent | Set to indicate that the reader has completed the soft event action. Bit will remain set until the
Ack corresponding SoftEvent bitis cleared. This forms a logical handshake between the PLC and
reader.
Bit0: Ack train code
Bit1: Ack train match string
Bit2: Ack train focus
Bit3: Ack train brightness
Bit4: Ack untrain
Bit5: Reserved (future use)
Bit6: Ack Execute DMCC command
Bit7: Ack set match string

Input Data Block

The Input Data block contains word type data. This is data sent from the PLC to the reader. The block consists of user
defined data that may be used as input to the acquisition/decode operation.

Word 0

Word 1 Word 2..N

Reserved

User Data Length User Data

62

Industrial Network Protocols

Input Data Block Field Descriptions

Word Name Description
0 Reserved |Future use
1 User Data |Number of bytes of valid data actually contained in the UserData field.
Length
2.N User Data |User defined data that may be used as an input to the acquisition/decode.

Output Data Block

The Output Data block contains word type data. This is data sent from the reader to the PLC. The block consists primarily

of read result data.
Word 0 Word 1 Word 2 Word 3 Word 4 Word 5..N
Reserved Trigger ID Result ID Result Code Result Length Result Data

Output Data Block Field Descriptions

Word Name Description
0 Reserved |Future use
1 Trigger ID |Trigger identifier. Identifier of the next trigger to be issued. Used to match issued triggers with result
data that is received later. This same value will be returned as the ResultID of the corresponding
read.
2 ResultID |Result setidentifier. This is the value of TriggerlD when the corresponding trigger was issued.
Used to match up triggers with corresponding result data.
3 Result Indicates the success or failure of the read that produced this result set.
Code Bit0: 1=Read, 0=No read
Bit1: 1=Validated, 0=Not Validated
Bit2: 1=Verified, 0=Not Verified
Bit3: 1=Acquisition trigger overrun
Bit4: 1=Acquisition buffer overrun
Bit5-15: Reserved (future use)
4 Result Number of bytes of valid data actually in the ResultData field.
Data Length
5..N [Result Data | Result data from this acquisition/decode.

String Command Block

The String Command block contains word type data. This is data sent from the PLC to the reader. The block is used to
transport string based commands (DMCC) to the reader.

@ Note: Do not send string commands that change the reader configuration at the same time that reads are being
triggered. Changing configuration during acquisition/decode can lead to unpredictable results.

Word 0 Word 1..N

Length

String Command

63

Industrial Network Protocols

String Command Block Field Descriptions

Word Name Description

0 Length Number of bytes of valid data in the StringCommand field.

1.N String Command | ASCII text string containing the command to execute. No null termination required.

String Command Result Block

The String Command Result block contains word type data. This is data sent from the reader to the PLC. The block is
used to transport the response from string based commands (DMCC) to the PLC.

Word 0 Word 1 Word 2..N

Result Code Length String Command Result

String Command Result Block Field Descriptions

Word Name Description
0 |Result Code value indicating the success or failure of the command. Refer to the Command Reference,
Code available through the Windows Start menu or the DataMan Setup Tool Help menu, for specific
values.
1 |Length Number of bytes of valid data in the StringCommand field.
2..N | String ASCII text string containing the command to execute. No null termination required.
Command
Result
Operation

SLMP Protocol is a command/response based protocol. All communications are originated from the DataMan reader.
The reader must send read requests to the PLC at a periodic interval to detect changes in the control bits.

Scanning

To initiate actions or control data transfer, the PLC changes the state of certain bits of the Control block. Since only the
reader can initiate communications, the reader scans (that s, reads the Control block from the PLC) at a periodic rate.
This rate is defined by the user.

After each scan, the reader will process changes in state of the bits in the Control block. Some state changes require
additional communications with the PLC, such as writing updated acknowledge bit values or reading a new string
command. These additional communications are handled automatically by the reader. Other state changes initiate
activities such as triggering a read or executing a soft event. The reader performs the requested action and later reports
the results.

For any transfer (read or write), the entire interface block is sent, even if only one field within the block has changed
value. The protocol implementation will minimize network usage by grouping as many value changes as logically
possible into a single transfer.

64

Industrial Network Protocols

Typical Sequence Diagram

DataMan PLC

Periodic reads continue

|
[
Read (Control) | throughout sequence
rﬁﬁﬁhﬁhhﬁhhﬁhﬁhhﬂ _

[

I

| -

:‘— : PLC sets Trigger bit
Read (Control) |

e

I ——
—

A
|
|
\

|

\

|

- Write (Status)
I I
- I
£ | I
s < |
g
b | |
I I
A .
P : Write (Status) :
m
FE |
g < '
g ! !
: : Reader sends results then
"~ Write (Results) | the updated ResultsAvailable
| | and DecodeComplete bits.
Write (Status)
[[L
I
I I
Handshaking

A number of actions are accomplished by means of a logical handshake between the reader and PLC (triggering,
transferring results, executing soft events, string commands, and so on). This is done to ensure that both sides of a
transaction know the state of the operation on the opposite side. Network transmission delays will always introduce a
finite time delay in transfer data and signals. Without this handshaking, it is possible that one side of a transaction might
not detect a signal state change on the other side. Any operation that has both an initiating signal and corresponding
acknowledge signal will use this basic handshake procedure.

The procedure involves a four-way handshake.

1.

2
3.
4

Assert signal
Signal acknowledge
De-assert signal

De-assert acknowledge

The requesting device asserts the signal to request an action (set bit 0->1). When the target device detects the signal
and the requested operation has completed, it asserts the corresponding acknowledge (set bit 0->1). When the
requesting device detects the acknowledge, it de-asserts the original signal (1->0). Finally, when the target device

65

Industrial Network Protocols

detects the original signal de-asserted, it de-asserts its acknowledge (bit 0->1). To function correctly both sides must see
the complete assert/de-assert cycle (0->1 and 1->0). The requesting device should notinitiate a subsequent request until
the cycle completes.

Acquisition Sequence

DataMan can be triggered to acquire images by several methods. It can be done via the SLMP Protocol by setting the
Trigger bit or issuing a trigger String Command. It can also be done via DMCC command (Telnet) or hardwired trigger
signal. The Trigger bit method will be discussed here.

On startup the TriggerEnable will be False. It must be set to True to enable triggering via the SLMP Protocol Trigger bit.
When the device is ready to accept triggers, the reader will setthe TriggerReady bit to True.

While the TriggerReady bitis True, each time the reader detects the Trigger bit change from 0->1, it will initiate a read.
The Trigger bit should be held in the new state until that same state value is seen in the TriggerAck bit (this is a
necessary handshake to guarantee that the trigger is seen by the reader).

During an acquisition, the TriggerReady bit will be cleared and the Acquiring bit will be setto True. When the acquisition
is completed, the Acquiring bit will be cleared. When the device is ready to begin another image acquisition, the
TriggerReady bit will again be setto True.

If results buffering is enabled, the reader will allow overlapped acquisition and decoding operations. TriggerReady will
be set high after acquisition is complete but while decoding is still in process. This can be used to achieve faster overall
trigger rates. If result buffering is not enabled, the TriggerReady bit will remain low until both the acquisition and decode
operations have completed.

Trigger EN J
Trigger Ready _’1—| |2_|

Trigger |1_| |2_| |_|

Trigger Ack |1_‘ IZ_‘ ,3_‘

Acquiring 1 | |2 | ,3—\—
Missed Acq IM—|

A - A - . J . ~

~ ~ Y ~
Acquisition #1 Acquisition #2 Missed Acq Acquisition #3

[3 1 [
I 3
I 1

| PLC |

| DataMan |

To force a reset of the trigger mechanism set the TriggerEnable to False until TriggerReady is also set to False. Then,
TriggerEnable can be setto True to re-enable acquisition.

As a special case, an acquisition can be cancelled by clearing the Trigger signal before the read operation has
completed. This allows for the cancellation of reads in Presentation and Manual mode if no code is in the field of view. To
ensure that a read is not unintentionally cancelled, itis advised that the PLC hold the Trigger signal True until both
TriggerAck and ResultsAvailable are True (or DecodeComplete toggles state).

Decode / Result Sequence

After an image is acquired, itis decoded. While being decoded, the Decoding bitis set. When the decode operation has
completed, the Decoding bit is cleared. The ResultsBufferEnable determines how decode results are handled by the
reader.

66

Industrial Network Protocols

If ResultsBufferEnable is set to False, then the read results are immediately placed into the Output Data block,
ResultsAvailable is set to True and DecodeComplete is toggled.

If ResultsBufferEnable is set to True, the new results are queued in a buffer and DecodeComplete is toggled. The earlier
read results remain in the Output Data block until they are acknowledged by the PLC. After the acknowledgment
handshake, if there are more results in the queue, the next set of results will be placed in the Output Data block and
ResultsAvailable is set to True.

. | 1 | 2 |
] P
T]
B :
P
Pl
b

Results Avail
| 1
Results Ack
1 |

Read #1
PLC

Results Buffering

There is an option to enable a queue for read results. If enabled, this allows a finite number of sets of result data to be
queued up until the PLC has time to read them. This is useful to smooth out data flow if the PLC slows down for short
periods of time.

Also, if result buffering is enabled the reader will allow overlapped acquisition and decode operations. Depending on the
application this can be used to achieve faster overall trigger rates. See the Acquisition Sequence description above for
further detail.

In general, if reads are occurring faster than results can be sent out, the primary difference between buffering or not
buffering determines which results get discarded. If buffering is not enabled, the most recent results are kept and the
earlier result (which was not read by the PLC quickly enough) is lost. The more recent result will overwrite the earlier
result. If buffering is enabled (and the queue becomes full) the most recent results are discarded until room becomes
available in the results queue.

Note: If the queue has overflowed and then buffering is disabled, there will be a greater than 1 difference between

@ the TriggerID and ResultID values. This difference represents the number of reads that had occurred but could not
be queue because the queue was full (number of lost reads equals TriggerID - ResultlD - 1). After the next read, the
ResultlD value will return to the typical operating value of TriggerID - 1.

SoftEvents
SoftEvents act as “virtual” inputs. When the value of a SoftEvent bit changes from 0 -> 1 the action associated with the
event will be executed. When the action completes, the corresponding SoftEventAck bit will change from 0 -> 1 to signal

67

Industrial Network Protocols

completion.

The SoftEvent and SoftEventAck form a logical handshake. After SoftEventAck changes to 1, the original SoftEvent
should be set back to 0. When that occurs, SoftEventAck will automatically be set back to 0.

AWARNING: Do not execute soft events that change the reader configuration at the same time that reads are being
triggered. Changing configuration during acquisition/decode can lead to unpredictable results.

Note: The “ExecuteDMCC” and “SetMatchString” soft event actions require user supplied data. This data must be
written to the UserData and UserDatalength area of the Input Data block prior to invoking the soft event. Since both
of these soft events depend on the UserData, only one may be invoked at a time.

String Commands

The DataMan SLMP Protocol implementation includes a String Command feature. This feature allows you to execute
string-based DMCC commands over the SLMP protocol connection. The DMCC command is sent to the reader via the
String Command block. The DMCC command resultis returned via the String Command Result block. Initiating a
command and notification of completion is accomplished by signaling bits in the Control and Status blocks.

To execute a DMCC command, the command string is placed in the data field of the String Command block. The
command string consists of standard ASCII text. The command format is exactly the same as would be used for a serial
(RS-232) or Telnet connection. The string does not need to be terminated with a null character. Instead, the length of the
string (that is, the number of ASCII characters) is placed in the length field of the String Command block.

After executing the DMCC command, the result string is returned in the String Command Result block. Similar to the
original command, the result string consists of ASCII characters in the same format as would be returned via serial or
Telnet. Also, there is no terminating null character. Instead the length of the resultis returned in the Command String
Result length field. The Command String Result block also contains a numeric result code. This allows you to determine
the success or failure of the command without having to parse the text string. The values of the result code are defined in
the DMCC documentation.

General Fault Indicator

When an SLMP Protocol communication-related fault occurs, the “GeneralFault’ bit will change from 0 -> 1. Currently the
only fault conditions supported are soft event operations. If a soft event operation fails, the fault bit will be set. The fault bit
will remain set until the next successful soft event operation, or, until TriggerEnable is setto 0 and then back to 1.

SoftEvent —,—‘—, |— |—
[] [

SoftEventAck

GeneralFault

-
L
H_/ - ~ J H_/

SoftEvent SoftEvent cycle #2 SoftEvent
cycle #1 (failure occured) cycle #3

Examples

Included with the DataMan Setup Tool installer is an example PLC program created with Mitsubishi (GX Works2)
software. This simple program clearly demonstrates DataMan ID readers’ capabilities and proper operation. The same
operations can be achieved by using more advanced features and efficient programming practices with Mitsubishi PLCs.
However, such an advanced program is less useful for demonstration purposes.

68

Industrial Network Protocols

Function
The example application demonstrates the following operations:

1. Triggering a read

2. Getting read results

3. Executing string commands (DMCC)
4

Executing soft event operations

a. Train code

b. Train match string
c. Train focus

d. Train brightness
e. Un-train

f. Execute DMCC

g. Setmatch string

The “Main” program contains a PLC ladder rung to invoke each of these operations. The operation is invoked by toggling
the control bit on the rung from 0 -> 1. This will invoke the associated subroutine to perform the operation. When the
operation is complete, the subroutine will set the control bit back to 0.

=+ [PRG) MAIN

ol—] | Fea

[

1}

Triggering a Read

The example provides two trigger options; “Continuous Trigger” and “Single Trigger”. As the name implies, enabling the
“Continuous Trigger” bit will invoke a continuous series of read operations. Once enabled, the “Continuous Trigger”
control bit will remain set until you disable it. The “Single Trigger” control bit invokes a single read operation. This control
bit will automatically be cleared when the read is completed.

Primarily, the trigger subroutine manages the trigger handshake operation between the PLC and the reader. The control
Trigger bitis set, the PLC waits for the corresponding TriggerAck status bit from the reader, and the control Trigger bitis
reset. Refer to a description of handshaking in section Operation.

The trigger subroutine contains a delay timer. This is not required for operation. It exists simply to add an adjustable
artificial delay between reads for demonstration purposes.

Getting Read Results

For this example the operation of triggering a read and getting read results was intentionally separated. This is to support
the situation where the PLC is not the source of the read trigger. For example, the reader may be configured to use a
hardware trigger. In such a case, only the get results subroutine would be needed.

Like the triggering subroutine, the get results subroutine manages the results handshake operation between the PLC
and the reader. However, it also copies the result data to internal storage. The routine waits for the ResultsAvailable

69

Industrial Network Protocols

status bit to become active, it copies the result data to internal storage, and then executes the ResultsAck handshake.
Refer to a description of handshaking in section Operation.

The read result consists of a ResultCode, ResultLength, and ResultData. Refer to section Output Data Block Field
Descriptions for details of the ResultCode values. The ResultLength field indicates how many bytes of actual result data
existin the ResultData field. The subroutine converts this byte length to word length before copying the results to internal
storage.

The get results subroutine gathers read statistics (number of good reads, number of no-reads, and so on). This is not
required for operation. It is simply for demonstration purposes.

Execute String Commands (DMCC)
The string command feature provides a simple way to invoke DMCC commands from the PLC. The command format and
command result format is exactly identical to that used for serial or Telnet DMCC operation.

This subroutine copies an example DMCC command (||>GET CAMERA.EXPOSURE) to the String Command block and
then manages the string command handshake operation between the PLC and the reader to invoke the command and
retrieve the command result. Any valid DMCC command may be invoked with this mechanism. Refer to the DataMan
Command Reference document available through the Windows Start menu or the DataMan Setup Tool Help menu.

Execute Soft Events

Soft Events are used to invoke a predefined action. Each Soft Event is essentially a virtual input signal. Each of the soft
event subroutines manages the handshake operation between the PLC and the reader to invoke the predefined action.
The associated action is invoked when the SoftEvent bit toggles from 0 -> 1. The subroutine then watches for the
associated SoftEventAck bit from the reader which signals that the action is complete. For a description of handshaking,
see section Operation.

Note: The “Execute DMCC” and “Set Match String” soft events make use of the Input Data block. The subroutine for

@ these two events copies the relevant data into the User Data fields of the Input Data block and then invokes the
User Data subroutine to transfer the data to the reader. Only after the user data is transferred is the actual soft event
action invoked. Itis required that the user data be transferred before invoking either of these events.

70

Industrial Network Protocols

i [PRG]IMATN |
I Eseluta fohl Evinas

Do TisnCode

| &N -—{] {I‘.Al.l. b TemCody],
Do Trsrd stchSireg

[79] E:Au & _Trwe bt Simeg],
Dy ToanfF ocus

[&3—} I caan " 1
DTSl

| &N] {:Au_ A _Trpe Brighena sy],
Dicy_Liei s

| &) _i I I cagn by LTy }
Dio_E el

| 95 _{] [l‘;u.l. Suby_Erostuba brmoc],
Do Seld slchSirsg

[=3 i {tu-l. s Satbtsgch tiing]_

@ Note: The “Train Match String” soft event only prepares the training mechanism. The actual training occurs on the
next read operation. Therefore, a trigger must be issued following “Train Match String”.

7

Industrial Network Protocols

ModbusTCP

Modbus is an application layer protocol. It provides client/server communication between devices connected to different
types of buses or networks. Modbus is a request/response protocol, whose services are specified by using function
codes.

Modbus TCP provides the Modbus protocol using TCP/IP. System port 502 is reserved for Modbus communication. It
uses standard Ethernet hardware and software to exchange I/O data and diagnostics. DataMan provides Modbus TCP
server functionality only.

By default, DataMan has the Modbus TCP protocol disabled. The protocol can be enabled in the Setup Tool, via DMCC,
or by scanning a parameter code.

@ Note: If you have a wireless DataMan reader, read the section Industrial Protocols for the Wireless DataMan.

DMCC

The following commands can be used to enable/disable Modbus TCP. The commands can be issued via RS-232 or
Telnet connection.

@ Note: Because you have to make changes to the Telnet client provided by Windows to communicate with DataMan,
itis recommended you use third party clients such as PuTTY.

Enable:
| | >SET MODBUSTCP.ENABLED ON
| | >CONFIG.SAVE
| | >REBOOT

Disable:

| | >SET MODBUSTCP.ENABLED OFF
| | >CONFIG.SAVE
| | >REBOOT

Reader Configuration Code

Scanning the following reader configuration codes will enable/disable Modbus TCP for your corded reader.

£

@ Note: You must reboot the device for the change to take effect.

Enable: :_E Disable:

Scanning the following reader configuration codes will enable/disable Modbus TCP for your DataMan 8000 base station.

@ Note: You must reboot the device for the change to take effect

72

Industrial Network Protocols

Disable: "

Setup Tool

Modbus TCP can be enabled by checking Enabled on the Industrial Protocols pane’s Modbus TCP tab. Make sure to
save the new selection by choosing “Save Settings” before disconnecting from the reader.

@ Note: You must reboot your reader for the new settings to take effect.

Modbus TCP Handler

Modbus TCP on DataMan is implemented as a server type device. All communication is initiated by the PLC in the form
of read and write requests. The PLC acts as a client which actively sends read and write requests.

Getting Started

By default, Modbus TCP is not enabled on the DataMan reader. The protocol must be enabled and the protocol
configuration parameters must be set to correctly interact with a PLC. Protocol configuration is accomplished via the
DataMan Setup Tool.

1. From the Windows Start menu, start the DataMan Setup Tool.
2. Under Communication Settings, click the Industrial Protocols node.

3. Selectthe Modbus TCP tab.

73

Industrial Network Protocols

Industnial Protocols

EtherNet/IP™ |F'F{DFINET |SLMF' Protocol |M::-dhusTCP |

Maximum Connections

|dle Timeout

] String Byte Swap

O Holding Register Only Mode

|

120

MName Address Space Cffset Quantity Description
Control |Coil - [0 (32 +| Vision control blo...
Status [Disc:‘ete Input ~ |0 4132 +1| Vision status bloc...
PLC Input [Holding Register ~ 2000 [2|2005 % User data block s...
PLC Output [Input Register » 2000 22005 4| Inspection resutts ...
Command [Hulding Fegister ~ 1000 F24|1000 +1| Command string s...
Command R... [Inpl.rt Register ~ 1000 [24|1000 % Command resutt d...

Status:

4. Enable the protocol and set the proper configuration settings.

Modbus TCP configuration consists of two aspects: defining the network information and defining the data to be
exchanged. All configuration parameters are accessed via the Modbus TCP tab.

@ Note: Make sure that you select System -> Save Settings to save any changes made to the Modbus TCP
configuration settings. Also, the reader must be rebooted for the new settings to take effect.

Network Configuration

The network configuration defines all the information that the DataMan reader needs to establish a connection with a
PLC. In most cases the default values may be used and no changes are need.

Name Default Range Description
Host Port 502 Fixed Port number where Modbus TCP can be accessed on this reader.
Max Connections 3 1-6 Maximum number of simultaneous Modbus TCP connections.
Idle Timeout 120 1-3600 Timeout period after which the Modbus TCP connection will be
(seconds) closed. If no traffic is received on a Modbus TCP connection for

this amount of time, the connection will automatically be closed.

74

Industrial Network Protocols

String byte swap False True / False String byte swap enable. If set to True, bytes within each register
that forms a string will be swapped.

Holding Register False True / False Holding Register Only Mode enable. If set to True, all data blocks

Only Mode will be mapped to the Holding Register space.

Data Block Configuration

The data block configuration defines the data that will be exchanged between the DataMan reader and the PLC. Six data

blocks are available. Each block has a predefined function.

DataMan only supports Modbus TCP server operation. For standard server operation, only two configuration options
exist. By default the ‘Control’ and ‘Status’ data blocks are located in bit address space (Coil and Discrete Input). If
needed, one or both of these data blocks may be redefined to exist in register address space (Holding Register and
Input Register). All other data block configurations are fixed.

Standard Block Configuration

Block Name Address Space Offset | Schneider Form Addressing Quantity
Control Coil or Holding Register 0 000000 - 000031 32, if coil
400000 - 400001 2, if holding register
Status Discrete Input or Input Register |0 100000 - 100031 32, if discrete input
300000 — 300001 2, ifinput register
PLC Input Holding Register 2000 (402000 - 404004 1-2005
PLC Output Input Register 2000 (302000 - 304004 1-2005
Command String Holding Register 1000 (401000 -401999 1-1000
Command String Result | Input Register 1000 (301000 -301999 1-1000

@ Note: The 6 digit 0-based Schneider represantation is used here.

DataMan also supports an alternate block configuration. A number of PLCs can only access the ModbusTCP ‘Holding
Register address space. The alternate 'Holding Register Only' configuration exists to accommodate these PLCs. In this
alternate configuration, all reader input and output data is mapped to the ModbusTCP ‘Holding Register’ address space.
To enable this alternate mode, perform one of the following options:

« check the “Holding Register Only” box on the ModbusTCP configuration screen

« use the DMCC command, which switches on or off the alternate mode (Holding Register Only mode)

Enable:

| [>SET MODBUSTCP-HOLDING-ONLY ON

Disable:

| [>SET MODBUSTCP-HOLDING-ONLY OFF

« scan the Reader Programming Codes

« forthe wireless reader

75

Disable:

Industrial Network Protocols

Disable: .l
Holding Register Only” Block Configuration
Block Name Address Space Offset Schneider Form Addressing Quantity

Control Holding Register 0 400000 - 400001 2

Status Holding Register 5000 405000 - 405001 2

PLC Input Holding Register 2000 402000 — 404004 1-2005
PLC Output Holding Register 7000 407000 — 409004 1-2005
Command String Holding Register 1000 401000 - 401999 1-1000
Command String Result Holding Register 6000 406000 — 406999 1-1000

@ Note: The 6 digit 0-based Schneider represantation is used here.

Interface

This section describes the interface to the DataMan reader as seen by the PLC via Modbus TCP. The interface model
consists of 6 data blocks grouped in 3 logical pairs:

« Control and Status

« Input Data and Output Data

« String Command and String Response

Control Block

The Control block contains bit type data. This block consists of the control signals sent from the PLC to the reader. Itis
used by the PLC to initiate actions and acknowledge certain data transfers.

Bit7 | Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved Results Ack Buffer Trigger Trigger
Results Enable
Enable

76

Industrial Network Protocols

Bit 15 Bit14 | Bit13 | Bit12 | Bit11 Bit 10 Bit 9 Bit 8
Reserved
Bit 23 Bit22 | Bit21 | Bit20 | Bit19 Bit 18 Bit 17 Bit 16
Reserved Initiate Set User
String Cmd Data
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
SoftEvent7 | SoftEvent6 | Soft Event5 | Soft Event4 | SoftEvent3 | SoftEvent2 | SoftEvent1 | Soft Event0

Control Block Field Descriptions

Bit Name

Description

0 Trigger Enable

This field is set to enable triggering via the Trigger bit. Clear this field to disable the
network triggering mechanism.

1 Trigger

Setting this bit triggers an acquisition. Note that the Trigger Ready bit must be set
high before triggering an acquisition.

2 Buffer Results
Enable

When this bitis set, each read result (ResultlD, ResultCode, ResultLength and
ResultData fields) will be held in the Output Block until itis acknowledged. Once
acknowledged, the next set of read results will be made available from the buffer. If
new read results arrive before the earlier setis acknowledged the new set will be
queued in the reader’s buffer. Up to 6 read results can be held in the reader’s buffer.
Refer to section Operation for a description of the acknowledgement handshake
sequence.

3 ResultsAck

Set by the PLC to acknowledge that it has received the latest results (ResultiD,
ResultCode, ResultLength and ResultData fields). When the reader sees this bit
transition from 0a1 it clears the ResultsAvailable bit. This forms a logical handshake
between the PLC and reader. If result buffering is enabled, the acknowledgement
will cause the next set of queued results to be moved from the buffer. See section
Operation for a description of the acknowledgement handshake sequence.

4-15 Reserved

Future use

16 SetUserData

Set by the PLC to signal that new UserData is available. After reading the new
UserData the reader sets SetUserDataAck to signal that the transfer is complete.
This forms a logical handshake between the PLC and reader.

17 Initiate

StringCmd

Set by the PLC to signal that a new StringCommand is available. After processing
the command, the reader sets StringCmdAck to signal that the command result is
available. This forms a logical handshake between the PLC and reader.

18-23 Reserved

Future use

24-31 SoftEvents

Bits act as virtual discrete inputs. When a bit transitions from 0 -> 1 the associated
action is executed. After executing the action the reader sets the corresponding
SoftEventAck to signal that the action is complete. This forms a logical handshake
between the PLC and reader.

Bit0: Train code

Bit1: Train match string

Bit2: Train focus

Bit3: Train brightness

Bit4: Un-Train

Bit5: Reserved (future use)

Bit6: Execute DMCC command

Bit7: Set match string

Status Block

The status block contains bit type data. This block consists of the status signals sent from the reader to the PLC. Itis used
by the reader to signal status and handshake certain data transfers.

77

Industrial Network Protocols

Bit 7 Bit6é | Bit5 | Bit4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved Missed Acquiring Trigger Trigger
Acq Ack Ready
Bit 15 Bit 14 | Bit 13 | Bit 12 Bit 11 Bit 10 Bit9 Bit 8
General Reserved Results Results Decode Decoding
Default Available Buffer Complete
Overrun Toggle
Bit 23 Bit 22 | Bit 21 | Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
Reserved String Cmd Set User
Ack Data Ack
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
Soft Event Soft Event Soft Event Soft Event Soft Event Soft Event Soft Event Soft Event
Ack 7 Ack 6 Ack 5 Ack 4 Ack3 Ack 2 Ack 1 Ack 0
Status Block Field Descriptions

Bit Name Description

0 Trigger Ready Indicates when the reader is ready to accept a new Trigger. The reader sets this
bitwhen TriggerEnable has been set and the reader is ready to accept a new
trigger.

1 TriggerAck Indicates when the reader recognizes that Trigger has been set. This bit will
remain set until the Trigger bit has been cleared.

Acquiring Set to indicate that the reader is in the process of acquiring an image.
Missed Acq Indicates that the reader missed a requested acquisition trigger. The bitis
cleared when the next acquisition is issued.

4-7 Reserved Future use

8 Decoding Set to indicate that the reader is in the process of decoding an image.

9 Decode Complete Indicates new result data is available. Bit toggles state (0 -> 1 or 1 -> 0) each

Toggle time new result data becomes available.
10 Results Buffer Set to indicate that the reader has discarded a set of read results because the
Overrun PLC has not acknowledged the earlier results. Cleared when the next set of
result data is successfully queued in the buffer. This bit only has meaning if
result buffering is enabled.

11 Results Available Set to indicate that new result data is available. Bit will remain set until
acknowledged with ResultsAck even if additional new read results become
available.

12-14 Reserved Future use

15 General Fault Set to indicate that an Ethernet communications fault has occurred. Currently
only used by soft event operations. Bit will remain set until the next successful
soft event or until TriggerEnable is set low and then high again.

16 Set User Data Ack Set to indicate that the reader has received new UserData. Bit will remain set
until the corresponding SetUserData bit is cleared. This forms a logical
handshake between the PLC and reader.

17 String Set to indicate that the reader has completed processing the latest string

Cmd Ack command and that the command response is available. Bit will remain set until
the corresponding InitiateStringCmd bit is cleared. This forms a logical
handshake between the PLC and reader.

18-23 Reserved Future use

78

Industrial Network Protocols

24-31

SoftEvent
Ack

Set to indicate that the reader has completed the soft event action. Bit will
remain set until the corresponding SoftEvent bitis cleared. This forms a logical
handshake between the PLC and reader.

Bit0: Ack train code

Bit1: Ack train match string

Bit2: Ack train focus

Bit3: Ack train brightness

Bit4: Ack untrain

Bit5: Reserved (future use)

Bit6: Ack Execute DMCC command

Bit7: Ack set match string

Input Data Block

The Input Data block is sent from the PLC to the reader. The block consists of user defined data that may be used as
input to the acquisition/decode operation.

Word 0

Word 1 Word 2..N

Reserved

User Data Length User Data

Input Data Block Field Descriptions

Word

Name

Description

0

Reserved

Future use

1

User Data Length

Number of bytes of valid data actually contained in the UserData field.

2.N

User Data

User defined data that may be used as an input to the acquisition/decode.

Output Data Block

The Output Data block is sent from the reader to the PLC. The block consists primarily of read result data.

Word 0

Word 1

Word 2 Word 3 Word 4 Word 5...n

Reserved

Trigger ID

Result ID Result Code

Result Length Result Data

Output Data Block Field Descriptions

Word Name Description

0 Reserved Future use

1 Trigger ID Trigger identifier. Identifier of the next trigger to be issued. Used to match issued
triggers with result data that is received later. This same value will be returned as the
ResultlD of the corresponding read.

2 Result ID Resultidentifier. This is the value of TriggerID when the corresponding trigger was
issued. Used to match up triggers with corresponding result data.

3 Result Code Indicates the success or failure of the read that produced this result set.

Bit0: 1=Read, 0=No read

Bit1: 1=Validated, 0=Not Validated
Bit2: 1=Verified, 0=Not Verified
Bit3: 1=Acquisition trigger overrun
Bit4: 1=Acquisition buffer overrun
Bit5-15: Reserved (future use)

79

Industrial Network Protocols

4 Result Data Number of bytes of valid data actually in the ResultData field.
Length
5..n Result Data Result data from this acquisition/decode. Formatted as ASCII text with two characters
per 16-bit register. No terminating null character.

String Command Block

The String Command block is sent from the PLC to the reader. The block is used to transport string based commands
(DMCC) to the reader.

@ Note: Do not send string commands that change the reader configuration at the same time that reads are being
triggered. Changing configuration during acquisition/decode can lead to unpredictable results.

Word 0 Word 1...n

Length String Command

String Command Block Field Descriptions

Word Name Description
0 Length Number of bytes of valid data in the StringCommand field.
1.N String ASCII text string containing the command to execute. No null termination required.
Command

String Command Result Block

The String Command Result block is sent from the reader to the PLC. The block is used to transport the response from
string based commands (DMCC) to the PLC.

Word 0 Word 1 Word 2..N
Result Length String Command Result
Code

String Command Result Block Field Descriptions

Word Name Description

0 Result Code Code value indicating the success or failure of the command. Refer to the
Command Reference, available through the Windows Start menu or the
DataMan Setup Tool Help menu, for specific values.

1 Length Number of bytes of valid data in the StringCommand field.
2.N String ASCII text string containing the command to execute. No null termination
Command required.
Result
Operation

Modbus TCP is a request/response based protocol. All communications are originated from the PLC. The reader acts as
server.

80

Industrial Network Protocols

Requests

To initiate actions or control data transfer, the PLC changes the state of certain bits of the Control block and sends
requests to the reader.

After each request, the reader will process changes in state of the bits in the Control block. Some state changes require
additional communications with the PLC, such as writing updated acknowledge bit values or reading a new string
command. These additional communications are handled automatically by the reader. Other state changes initiate
activities such as triggering a read or executing a soft event. The reader performs the requested action and later reports
the results.

Typical Sequence Diagram

initiate request

perform action

|
|
—_——] initiate response

receive response

Handshaking

A number of actions are accomplished by means of a logical handshake between the reader and the PLC (triggering,
transferring results, executing soft events, string commands, and so on). This is done to ensure that both sides of a
transaction know the state of the operation on the opposite side. Network transmission delays will always introduce a
finite time delay in transfer data and signals. Without this handshaking, it is possible that one side of a transaction might
not detect a signal state change on the other side. Any operation that has both an initiating signal and corresponding
acknowledge signal will use this basic handshake procedure.

The procedure involves a four-way handshake.
1. Assertsignal
2. Signal acknowledge
3. De-assertsignal
4

De-assert acknowledge

The requesting device asserts the signal to request an action (set bit 0 -> 1). When the target device detects the signal
and the requested operation has completed, it asserts the corresponding acknowledge (set bit 0 -> 1). When the
requesting device detects the acknowledge, it de-asserts the original signal (1 -> 0). Finally, when the target device
detects the original signal de-asserted, it de-asserts its acknowledge (bit 0 -> 1). To function correctly both sides must

81

Industrial Network Protocols

see the complete assert/de-assert cycle (0 -> 1 and 1 -> 0). The requesting device should notinitiate a subsequent
request until the cycle completes.

Acquisition Sequence

DataMan can be triggered to acquire images by several methods. It can be done by setting the Trigger bit or issuing a
trigger String Command. It can also be done via DMCC command (Telnet) or hardwired trigger signal. The Trigger bit
method will be discussed here.

On startup, TriggerEnable will be False. It must be set to True to enable triggering via the Trigger bit. When the device is
ready to accept triggers, the reader will set the TriggerReady bitto True.

While the TriggerReady bitis True, each time the reader detects the Trigger bit change from 0 -> 1, it will initiate a read.
The Trigger bit should be held in the new state until that same state value is seen in the TriggerAck bit (this is a
necessary handshake to guarantee that the trigger is seen by the reader).

During an acquisition, the TriggerReady bit will be cleared and the Acquiring bit will be setto True. When the acquisition
is completed, the Acquiring bit will be cleared. When the device is ready to begin another image acquisition, the
TriggerReady bit will again be setto True.

If results buffering is enabled, the reader will allow overlapped acquisition and decoding operations. TriggerReady will
be set high after acquisition is complete but while decoding is still in process. This can be used to achieve faster overall
trigger rates. If result buffering is not enabled, the TriggerReady bit will remain low until both the acquisition and decode
operations have completed.

Trigger EN J
Trigger Ready _’1—\ |2_| |3_| I_
Trigger ,1_| ,2_| ,M_| |3_|

Trigger Ack |1_‘ IZ_‘ IM_‘ |3_‘

Acquiring 1 2 | ,3—\—
Missed Acq IM—|

“ o RN J . J
g LY . Y.
Acquisition #1 Acquisition #2 Missed Acqg Acquisition #3

| PLC |

| DataMan |

To force a reset of the trigger mechanism set the TriggerEnable to False until TriggerReady is also set to False. Then,
TriggerEnable can be set to True to re-enable acquisition.

As a special case, an acquisition can be cancelled by clearing the Trigger signal before the read operation has
completed. This allows for the cancellation of reads in Presentation and Manual mode if no code is in the field of view. To
ensure that a read is not unintentionally cancelled, it is advised that the PLC hold the Trigger signal True until both
TriggerAck and ResultsAvailable are True (or DecodeComplete toggles state).

Decode / Result Sequence

After an image is acquired, it is decoded. While being decoded, the Decoding bit is set. When the decode operation has
completed, the Decoding bit is cleared. The ResultsBufferEnable determines how decode results are handled by the
reader.

If ResultsBufferEnable is set to False, then the read results are immediately placed into the Output Data block,
ResultsAvailable is set to True and DecodeComplete is toggled.

If ResultsBufferEnable is set to True, the new results are queued in a buffer and DecodeComplete is toggled. The earlier
read results remain in the Output Data block until they are acknowledged by the PLC. After the acknowledgment

82

Industrial Network Protocols

handshake, if there are more results in the queue, the next set of results will be placed in the Output Data block and
ResultsAvailable is set to True.

e ra B 2|
] P
Trigger Ack Il_‘ |2_|
i
L
b

Results Avail
| 1 |
Results Ack
1

Read #1 Read #2

PLC

Results Buffering

There is an option to enable a queue for read results. If enabled, this allows a finite number of sets of result data to be
queued up until the PLC has time to read them. This is useful to smooth out data flow if the PLC slows down for short
periods of time.

Also, if result buffering is enabled the reader will allow overlapped acquisition and decode operations. Depending on the
application this can be used to achieve faster overall trigger rates. See the Acquisition Sequence description for further
details.

In general, if reads are occurring faster than results can be transferred to the PLC, some data will be lost. The primary
difference between buffering or not buffering determines which results get discarded. If buffering is not enabled, the most
recent results are kept and the earlier result (which was not read by the PLC quickly enough) is lost. The more recent
result will overwrite the earlier result. If buffering is enabled (and the queue becomes full) the most recent results are
discarded until room becomes available in the results queue.

Note: If the queue has overflowed and then buffering is disabled, there will be a greater than 1 difference between

@ the TriggerID and ResultID values. This difference represents the number of reads that had occurred but could not
be queue because the queue was full (number of lost reads equals TriggerID - ResultlD - 1). After the next read, the
ResultlD value will return to the typical operating value of TriggerID - 1.

SoftEvents

SoftEvents act as “virtual” inputs. When the value of a SoftEvent bit changes from 0 -> 1 the action associated with the
event will be executed. When the action completes, the corresponding SoftEventAck bit will change from 0 -> 1 to signal
completion.

The SoftEvent and SoftEventAck form a logical handshake. After SoftEventAck changes to 1, the original SoftEvent
should be set back to 0. When that occurs, SoftEventAck will automatically be set back to 0.

83

Industrial Network Protocols

@ Note: Do not execute soft events that change the reader configuration at the same time that reads are being
triggered. Changing configuration during acquisition/decode can lead to unpredictable results.

The “ExecuteDMCC” and “SetMatchString” soft event actions require user supplied data. This data must be written to the
UserData and UserDatalength area of the Input Data block prior to invoking the soft event. Since both of these soft
events depend on the UserData, only one may be invoked at a time.

String Commands

The DataMan Modbus TCP Protocol implementation includes a String Command feature. This feature allows you to
execute string-based DMCC commands. The DMCC command is sent to the reader via the String Command block. The
DMCC command resultis returned via the String Command Result block. Initiating a command and notification of
completion is accomplished by signaling bits in the Control and Status blocks.

To execute a DMCC command, the command string is placed in the data field of the String Command block. The
command string consists of standard ASCII text. The command format is exactly the same as would be used for a serial
(RS-232) or Telnet connection. The string does not need to be terminated with a null character. Instead, the length of the
string (that is, the number of ASCII characters) is placed in the length field of the String Command block.

After executing the DMCC command, the result string is returned in the String Command Result block. Similar to the
original command, the result string consists of ASCII characters in the same format as would be returned via serial or
Telnet. Also, there is no terminating null character. Instead, the length of the result is returned in the Command String
Result length field. The Command String Result block also contains a numeric result code. This allows you to determine
the success or failure of the command without having to parse the text string. The values of the result code are defined in
the DMCC documentation.

General Fault Indicator

When a communication-related fault occurs, the “GeneralFault” bit will change from 0 -> 1. Currently the only fault
conditions supported are soft event operations. If a soft event operation fails, the fault bit will be set. The fault bit will
remain set until the next successful soft event operation, or, until TriggerEnable is setto 0 and then back to 1.

SoftEvent —’—‘—, |—| I—
SoftEventAck [] [

GeneralFault | I—
N Y,
Y ~ Y

SoftEvent SoftEvent cycle #2 SoftEvent
cycle #1 (failure occured) cycle #3

Examples

Included with the DataMan Setup Tool installer are two example PLC programs created with CoDeSys v2.3 software.
These samples are designed and tested on a Wago 750-841 PLC. These simple programs clearly demonstrate
DataMan ID readers’ capabilities and proper operation. The same operations can be achieved by using more advanced
features and efficient programming practices with Wago PLCs.

However, such an advanced program is less useful for demonstration purposes. The examples try to show different
approaches in the techniques used for the communication to the DataMan reader.

84

Industrial Network Protocols

@ Note: All examples are designed to work only if the “Control” datablock is mapped to the Coil space and the
“Status” datablock is mapped to the Discrete Input space.

ApplicationLayer Example

This sample realizes a generic data transfer between the DataMan reader and the PLC. Memory areas of the “Control”,
“Status” and “Output Area” are cloned in the PLC and synchronized as needed or cyclically. Each data area is
synchronized with its own instance of ‘ETHERNETMODBUSMASTER_TCP”. This causes 3 TCP connections to be open
simultaneously. Make sure that the Modbus TCP related setting “Maximum Connections” on the DataMan reader is set to
atleast 3 for this example to work.

Function

The example application demonstrates the following operations:

1. Transfer the 32-bit “Control” register data from the PLC to the reader.
2. Transfer the 32-bit “Status” register data from the reader to the PLC.
3. Transfer “Output Data” from the reader to the PLC.

All actions are started when there is a connection to the reader.

Transferring “Control” Register Data
All data gets transferred when there is a change in the local PLC data. The local PLC data can be manipulated in the
visualization.

Note: No synchronization is implemented from the reader to the PLC, so the local PLC data might be incorrect after

@ building up the connection or if another Modbus TCP client manipulates the Contol register simultaneously. There
is a timeout setting that can lead to a disconnect if you do not manipulate the “Control” register during this
timeframe.

Transferring Status Register Data
All data gets transferred cyclically. The poll interval can be specified in the visualization.

Transferring Output Data
All data gets transferred cyclically. The poll interval can be specified in the visualization.

DataManControl Example
This sample shows in a sequential manner the steps to do to achieve one of the functions named in the following
subsection. To outline this chronological sequence “Sequential Function Chart” was chosen as programming language.

Function
The example application demonstrates the following operations:

1. Triggering a read
2. Getting read results

3. Executing string commands (DMCC)

85

Industrial Network Protocols

4. Executing soft event operations

a. Train code

b. Train match string
c. Train focus

d. Train brightness
e. Untrain

f. Execute DMCC

g. Setmatch string

The “Main” program contains variables to invoke each of these operations. The operation is invoked by toggling the
control bool directly or from the visualization (red=0, green=1) from 0 -> 1. This will invoke the associated subroutine to
perform the operation. When the operation 4 is complete, the subroutine will set the control bit back to 0.

Triggering a Read
The example provides a “Continuous Trigger”. As the name implies, enabling the “xTrigger” bit will invoke a continuous
series of read operations. Once enabled, the “xTrigger” control bit will remain set until you disable it.

Primarily, the trigger subroutine manages the trigger handshake operation between the PLC and the reader. The control
Result Ack and Trigger bits are reset, the Trigger Enable bitis set, the PLC waits for the corresponding TriggerReady
status bit from the reader, and the control Trigger bit is set. Refer to a description of handshaking in section Operation.

Getting Read Results

For this example the operation of triggering a read and getting read results was intentionally separated. This is to support
the situation where the PLC is not the source of the read trigger. For example, the reader may be configured to use a
hardware trigger. In such a case, only the get results subroutine would be needed.

Like the triggering subroutine, the get results subroutine manages the results handshake operation between the PLC
and the reader. The routine waits for the ResultsAvailable status bit to become active, it copies the result data to internal
storage, and then executes the ResultsAck handshake. Refer to a description of handshaking in section Operation.

The read result consists of a ResultCode, ResultLength, and ResultData. Refer to section Output Data Block Field
Descriptions for details of the ResultCode values. The ResultLength field indicates how many bytes of actual result data
existin the ResultData field. The subroutine converts this byte length to word length before copying the results to internal
storage.

Execute String Commands (DMCC)
The string command feature provides a simple way to invoke DMCC commands from the PLC. The command format and
command result format is exactly identical to that used for serial or Telnet DMCC operation.

This subroutine copies an example DMCC command (||[>GET DEVICE.TYPE) to the String Command block and then
manages the string command handshake operation between the PLC and the reader to invoke the command and
retrieve the command result. Any valid DMCC command may be invoked with this mechanism. Refer to the DataMan
Command Reference document available through the Windows Start menu or the Setup Tool Help menu.

Execute Soft Events

Soft Events are used to invoke a predefined action. Each Soft Event is essentially a virtual input signal. Each of the soft
event subroutines manages the handshake operation between the PLC and the reader to invoke the predefined action.
The associated action is invoked when the SoftEvent bit toggles from 0 -> 1. The subroutine then watches for the
associated SoftEventAck bit from the reader which signals that the action is complete. For a description of handshaking,
see section Operation.

86

Industrial Network Protocols

Note: The “Execute DMCC” and “Set Match String” soft events make use of the Input Data block. The subroutine for

@ these two events copies the relevant data into the User Data fields of the Input Data block and then invokes the
User Data subroutine to transfer the data to the reader. Only after the user data is transferred is the actual soft event
action invoked. Itis required that the user data be transferred before invoking either of these events.

(D Note: The “Train Match String” soft event only prepares the training mechanism. The actual training occurs on the
next read operation. Therefore, a trigger must be issued following “Train Match String”.

87

Industrial Network Protocols

PROFINET

PROFINET is an application-level protocol used in industrial automation applications. This protocol uses standard
Ethernet hardware and software to exchange I/O data, alarms, and diagnostics.

DataMan supports PROFINET I/O. This is one of the 2 “views” contained in the PROFINET communication standard.
PROFINET I/O performs cyclic data transfers to exchange data with Programmable Logic Controllers (PLCs) over
Ethernet. The second “view” in the standard, PROFINET CBA (Component Based Automation), is not supported.

A deliberate effort has been made to make the DataMan PROFINET communication model closely match the Cognex In-
Sight family. Customers with In-Sight experience should find working with DataMan familiar and comfortable.

By default, the DataMan has the PROFINET protocol disabled. The protocol can be enabled via DMCC, scanning a
parameter code or in the DataMan Setup Tool.

@ Note: If you have a wireless DataMan reader, read the section Industrial Protocols for the Wireless DataMan.

DMCC

The following commands can be used to enable/disable PROFINET. The commands can be issued via RS-232 or Telnet
connection.

@ Note: Because you have to make changes to the Telnet client provided by Windows to communicate with DataMan,
itis recommended that you use third party clients such as PuTTY.

Enable:
| | >SET PROFINET.ENABLED ON
| | >CONFIG.SAVE
| | >REBOOT

Disable:

| |>SET PROFINET.ENABLED OFF
| | >CONFIG.SAVE
| | >REBOOT

Reader Configuration Code

Scanning the following reader configuration codes will enable/disable PROFINET for your corded reader.

@ Note: You must reboot the device for the change to take effect.

Disable:

Scanning the following reader configuration codes will enable/disable PROFINET for your DataMan 8000 base station.

88

Industrial Network Protocols

@ Note: You must reboot the device for the change to take effect

Enable:

Setup Tool

The PROFINET protocol can be enabled by checking Enabled on the Industrial Protocols pane’s PROFINET tab.

Industnal Protocols
EtherNet/IP™ |PRUHNFF |SLMF' Prorocol |Mcu:|hu5TCF' |

Getting Started

Preparing to use PROFINET involves the following main steps:
« Make sure that you have the Siemens Step 7 programming software (SIMATIC) installed.
« Setup the Siemens Software tool so that it recognizes your DataMan device.
« Install the Generic Station Description (GSD) file.
Perform the following steps to set up PROFINET:
1. Verify that SIMATIC is on your machine.
2. From the Windows Start menu, launch the SIMATIC Manager.

3. Ifyou already have a project, select “Cancel” to skip past the New Project wizard. Otherwise, let the wizard guide
you through creating a new project.

4. Once the Manager has opened the project, double-click on the “Hardware” icon to open the “HW Config” dialog
screen. From the main menu, select “Options -> Install GSD File...”.

89

I HW Config - [SIMATIC 300 Station (Configuration)

Station Edé Insert PLC

DS9 & &

Wiew vy
& £ Custormize. ..

Configure Metwaork,
Symbol Table

Edit Catalog Profie
Update Catslog

Trsstall HW Updates ..

Install GSD File...

FFind in Service & Support...

-- DM500_Profinet_PDEV]

Industrial Network Protocols

Chri-Ak+E

ChrkbAR+T

i
-]

L4

5. Browse to the location where the GSD file was installed (or the location where you saved the GSD file if it was

downloaded from the web).

Install GSD Files

Irestaldl GSD Files:

Fie | Releass | Ve

Select & direchory containing GSD files

I

_ e |

Help |

6. Selectthe GSD file you wish to install and follow the displayed instructions to complete the installation.

@ Note: There may be more than one GSD file in the list. If you are unsure which to install, choose the one with the

most recent date.

90

Industrial Network Protocols

] s

Enghzh. German, French, S

GSDMLY2.0-Cognex-D staM an-20100116anl 01/16/20010 12:00:00 AM

V20

Instal Showlog | Select All Desalact Al

7. Add your DataMan device to your project. This makes the DataMan available in the Hardware Catalog. Launch
the SIMATIC Hardware Config tool.

8. In the main menu, select View -> Catalog.
9. The catalog is displayed. Expand the “PROFINET IO” tree to the “Cognex ID Readers” node.

10. With the left mouse button, drag the DataMan reader over and drop it on the PROFINET IO network symbol in the
left pane.

=+ HW Conflig - [SIMATIC 300 S1ation {Configuration) -- DMS00_Profinet_PDEV]

San B Inset AC Vew Ophors Window Hel
ODEFS-9 8 & e dia DO W Ww

UR g LI
| ind
=l

£ (] | FROFINE T 40-Systoen 11060
TPl 3152 PH/DP Pt [Sarded
WFLTE 1 1 1 !

5 & ERECTEEE| st

mﬂm * PROAEYS DF
FROPBUS-FY
- PROAMNET ID

= () Addional Field Devices
= o Serae
= | Cogres: ID Feade
* Databdn 200
. Oistablen 200 POEW

S

-

| G

mmummhuﬁﬁ

o + Dt SO0

£ 3 . Ciatablan SO0 POEW

+ Diatablpn 000
[iatablan S000 POEY

.=) Mpoms

- () Miptvazah. Comgunranrivs
- +] Seraory

« [l SMATIC 400
o Bl SMATIC P Bassd Control 3000800
L SMATIC PT Siation

Lo Sime = E

Cogres
Dot g 500 10 Plsacdior with FOEW suppent
CrEDMLA2 2-Cogres-Duababd ey 201 1071 0Ll

]

=2 o B

BEREEE
8

o

Press] B ek Help,

The HW Config tool automatically maps the DataMan I/O modules into the memory space.

®

Note: By default, the 64 byte User Data and 64 byte Result Data Modules are inserted. There are multiple sizes
available for both of these modules. To optimize performance use the module size that most closely matches the
actual data requirements of your application. You can change the module simply by deleting the one in the table
and inserting the appropriate sized module from the catalog.

91

Industrial Network Protocols

11. Right-click on the DataMan icon and select “Object Properties...”.

12. Give the reader a name. This must match the name of your actual DataMan reader. The name must be unique
and conform to DNS naming conventions. Refer to the SIMATIC Software help for details.

13. If your DataMan reader is configured to use its own static IP, uncheck the “Assign IP address via IO controller”
box. Otherwise if you wish the PLC to assign an IP address, select the Ethernet button and configure the
appropriate address.

Properties - MyDM500]

Gensial |

Shout descaphion: Datalan
Drstabdan 500 10 Resdar vath FDEY supped

Oeder Mo, / Furware: DMR-S0088-8#0

Fasmiby: Cognex D Readers

Dravice niame M0 M50

G50 e GSDMLA2 2-Cogres-D stabdan-201 10002 srel
Changes Releass Number... |

Mods /! PH 1D sytem

Drevice number: 1 | |FROFINET-I0-System [100)

IP address:

™ Asign IP sddess via 10 eontrollas

Comment

Cancel | Help

14. In the “lO Cycle” tab, select the appropriate cyclic update rate for your application.

General 10 Cycle |
Update Time
Mode: | Fond Facaor =]
Faschos Send clock [z
Update time [ms} [2.000 = = 8 =] = [roo0
wiatchdeg Time

15. By default, the SIMATIC software maps the User Data & Result Data Modules to offset 256. This is outside of the
default process image area size of 128. That s, by default, data in these modules are inaccessible by some SFCs
such as BLKMOV. As a solution, either remap the modules to lower offsets within the process image area or
expand the process image area to include these modules.

If you choose to expand the process image area, make the size large enough for the module size plus the default 256
offset.

92

Industrial Network Protocols

Properties - CPU 315-2 PN/DP - (R0/S2) 3
Genarsl | Shatup | Symchronois Cicls ntermpts |
Diagneetics.Clack. | Probection | Communication | ‘wfeb |
Cycle/Tlock Memary | Retentive Memory | Intemupts | Time-of Day Intesupts | Cyehe Intemupts |
Cycle
P
Scan cycls monitonng time [ms] 150
T

Scan cycle load from communication [} |20
Size of the process-image input ares HE
Size of the procest-image output aea 128

DBES - cal up at 1/0 access enor [Mo DBES call up |
Clock Memoty
[T Clock memon

Carcel Hep

@ Note: Expanding the process image can have a performance impact on the PLC scan cycle time. If your scan time
is critical, use the minimal acceptable module sizes and manually remap them down lower in the process image.

Modules

The PROFINET implementation on DataMan consists of seven /O modules:
1. Acquisition Control Module

Acquisition Status Module

Results Control Module

Results Status Module

Soft Event Control Module

User Data Module

N o o kN

Result Data Module

93

Industrial Network Protocols

:‘.-‘H\I' Conlig - [SIMATIC 300 Station [Configuration) -- DMS00_Frofinet_PIREY]

Skation £ Irbat PLC Vhew Ophifs Windos Help =
DS & B da DO W W
S — -

: Eik 1} PROFIKE T40.5, 100§

F CPU 31%2 FHDP il I} et 1 00§

X7 MELTP I T Y

Lo I B et FAELETD

X2 Poxt - —

3 e v

: 3 ¥

5

B

7

B

E]

1 -
£ »
S) wowso

| Mrcdda Disder Mumbar | fickbear | 0 scddnass | Disgrcetic sddbens Cormant
RG-SO P S -~

: St -

ATAN Awr BV

1| Acouision Conrol i

F] Autrpasion St P

3 [M Pesuby Corbol]

4 Fiasulbs Slahus W

5 |M Soft Event Corisol 1 0]

E Uzt Dista - B4 byhes 7 523 2
Fress Fl bo get Help. ha

Acquisition Control Module
Controls image acquisition. This module consists of data sent from the PLC to the DataMan device.

Slot number: 1

Total Module size: 1 byte

Bit Name Description
0 Trigger Enable |Setting this bit enables triggering via PROFINET. Clearing this bit disables triggering.
1 Trigger Setting this bit triggers an acquisition when the following conditions are met:
« Trigger Enable is set
« No acquisition is currently in progress
« The device is ready to trigger
2-7 Reserved Reserved for future use

Acquisition Status Module
Indicates the current acquisition status. This module consists of data sent from the DataMan device to the PLC.

Slot number: 2

Total Module size: 3 bytes

Bit Name Description
0 Trigger Ready Indicates when the device is ready to accept a new trigger. Bitis True when “Trigger
Enable” has been set and the device is ready to accept a new trigger.
1 Trigger Ack Indicates that the DataMan has received a new Trigger. This bit will remain True as long
as the “Trigger” bit remains True (thatis, itis interlocked with the Trigger bit).
2 Acquiring Indicates that the DataMan is currently acquiring an image.

94

Industrial Network Protocols

3 Missed Ack Indicates that the DataMan was unable to successfully trigger an acquisition. Bitis
cleared when the next successful acquisition occurs.
4-7 Reserved Reserved for future use
8-23 Trigger ID ID value of the next trigger to be issued (16-bit integer). Used to match issued triggers
with corresponding result data received later. This same value will be returned in
ResultlD of the result data.

@ Note: The Missed Ack bitin the Acquisition Status Register will only be set if an acquisition triggered from the
Acquisition Control Module could not get executed.

Results Control Module
Controls the processing of result data. This module consists of data is sent from the PLC to the DataMan device.

Slot number: 3

Total Module size: 1 byte

Bit

Name

Description

0

Results Buffer Enable

Enables queuing of “Result Data”. If enabled, the current result data will remain
until acknowledged (even if new results arrive). New results are queued. The next
set of results are pulled from the queue (made available in the Result Data
module) each time the current results are acknowledged. The DataMan will
respond to the acknowledge by clearing the “Results Available” bit. Once the
“Results Ack” bitis cleared the next set of read results will be posted and “Results
Available” will be set True. If results buffering is not enabled newly received read
results will simply overwrite the content of the Result Data module.

Results Ack

Bitis used to acknowledge that the PLC has successfully read the latest result
data. When set True the “Result Available” bit will be cleared. If result buffering is
enabled, the next set of result data will be pulled from the queue and “Result
Available” will again be set True.

Reserved

Reserved for future use

Results Status Module
Indicates the acquisition and result status. This module consists of data sent from the DataMan device to the PLC.

Slot number: 4

Total Module size: 1 byte

Bit Name Description

0 Decoding Indicates that the DataMan is decoding an acquired image.

1 Decode Complete Bitis toggled on the completion of a decode operation when the new results are
made available (0 ->1 or 1 ->0).

2 Result Buffer Overrun [Indicates that the DataMan has discarded a set of read results because the
results queue is full. Cleared when the next set of results are successfully
queued.

3 Results Available Indicates that a new set of read results are available (i.e. the contents of the
Result Data module are valid). Cleared when the results are acknowledged.

4-6 Reserved Reserved for future use
7 General Fault Indicates that a fault has occurred (i.e. Soft Event “Set Match String” or “Execute

DMCC?” error has occurred).

95

Industrial Network Protocols

Soft Event Control Module

Used to initiate a Soft Event and receive acknowledgment of completion. Note, this is a bi-directional I/O module. Module
data sent from the PLC initiates the Soft Event. Module data sent by the DataMan device acknowledges completion.

Slot number: 5
Total Module size: 1 byte (input) and 1 byte (output)
Data written from the PLC to DataMan:

Bit Name Description
0 Train Code |Bittransition from 0 -> 1 will cause the train code operation to be invoked.
1 Train Match |Bit transition from 0 -> 1 will cause the train match string operation to be invoked.
String
Train Focus [Bit transition from 0 -> 1 will cause the train focus operation to be invoked.
Train Bit transition from 0 -> 1will cause the train brightness operation to be invoked.
Brightness
Untrain Bit transition from 0 -> 1 will cause the untrain operation to be invoked.

Reserved Reserved for future use

Execute Bit transition from 0 -> 1 will cause the DMCC operation to be invoked. Note that a valid
DMCC DMCC command string must first be placed in “User Data” before invoking this event.
7 Set Match Bit transition from 0 -> 1 will cause the set match string operation to be invoked. Note that
String match string data must first be placed in “User Data” before invoking this event.

Data written from the DataMan to PLC:

Bit Name Description

0 Train Code Ack Indicates that the “Train Code” operation has completed

1 Train Match String Ack | Indicates that the “Train Match String” operation has completed
2 Train Focus Ack Indicates that the “Train Focus” operation has completed

3 Train Brightness Ack [Indicates that the “Train Brightness” operation has completed
4 Untrain Ack Indicates that the “Untrain” operation has completed

5 Reserved Reserved for future use

6 Execute DMCC Ack |Indicates that the “Execute DMCC” operation has completed

7 Set Match String Ack |Indicates that the “Set Match String” operation has completed

User Data Module

Data sent from a PLC to a DataMan to support acquisition, decode and other special operations. Currently this module is
only used to support the “Execute DMCC” and “Set Match String” soft events.

Note: There are actually 5 versions of the User Data module. Only one instance can be configured for use in a

@ given application. The “User Data Option” and “User Data Length” fields are the same for each module. The “User
Data” field varies in size based on the selected module. Choose the module which is large enough to exchange the
amount of data required by your application.

Slot number: 6

Total Module size:

4 + 16 (16 bytes of User Data)
4 + 32 (32 bytes of User Data)

96

Industrial Network Protocols

4 + 64 (64 bytes of User Data)
4 + 128 (128 bytes of User Data)
4 + 250 (250 bytes of User Data)

Byte Name Description

0-1 User Data Option Currently only used by “Set Match String” soft event. Specifies which code
target to assign the string (16-bit Integer).

0, assign string to all targets

1, assign string to 2D codes

2, assign string to QR codes

3, assign string to 1D / stacked / postal codes

2-3 User Data Length Number of bytes of valid data actually contained in the “User Data” field (16-
bit Integer).
4.. User Data Data sent from the PLC to the DataMan to support acquisition, decode and

other special operations (array of bytes).

Result Data Module
Read result data sent from a DataMan to a PLC.

Look into the Result Data Module for non-PROFINET related data if there was an acquisition problem on the reader. The
"Result Code" part contains information about trigger overruns or buffer overflows that have occurred on the reader.

Note: There are actually 5 versions of the Result Data module. Only a single instance can be configured for use in a

@ given application. The “Result ID”, “Result Code”, “Result Extended” and “Result Length” fields are the same for
each module. The “Result Data” field varies in size based on the selected module. Choose the module which is
large enough to exchange the amount of result data required by your application.

Slot number: 7

Total Module size:

8 + 16 (16 bytes of Result Data)

8 + 32 (32 bytes of Result Data)

8 + 64 (64 bytes of Result Data)

8 + 128 (128 bytes of Result Data)
8 + 246 (246 bytes of Result Data)

Byte Name Description

0-1 Result ID The value of the “Trigger ID” when the trigger that generated these results was
issued. Used to match up triggers with corresponding result data (16-bit Integer).

2-3 Result Code Indicates the success or failure of the read that produced these results (16-bit
Integer).

Bit 0,1=read, 0=no read

Bit 1,1=validated, 0=not validated (or validation notin use)
Bit 2,1=verified, O=not verified (or verification notin use)
Bit 3,1=acquisition trigger overrun

Bit 4,1=acquisition buffer overflow

Bits 5-15 reserved

4-5 Result Extended [Currently unused (16-bit Integer).

6-7 Result Length Actual number of bytes of read data contained in the “Result Data” field (16-bit
Integer).

8... Result Data Decoded read result data (array of bytes)

97

Industrial Network Protocols

Operation

SoftEvents

SoftEvents act as “virtual” inputs. When the value of a SoftEvent changes from 0 -> 1 the action associated with the event
will be executed. When the action completes the corresponding SoftEventAck bit will change from 0 -> 1 to signal
completion. The acknowledge bit will change back to 0 when the corresponding SoftEvent bit is set back to 0.

The “ExecuteDMCC” and “SetMatchString” soft event actions require user supplied data. This data must be written to the
UserData & UserDatalength area of the UserData Module prior to invoking the soft event. Since both of these soft events
depend on the UserData, only one may be invoked at a time.

General Fault Indicator

When a communication related fault occurs the “GeneralFault” bit will change from 0 -> 1. Currently the only fault
conditions supported are soft event operations. If a soft event operation fails, the fault bit will be set. The fault bit will
remain set until the next soft event operation or until triggering is disabled and again re-enabled.

SoftEvent —’—‘—, ‘— I—
[] [

SoftEventAck

GeneralFault

.
L
H_/ A ~ J H_/

SoftEvent SoftEvent cycle #2 SoftEvent
cycle #1 (failure occured) cycle #3

Acquisition Sequence

DataMan can be triggered to acquire images by several methods. It can be done explicitly by manipulating the Trigger bit
of the Acquisition Control Module, it can be triggered by external hard wired input, and finally it can be triggered via
DMCC command. Manipulating the Acquisition Control Module bits will be discussed here.

On startup the “Trigger Enable” bit will be False. It must be set to True to enable triggering. When the device is ready to
accept triggers, the “Trigger Ready” bit will be set to True.

While the Trigger Ready bitis True, each time the reader sees the “Trigger” bit change from 0 to 1, it will initiate an image
acquisition. The client (PLC) should hold the bitin the new state until that same state value is seen back in the Trigger
Ack bit (this is a necessary handshake to guarantee that the change is seen by the reader).

During an acquisition, the Trigger Ready bit will be cleared and the Acquiring bit will be setto True. When the acquisition
is completed, the Acquiring bit will be cleared. The Trigger Ready bit will again be set True once the device is ready to
begin a new image acquisition.

If results buffering is enabled, the device will allow overlapped acquisition and decoding operations. Trigger Ready will
be set high after acquisition is complete but while decoding is still in process. This can be used to achieve faster overall
trigger rates. If result buffering is not enabled, the Trigger Ready bit will remain low until both the acquisition and decode
operations have completed.

To force a reset of the trigger mechanism set the Trigger Enable bit to False, until the Trigger Ready bitis 0. Then,
Trigger Enable can be setto True to re-enable acquisition.

98

Industrial Network Protocols

As a special case, an acquisition can be cancelled by clearing the Trigger signal before the read operation has
completed. This allows for the cancellation of reads in Presentation and Manual mode if no code is in the field of view. To
ensure that a read is not unintentionally cancelled, itis advised that the PLC hold the Trigger signal True until both
TriggerAck and ResultsAvailable are True (or DecodeComplete toggles state).

Trigger EN]
Trigger Ready I |2_| |3_| [
Trigger 11 o1 Im | 31

Trigger Ack |1_| l2_| ,M_l

Missed Acq IIVI—‘

~ ~ ~
Acquisition #1 Acquisition #2 Missed Acg Acquisition #3

| Client |

| DataMan |

Decode / Result Sequence

After an image is acquired itis decoded. While being decoded, the “Decoding” bit of the Result Status Module is set.
When decode is complete, the Decoding bitis cleared and the “Decode Complete” bitis toggled.

The “Results Buffer Enable” bit determines how decode results are handled by the reader. If the Results Buffer Enable bit
is set to False, then the decode results are immediately placed into the Results Module and Results Available is set to
True.

If the Results Buffer Enable bitis set to True the new results are queued. The earlier decode results remain in the Results
Module until they are acknowledged by the client by setting the “Results Ack” bit to True. After the Results Available bit is
cleared, the client should set the Results Ack bit back to False to allow the next queued results to be placed in to the
Results Module. This is a necessary handshake to ensure the results are received by the DataMan client (PLC).

Behavior of DecodeStatusRegister

Bit Bit Name Results if Buffering Disabled Results if Buffering Enabled
1 Decoding Setwhen decoding an image. Setwhen decoding an image.
2 Decode Complete Toggled on completion of an image decode. Toggled on completion of an image
decode.
3 Results Buffer Remains set to zero. Set when decode results could not
Overflow be queued because the client

failed to acknowledge a previous
result. Cleared when the decode
result is successfully queued.

4 Results Available Setwhen new results are placed in the Results | Set when new results are placed in
Module. Stays set until the results are the Results Module. Stays set until
acknowledged by setting Results Ack to true. the results are acknowledged by
setting Results Ack to true.

99

Industrial Network Protocols

e e B 2
.]
Trigger Ack |1_| |2_|

Decode Cmplt 1)
il
2
_

Results Avail
| 1 |
Results Ack
1

—
Read #1 Read #2

Results Buffering

There is an option to enable a queue for decode results. If enabled this allows a finite number of decode result data to
queue up until the client (PLC) has time to read them. This is useful to smooth out data flow if the client (PLC) slows
down for short periods of time or if there are surges of read activity.

Also, if result buffering is enabled the device will allow overlapped acquisition and decode operations. Depending on the
application this can be used to achieve faster over all trigger rates. See Acquisition Sequence description above for
further detail.

In general, if reads are occurring faster than results can be sent out, the primary difference between buffering or not
buffering is determining which results get discarded. If buffering is not enabled the most recent results are kept and the
earlier result (which was not read by the PLC fast enough) is lost. Essentially the more recent result will simply over write
the earlier result. If buffering is enabled (and the queue becomes full) the most recent results are discarded until room
becomes available in the results queue.

Note: If the queue has overflowed and then buffering is disabled, there will be a greater than 1 difference between

@ the TriggerID and ResultID values. This difference represents the number of reads that had occurred but could not
be queue because the queue was full (number of lost reads equals TriggerID - ResultlD - 1). After the next read, the
ResultlD value will return to the typical operating value of TriggerID - 1.

Siemens Examples

This section gives some examples of using the DataMan with a Siemens S7-300 PLC. Itis assumed that the reader is
familiar with the S7-300 and the SIMATIC programming software.

Symbol Table

Although not required, defining symbols for the DataMan I/O module elements can be extremely helpful. It makes the
code much easier to read and reduces mistakes. This sample table shows symbols defined for a typical instance of a

100

Industrial Network Protocols

DataMan reader. Note, DataMan I/O modules may be at different addresses in your project. Make sure to adjust your
symbol definitions based on the specific offsets of the I/O modules.

%3 Symbol Editor - [S7 Program(3) (Symbols) -- DM200_ResultString\SIMATIC 300 ... (2 |[B]fX]
E Symbol Table Edt Insert View Options Window Help =18 X
Status | Symbol Address | Datatype | Comment r
1 Reader_TriggerEnable @ 10 BOCL
2 Render_Trigger @ 11 |BOOL
3 Reader_TriggerReady I 20 |BOOL
rl Reader_TriggerAck I 21 BOOL
5 Reader_Acquiing I 22 sooL
5 Reader_MizsedAck I 23 |BOCL
7 Render_TriggeriD TE WORD
2 Reader_EuriterEnsbie G 20 |BOOL
3 Reader_ResullzAck G 21 | BooL
10 Reader_Decoding 'S0 lecol
ik Reader DecodeComplete |1 51 [BOOL
12 Reader_ResulsOverrun 152 [B0dL
13 Remder_Feculsdvalabis I 53 BOCL
14 Reader_GeneraF sut |57 [BOOL
15 Reader_TranCode @ 30 |B0OdL
18 Resder TrarMaichString (@ 31 |BOOL
17 Reader_TranFocus G 32 |BOOL
1% Render_TranBrighiness @ 33 |BOOL
19 Render_UnTrain G 34 |BOOL
0 Reader_Executelmec @ 36 |BOOL
2 Render_SetatchString @ 37 |BOOL
) Reader_TranCodeAck I 10 |BodL
23 Reader_TranMalchSirAck |1 1.4 BOOL
24 Reader_TrainFocusAck I 12 |BO0L
25 Reader_TrainBrightAck 1 13 BOOL
% Reader_UnTraindck 14 BoCL
37 Resder ExecuteDmccAck I 16 |BOOL
2 Reader_SetMalchStingsck |1 17 |BOCL
= Reader_ UserDatsOption |GW 256 |WORD
30 Reader UserDatslength |GW 258 |WORD
EY Reader_ResullD M358 |WORD
7 Reader_ResuliCode MW 258 |WORD
3 Reader_ResulExtended W 260 |WORD
34 Render_Resulliength W L —
|Press Fi bo get Help. Ll 4

Trigger and Get Results

Run the sample program “DM200_SampleRead” for the complete example program.

@ Note: This sample can be used with any PROFINET enabled DataMan reader.

Perform the following steps to install the program:

1.

2
3.
4

Start the SIMATIC Manager software.
Close any open applications.
From the main menu, select File -> Retrieve...

Browse to find the sample file on your PC.

101

Industrial Network Protocols

Retrieving - Select an archive

Look in | <e Local Disk (C:) ~| & & ok B

p— @Dﬁmw —_— I

a My Documents LE'I::H

¢ My Computer _
L 3% Floppy (&) Yolume Information
S 2 ocal Disk [C:
2 CD Diive D)) W5
= public on "swash’ (P:)
i) Shared Documents
i) Admin's Documents |
() My Documents

&J My Network Places

Open
Files of lype: [PKZip 12 0Archive (*.2ip) =] _ Coce |

5. Look for the Siemens folder and select the zip file.

Retrieving - Select an archive

Look in: |) Siemens ~| « & ¥ B

Iﬁ D200 _SampleRead. zip
(I0m200_SoftEvents.zip

File name: |Dm200_SampleRead zip Open

Files of type: | PKZip 12.0-Archive [*.zip) -] Cancel

6. Selecta destination directory to save the project on your PC.

102

Industrial Network Protocols

Select destination directory @

+) STDATA A
#-{) STHSYS
+-{) s7ife
+-) STIKX
+-|7 S7INF
+-|C3 57UBS
+-) STMANUAL
+-) STMET
+-{C3) STNGD
+-|) STNVE
7 BHE
+-) 575KA
+- 5757M
#5877 et

oK. Cancel Help

7. The Siemens software extracts the sample archive and makes it available.
8. Reduced to the basics, the process of reading and retrieving results consists of the following:

9. Define an area in your application to save read results. There are many options regarding how and where result
data can be stored. For our example we define a Data Block (DB) which contains the fields of the Result Data
module that we are interested in for our application.

Addreps Typa Initial walue Carrent
0.0 STRUCT
+0.0| |ID INT o ID of this read resultc
+2.0| |[Flags INT o Flags indicacing success or failurse
+4.0| |Length ENT Q Nuzber of data bytes in the arvay Valus(]
+E&.0| |Value ARPAYIL. . €3] Code wvalus read
*1.0 CHAR
=70.0 END_STRUCT

10. Enable the reader

QL0 Q1.0
“Reader "Reader_
TriggerEna TriggerEna
ble" ble"
| 171 {s}—
11. Setthe trigger signal and set semaphore to indicate a read is pending.
IZ.0 Iz.1
"Reader nl_1 "Reader o1_1
TriggerRea "Peader Triggerick EResultPen "Reader
dy" Trigger"™ - ding Trigger"
| | /1 11 1/ {s}—
EResultPen
ding
L—s)—f

103

Industrial Network Protocols

12. As soon as the trigger signal is acknowledged, clear the trigger signal.

12.1
0l.1 "Reader_ g1.1
"Reader Triggerhck "Reader
Trigoer”® " Trigger"

| | | | i ol |
1T 1| 1 R—

13. As soon as the results are available save a copy of the result data and set the results acknowledge signal.

I5.3 nz_1
"Peader_ "Reader_
Resultivai Resultsick
lakle" - MOVE
| | i EN ENO

PIWZEE <IN DES.DEWD

"LatcescRes
OUT ulcs® . ID

MOWVE
EN ENOD —
PIWZES HIN
= e
"LatestRes
ulcs-.
OUT ~Flags
MOVE
EN ENO —
PIWMZEZ HIN DES._DEW4

Humber of

el
Value[]

“LatesCHes

ults”,
AT f=Taragrh

SFCZD
Copy Wariables
"ELFMOW™
EN END —
PHI ZE4.0
EYTE &4 —{SRCELE RET_ WAL —#BLEMOVRES
PFDES . DBXG
-0
Coda
value read
"LatestRes
ulecs®”,
DETELE ~Value
0z 1
"Reader
Pesultshck
{s}—

104

14. When the reader sees the result acknowledge signal, clear result acknowledge, clear the read pending

semaphore, and signal that the read process has completed.

Industrial Network Protocols

Note: The reader clears “Results Available” as soon as it sees the PLC’s “Results Ack” signal.

0z2_1 I5.3
"Reader "Reader_
Resultsichk Resultiwai gHesultPen
" lahle" ding
| | | 7| {0} |
1| . { R} 1
®
"Reader
Lesultsick
"
{r}—
#lone
(s}

Using Soft Events

Run the sample program “DM200_SoftEvents” for the complete example program.

@ Note: This sample can be used with any PROFINET enabled DataMan reader.

Perform the following steps to install the program:
1. Startthe SIMATIC Manager software.
2. Close any open applications.
3. From the main menu, select File -> Retrieve...
4

Browse to find the sample file on your PC.

Retrieving - Select an archive

~| e« BB

Look ir: | < Local Disk (C:)
(&3 Desklop
Ji; () My Documents
- .j My Computer
D0ocu 3 Floppy (A:)
O AL ocal Disk [C:
C_JMEL ‘2 CD Diive [D:)
DProfil e public on ‘siwash' ()
i) Shared Documents
£ I Admin's Documents
. |3 My Documents
File name, &J My Network Places
Files of type: |PKZip 12 O:éurchive [* 2ip)

i Files
LER.
Yolume Information
S
Open
ﬂ Cancel

5. Look for the Siemens folder and select Dm200_SoftEvents.zip.

6. Selecta destination directory to save the project on your PC.

105

Industrial Network Protocols

Select destination directory @

) STDATA ~
) STHSYS

) &Tilc

C STIRX

Ca STINF

Ca S7LBS

) STMANLUAL

) STMET

) STNGD

) STNVB

) S7SKA
) S7SYM
=y 7T o

L ISRC JRNC JENC IRRE JRRL TNt JRRE JRRE TR IR IR IR IR

| OK I Cancel Help

7. The Siemens software extracts the sample archive and makes it available.

Soft events are a means of invoking an activity by simply manipulating a single control bit. The activity for each bitis
predefined (for more details, see section SoftEvents). With the exception of “Execute DMCC” and “Set Match String” all
soft events may be invoked in the same way. “Execute DMCC” and “Set Match String” require the added step of loading
the User Data module with application data before invoking the event.

Reduced to the basics the process of invoking a Soft Event consists of the following:

106

Industrial Network Protocols

FC3 : Train Focus

Iniciate the "Train Focus®™ operation and monicor it to complecion.

Hetwork 1: Ticle:

Issue "Train Focus®" signal.

03.2 IL.Z 03.2
"Reader “Reader “Reader _
TrainFocus TrainFocous TrainFocous
- Mk " L]

] A1] . ey]
1/l 1/ { &) 1

Hatwork 2 . Titlae:

Release "Train Focusz" zignal af foon asf it iz acknowledged by cthe reader.

I1.2 Q3.2
"Reader_ “Reader _
TrainFocus TrainFocus

Ack® "
| | ol]
11 { R} 1
ihone
{}—

Hetwork 3 : Ticle:

Sat tha return FC stata.

ote, this will only return TRUE after the acknowledge has been received from
he reader. Otherwise it will recurn FALSE.

— | { save)

Executing DMCC Commands

Refer to sample program “DM200_SoftEvents” for the complete example program (for information on how to install it, see
section Using Soft Events).

@ Note: This sample can be used with any PROFINET enabled DataMan reader.

“Execute DMCC” is a Soft Event which requires the added step of loading the User Data module with the desired DMCC
command string before invoking the event. Note, the Soft Event mechanism does not provide a means of returning
DMCC response data (other than a failure indication). So this mechanism cannot be used for DMCC “||>GET...”
commands.

The process of executing a DMCC command is the same as that for all other Soft Events (see example above) except the
step of invoking the Soft Event also includes copying the command string to the User Data Module. In this example the
command string is exists in a Data Block. This example could be expanded to utilize a Data Block with an array of
command strings that the copy function could reference by an index value. That would allow the user to pre-define all
DMCC commands that are required by the application and invoke them simply by index.

107

Industrial Network Protocols

Q3.6 Il.6
“Reader_ “Reader _
Executelmc Executelmc FC11

:: : 'ﬂl':k =Set User Data®

1/ 1/} EN END
QEZ56
“Reader_|UserDataM

UserDatalp |oduleAddr ECopyResul
cion® —ess RET VAL [t

UserDatal
64 qoduleSize

PEDEG . DEXD
-0
"Executelm

ccDB®. |UserDacal
Command —{tring

Q3.6
“Peader _
Executelmc

o
{s}—

The function “Set User Data” (FC11) simply copies the provided string to the User Data module. Refer to the example
program for the actual STL code.

108

Industrial Protocols for the Wireless DataMan

Industrial Protocols for the Wireless DataMan

Special considerations must be taken into account when using any of the Industrial Ethernet protocols with DataMan
wireless readers. Industrial protocol connections are established not between the PLC and the wireless device, but
between the PLC and the DataMan base station.

The DataMan wireless reader may be, attimes:
« powered down
« in hibernation mode
« physically out of range

Automatic power down and hibernation are features that preserve power and extend the time period between
recharging.

The following sections detail the necessary configurations you have to set to communicate with the DataMan base
station (through which information is routed to the DataMan wireless reader).

Protocol Operation

Because the wireless reader can become unavailable at times, the Industrial Ethernet protocols are actually run from the
base station. The base station is directly wired to the Ethernet network and is online continuously (even when the reader
is unavailable). In this way the Ethernet protocol operation is not disrupted when the reader is unavailable. This results in
a few special considerations.

Ethernet Address

Because the Ethernet protocols are run from the base station, you must use the base station Ethernet address when
configuring the protocol. For example, when configuring EtherNet/IP using the RSLogix5000 software package, you
select the DM8000 reader but you must enter the IP address of the base station (not the reader). The PLC using the
protocol must communicate with the base station.

PLC Triggering

Because the wireless reader can become unavailable at times, triggering from the PLC is not supported on wireless
readers. The PLC will receive all read results triggered from the reader. Also, Soft Events and DMCC commands are
supported (when the reader is available).

Soft Events

Soft Events triggered from the PLC are supported. However, these events will fail if the reader is unavailable. Such a
failure will be signaled by the ‘General Fault’ bit.

Note: Some operations assigned to soft events are in general not supported on any handheld DataMan readers (for
example, ‘Train Code’, ‘Train Focus’, ‘“Train Brightness’). Unsupported operations will also resultin the ‘General
Fault’ signal being set.

DMCC

DMCC commands issued from the PLC are supported. However, these events will fail if the reader is unavailable.
Depending on which Industrial Ethernet protocol is in use, the failure will be signaled either with the ‘General Fault

109

Industrial Protocols for the Wireless DataMan

signal or an error status return code. The new DMCC error return code ‘105’ has been established to signal that the
reader is unavailable.

Note: When issuing DMCC commands from the PLC to a wireless reader, do not change the DMCC response
@format (thatis, do notissue the command ‘COM.DMCC-RESPONSE’). Doing this may disable DMCC operation on
the wireless reader. This command can be used on non-Industrial Ethernet connections such as Telnet.

Offline Buffering

When the wireless reader is physically out of range of the base station, it will automatically buffer all reads. Buffer
capacity varies according to a number of factors. However, typically several hundred reads can be stored. These
buffered reads are also preserved if the reader enters hibernation (sleep mode). When the reader is brought back into
range of the base station the buffered reads will automatically be downloaded.

If this offline buffering situation is anticipated in the user application, then Industrial Ethernet protocol buffering should
also be enabled. Protocol buffering will allow a PLC to control the rate that read results are returned to the PLC. This
prevents the PLC from becoming overwhelmed by a rapid flow of read results. Refer to the specific Industrial Protocol

section of this document for details of enabling and utilizing protocol buffering.

(@) Note: The base station can buffer up to 500 results.

Status of Industrial Protocols

The Status field of the industrial protocols (in Setup Tool, under Industrial Protocols tab) displays the last logged
message of the status dialog. The message will remain displayed until another message is logged. If no industrial
protocol is enabled, the status field remains blank.

Status messages vary by protocol, and some protocols do not log any messages. See the table below for a summary of

messages for protocols that display them:

Protocol/Reader

Message

Description

Wifi readers

Industrial ethernet
protocols shutdown

Displayed if no protocol is running

Proxy %s connection
opening

Opening connection to wifi reader, s == connection type ("Command",
"Result", or "User DMCC")

Proxy %s open

Connection open, s == connection type ("Command", "Result", or "User
DMCC")

Proxy %s not open

failed to open connection, s == connection type ("Command", "Result", or
"User DMCC")

Proxy %s closed

connection has been closed, s == connection type ("Command", "Result",
or"User DMCC")

Modbus TCP

Modbus TCP starting...

Protocol starting

Modbus TCP: Server
Setup Failed

Failed to start server

Modbus TCP running

Protocol running

Modbus TCP: Add
block
%s failed

Data block configuration error

Modbus TCP control
block %s

Status of ModbusTCP data block, s == “info” or “error”

110

Industrial Protocols for the Wireless DataMan

Protocol/Reader

Message

Description

SLMP Protocol

Opening SLMP scanner
connection %s:%x

starting SLMP connection, s==IP address, x==port number

SLMP scanner
connection established
%s: %X

SLMP connection established, s==IP address, x==port number

SLMP scanner
connection %s:%x
rejected

PLC has rejected the connection, s==IP address, x==port number

SLMP scanner
connection %s:%x
faulted

Miscellaneous connection fault has occurred, s==IP address, x==port
number

SLMP scanner poll rate
settoo low

Configured SLMP poll rate is set too low

SLMP scanner
connection normal
%s:%X

SLMP connection has been restored, s==IP address, x==port number

SLMP Scanner control
block %s

Status of SLMP data block, s == “info” or “error”

SLMP Scanner failed
transfering '%s' block

Comm error, failed to transfer a data block, s==block name

111

DataMan Application Development

DataMan Application Development

DataMan Control Commands (DMCC) are a method of configuring and controlling a DataMan reader from a COM port or
through an Ethernet connection, either directly or programmatically through a custom application.

For a complete list of DMCC commands, click the Windows Start menu and browse to Cognex -> DataMan Setup Tool v
x.X -> Documentation -> Command Reference. Alternatively, you can open the Command Reference through the Setup
Tool Help menu.

DMCC Overview

DataMan Control Commands (DMCC) are a method of configuring and controlling a DataMan reader from a COM port,
either directly or programatically through a custom application. Depending on the DataMan reader you are using, the
COM port connection be either RS232, USB, or the Telnet protocol in the case of Ethernet capable readers. By default,
Ethernet capable readers are configured to communicate over TCP port number 23, but you can use the DataMan Setup
Tool to assign a different port number as necessary.

Cognex recommends using HyperTerminal, a built-in Windows communications application, to test your ability to
connect to an available reader.

Command Syntax

All DMCC commands are formed of a stream of ASCII printable characters with the following syntax:
command-header command [arguments] footer
For example:

| |>trigger on\CR\LF

Command Header Syntax

| | checksum: command-id>

All options are colon separated ASCII text. A header without the header-option block will use header defaults.
checksum

0: no checksum (default)

1: last byte before footer is XOR of bytes

command-id

An integer command sequence that can be reported back in acknowledgement.

Header Examples

Example Description

1> Default Header

[10:123> Header indicating no-checksum and ID of 123

[11> Header indicating checksum after command and data.

112

DataMan Application Development

Command

The command is an ASCII typable string possibly followed by data. All command names and public parameters data are
case insensitive. Only a single command may be issued within a header-footer block. Commands, parameters and
arguments are separated by a space character.

Commands
Short names specifying an action. A commonly used command is GET or SET followed by a Parameter and Value.

Parameters

Short names specifying a device setting. Parameter names are organized with a group of similar commands with one
level of structural organization separated by a period (\.").

Arguments
Boolean: ON or OFF

Integer: 123456

String: ASCII text string enclosed by quotes (“).The string content is passed to a function to translate the string to the final
format. The following characters must be backslash escaped: quote (\"), backslash (\\), pipe (\|), tab (\t), CR(\r), LF (\n).

Footer

The footeris a carriage return and linefeed (noted as \CR\LF or \r\n).

Reader Response

The reader will have one of several response formats. The choice of response format is configured using the SET
COM.DMCC-RESPONSE command.

Silent: (0, Default) No response will be sent from the reader. Invalid commands are ignored without feedback. Command
responses are sentin space delimited ASCII text without a header or footer.

Extended: (1) The reader responds with a header data footer block similar to the command format.

@ Note: While the reader can process a stream of DMCC commands, it is typically more robust to either wait for a
response, or insert a delay between consecutive commands.

| | checksum:command-id[status]

checksum

The response uses the same checksum format as the command sent to the reader.
0: no checksum

1: last byte before footer is XOR of bytes

command-1id

The command-id sent to the reader is returned in the response header.
status

An integer in ASCII text format.

0: no error

1: reader initiated read-string

100: unidentified error

101: command invalid

102: parameter invalid

103: checksum incorrect

113

DataMan Application Development

104: parameter rejected/altered due to reader state

105: reader unavailable (offline)

Examples
Command Silent Response |Extended Response Description
| |>GET ON | | [0]JON\r\n Is the DataMatrix symbology
SYMBOL.DATAMATRIX\r\n enabled?
| | >SET no response |1 101\r\n Enable the DataMatrix symbology.
SYMBOL . DATAMATRIX
ON\r\n
| I>TRIGGER ON\r\n decoded dataor |||[0]1\r\n || [1]decoded |Trigger Command

no-read response |data or no-read

response in base64\r\n

DMCC Application Development
You can use DMCC as an application programming interface for integrating a reader into a larger automation system.

You can also use the DataMan SDK (hereafter referred to as SDK). The following sections give detailed information
aboutinstalling the SDK, its contents, building the SDK sample application, and about the utility source codes provided
with the SDK.

Note: If you want to create your own application from scratch and you want to communicate with the DataMan
reader through the serial port, make sure you set port.DirEnable = true, if the portis an instance of the SerialPort
class.

DataMan SDK Contents

The DataMan SDK comprises the SDK binary files and their documentation, along with code sources of some helper
utilities and a sample application.

The binary files are available for two platforms: one for Microsoft .Net (PC) and one for Microsoft .Net Compact
Framework (CF). The name of each file corresponds to the platform it belongs to (PC/CF). There are two components for
each platform, one is the DataMan SDK core itself (Cognex.DataMan.SDK), the other is for discovering available devices
to be used with the SDK (Cognex.DataMan.Discovery).

The source codes are provided in the form of complete Microsoft Visual Studio projects. In order to build the SDK sample
application, open the sample code’s solution in Microsoft Visual Studio and choose Build solution.

Using the SDK
Usual steps in a typical DataMan SDK application

1. Discover the device (may be omitted if the device address is known in advance).
2. Subscribe to the events you are interested in (e.g. result string arrived event).

3. Connectto the device.

4. Send DMCC commands to the device (e.g. trigger).

5

Process the incoming result data (e.g. show result string).

114

DataMan Application Development

Accessing the DataMan SDK library

To use the SDK for your own purposes, perform the following steps:
1. In Microsoft Visual Studio, click Create Solution/Project.
2. Under Project, right-click References and choose Add Reference...

3. In the pop-up window, click the Browse tab and look for the Cognex.DataMan.SDK.*.dll file (where * refers to the
platform you are working on, either PC or CF) in the directory where you installed or copied the binary files.

4. You can add the following line to the beginning of your code:

using Cognex.DataMan.SDK;

to find the different elements belonging to the SDK in this namespace. They will appear in the intellisense as seen in the
following image:

SgTeX . Pacakian . SOF.|

§ lreadyConnectedException -
Ml BirnaryDhataTransferProgressHandler

o CodeQualityDataarmedHandler

W DatablsnbExcephion

i DatablanSystem

¥ Debuglogger

% DmccResponie

private void MainFod

antoconnect = h
- § EtRSysternConnector
if (rull '= Ay ¢ TrmEecannecting
- s dirrropdiFaedl
syates. Do) |8 ImagedsivedHandler
- - lmpgeFeemat
d lmbgeGeapruciammedHandler
private void OmEthSj ImageCuality

M ImageSize
M ImageTvpe
synoContext. Pod | 5 ety X
| | %55 IngorrectChacipumExgeption

% InvvalidCommandExgepticn

% IvvalidPararmeterforeption

i IvaalidResponsebxception

=2 IystemConnectar

“§ LoginFailedException -

e 1
delegatd

Enumerating DataMan Devices

In your project, which already uses the SDK, you’ll need the following additional steps:

1. Under Project, right-click References and choose Add Reference...

2. In the pop-up window, click the Browse tab and look for the Cognex.DataMan.Discovery.*.dll file (where * refers
to the platform you are working on, either PC or CF) in the directory where you installed or copied the binary files.

3. Add the following line to the beginning of your code:

using Cognex.DataMan.Discovery;

to find the different elements belonging to the SDK in these namespaces. They will appear in the intellisense.

From this point on, you can choose to discover devices either via Ethernet or via serial communication (RS232/USB), or
you can choose to do both.

4. Discovering devices via Ethernet:
a. Create a new EthSystemDiscoverer.

EthSystemDiscoverer ethSystemDiscoverer = new
EthSystemDiscoverer () ;

115

DataMan Application Development

b. Subscribe to its SystemDiscovered event.

ethSystemDiscoverer.SystemDiscovered += new
EthSystemDiscoverer.SystemDiscoveredHandler (OnEthSystemDiscovered) ;

c. Create event handler of type EthSystemDiscoverer.SystemDiscoveredHandler.

d. The eventhandler argumentis an EthSystemDiscoverer.Systeminfo. These Systeminfo objects contain
information required for connecting to a reader. You can store these Systeminfo objects in your own collection.

e. To startdevice discovery, call the ethSystemDiscoverer.Discover() method.
5. Discovering devices via serial communication (RS232/USB):
a. Create a new SerSystemDiscoverer.

SerSystemDiscoverer serSystemDiscoverer = new
SerSystemDiscoverer () ;

b. Subscribe to its SystemDiscovered event.

serSystemDiscoverer.SystemDiscovered += new
SerSystemDiscoverer.SystemDiscoveredHandler (OnSerSystemDiscovered) ;

c. Create event handler of type SerSystemDiscoverer.SystemDiscoveredHandler.

d. The eventhandler argumentis a SerSystemDiscoverer.Systeminfo. These SystemlInfo objects contain information
required for connecting to a reader. You can store these Systeminfo objects in your own collection.

e. To startdevice discovery, call the serSystemDiscoverer.Discover() method.

@ Note: The SystemDiscovered event will be fired every time a device is detected (either the device announced itself
after booting up or it responded to the Discover() method).

Subscribing to Events

If you want to react to result-like events in your application, you have to subscribe to the related events. There are also
some events related to connection state changes.

Here is an example where you subscribe for the events of read string and image arrival:

mySystem.XmlResultArrived += new XmlResultArrivedHandler (OnXmlResultArrived) ;
mySystem. ImageArrived += new ImageArrivedHandler (OnImageArrived) ;

@ Note: The order of the result components may not always be the same, so ifitis important to synchronize them, use
the ResultCollector utility class provided via the DataManUtils component. (See details in section Helper Utilities).

Connecting to a DataMan Device
Your Ethernet device
Connect to your Ethernet device by performing the following steps:

1. Create a connector to your device:
EthSystemConnector myConn = new EthSystemConnector (devicelIP) ;
where devicelIpis either a known IP address or one that was discovered by an EthSystemDiscoverer.

2. Specify user name and password:

myConn.UserName = "admin";
myConn.Password = "password or empty string";

116

DataMan Application Development

3. Create a new DataManSystem instance with the created connector:
DataManSystem mySystem = new DataManSystem (myConn) ;

4. Call the Connect() method of your DataManSystem instance:
mySystem.Connect () ;

5. (Optional) Verify if you are connected:

if (mySystem.IsConnected)

6. To disconnect, call

mySystem.Disconnect () ;

@ Note: Currently all devices use the user name admin. If no password is required, an empty string can be used.

Your Serial device
Connect to your serial device by performing the following steps:

1. Create a connector to your device:

SerSystemConnector myConn = new SerSystemConnector (PortName, Baudrate);

where PortName and Baudrate are either known serial connection parameters or come from a SerSystemDiscoverer.
2. Create a new DataManSystem instance with the created connector:

DataManSystem mySystem = new DataManSystem (myConn) ;

3. Call the Connect() method of your DataManSystem instance:

mySystem.Connect () ;

4. (Optional) Verify if you are connected:

if (mySystem.IsConnected)

5. To disconnect, call

mySystem.Disconnect () ;

Sending DMCC Commands to DataMan Devices
Use SendCommand () for sending different commands to the reader. For information about available commands, refer to
the DMCC Command Reference.

There is one mandatory parameter for SendCommand () which is the command string itself. There are also two optional
parameters: one for overriding the default timeout for the command and another for passing additional bytes with the

command.
The following is an example for sending a DMCC command.

DmccResponse response = mySystem.SendCommand ("GET DEVICE.TYPE") ;

@ Note: The response’s content resides in the response object's PayLoad property. Also note that no DMCC header
or footer is specified in the command string.

117

DataMan Application Development

Some functions like SendCommand() or GetLivelmage() also have asynchronous implementations. If you wish to use
these, look for the desired function name with Begin/End prefix. These functions go in pairs; the function with the Begin
prefix returns an IAsyncResult which can be used by the one with the End prefix.

Displaying Static and Live Images from a DataMan Device

To have static images displayed, use DataManSystem.GetLastReadlmage () or subscribe for the event ImageArrived to
getimages.

To have live images displayed, perform the following steps:

1. Setthe reader to live display mode:

mySystem.SendCommand ("SET LIVEIMG.MODE 2");

2. Periodically poll the device for images by using

mySystem.GetLiveImage (ImageFormat, ImageSize, ImageQuality);

See an example implementation in the source of the Sample application. In the example, a new polling thread is created
to avoid locking the GUI.

To turn off live display mode, use

mySystem.SendCommand ("SET LIVEIMG.MODE 0")

Helper Utilities

Some helper functions are provided as source codes with the SDK in the project called DataManUtils. Some of the main
features are described below.

Gui
Provides functions for image manipulation like fitting a resultimage into a specified control, converting bitmap data
to/from a byte array, etc.

Additional classes provide SVG helpers for image parsing and SVG rendering. SVG formatted result component is used
by the reader to mark the area of the image where the code was detected.

ResultCollector
The order of result components may not always be the same. For example sometimes the XML result arrives first,
sometimes the image. This issue can be overcome by using the ResultCollector.

The user needs to specify what makes a result complete (e.g. it consists of an image, an SVG graphic and an xml read
result) and subscribe to ResultCollector's ComplexResultArrived event.

The ResultCollector waits for the result components. If a resultis complete, a ComplexResultArrived eventis fired. Ifa
result is not complete but it times out (time out value can be set via the ResultTimeOut property) or the ResultCollector’s
buffer is full (buffer length can be set via the ResultCacheLength property), then a PartialResultDropped eventis fired.
Both events provide the available result components in their event argument, which can be used to process the complex
result (e.g. maintain result history, show the image, graphic and result string, etc.)

DmccEscaper
Can be used to escape or un-escape a DMCC command string.

FileLogger
Simple logger class can be used during development. This, like all other utilities provided here, works both on PC and
CF platforms.

118

DataMan Application Development

Using the Helper Utilities

The helper utilities are contained in two projects. Both projects refer to the same source codes, but one is created for
Microsoft .Net Compact Framework (DataManUtilsCF) and the other of for the PC’s Microsoft .Net Framework
(DataManUtilsPC). To use the features provided in these utilities, include the proper DataManUtils projectin your
solution and reference it in the project in which you wish to use it.

Script-Based Data Formatting

The DataMan Setup Tool allows you to have different data formatting combinations, and to have the reader perform
different actions on the output channel, for example, beep, or have the LEDs blink, or pull output 1 up.

The script-based formatting has two main advantages:
« flexible result configuration

« configuring reader events before the result returns

@ Note: Script-based formatting limits the user to performing two custom events and overwriting the system event.

DMCC Support
The following DMCC commands are available for Script-Based Formatting:

Command Range Description
GET/SET FORMAT.MODE [0..1] Select formatting mode:

« 0 = basic formatting

« 1 =script-based formatting

SCRIPT.LOAD length Load the formatting script from the host to the reader.

SCRIPT.SEND - Send the formatting script from the reader to the host.

Script functions are available to add DMCC support to the script parser. The DMCC implementation is wrapped into
script functions. The script functions are defined at global scope. DMCC functions can be partitioned into three
categories:

« commands (for example, to issue a beep or a reboot)
« seftter function for properties
« getter function for properties

The functions make use of the variable arguments feature of the script engine. The types of the function arguments are
compared to the expected types defined by the DMCC commands. If the number of arguments or an argument type is
incorrect an error status is returned.

The functions return an object with a property for the status. If a command returns a response it can be accessed by the
response property. The status codes are the same as for the DMCC commands.

If a function executes successfully, a zero status value is returned. Script exceptions are not used.

119

DataMan Application Development

Note:

« The data formatting script function is executed after the output delay time or distance elapsed.

@ « All scripting functions run in a separate thread and the execution is mutual exclusive. It is not possible that a
script function is interrupted by another.

« Use [0,1] or [true,false] instead of [ON|OFF] when scripting.

Based on the DMCC implementation the response is always returned as a single string even for multi-value responses,

such as:

var foo = dmccGet ("DECODER.ROI”) ;

The set command supports multiple and type correct parameters, for example:

dmccSet (“DECODER.ROI”, 16, 1280, 16, 1024);

Example
The following example uses the dmccSet functions to issue a beep signal, set the ftp server IP for image storage and

adds the MAC to the output response:
function onResult (decodeResults, readerProperties, output)

{

var myoutput;
var result tmp = dmccCommand (”BEEP”, 1, 1);

result tmp = dmccSet (“FTP-IMAGE.IP-ADDRESS”, “192.168.23.42");
if (result tmp.status !=0)

throw ("FATAL: failed to set the ftp server address”);

}
var mac = dmccGet (”DEVICE.MAC-ADDRESS”) ;

myoutput = ’'Result="’ + decodeResults[0].content + ’”, MAC=’+mac.response;
output.content = myoutput;

}

In case the DMCC set command for the IP address fails, a non-zero status will be returned, and a script exception will be
thrown thatis reported by the DataMan Setup Tool.

Note: If you use the Throw() command, like in the example above, to report the occurrence of an anomalous
@ situation (exception), the error will appear in the Setup Tool’s error log. To access the error log, in the Setup Tool’s
menu bar, click System and then click Show Device Log.

Auxiliary Functions
The following auxiliary global functions are also available:
« function for decoding escape sequences

« function to encode a string argument into base64 encoding

Function decode_sequences
This global function is used to decode escape sequences. The function returns the string that contains the decoded
escape sequence. The return value can be used to add keyboard control commands to a result transmitted over a HID

connection.

120

DataMan Application Development

Parameter Type Description

encodedString string A string value that contains keyboard escape sequences.

To simulate Alt-key, Ctrl-key, or Shift-key combinations, the following four escape sequences are available:
« \ALT- for &It;ALT-key> sequences
« \CTRL- for &It;CTRL-key> sequences
« \SHIFT- for &It;SHIFT-key> sequences

« \K for special keys

@ Note: The key after the backslash needs to be a capital letter, otherwise no special key combination is recognized.

Supported Key Sequences and Keys
The following list contains the currently supported keys/key combinations:

o ALT-Ato ALT-Z

o« CTRL-Ato CTRL-Z

o CTRL-F1to CTRL-F12
o SHIFT-F1 to SHIFT-F12
« F1toF12

o ALT-F1to ALT-F12

« PageUp, PageDown, Home, End, Arrow (up, down, left, right), , Insert, Delete, Backspace, Tab, Esc, Print Screen,
GUI (left, right) keys.

« The escape sequences for these are the following:

« PageUp ->\KPup;

« PageDown ->\KPdn;
« Home ->\KHome;

« End->\KEnd;

« Up Arrow ->\KUar;

« Down Arrow ->\KDar;
o Left Arrow ->\KLar;

« Right Arrow ->\KRar;
« Insert->\Kins;

« Delete ->\KDel;

« Backspace -> \KBksp;
o Tab ->\KTab;

o Esc->\KEsc;

« Print Screen -> \KPrtScr;
o Left GUI->\KLGui;

« Right GUI -> \KRGui;

Example
To pre- or post-pend a Ctrl-B keyboard control command, the following code example can be used:

121

DataMan Application Development

var ctrl b = decode sequences ("\\Ctrl-B;");
function onResult (decodeResults, readerProperties, output)

{

if (decodeResults[0] .decoded)
{

output.content = ctrl b+decodeResults[0].content+ctrl b;

Note: The backslash for initiating the escape sequence must also be escaped in the input string. The terminating
semicolon is necessary to be able to distinguish between sequences with the same prefix, otherwise key

@ sequences could be interpreted arbitrarily, e.g. there would be no means to detect if \KF11 means "press F11" or
"Press F1 followed by a one”. If a wrong or incomplete sequence is used, the two characters which mark the escape
sequence are ignored. In this case, the first two letters of the escape sequence are skipped and the remaining
characters will be sent. For example, the sequence "ALT-M11;" is invalid and will resultin displaying "LT-M11;".

Function encode_base64
This global function is used to encode a string argument into base64 encoding. The encoded resultis returned as a
string object.

Parameter Type Description

inputString string Input string to encode into base64.

Error Management

Scripting errors may occur when the scriptis loaded or the code parser function is called. These errors are shown in the
following locations:

« device log

« error box in Script-Based Formatting window

Formatting Script

When script-based formatting is enabled, a user-defined JavaScript module is responsible for data formatting. The
parsing function, which defaults to onResult, is called with three objects as arguments holding the array of DecodeResult
objects, ReaderProperties objects such as trigger mode or statistics, and the output object. There is only one entry point
for both single and multicode results.

Class hierarchy is structured in the following way:

function onResult [decodeResults, readerProperties, output]

122

DecodeResult

SymbologyProperties

Point

ValidationResult

GS1lValidation
DoDValidation

QualityMetrics
Metric

ReaderProperties

Trigger
Statistics

Output
Event

DataMan Application Development

See the detailed description of the related objects below.

Function onResult

This is the event handler for decode events, with zero, one or more decoded results.

Property Type Description
decodeResults DecodeResult] Input, an array of DecodeResult objects. One decode result will hold all
information related to that decode attempt.
readerProperties |ReaderProperties Input, the reader properties not tied to the actual decode result.
output Output Output, the object which needs to be updated to modify the output
string or raise events.

Function onGenerateFTPFilename

The name of the file to be sent to the FTP server can be generated with this function.

Property Type Description
decodeResults DecodeResult[] Input, an array of DecodeResult objects. One decode result will hold all
information related to that decode attempt.
readerProperties [ReaderProperties Input, the reader properties not tied to the actual decode result.
output Output Output, the object which needs to be updated to modify the output
string or raise events.

The file name of the image to be uploaded is taken from the string return value of the script. For example:

function onGenerateFTPFilename (decodeResults, readerProperties, output)

{

var ftp filename = readerPRoperties.name + "-";

ftp filename +=readerProperties.trigger.index + "-" + decodeResults
[0] .image.index;
return ftp filename;

}

function onGenerateFTPPCMReportFilename (decodeResults, readerProperties, output)

{

var ftp filename = readerPRoperties.name + "-";

ftp filename +=readerProperties.trigger.index + "-" + decodeResults
[0] .image.index;
return ftp filename;

123

DecodeResult Object

DataMan Application Development

The following tables list the details of the DecodeResult object, its types and properties.

Decode Result

Describes the details of one decoded result.

Property Type Description

decoded boolean True if decoding was successful.

content string The (raw) read result.

decodeTime integer The decoding time in milliseconds.

triggerTime integer The trigger time in milliseconds.

timeout string The trigger timeout in milliseconds.

symbology SymbologyProperties The values of this property are listed in the Symbology Properties table
below.

image ImageProperties The values of this property, also known as capture attributes, are listed in
the Image Properties table below.

validation ValidationResult The values of this property are listed in the Validation Result table below.

metrics QualityMetrics The values of this property are listed in the Quality Metrics table below.

readSetup integer Used read setup index token.

source string The name of the device that decoded the image.

annotation string Result annotation for master-slave triggering.

label string Symbol label.

Symbology Properties

Symbology properties for a decoded result.

Property Type Description

name string The name of the symbology.

id string The symbology identifier (by ISO15424).

quality integer The overall quality metrics for the code, ranging in [0, 100]. For
symbologies that use Reed-Solomon error correction (e.g. DataMatrix,
QR Code, AztecCode, MaxiCode, DotCode, PDF417, certain 4-state
postal codes), it reports the UEC (unused error correction). For linear
symbologies, it indicates the overall quality of the code. The higher the
number, the better the quality.

moduleSize float The module size. (The unitis pixel per module, ppm.)

size point The size of the symbol in columns x rows. If not applicable for the symbol,
the values will be setto -1.

124

DataMan Application Development

Property

Type

Description

corners

array

of Point

This specifies the coordinates of the four corners. The details of the Point
property type are listed in the Point table below.

The corner coordinates are returned in the following order:

For non-mirrored symbols,

« corner 0: upper left corner of the symbol,
« corner 1: upper right corner of the symbol,
« corner 2: lower left corner of the symbol,
« corner 3: lower right corner of the symbol,

except for non-mirrored DataMatrix and Vericode, where corner 0 is
where the two solid lines of cells along two sides meet, and corners 1-3
follow counter clockwise.

For mirrored symbols, the corners are mirrored correspondingly.

center

Point

This specifies the coordinates of the center. The details of the Point
property type are listed in the Point table below.

angle

float

The code orientation in degrees.

PtpTimeStamp

Peer to peer timestamp value on image acquisition.

Property Type Description
S integer Image acquisition timestamp sec property.
ns integer Image acquisition timestamp nanosec property.
Point

Pointis the ordered pair of integer x- and y-coordinates that defines a pointin a two-dimensional plane.

Property Type Description
X integer This value specifies the x coordinate.
y integer This value specifies the y coordinate.

ImageProperties Object

The following tables list the details of the ImageProperties object, its types and properties.

Image Properties

Properties of a captured image.

Property Type Description

index integer The index of the image within the trigger.

Fov Rect The Field of View, the area of image sensor used relative to the top left sensor
corner. The details of the Rect property type are listed in the Rect table below.

RoI Rect The Region of Interest, the part of the FoV that is actually used, relative to the
sensor. The details of the Rect property type are listed in the Rect table below.

exposureTime integer The exposure time in microseconds.

gain integer The camera gain.

autoExposure boolean True if automatic exposure is used.

illEnabled boolean True ifinternal illumination is enabled.

125

DataMan Application Development

Property Type Description
illIntensity integer The internal illumination intensity.
extillEnabled boolean True if external illumination is enabled.
extillIntensity |integer The external illumination intensity.
targetBrightness [integer The target brightness in case of automatic exposure.
focusLength integer The focus value in millimeters. Itis O if NA.
setupIndex integer The currentindex of read setup.
inputStates array of boolean |The state of the input lines when the trigger was started.
filterTime integer The duration of filtering in milliseconds.
creationTime integer Creation time.
creationTicks integer Encoder ticks corresponding to image creation time.
ptpTimeStamp ptpTimeStamp PtP image acquisition timestamp.
id integer The numerical identifier of this image.
Rect

Rect describes the width, height, and location of a rectangle.

Property Type Description
top integer This specifies the top value relative to the top left sensor corner.
bottom integer This specifies the bottom value relative to the top left sensor corner.
left integer This specifies the left value relative to the top left sensor corner.
right integer This specifies the right value relative to the top left sensor corner.

ValidationResult Object

The following tables list the details of the ValidationResult object, its types and properties.

Validation Result

Describes all details of the validation.

Property

Type

Description

state

integer

These are the validation states:
« notTried
« fail
« pass

”

The format of this property is “validation.state.notTried”.

126

DataMan Application Development

Property Type Description

method integer These are the validation methods:
« none

e gsi

e iSO

« dod_uid

« pattern

« matchString

The format of this property is “validation.method.none”.

matchString string This property returns with the previously configured match string. Match
string validation should be enabled for this.

failurePos integer The position of validation failure.

failureCode integer The validation failure code.

failureMsg string The error message describing the cause of validation failure.

gsl GS1 Validation The details of the GS1 Validation property type are listed in the GS1
Validation table below.

dod_uid DoD Validation The details of the DoD Validation property type are listed in the DoD

Validation table below.

GS1Validation
GS1 validation details.

Property Type Description
AIOO string |ldentification of a logistic unit (Serial Shipping Container Code)
AIO1 string |ldentification of a fixed measure trade item (Global Trade Item Number)
ATIO1 string |ldentification of a variable measure trade item (GTIN)
AIO1 string |ldentification of a variable measure trade item (GTIN) scanned at POS
AIO1 string |ldentification of a variable measure trade item (GTIN) not scanned at POS
AIO2 string |ldentification of fixed measure trade items contained in a logistic unit
AIO2 string |ldentification of variable measure trade items contained in a logistic unit
AT10 string |Batch or lot number
AT11 string |Production date
AT12 string |Due date for amount on payment slip
AT13 string |Packaging date
AT15 string |Best before date
AT1l6 string | Sell by date
ATI1l7 string |Expiration date
AI20 string | Product variant
AI21 string | Serial number
AI240 string | Additional product identification assigned by the manufacturer
AI241 string | Customer part number
ATI242 string |Made-to-Order variation number
AI243 string |Packaging component number

127

DataMan Application Development

AI250 string | Secondary serial number

AI251 string |Reference to source entity

AI253 string | Global Document Type Identifier

AI254 string | GLN extension component

AI255 string | Global Coupon Number (GCN)

AI30 string | Variable count

AI31lnn

AI32nn .

AT35nn string | Trade measures

AI36nn

AI33nn

AI34nn . .

AT350n string | Logistic measures

AI36nn

AI337n string | Kilograms per square metre

AI37 string | Count of trade items contained in a logistic unit

AI390n string | Amount payable or coupon value - Single monetary area
AI391n string |Amount payable and ISO currency code

AI392n string |Amount payable for a variable measure trade item — Single monetary area
AI393n string |Amount payable for a variable measure trade item and ISO currency code
AI394n string | Percentage discount of a coupon

AI400 string | Customer’s purchase order number

AT401 string | Global Identification Number for Consignment (GINC)

AT402 string | Global Shipment Identification Number (GSIN)

AT403 string |Routing code

AI410 string | Ship to - Deliver to Global Location Number

AT411 string |Bill to - Invoice to Global Location Number

AI412 string | Purchased from Global Location Number

AT413 string | Ship for - Deliver for - Forward to Global Location Number
AT414 string |ldentification of a physical location - Global Location Number
AT415 string | Global Location Number of the invoicing party

ATI420 string | Ship to - Deliver to postal code within a single postal authority
AT421 string | Ship to - Deliver to postal code with three-digit ISO country code
ATI422 string | Country of origin of a trade item

AT423 string | Country of initial processing

ATI424 string | Country of processing

AI425 string | Country of disassembly

AT426 string | Country covering full process chain

AT427 string | Country subdivision of origin code for a trade item

ATI7001 string |NATO Stock Number (NSN)

AI7002 string |UN/ECE meat carcasses and cuts classification

AI7003 string |Expiration date and time

AI7004 string | Active potency

AI7005 string |Catch area

128

DataMan Application Development

ATI7006 string |First freeze date

AI7007 string |Harvestdate

ATI7008 string | Species for fishery purposes

AI7009 string |Fishing gear type

AI7010 string | Production method

AI703s string |Number of processor with three-digit ISO country code
AI710

E;E string |National Healthcare Reimbursement Number (NHRN):
AI713

AI8001 string | Roll products - width, length, core diameter, direction, splices
ATI8002 string | Cellular mobile telephone identifier

AI8003 string | Global Returnable Asset Identifier (GRAI)

AI8004 string | Global Individual Asset Identifier (GIAI)

AI8005 string | Price per unit of measure

ATI8006 string |ldentification of the components of a trade item
AI8007 string |International Bank Account Number (IBAN)

ATI8008 string |Date and time of production

AI8010 string |Component/ Part Identifier (CPID)

AI8011 string |Component/Part Identifier serial number

AI8012 string | Software version

iiggi; string | Global Service Relation Number (GSRN)

ATI8019 string | Service Relation Instance Number (SRIN)

AI8020 string |Payment slip reference number

AI8110 string | Coupon code identification for use in North America
AI8111 string | Loyalty points of a coupon

AI8200 string |Extended packaging URL

AI90 string |Information mutually agreed between trading partners
AI91-99 string | Company internal information

DoD Validation

DoD validation details.

Property Type Description
enterpriselD string The enterprise identifier.
serialNum string The serial number.
partNum string The part number.
uniquelItemID string The unique item identifier.
batchNum string The batch number.

QualityMetrics Object

129

DataMan Application Development

The following tables list the details of the QualityMetrics object, its types and properties. The details of the Metric property
type are listed in the Metric table below. All the metrics listed are available for all the standards available under the
Symbology Settings pane in the DataMan Setup Tool.

Quality Metrics

Describes the quality of all measured parameters.

Property

Type

1D Standards

2D Standards

Description

singleScanInt

Metric

1D Readability

The single-scan
integrity, raw member
is setto -1. Single-
scan integrity is a
general measure of
the ease of decoding
a barcode using only
a single scan across
it. This is meant to
represent the way that
simple decoders
work. In general, such
algorithms are not
advanced and the
decodability is lower if
a symbol has damage
in multiple locations in
the barcode. A low
singleScanint metric
may indicate many
different problems, as
itis a general
measure of code
quality.

symbolContrast

Metric

1D Readability, ISO/IEC
15416

ISO/IEC 15415
(DataMatrix, QR,
DotCode), SEMIT10

The contrast of the
symbol in ISO15415.
Symbol contrastis a
measure of the
difference in
grayscale value
between the light and
dark cells. A high
contrast makes the
code easier to
decode, while a code
with low contrast may
not decode well due
to difficulty separating
the light and dark
cells from each other.
A poor contrast might
indicate poor lighting,
a code which is
difficult to read due to
similarities between
the printand the
background, or thata
printer is performing
poorly.

130

DataMan Application Development

Property

Type

1D Standards

2D Standards

Description

cellContrast

Metric

AIM/DPM ISO/IEC TR-
29158 (DataMatrix, QR)

The contrast of the
cell. Cell contrastis a
measure of the
difference in
grayscale value
between the light and
dark parts of the cell.
A high contrast makes
the code easier to
decode, while a code
with low contrast may
not decode well due
to difficulty separating
the light and dark
areas of the cells. A
poor contrast might
indicate poor lighting,
a code which is
difficult to read due to
similarities between
marked and
unmarked areas.

axialNonUniformity

Metric

ISO/IEC 15415
(DataMatrix, QR,
DotCode), AIM/DPM
ISO/IEC TR-29158
(DataMatrix, QR)

The axial non-
uniformity. Axial non-
uniformity is a
measure of the
difference in spacing
of grid cells along
each axis. In the best
case, this value will
be zero, indicating
that centers of the grid
cells are evenly
spaced in all
directions. A poor
axial non-uniformity
might indicate
problems in the
printing process for
the code, which
causes the code to
appear stretched out
or compressed.

131

DataMan Application Development

Property

Type

1D Standards

2D Standards

Description

printGrowth

Metric

1D Readability

ISO/IEC 15415
(DataMatrix, QR,
DotCode), AIM/DPM
ISO/IEC TR-29158
(DataMatrix, QR)

The print growth. Print
growth is a measure
of how completely a
light or dark patch fills
the cell allocated to it.
High print growth
means that a cell
exceeds the
boundaries allocated
to it, while a low print
growth indicates that
the cells are not
taking up all the
available space.
Either of these may
cause problems
(either by making
adjacent cells difficult
to read in the case of
high growth, or
making the cell itself
difficult to read in the
case of low growth).
As a result, a print
growth close to zero is
desirable. A high or
low print growth
usually indicates
problems with the
printing process for a
code. For instance, a
dot peen marker may
be wearing out and
making smaller
marks, or a printer
may be depositing too
much ink on a label
and making the marks
too large.

UEC

Metric

ISO/IEC 15415
(DataMatrix, QR,
DotCode), AIM/DPM
ISO/IEC TR-29158
(DataMatrix, QR),
SEMIT10

The unused error
correction. Unused
Error Correction
measures the amount
of Error Checking and
Correction data that
was printed into the
code, butwas
unused. A high UEC
countis good, as it
means that little to no
Error Correction data
was needed to
successfully read your
code. Alow UEC
value may be due to
poor printing, poor
imaging, an incorrect
code, or a damaged
code.

132

DataMan Application Development

Property

Type

1D Standards

2D Standards

Description

modulation

Metric

ISO/IEC 15416

ISO/IEC 15415
(DataMatrix, QR),
AIM/DPM ISO/IEC TR-
29158 (DataMatrix, QR)

The modulation.
Modulation measures
how easily separable
light cells are from
dark cells in a code.
Somewhat similar to
contrast, higher
modulation is better,
and low modulation
can lead to difficulty
telling light cells from
dark ones. Low
modulation can
indicate poor lighting,
a code which is
difficult to read due to
similarities between
the printand the
background, or thata
printer is performing
poorly.

fixedPatternDamage

Metric

ISO/IEC 15415
(DataMatrix, QR),
AIM/DPM ISO/IEC TR-
29158 (DataMatrix, QR)

The fixed pattern
damage. Fixed
pattern damage is a
measure of how much
of the fixed patterns
around the outside of
the code (the solid
finder patterns and
the alternating
clocking patterns) are
intact. If the fixed
patterns are
damaged, then the
code may be difficult
to find at all, let alone
decode. A poor fixed
pattern damage score
usually indicates a
code which has been
damaged or
smudged, or it
indicates a quiet zone
violation.

133

DataMan Application Development

Property

Type

1D Standards

2D Standards

Description

gridNonUniformity

Metric

ISO/IEC 15415
(DataMatrix, QR,
DotCode), AIM/DPM
ISO/IEC TR-29158
(DataMatrix, QR)

The grid non-
uniformity. Grid non-
uniformity measures
the difference
between the optimal
placement of cells
based on the overall
grid and their actual
placements. This is
similar to the axial
non-uniformity
measurement, but
instead of measuring
a stretching or
compressing of the
whole grid, this
measures how much
the individual cells
deviate from their
expected positions.
Poor grid non-
uniformity usually
indicates a printing
process which is not
consistentin its
placement of the cells.

extremeReflectance

Metric

ISO/IEC 15415
(DataMatrix, QR)

The extreme
reflectance. This
metric measures the
brightness of the
background on which
the code is printed. A
too high value might
indicate lighting or
imaging trouble that
could lead to a code
being washed out and
difficult to read. A low
value may indicate
that not enough light
is being applied to the
code, and that
contrast may be poor,
leading to difficulty in
reading. A poor
extreme reflectance
grade may also
indicate trouble
relating to the
positioning of lights
such as hotspots.

134

DataMan Application Development

Property

Type

1D Standards

2D Standards

Description

reflectMin

Metric

1D Readability, ISO/IEC
15416

The reflectance
minimum. This metric
measures how dark
the dark partofa
barcode is. A low
value indicates that
the dark parts of the
code are dark, and a
high value indicates
that they are not. A too
low value may
indicate that there is
not enough light or
too short exposure
time is being used. A
too high value might
indicate a hotspot, too
much light, or that a
too high exposure
time is being used.
Print quality troubles,
like a printer
depositing less ink
than intended, may
also be indicated by
the minimum
reflectance grade.

edgeContrastMin

Metric

1D Readability, ISO/IEC
15416

The edge contrast
minimum measures
the ratio of minimum
edge contrast to the
maximum contrastin
the symbol. The
metric is designed to
pick up any artifacts in
the symbol, such as a
damaged bar, which
generate low contrast
variations in the
symbol. A poor grade
here might indicate
poor focus in the
optical system, poor
lighting, or poor
printing.

135

DataMan Application Development

Property

Type

1D Standards

2D Standards

Description

multiScanInt

Metric

1D Readability

The multi-scan
integrity. Multi-scan
integrity is a general
measure of the ease
of decoding a symbol
by using multiple
scans across the
barcode. This metric
is a way of measuring
how advanced
decoders might
perform in decoding a
particular barcode. A
low multiScanint
metric may indicate
many different
problems, asitis a
general measure of
code quality.

signalToNoiseRatio

Metric

SEMI T10 (DataMatrix)

Signal To Noise Ratio
(SNR) is a relative
measure of the
Symbol Contrast to
the maximum
deviation in light or
dark grayscale levels
in the symbol (ie.
noise).

horizontalMarkGrowth

Metric

SEMI T10 (DataMatrix)

Horizontal Mark
Growth is the tracking
of the tendency to
over or under mark
the symbol, thatis, a
horizontal size
comparison between
the actual marked
cells vs. their nominal
size.

verticalMarkGrowth

Metric

SEMI T10 (DataMatrix)

Vertical Mark Growth
is the tracking of the
tendency to over or
under mark the
symbol, thatis, a
vertical size
comparison between
the actual marked
cells vs. their nominal
size.

dataMatrixCellWidth

Metric

SEMI T10 (DataMatrix)

Data Matrix Cell Width
is the average width
of each cell in the
matrix (in pixels).

dataMatrixCellHeight

Metric

SEMI T10 (DataMatrix)

Data Matrix Cell

Heightis the average
height of each cell in
the matrix (in pixels).

136

DataMan Application Development

Property

Type

1D Standards

2D Standards

Description

horizontalMarkMisplacement

Metric

SEMI T10 (DataMatrix)

Horizontal Mark
Misplacementis the
average horizontal
misplacement of Data
Matrix marks from
their optimal Data
Matrix Cell Center
Points.

verticalMarkMisplacement

Metric

SEMI T10 (DataMatrix)

Vertical Mark
Misplacementis the
average vertical
misplacement of Data
Matrix marks from
their optimal Data
Matrix Cell Center
Points.

cellDefects

Metric

SEMI T10 (DataMatrix)

Cell Defects is the
ratio of incorrect
pixels to total pixels in
the grid.

finderPatternDefects

Metric

SEMI T10 (DataMatrix)

Finder Pattern Defects
is the ratio of incorrect
pixels to total pixels in
the finder pattern.

overallGrade

Metric

ISO/IEC 15416

ISO/IEC 15415
(DataMatrix, QR),
AIM/DPM ISO/IEC TR-
29158 (DataMatrix, QR),
SEMIT10

Overall grade
calculated from the
individual metrics.

edgeDetermination

Metric

ISO/IEC 15416

Edge Determination is
the number of edges
detected in the Scan
Reflectance Profile. If
the number of
detected edges is
greater than or equal
to the expected
number of edges, the
grade is 4. Otherwise,
the grade is 0.

defects

Metric

ISO/IEC 15416

Defects are
irregularities in
elements (bars and
spaces) and quiet
zones. The parameter
is used to measure
the ‘noise’ that results
from unwanted dips
and spikes in the
Scan Reflectance
Profile. The smaller
the defect, the better
the grade.

137

DataMan Application Development

Property

Type

1D Standards

2D Standards

Description

referenceDecode

Metric

ISO/IEC 15416

Reference Decode is
an indication of
whether the standard
2D Data Matrix
algorithm was able to
locate and decode
this particular mark.
This metric generates
a grade of either A or
F.

decodability

Metric

ISO/IEC 15416

Decodability is the
measure of bar code
printing accuracy in
relation to the
symbology-specific
reference decode
algorithm.
Decodability indicates
the scale of error in
the width of the most
deviantelementin the
symbol. The smaller
the deviation, the
higher the grade.

contrastUniformity

Metric

ISO/IEC 15416

ISO/IEC 15415
(DataMatrix, QR)

Contrast Uniformity is
an optional parameter
thatis used for
measuring localized
contrast variations. It
does not affect the
overall grade.

reflectanceMargin

Metric

ISO/IEC 15416

ISO/IEC 15415
(DataMatrix, QR)

Reflectance Margin
measures how each
module is
distinguishable as
light or dark
compared to the
global threshold.
Factors (like print
growth, certain optical
characteristics of the
substrate, uneven
printing, encodation
errors) can reduce or
eliminate the margin
for error between the
reflectance of a
module and the
global threshold. A
low Reflectance
Margin can increase
the probability of a
module being
incorrectly identified
as dark or light.

Metric

138

DataMan Application Development

Describes the quality of a measured parameter.

Property Type Description
raw float The raw metric.
grade string The grade of quality in a range from grade A to F, where A is the highest.
Reader Properties

The following tables list the details of the reader properties.

ReaderProperties

Reader properties not tied to the actual decode result.

Property Type Description
name string The name of the device that decoded the image.
trigger [Trigger The details of Trigger property type are listed in the Trigger table below.
stats Statistics The details of the Statistics property type are listed in the Statistics table below.
inputstr [string This property serves the same function as the <Input String> data formatting token in
Standard Formatting: it holds the string that was sent to the reader via the InputString feature
(only configurable through DMCC).
Trigger
Describes the details of the initiating trigger event.
Property Type Description
type integer These are the available trigger types:
« single
« presentation
« manual
« burst
. self
» continuous
The format of this property is “trigger.type.single”.
index integer The unique trigger identifier.
burstLength [integer The number of images in case of burst trigger.
interval integer The trigger interval in microseconds.
delayType integer These are the available trigger delay types:
« none
o time
« distance
The format of this property is “trigger.delayType.none”.
startDelay integer The trigger start delay in milliseconds (when using Trigger.delayTime.time) or
millimeters (when using Trigger.delayTime.distance).

139

DataMan Application Development

endDelay integer The trigger end delay in milliseconds (when using Trigger.delayTime.time) or
millimeters (when using Trigger.delayTime.distance).

creationTime |integer Creation time.

creationTicks |integer Encoder ticks corresponding to trigger signal time.

groupIndex integer The unique trigger identifier property of the reader which triggered the group.

endTime integer Trigger eventend time (in ms).

endTicks integer Encoder tick counter at trigger end event time.

Statistics

Operational information about the reader.

Property Type Description

reads integer The total number of decoded symbols.

noReads integer The number of times the trigger was received but no symbol was decoded.

triggers integer The total number of triggers calculated by
fotalReads+totalNoReads+missedTriggers.

bufferOverflows |integer The number of images that were not buffered because of image buffer full
condition.

triggerOverruns integer The number of missed triggers because acquisition system was busy.

itemCount integer The number of no reads when buffered no read images are allowed.

passedvalidations |integer The number of reads that passed the data validation.

failedvValidations|integer The number of reads that failed the data validation.

Output

Output describes the result and events after a decode. It is possible to specify different results for individual protocol
targets. The output object has target-specific properties of type string. The name of the output property is the same as the
target protocol name. If no target-specific output is assigned, the result falls back to the default result taken from the
output.content property.

Property Type Description

content string The string that is sent as decode result.

events event These are the output events that are activated. The details of the
DecodeEvents property type are listed in the DecodeEvents table
below.

SetupTool* string The string that is sent to the Setup Tool as decode result.

Serial* string The string that is sent to serial and USB connections as decode result.

Telnet* string The string thatis sent to the Telnet connection as decode result.

Keyboard* string The string that is sent to the HID connection as decode result. Not
available for 5.2.

FTP* string The string that is sent to the FTP connection as decode result.

140

DataMan Application Development

PS2* string The string thatis sent to the PS2 connection as decode result. Not
available for 5.2.

NetworkClient* string The string that is sent to the NetworkClient connection as decode
result.

IndustrialProtocols™ [string The string that is sent to the connected PLC as decode result.

*These properties suppress the output information that was previously set via the output.content property.
An example for the protocol-specific formatting feature can be found here:

function onResult (decodeResults, readerProperties, output)
{

if (decodeResults[0].decoded)
{

var mymsg = decodeResults[0].content;

// output[’Serial’] is identical to output.Serial
output [’ Serial’] = “serial: "“+mymsg;
output.Telnet = “telnet: ”+mymsg;

output.content = mymsg;

}

else

{

output.content = “bad read”;

}

@ Note: For every channel thatis not addressed in special, the output is the normal content text. For example:

function onResult (decodeResults, readerProperties, output)

{

if (decodeResults[0].decoded)
{

/* save decoded result to variable */
var mymsg = decodeResults[0].content;

/* output to telnet channel a different result
*/
output.Telnet = "telnet: " + mymsg;

/* to all other channel output the saved

result */
output.content = mymsg;

else

/* On bad read output to all channels the same
*/

output.content = "bad read";

141

DataMan Application Development

DecodeEvents

Describes the events to be emitted after a decode.

Property Type Description

system integer These are the system generated events:
« 0=none

« 1=goodread

« 2=noread

« 3 =validation failure*

userl boolean True if user event 1 is raised.

user? boolean True if user event 2 is raised.

* Only changing between good read and validation failure is supported.

Code Completion and Snippets

The script editor features automatic code completion, which shows pop-up messages with information regarding the
code thatis being written. Pop-up messages usually appear when typing special characters, for example period,
opening or closing brackets, etc. These messages can also be used manually with the Ctrl+Space key combination.

OUTPUT . 2vVents. userl = crue;

count = Q0;

P é'.'.:-.cm.c:‘. =1
|Open_parens expected |

99 kbytes left Ln 20 Col 11

Code completion works in the following scenarios:

« complete a code fragment (Ctrl-Space)

« provide function list (Ctrl-Shift-Space)

142

DataMan Application Development

if (count »>= §)
{

output.events.userl = true;
count = 0;

}
i
_J| funccion o

-

99 kbytes left Ln 20 Col 11

The toolbar at the top of the editor collects the following actions available within the editor:
o Cut (Ctrl-x)
« Copy (Ctrl-c)
« Paste (Ctrl-v)
« Complete Word (Ctrl-k and then press w)
« Insert Snippet (Ctrl-k and then press x)
Snippets

The editor provides a selection of preset code fragments as examples. You can insert these snippets by right-clicking in
the editor, using the toolbar or using the Ctrl-k and x key combination.

143

DataMan Application Development

Custom Communication Protocol API

Custom communication scripting can be activated by a boolean VT entry that can be accessed in the DataMan Setup
Tool.

The methods are encapsulated in a communication object. Each communication channel creates an instance of the
communication object.

When the Custom Protocol Communication APl is enabled through a private DMCC command, the scripting context adds
the following capabilities and requirements:

« The constructor function of the communication object, CommHandler, contains a list of functions that the script
must contain:

= onConnect
= onDisconnect
= onExpectedData
= onTimer
= onUnexpectedData
= onError
= onEncoder
The user must implement these functions, as the custom communications function will call them.
« There are five member functions that the reader script engine offers, implemented by the reader:
= send
= close

n setTimer

expectFramed

n setEncoder

By using these functions, a user could write javascript code that allows the reader to interact with another system. In
particular, the user can write code to send messages back to the other system, something thatis not supported in basic
scripting.

Advantage

The script engine uses the same context for function execution and object creation. This allows the sharing of data
between the script-based formatting and the custom communication scripts using global accessible objects.

List of functions

The communication member functions define the following method prototypes to be implemented by the user:
CommHandler — The constructor function for the communication object. The constructor must return a new
communication handler object implementing the user methods in the communication script. The reader methods are
added to the communication handler object directly after construction. The implementation of the constructor is

mandatory and an error will be thrown if it does not exist. Since software version 5.5 the constructor function call offers
the following argument:

o localName: The local name of the connection. The local name of a network connection is "<READER _
IP>:<PORT>". An example for a Telnet connection is “10.82.80.156:23” with the default telnet port of 23. An
example for a Network Client connection is “10.82.80.156:57350”. The local name for the serial connection is

144

o

o]

o

o]

[e]

o

DataMan Application Development

“COM1” or “COM USB”.
onConnect - Initialize state upon connection (a network connection established or protocol stack starts on serial
connection). If the method is notimplemented an error occurs. The method has one argument and a return value:

« peerName — The peer name of the connection. The peer name for a network connection is "<PEER _
IP>:<PORT>". An example peer name for a Telnet connection is “10.82.80.71:19772”, for a “Network
Client’ connection itis “10.82.80.71:1000”, where the host port is configured to 1000. The peer name for
the serial connection is “COM1” or “COM USB”.

« return — The boolean return value defines if the handler for this connection should be activated:

= true: Enables customization of the communication protocol. Therefore, if you want to use your own
protocol for communicating with the Dataman device, return true.

= false: If you do not need the customized protocol for this peer, return false.
onDisconnect— Cleanup method called when closing the connection channel
onExpectedData — Method called if data matching the set properties has arrived. The method has one argument:
« inputString — The received frame matched data excluding header and termination

« return — Determines if the data should be removed from input buffer

m true: clear the buffer.
m false: keep the value in buffer.
onTimer — The timer value expired

onUnexpectedData — The recieved data is not matching the requirements. The boolean return value determines
if the data should be removed from input. The method has one argument:

« inputString — The received data

« return — Determines if the data should be removed from input buffer

m true: clear the buffer.
m false: keep the value in buffer.

onError — An error occurred in the firmware and may be reported. The implementation of the method is
mandatory. The method has one argument and no return value:
« errorMsg — The error message for trigger overruns (“Trigger Overrun”), buffer overruns (“Buffer Overflow”)
and general errors reported by the firmware.

onEncoder — Executed if a configured encoder distance is reached. The distance can be configured by the
setEncoder method. The method has no arguments or return value.

send — Send data to channel, returns the number of send characters. The method must be called with one
argument:

« Data argumentis a string

close — Actively terminates connection for the communication object (for example, close TCP/IP socket). On
UART, this causes onConnect to be called right afterwards.

setTimer — Set the one-shot timer value when the onTimer will be executed. The timer can be re-initialized and
aborted.

« Timeoutin seconds of type double, internal resolution is us (1e-6 sec). A zero value aborts a running
timer. Active timer will be overwritten.

145

DataMan Application Development

o expectFramed— Tells the communication listener which data to pass on to the onExpectedData and
onUnexpectedData methods. Itis possible to change the match parameter at runtime. The following three
arguments are required:

m header of type string, may be empty (™)

= ferminator of type string, may be empty (™)

m max length of type integer, specifies the maximum length of an input message to check for a match
[required]

o setEncoder — Units of the distance argument are millimetres. The encoder is configured in Setup Tool under
System Settings -> Pulse Encoder. If encoder ticks should be used instead of distance set the value of the
parameter “Resolution (mm)” to 1.

m distance (double) — The encoder distance in which the onEncoder method will be called.
The methods must be implemented in the public section of the object.
Examples
APl usage of custom communication protocol object

This example below demonstrates the APl usage of the custom communication protocol object. The example implements
custom commands read from the connection. The commands are framed by a "#” header and terminated by ";\r" (for
example, a serial PUTTY connection). A timer sends periodically timer messages that may be stopped using the custom
stop command. The timer handler may be changed once by the switch command.

146

. [DataMan Application Development |

Generic use case: Heartbeat
Send out a periodic heartbeat message if reader is idle.

Generic use case: Real time timestamp
Implements a custom DMCC command to set the real time (send current time in seconds starting Jan 1 1970, as output
by date +"%s” command). Prepend output with real time timestamp.

DataMan Application Development

onUnexpectedData: function (inputString) {
return false;

bo
onTimer: function () {

}
}i

}

// data formatting script
function onResult (decodeResults, readerProperties, output)
{

var d = new Date();
var real = new Date(time offset+d.getTime());

output.content = real.toString() + " " + decodeResults[0].content + "\r\n";

Customer Protocols implemented in various CR releases
Communication with cmf400 Profibus gateway

var CMF400 PROTOCOL STATUS =
{

RUNNING: {value: 0, name: "Running"},
SYNCRONIZING: {value: 1, name: "Sync"},
CONFIGURING: {value: 2, name: "Config"},
STOPPED: {value: 3, name: "Stop"}

}i
// make the enum non-modifyable
Object.freeze (CMF400 PROTOCOL STATUS) ;

var cmf400 protocol stx = '\x02'; // header
var cmf400 protocol etx '\x03'; // termination

// VT Parameter to be converted into script configuration constant values:
// "/Communication/Interfaces/COM1/Protocol™)
var vt param comif coml protocol = 1;

// "/Communication/Protocols/CMF400/Profibus node number"), 3);
var vt param profibus node number = 1;
// "/Communication/Protocols/CMF400/Profibus mode"), 3);*/

var vt param profibus mode = 1;

// TODO: how to configure parameter, where to store them with a out of stock firmware?
var cmf400 protocol profibus node number = 1;

var cmf400 protocol profibus mode = 1;

var cmf400 protocol test diagnostic enabled = 0;
var cmf400 protocol test diagnostic = 'TEST';

// Protocol strings

var cmf400 gateway init = '+Gateway-Init+';

var cmf400 gateway ident ok = '+GW SOK TSICDPS';
var cmf400 gateway ident no = '+GW SNO TSICDPS';

var cmf400 gateway run = '+GW-RUN+';
var cmf400 gateway error = '+GW-ERR';

151

Pass weight string input along with decode string

FMPCS protocol

The data formatting formats the result based on global variables set by the communication handler:

Input match string, output from script (30x)

Data formatting delegates output to communication handler objects

DataMan Application Development

default:
throw ("unknown state");

}

return true;

o

onUnexpectedData: function (inputString) {

this.expectFramed ('\x02', '\x03', 203); // enable framing for the
next telegram

status = TelegramState.WAIT4CONTENT;

return true;

s

onTimer: function (inputString) {
this.sendTelegram(telegram types.heartbeat) ;
this.setTimer (heartbeat time s);

}

Event Callback

The callback mechanism allows to register handler for trigger and input events. Handler for these events can be
registered by the registerHandler method:

callback handle registerHandler (eventid, callback, ...)

The registerHandler function requires the following arguments:
o eventid — identifier for the event type to register for
o callback — function object to execute on event

Available events identifier are defined in a constant object named “Callback”. Optional arguments can be used to
configure the event, e.g. to filter the sensitivity.

A handle is returned that must be used to de-register the callback. To de-register the handler use the deregisterHandler
function:

deregisterHandler (callback handle)

o callback_handle — handle returned by the registerHandler method.

Itis possible to register the callback handler within the global scope, e.g. to be used in data formatting.

Event Types

Current available events that can be registered are “oninput” and “onTrigger” events.

onlnput event: It calls the callback function on input signal and button changes. The optional third argument allows to set
filter for certain inputs. The object “Constinput” defines masks for inputs:

o InputO:
o Input1:
o Input2:
o Input3:
o Inputd:

164

DataMan Application Development

o Inputs:
o Input6:
o InputAll
o BnTrig

o BnTune

The input mask can be combined. The input values are sampled with an accuracy of 1 ms. The callback function for the
oninput event has one argument for the new state of the input.

onTrigger event: It executes the callback function on trigger start and trigger end events. The callback function for the
onTrigger event has two arguments: The first argument is the trigger object, the second argument the boolean state of
the trigger, true for a trigger start and false for a trigger end.

Examples

The example defines three event handler:

« onlnput0 - reacting on input0 signal and the switch button
« onlnput1 —reacting on input1 signal
« onTrigger—reacting on trigger events
function CommHandler ()
{
return {

onConnect: function (peerName)

{

this.peer = peerName;

this.inputl = registerHandler (Callback.onInput,
this.onInput0O.bind (this),
ConstInput.InputO|ConstInput.BnTrig) ;

this.input2 = registerHandler (Callback.onInput,
this.onInputl.bind(this), ConstInput.Inputl):;
this.ontrigger = registerHandler (Callback.onTrigger,
this.onTrigger.bind(this));

return true;

by

onDisconnect: function ()

{

deregisterHandler (this.inputl) ;
deregisterHandler (this.input?2) ;
deregisterHandler (this.ontrigger) ;

bo
onTrigger: function (trigger, state) {
if (state)

this.send("call onTrigger: started trigger with index " +
trigger.index + "\r\n");

else

this.send("call onTrigger: end trigger with index " +
trigger.index + "\r\n");

165

With the following event sequence: input1 on, input0 on, input0 off, input1 off, software trigger, switch on, switch off, we
get the following output on the terminal:

The following example registers a handler on Input1 events and stores the state in a global variable. The state of the
input is output by the data formatting.

	Legal Notices
	Table of Contents
	Symbols
	About This Manual
	Networking
	Connecting Your DataMan to the Network
	Connecting Your Corded DataMan Reader to the Network
	Connecting Your DataMan Intelligent Base Station to the Network
	Direct Connection to Your Computer

	Connecting Your Reader Across Subnets
	Connecting Your DataMan to the Network Wirelessly
	Troubleshooting a Network Connection

	Industrial Network Protocols
	EtherNet/IP
	DMCC
	Reader Configuration Code
	Setup Tool
	Getting Started
	Object Model
	Rockwell ControlLogix Examples
	Rockwell CompactLogix Examples

	SLMP Protocol
	DMCC
	Reader Configuration Code
	Setup Tool
	SLMP Protocol Scanner
	Getting Started
	Network Configuration
	Data Block Configuration
	Interface
	Examples

	ModbusTCP
	DMCC
	Reader Configuration Code
	Setup Tool
	Modbus TCP Handler
	Getting Started
	Network Configuration
	Data Block Configuration
	Interface
	Operation
	Examples

	PROFINET
	DMCC
	Reader Configuration Code
	Setup Tool
	Getting Started
	Modules
	Operation
	Siemens Examples

	Industrial Protocols for the Wireless DataMan
	Protocol Operation
	Ethernet Address
	PLC Triggering
	Soft Events
	DMCC

	Offline Buffering
	Status of Industrial Protocols

	DataMan Application Development
	DMCC Overview
	Command Syntax
	Command Header Syntax
	Header Examples

	DMCC Application Development
	DataMan SDK Contents
	Using the SDK
	Helper Utilities
	Using the Helper Utilities

	Script-Based Data Formatting
	DMCC Support

	Error Management
	Formatting Script

	Output
	Code Completion and Snippets
	Custom Communication Protocol API
	Event Callback
	Event Types
	Examples

