
DataMan® Communications and
Programming Guide

04/18/2017
Version: 5.7.0.37

Legal Notices
The software described in this document is furnished under license, and may be used or copied only in accordance with
the terms of such license and with the inclusion of the copyright notice shown on this page. Neither the software, this
document, nor any copies thereof may be provided to, or otherwise made available to, anyone other than the licensee.
Title to, and ownership of, this software remains with Cognex Corporation or its licensor. Cognex Corporation assumes
no responsibility for the use or reliability of its software on equipment that is not supplied by Cognex Corporation.
Cognex Corporation makes no warranties, either express or implied, regarding the described software, its
merchantability, non-infringement or its fitness for any particular purpose.

The information in this document is subject to change without notice and should not be construed as a commitment by
Cognex Corporation. Cognex Corporation is not responsible for any errors that may be present in either this document or
the associated software.

Companies, names, and data used in examples herein are fictitious unless otherwise noted. No part of this document
may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, nor
transferred to any other media or language without the written permission of Cognex Corporation.

Copyright © 2017. Cognex Corporation. All Rights Reserved.

Portions of the hardware and software provided by Cognex may be covered by one or more U.S. and foreign patents, as
well as pending U.S. and foreign patents listed on the Cognex web site at: http://www.cognex.com/patents.

The following are registered trademarks of Cognex Corporation:

Cognex, 2DMAX, Advantage, AlignPlus, Assemblyplus, Check it with Checker, Checker, Cognex Vision for Industry,
Cognex VSOC, CVL, DataMan, DisplayInspect, DVT, EasyBuilder, Hotbars, IDMax, In-Sight, Laser Killer, MVS-8000,
OmniView, PatFind, PatFlex, PatInspect, PatMax, PatQuick, SensorView, SmartView, SmartAdvisor, SmartLearn,
UltraLight, Vision Solutions, VisionPro, VisionView

The following are trademarks of Cognex Corporation:

The Cognex logo, 1DMax, 3D-Locate, 3DMax, BGAII, CheckPoint, Cognex VSoC, CVC-1000, FFD, iLearn, In-Sight
(design insignia with cross-hairs), In-Sight 2000, InspectEdge, Inspection Designer, MVS, NotchMax, OCRMax,
PatMax RedLine, ProofRead, SmartSync, ProfilePlus, SmartDisplay, SmartSystem, SMD4, VisiFlex, Xpand

Other product and company trademarks identified herein are the trademarks of their respective owners.

2

Legal Notices

http://www.cognex.com/patents

Table of Contents
Legal Notices 2
Table of Contents 3
Symbols 5
About This Manual 6
Networking 7
Connecting Your DataMan to the Network 7
Connecting Your Corded DataManReader to the Network 7
Connecting Your DataMan Intelligent Base Station to the Network 7
Direct Connection to Your Computer 8

Connecting Your Reader Across Subnets 14
Connecting Your DataMan to the Network Wirelessly 14
Troubleshooting a Network Connection 17

Industrial Network Protocols 18
EtherNet/IP 18
DMCC 18
Reader Configuration Code 18
Setup Tool 19
Getting Started 19
Object Model 22
Rockwell ControlLogix Examples 33
Rockwell CompactLogix Examples 46

SLMP Protocol 56
DMCC 56
Reader Configuration Code 56
Setup Tool 57
SLMP Protocol Scanner 57
Getting Started 57
Network Configuration 58
Data Block Configuration 59
Interface 60
Examples 68

ModbusTCP 72
DMCC 72
Reader Configuration Code 72
Setup Tool 73
Modbus TCP Handler 73
Getting Started 73
Network Configuration 74
Data Block Configuration 75
Interface 76
Operation 80
Examples 84

PROFINET 88
DMCC 88
Reader Configuration Code 88

3

Table of Contents

Setup Tool 89
Getting Started 89
Modules 93
Operation 98
Siemens Examples 100

Industrial Protocols for the Wireless DataMan 109
Protocol Operation 109
Ethernet Address 109
PLC Triggering 109
Soft Events 109
DMCC 109

Offline Buffering 110
Status of Industrial Protocols 110

DataMan Application Development 112
DMCC Overview 112
Command Syntax 112
CommandHeader Syntax 112
Header Examples 112

DMCC Application Development 114
DataMan SDK Contents 114
Using the SDK 114
Helper Utilities 118
Using the Helper Utilities 119

Script-Based Data Formatting 119
DMCC Support 119

Error Management 122
Formatting Script 122

Output 140
Code Completion and Snippets 142
Custom Communication Protocol API 144
Event Callback 164
Event Types 164
Examples 165

4

Table of Contents

Symbols
The following symbols indicate safety precautions and supplemental information.

WARNING: This symbol indicates the presence of a hazard that could result in death, serious personal injury or
electrical shock.

CAUTION: This symbol indicates the presence of a hazard that could result in property damage.

Note: Notes provide supplemental information about a subject.

Tip: Tips provide helpful suggestions and shortcuts that may not otherwise be apparent.

5

Symbols

About This Manual
The DataMan Communications and Programming Guide provides information on how to integrate DataMan readers into
your particular environment, including:

l Network configuration

l Industrial network protocols

l Integration with PLCs

l DataMan Control Commands (DMCC) API

The DataMan reader connected to a network can be triggered to acquire images by several methods. It can be done by:

l the DataMan Setup Tool,

l it can be triggered by

l trigger bits

l manipulating objects through/by industrial protocols

l or through a DMCC command.

This document provides a detailed description on how to do each.

6

About This Manual

Networking
You can connect your DataMan device via a simple Ethernet connection. You can either set the IP address and subnet
mask of your DataMan device manually or let them be configured automatically using DHCP.

Connecting Your DataMan to the Network

Connecting Your Corded DataMan Reader to the Network
Supply power to the reader using a Power over Ethernet (PoE) injector. Cognex recommends the following connection
sequence:

1. Connect the PoE injector to the Ethernet network (both ends of the patch cable).

2. Connect the power cord (AC 230V/110V) to the PoE injector.

3. Connect the reader to the PoE injector.

To disconnect the reader:

1. Disconnect the reader from the PoE injector.

2. Disconnect the power cord from the PoE injector.

3. Disconnect the PoE injector from the Ethernet network.

Connecting Your DataMan Intelligent Base Station to the Network
1. If you use DMA-IBASE-00, power up your base station using one of these two options:

l If you want to connect the Ethernet cable directly to the network or your PC, power up the base station
using a 24V power supply.

7

Networking

l If you want to use a Power Over Ethernet (POE) adapter, that will power up your base station. If you use
the DMA-IBASE-BT-01 base station, use direct connection with a 24V power supply. DMA-IBASE-BT-01
offers a 3-pin terminal block:

Pin # Signal

1 +24V

2 Shield

3 GND

Note: Never connect the terminal block and barrel connector power supply at the same time.

2. Connect your base station to your PC with an Ethernet cable.

3. The base station becomes visible as connected through Ethernet, and it routes data through the wireless (WiFi or
Bluetooth) interface to the reader.

Direct Connection to Your Computer
When connecting a DataMan device directly to an Ethernet port on a PC, both the PC and the DataMan device must be
configured for the same subnet. This can be done automatically though Link Local Addressing or you can manually

8

Networking

configure your reader and your PC.

Link Local Addressing automatically requests and assigns an IP address. In the DataMan Setup Tool, this corresponds
to the DHCP Server communication option. This is the default, you do not have to make any changes.

You can also manually configure your DataMan device to reside on the same subnet as the PC or the other way round:
configure your PC to reside on the same subnet as your DataMan. These options are detailed in the following sections.

Configuring the DataMan to Reside on the Same Subnet as the PC
Perform the following steps to configure your DataMan device:

1. Use the ipconfig utility to determine the IP Address and subnet mask of your PC. In the Start menu, click Run…

2. In the Open field, type “cmd” and click OK.

3. In the command prompt window, type “ipconfig” and press Enter. A listing of all network adaptors on the PC is
shown.

4. Record your PC’s IP Address and Subnet Mask. In this example,

l IP Address is 169.254.3.215

l Subnet Mask is 255.255.0.0

9

Networking

5. Go to Reader Maintenance in the DataMan Setup Tool, select the device to be used from the list, and use the
Network Settings dialog to manually configure the network settings on the target DataMan reader.

6. To force the network settings on your DataMan:

a. Select Use Static IP Address.

b. Enter an IP Address and Subnet Mask that will be on the same subnet as the PC. Make sure this IP
address is not yet in use (for example, test by pinging it).

l Example IP Address: 169.254.135.200

l Subnet Mask: 255.255.0.0

Note: The default Subnet Mask is 255.255.255.0. You can set it back to default by scanning the
Reset Scanner to Factory Defaults Configuration Code.

10

Networking

Authentication should be left blank unless Authentication has been enabled on the DataMan.
Authentication is disabled by default.

Click OK. Your DataMan device is configured to the network settings specified, and it reboots
automatically.

Your DataMan reader appears under the Discovered Devices node after the address has been resolved.
This can take up to 60 seconds.

8. If the device does not appear after 1 or 2 minutes, press the Refresh button in the DataMan Setup Tool’s
Connect page. This will force the DataMan Setup Tool to scan for DataMan devices connected to the PC or
connected to the same network.

Configuring the PC to Reside on the Same Subnet as the DataMan
If it is preferred that the DataMan network settings remain unchanged, you must already know the IP Address and Subnet
Mask of the DataMan or you must connect to the DataMan via RS-232 to find them out. The DataMan IP Address and
Subnet Mask can be found under Communication Settings.

11

Networking

Once the IP Address and Subnet Mask of the DataMan device are known, the PC’s network settings can be changed.

Perform the following steps to configure your PC (examples here are of Windows XP):

1. In the Start Menu, right click My Network Places, click the Properties menu option to launch Network
Connections.

2. Right click on the network adapter connected to the DataMan and select the Properties menu option.

12

Networking

3. Under the General tab, scroll down and select Internet Protocol (TCP/IP), and click Properties.

4. Under the General tab, select the Use the following IP address option and enter an IP Address and Subnet
Mask that are on the same subnet as your DataMan. Click OK.

5. Click Close. The network settings of your PC will change to the new specified values.

6. Reboot the DataMan device. It appears under the Discovered Devices node on the Connect page after the
network address has been resolved.

7. If the device does not appear after 1 or 2 minutes, click the Refresh button on the DataMan Setup Tool’s Connect
page. The DataMan Setup Tool scans for DataMan devices connected to the PC or connected to the same
network.

13

Networking

Connecting Your Reader Across Subnets
The following options can be used to connect to the DataMan device with the DataMan Setup Tool across subnets if you
already know the IP Address of the device.

1. In the DataMan Setup Tool’s Reader Maintenance page, click Add Network Device.

2. Enter the actual IP Address of the target DataMan device.

3. Click OK. The reader appears under the Network node. Double click the new node or select it and click the
Connect button. If the device is available, the reader will be connected.

Connecting Your DataMan to the Network Wirelessly
You can connect to your DataMan reader via the wireless network as well. For this, you need to use the WiFi slide-in with
the device.

Ad-hoc Connection
The default factory settings for the wireless configuration of the device are:

l ad-hoc connection

l no encryption and no authentication

l SSID: the name of the device

14

Networking

This means that you can connect to your DataMan without the base station or a router.

To connect to your DataMan reader in ad-hoc mode, perform the following steps:

1. Make sure that the DataMan device is (re)set to factory settings.

2. Search for the DataMan device among the available wi-fi connections and connect to it.

3. Open the DataMan Setup Tool.

4. Search for the device and connect to it.

5. Once you are connected to your DataMan device in the DataMan Setup Tool, you can configure the wireless
connection.

a. Authentication: only Open Mode can be selected.

b. Encryption method: WEP-40 and WEP-104. You can enter a passphrase for these methods.

Infrastructure Mode
You can set Wireless Infrastructure mode in the DataMan Setup Tool as well.

15

Networking

1. Connect to your device in the DataMan Setup Tool.

2. In theWiFi tab of Communication Settings, select Infrastructure mode from the Network Type combo box. A
warning appears if the SSID name is identical to the device name, as this designates misconfiguration of the
device.

3. Select from the following authentication modes:

Authentication mode Encryption mode Requirements

Open System WEP-40, WEP-104 passphrase

WPA-PSK, WPA2-PSK TKIP, AES, TKIP/AES passphrase

EAP-TLS (see the section below) TKIP, AES, TKIP/AES l Client’s certificate

l CA’s certificate

l Client’s private key

l Client’s username

PEAP-MSCHAPV2 (see the section
below)

TKIP, AES, TKIP/AES l CA’s certificate

l Client’s username

l Client’s password

EAP-TLS Authentication Mode
Encryption methods: TKIP, AES, TKIP/AES are supported. All of these methods require specifying several PEM files,
which are created by the user’s local system administrator, and contain certificate information.

These certificates will be used to encrypt the communication between the Wi-Fi Access Point and the reader.

The following certificates are required:

l Client’s certificate. This must be different for each reader. It may be publicly accessible (e.g. on a company
webpage).

l CA’s certificate (CA = Certificate Authority). One such file will be created for each authentication server within the
company. It may be publicly accessible.

l Client’s private key. This must be different for each reader. It must not be publicly accessible; must be stored and
handled confidentially.

Uploading a Certificate File to DataMan
You can upload these files in the DataMan Setup Tool one by one: click the folder button beside the fields, select the
proper file and the file content will be uploaded to the device.

A short message shows if a certificate is specified. The text “<not set>” appears in the field if there is no key or certificate
specified.

16

Networking

Removing a Certificate File from DataMan
Click the red X button beside the corresponding field to delete an existing certificate from your device. The certificates
are saved into device backups, and may be completely restored.

PEAP-MSCHAPV2 Authentication Mode
Encryption methods: TKIP, AES, TKIP/AES are supported. All these methods require a PEM file containing the CA’s
certificate, the client’s user name, and a password.

Certificate Files
The DataMan Setup Tool currently applies the following restrictions about the PEM files:

l Their format must be the industry-standard PEM format (generated by OpenSSL toolkit).

l The PEM dialect may be either PKCS8 or SSLeay.

l Only unencrypted private key and certificate files are allowed.

l The Client’s private key and certificate must contain exactly one section; the CA’s certificate may contain one or
more certificates.

l The user must know the user name stored within her/his own certificate file; and exactly the same name must be
included in the Client’s user name text box. In other words, Setup Tool does not look into the certificate files and
does not extract this user name information.
When the user leaves the Wireless tab page, a reboot confirmation window pops up, and the settings are saved
to the device.

Troubleshooting a Network Connection
Based on your network configuration, the DataMan Setup Tool may not be able to communicate with the reader and it
will not appear in the list of Network devices. If you know the IP address of the reader, use the Add Network Device
option in the DataMan Setup Tool. This method allows your DataMan reader to appear in the list of Network devices so
that you can connect to it through the DataMan Setup Tool and your USB connection.

17

Networking

Industrial Network Protocols
DataMan uses industrial network protocols that are based on standard Ethernet protocols. These protocols: EtherNet/IP,
PROFINET, MC Protocol and Modbus/TCP are enhanced to provide more reliability than standard Ethernet.

EtherNet/IP
DataMan supports EtherNet/IP™, an application level protocol based on the Common Industrial Protocol (CIP).
EtherNet/IP provides an extensive range of messaging options and services for the transfer of data and I/O over Ethernet.
All devices on an EtherNet/IP network present their data to the network as a series of data values called attributes.
Attributes can be grouped with other related data values into sets, these are called Assemblies.

By default the DataMan device has the EtherNet/IP protocol disabled. The protocol can be enabled via DMCC, scanning
a parameter code, or in the DataMan Setup Tool.

Note: If you have a wireless DataMan reader, read the section on Industrial Protocols for the Wireless DataMan.

DMCC
The following commands can be used to enable/disable EtherNet/IP on the DataMan reader. The commands may be
issued via RS-232 or Telnet connection.

Note: Because you have to make changes to the Telnet client provided by Windows to communicate with DataMan,
it is recommended that you use third party clients such as PuTTY.

Enable:

||>SET ETHERNET-IP.ENABLED ON
||>CONFIG.SAVE
||>REBOOT

Disable:

||>SET ETHERNET-IP.ENABLED OFF
||>CONFIG.SAVE
||>REBOOT

Reader Configuration Code
Scanning the following reader configuration codes will enable/disable EtherNet/IP on your corded reader.

Note: You must reboot the device for the change to take effect.

Enable: Disable:

Scanning the following reader configuration codes will enable/disable EtherNet/IP on your DataMan 8000 base station.

Note: You must reboot the device for the change to take effect.

18

Industrial Network Protocols

Enable: Disable:

Setup Tool
EtherNet/IP can be enabled by checking Enabled on the EtherNet/IP tab of the Industrial Protocols. Make sure to save
the new selection by choosing “Save Settings” before disconnecting from the reader.

Note: The new settings take effect only after the reader is rebooted.

Getting Started
Preparing to use EtherNet/IP involves the following main steps:

l Make sure that you have the Rockwell Software tool on your machine.

l Set up the Rockwell Software tool so that it recognizes your DataMan device.

l Install the DataMan Electronic Data Sheet (EDS) for the DataMan reader.

Perform the following steps to set up EtherNet/IP:

1. Verify that the Rockwell Software is on your PC.

2. Make sure that you select the Add on Profile installation and the Samples installation. The Add on Profile is only
used with Rockwell ControlLogix or CompactLogix PLCs.

3. Install the Rockwell Add on Profiles by navigating to the following directory.

Note: Adjust the path for the specific DataMan Setup Tool version that you are using.

4. Select the Rockwell AOP directory:

19

Industrial Network Protocols

5. If you have not already installed the Rockwell AOP, now run MPSetup.exe.

6. From the Start menu, go to Programs -> Rockwell Software -> RSLinx -> Tools -> EDS Hardware Install Tool.

7. Run the ESD Install tool.

Note: If you have an existing EDS file, uninstall it first, then install the latest version of the EDS.

8. Run the DataMan Setup Tool and update the DataMan firmware.

20

Industrial Network Protocols

9. Check if the firmware has been loaded into the unit by clicking in the Setup Tool View -> System Info.

In the DataMan Setup Tool, go to the Industrial Protocols pane under Settings -> Communication Settings and
check the Enabled checkbox on the EtherNet/IP™ tab.

10. In order for the changes to take effect, you must save your settings and cycle power. Go to System and click
Save Settings.

11. Reboot your reader.

12. Your DataMan is visible now in the RSWHO.

21

Industrial Network Protocols

If your DataMan is visible, but the icon is a question mark, repeat the ESD Installation.

13. Open one of the sample jobs and integrate your DataMan into your program using the Add on Profile.

14. Alternatively, you can add the DataMan as a Module on your network.

Object Model
The ID Reader Object is a vendor specific object class. This means that it is not part of the CIP common (public)
architecture but rather an extension. It is a custom object that Cognex has added to the EtherNet/IP architecture on the
DataMan device. All the data and functionality of this object model are available in the DataMan reader. This includes
triggering, status, events, errors and result data.

The ID Reader Object is identified by its vender specific class code:

DataMan ID Reader Object Class Code: 0x79
Objects are made up of attributes (data) and services (functionality). These can be defined at the class level (common to
all instances of the class) or the instance level (unique to an individual instance). There are common attributes and
services defined by the CIP specification that apply to all objects (often these are optional). Vendors may also define
their own attributes and services for their vendor specific classes.

22

Industrial Network Protocols

The ID Reader Object attributes and services can be individually accessed via explicit messaging. Also a number of the
ID Reader Object attributes are exposed in the DataMan assembly objects which allow them to be accessed as a group
via implicit messaging.

Attributes
The DataMan ID Reader Object (Class Code: 0x79) has the following attributes:

Attribute
ID

Access
Rule

Name Data Type Description

0x9 Set AcqTriggerEnable BOOL 0 = EtherNet/IP triggering is disabled
1 = EtherNet/IP triggering is enabled

0xA Set AcqTrigger BOOL Acquire an image when this attribute changes from 0 to 1.
0xB Get AcqStatusRegister BYTE Bit0: Trigger Ready

Bit1: Trigger Ack
Bit2: Acquiring
Bit3: Missed Acquisition
Bit4-7: Reserved

0xC Set UserData ARRAY of
BYTE

User defined data that may be used as an input to the
acquisition/decode

0xD Set BufferResultsEnable BOOL When true, it enables buffering of the decode results.

0xE Get DecodeStatusRegister BYTE Bit0: Decoding
Bit1: Decode completed (toggle)
Bit2: Results buffer overrun
Bit3: Results available
Bit4: Reserved
Bit5: Reserved
Bit6: Reserved
Bit7: General fault indicator

0xF Set ResultsAck BOOL Acknowledges that the client received the decode results

23

Industrial Network Protocols

Attribute
ID

Access
Rule

Name Data Type Description

0x10 Get DecodeResults STRUCT of The last decode results
ResultsID UINT Decode results identifier.

Corresponds to the TriggerID of the decoded image.

ResultCode UINT Decode result summary code value
Bit0: 1=Read, 0=No read
Bit1: 1=Validated, 0=Not Validated
Bit2: 1=Verified, 0=Not Verified
Bit3: 1=Acquisition trigger overrun
Bit4: 1=Acquisition buffer overrun
Bit5-15: Reserved (future use)

ResultExtended UINT Extended result information
ResultLength UINT Current number of result data bytes
ResultData ARRAY of

BYTE
Result data from last decode

0x12 Set SoftEvents BYTE SoftEvents act as virtual inputs (execute action on 0 to 1
transition)
Bit0: Train code
Bit1: Train match string
Bit2: Train focus
Bit3: Train brightness
Bit4: Un-Train
Bit5: Reserved (future use)
Bit6: Execute DMCC command
Bit7: Set match string

0x15 Get TriggerID UNIT Trigger identifier. ID of the next trigger to be issued.
0x16 Set UserDataOption UINT Optional user data information
0x17 Set UserDataLength UINT Current number of user data bytes
0x18 Get SoftEventAck BYTE Acknowledgment of SoftEvents.

Bit0: Train code ack
Bit1: Train match string ack
Bit2: Train focus ack
Bit3: Train brightness ack
Bit4: Un-Train ack
Bit5: Reserved (future use)
Bit6: Execute DMCC command ack
Bit7: Set match string ack

SoftEvents
SoftEvents act as “virtual” inputs. When the value of a SoftEvent changes from 0 -> 1, the action associated with the event
will be executed. When the action completes, the corresponding SoftEventAck bit will change from 1 -> 0 to signal
completion.

The SoftEvent and SoftEventAck form a logical handshake. After SoftEventAck changes to 1 the original SoftEvent
should be set back to 0. When that occurs, SoftEventAck will automatically be set back to 0.

The “ExecuteDMCC” and “SetMatchString” soft event actions require user supplied data. This data must be written to the
UserData & UserDataLength area of the Input Assembly prior to invoking the soft event. Since both of these soft events
depend on the UserData, only one may be invoked at a time.

General Fault Indicator
When a communication related fault occurs the “GeneralFault” bit will change from 0 -> 1. Currently the only fault
conditions supported are soft event operations. If a soft event operation fails, the fault bit will be set. The fault bit will

24

Industrial Network Protocols

remain set until the next successful soft event operation. Or, until TriggerEnable is set to 0 and then back to 1.

Services
The ID Reader Object supports the following Common CIP services.

Service Code Service Name Description
0x05 Reset Resets the ID Reader object.
0x0E Get_Attribute_Single Returns the contents of the specified attribute.
0x10 Set_Attribute_Single Modifies the specified attribute.

The ID Reader Object supports the following vendor specific services.

Service Code Service Name Description
0x32 Acquire Triggers a single acquisition.
0x34 SendDMCC Sends a DMCC command to the device.
0x35 GetDecodeResults Gets the content of the DecodeResults attribute.

Acquire Service
The Acquire Service will cause an acquisition to be triggered (if the acquisition system is ready to acquire an image). If
the acquisition could not be triggered, then the Missed Acquisition bit of the AcqStatusRegister will be set until the next
successful acquisition.

SendDMCC Service
The SendDMCC Service sends a DMCC command string to the device. The request data consists of the DMCC
command string that is to be sent to the reader. The reply data will contain the string result of the DMCC command.
Additionally the service provides a numeric result status for the call. Most of these result codes relate to the basic
success/failure of the service execution. However, the service also maps the actual DMCC status codes. This allows the
PLC to interpret the service request without having to parse the actual DMCC return string.
DMCC commands transferred via the Industrial Ethernet protocols (EtherNet/IP, Profinet, etc) will automatically be routed
to the wifi reader.
The commands cannot be executed while the wifi reader is powered down, hibernating, or out-of-range.

Service Return
Code

Description DMCC Return Code

0 Success – No error 0
1 Bad Command -

25

Industrial Network Protocols

Service Return
Code

Description DMCC Return Code

4 No Answer – System too busy -
100 Unidentified error 100
101 Command invalid 101
102 Parameter invalid 102
103 Checksum incorrect 103
104 Parameter rejected/altered due to

reader state
104

Note: The string must be in the CIP STRING2 format (16-bit integer indicating the string length in characters
followed by the actual string characters, no terminating null required).

GetDecodeResults Service
The GetDecodeResults service reads data from the DecodeResults attribute of the ID Reader Object. This service takes
parameters indicating the “size” (number of bytes to read) and the “offset” (offset into the DecodeResults attribute to
begin reading). This gives the service the flexibility to be used with PLC’s that have different restrictions on the amount of
data allowed in an explicit message. It also allows the user to access very large codes that cannot be completely
transferred with implicit messaging (assembly object).

GetDecodeResults Request Data Format
Name Type Description

Size UINT The number of bytes of the DecodeResults attribute to read.
Offset UINT The offset into the DecodeResults attribute. This specifies the first byte of the

DecodeResults attribute to begin reading (0 based offset).

Acquisition Sequence
DataMan can be triggered to acquire images by several methods. It can be done implicitly via the Assembly object. Or
done explicitly via the ID Reader object. When using explicit messaging it can be done in a single step by accessing the
Acquire Service, it can also be done by directly manipulating the ID Reader object attributes (AcqTrigger and
AcqStatusRegister) and finally it can be done via DMCC command. The ID Reader attributes will be discussed here but
these same values can be accessed via the assembly objects.

On startup, the AcqTriggerEnable attribute will be False. It must be set to True to enable triggering. When the device is
ready to accept triggers, the Trigger Ready bit in the AcqStatusRegister will be set to True.

While the AcqStatusRegister “Trigger Ready” bit is True, each time the ID Reader object sees the AcqTrigger attribute
change from 0 to 1, it will initiate an image acquisition. When setting this via the assembly objects, the attribute should be
held in the new state until that same state value is seen in the Trigger Ack bit of the AcqStatusRegister (this is a
necessary handshake to guarantee that the change is seen by the ID Reader object).

During an acquisition, the Trigger Ready bit in the AcqStatusRegister will be cleared and the Acquiring bit will be set to
True. When the acquisition is completed, the Acquiring bit will be cleared. The Trigger Ready bit will again be set True
once the device is ready to begin a new image acquisition.

If results buffering is enabled, the device will allow overlapped acquisition and decoding operations. Trigger Ready will
be set high after acquisition is complete but while decoding is still in process. This can be used to achieve faster overall
trigger rates. If result buffering is not enabled, the Trigger Ready bit will remain low until both the acquisition and decode
operations have completed.

26

Industrial Network Protocols

As a special case, an acquisition can be cancelled by clearing the Trigger signal before the read operation has
completed. This allows for the cancellation of reads in Presentation and Manual mode if no code is in the field of view. To
ensure that a read is not unintentionally cancelled, it is advised that the PLC hold the Trigger signal True until both
TriggerAck and ResultsAvailable are True (or DecodeComplete toggles state).

To force a reset of the trigger mechanism set the AcqTriggerEnable attribute to False, until the AcqStatusRegister is 0.
Then, AcqTriggerEnable can be set to True to re-enable acquisition.

Decode / Result Sequence
After an image is acquired it is decoded. While being decoded, the Decoding bit of the DecodeStatusRegister is set.
When the decode is complete, the Decoding bit is cleared and the Decode Completed bit is toggled.

The BufferResultsEnable attribute determines how decode results are handled by the ID Reader Object. If the
BufferResultsEnable attribute is set to False, then the decode results are immediately placed into the DecodeResults
attribute and Results Available is set to True.

If the BufferResultsEnable attribute is set to True the new results are queued. The earlier decode results remain in the
DecodeResults attribute until they are acknowledged by the client setting the ResultsAck attribute to True. After the
Results Available bit is cleared, the client should set the ResultsAck attribute back to False to allow the next queued
results to be placed in to the DecodeResults attribute. This is a necessary handshake to ensure the results are received
by the DataMan reader’s client (PLC).

Behavior of DecodeStatusRegister
Bit Bit Name Results if Buffering Disabled Results if Buffering Enabled
1 Decoding Set when decoding an image. Set when decoding an image.
2 Decode

Complete
Toggled on completion of an image decode. Toggled on completion of an image decode.

3 Results
Buffer
Overflow

Remains set to zero. Set when decode results could not be queued because
the client failed to acknowledge a previous result.
Cleared when the decode result is successfully
queued.

4 Results
Available

Set when new results are placed in the
DecodeResults attribute. Stays set until the
results are acknowledged by setting
ResultsAck to true.

Set when new results are placed in the DecodeResults
attribute. Stays set until the results are acknowledged
by setting ResultsAck to true.

27

Industrial Network Protocols

Results Buffering
There is an option to enable a queue for decode results. If enabled this allows a finite number of decode result data to
queue up until the client (PLC) has time to read them. This is useful to smooth out data flow if the client (PLC) slows
down for short periods of time.

Also, if result buffering is enabled, the device will allow overlapped acquisition and decode operations. Depending on
the application this can be used to achieve faster over all trigger rates. See Acquisition Sequence description above for
further detail.

In general, if reads are occurring faster than results can be sent out the primary difference between buffering or not
buffering is determining which results get discarded. If buffering is not enabled the most recent results are kept and the
earlier result (which was not read by the PLC fast enough) is lost. Essentially the more recent result will simply over write
the earlier result. If buffering is enabled (and the queue becomes full) the most recent results are discarded until room
becomes available in the results queue.

Note: If the queue has overflowed and then buffering is disabled, there will be a greater than 1 difference between
the TriggerID and ResultID values. This difference represents the number of reads that had occurred but could not
be queue because the queue was full (number of lost reads equals TriggerID - ResultID - 1). After the next read, the
ResultID value will return to the typical operating value of TriggerID - 1.

Assembly Object
Assemblies are combinations of selected attributes (data items) from CIP objects with in a device. The device vendor
defines assemblies according to their needs. They combine data together in useful groupings according to the
requirements of the application.

The designation of Input & Output assembly can be confusing. DataMan is an I/O adapter class device. The convention
for adapters is that Input Assemblies produce (transmit) data for another device (i.e. DataMan -> PLC) and Output
Assemblies consume (receive) data from another device (i.e. PLC -> DataMan). Essentially, DataMan acts as an I/O
module for another device such as a PLC.

28

Industrial Network Protocols

Assembly objects use implicit messaging. In the abstract, they are just blocks of data which are transmitted as the raw
payload of implicit messaging packets. These implicit messaging packets are produced (transmitted) repeatedly at a
predefined chosen rate (100ms, 200ms, etc).

DataMan readers have a single input assembly and single output assembly. These assemblies combine selected
attributes (data) of the DataMan ID Reader Object into groupings that minimize network bandwidth and still allow for
efficient control and processing. The data in these assemblies can also be accessed individually from the ID Reader
Object. However, using the assembly objects is much more efficient. This is the reason that they are the primary means
of runtime communication between a DataMan reader and a PLC.

Input Assembly
The Input assembly provides status information, process state, and decode results.

Instance Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
11 0 Reserved Missed Acq Acquiring Trigger Ack Trigger

Ready

1 General
Fault

Reserved Results
Available

Results Buffer
Overrun

Decode
Complete
Toggle

Decoding

2 Soft Event
Ack 7

Soft Event
Ack 6

Soft Event
Ack 5

Soft Event
Ack 4

Soft Event
Ack 3

Soft Event
Ack 2

Soft Event
Ack 1

Soft Event
Ack 0

3-5 Reserved
6 Trigger ID (16-bit integer)
7
8 Result ID (16-bit integer)
9
10 Result Code (16-bit integer)
11
12 Result Extended (16-bit integer)
13
14 Result Data Length (16-bit integer)
15
16 Result Data 0
...
499 Result Data 483

Output Assembly
The Output assembly contains control signals, software event signals, and any user data required for the trigger &
decode.

29

Industrial Network Protocols

Instance Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
21 0 Reserved Results

Ack
Buffer
Results
Enable

Trigger Trigger
Enable

1 Soft Event
7

Soft Event
6

Soft Event
5

Soft Event
4

Soft Event
3

Soft Event
2

Soft Event
1

Soft Event
0

2 Reserved
3
4 User Data Option (16-bit integer)
5
6 User Data Length (16-bit integer)
7
8 User Data 0
...
499 User Data 491

PCCC Object
DataMan has limited support for the Rockwell PCCC object. This allows legacy PLC’s (PLC-5, SLC, etc) to communicate
with DataMan using their native PCCC command set and explicit messaging. The PCCC object allows DataMan to look
like a Rockwell PLC-5 logic controller.

PCCC commands are organized to work with “data tables” that exist in legacy logic controllers. Each data table is an
array of a give data type (BYTE, INT, FLOAT, etc). The commands are oriented to read/write one or more data items of a
given data table. Items are addressed by specifying the data table and the index of the item in the table (indexes base
from 0). For instance to read the 6th integer in PLC data table you would send the PCCC command to read N7:5. “N”
specifies an integer table, “7” is the table number in the PLC (each table has a unique numeric identifier – assigned
when the user PLC program was created), and “5” is the index into the table (note indexes begin at 0).

The PCCC object in DataMan maps the read and write requests to ID Reader assemblies (or in one special case to the
DMCC service). Read commands return data from the Input assembly (instance 11). Write commands send data to the
Output assembly (instance 21). In essence, the PCCC Object gives the outward appearance of PLC-5 data tables but is
actually accessing the assembly data. Currently, the implementation only supports an Integer data table (N7) and an
ASCII data table (A9). There is one special case of String data table (ST10:0) for DMCC.

Table Data Type Table Size
N7 Integer (16-bit) 250 elements
A9 ASCII (8-bit) 500 elements
ST10 String 1 element

30

Industrial Network Protocols

The ResultCode value is located at word offset 5 (counting from 0) of the Input Assembly. To access this value, you
would issue the following PLC command:

The decode ResultData begins at byte offset 16 (counting from 0) of the Input Assembly. To read the first 4 bytes of result
data, you would issue the following PLC command:

31

Industrial Network Protocols

The UserData begins at word offset 4 (counting from 0) of the Output Assembly. To write 4 words of UserData, you would
issue the following PLC command:

The bit to trigger an acquisition is in byte offset 0 of the Output Assembly. To write to this byte, you would issue the
following PLC command:

The PCCC Object supports a special case mapping of a string table element (ST10:0) to the DMCC service. Any string
written to ST10:0 will be passed to the DMCC service for processing. This allows PCCC write string commands to be
used to invoke DMCC commands.

Note: The string table is only one element in size. Writing to the other elements will return an error

32

Industrial Network Protocols

Rockwell ControlLogix Examples
Implicit Messages transmit time-critical application specific I/O data, and can be point-to-point or multicast. Explicit
messages require a response from the receiving device. As a result, explicit messages are better suited for operations
that occur less frequently. An instruction to send a DMCC command is an example of an explicit message.

Implicit Messaging
EtherNet/IP implicit messaging allows a DataMan reader’s inputs and outputs to be mapped into tags in the ControlLogix
PLC. Once these connections are established the data is transferred cyclically at a user defined interval (10ms, 50ms,
100ms, etc).

The figure below represents Ethernet-based I/O through EtherNet/IP:

The Input Assembly and Output Assembly map various attributes (data) from the ID Reader object: The Input Assembly is
the collection of DataMan reader data values sent to the PLC (PLC inputs); and the Output Assembly is the collection of
data values received by the DataMan reader from the PLC (PLC outputs).

Establishing an Implicit Messaging Connection

To setup an EtherNet/IP implicit messaging connection between a DataMan and a ControlLogix controller, the DataMan
reader must first be added to the ControlLogix I/O Configuration tree. The most efficient method is to use the Add-On-
Profile. This example assumes that the Add-On-Profile has already been installed. If you do not have the Add-On-Profile,
see section Using the Generic EtherNet/IP Profile.

To establish an implicit messaging connection with a ControlLogix PLC:

33

Industrial Network Protocols

1. Open RSLogix5000 and load your project (or select “File -> New…” to create a new one).
From the I/O Configuration node, select the Ethernet node under the project Ethernet Module, right-click on the
icon and select NewModule... from the menu:

2. From the Select Module dialog, choose your model of DataMan ID Reader from the list.

Note: This option will only be available after the DataMan Add-On Profile has been installed.

Note: The remainder of the steps is identical regardless of which DataMan model is selected.

3. After the selection is made, the configuration dialog for the DataMan ID Reader system will be displayed. Give the
module a name and enter the DataMan’s IP address. The default is a bidirectional (send/receive) connection
consisting of control, status, and 32 bytes of result data with keying disabled. To change this default connection,
select the “Change…” button. If no change is required skip over the next step.

34

Industrial Network Protocols

4. Change the connection configuration.

Selecting the “Change…” button will bring up the Module Definition dialog. This dialog is used to alter the
connection configuration. You can change:

l DataMan revision

l Electronic keying

l Connection type (bidirectional/receive-only)

l Amount of data received (from the DataMan)

l Amount of data sent (to the DataMan)

Electronic Keying: Defines the level of module type checking that is performed by the PLC before a connection
will be established.

Exact Match – All of the parameters must match or the connection will be rejected.

l Vendor

l Product Type

35

Industrial Network Protocols

l Catalog Number

l Major Revision

l Minor Revision

Compatible Module – The following criteria must be met, or else the inserted module will reject the connection:

l The Module Types must match

l Catalog Number must match

l Major Revision must match

l The Minor Revision of the module must be equal to or greater than the one specified in the software.

Disable Keying – The controller will not employ keying at all.

Connection: Defines the type of data flow.

Data (Bidirectional) – The connection will send data (to the DataMan) and receive data (from the DataMan).

Input (Results only) – The connection will only receive data (from the DataMan). Generally used in situations
where more than one PLC needs to receive data from the same DataMan device.

Input Results from Sensor: Defines the amount of data received on the connection (from the DataMan). The
minimum amount is the Status data only. The connection can be configured to also receive read result data. The
amount of result data received is defined in fixed increments (16 bytes, 32 bytes, 64 bytes etc). The size should
be selected to return no more than the largest code size to be read by the application. Setting the size larger
wastes network bandwidth and diminishes performance.

Output Data to Sensor: Defines the amount of data transmitted on the connection (to the DataMan). The
minimum amount is the Control data only. The connection can be configured to also send user data. The amount
of user data sent is defined in fixed increments (16 bytes, 32 bytes, 64 bytes etc). To enable User Data output,
right-click the DataMan module and then go to Properties -> Change -> Output Data to Sensor.

36

Industrial Network Protocols

5. The final step is configuring the connection rate. The rate at which data is transmitted/received is defined as the
Requested Packet Interval (RPI). The RPI defines how frequently the data is transmitted/received over the
connection. To optimize network performance this rate should be set no lower than absolutely required by a
given application. In general it should be set no lower than ½ the expected maximum read rate of the user
application. Setting it lower wastes bandwidth and does not improve processing performance.

6. Select the “Connection” tab of the “New Module” dialog to set the rate.

7. After adding the module to ControlLogix, the I/O tree should appear as follows:

37

Industrial Network Protocols

8. When the DataMan module is added to the I/O tree RSLogix 5000 creates tags that map to the DataMan reader
Input and Output Data (i.e. the Input & Output Assembly Objects in the DataMan Reader). These tags can be
found under the “Controller Tags” node of the project tree.

Note: The base name of these tags is the name you gave to the DataMan Module that you added to the I/O
Configuration in the earlier steps.

The tags are organized in two groups: Status and Control. The Status group represents all the data being
received (from the DataMan). The Control group represents all the data being sent (to the DataMan).

These tags are the symbolic representation of the DataMan Assembly Object contents. The PLC ladder is written
to access these tag values. By monitoring or changing these tag values the PLC ladder is actually monitoring and
changing the DataMan Assembly Object contents.

Note: There is a time delay between the DataMan and these PLC tag values (base on the configured RPI).
All PLC ladder must be written to take that time delay into account.

Accessing Implicit Messaging Connection Data
The section above details establishing an implicit message connection between a ControlLogix and a DataMan ID
Reader. This example assumes that the DataMan Add-On-Profile is being utilized. One aspect of the Add-On-Profile is
that it will automatically generate ControlLogix tags representing the connection data.

38

Industrial Network Protocols

The generated tags are divided into two groups: Status & Control. The Status group represents all the data being
received (from the DataMan). The Control group represents all the data being sent (to the DataMan).

A description of the Status tag group follows. This is the data received by the ControlLogix from the DataMan reader.

l TriggerReady: Indicates when the DataMan reader can accept a new trigger. This tag is True when the Control
tag “TriggerEnable” has been set and the sensor is not currently acquiring an image.

l TriggerAck: Indicates when the DataMan reader has been triggered (i.e. the Control tag “Trigger” has been set to
True). This tag will stay set until the Trigger tag is cleared.

l Acquiring: Indicates when the DataMan reader is currently acquiring an image; either by setting the Trigger bit or
by an external trigger.

l MissedAcq: Indicates when the DataMan reader misses an acquisition trigger; cleared when the next successful
acquisition occurs.

l Decoding: Indicates when the DataMan reader is decoding an acquired image.

l DecodeCompleted: Tag value is toggled (1à0 or 0à1) on the completion of a decode.

l ResultsBufferOverrun: Indicates when the DataMan reader has discarded a set of decode results because the
results queue is full. Cleared when the next set of results are successfully queued.

l ResultsAvailable: Indicates when a set of decode results are available (i.e. the ResultID, ResultCode,
ResultLength and ResultsData tags contain valid data).

l GeneralFault: Indicates when a fault has occurred (i.e. Soft event “SetMatchString” or “ExecuteDMCC” error has
occurred).

l TrainCodeAck: Indicates that the soft event “TrainCode” has completed.

l TrainMatchStringAck: Indicates that the soft event “TrainMatchString” has completed.

l TrainFocusAck: Indicates that the soft event “TrainFocus” has completed.

l TrainBrightnessAck: Indicates that the soft event “TrainBrightness” has completed.

39

Industrial Network Protocols

l UnTrainAck: Indicates that the soft event “UnTrain” has completed.

l ExecuteDmccAck: Indicates that the soft event “ExecuteDMCC” has completed.

l SetMatchStringAck: Indicates that the soft event “SetMatchString” has completed.

l TriggerID: Value of the next trigger to be issued. Used to match triggers issued with corresponding result data
received later.

l ResultID: The value of TriggerID when the trigger that generated these results was issued. Used to match
TriggerID’s with result data.

l ResultCode: Indicates success/failure of this set of results.
l Bit 0 ,1=read 0=no read

l Bit 1 ,1=validated 0=not validated (or validation not in use)

l Bit 2 ,1=verified 0=not verified (or verification not in use)

l Bit 3 ,1=acquisition trigger overrun

l Bit 4 ,1=acquisition buffer overflow (not the same as result buffer overflow).

l Bits 5-15 , reserved (future use)

l ResultExtended: Currently unused.

l ResultLength: Number of bytes of result data contained in the ResultData tag.

l ResultData: Decode result data.
A description of the Control tag group follows. This is the data sent from the ControlLogix to the DataMan reader.

l TriggerEnable: Setting this tag enables EtherNet/IP triggering. Clearing this field disables the EtherNet/IP
triggering.

40

Industrial Network Protocols

l Trigger: Setting this tag triggers an acquisition when the following conditions are met:
l The TriggerEnable tag is set.

l No acquisition/decode is currently in progress.

l The device is ready to trigger.

l ResultsBufferEnable: When set, the decode results will be queued. Results are pulled from the queue (made
available) each time the current results are acknowledged. until acknowledged by the PLC. The Decode ID,
Decode Result and Decode ResultsData fields are held constant until the ResultsAck field has acknowledged
them and been set. The DataMan reader will respond to the acknowledgement by clearing the ResultsValid bit.
Once the ResultsAck field is cleared the next set of decode results will be posted.

l ResultsAck: The ResultsAck tag is used to acknowledge that the PLC has read the latest results. When
ResultsAck is set, the ResultsAvailable tag will be cleared. If results buffering is enabled the next set of results will
be made available when the ResultsAck tag is again cleared.

l TrainCode: Changing this tag from 0 to 1 will cause the train code operation to be invoked.

l TrainMatchString: Changing this tag from 0 to 1 will cause the train match string operation to be invoked.

l TrainFocus: Changing this tag from 0 to 1 will cause the train focus operation to be invoked.

l TrainBrightness: Changing this tag from 0 to 1 will cause the train brightness operation to be invoked.

l Untrain: Changing this tag from 0 to 1 will cause the un-train operation to be invoked.

l ExecuteDMCC: Changing this tag from 0 to 1 will cause the DMCC operation to be invoked. A valid DMCC
command string must be written to UserData prior to invoking this soft event.

l SetMatchString: Changing this tag from 0 to 1 will cause the set match string operation to be invoked. The match
string data must be written to UserData prior to invoking this soft event.

l UserDataOption: Currently unused.

l UserDataLength: Number of bytes of user data contained in the UserData tag.

l UserData: This data is sent to the DataMan reader to support acquisition and/or decode.

Note:
You must manually add UserData to the output assembly by configuring the DataMan module in RSLogix 5000.
Perform the following steps on a CompactLogix or ControlLogix PLC:

1. Right click the DataMan module and select Properties.

2. Under Module Definition, click Change.

3. The Module Definition window pops up. Under the Output Data to Sensor drop-down menu, select SINT–
484.

4. Click OK. RSLogix 500 is now updating the Module Definition.
The output assembly controller tags will now list UserData as part of the output assembly.

Verifying Implicit Messaging Connection Operation
The DataMan reader has been added as an I/O device in a ControlLogix project. After this project is downloaded to the
controller, the I/O connection will be established. Once a successful connection has been established, cyclic data
transfers will be initiated, at the requested RPI.

To verify a proper I/O connection, follow these steps:

41

Industrial Network Protocols

1. Download the project created above to the ControlLogix controller.

2. Upon the completion of the download, the project I/O indicator should be “I/O OK”. This signifies that the I/O
connection has been completed successfully.

To verify the correct, 2-way transfer of I/O data, in RSLogix, go to the controller tags and change the state of the
TriggerEnable bit from 0 to 1:

3. The TriggerReady tag changes to 1.

4. Triggering is now enabled. Whenever the Trigger tag is changed from 0 to 1, the DataMan reader will acquire an
image. Note that the current TriggerID value is 1. The results of the next trigger to be issued should come back
with a corresponding ResultID of 1.

42

Industrial Network Protocols

5. After the acquisition/decode has completed, the DecodeCompleted tag will toggle and the ResultsAvailable tag
will go to 1. In the example shown here a successful read has occurred (ResultCode bit 0 = 1) and the read has
returned 16 bytes of data (ResultLength=16). The data can be found in the ResultData tag.

Explicit Messaging
Unlike implicit messaging, explicit messages are sent to a specific device and that device always responds with a
reply to that message. As a result, explicit messages are better suited for operations that occur infrequently.
Explicit messages can be used to read and write the attributes (data) of the ID Reader Object. They may also be
used for acquiring images, sending DMCC commands and retrieving result data.

Issuing DMCC Commands
One of the more common explicit messages sent to a DataMan ID Reader is an instruction to execute a DMCC
command. Explicit messages are sent from ControlLogix to a DataMan using MSG instructions. There are two
different paths for invoking DMCC messages with explicit messaging; via the PCCC Object or via the ID Reader
Object “SendDMCC” service. In this example we show the SendDMCC service.

The CIP STRING2 format is required for transmission across EtherNet/IP (that is, 16-bit length value followed by
actual string characters, no null terminator). But Logix stores strings in a slightly different format (i.e. 32-bit length
value followed by actual string characters, no null terminator). Therefore some of the sample ladder involves
converting to/from the two different string formats.

43

Industrial Network Protocols

Note: This example is intended as a demonstration of DataMan explicit messaging behavior. This same
operation could be written in much more efficient ladder but would be less useful as a learning tool.

6. Add the following tags to the ControlLogix Controller Tags dialog:

Send_DMCC_Command: Boolean flag used to initiate the command.

DMCC_Command_String: String containing the DMCC command to execute.

DMCC_Result_String: String receiving the DMCC command results

Message_Data: Temp buffer holding the data to send via the MSG instruction.

Message_Result: Temp buffer holding the data received via the MSG instruction.

Message_Pending: Boolean flag used to indicate that a message is in process.

MSG_DMCC: Data structure required by the Logix MSG instruction.

7. Add the following two rungs to the MainRoutine of your ControlLogix project:

44

Industrial Network Protocols

8. Edit the MSG instruction. Configure it for “CIP Generic”, service 0x34 “SendDMCC”, class 0x79 “ID Reader
Object” and instance 1. Set the source to “Message_Data” and the destination to “Message_Result”.

9. On the MSG instruction “Communication” tab, browse for and select the DataMan which you added to the project
I/O Configuration tree. This tells Logix where to send the explicit message.

10. Download to the ControlLogix and place in “Run Mode”.

11. To operate:

l Place a DMCC command in the “DMCC_Command_String” tag. For example “||>GET
TRIGGER.TYPErl”. Note the rl at the end of the string. This is how Logix represents a CRLF.

l Toggle the “Send_DMCC_Command” tag to 1.

l When the “Send_DMCC_Command” tag goes back to 0 execution is complete. The DMCC command
results will be found in “DMCC_Result_String”.

45

Industrial Network Protocols

Rockwell CompactLogix Examples
CompactLogix differs very little from ControlLogix in terms of programming. The ControlLogix examples apply equally to
CompactLogix systems. There is only a slight difference in adding the DataMan device in the project I/O tree.

The I/O Configuration tree in a CompactLogix project looks a bit different from a ControlLogix project. Regarding the
Ethernet connection, the difference is that the Ethernet logic module is actually embedded in the CompactLogix
processor module. It is displayed in the I/O Configuration tree as if it were a separate module on the backplane. This
module is also configured exactly like a ControlLogix Ethernet module.

The DataMan module is added in the same way for CompactLogix as for ControlLogix. Right-click on the Ethernet node
in the I/O Configuration tree and select “New Module”.

From the “Select Module” dialog, choose your model of DataMan ID Reader from the list.

After the selection is made, the configuration dialog for the DataMan ID Reader system will be displayed. From this point
on, configuration and programming are done exactly as shown in the ControlLogix section above.

Rockwell SLC 5/05 Examples
This section outlines a PCCC (PC3) Communications configuration between a DataMan reader and the PLC. This
example uses the Allen-Bradley SLC5/05 and Rockwell 500 software.

46

Industrial Network Protocols

Setting up the PLC for Ethernet Communication

1. From within the RSLogix 500 software program, open the .RSS file, then open the Channel Configuration dialog
(Project Folder > Controller Folder > Channel Configuration)

2. The Allen-Bradley SLC has 2 channels available for configuration: Channel 1 (Ethernet); and Channel 0 (DF1
Full Duplex - serial). Click on the Chan. 1 - System tab.

3. Configure Channel 1 (Ethernet) as necessary. Consult with a network administrator for proper settings.

4. Configure the Timeouts as required.

Message Instruction (MSG)
Message instructions may now be constructed within the application. Refer to the RSLogix 500 documentation for
expanded instructions for developing messages.

The following setup parameters can be configured within a Message (MSG) Instruction.

47

Industrial Network Protocols

l Type: Peer-To-Peer. This cannot be modified.

l Read/Write: Select the function you want to perform on a DataMan reader. Read retrieves data from the
DataMan;Write sends data to the DataMan.

l Target Device: Choose PLC5 to talk to a DataMan reader. This tells the SLC which communication protocol to
use. The DataMan reader acts much like a ControlLogix controller (see Rockwell document 13862).

l Local/Remote: Choose Local to indicate that the DataMan reader is on the same network as the SLC; Remote
tells the SLC that you will be communicating to a DataMan on another network. For remote communication, you
must direct the message through another device acting as a gateway to that secondary network. Typically, this
could be an Allen-Bradley ControlLogix controller. (Refer to the Rockwell documentation on how to address
devices on other networks through a gateway.)

l Control Block: This is a temporary integer file that the MSG instruction uses to store data (i.e., IP address,
message type, etc.). This is typically not the user data to be sent.

l Control Block Length: This is automatically computed by the MSG instruction.

l Setup Screen: Selecting Setup Screen will open the Message Instruction Setup dialog.

The following setup parameters can be configured within an MSG Instruction Setup screen.

This Controller section:

l Communication Command: Should be the same command (READ/WRITE) that was chosen on the first screen
(as seen in MSG Instruction screen).

48

Industrial Network Protocols

l Data Table Address: This is the location of the data file on the SLC where data will be written to (READ) or sent
from (WRITE) (as seen in MSG Instruction screen). In this instance, 'N7:0', 'N' indicates the integer file, '7' indicates
the file number 7, and '0' indicates the offset into that file (in this case, start at the 0th element). The figure below
shows an example of the Integer Table accessed from the RSLogix 500 main screen.

l Size in Elements: This is the number of elements (or individual data) to read. In this example, two elements are
being read.

l Channel: Depends on the configuration of the SLC. In the SLC, Channel 1 is the Ethernet port.

l Message Timeout: Choose an appropriate length of time in which the DataMan reader will be able to respond. If
the DataMan does not respond within this length of time, the MSG instruction will error out. This parameter cannot
be changed from this screen. Message Timeout is determined by the parameters entered in the Channel 1 setup
dialog.

l Data Table Address: This is the location on the DataMan reader where data will be read from or written to. In
this instance, 'N7:1', 'N' indicates that the data is of type integer (16-bit); '7' is ignored by the DataMan (data is
always being written to the Output Assembly, and read from the Input Assembly); and the '1' is the element offset
from the start of the target buffer. For example: If the message were a READ, 'N7:2' would instruct to read the 3rd
integer (the ':2' indicates the 3rd element, due to the SLC's 0-based index) from the Input Assembly (because a
READ gets data from the DataMan's Input Assembly). If the message were a WRITE, 'N7:12' would indicate to
write a (16-bit) integer value to the 13 integer location of the Output Assembly.

Note: The ST10:0 destination address is a special case used for sending DMCC commands to a DataMan reader.
Any string sent to ST10:0 will be interpreted as a DMCC command.

l Local/Remote: Set to Local or Remote, depending on the application.

l MultiHop: This setting is dependent on the information previously entered. For successful In-Sight
communication, this should YES at this time.

Sending DMCC Commands from an SLC 5/0

1. Configure the SLC5/05 as necessary.

2. Create a String Table that will hold your DMCC commands.

49

Industrial Network Protocols

3. Add the required DMCC command strings to the Data File.

4. Add a new Message (MSG) instruction to your ladder logic and configure it as shown in the following example:

5. Enter the MSG Setup Screen and configure it as follows:

50

Industrial Network Protocols

This
Controller

Parameter Description

Data Table
Address

ST10:0 First element from the String Table (ST) created above.

Size in
Elements

1 Always set to 1. PCCC MSG only allows 1 string (therefore 1 command) to be sent
at a time.

Channel 1 Set this to the Ethernet channel of your controller.

Target Device Parameter Description
Message Timeout (From channel configuration dialog)
Data Table
Address

ST10:0 This is the destination address. For DMCC commands, this will always be
ST10:0.

6. Click the MultiHop tab and configure it as required (i.e. set IP address of DataMan).

7. When everything is configured, close the MSG window.

8. Save your ladder logic, download it to the controller, then go online and set the controller in RUN mode.

9. Trigger the message to send it to the DataMan reader.

Message Instruction Results

The Enable (EN) bit of the message instruction will be set to 1 when the input to the instruction is set high. The Done
(DN) bit will be set to 1 when DataMan has replied that the DMCC command was received and executed with success. If
the Error bit (ER) is enabled (set to 1), there has been a problem with the message instruction. If an error occurs, click the
Setup Screen for the MSG instruction. The Error Code will be shown at the bottom of the window.

Using the Generic EtherNet/IP Profile
For devices without a specific Add-On-Profile Rockwell provides a Generic EtherNet/IP profile. This profile allows you to
create implicit messaging connections but lacks the automatic tag generation feature of a specific product Add-On-
Profile.

Establishing a Generic Implicit Messaging Connection
To setup an EtherNet/IP implicit messaging connection between a DataMan and a ControlLogix controller, the DataMan
reader must first be added to the ControlLogix I/O Configuration tree. This can be accomplished with the Rockwell
provided generic profile.

To establish a generic implicit messaging connection with a ControlLogix PLC:

51

Industrial Network Protocols

1. Open RSLogix5000 and load your project (or select “File->New…” to create a new one).

2. From the I/O Configuration node, select the Ethernet node under the project Ethernet Module, right-click on the
icon and select New Module from the menu:

3. From the Select Module dialog, choose the Allen-Bradley Generic Ethernet Module.

52

Industrial Network Protocols

4. After the selection is made, the configuration dialog for the Generic Ethernet Module will be displayed. Configure
the following:

l Give the module a name.

l Enter your DataMan’s IP address.

l Set the Comm Format to “Data – INT”. This tells the module to treat the data as an array of 16-bit integers.

l Input Assembly: Set instance 11. Set the size to the amount of Input Assembly data you want the PLC to
receive. Basic “Status” data requires 8 integers. The amount beyond that will be the actual decode result
data. In the example below the size is set to 24 (8 for status + 16 for result data). This connection will
receive the status info plus 32 bytes of result data.

l Output Assembly: Set instance 21. Set the size to 4 integers. This size is sufficient to send all required
“Control” data to the DataMan.

l Configuration Assembly: Set instance 1. Set size to zero (no used).

5. The final step is configuring the connection rate. The rate at which data is transmitted/received is defined as the
Requested Packet Interval (RPI). The RPI defines how frequently the data is transmitted/received over the
connection. To optimize network performance this rate should be set no lower than absolutely required by a
given application. In no case should it be set to lower than ½ the median scan rate of the PLC ladder program.
Setting it lower wastes bandwidth and does not improve processing performance.

53

Industrial Network Protocols

6. After adding the generic module to ControlLogix, the I/O tree should appear as follows.

7. When the Generic Module is added to the I/O tree RSLogix 5000 creates tags that map to the DataMan reader
Input and Output Data (i.e. the Input & Output Assembly Objects in the DataMan Reader). These tags can be
found under the “Controller Tags” node of the project tree.

Note: The base name of these tags is the name you gave to the Generic Module that you added to the I/O
Configuration earlier.

The tags are organized in three groups: Config “MyDM200:C”, Input “MyDM200:I”, and Output “MyDM200:O”. You can
ignore the Config tags (no used). The Input tags represent all the data being received (from the DataMan). The Ouput
tags represent all the data being sent (to the DataMan).

These tags are the data table representation of the DataMan Assembly Object contents. The PLC ladder is written to
access these tag values. By monitoring or changing these tag values the PLC ladder is actually monitoring and changing
the DataMan Assembly Object contents.

Note: There is a time delay between the DataMan and these PLC tag values (based on the configured RPI). All
PLC ladder must be written to take that time delay into account.

Accessing Generic Implicit Messaging Connection Data
The section above details establishing an implicit message connection between a ControlLogix and a DataMan ID
Reader using the Generic Module profile. Unlike the DataMan Add-On-Profile the Generic profile does not automatically
generate named tags representing the individual data items within an Assembly Object. Instead it simply generates an
array of data according to the size of the connection you defined.

To access individual data items within an Assembly Object you must manually select the correct tag offset and data
subtype (if necessary) within the tag array that the Generic profile provided. This can be awkward and error prone since it
requires you to manually reference the vendor documentation which defines the Assembly Objects.

Note: The start of the Input tags “MyDM200:I.Data[0]” maps directly to the start of the DataMan Input Assembly.
Likewise, the start of the Output tags “MyDM200:O.Data[0]” maps directly to the start of the DataMan Output
Assembly.

Examples
Input Assembly “TriggerReady”: Bit 0 of word 0 of the Input Assembly. From the Input tag array for the DataMan select bit
0 of word 0.

54

Industrial Network Protocols

Input Assembly “ResultLength”: Word 7 of the Input Assembly. From the Input tag array for the DataMan select word 7.

Output Assembly “Trigger”: Bit 1 of word 0 of the OutputAssembly. From the Output tag array for the DataMan select bit 1
of word 0.

55

Industrial Network Protocols

SLMP Protocol
The SLMP Protocol uses standard Ethernet hardware and software to exchange I/O data, alarms, and diagnostics. It is
Mitsubishi Electric’s publicly available, standardized communication format for communicating with Q, iQ and L Series
PLCs through Ethernet or serial connections. DataMan supports SLMP Protocol on Ethernet only.

By default the DataMan has SLMP Protocol disabled. The protocol can be enabled in Setup Tool, via DMCC, or by
scanning a parameter code.

Note: If you have a wireless DataMan reader, read the section Industrial Protocols for the Wireless DataMan.

DMCC
The following commands can be used to enable/disable SLMP Protocol. The commands can be issued via RS-232 or
Telnet connection.

Note: Because you have to make changes to the Telnet client provided by Windows to communicate with DataMan,
it is recommended you use third party clients such as PuTTY.

Enable:

||>SET SLMP-PROTOCOL.ENABLED ON
||>CONFIG.SAVE
||>REBOOT

Disable:

||>SET SLMP-PROTOCOL.ENABLED OFF
||>CONFIG.SAVE
||>REBOOT

Reader Configuration Code
Scanning the following reader configuration codes will enable/disable SLMP Protocol for your corded reader.

Note: You must reboot the device for the change to take effect.

Enable: Disable:

Scanning the following reader configuration codes will enable/disable SLMP protocol on your DataMan 8000 base
station.

Note: You must reboot the device for the change to take effect.

56

Industrial Network Protocols

Enable: Disable:

Setup Tool
SLMP Protocol can be enabled by checking Enabled on the Industrial Protocols pane’s SLMP Protocol tab. Make sure to
save the new selection by choosing “Save Settings” before disconnecting from the reader.

Note: You must reboot your reader for the new settings to take effect.

SLMP Protocol Scanner
SLMP Protocol on DataMan is implemented as a client type device also referred to as a scanner. All communication is
initiated by the DataMan reader in the form of read and write requests. The PLC acts as a passive server reacting to the
read and write requests. Since the PLC cannot initiate communication, it relies on the reader to periodically ask (scan)
the PLC for any actions or information that the PLC requires (such as triggering or retrieving read results).

Getting Started
By default, SLMP Protocol is not enabled on the DataMan reader. The protocol must be enabled and the protocol
configuration parameters must be set to correctly interact with a PLC. Protocol configuration is accomplished via the
DataMan Setup Tool.

1. From the Windows Start menu, start the DataMan Setup Tool.

2. Under Settings -> Communication Settings, click Industrial Protocols.

57

Industrial Network Protocols

3. Select the SLMP Protocol tab.

4. Enable the protocol and set the proper configuration settings.

SLMP Protocol configuration consists of two aspects; defining the network information and defining the data to be
exchanged. All configuration parameters are accessed via the SLMP Protocol tab.

You must modify the “IP Address” to match the address of your PLC. Also, modify “Network Number”, “PC Number” and
“Destination Module” if they differ from your network.

Note: Make sure that you select System -> Save Settings to save any changes made to the SLMP Protocol
configuration settings. Also, the reader must be rebooted for the new settings to take effect.

Network Configuration
The network configuration defines all the information that the DataMan reader needs to establish a connection with a
PLC.

Name Default Range Description
IP Address <empty > Any valid IP address IP Address of the PLC to connect to
Host Port (Hex) 3000 Any Hex port number

1000-FFFF
Port number of the SLMP Protocol channel on the PLC

58

Industrial Network Protocols

Name Default Range Description
Timeout (ms) 1000 5 - 30000 Time to in milliseconds for a response from the PLC to an

SLMP Protocol message.
Poll Interval
(ms)

1000 10 - 30000 Requested time in milliseconds between successive polls of
the Control Block from the PLC.

PLC Series QCPU QCPU or LCPU Defines frame type used. Currently only 3E supported.
Network
Number

0 0 - 239 SLMP Protocol network number to communicate with (0 =
local network)

PC Number 0xFF 1 -120 = station on CC-Link
IE
field network adapter

126 = Master station on CC-
Link
IE field network

255 = Direct connect to
local
station

Station identifier on the specified network of the destination
module.

Destination
Module

0x3FF 0x3ff = Local station
(default)
0x3d0 = Control system
CPU
0x3d1 = Standby system
CPU
0x3d2 = System A CPU
0x3d3 = System B CPU
0x3e0 = CPU 1
0x3e1 = CPU 2
0x3e2 = CPU 3
0x3e3 = CPU 4

Module identifier of the device to connect to.

Data Block Configuration
The data block configuration defines the data that will be exchanged between the DataMan reader and the PLC. Six data
blocks are available. Each block has a predefined function.

Not all data blocks are required. Configure only those data blocks which are needed by your application. Typically the
Control and Status blocks are defined because they control most data flow. However, there are some use cases where
even these blocks are not required.

A data block is configured by defining the PLC Device type (that is, memory type), Device offset and Number of Devices
contained in the data block. If either the Device type or Number of Devices is undefined, that block will not be used (that
is, no data will be exchanged for that block).

Block Name Supported Device Types Offset Number of Devices
Control <none>, D, W, R, ZR, M, X, Y, L, F, B 0 - 65535 0, if type <none>

32, if bit type

2, if word type
(read-only)

59

Industrial Network Protocols

Block Name Supported Device Types Offset Number of Devices
Status <none>, D, W, R, ZR, M, X, Y, L, F, B 0 - 65535 0, if type <none>

32, if bit type

2, if word type
(read-only)

PLC Input None, D, W, R, ZR 0 - 65535 0 - 960
PLC Output None, D, W, R, ZR 0 - 65535 0 - 960
Command None, D, W, R, ZR 0 - 65535 0 - 960
Command
Result

None, D, W, R, ZR 0 - 65535 0 - 960

Interface
This section describes the interface to the DataMan reader as seen by the PLC via SLMP Protocol. The interface model
consists of 6 data blocks grouped in 3 logical pairs:

l Control and Status

l Input Data and Output Data

l String Command and String Response

Not all of the blocks are required. You may select which blocks are appropriate for your particular application. However,
Control and Status will generally be included for most applications.

You can define the starting address and device type for each interface block that you choose to use in your application.
Undefined blocks will not be exchanged. For any transfer (read or write) the entire block is sent, even if only one field
within the block has changed value. The protocol implementation will minimize network use by grouping as many value
changes as logically possible into a single transfer.

Control Block
The Control block contains bit type data. However, the block may be defined to exist in either bit or word memory in the
PLC. This block consists of the control signals sent from the PLC to the reader. It is used by the PLC to initiate actions
and acknowledge certain data transfers.Control Block

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved Results Ack Buffer

Results
Enable

Trigger Trigger
Enable

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Reserved

Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
Reserved Initiate

String Cmd
Set User
Data

Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
Soft Event 7 Soft Event 6 Soft Event 5 Soft Event 4 Soft Event 3 Soft Event 2 Soft Event 1 Soft Event 0

60

Industrial Network Protocols

Control Block Field Descriptions
Bit Name Description
0 Trigger

Enable
This field is set to enable triggering via the Trigger bit. Clear this field to disable the network
triggering mechanism.

1 Trigger Setting this bit triggers an acquisition.

Note: The Trigger Ready bit must be set high before triggering an acquisition.

2 Buffer
Results
Enable

When this bit is set, each read result set (ResultID, ResultCode, ResultLength and
ResultData fields) will be held in the Output Block until it is acknowledged. Once
acknowledged, the next set of read results will be made available from the buffer. If new read
results arrive before the earlier set is acknowledged the new set will be queued in the
reader’s buffer. Up to 6 sets of read results can be held in the reader’s buffer. Refer to
Section Operation for a description of the acknowledgement handshake sequence.

3 ResultsAck Set by the PLC to acknowledge that it has received the latest results (ResultID, ResultCode,
ResultLength and ResultData fields). When the reader sees this bit transition from 0->1 it
clears the ResultsAvailable bit. This forms a logical handshake between the PLC and reader.
If result buffering is enabled, the acknowledgement will cause the next set of queued results
to be moved from the buffer. See section Operation for a description of the acknowledgement
handshake sequence.

4-15 Reserved Future use
16 SetUserData Set by the PLC to signal that new UserData is available. After reading the new UserData the

reader sets Set UserDataAck to signal that the transfer is complete. This forms a logical
handshake between the PLC and reader.

17 Initiate
StringCmd

Set by the PLC to signal that a new StringCommand is available. After processing the
command the reader sets StringCmdAck to signal that the command result is available. This
forms a logical handshake between the PLC and reader.

18-23 Reserved Future use
24-31 SoftEvents Bits act as virtual discrete inputs. When a bit transitions from 0->1 the associated action is

executed. After executing the action the reader sets the corresponding SoftEventAck to signal
that the action is complete. This forms a logical handshake between the PLC and reader.
Bit0: Train code
Bit1: Train match string
Bit2: Train focus
Bit3: Train brightness
Bit4: Un-Train
Bit5: Reserved (future use)
Bit6: Execute DMCC command
Bit7: Set match string

Status Block
The status block contains bit type data. However, the block may be defined to exist in either bit or word memory in the
PLC. This block consists of the status signals sent from the reader to the PLC. It is used by the reader to signal status and
handshake certain data transfers.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved Missed

Acq
Acquiring Trigger

Ack
Trigger
Ready

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
General
Default

Reserved Results
Available

Results Buffer
Overrun

Decode Complete
Toggle

Decoding

Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
Reserved String Cmd

Ack
Set User
Data Ack

61

Industrial Network Protocols

Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
Soft Event
Ack 7

Soft Event
Ack 6

Soft Event
Ack 5

Soft Event
Ack 4

Soft Event
Ack3

Soft Event
Ack 2

Soft Event
Ack 1

Soft Event
Ack 0

Status Block Field Descriptions
Bit Name Description
0 Trigger

Ready
Indicates when the reader is ready to accept a new Trigger. The reader sets this bit when
TriggerEnable has been set and the reader is ready to accept a new trigger.

1 Trigger
Ack

Indicates when the reader recognizes that Trigger has been set. This bit will remain set until the
Trigger bit has been cleared.

2 Acquiring Set to indicate that the reader is in the process of acquiring an image.
3 Missed

Acq
Indicates that the reader missed a requested acquisition trigger. The bit is cleared when the next
acquisition is issued.

4-7 Reserved Future use
8 Decoding Set to indicate that the reader is in the process of decoding an image.
9 Decode

Complete
Toggle

Indicates new result data is available. Bit toggles state (0->1 or 1->0) each time new result data
becomes available.

10 Results
Buffer
Overrun

Set to indicate that the reader has discarded a set of read results because the PLC has not
acknowledged the earlier results. Cleared when the next set of result data is successfully
queued in the buffer. This bit only has meaning if result buffering is enabled.

11 Results
Available

Set to indicate that new result data is available. Bit will remain set until acknowledged with
ResultsAck even if additional new read results become available.

12-14 Reserved Future use
15 General

Fault
Set to indicate that an Ethernet communications fault has occurred. Currently only used by soft
event operations. Bit will remain set until the next successful soft event or until TriggerEnable is
set low and then high again.

16 Set User
Data Ack

Set to indicate that the reader has received new UserData. Bit will remain set until the
corresponding SetUserData bit is cleared. This forms a logical handshake between the PLC and
reader.

17 String
Cmd Ack

Set to indicate that the reader has completed processing the latest string command and that the
command response is available. Bit will remain set until the corresponding InitiateStringCmd bit
is cleared. This forms a logical handshake between the PLC and reader.

18-23 Reserved Future use
24-31 SoftEvent

Ack
Set to indicate that the reader has completed the soft event action. Bit will remain set until the
corresponding SoftEvent bit is cleared. This forms a logical handshake between the PLC and
reader.
Bit0: Ack train code
Bit1: Ack train match string
Bit2: Ack train focus
Bit3: Ack train brightness
Bit4: Ack untrain
Bit5: Reserved (future use)
Bit6: Ack Execute DMCC command
Bit7: Ack set match string

Input Data Block
The Input Data block contains word type data. This is data sent from the PLC to the reader. The block consists of user
defined data that may be used as input to the acquisition/decode operation.

Word 0 Word 1 Word 2..N
Reserved User Data Length User Data

62

Industrial Network Protocols

Input Data Block Field Descriptions
Word Name Description
0 Reserved Future use
1 User Data

Length
Number of bytes of valid data actually contained in the UserData field.

2..N User Data User defined data that may be used as an input to the acquisition/decode.

Output Data Block
The Output Data block contains word type data. This is data sent from the reader to the PLC. The block consists primarily
of read result data.

Word 0 Word 1 Word 2 Word 3 Word 4 Word 5..N
Reserved Trigger ID Result ID Result Code Result Length Result Data

Output Data Block Field Descriptions
Word Name Description
0 Reserved Future use
1 Trigger ID Trigger identifier. Identifier of the next trigger to be issued. Used to match issued triggers with result

data that is received later. This same value will be returned as the ResultID of the corresponding
read.

2 Result ID Result set identifier. This is the value of TriggerID when the corresponding trigger was issued.
Used to match up triggers with corresponding result data.

3 Result
Code

Indicates the success or failure of the read that produced this result set.
Bit0: 1=Read, 0=No read
Bit1: 1=Validated, 0=Not Validated
Bit2: 1=Verified, 0=Not Verified
Bit3: 1=Acquisition trigger overrun
Bit4: 1=Acquisition buffer overrun
Bit5-15: Reserved (future use)

4 Result
Data Length

Number of bytes of valid data actually in the ResultData field.

5..N Result Data Result data from this acquisition/decode.

String Command Block
The String Command block contains word type data. This is data sent from the PLC to the reader. The block is used to
transport string based commands (DMCC) to the reader.

Note: Do not send string commands that change the reader configuration at the same time that reads are being
triggered. Changing configuration during acquisition/decode can lead to unpredictable results.

Word 0 Word 1..N
Length String Command

63

Industrial Network Protocols

String Command Block Field Descriptions
Word Name Description
0 Length Number of bytes of valid data in the StringCommand field.
1..N String Command ASCII text string containing the command to execute. No null termination required.

String Command Result Block
The String Command Result block contains word type data. This is data sent from the reader to the PLC. The block is
used to transport the response from string based commands (DMCC) to the PLC.

Word 0 Word 1 Word 2..N
Result Code Length String Command Result

String Command Result Block Field Descriptions
Word Name Description
0 Result

Code
Code value indicating the success or failure of the command. Refer to the Command Reference,
available through the Windows Start menu or the DataMan Setup Tool Help menu, for specific
values.

1 Length Number of bytes of valid data in the StringCommand field.
2..N String

Command
Result

ASCII text string containing the command to execute. No null termination required.

Operation
SLMP Protocol is a command/response based protocol. All communications are originated from the DataMan reader.
The reader must send read requests to the PLC at a periodic interval to detect changes in the control bits.

Scanning
To initiate actions or control data transfer, the PLC changes the state of certain bits of the Control block. Since only the
reader can initiate communications, the reader scans (that is, reads the Control block from the PLC) at a periodic rate.
This rate is defined by the user.

After each scan, the reader will process changes in state of the bits in the Control block. Some state changes require
additional communications with the PLC, such as writing updated acknowledge bit values or reading a new string
command. These additional communications are handled automatically by the reader. Other state changes initiate
activities such as triggering a read or executing a soft event. The reader performs the requested action and later reports
the results.

For any transfer (read or write), the entire interface block is sent, even if only one field within the block has changed
value. The protocol implementation will minimize network usage by grouping as many value changes as logically
possible into a single transfer.

64

Industrial Network Protocols

Typical Sequence Diagram

Handshaking
A number of actions are accomplished by means of a logical handshake between the reader and PLC (triggering,
transferring results, executing soft events, string commands, and so on). This is done to ensure that both sides of a
transaction know the state of the operation on the opposite side. Network transmission delays will always introduce a
finite time delay in transfer data and signals. Without this handshaking, it is possible that one side of a transaction might
not detect a signal state change on the other side. Any operation that has both an initiating signal and corresponding
acknowledge signal will use this basic handshake procedure.

The procedure involves a four-way handshake.

1. Assert signal

2. Signal acknowledge

3. De-assert signal

4. De-assert acknowledge

The requesting device asserts the signal to request an action (set bit 0->1). When the target device detects the signal
and the requested operation has completed, it asserts the corresponding acknowledge (set bit 0->1). When the
requesting device detects the acknowledge, it de-asserts the original signal (1->0). Finally, when the target device

65

Industrial Network Protocols

detects the original signal de-asserted, it de-asserts its acknowledge (bit 0->1). To function correctly both sides must see
the complete assert/de-assert cycle (0->1 and 1->0). The requesting device should not initiate a subsequent request until
the cycle completes.

Acquisition Sequence
DataMan can be triggered to acquire images by several methods. It can be done via the SLMP Protocol by setting the
Trigger bit or issuing a trigger String Command. It can also be done via DMCC command (Telnet) or hardwired trigger
signal. The Trigger bit method will be discussed here.

On startup the TriggerEnable will be False. It must be set to True to enable triggering via the SLMP Protocol Trigger bit.
When the device is ready to accept triggers, the reader will set the TriggerReady bit to True.

While the TriggerReady bit is True, each time the reader detects the Trigger bit change from 0->1, it will initiate a read.
The Trigger bit should be held in the new state until that same state value is seen in the TriggerAck bit (this is a
necessary handshake to guarantee that the trigger is seen by the reader).

During an acquisition, the TriggerReady bit will be cleared and the Acquiring bit will be set to True. When the acquisition
is completed, the Acquiring bit will be cleared. When the device is ready to begin another image acquisition, the
TriggerReady bit will again be set to True.

If results buffering is enabled, the reader will allow overlapped acquisition and decoding operations. TriggerReady will
be set high after acquisition is complete but while decoding is still in process. This can be used to achieve faster overall
trigger rates. If result buffering is not enabled, the TriggerReady bit will remain low until both the acquisition and decode
operations have completed.

To force a reset of the trigger mechanism set the TriggerEnable to False until TriggerReady is also set to False. Then,
TriggerEnable can be set to True to re-enable acquisition.

As a special case, an acquisition can be cancelled by clearing the Trigger signal before the read operation has
completed. This allows for the cancellation of reads in Presentation and Manual mode if no code is in the field of view. To
ensure that a read is not unintentionally cancelled, it is advised that the PLC hold the Trigger signal True until both
TriggerAck and ResultsAvailable are True (or DecodeComplete toggles state).

Decode / Result Sequence
After an image is acquired, it is decoded. While being decoded, the Decoding bit is set. When the decode operation has
completed, the Decoding bit is cleared. The ResultsBufferEnable determines how decode results are handled by the
reader.

66

Industrial Network Protocols

If ResultsBufferEnable is set to False, then the read results are immediately placed into the Output Data block,
ResultsAvailable is set to True and DecodeComplete is toggled.

If ResultsBufferEnable is set to True, the new results are queued in a buffer and DecodeComplete is toggled. The earlier
read results remain in the Output Data block until they are acknowledged by the PLC. After the acknowledgment
handshake, if there are more results in the queue, the next set of results will be placed in the Output Data block and
ResultsAvailable is set to True.

Results Buffering
There is an option to enable a queue for read results. If enabled, this allows a finite number of sets of result data to be
queued up until the PLC has time to read them. This is useful to smooth out data flow if the PLC slows down for short
periods of time.

Also, if result buffering is enabled the reader will allow overlapped acquisition and decode operations. Depending on the
application this can be used to achieve faster overall trigger rates. See the Acquisition Sequence description above for
further detail.

In general, if reads are occurring faster than results can be sent out, the primary difference between buffering or not
buffering determines which results get discarded. If buffering is not enabled, the most recent results are kept and the
earlier result (which was not read by the PLC quickly enough) is lost. The more recent result will overwrite the earlier
result. If buffering is enabled (and the queue becomes full) the most recent results are discarded until room becomes
available in the results queue.

Note: If the queue has overflowed and then buffering is disabled, there will be a greater than 1 difference between
the TriggerID and ResultID values. This difference represents the number of reads that had occurred but could not
be queue because the queue was full (number of lost reads equals TriggerID - ResultID - 1). After the next read, the
ResultID value will return to the typical operating value of TriggerID - 1.

SoftEvents
SoftEvents act as “virtual” inputs. When the value of a SoftEvent bit changes from 0 -> 1 the action associated with the
event will be executed. When the action completes, the corresponding SoftEventAck bit will change from 0 -> 1 to signal

67

Industrial Network Protocols

completion.

The SoftEvent and SoftEventAck form a logical handshake. After SoftEventAck changes to 1, the original SoftEvent
should be set back to 0. When that occurs, SoftEventAck will automatically be set back to 0.

WARNING: Do not execute soft events that change the reader configuration at the same time that reads are being
triggered. Changing configuration during acquisition/decode can lead to unpredictable results.

Note: The “ExecuteDMCC” and “SetMatchString” soft event actions require user supplied data. This data must be
written to the UserData and UserDataLength area of the Input Data block prior to invoking the soft event. Since both
of these soft events depend on the UserData, only one may be invoked at a time.

String Commands
The DataMan SLMP Protocol implementation includes a String Command feature. This feature allows you to execute
string-based DMCC commands over the SLMP protocol connection. The DMCC command is sent to the reader via the
String Command block. The DMCC command result is returned via the String Command Result block. Initiating a
command and notification of completion is accomplished by signaling bits in the Control and Status blocks.

To execute a DMCC command, the command string is placed in the data field of the String Command block. The
command string consists of standard ASCII text. The command format is exactly the same as would be used for a serial
(RS-232) or Telnet connection. The string does not need to be terminated with a null character. Instead, the length of the
string (that is, the number of ASCII characters) is placed in the length field of the String Command block.

After executing the DMCC command, the result string is returned in the String Command Result block. Similar to the
original command, the result string consists of ASCII characters in the same format as would be returned via serial or
Telnet. Also, there is no terminating null character. Instead the length of the result is returned in the Command String
Result length field. The Command String Result block also contains a numeric result code. This allows you to determine
the success or failure of the command without having to parse the text string. The values of the result code are defined in
the DMCC documentation.

General Fault Indicator
When an SLMP Protocol communication-related fault occurs, the “GeneralFault” bit will change from 0 -> 1. Currently the
only fault conditions supported are soft event operations. If a soft event operation fails, the fault bit will be set. The fault bit
will remain set until the next successful soft event operation, or, until TriggerEnable is set to 0 and then back to 1.

Examples
Included with the DataMan Setup Tool installer is an example PLC program created with Mitsubishi (GX Works2)
software. This simple program clearly demonstrates DataMan ID readers’ capabilities and proper operation. The same
operations can be achieved by using more advanced features and efficient programming practices with Mitsubishi PLCs.
However, such an advanced program is less useful for demonstration purposes.

68

Industrial Network Protocols

Function
The example application demonstrates the following operations:

1. Triggering a read

2. Getting read results

3. Executing string commands (DMCC)

4. Executing soft event operations

a. Train code

b. Train match string

c. Train focus

d. Train brightness

e. Un-train

f. Execute DMCC

g. Set match string

The “Main” program contains a PLC ladder rung to invoke each of these operations. The operation is invoked by toggling
the control bit on the rung from 0 -> 1. This will invoke the associated subroutine to perform the operation. When the
operation is complete, the subroutine will set the control bit back to 0.

Triggering a Read
The example provides two trigger options; “Continuous Trigger” and “Single Trigger”. As the name implies, enabling the
“Continuous Trigger” bit will invoke a continuous series of read operations. Once enabled, the “Continuous Trigger”
control bit will remain set until you disable it. The “Single Trigger” control bit invokes a single read operation. This control
bit will automatically be cleared when the read is completed.

Primarily, the trigger subroutine manages the trigger handshake operation between the PLC and the reader. The control
Trigger bit is set, the PLC waits for the corresponding TriggerAck status bit from the reader, and the control Trigger bit is
reset. Refer to a description of handshaking in section Operation.

The trigger subroutine contains a delay timer. This is not required for operation. It exists simply to add an adjustable
artificial delay between reads for demonstration purposes.

Getting Read Results
For this example the operation of triggering a read and getting read results was intentionally separated. This is to support
the situation where the PLC is not the source of the read trigger. For example, the reader may be configured to use a
hardware trigger. In such a case, only the get results subroutine would be needed.

Like the triggering subroutine, the get results subroutine manages the results handshake operation between the PLC
and the reader. However, it also copies the result data to internal storage. The routine waits for the ResultsAvailable

69

Industrial Network Protocols

status bit to become active, it copies the result data to internal storage, and then executes the ResultsAck handshake.
Refer to a description of handshaking in section Operation.

The read result consists of a ResultCode, ResultLength, and ResultData. Refer to section Output Data Block Field
Descriptions for details of the ResultCode values. The ResultLength field indicates how many bytes of actual result data
exist in the ResultData field. The subroutine converts this byte length to word length before copying the results to internal
storage.

The get results subroutine gathers read statistics (number of good reads, number of no-reads, and so on). This is not
required for operation. It is simply for demonstration purposes.

Execute String Commands (DMCC)
The string command feature provides a simple way to invoke DMCC commands from the PLC. The command format and
command result format is exactly identical to that used for serial or Telnet DMCC operation.

This subroutine copies an example DMCC command (||>GET CAMERA.EXPOSURE) to the String Command block and
then manages the string command handshake operation between the PLC and the reader to invoke the command and
retrieve the command result. Any valid DMCC command may be invoked with this mechanism. Refer to the DataMan
Command Reference document available through the Windows Start menu or the DataMan Setup Tool Helpmenu.

Execute Soft Events
Soft Events are used to invoke a predefined action. Each Soft Event is essentially a virtual input signal. Each of the soft
event subroutines manages the handshake operation between the PLC and the reader to invoke the predefined action.
The associated action is invoked when the SoftEvent bit toggles from 0 -> 1. The subroutine then watches for the
associated SoftEventAck bit from the reader which signals that the action is complete. For a description of handshaking,
see section Operation.

Note: The “Execute DMCC” and “Set Match String” soft events make use of the Input Data block. The subroutine for
these two events copies the relevant data into the User Data fields of the Input Data block and then invokes the
User Data subroutine to transfer the data to the reader. Only after the user data is transferred is the actual soft event
action invoked. It is required that the user data be transferred before invoking either of these events.

70

Industrial Network Protocols

Note: The “Train Match String” soft event only prepares the training mechanism. The actual training occurs on the
next read operation. Therefore, a trigger must be issued following “Train Match String”.

71

Industrial Network Protocols

ModbusTCP
Modbus is an application layer protocol. It provides client/server communication between devices connected to different
types of buses or networks. Modbus is a request/response protocol, whose services are specified by using function
codes.

Modbus TCP provides the Modbus protocol using TCP/IP. System port 502 is reserved for Modbus communication. It
uses standard Ethernet hardware and software to exchange I/O data and diagnostics. DataMan provides Modbus TCP
server functionality only.

By default, DataMan has the Modbus TCP protocol disabled. The protocol can be enabled in the Setup Tool, via DMCC,
or by scanning a parameter code.

Note: If you have a wireless DataMan reader, read the section Industrial Protocols for the Wireless DataMan.

DMCC
The following commands can be used to enable/disable Modbus TCP. The commands can be issued via RS-232 or
Telnet connection.

Note: Because you have to make changes to the Telnet client provided by Windows to communicate with DataMan,
it is recommended you use third party clients such as PuTTY.

Enable:

||>SET MODBUSTCP.ENABLED ON
||>CONFIG.SAVE
||>REBOOT

Disable:

||>SET MODBUSTCP.ENABLED OFF
||>CONFIG.SAVE
||>REBOOT

Reader Configuration Code
Scanning the following reader configuration codes will enable/disable Modbus TCP for your corded reader.

Note: You must reboot the device for the change to take effect.

Enable: Disable:

Scanning the following reader configuration codes will enable/disable Modbus TCP for your DataMan 8000 base station.

Note: You must reboot the device for the change to take effect

72

Industrial Network Protocols

Enable: Disable:

Setup Tool
Modbus TCP can be enabled by checking Enabled on the Industrial Protocols pane’s Modbus TCP tab. Make sure to
save the new selection by choosing “Save Settings” before disconnecting from the reader.

Note: You must reboot your reader for the new settings to take effect.

Modbus TCP Handler
Modbus TCP on DataMan is implemented as a server type device. All communication is initiated by the PLC in the form
of read and write requests. The PLC acts as a client which actively sends read and write requests.

Getting Started
By default, Modbus TCP is not enabled on the DataMan reader. The protocol must be enabled and the protocol
configuration parameters must be set to correctly interact with a PLC. Protocol configuration is accomplished via the
DataMan Setup Tool.

1. From the Windows Start menu, start the DataMan Setup Tool.

2. Under Communication Settings, click the Industrial Protocols node.

3. Select the Modbus TCP tab.

73

Industrial Network Protocols

4. Enable the protocol and set the proper configuration settings.

Modbus TCP configuration consists of two aspects: defining the network information and defining the data to be
exchanged. All configuration parameters are accessed via the Modbus TCP tab.

Note: Make sure that you select System -> Save Settings to save any changes made to the Modbus TCP
configuration settings. Also, the reader must be rebooted for the new settings to take effect.

Network Configuration
The network configuration defines all the information that the DataMan reader needs to establish a connection with a
PLC. In most cases the default values may be used and no changes are need.

Name Default Range Description
Host Port 502 Fixed Port number where Modbus TCP can be accessed on this reader.
Max Connections 3 1-6 Maximum number of simultaneous Modbus TCP connections.
Idle Timeout
(seconds)

120 1-3600 Timeout period after which the Modbus TCP connection will be
closed. If no traffic is received on a Modbus TCP connection for
this amount of time, the connection will automatically be closed.

74

Industrial Network Protocols

String byte swap False True / False String byte swap enable. If set to True, bytes within each register
that forms a string will be swapped.

Holding Register
Only Mode

False True / False Holding Register Only Mode enable. If set to True, all data blocks
will be mapped to the Holding Register space.

Data Block Configuration
The data block configuration defines the data that will be exchanged between the DataMan reader and the PLC. Six data
blocks are available. Each block has a predefined function.

DataMan only supports Modbus TCP server operation. For standard server operation, only two configuration options
exist. By default the ‘Control’ and ‘Status’ data blocks are located in bit address space (Coil and Discrete Input). If
needed, one or both of these data blocks may be redefined to exist in register address space (Holding Register and
Input Register). All other data block configurations are fixed.

Standard Block Configuration

Block Name Address Space Offset Schneider Form Addressing Quantity
Control Coil or Holding Register 0 000000 – 000031

400000 – 400001
32, if coil
2, if holding register

Status Discrete Input or Input Register 0 100000 – 100031
300000 – 300001

32, if discrete input
2, if input register

PLC Input Holding Register 2000 402000 – 404004 1 – 2005
PLC Output Input Register 2000 302000 – 304004 1 - 2005
Command String Holding Register 1000 401000 – 401999 1 - 1000
Command String Result Input Register 1000 301000 – 301999 1 - 1000

Note: The 6 digit 0-based Schneider represantation is used here.

DataMan also supports an alternate block configuration. A number of PLCs can only access the ModbusTCP ‘Holding
Register’ address space. The alternate 'Holding Register Only' configuration exists to accommodate these PLCs. In this
alternate configuration, all reader input and output data is mapped to the ModbusTCP ‘Holding Register’ address space.
To enable this alternate mode, perform one of the following options:

l check the “Holding Register Only” box on the ModbusTCP configuration screen

l use the DMCC command, which switches on or off the alternate mode (Holding Register Only mode)

Enable:

||>SET MODBUSTCP-HOLDING-ONLY ON

Disable:

||>SET MODBUSTCP-HOLDING-ONLY OFF

l scan the Reader Programming Codes

l for the wireless reader

75

Industrial Network Protocols

Enable: Disable:

l for the corded reader

Enable: Disable:

Holding Register Only” Block Configuration

Block Name Address Space Offset Schneider Form Addressing Quantity
Control Holding Register 0 400000 – 400001 2
Status Holding Register 5000 405000 – 405001 2
PLC Input Holding Register 2000 402000 – 404004 1 – 2005
PLC Output Holding Register 7000 407000 – 409004 1 – 2005
Command String Holding Register 1000 401000 – 401999 1 – 1000
Command String Result Holding Register 6000 406000 – 406999 1 – 1000

Note: The 6 digit 0-based Schneider represantation is used here.

Interface
This section describes the interface to the DataMan reader as seen by the PLC via Modbus TCP. The interface model
consists of 6 data blocks grouped in 3 logical pairs:

l Control and Status

l Input Data and Output Data

l String Command and String Response

Control Block
The Control block contains bit type data. This block consists of the control signals sent from the PLC to the reader. It is
used by the PLC to initiate actions and acknowledge certain data transfers.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved Results Ack Buffer

Results
Enable

Trigger Trigger
Enable

76

Industrial Network Protocols

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Reserved

Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
Reserved Initiate

String Cmd
Set User
Data

Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
Soft Event 7 Soft Event 6 Soft Event 5 Soft Event 4 Soft Event 3 Soft Event 2 Soft Event 1 Soft Event 0

Control Block Field Descriptions
Bit Name Description

0 Trigger Enable This field is set to enable triggering via the Trigger bit. Clear this field to disable the
network triggering mechanism.

1 Trigger Setting this bit triggers an acquisition. Note that the Trigger Ready bit must be set
high before triggering an acquisition.

2 Buffer Results
Enable

When this bit is set, each read result (ResultID, ResultCode, ResultLength and
ResultData fields) will be held in the Output Block until it is acknowledged. Once
acknowledged, the next set of read results will be made available from the buffer. If
new read results arrive before the earlier set is acknowledged the new set will be
queued in the reader’s buffer. Up to 6 read results can be held in the reader’s buffer.
Refer to section Operation for a description of the acknowledgement handshake
sequence.

3 ResultsAck Set by the PLC to acknowledge that it has received the latest results (ResultID,
ResultCode, ResultLength and ResultData fields). When the reader sees this bit
transition from 0à1 it clears the ResultsAvailable bit. This forms a logical handshake
between the PLC and reader. If result buffering is enabled, the acknowledgement
will cause the next set of queued results to be moved from the buffer. See section
Operation for a description of the acknowledgement handshake sequence.

4-15 Reserved Future use
16 SetUserData Set by the PLC to signal that new UserData is available. After reading the new

UserData the reader sets SetUserDataAck to signal that the transfer is complete.
This forms a logical handshake between the PLC and reader.

17 Initiate
StringCmd

Set by the PLC to signal that a new StringCommand is available. After processing
the command, the reader sets StringCmdAck to signal that the command result is
available. This forms a logical handshake between the PLC and reader.

18-23 Reserved Future use
24-31 SoftEvents Bits act as virtual discrete inputs. When a bit transitions from 0 -> 1 the associated

action is executed. After executing the action the reader sets the corresponding
SoftEventAck to signal that the action is complete. This forms a logical handshake
between the PLC and reader.
Bit0: Train code
Bit1: Train match string
Bit2: Train focus
Bit3: Train brightness
Bit4: Un-Train
Bit5: Reserved (future use)
Bit6: Execute DMCC command
Bit7: Set match string

Status Block
The status block contains bit type data. This block consists of the status signals sent from the reader to the PLC. It is used
by the reader to signal status and handshake certain data transfers.

77

Industrial Network Protocols

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved Missed

Acq
Acquiring Trigger

Ack
Trigger
Ready

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
General
Default

Reserved Results
Available

Results
Buffer
Overrun

Decode
Complete
Toggle

Decoding

Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
Reserved String Cmd

Ack
Set User
Data Ack

Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
Soft Event
Ack 7

Soft Event
Ack 6

Soft Event
Ack 5

Soft Event
Ack 4

Soft Event
Ack3

Soft Event
Ack 2

Soft Event
Ack 1

Soft Event
Ack 0

Status Block Field Descriptions
Bit Name Description
0 Trigger Ready Indicates when the reader is ready to accept a new Trigger. The reader sets this

bit when TriggerEnable has been set and the reader is ready to accept a new
trigger.

1 TriggerAck Indicates when the reader recognizes that Trigger has been set. This bit will
remain set until the Trigger bit has been cleared.

2 Acquiring Set to indicate that the reader is in the process of acquiring an image.
3 Missed Acq Indicates that the reader missed a requested acquisition trigger. The bit is

cleared when the next acquisition is issued.
4-7 Reserved Future use
8 Decoding Set to indicate that the reader is in the process of decoding an image.
9 Decode Complete

Toggle
Indicates new result data is available. Bit toggles state (0 -> 1 or 1 -> 0) each
time new result data becomes available.

10 Results Buffer
Overrun

Set to indicate that the reader has discarded a set of read results because the
PLC has not acknowledged the earlier results. Cleared when the next set of
result data is successfully queued in the buffer. This bit only has meaning if
result buffering is enabled.

11 Results Available Set to indicate that new result data is available. Bit will remain set until
acknowledged with ResultsAck even if additional new read results become
available.

12-14 Reserved Future use
15 General Fault Set to indicate that an Ethernet communications fault has occurred. Currently

only used by soft event operations. Bit will remain set until the next successful
soft event or until TriggerEnable is set low and then high again.

16 Set User Data Ack Set to indicate that the reader has received new UserData. Bit will remain set
until the corresponding SetUserData bit is cleared. This forms a logical
handshake between the PLC and reader.

17 String
Cmd Ack

Set to indicate that the reader has completed processing the latest string
command and that the command response is available. Bit will remain set until
the corresponding InitiateStringCmd bit is cleared. This forms a logical
handshake between the PLC and reader.

18-23 Reserved Future use

78

Industrial Network Protocols

24-31 SoftEvent
Ack

Set to indicate that the reader has completed the soft event action. Bit will
remain set until the corresponding SoftEvent bit is cleared. This forms a logical
handshake between the PLC and reader.
Bit0: Ack train code
Bit1: Ack train match string
Bit2: Ack train focus
Bit3: Ack train brightness
Bit4: Ack untrain
Bit5: Reserved (future use)
Bit6: Ack Execute DMCC command
Bit7: Ack set match string

Input Data Block
The Input Data block is sent from the PLC to the reader. The block consists of user defined data that may be used as
input to the acquisition/decode operation.

Word 0 Word 1 Word 2..N
Reserved User Data Length User Data

Input Data Block Field Descriptions
Word Name Description
0 Reserved Future use
1 User Data Length Number of bytes of valid data actually contained in the UserData field.
2..N User Data User defined data that may be used as an input to the acquisition/decode.

Output Data Block
The Output Data block is sent from the reader to the PLC. The block consists primarily of read result data.

Word 0 Word 1 Word 2 Word 3 Word 4 Word 5...n
Reserved Trigger ID Result ID Result Code Result Length Result Data

Output Data Block Field Descriptions
Word Name Description

0 Reserved Future use
1 Trigger ID Trigger identifier. Identifier of the next trigger to be issued. Used to match issued

triggers with result data that is received later. This same value will be returned as the
ResultID of the corresponding read.

2 Result ID Result identifier. This is the value of TriggerID when the corresponding trigger was
issued. Used to match up triggers with corresponding result data.

3 Result Code Indicates the success or failure of the read that produced this result set.
Bit0: 1=Read, 0=No read
Bit1: 1=Validated, 0=Not Validated
Bit2: 1=Verified, 0=Not Verified
Bit3: 1=Acquisition trigger overrun
Bit4: 1=Acquisition buffer overrun
Bit5-15: Reserved (future use)

79

Industrial Network Protocols

4 Result Data
Length

Number of bytes of valid data actually in the ResultData field.

5...n Result Data Result data from this acquisition/decode. Formatted as ASCII text with two characters
per 16-bit register. No terminating null character.

String Command Block
The String Command block is sent from the PLC to the reader. The block is used to transport string based commands
(DMCC) to the reader.

Note: Do not send string commands that change the reader configuration at the same time that reads are being
triggered. Changing configuration during acquisition/decode can lead to unpredictable results.

Word 0 Word 1...n
Length String Command

String Command Block Field Descriptions
Word Name Description
0 Length Number of bytes of valid data in the StringCommand field.

1..N String
Command

ASCII text string containing the command to execute. No null termination required.

String Command Result Block
The String Command Result block is sent from the reader to the PLC. The block is used to transport the response from
string based commands (DMCC) to the PLC.

Word 0 Word 1 Word 2..N
Result
Code

Length String Command Result

String Command Result Block Field Descriptions
Word Name Description
0 Result Code Code value indicating the success or failure of the command. Refer to the

Command Reference, available through the Windows Start menu or the
DataMan Setup Tool Helpmenu, for specific values.

1 Length Number of bytes of valid data in the StringCommand field.
2..N String

Command
Result

ASCII text string containing the command to execute. No null termination
required.

Operation
Modbus TCP is a request/response based protocol. All communications are originated from the PLC. The reader acts as
server.

80

Industrial Network Protocols

Requests
To initiate actions or control data transfer, the PLC changes the state of certain bits of the Control block and sends
requests to the reader.

After each request, the reader will process changes in state of the bits in the Control block. Some state changes require
additional communications with the PLC, such as writing updated acknowledge bit values or reading a new string
command. These additional communications are handled automatically by the reader. Other state changes initiate
activities such as triggering a read or executing a soft event. The reader performs the requested action and later reports
the results.

Typical Sequence Diagram

Handshaking
A number of actions are accomplished by means of a logical handshake between the reader and the PLC (triggering,
transferring results, executing soft events, string commands, and so on). This is done to ensure that both sides of a
transaction know the state of the operation on the opposite side. Network transmission delays will always introduce a
finite time delay in transfer data and signals. Without this handshaking, it is possible that one side of a transaction might
not detect a signal state change on the other side. Any operation that has both an initiating signal and corresponding
acknowledge signal will use this basic handshake procedure.

The procedure involves a four-way handshake.

1. Assert signal

2. Signal acknowledge

3. De-assert signal

4. De-assert acknowledge

The requesting device asserts the signal to request an action (set bit 0 -> 1). When the target device detects the signal
and the requested operation has completed, it asserts the corresponding acknowledge (set bit 0 -> 1). When the
requesting device detects the acknowledge, it de-asserts the original signal (1 -> 0). Finally, when the target device
detects the original signal de-asserted, it de-asserts its acknowledge (bit 0 -> 1). To function correctly both sides must

81

Industrial Network Protocols

see the complete assert/de-assert cycle (0 -> 1 and 1 -> 0). The requesting device should not initiate a subsequent
request until the cycle completes.

Acquisition Sequence
DataMan can be triggered to acquire images by several methods. It can be done by setting the Trigger bit or issuing a
trigger String Command. It can also be done via DMCC command (Telnet) or hardwired trigger signal. The Trigger bit
method will be discussed here.

On startup, TriggerEnable will be False. It must be set to True to enable triggering via the Trigger bit. When the device is
ready to accept triggers, the reader will set the TriggerReady bit to True.

While the TriggerReady bit is True, each time the reader detects the Trigger bit change from 0 -> 1, it will initiate a read.
The Trigger bit should be held in the new state until that same state value is seen in the TriggerAck bit (this is a
necessary handshake to guarantee that the trigger is seen by the reader).

During an acquisition, the TriggerReady bit will be cleared and the Acquiring bit will be set to True. When the acquisition
is completed, the Acquiring bit will be cleared. When the device is ready to begin another image acquisition, the
TriggerReady bit will again be set to True.

If results buffering is enabled, the reader will allow overlapped acquisition and decoding operations. TriggerReady will
be set high after acquisition is complete but while decoding is still in process. This can be used to achieve faster overall
trigger rates. If result buffering is not enabled, the TriggerReady bit will remain low until both the acquisition and decode
operations have completed.

To force a reset of the trigger mechanism set the TriggerEnable to False until TriggerReady is also set to False. Then,
TriggerEnable can be set to True to re-enable acquisition.

As a special case, an acquisition can be cancelled by clearing the Trigger signal before the read operation has
completed. This allows for the cancellation of reads in Presentation and Manual mode if no code is in the field of view. To
ensure that a read is not unintentionally cancelled, it is advised that the PLC hold the Trigger signal True until both
TriggerAck and ResultsAvailable are True (or DecodeComplete toggles state).

Decode / Result Sequence
After an image is acquired, it is decoded. While being decoded, the Decoding bit is set. When the decode operation has
completed, the Decoding bit is cleared. The ResultsBufferEnable determines how decode results are handled by the
reader.

If ResultsBufferEnable is set to False, then the read results are immediately placed into the Output Data block,
ResultsAvailable is set to True and DecodeComplete is toggled.

If ResultsBufferEnable is set to True, the new results are queued in a buffer and DecodeComplete is toggled. The earlier
read results remain in the Output Data block until they are acknowledged by the PLC. After the acknowledgment

82

Industrial Network Protocols

handshake, if there are more results in the queue, the next set of results will be placed in the Output Data block and
ResultsAvailable is set to True.

Results Buffering
There is an option to enable a queue for read results. If enabled, this allows a finite number of sets of result data to be
queued up until the PLC has time to read them. This is useful to smooth out data flow if the PLC slows down for short
periods of time.

Also, if result buffering is enabled the reader will allow overlapped acquisition and decode operations. Depending on the
application this can be used to achieve faster overall trigger rates. See the Acquisition Sequence description for further
details.

In general, if reads are occurring faster than results can be transferred to the PLC, some data will be lost. The primary
difference between buffering or not buffering determines which results get discarded. If buffering is not enabled, the most
recent results are kept and the earlier result (which was not read by the PLC quickly enough) is lost. The more recent
result will overwrite the earlier result. If buffering is enabled (and the queue becomes full) the most recent results are
discarded until room becomes available in the results queue.

Note: If the queue has overflowed and then buffering is disabled, there will be a greater than 1 difference between
the TriggerID and ResultID values. This difference represents the number of reads that had occurred but could not
be queue because the queue was full (number of lost reads equals TriggerID - ResultID - 1). After the next read, the
ResultID value will return to the typical operating value of TriggerID - 1.

SoftEvents
SoftEvents act as “virtual” inputs. When the value of a SoftEvent bit changes from 0 -> 1 the action associated with the
event will be executed. When the action completes, the corresponding SoftEventAck bit will change from 0 -> 1 to signal
completion.

The SoftEvent and SoftEventAck form a logical handshake. After SoftEventAck changes to 1, the original SoftEvent
should be set back to 0. When that occurs, SoftEventAck will automatically be set back to 0.

83

Industrial Network Protocols

Note: Do not execute soft events that change the reader configuration at the same time that reads are being
triggered. Changing configuration during acquisition/decode can lead to unpredictable results.

The “ExecuteDMCC” and “SetMatchString” soft event actions require user supplied data. This data must be written to the
UserData and UserDataLength area of the Input Data block prior to invoking the soft event. Since both of these soft
events depend on the UserData, only one may be invoked at a time.

String Commands
The DataMan Modbus TCP Protocol implementation includes a String Command feature. This feature allows you to
execute string-based DMCC commands. The DMCC command is sent to the reader via the String Command block. The
DMCC command result is returned via the String Command Result block. Initiating a command and notification of
completion is accomplished by signaling bits in the Control and Status blocks.

To execute a DMCC command, the command string is placed in the data field of the String Command block. The
command string consists of standard ASCII text. The command format is exactly the same as would be used for a serial
(RS-232) or Telnet connection. The string does not need to be terminated with a null character. Instead, the length of the
string (that is, the number of ASCII characters) is placed in the length field of the String Command block.

After executing the DMCC command, the result string is returned in the String Command Result block. Similar to the
original command, the result string consists of ASCII characters in the same format as would be returned via serial or
Telnet. Also, there is no terminating null character. Instead, the length of the result is returned in the Command String
Result length field. The Command String Result block also contains a numeric result code. This allows you to determine
the success or failure of the command without having to parse the text string. The values of the result code are defined in
the DMCC documentation.

General Fault Indicator
When a communication-related fault occurs, the “GeneralFault” bit will change from 0 -> 1. Currently the only fault
conditions supported are soft event operations. If a soft event operation fails, the fault bit will be set. The fault bit will
remain set until the next successful soft event operation, or, until TriggerEnable is set to 0 and then back to 1.

Examples
Included with the DataMan Setup Tool installer are two example PLC programs created with CoDeSys v2.3 software.
These samples are designed and tested on a Wago 750-841 PLC. These simple programs clearly demonstrate
DataMan ID readers’ capabilities and proper operation. The same operations can be achieved by using more advanced
features and efficient programming practices with Wago PLCs.

However, such an advanced program is less useful for demonstration purposes. The examples try to show different
approaches in the techniques used for the communication to the DataMan reader.

84

Industrial Network Protocols

Note: All examples are designed to work only if the “Control” datablock is mapped to the Coil space and the
“Status” datablock is mapped to the Discrete Input space.

ApplicationLayer Example
This sample realizes a generic data transfer between the DataMan reader and the PLC. Memory areas of the “Control”,
“Status” and “Output Area” are cloned in the PLC and synchronized as needed or cyclically. Each data area is
synchronized with its own instance of “ETHERNETMODBUSMASTER_TCP”. This causes 3 TCP connections to be open
simultaneously. Make sure that the Modbus TCP related setting “Maximum Connections” on the DataMan reader is set to
at least 3 for this example to work.

Function
The example application demonstrates the following operations:

1. Transfer the 32-bit “Control” register data from the PLC to the reader.

2. Transfer the 32-bit “Status” register data from the reader to the PLC.

3. Transfer “Output Data” from the reader to the PLC.

All actions are started when there is a connection to the reader.

Transferring “Control” Register Data
All data gets transferred when there is a change in the local PLC data. The local PLC data can be manipulated in the
visualization.

Note: No synchronization is implemented from the reader to the PLC, so the local PLC data might be incorrect after
building up the connection or if another Modbus TCP client manipulates the Contol register simultaneously. There
is a timeout setting that can lead to a disconnect if you do not manipulate the “Control” register during this
timeframe.

Transferring Status Register Data
All data gets transferred cyclically. The poll interval can be specified in the visualization.

Transferring Output Data
All data gets transferred cyclically. The poll interval can be specified in the visualization.

DataManControl Example
This sample shows in a sequential manner the steps to do to achieve one of the functions named in the following
subsection. To outline this chronological sequence “Sequential Function Chart” was chosen as programming language.

Function
The example application demonstrates the following operations:

1. Triggering a read

2. Getting read results

3. Executing string commands (DMCC)

85

Industrial Network Protocols

4. Executing soft event operations

a. Train code

b. Train match string

c. Train focus

d. Train brightness

e. Untrain

f. Execute DMCC

g. Set match string

The “Main” program contains variables to invoke each of these operations. The operation is invoked by toggling the
control bool directly or from the visualization (red=0, green=1) from 0 -> 1. This will invoke the associated subroutine to
perform the operation. When the operation 4 is complete, the subroutine will set the control bit back to 0.

Triggering a Read
The example provides a “Continuous Trigger”. As the name implies, enabling the “xTrigger” bit will invoke a continuous
series of read operations. Once enabled, the “xTrigger” control bit will remain set until you disable it.

Primarily, the trigger subroutine manages the trigger handshake operation between the PLC and the reader. The control
Result Ack and Trigger bits are reset, the Trigger Enable bit is set, the PLC waits for the corresponding TriggerReady
status bit from the reader, and the control Trigger bit is set. Refer to a description of handshaking in section Operation.

Getting Read Results
For this example the operation of triggering a read and getting read results was intentionally separated. This is to support
the situation where the PLC is not the source of the read trigger. For example, the reader may be configured to use a
hardware trigger. In such a case, only the get results subroutine would be needed.

Like the triggering subroutine, the get results subroutine manages the results handshake operation between the PLC
and the reader. The routine waits for the ResultsAvailable status bit to become active, it copies the result data to internal
storage, and then executes the ResultsAck handshake. Refer to a description of handshaking in section Operation.

The read result consists of a ResultCode, ResultLength, and ResultData. Refer to section Output Data Block Field
Descriptions for details of the ResultCode values. The ResultLength field indicates how many bytes of actual result data
exist in the ResultData field. The subroutine converts this byte length to word length before copying the results to internal
storage.

Execute String Commands (DMCC)
The string command feature provides a simple way to invoke DMCC commands from the PLC. The command format and
command result format is exactly identical to that used for serial or Telnet DMCC operation.

This subroutine copies an example DMCC command (||>GET DEVICE.TYPE) to the String Command block and then
manages the string command handshake operation between the PLC and the reader to invoke the command and
retrieve the command result. Any valid DMCC command may be invoked with this mechanism. Refer to the DataMan
Command Reference document available through the Windows Start menu or the Setup Tool Helpmenu.

Execute Soft Events
Soft Events are used to invoke a predefined action. Each Soft Event is essentially a virtual input signal. Each of the soft
event subroutines manages the handshake operation between the PLC and the reader to invoke the predefined action.
The associated action is invoked when the SoftEvent bit toggles from 0 -> 1. The subroutine then watches for the
associated SoftEventAck bit from the reader which signals that the action is complete. For a description of handshaking,
see section Operation.

86

Industrial Network Protocols

Note: The “Execute DMCC” and “Set Match String” soft events make use of the Input Data block. The subroutine for
these two events copies the relevant data into the User Data fields of the Input Data block and then invokes the
User Data subroutine to transfer the data to the reader. Only after the user data is transferred is the actual soft event
action invoked. It is required that the user data be transferred before invoking either of these events.

Note: The “Train Match String” soft event only prepares the training mechanism. The actual training occurs on the
next read operation. Therefore, a trigger must be issued following “Train Match String”.

87

Industrial Network Protocols

PROFINET
PROFINET is an application-level protocol used in industrial automation applications. This protocol uses standard
Ethernet hardware and software to exchange I/O data, alarms, and diagnostics.

DataMan supports PROFINET I/O. This is one of the 2 “views” contained in the PROFINET communication standard.
PROFINET I/O performs cyclic data transfers to exchange data with Programmable Logic Controllers (PLCs) over
Ethernet. The second “view” in the standard, PROFINET CBA (Component Based Automation), is not supported.

A deliberate effort has been made to make the DataMan PROFINET communication model closely match the Cognex In-
Sight family. Customers with In-Sight experience should find working with DataMan familiar and comfortable.

By default, the DataMan has the PROFINET protocol disabled. The protocol can be enabled via DMCC, scanning a
parameter code or in the DataMan Setup Tool.

Note: If you have a wireless DataMan reader, read the section Industrial Protocols for the Wireless DataMan.

DMCC
The following commands can be used to enable/disable PROFINET. The commands can be issued via RS-232 or Telnet
connection.

Note: Because you have to make changes to the Telnet client provided by Windows to communicate with DataMan,
it is recommended that you use third party clients such as PuTTY.

Enable:

||>SET PROFINET.ENABLED ON
||>CONFIG.SAVE
||>REBOOT

Disable:

||>SET PROFINET.ENABLED OFF
||>CONFIG.SAVE
||>REBOOT

Reader Configuration Code
Scanning the following reader configuration codes will enable/disable PROFINET for your corded reader.

Note: You must reboot the device for the change to take effect.

Enable: Disable:

Scanning the following reader configuration codes will enable/disable PROFINET for your DataMan 8000 base station.

88

Industrial Network Protocols

Note: You must reboot the device for the change to take effect

Enable: Disable:

Setup Tool
The PROFINET protocol can be enabled by checking Enabled on the Industrial Protocols pane’s PROFINET tab.

Getting Started
Preparing to use PROFINET involves the following main steps:

l Make sure that you have the Siemens Step 7 programming software (SIMATIC) installed.

l Set up the Siemens Software tool so that it recognizes your DataMan device.

l Install the Generic Station Description (GSD) file.

Perform the following steps to set up PROFINET:

1. Verify that SIMATIC is on your machine.

2. From the Windows Start menu, launch the SIMATIC Manager.

3. If you already have a project, select “Cancel” to skip past the New Project wizard. Otherwise, let the wizard guide
you through creating a new project.

4. Once the Manager has opened the project, double-click on the “Hardware” icon to open the “HW Config” dialog
screen. From the main menu, select “Options -> Install GSD File…”.

89

Industrial Network Protocols

5. Browse to the location where the GSD file was installed (or the location where you saved the GSD file if it was
downloaded from the web).

6. Select the GSD file you wish to install and follow the displayed instructions to complete the installation.

Note: There may be more than one GSD file in the list. If you are unsure which to install, choose the one with the
most recent date.

90

Industrial Network Protocols

7. Add your DataMan device to your project. This makes the DataMan available in the Hardware Catalog. Launch
the SIMATIC Hardware Config tool.

8. In the main menu, select View -> Catalog.

9. The catalog is displayed. Expand the “PROFINET IO” tree to the “Cognex ID Readers” node.

10. With the left mouse button, drag the DataMan reader over and drop it on the PROFINET IO network symbol in the
left pane.

The HWConfig tool automatically maps the DataMan I/O modules into the memory space.

Note: By default, the 64 byte User Data and 64 byte Result Data Modules are inserted. There are multiple sizes
available for both of these modules. To optimize performance use the module size that most closely matches the
actual data requirements of your application. You can change the module simply by deleting the one in the table
and inserting the appropriate sized module from the catalog.

91

Industrial Network Protocols

11. Right-click on the DataMan icon and select “Object Properties…”.

12. Give the reader a name. This must match the name of your actual DataMan reader. The name must be unique
and conform to DNS naming conventions. Refer to the SIMATIC Software help for details.

13. If your DataMan reader is configured to use its own static IP, uncheck the “Assign IP address via IO controller”
box. Otherwise if you wish the PLC to assign an IP address, select the Ethernet button and configure the
appropriate address.

14. In the “IO Cycle” tab, select the appropriate cyclic update rate for your application.

15. By default, the SIMATIC software maps the User Data & Result Data Modules to offset 256. This is outside of the
default process image area size of 128. That is, by default, data in these modules are inaccessible by some SFCs
such as BLKMOV. As a solution, either remap the modules to lower offsets within the process image area or
expand the process image area to include these modules.

If you choose to expand the process image area, make the size large enough for the module size plus the default 256
offset.

92

Industrial Network Protocols

Note: Expanding the process image can have a performance impact on the PLC scan cycle time. If your scan time
is critical, use the minimal acceptable module sizes and manually remap them down lower in the process image.

Modules
The PROFINET implementation on DataMan consists of seven I/O modules:

1. Acquisition Control Module

2. Acquisition Status Module

3. Results Control Module

4. Results Status Module

5. Soft Event Control Module

6. User Data Module

7. Result Data Module

93

Industrial Network Protocols

Acquisition Control Module
Controls image acquisition. This module consists of data sent from the PLC to the DataMan device.

Slot number: 1

Total Module size: 1 byte

Bit Name Description
0 Trigger Enable Setting this bit enables triggering via PROFINET. Clearing this bit disables triggering.
1 Trigger Setting this bit triggers an acquisition when the following conditions are met:

l Trigger Enable is set

l No acquisition is currently in progress

l The device is ready to trigger

2-7 Reserved Reserved for future use

Acquisition Status Module
Indicates the current acquisition status. This module consists of data sent from the DataMan device to the PLC.

Slot number: 2

Total Module size: 3 bytes

Bit Name Description
0 Trigger Ready Indicates when the device is ready to accept a new trigger. Bit is True when “Trigger

Enable” has been set and the device is ready to accept a new trigger.
1 Trigger Ack Indicates that the DataMan has received a new Trigger. This bit will remain True as long

as the “Trigger” bit remains True (that is, it is interlocked with the Trigger bit).
2 Acquiring Indicates that the DataMan is currently acquiring an image.

94

Industrial Network Protocols

3 Missed Ack Indicates that the DataMan was unable to successfully trigger an acquisition. Bit is
cleared when the next successful acquisition occurs.

4-7 Reserved Reserved for future use
8-23 Trigger ID ID value of the next trigger to be issued (16-bit integer). Used to match issued triggers

with corresponding result data received later. This same value will be returned in
ResultID of the result data.

Note: The Missed Ack bit in the Acquisition Status Register will only be set if an acquisition triggered from the
Acquisition Control Module could not get executed.

Results Control Module
Controls the processing of result data. This module consists of data is sent from the PLC to the DataMan device.

Slot number: 3

Total Module size: 1 byte

Bit Name Description
0 Results Buffer Enable Enables queuing of “Result Data”. If enabled, the current result data will remain

until acknowledged (even if new results arrive). New results are queued. The next
set of results are pulled from the queue (made available in the Result Data
module) each time the current results are acknowledged. The DataMan will
respond to the acknowledge by clearing the “Results Available” bit. Once the
“Results Ack” bit is cleared the next set of read results will be posted and “Results
Available” will be set True. If results buffering is not enabled newly received read
results will simply overwrite the content of the Result Data module.

1 Results Ack Bit is used to acknowledge that the PLC has successfully read the latest result
data. When set True the “Result Available” bit will be cleared. If result buffering is
enabled, the next set of result data will be pulled from the queue and “Result
Available” will again be set True.

2-7 Reserved Reserved for future use

Results Status Module
Indicates the acquisition and result status. This module consists of data sent from the DataMan device to the PLC.

Slot number: 4

Total Module size: 1 byte

Bit Name Description
0 Decoding Indicates that the DataMan is decoding an acquired image.
1 Decode Complete Bit is toggled on the completion of a decode operation when the new results are

made available (0 -> 1 or 1 -> 0).
2 Result Buffer Overrun Indicates that the DataMan has discarded a set of read results because the

results queue is full. Cleared when the next set of results are successfully
queued.

3 Results Available Indicates that a new set of read results are available (i.e. the contents of the
Result Data module are valid). Cleared when the results are acknowledged.

4-6 Reserved Reserved for future use
7 General Fault Indicates that a fault has occurred (i.e. Soft Event “Set Match String” or “Execute

DMCC” error has occurred).

95

Industrial Network Protocols

Soft Event Control Module
Used to initiate a Soft Event and receive acknowledgment of completion. Note, this is a bi-directional I/O module. Module
data sent from the PLC initiates the Soft Event. Module data sent by the DataMan device acknowledges completion.

Slot number: 5

Total Module size: 1 byte (input) and 1 byte (output)

Data written from the PLC to DataMan:

Bit Name Description
0 Train Code Bit transition from 0 -> 1 will cause the train code operation to be invoked.
1 Train Match

String
Bit transition from 0 -> 1 will cause the train match string operation to be invoked.

2 Train Focus Bit transition from 0 -> 1 will cause the train focus operation to be invoked.
3 Train

Brightness
Bit transition from 0 -> 1will cause the train brightness operation to be invoked.

4 Untrain Bit transition from 0 -> 1 will cause the untrain operation to be invoked.
5 Reserved Reserved for future use
6 Execute

DMCC
Bit transition from 0 -> 1 will cause the DMCC operation to be invoked. Note that a valid
DMCC command string must first be placed in “User Data” before invoking this event.

7 Set Match
String

Bit transition from 0 -> 1 will cause the set match string operation to be invoked. Note that
match string data must first be placed in “User Data” before invoking this event.

Data written from the DataMan to PLC:

Bit Name Description
0 Train Code Ack Indicates that the “Train Code” operation has completed
1 Train Match String Ack Indicates that the “Train Match String” operation has completed
2 Train Focus Ack Indicates that the “Train Focus” operation has completed
3 Train Brightness Ack Indicates that the “Train Brightness” operation has completed
4 Untrain Ack Indicates that the “Untrain” operation has completed
5 Reserved Reserved for future use
6 Execute DMCC Ack Indicates that the “Execute DMCC” operation has completed
7 Set Match String Ack Indicates that the “Set Match String” operation has completed

User Data Module
Data sent from a PLC to a DataMan to support acquisition, decode and other special operations. Currently this module is
only used to support the “Execute DMCC” and “Set Match String” soft events.

Note: There are actually 5 versions of the User Data module. Only one instance can be configured for use in a
given application. The “User Data Option” and “User Data Length” fields are the same for each module. The “User
Data” field varies in size based on the selected module. Choose the module which is large enough to exchange the
amount of data required by your application.

Slot number: 6

Total Module size:

4 + 16 (16 bytes of User Data)

4 + 32 (32 bytes of User Data)

96

Industrial Network Protocols

4 + 64 (64 bytes of User Data)

4 + 128 (128 bytes of User Data)

4 + 250 (250 bytes of User Data)

Byte Name Description
0-1 User Data Option Currently only used by “Set Match String” soft event. Specifies which code

target to assign the string (16-bit Integer).
0, assign string to all targets
1, assign string to 2D codes
2, assign string to QR codes
3, assign string to 1D / stacked / postal codes

2-3 User Data Length Number of bytes of valid data actually contained in the “User Data” field (16-
bit Integer).

4... User Data Data sent from the PLC to the DataMan to support acquisition, decode and
other special operations (array of bytes).

Result Data Module
Read result data sent from a DataMan to a PLC.

Look into the Result Data Module for non-PROFINET related data if there was an acquisition problem on the reader. The
"Result Code" part contains information about trigger overruns or buffer overflows that have occurred on the reader.

Note: There are actually 5 versions of the Result Data module. Only a single instance can be configured for use in a
given application. The “Result ID”, “Result Code”, “Result Extended” and “Result Length” fields are the same for
each module. The “Result Data” field varies in size based on the selected module. Choose the module which is
large enough to exchange the amount of result data required by your application.

Slot number: 7

Total Module size:

8 + 16 (16 bytes of Result Data)

8 + 32 (32 bytes of Result Data)

8 + 64 (64 bytes of Result Data)

8 + 128 (128 bytes of Result Data)

8 + 246 (246 bytes of Result Data)

Byte Name Description
0-1 Result ID The value of the “Trigger ID” when the trigger that generated these results was

issued. Used to match up triggers with corresponding result data (16-bit Integer).
2-3 Result Code Indicates the success or failure of the read that produced these results (16-bit

Integer).
Bit 0,1=read, 0=no read
Bit 1,1=validated, 0=not validated (or validation not in use)
Bit 2,1=verified, 0=not verified (or verification not in use)
Bit 3,1=acquisition trigger overrun
Bit 4,1=acquisition buffer overflow
Bits 5-15 reserved

4-5 Result Extended Currently unused (16-bit Integer).
6-7 Result Length Actual number of bytes of read data contained in the “Result Data” field (16-bit

Integer).
8... Result Data Decoded read result data (array of bytes)

97

Industrial Network Protocols

Operation
SoftEvents
SoftEvents act as “virtual” inputs. When the value of a SoftEvent changes from 0 -> 1 the action associated with the event
will be executed. When the action completes the corresponding SoftEventAck bit will change from 0 -> 1 to signal
completion. The acknowledge bit will change back to 0 when the corresponding SoftEvent bit is set back to 0.

The “ExecuteDMCC” and “SetMatchString” soft event actions require user supplied data. This data must be written to the
UserData & UserDataLength area of the UserData Module prior to invoking the soft event. Since both of these soft events
depend on the UserData, only one may be invoked at a time.

General Fault Indicator
When a communication related fault occurs the “GeneralFault” bit will change from 0 -> 1. Currently the only fault
conditions supported are soft event operations. If a soft event operation fails, the fault bit will be set. The fault bit will
remain set until the next soft event operation or until triggering is disabled and again re-enabled.

Acquisition Sequence
DataMan can be triggered to acquire images by several methods. It can be done explicitly by manipulating the Trigger bit
of the Acquisition Control Module, it can be triggered by external hard wired input, and finally it can be triggered via
DMCC command. Manipulating the Acquisition Control Module bits will be discussed here.

On startup the “Trigger Enable” bit will be False. It must be set to True to enable triggering. When the device is ready to
accept triggers, the “Trigger Ready” bit will be set to True.

While the Trigger Ready bit is True, each time the reader sees the “Trigger” bit change from 0 to 1, it will initiate an image
acquisition. The client (PLC) should hold the bit in the new state until that same state value is seen back in the Trigger
Ack bit (this is a necessary handshake to guarantee that the change is seen by the reader).

During an acquisition, the Trigger Ready bit will be cleared and the Acquiring bit will be set to True. When the acquisition
is completed, the Acquiring bit will be cleared. The Trigger Ready bit will again be set True once the device is ready to
begin a new image acquisition.

If results buffering is enabled, the device will allow overlapped acquisition and decoding operations. Trigger Ready will
be set high after acquisition is complete but while decoding is still in process. This can be used to achieve faster overall
trigger rates. If result buffering is not enabled, the Trigger Ready bit will remain low until both the acquisition and decode
operations have completed.

To force a reset of the trigger mechanism set the Trigger Enable bit to False, until the Trigger Ready bit is 0. Then,
Trigger Enable can be set to True to re-enable acquisition.

98

Industrial Network Protocols

As a special case, an acquisition can be cancelled by clearing the Trigger signal before the read operation has
completed. This allows for the cancellation of reads in Presentation and Manual mode if no code is in the field of view. To
ensure that a read is not unintentionally cancelled, it is advised that the PLC hold the Trigger signal True until both
TriggerAck and ResultsAvailable are True (or DecodeComplete toggles state).

Decode / Result Sequence
After an image is acquired it is decoded. While being decoded, the “Decoding” bit of the Result Status Module is set.
When decode is complete, the Decoding bit is cleared and the “Decode Complete” bit is toggled.

The “Results Buffer Enable” bit determines how decode results are handled by the reader. If the Results Buffer Enable bit
is set to False, then the decode results are immediately placed into the Results Module and Results Available is set to
True.

If the Results Buffer Enable bit is set to True the new results are queued. The earlier decode results remain in the Results
Module until they are acknowledged by the client by setting the “Results Ack” bit to True. After the Results Available bit is
cleared, the client should set the Results Ack bit back to False to allow the next queued results to be placed in to the
Results Module. This is a necessary handshake to ensure the results are received by the DataMan client (PLC).

Behavior of DecodeStatusRegister
Bit Bit Name Results if Buffering Disabled Results if Buffering Enabled
1 Decoding Set when decoding an image. Set when decoding an image.
2 Decode Complete Toggled on completion of an image decode. Toggled on completion of an image

decode.
3 Results Buffer

Overflow
Remains set to zero. Set when decode results could not

be queued because the client
failed to acknowledge a previous
result. Cleared when the decode
result is successfully queued.

4 Results Available Set when new results are placed in the Results
Module. Stays set until the results are
acknowledged by setting Results Ack to true.

Set when new results are placed in
the Results Module. Stays set until
the results are acknowledged by
setting Results Ack to true.

99

Industrial Network Protocols

Results Buffering
There is an option to enable a queue for decode results. If enabled this allows a finite number of decode result data to
queue up until the client (PLC) has time to read them. This is useful to smooth out data flow if the client (PLC) slows
down for short periods of time or if there are surges of read activity.

Also, if result buffering is enabled the device will allow overlapped acquisition and decode operations. Depending on the
application this can be used to achieve faster over all trigger rates. See Acquisition Sequence description above for
further detail.

In general, if reads are occurring faster than results can be sent out, the primary difference between buffering or not
buffering is determining which results get discarded. If buffering is not enabled the most recent results are kept and the
earlier result (which was not read by the PLC fast enough) is lost. Essentially the more recent result will simply over write
the earlier result. If buffering is enabled (and the queue becomes full) the most recent results are discarded until room
becomes available in the results queue.

Note: If the queue has overflowed and then buffering is disabled, there will be a greater than 1 difference between
the TriggerID and ResultID values. This difference represents the number of reads that had occurred but could not
be queue because the queue was full (number of lost reads equals TriggerID - ResultID - 1). After the next read, the
ResultID value will return to the typical operating value of TriggerID - 1.

Siemens Examples
This section gives some examples of using the DataMan with a Siemens S7-300 PLC. It is assumed that the reader is
familiar with the S7-300 and the SIMATIC programming software.

Symbol Table
Although not required, defining symbols for the DataMan I/O module elements can be extremely helpful. It makes the
code much easier to read and reduces mistakes. This sample table shows symbols defined for a typical instance of a

100

Industrial Network Protocols

DataMan reader. Note, DataMan I/O modules may be at different addresses in your project. Make sure to adjust your
symbol definitions based on the specific offsets of the I/O modules.

Trigger and Get Results
Run the sample program “DM200_SampleRead” for the complete example program.

Note: This sample can be used with any PROFINET enabled DataMan reader.

Perform the following steps to install the program:

1. Start the SIMATIC Manager software.

2. Close any open applications.

3. From the main menu, select File -> Retrieve…

4. Browse to find the sample file on your PC.

101

Industrial Network Protocols

5. Look for the Siemens folder and select the zip file.

6. Select a destination directory to save the project on your PC.

102

Industrial Network Protocols

7. The Siemens software extracts the sample archive and makes it available.

8. Reduced to the basics, the process of reading and retrieving results consists of the following:

9. Define an area in your application to save read results. There are many options regarding how and where result
data can be stored. For our example we define a Data Block (DB) which contains the fields of the Result Data
module that we are interested in for our application.

10. Enable the reader

11. Set the trigger signal and set semaphore to indicate a read is pending.

103

Industrial Network Protocols

12. As soon as the trigger signal is acknowledged, clear the trigger signal.

13. As soon as the results are available save a copy of the result data and set the results acknowledge signal.

104

Industrial Network Protocols

14. When the reader sees the result acknowledge signal, clear result acknowledge, clear the read pending
semaphore, and signal that the read process has completed.

Note: The reader clears “Results Available” as soon as it sees the PLC’s “Results Ack” signal.

Using Soft Events
Run the sample program “DM200_SoftEvents” for the complete example program.

Note: This sample can be used with any PROFINET enabled DataMan reader.

Perform the following steps to install the program:

1. Start the SIMATIC Manager software.

2. Close any open applications.

3. From the main menu, select File -> Retrieve…

4. Browse to find the sample file on your PC.

5. Look for the Siemens folder and select Dm200_SoftEvents.zip.

6. Select a destination directory to save the project on your PC.

105

Industrial Network Protocols

7. The Siemens software extracts the sample archive and makes it available.

Soft events are a means of invoking an activity by simply manipulating a single control bit. The activity for each bit is
predefined (for more details, see section SoftEvents). With the exception of “Execute DMCC” and “Set Match String” all
soft events may be invoked in the same way. “Execute DMCC” and “Set Match String” require the added step of loading
the User Data module with application data before invoking the event.

Reduced to the basics the process of invoking a Soft Event consists of the following:

106

Industrial Network Protocols

Executing DMCC Commands
Refer to sample program “DM200_SoftEvents” for the complete example program (for information on how to install it, see
section Using Soft Events).

Note: This sample can be used with any PROFINET enabled DataMan reader.

“Execute DMCC” is a Soft Event which requires the added step of loading the User Data module with the desired DMCC
command string before invoking the event. Note, the Soft Event mechanism does not provide a means of returning
DMCC response data (other than a failure indication). So this mechanism cannot be used for DMCC “||>GET…”
commands.

The process of executing a DMCC command is the same as that for all other Soft Events (see example above) except the
step of invoking the Soft Event also includes copying the command string to the User Data Module. In this example the
command string is exists in a Data Block. This example could be expanded to utilize a Data Block with an array of
command strings that the copy function could reference by an index value. That would allow the user to pre-define all
DMCC commands that are required by the application and invoke them simply by index.

107

Industrial Network Protocols

The function “Set User Data” (FC11) simply copies the provided string to the User Data module. Refer to the example
program for the actual STL code.

108

Industrial Network Protocols

Industrial Protocols for the Wireless DataMan
Special considerations must be taken into account when using any of the Industrial Ethernet protocols with DataMan
wireless readers. Industrial protocol connections are established not between the PLC and the wireless device, but
between the PLC and the DataMan base station.

The DataMan wireless reader may be, at times:

l powered down

l in hibernation mode

l physically out of range

Automatic power down and hibernation are features that preserve power and extend the time period between
recharging.

The following sections detail the necessary configurations you have to set to communicate with the DataMan base
station (through which information is routed to the DataMan wireless reader).

Protocol Operation
Because the wireless reader can become unavailable at times, the Industrial Ethernet protocols are actually run from the
base station. The base station is directly wired to the Ethernet network and is online continuously (even when the reader
is unavailable). In this way the Ethernet protocol operation is not disrupted when the reader is unavailable. This results in
a few special considerations.

Ethernet Address
Because the Ethernet protocols are run from the base station, you must use the base station Ethernet address when
configuring the protocol. For example, when configuring EtherNet/IP using the RSLogix5000 software package, you
select the DM8000 reader but you must enter the IP address of the base station (not the reader). The PLC using the
protocol must communicate with the base station.

PLC Triggering
Because the wireless reader can become unavailable at times, triggering from the PLC is not supported on wireless
readers. The PLC will receive all read results triggered from the reader. Also, Soft Events and DMCC commands are
supported (when the reader is available).

Soft Events
Soft Events triggered from the PLC are supported. However, these events will fail if the reader is unavailable. Such a
failure will be signaled by the ‘General Fault’ bit.

Note: Some operations assigned to soft events are in general not supported on any handheld DataMan readers (for
example, ‘Train Code’, ‘Train Focus’, ‘Train Brightness’). Unsupported operations will also result in the ‘General
Fault’ signal being set.

DMCC
DMCC commands issued from the PLC are supported. However, these events will fail if the reader is unavailable.
Depending on which Industrial Ethernet protocol is in use, the failure will be signaled either with the ‘General Fault’

109

Industrial Protocols for the Wireless DataMan

signal or an error status return code. The new DMCC error return code ‘105’ has been established to signal that the
reader is unavailable.

Note: When issuing DMCC commands from the PLC to a wireless reader, do not change the DMCC response
format (that is, do not issue the command ‘COM.DMCC-RESPONSE’). Doing this may disable DMCC operation on
the wireless reader. This command can be used on non-Industrial Ethernet connections such as Telnet.

Offline Buffering
When the wireless reader is physically out of range of the base station, it will automatically buffer all reads. Buffer
capacity varies according to a number of factors. However, typically several hundred reads can be stored. These
buffered reads are also preserved if the reader enters hibernation (sleep mode). When the reader is brought back into
range of the base station the buffered reads will automatically be downloaded.

If this offline buffering situation is anticipated in the user application, then Industrial Ethernet protocol buffering should
also be enabled. Protocol buffering will allow a PLC to control the rate that read results are returned to the PLC. This
prevents the PLC from becoming overwhelmed by a rapid flow of read results. Refer to the specific Industrial Protocol
section of this document for details of enabling and utilizing protocol buffering.

Note: The base station can buffer up to 500 results.

Status of Industrial Protocols
The Status field of the industrial protocols (in Setup Tool, under Industrial Protocols tab) displays the last logged
message of the status dialog. The message will remain displayed until another message is logged. If no industrial
protocol is enabled, the status field remains blank.

Status messages vary by protocol, and some protocols do not log any messages. See the table below for a summary of
messages for protocols that display them:

Protocol/Reader Message Description

Wifi readers Industrial ethernet
protocols shutdown

Displayed if no protocol is running

Proxy %s connection
opening

Opening connection to wifi reader, s == connection type ("Command",
"Result", or "User DMCC")

Proxy %s open Connection open, s == connection type ("Command", "Result", or "User
DMCC")

Proxy %s not open failed to open connection, s == connection type ("Command", "Result", or
"User DMCC")

Proxy %s closed connection has been closed, s == connection type ("Command", "Result",
or "User DMCC")

Modbus TCP Modbus TCP starting... Protocol starting
Modbus TCP: Server
Setup Failed

Failed to start server

Modbus TCP running Protocol running
Modbus TCP: Add
block
%s failed

Data block configuration error

Modbus TCP control
block %s

Status of ModbusTCP data block, s == “info” or “error”

110

Industrial Protocols for the Wireless DataMan

Protocol/Reader Message Description

SLMP Protocol Opening SLMP scanner
connection %s:%x

starting SLMP connection, s==IP address, x==port number

SLMP scanner
connection established
%s:%x

SLMP connection established, s==IP address, x==port number

SLMP scanner
connection %s:%x
rejected

PLC has rejected the connection, s==IP address, x==port number

SLMP scanner
connection %s:%x
faulted

Miscellaneous connection fault has occurred, s==IP address, x==port
number

SLMP scanner poll rate
set too low

Configured SLMP poll rate is set too low

SLMP scanner
connection normal
%s:%x

SLMP connection has been restored, s==IP address, x==port number

SLMP Scanner control
block %s

Status of SLMP data block, s == “info” or “error”

SLMP Scanner failed
transfering '%s' block

Comm error, failed to transfer a data block, s==block name

111

Industrial Protocols for the Wireless DataMan

DataMan Application Development
DataMan Control Commands (DMCC) are a method of configuring and controlling a DataMan reader from a COM port or
through an Ethernet connection, either directly or programmatically through a custom application.

For a complete list of DMCC commands, click the Windows Start menu and browse to Cognex -> DataMan Setup Tool v
x.x -> Documentation -> Command Reference. Alternatively, you can open the Command Reference through the Setup
Tool Help menu.

DMCC Overview
DataMan Control Commands (DMCC) are a method of configuring and controlling a DataMan reader from a COM port,
either directly or programatically through a custom application. Depending on the DataMan reader you are using, the
COM port connection be either RS232, USB, or the Telnet protocol in the case of Ethernet capable readers. By default,
Ethernet capable readers are configured to communicate over TCP port number 23, but you can use the DataMan Setup
Tool to assign a different port number as necessary.

Cognex recommends using HyperTerminal, a built-in Windows communications application, to test your ability to
connect to an available reader.

Command Syntax
All DMCC commands are formed of a stream of ASCII printable characters with the following syntax:

command-header command [arguments] footer

For example:

||>trigger on\CR\LF

Command Header Syntax
||checksum:command-id>

All options are colon separated ASCII text. A header without the header-option block will use header defaults.

checksum

0: no checksum (default)

1: last byte before footer is XOR of bytes

command-id

An integer command sequence that can be reported back in acknowledgement.

Header Examples
Example Description
||> Default Header
||0:123> Header indicating no-checksum and ID of 123
||1> Header indicating checksum after command and data.

112

DataMan Application Development

Command
The command is an ASCII typable string possibly followed by data. All command names and public parameters data are
case insensitive. Only a single command may be issued within a header-footer block. Commands, parameters and
arguments are separated by a space character.

Commands
Short names specifying an action. A commonly used command is GET or SET followed by a Parameter and Value.

Parameters
Short names specifying a device setting. Parameter names are organized with a group of similar commands with one
level of structural organization separated by a period ('.').

Arguments
Boolean: ON or OFF

Integer: 123456

String: ASCII text string enclosed by quotes (“).The string content is passed to a function to translate the string to the final
format. The following characters must be backslash escaped: quote (\”), backslash (\\), pipe (\|), tab (\t), CR(\r), LF (\n).

Footer
The footer is a carriage return and linefeed (noted as \CR\LF or \r\n).

Reader Response
The reader will have one of several response formats. The choice of response format is configured using the SET
COM.DMCC-RESPONSE command.

Silent: (0, Default) No response will be sent from the reader. Invalid commands are ignored without feedback. Command
responses are sent in space delimited ASCII text without a header or footer.

Extended: (1) The reader responds with a header data footer block similar to the command format.

Note: While the reader can process a stream of DMCC commands, it is typically more robust to either wait for a
response, or insert a delay between consecutive commands.

||checksum:command-id[status]

checksum

The response uses the same checksum format as the command sent to the reader.

0: no checksum

1: last byte before footer is XOR of bytes

command-id

The command-id sent to the reader is returned in the response header.

status

An integer in ASCII text format.

0: no error

1: reader initiated read-string

100: unidentified error

101: command invalid

102: parameter invalid

103: checksum incorrect

113

DataMan Application Development

104: parameter rejected/altered due to reader state

105: reader unavailable (offline)

Examples
Command Silent Response Extended Response Description
||>GET
SYMBOL.DATAMATRIX\r\n

ON ||[0]ON\r\n Is the DataMatrix symbology
enabled?

||>SET
SYMBOL.DATAMATRIX
ON\r\n

no response ||[0]\r\n Enable the DataMatrix symbology.

||>TRIGGER ON\r\n decoded data or
no-read response

||[0]\r\n ||[1]decoded
data or no-read
response in base64\r\n

Trigger Command

DMCC Application Development
You can use DMCC as an application programming interface for integrating a reader into a larger automation system.

You can also use the DataMan SDK (hereafter referred to as SDK). The following sections give detailed information
about installing the SDK, its contents, building the SDK sample application, and about the utility source codes provided
with the SDK.

Note: If you want to create your own application from scratch and you want to communicate with the DataMan
reader through the serial port, make sure you set port.DtrEnable = true, if the port is an instance of the SerialPort
class.

DataMan SDK Contents
The DataMan SDK comprises the SDK binary files and their documentation, along with code sources of some helper
utilities and a sample application.

The binary files are available for two platforms: one for Microsoft .Net (PC) and one for Microsoft .Net Compact
Framework (CF). The name of each file corresponds to the platform it belongs to (PC/CF). There are two components for
each platform, one is the DataMan SDK core itself (Cognex.DataMan.SDK), the other is for discovering available devices
to be used with the SDK (Cognex.DataMan.Discovery).

The source codes are provided in the form of complete Microsoft Visual Studio projects. In order to build the SDK sample
application, open the sample code’s solution in Microsoft Visual Studio and choose Build solution.

Using the SDK
Usual steps in a typical DataMan SDK application

1. Discover the device (may be omitted if the device address is known in advance).

2. Subscribe to the events you are interested in (e.g. result string arrived event).

3. Connect to the device.

4. Send DMCC commands to the device (e.g. trigger).

5. Process the incoming result data (e.g. show result string).

114

DataMan Application Development

Accessing the DataMan SDK library
To use the SDK for your own purposes, perform the following steps:

1. In Microsoft Visual Studio, click Create Solution/Project.

2. Under Project, right-click References and choose Add Reference…

3. In the pop-up window, click the Browse tab and look for the Cognex.DataMan.SDK.*.dll file (where * refers to the
platform you are working on, either PC or CF) in the directory where you installed or copied the binary files.

4. You can add the following line to the beginning of your code:

using Cognex.DataMan.SDK;

to find the different elements belonging to the SDK in this namespace. They will appear in the intellisense as seen in the
following image:

Enumerating DataMan Devices
In your project, which already uses the SDK, you’ll need the following additional steps:

1. Under Project, right-click References and choose Add Reference…

2. In the pop-up window, click the Browse tab and look for the Cognex.DataMan.Discovery.*.dll file (where * refers
to the platform you are working on, either PC or CF) in the directory where you installed or copied the binary files.

3. Add the following line to the beginning of your code:

using Cognex.DataMan.Discovery;

to find the different elements belonging to the SDK in these namespaces. They will appear in the intellisense.

From this point on, you can choose to discover devices either via Ethernet or via serial communication (RS232/USB), or
you can choose to do both.

4. Discovering devices via Ethernet:

a. Create a new EthSystemDiscoverer.

EthSystemDiscoverer ethSystemDiscoverer = new
EthSystemDiscoverer();

115

DataMan Application Development

b. Subscribe to its SystemDiscovered event.

ethSystemDiscoverer.SystemDiscovered += new
EthSystemDiscoverer.SystemDiscoveredHandler(OnEthSystemDiscovered);

c. Create event handler of type EthSystemDiscoverer.SystemDiscoveredHandler.

d. The event handler argument is an EthSystemDiscoverer.SystemInfo. These SystemInfo objects contain
information required for connecting to a reader. You can store these SystemInfo objects in your own collection.

e. To start device discovery, call the ethSystemDiscoverer.Discover() method.

5. Discovering devices via serial communication (RS232/USB):

a. Create a new SerSystemDiscoverer.

SerSystemDiscoverer serSystemDiscoverer = new
SerSystemDiscoverer();

b. Subscribe to its SystemDiscovered event.

serSystemDiscoverer.SystemDiscovered += new
SerSystemDiscoverer.SystemDiscoveredHandler(OnSerSystemDiscovered);

c. Create event handler of type SerSystemDiscoverer.SystemDiscoveredHandler.

d. The event handler argument is a SerSystemDiscoverer.SystemInfo. These SystemInfo objects contain information
required for connecting to a reader. You can store these SystemInfo objects in your own collection.

e. To start device discovery, call the serSystemDiscoverer.Discover() method.

Note: The SystemDiscovered event will be fired every time a device is detected (either the device announced itself
after booting up or it responded to the Discover() method).

Subscribing to Events
If you want to react to result-like events in your application, you have to subscribe to the related events. There are also
some events related to connection state changes.

Here is an example where you subscribe for the events of read string and image arrival:

mySystem.XmlResultArrived += new XmlResultArrivedHandler(OnXmlResultArrived);
mySystem.ImageArrived += new ImageArrivedHandler(OnImageArrived);

Note: The order of the result components may not always be the same, so if it is important to synchronize them, use
the ResultCollector utility class provided via the DataManUtils component. (See details in section Helper Utilities).

Connecting to a DataMan Device
Your Ethernet device
Connect to your Ethernet device by performing the following steps:

1. Create a connector to your device:

EthSystemConnector myConn = new EthSystemConnector(deviceIP);

where deviceIp is either a known IP address or one that was discovered by an EthSystemDiscoverer.

2. Specify user name and password:

myConn.UserName = "admin";
myConn.Password = "password or empty string";

116

DataMan Application Development

3. Create a new DataManSystem instance with the created connector:

DataManSystem mySystem = new DataManSystem(myConn);

4. Call the Connect() method of your DataManSystem instance:

mySystem.Connect();

5. (Optional) Verify if you are connected:

if (mySystem.IsConnected)

6. To disconnect, call

mySystem.Disconnect();

Note: Currently all devices use the user name admin. If no password is required, an empty string can be used.

Your Serial device
Connect to your serial device by performing the following steps:

1. Create a connector to your device:

SerSystemConnector myConn = new SerSystemConnector(PortName, Baudrate);

where PortName and Baudrate are either known serial connection parameters or come from a SerSystemDiscoverer.

2. Create a new DataManSystem instance with the created connector:

DataManSystem mySystem = new DataManSystem(myConn);

3. Call the Connect() method of your DataManSystem instance:

mySystem.Connect();

4. (Optional) Verify if you are connected:

if (mySystem.IsConnected)

5. To disconnect, call

mySystem.Disconnect();

Sending DMCC Commands to DataMan Devices
Use SendCommand () for sending different commands to the reader. For information about available commands, refer to
the DMCC Command Reference.

There is one mandatory parameter for SendCommand () which is the command string itself. There are also two optional
parameters: one for overriding the default timeout for the command and another for passing additional bytes with the
command.

The following is an example for sending a DMCC command.

DmccResponse response = mySystem.SendCommand("GET DEVICE.TYPE");

Note: The response’s content resides in the response object’s PayLoad property. Also note that no DMCC header
or footer is specified in the command string.

117

DataMan Application Development

Some functions like SendCommand() or GetLiveImage() also have asynchronous implementations. If you wish to use
these, look for the desired function name with Begin/End prefix. These functions go in pairs; the function with the Begin
prefix returns an IAsyncResult which can be used by the one with the End prefix.

Displaying Static and Live Images from a DataMan Device
To have static images displayed, use DataManSystem.GetLastReadImage () or subscribe for the event ImageArrived to
get images.

To have live images displayed, perform the following steps:

1. Set the reader to live display mode:

mySystem.SendCommand("SET LIVEIMG.MODE 2");

2. Periodically poll the device for images by using

mySystem.GetLiveImage(ImageFormat, ImageSize, ImageQuality);

See an example implementation in the source of the Sample application. In the example, a new polling thread is created
to avoid locking the GUI.

To turn off live display mode, use

mySystem.SendCommand("SET LIVEIMG.MODE 0")

Helper Utilities
Some helper functions are provided as source codes with the SDK in the project called DataManUtils. Some of the main
features are described below.

Gui
Provides functions for image manipulation like fitting a result image into a specified control, converting bitmap data
to/from a byte array, etc.

Additional classes provide SVG helpers for image parsing and SVG rendering. SVG formatted result component is used
by the reader to mark the area of the image where the code was detected.

ResultCollector
The order of result components may not always be the same. For example sometimes the XML result arrives first,
sometimes the image. This issue can be overcome by using the ResultCollector.

The user needs to specify what makes a result complete (e.g. it consists of an image, an SVG graphic and an xml read
result) and subscribe to ResultCollector’s ComplexResultArrived event.

The ResultCollector waits for the result components. If a result is complete, a ComplexResultArrived event is fired. If a
result is not complete but it times out (time out value can be set via the ResultTimeOut property) or the ResultCollector’s
buffer is full (buffer length can be set via the ResultCacheLength property), then a PartialResultDropped event is fired.
Both events provide the available result components in their event argument, which can be used to process the complex
result (e.g. maintain result history, show the image, graphic and result string, etc.)

DmccEscaper
Can be used to escape or un-escape a DMCC command string.

FileLogger
Simple logger class can be used during development. This, like all other utilities provided here, works both on PC and
CF platforms.

118

DataMan Application Development

Using the Helper Utilities
The helper utilities are contained in two projects. Both projects refer to the same source codes, but one is created for
Microsoft .Net Compact Framework (DataManUtilsCF) and the other of for the PC’s Microsoft .Net Framework
(DataManUtilsPC). To use the features provided in these utilities, include the proper DataManUtils project in your
solution and reference it in the project in which you wish to use it.

Script-Based Data Formatting
The DataMan Setup Tool allows you to have different data formatting combinations, and to have the reader perform
different actions on the output channel, for example, beep, or have the LEDs blink, or pull output 1 up.

The script-based formatting has two main advantages:

l flexible result configuration

l configuring reader events before the result returns

Note: Script-based formatting limits the user to performing two custom events and overwriting the system event.

DMCC Support
The following DMCC commands are available for Script-Based Formatting:

Command Range Description
GET/SET FORMAT.MODE [0..1] Select formatting mode:

l 0 = basic formatting

l 1 = script-based formatting

SCRIPT.LOAD length Load the formatting script from the host to the reader.
SCRIPT.SEND - Send the formatting script from the reader to the host.

Script functions are available to add DMCC support to the script parser. The DMCC implementation is wrapped into
script functions. The script functions are defined at global scope. DMCC functions can be partitioned into three
categories:

l commands (for example, to issue a beep or a reboot)

l setter function for properties

l getter function for properties

The functions make use of the variable arguments feature of the script engine. The types of the function arguments are
compared to the expected types defined by the DMCC commands. If the number of arguments or an argument type is
incorrect an error status is returned.

The functions return an object with a property for the status. If a command returns a response it can be accessed by the
response property. The status codes are the same as for the DMCC commands.

If a function executes successfully, a zero status value is returned. Script exceptions are not used.

119

DataMan Application Development

Note:

l The data formatting script function is executed after the output delay time or distance elapsed.

l All scripting functions run in a separate thread and the execution is mutual exclusive. It is not possible that a
script function is interrupted by another.

l Use [0,1] or [true,false] instead of [ON|OFF] when scripting.

Based on the DMCC implementation the response is always returned as a single string even for multi-value responses,
such as:

var foo = dmccGet(”DECODER.ROI”);

The set command supports multiple and type correct parameters, for example:

dmccSet(”DECODER.ROI”, 16, 1280, 16, 1024);

Example
The following example uses the dmccSet functions to issue a beep signal, set the ftp server IP for image storage and
adds the MAC to the output response:

function onResult (decodeResults, readerProperties, output)
{

var myoutput;
var result_tmp = dmccCommand(”BEEP”, 1, 1);

result_tmp = dmccSet(”FTP-IMAGE.IP-ADDRESS”, ”192.168.23.42”);
if(result_tmp.status !=0)

{

throw(”FATAL: failed to set the ftp server address”);

}
var mac = dmccGet(”DEVICE.MAC-ADDRESS”);

myoutput = ’Result=”’ + decodeResults[0].content + ’”, MAC=’+mac.response;
output.content = myoutput;
}

In case the DMCC set command for the IP address fails, a non-zero status will be returned, and a script exception will be
thrown that is reported by the DataMan Setup Tool.

Note: If you use the Throw() command, like in the example above, to report the occurrence of an anomalous
situation (exception), the error will appear in the Setup Tool’s error log. To access the error log, in the Setup Tool’s
menu bar, click System and then click Show Device Log.

Auxiliary Functions
The following auxiliary global functions are also available:

l function for decoding escape sequences

l function to encode a string argument into base64 encoding

Function decode_sequences
This global function is used to decode escape sequences. The function returns the string that contains the decoded
escape sequence. The return value can be used to add keyboard control commands to a result transmitted over a HID
connection.

120

DataMan Application Development

Parameter Type Description
encodedString string A string value that contains keyboard escape sequences.

To simulate Alt-key, Ctrl-key, or Shift-key combinations, the following four escape sequences are available:

l \ALT- for <ALT-key> sequences

l \CTRL- for <CTRL-key> sequences

l \SHIFT- for <SHIFT-key> sequences

l \K for special keys

Note: The key after the backslash needs to be a capital letter, otherwise no special key combination is recognized.

Supported Key Sequences and Keys
The following list contains the currently supported keys/key combinations:

l ALT-A to ALT-Z

l CTRL-A to CTRL-Z

l CTRL-F1 to CTRL-F12

l SHIFT-F1 to SHIFT-F12

l F1 to F12

l ALT-F1 to ALT-F12

l PageUp, PageDown, Home, End, Arrow (up, down, left, right), , Insert, Delete, Backspace, Tab, Esc, Print Screen,
GUI (left, right) keys.

l The escape sequences for these are the following:

l PageUp -> \KPup;

l PageDown -> \KPdn;

l Home -> \KHome;

l End -> \KEnd;

l Up Arrow -> \KUar;

l Down Arrow -> \KDar;

l Left Arrow -> \KLar;

l Right Arrow -> \KRar;

l Insert -> \KIns;

l Delete -> \KDel;

l Backspace -> \KBksp;

l Tab -> \KTab;

l Esc -> \KEsc;

l Print Screen -> \KPrtScr;

l Left GUI -> \KLGui;

l Right GUI -> \KRGui;

Example
To pre- or post-pend a Ctrl-B keyboard control command, the following code example can be used:

121

DataMan Application Development

var ctrl_b = decode_sequences("\\Ctrl-B;");

function onResult (decodeResults, readerProperties, output)
{

if (decodeResults[0].decoded)
{

output.content = ctrl_b+decodeResults[0].content+ctrl_b;

}

}

Note: The backslash for initiating the escape sequence must also be escaped in the input string. The terminating
semicolon is necessary to be able to distinguish between sequences with the same prefix, otherwise key
sequences could be interpreted arbitrarily, e.g. there would be no means to detect if \KF11 means "press F11" or
"Press F1 followed by a one”. If a wrong or incomplete sequence is used, the two characters which mark the escape
sequence are ignored. In this case, the first two letters of the escape sequence are skipped and the remaining
characters will be sent. For example, the sequence "\ALT-M11;" is invalid and will result in displaying "LT-M11;".

Function encode_base64
This global function is used to encode a string argument into base64 encoding. The encoded result is returned as a
string object.

Parameter Type Description
inputString string Input string to encode into base64.

Error Management
Scripting errors may occur when the script is loaded or the code parser function is called. These errors are shown in the
following locations:

l device log

l error box in Script-Based Formatting window

Formatting Script
When script-based formatting is enabled, a user-defined JavaScript module is responsible for data formatting. The
parsing function, which defaults to onResult, is called with three objects as arguments holding the array of DecodeResult
objects, ReaderProperties objects such as trigger mode or statistics, and the output object. There is only one entry point
for both single and multicode results.

Class hierarchy is structured in the following way:

function onResult [decodeResults, readerProperties, output]

122

DataMan Application Development

DecodeResult
SymbologyProperties
Point

ValidationResult
GS1Validation
DoDValidation

QualityMetrics
Metric

ReaderProperties
Trigger
Statistics

Output
Event

See the detailed description of the related objects below.

Function onResult

This is the event handler for decode events, with zero, one or more decoded results.

Property Type Description
decodeResults DecodeResult[] Input, an array of DecodeResult objects. One decode result will hold all

information related to that decode attempt.
readerProperties ReaderProperties Input, the reader properties not tied to the actual decode result.
output Output Output, the object which needs to be updated to modify the output

string or raise events.

Function onGenerateFTPFilename

The name of the file to be sent to the FTP server can be generated with this function.

Property Type Description
decodeResults DecodeResult[] Input, an array of DecodeResult objects. One decode result will hold all

information related to that decode attempt.
readerProperties ReaderProperties Input, the reader properties not tied to the actual decode result.
output Output Output, the object which needs to be updated to modify the output

string or raise events.

The file name of the image to be uploaded is taken from the string return value of the script. For example:

function onGenerateFTPFilename(decodeResults, readerProperties, output)
{

var ftp_filename = readerPRoperties.name + "-";
ftp_filename +=readerProperties.trigger.index + "-" + decodeResults
[0].image.index;
return ftp_filename;

}
function onGenerateFTPPCMReportFilename(decodeResults, readerProperties, output)
{

var ftp_filename = readerPRoperties.name + "-";
ftp_filename +=readerProperties.trigger.index + "-" + decodeResults
[0].image.index;
return ftp_filename;

}

123

DataMan Application Development

DecodeResult Object

The following tables list the details of the DecodeResult object, its types and properties.

Decode Result

Describes the details of one decoded result.

Property Type Description
decoded boolean True if decoding was successful.
content string The (raw) read result.
decodeTime integer The decoding time in milliseconds.
triggerTime integer The trigger time in milliseconds.
timeout string The trigger timeout in milliseconds.
symbology SymbologyProperties The values of this property are listed in the Symbology Properties table

below.
image ImageProperties The values of this property, also known as capture attributes, are listed in

the Image Properties table below.
validation ValidationResult The values of this property are listed in the Validation Result table below.
metrics QualityMetrics The values of this property are listed in the Quality Metrics table below.
readSetup integer Used read setup index token.
source string The name of the device that decoded the image.
annotation string Result annotation for master-slave triggering.
label string Symbol label.

Symbology Properties

Symbology properties for a decoded result.

Property Type Description
name string The name of the symbology.
id string The symbology identifier (by ISO15424).
quality integer The overall quality metrics for the code, ranging in [0, 100]. For

symbologies that use Reed-Solomon error correction (e.g. DataMatrix,
QR Code, AztecCode, MaxiCode, DotCode, PDF417, certain 4-state
postal codes), it reports the UEC (unused error correction). For linear
symbologies, it indicates the overall quality of the code. The higher the
number, the better the quality.

moduleSize float The module size. (The unit is pixel per module, ppm.)
size point The size of the symbol in columns x rows. If not applicable for the symbol,

the values will be set to -1.

124

DataMan Application Development

Property Type Description
corners array of Point This specifies the coordinates of the four corners. The details of the Point

property type are listed in the Point table below.
The corner coordinates are returned in the following order:
For non-mirrored symbols,

l corner 0: upper left corner of the symbol,

l corner 1: upper right corner of the symbol,

l corner 2: lower left corner of the symbol,

l corner 3: lower right corner of the symbol,

except for non-mirrored DataMatrix and Vericode, where corner 0 is
where the two solid lines of cells along two sides meet, and corners 1-3
follow counter clockwise.
For mirrored symbols, the corners are mirrored correspondingly.

center Point This specifies the coordinates of the center. The details of the Point
property type are listed in the Point table below.

angle float The code orientation in degrees.

PtpTimeStamp

Peer to peer timestamp value on image acquisition.

Property Type Description
s integer Image acquisition timestamp sec property.
ns integer Image acquisition timestamp nanosec property.

Point

Point is the ordered pair of integer x- and y-coordinates that defines a point in a two-dimensional plane.

Property Type Description
x integer This value specifies the x coordinate.
y integer This value specifies the y coordinate.

ImageProperties Object

The following tables list the details of the ImageProperties object, its types and properties.

Image Properties

Properties of a captured image.

Property Type Description
index integer The index of the image within the trigger.
FoV Rect The Field of View, the area of image sensor used relative to the top left sensor

corner. The details of the Rect property type are listed in the Rect table below.
RoI Rect The Region of Interest, the part of the FoV that is actually used, relative to the

sensor. The details of the Rect property type are listed in the Rect table below.
exposureTime integer The exposure time in microseconds.
gain integer The camera gain.
autoExposure boolean True if automatic exposure is used.
illEnabled boolean True if internal illumination is enabled.

125

DataMan Application Development

Property Type Description
illIntensity integer The internal illumination intensity.
extillEnabled boolean True if external illumination is enabled.
extillIntensity integer The external illumination intensity.
targetBrightness integer The target brightness in case of automatic exposure.
focusLength integer The focus value in millimeters. It is 0 if NA.
setupIndex integer The current index of read setup.
inputStates array of boolean The state of the input lines when the trigger was started.
filterTime integer The duration of filtering in milliseconds.
creationTime integer Creation time.
creationTicks integer Encoder ticks corresponding to image creation time.
ptpTimeStamp ptpTimeStamp PtP image acquisition timestamp.
id integer The numerical identifier of this image.

Rect

Rect describes the width, height, and location of a rectangle.

Property Type Description
top integer This specifies the top value relative to the top left sensor corner.
bottom integer This specifies the bottom value relative to the top left sensor corner.
left integer This specifies the left value relative to the top left sensor corner.
right integer This specifies the right value relative to the top left sensor corner.

ValidationResult Object

The following tables list the details of the ValidationResult object, its types and properties.

Validation Result

Describes all details of the validation.

Property Type Description
state integer These are the validation states:

l notTried

l fail

l pass

The format of this property is “validation.state.notTried”.

126

DataMan Application Development

Property Type Description
method integer These are the validation methods:

l none

l gs1

l iso

l dod_uid

l pattern

l matchString

The format of this property is “validation.method.none”.
matchString string This property returns with the previously configured match string. Match

string validation should be enabled for this.
failurePos integer The position of validation failure.
failureCode integer The validation failure code.
failureMsg string The error message describing the cause of validation failure.
gs1 GS1 Validation The details of the GS1 Validation property type are listed in the GS1

Validation table below.
dod_uid DoD Validation The details of the DoD Validation property type are listed in the DoD

Validation table below.

GS1Validation

GS1 validation details.

Property Type Description
AI00 string Identification of a logistic unit (Serial Shipping Container Code)
AI01
AI01
AI01
AI01

string
string
string
string

Identification of a fixed measure trade item (Global Trade Item Number)
Identification of a variable measure trade item (GTIN)
Identification of a variable measure trade item (GTIN) scanned at POS
Identification of a variable measure trade item (GTIN) not scanned at POS

AI02
AI02

string
string

Identification of fixed measure trade items contained in a logistic unit
Identification of variable measure trade items contained in a logistic unit

AI10 string Batch or lot number
AI11 string Production date
AI12 string Due date for amount on payment slip
AI13 string Packaging date
AI15 string Best before date
AI16 string Sell by date
AI17 string Expiration date
AI20 string Product variant
AI21 string Serial number
AI240 string Additional product identification assigned by the manufacturer
AI241 string Customer part number
AI242 string Made-to-Order variation number
AI243 string Packaging component number

127

DataMan Application Development

AI250 string Secondary serial number
AI251 string Reference to source entity
AI253 string Global Document Type Identifier
AI254 string GLN extension component
AI255 string Global Coupon Number (GCN)
AI30 string Variable count
AI31nn
AI32nn
AI35nn
AI36nn

string Trade measures

AI33nn
AI34nn
AI35nn
AI36nn

string Logistic measures

AI337n string Kilograms per square metre
AI37 string Count of trade items contained in a logistic unit
AI390n string Amount payable or coupon value - Single monetary area
AI391n string Amount payable and ISO currency code
AI392n string Amount payable for a variable measure trade item – Single monetary area
AI393n string Amount payable for a variable measure trade item and ISO currency code
AI394n string Percentage discount of a coupon
AI400 string Customer’s purchase order number
AI401 string Global Identification Number for Consignment (GINC)
AI402 string Global Shipment Identification Number (GSIN)
AI403 string Routing code
AI410 string Ship to - Deliver to Global Location Number
AI411 string Bill to - Invoice to Global Location Number
AI412 string Purchased from Global Location Number
AI413 string Ship for - Deliver for - Forward to Global Location Number
AI414 string Identification of a physical location - Global Location Number
AI415 string Global Location Number of the invoicing party
AI420 string Ship to - Deliver to postal code within a single postal authority
AI421 string Ship to - Deliver to postal code with three-digit ISO country code
AI422 string Country of origin of a trade item
AI423 string Country of initial processing
AI424 string Country of processing
AI425 string Country of disassembly
AI426 string Country covering full process chain
AI427 string Country subdivision of origin code for a trade item
AI7001 string NATO Stock Number (NSN)
AI7002 string UN/ECE meat carcasses and cuts classification
AI7003 string Expiration date and time
AI7004 string Active potency
AI7005 string Catch area

128

DataMan Application Development

AI7006 string First freeze date
AI7007 string Harvest date
AI7008 string Species for fishery purposes
AI7009 string Fishing gear type
AI7010 string Production method
AI703s string Number of processor with three-digit ISO country code
AI710
AI711
AI712
AI713

string National Healthcare Reimbursement Number (NHRN):

AI8001 string Roll products - width, length, core diameter, direction, splices
AI8002 string Cellular mobile telephone identifier
AI8003 string Global Returnable Asset Identifier (GRAI)
AI8004 string Global Individual Asset Identifier (GIAI)
AI8005 string Price per unit of measure
AI8006 string Identification of the components of a trade item
AI8007 string International Bank Account Number (IBAN)
AI8008 string Date and time of production
AI8010 string Component / Part Identifier (CPID)
AI8011 string Component / Part Identifier serial number
AI8012 string Software version
AI8017
AI8018 string Global Service Relation Number (GSRN)

AI8019 string Service Relation Instance Number (SRIN)
AI8020 string Payment slip reference number
AI8110 string Coupon code identification for use in North America
AI8111 string Loyalty points of a coupon
AI8200 string Extended packaging URL
AI90 string Information mutually agreed between trading partners
AI91-99 string Company internal information

DoD Validation

DoD validation details.

Property Type Description
enterpriseID string The enterprise identifier.
serialNum string The serial number.
partNum string The part number.
uniqueItemID string The unique item identifier.
batchNum string The batch number.

QualityMetrics Object

129

DataMan Application Development

The following tables list the details of the QualityMetrics object, its types and properties. The details of the Metric property
type are listed in the Metric table below. All the metrics listed are available for all the standards available under the
Symbology Settings pane in the DataMan Setup Tool.

Quality Metrics

Describes the quality of all measured parameters.

Property Type 1D Standards 2D Standards Description
singleScanInt Metric 1D Readability The single-scan

integrity, raw member
is set to -1. Single-
scan integrity is a
general measure of
the ease of decoding
a barcode using only
a single scan across
it. This is meant to
represent the way that
simple decoders
work. In general, such
algorithms are not
advanced and the
decodability is lower if
a symbol has damage
in multiple locations in
the barcode. A low
singleScanInt metric
may indicate many
different problems, as
it is a general
measure of code
quality.

symbolContrast Metric 1D Readability, ISO/IEC
15416

ISO/IEC 15415
(DataMatrix, QR,
DotCode), SEMI T10

The contrast of the
symbol in ISO15415.
Symbol contrast is a
measure of the
difference in
grayscale value
between the light and
dark cells. A high
contrast makes the
code easier to
decode, while a code
with low contrast may
not decode well due
to difficulty separating
the light and dark
cells from each other.
A poor contrast might
indicate poor lighting,
a code which is
difficult to read due to
similarities between
the print and the
background, or that a
printer is performing
poorly.

130

DataMan Application Development

Property Type 1D Standards 2D Standards Description
cellContrast Metric AIM/DPM ISO/IEC TR-

29158 (DataMatrix, QR)
The contrast of the
cell. Cell contrast is a
measure of the
difference in
grayscale value
between the light and
dark parts of the cell.
A high contrast makes
the code easier to
decode, while a code
with low contrast may
not decode well due
to difficulty separating
the light and dark
areas of the cells. A
poor contrast might
indicate poor lighting,
a code which is
difficult to read due to
similarities between
marked and
unmarked areas.

axialNonUniformity Metric ISO/IEC 15415
(DataMatrix, QR,
DotCode), AIM/DPM
ISO/IEC TR-29158
(DataMatrix, QR)

The axial non-
uniformity. Axial non-
uniformity is a
measure of the
difference in spacing
of grid cells along
each axis. In the best
case, this value will
be zero, indicating
that centers of the grid
cells are evenly
spaced in all
directions. A poor
axial non-uniformity
might indicate
problems in the
printing process for
the code, which
causes the code to
appear stretched out
or compressed.

131

DataMan Application Development

Property Type 1D Standards 2D Standards Description
printGrowth Metric 1D Readability ISO/IEC 15415

(DataMatrix, QR,
DotCode), AIM/DPM
ISO/IEC TR-29158
(DataMatrix, QR)

The print growth. Print
growth is a measure
of how completely a
light or dark patch fills
the cell allocated to it.
High print growth
means that a cell
exceeds the
boundaries allocated
to it, while a low print
growth indicates that
the cells are not
taking up all the
available space.
Either of these may
cause problems
(either by making
adjacent cells difficult
to read in the case of
high growth, or
making the cell itself
difficult to read in the
case of low growth).
As a result, a print
growth close to zero is
desirable. A high or
low print growth
usually indicates
problems with the
printing process for a
code. For instance, a
dot peen marker may
be wearing out and
making smaller
marks, or a printer
may be depositing too
much ink on a label
and making the marks
too large.

UEC Metric ISO/IEC 15415
(DataMatrix, QR,
DotCode), AIM/DPM
ISO/IEC TR-29158
(DataMatrix, QR),
SEMI T10

The unused error
correction. Unused
Error Correction
measures the amount
of Error Checking and
Correction data that
was printed into the
code, but was
unused. A high UEC
count is good, as it
means that little to no
Error Correction data
was needed to
successfully read your
code. A low UEC
value may be due to
poor printing, poor
imaging, an incorrect
code, or a damaged
code.

132

DataMan Application Development

Property Type 1D Standards 2D Standards Description
modulation Metric ISO/IEC 15416 ISO/IEC 15415

(DataMatrix, QR),
AIM/DPM ISO/IEC TR-
29158 (DataMatrix, QR)

The modulation.
Modulation measures
how easily separable
light cells are from
dark cells in a code.
Somewhat similar to
contrast, higher
modulation is better,
and low modulation
can lead to difficulty
telling light cells from
dark ones. Low
modulation can
indicate poor lighting,
a code which is
difficult to read due to
similarities between
the print and the
background, or that a
printer is performing
poorly.

fixedPatternDamage Metric ISO/IEC 15415
(DataMatrix, QR),
AIM/DPM ISO/IEC TR-
29158 (DataMatrix, QR)

The fixed pattern
damage. Fixed
pattern damage is a
measure of how much
of the fixed patterns
around the outside of
the code (the solid
finder patterns and
the alternating
clocking patterns) are
intact. If the fixed
patterns are
damaged, then the
code may be difficult
to find at all, let alone
decode. A poor fixed
pattern damage score
usually indicates a
code which has been
damaged or
smudged, or it
indicates a quiet zone
violation.

133

DataMan Application Development

Property Type 1D Standards 2D Standards Description
gridNonUniformity Metric ISO/IEC 15415

(DataMatrix, QR,
DotCode), AIM/DPM
ISO/IEC TR-29158
(DataMatrix, QR)

The grid non-
uniformity. Grid non-
uniformity measures
the difference
between the optimal
placement of cells
based on the overall
grid and their actual
placements. This is
similar to the axial
non-uniformity
measurement, but
instead of measuring
a stretching or
compressing of the
whole grid, this
measures how much
the individual cells
deviate from their
expected positions.
Poor grid non-
uniformity usually
indicates a printing
process which is not
consistent in its
placement of the cells.

extremeReflectance Metric ISO/IEC 15415
(DataMatrix, QR)

The extreme
reflectance. This
metric measures the
brightness of the
background on which
the code is printed. A
too high value might
indicate lighting or
imaging trouble that
could lead to a code
being washed out and
difficult to read. A low
value may indicate
that not enough light
is being applied to the
code, and that
contrast may be poor,
leading to difficulty in
reading. A poor
extreme reflectance
grade may also
indicate trouble
relating to the
positioning of lights
such as hotspots.

134

DataMan Application Development

Property Type 1D Standards 2D Standards Description
reflectMin Metric 1D Readability, ISO/IEC

15416
The reflectance
minimum. This metric
measures how dark
the dark part of a
barcode is. A low
value indicates that
the dark parts of the
code are dark, and a
high value indicates
that they are not. A too
low value may
indicate that there is
not enough light or
too short exposure
time is being used. A
too high value might
indicate a hotspot, too
much light, or that a
too high exposure
time is being used.
Print quality troubles,
like a printer
depositing less ink
than intended, may
also be indicated by
the minimum
reflectance grade.

edgeContrastMin Metric 1D Readability, ISO/IEC
15416

The edge contrast
minimum measures
the ratio of minimum
edge contrast to the
maximum contrast in
the symbol. The
metric is designed to
pick up any artifacts in
the symbol, such as a
damaged bar, which
generate low contrast
variations in the
symbol. A poor grade
here might indicate
poor focus in the
optical system, poor
lighting, or poor
printing.

135

DataMan Application Development

Property Type 1D Standards 2D Standards Description
multiScanInt Metric 1D Readability The multi-scan

integrity. Multi-scan
integrity is a general
measure of the ease
of decoding a symbol
by using multiple
scans across the
barcode. This metric
is a way of measuring
how advanced
decoders might
perform in decoding a
particular barcode. A
low multiScanInt
metric may indicate
many different
problems, as it is a
general measure of
code quality.

signalToNoiseRatio Metric SEMI T10 (DataMatrix) Signal To Noise Ratio
(SNR) is a relative
measure of the
Symbol Contrast to
the maximum
deviation in light or
dark grayscale levels
in the symbol (ie.
noise).

horizontalMarkGrowth Metric SEMI T10 (DataMatrix) Horizontal Mark
Growth is the tracking
of the tendency to
over or under mark
the symbol, that is, a
horizontal size
comparison between
the actual marked
cells vs. their nominal
size.

verticalMarkGrowth Metric SEMI T10 (DataMatrix) Vertical Mark Growth
is the tracking of the
tendency to over or
under mark the
symbol, that is, a
vertical size
comparison between
the actual marked
cells vs. their nominal
size.

dataMatrixCellWidth Metric SEMI T10 (DataMatrix) Data Matrix Cell Width
is the average width
of each cell in the
matrix (in pixels).

dataMatrixCellHeight Metric SEMI T10 (DataMatrix) Data Matrix Cell
Height is the average
height of each cell in
the matrix (in pixels).

136

DataMan Application Development

Property Type 1D Standards 2D Standards Description
horizontalMarkMisplacement Metric SEMI T10 (DataMatrix) Horizontal Mark

Misplacement is the
average horizontal
misplacement of Data
Matrix marks from
their optimal Data
Matrix Cell Center
Points.

verticalMarkMisplacement Metric SEMI T10 (DataMatrix) Vertical Mark
Misplacement is the
average vertical
misplacement of Data
Matrix marks from
their optimal Data
Matrix Cell Center
Points.

cellDefects Metric SEMI T10 (DataMatrix) Cell Defects is the
ratio of incorrect
pixels to total pixels in
the grid.

finderPatternDefects Metric SEMI T10 (DataMatrix) Finder Pattern Defects
is the ratio of incorrect
pixels to total pixels in
the finder pattern.

overallGrade Metric ISO/IEC 15416 ISO/IEC 15415
(DataMatrix, QR),
AIM/DPM ISO/IEC TR-
29158 (DataMatrix, QR),
SEMI T10

Overall grade
calculated from the
individual metrics.

edgeDetermination Metric ISO/IEC 15416 Edge Determination is
the number of edges
detected in the Scan
Reflectance Profile. If
the number of
detected edges is
greater than or equal
to the expected
number of edges, the
grade is 4. Otherwise,
the grade is 0.

defects Metric ISO/IEC 15416 Defects are
irregularities in
elements (bars and
spaces) and quiet
zones. The parameter
is used to measure
the ‘noise’ that results
from unwanted dips
and spikes in the
Scan Reflectance
Profile. The smaller
the defect, the better
the grade.

137

DataMan Application Development

Property Type 1D Standards 2D Standards Description
referenceDecode Metric ISO/IEC 15416 Reference Decode is

an indication of
whether the standard
2D Data Matrix
algorithm was able to
locate and decode
this particular mark.
This metric generates
a grade of either A or
F.

decodability Metric ISO/IEC 15416 Decodability is the
measure of bar code
printing accuracy in
relation to the
symbology-specific
reference decode
algorithm.
Decodability indicates
the scale of error in
the width of the most
deviant element in the
symbol. The smaller
the deviation, the
higher the grade.

contrastUniformity Metric ISO/IEC 15416 ISO/IEC 15415
(DataMatrix, QR)

Contrast Uniformity is
an optional parameter
that is used for
measuring localized
contrast variations. It
does not affect the
overall grade.

reflectanceMargin Metric ISO/IEC 15416 ISO/IEC 15415
(DataMatrix, QR)

Reflectance Margin
measures how each
module is
distinguishable as
light or dark
compared to the
global threshold.
Factors (like print
growth, certain optical
characteristics of the
substrate, uneven
printing, encodation
errors) can reduce or
eliminate the margin
for error between the
reflectance of a
module and the
global threshold. A
low Reflectance
Margin can increase
the probability of a
module being
incorrectly identified
as dark or light.

Metric

138

DataMan Application Development

Describes the quality of a measured parameter.

Property Type Description
raw float The raw metric.
grade string The grade of quality in a range from grade A to F, where A is the highest.

Reader Properties

The following tables list the details of the reader properties.

ReaderProperties

Reader properties not tied to the actual decode result.

Property Type Description
name string The name of the device that decoded the image.
trigger Trigger The details of Trigger property type are listed in the Trigger table below.
stats Statistics The details of the Statistics property type are listed in the Statistics table below.
inputstr string This property serves the same function as the <Input String> data formatting token in

Standard Formatting: it holds the string that was sent to the reader via the InputString feature
(only configurable through DMCC).

Trigger

Describes the details of the initiating trigger event.

Property Type Description
type integer These are the available trigger types:

l single

l presentation

l manual

l burst

l self

l continuous

The format of this property is “trigger.type.single”.
index integer The unique trigger identifier.
burstLength integer The number of images in case of burst trigger.
interval integer The trigger interval in microseconds.
delayType integer These are the available trigger delay types:

l none

l time

l distance

The format of this property is “trigger.delayType.none”.
startDelay integer The trigger start delay in milliseconds (when using Trigger.delayTime.time) or

millimeters (when using Trigger.delayTime.distance).

139

DataMan Application Development

endDelay integer The trigger end delay in milliseconds (when using Trigger.delayTime.time) or
millimeters (when using Trigger.delayTime.distance).

creationTime integer Creation time.
creationTicks integer Encoder ticks corresponding to trigger signal time.
groupIndex integer The unique trigger identifier property of the reader which triggered the group.
endTime integer Trigger event end time (in ms).
endTicks integer Encoder tick counter at trigger end event time.

Statistics

Operational information about the reader.

Property Type Description
reads integer The total number of decoded symbols.
noReads integer The number of times the trigger was received but no symbol was decoded.
triggers integer The total number of triggers calculated by

totalReads+totalNoReads+missedTriggers.
bufferOverflows integer The number of images that were not buffered because of image buffer full

condition.
triggerOverruns integer The number of missed triggers because acquisition system was busy.
itemCount integer The number of no reads when buffered no read images are allowed.
passedValidations integer The number of reads that passed the data validation.
failedValidations integer The number of reads that failed the data validation.

Output
Output describes the result and events after a decode. It is possible to specify different results for individual protocol
targets. The output object has target-specific properties of type string. The name of the output property is the same as the
target protocol name. If no target-specific output is assigned, the result falls back to the default result taken from the
output.content property.

Property Type Description
content string The string that is sent as decode result.
events event These are the output events that are activated. The details of the

DecodeEvents property type are listed in the DecodeEvents table
below.

SetupTool* string The string that is sent to the Setup Tool as decode result.
Serial* string The string that is sent to serial and USB connections as decode result.
Telnet* string The string that is sent to the Telnet connection as decode result.
Keyboard* string The string that is sent to the HID connection as decode result. Not

available for 5.2.
FTP* string The string that is sent to the FTP connection as decode result.

140

DataMan Application Development

PS2* string The string that is sent to the PS2 connection as decode result. Not
available for 5.2.

NetworkClient* string The string that is sent to the NetworkClient connection as decode
result.

IndustrialProtocols* string The string that is sent to the connected PLC as decode result.

*These properties suppress the output information that was previously set via the output.content property.

An example for the protocol-specific formatting feature can be found here:

function onResult (decodeResults, readerProperties, output)
{

if (decodeResults[0].decoded)
{

var mymsg = decodeResults[0].content;
// output[’Serial’] is identical to output.Serial
output[’Serial’] = ”serial: ”+mymsg;
output.Telnet = ”telnet: ”+mymsg;

output.content = mymsg;

}
else
{
output.content = ”bad read”;
}

}

Note: For every channel that is not addressed in special, the output is the normal content text. For example:

function onResult (decodeResults, readerProperties, output)
{

if (decodeResults[0].decoded)
{

/* save decoded result to variable */
var mymsg = decodeResults[0].content;

/* output to telnet channel a different result
*/
output.Telnet = "telnet: " + mymsg;

/* to all other channel output the saved
result */
output.content = mymsg;

}
else
{

/* On bad read output to all channels the same
*/
output.content = "bad read";

}

}

141

DataMan Application Development

DecodeEvents

Describes the events to be emitted after a decode.

Property Type Description
system integer These are the system generated events:

l 0 = none

l 1 = good read

l 2 = no read

l 3 = validation failure*

user1 boolean True if user event 1 is raised.
user2 boolean True if user event 2 is raised.

* Only changing between good read and validation failure is supported.

Code Completion and Snippets
The script editor features automatic code completion, which shows pop-up messages with information regarding the
code that is being written. Pop-up messages usually appear when typing special characters, for example period,
opening or closing brackets, etc. These messages can also be used manually with the Ctrl+Space key combination.

Code completion works in the following scenarios:

l complete a code fragment (Ctrl-Space)

l provide function list (Ctrl-Shift-Space)

142

DataMan Application Development

The toolbar at the top of the editor collects the following actions available within the editor:

l Cut (Ctrl-x)

l Copy (Ctrl-c)

l Paste (Ctrl-v)

l Complete Word (Ctrl-k and then press w)

l Insert Snippet (Ctrl-k and then press x)

Snippets
The editor provides a selection of preset code fragments as examples. You can insert these snippets by right-clicking in
the editor, using the toolbar or using the Ctrl-k and x key combination.

143

DataMan Application Development

Custom Communication Protocol API
Custom communication scripting can be activated by a boolean VT entry that can be accessed in the DataMan Setup
Tool.

The methods are encapsulated in a communication object. Each communication channel creates an instance of the
communication object.

When the Custom Protocol Communication API is enabled through a private DMCC command, the scripting context adds
the following capabilities and requirements:

l The constructor function of the communication object, CommHandler, contains a list of functions that the script
must contain:

n onConnect

n onDisconnect

n onExpectedData

n onTimer

n onUnexpectedData

n onError

n onEncoder

The user must implement these functions, as the custom communications function will call them.

l There are five member functions that the reader script engine offers, implemented by the reader:

n send

n close

n setTimer

n expectFramed

n setEncoder

By using these functions, a user could write javascript code that allows the reader to interact with another system. In
particular, the user can write code to send messages back to the other system, something that is not supported in basic
scripting.

Advantage
The script engine uses the same context for function execution and object creation. This allows the sharing of data
between the script-based formatting and the custom communication scripts using global accessible objects.

List of functions
The communication member functions define the following method prototypes to be implemented by the user:

CommHandler – The constructor function for the communication object. The constructor must return a new
communication handler object implementing the user methods in the communication script. The reader methods are
added to the communication handler object directly after construction. The implementation of the constructor is
mandatory and an error will be thrown if it does not exist. Since software version 5.5 the constructor function call offers
the following argument:

o localName: The local name of the connection. The local name of a network connection is ”<READER_
IP>:<PORT>”. An example for a Telnet connection is “10.82.80.156:23” with the default telnet port of 23. An
example for a Network Client connection is “10.82.80.156:57350”. The local name for the serial connection is

144

DataMan Application Development

“COM1” or “COM USB”.

o onConnect – Initialize state upon connection (a network connection established or protocol stack starts on serial
connection). If the method is not implemented an error occurs. The method has one argument and a return value:

l peerName – The peer name of the connection. The peer name for a network connection is ”<PEER_
IP>:<PORT>”. An example peer name for a Telnet connection is “10.82.80.71:19772”, for a “Network
Client” connection it is “10.82.80.71:1000”, where the host port is configured to 1000. The peer name for
the serial connection is “COM1” or “COM USB”.

l return – The boolean return value defines if the handler for this connection should be activated:

n true: Enables customization of the communication protocol. Therefore, if you want to use your own
protocol for communicating with the Dataman device, return true.

n false: If you do not need the customized protocol for this peer, return false.

o onDisconnect – Cleanup method called when closing the connection channel

o onExpectedData – Method called if data matching the set properties has arrived. The method has one argument:

l inputString – The received frame matched data excluding header and termination

l return – Determines if the data should be removed from input buffer

n true: clear the buffer.

n false: keep the value in buffer.

o onTimer – The timer value expired

o onUnexpectedData – The recieved data is not matching the requirements. The boolean return value determines
if the data should be removed from input. The method has one argument:

l inputString – The received data

l return – Determines if the data should be removed from input buffer

n true: clear the buffer.

n false: keep the value in buffer.

o onError – An error occurred in the firmware and may be reported. The implementation of the method is
mandatory. The method has one argument and no return value:

l errorMsg – The error message for trigger overruns (“Trigger Overrun”), buffer overruns (“Buffer Overflow”)
and general errors reported by the firmware.

o onEncoder – Executed if a configured encoder distance is reached. The distance can be configured by the
setEncoder method. The method has no arguments or return value.

o send – Send data to channel, returns the number of send characters. The method must be called with one
argument:

l Data argument is a string

o close – Actively terminates connection for the communication object (for example, close TCP/IP socket). On
UART, this causes onConnect to be called right afterwards.

o setTimer – Set the one-shot timer value when the onTimer will be executed. The timer can be re-initialized and
aborted.

l Timeout in seconds of type double, internal resolution is us (1e-6 sec). A zero value aborts a running
timer. Active timer will be overwritten.

145

DataMan Application Development

o expectFramed – Tells the communication listener which data to pass on to the onExpectedData and
onUnexpectedData methods. It is possible to change the match parameter at runtime. The following three
arguments are required:

n header of type string, may be empty (””)

n terminator of type string, may be empty (””)

n max length of type integer, specifies the maximum length of an input message to check for a match
[required]

o setEncoder – Units of the distance argument are millimetres. The encoder is configured in Setup Tool under
System Settings -> Pulse Encoder. If encoder ticks should be used instead of distance set the value of the
parameter “Resolution (mm)” to 1.

n distance (double) – The encoder distance in which the onEncoder method will be called.

The methods must be implemented in the public section of the object.

Examples

API usage of custom communication protocol object

This example below demonstrates the API usage of the custom communication protocol object. The example implements
custom commands read from the connection. The commands are framed by a ”#” header and terminated by ”;\r” (for
example, a serial PuTTY connection). A timer sends periodically timer messages that may be stopped using the custom
stop command. The timer handler may be changed once by the switch command.

146

DataMan Application Development

function CommHandler()
{

// private properties and methods:

var num_trigger = 0;
var num_send;

// public properties and methods:
function onTimeout()
{

num_send = this.send(my_name + ': timer callback\r\n');
this.setTimer(1.0);

}

function onTimeout2()
{

today = new Date();
var msg = today.getSeconds() * 1000 + today.getMilliseconds();

num_send = this.send(my_name + ': time is: ' + msg + '\r\n');

dmccCommand("TRIGGER", true);
this.setTimer(1.0);

}

function replace_crlf(input_str)
{

return input_str.replace(/\r/g, '\\r').replace(/\n/g, '\\n');
}

return {

onConnect: function (peerName)
{

my_name = peerName;
// we may ignore the connection
if(my_name == "COM1")

return false;

num_send = this.send(my_name + ": connected\r\n");

this.expectFramed("#", ";\r\n", 64);
return true;

},

onDisconnect: function ()
{
},

onExpectedData: function (inputString) {

var msg = 'ok';
this.expectFramed("#", ";\r\n", 64);
if (inputString == "name")
{

msg = dmccGet("DEVICE.NAME");
msg = msg.response;

}

else if(inputString == "trigger")

147

DataMan Application Development

{

this.send(my_name + ': issue a trigger...\r\n');
dmccCommand("TRIGGER", true);

msg = 'done';

}
else if (inputString == "close")
{

this.close();

}
else if (inputString == "stop")
{

this.setTimer(0.0);

}
else if (inputString == "start")
{

this.setTimer(10.0);

}
else if (inputString == "switch")
{

this.onTimer = onTimeout2;

}
else if (inputString == "time")
{

today = new Date();
msg = today.getSeconds() * 1000 + today.getMilliseconds();

}
else
{

msg = "unknown command: " + replace_crlf(inputString);

}

num_send = this.send(my_name + ': ' + msg + "\r\n");
return inputString.length;

},

onUnexpectedData: function (inputString) {

this.expectFramed("#", ";\r\n", 128);
msg = replace_crlf(inputString);

num_send = this.send(my_name + ': ' + msg + "?\r\n");

return true;

},
onTimer: onTimeout
};
}

148

DataMan Application Development

Generic use case: Heartbeat
Send out a periodic heartbeat message if reader is idle.

// Data Formatting:

var comm_handler = new Array(0);

// Converts read data to all upper case. Single code only.
function onResult (decodeResults, readerProperties, output) {

if (decodeResults[0].decoded) {

output.content = decodeResults[0].content+'\r\n';
for (var i = 0; i < comm_handler.length; i++)
{

comm_handler[i].resetHeartBeat();

}

}

}

// Communication:

// Heart beat example without disturbing the DMCC communication function CommHandler() {

var beat_timer = 10.0; // beat timer in sec
var peer_name;

return {

onConnect: function (peerName)

{

peer_name = peerName;
this.resetHeartBeat(); // initial timer
this.expectFramed("\0", "\0", 128); // some pattern
unlikely to happen
comm_handler.push(this); // register the handler for
results
// enable the handler for this connection:
return true;

},
onDisconnect: function ()
{

var index = comm_handler.indexOf(this)
comm_handler.splice(index, 1);

},
onError: function (errorMsg)
{

},
onExpectedData: function (inputString) {
return false;
},

onUnexpectedData: function (inputString) {
return false;
},

149

DataMan Application Development

onTimer: function () {

today = new Date();

var msg = today.getSeconds() * 1000 + today.getMilliseconds();
num_send = this.send(peer_name + ': time is: ' + msg + '\r\n');
this.resetHeartBeat(); // schedule next timer event [sec]
},

resetHeartBeat: function () {
this.setTimer(beat_timer); // schedule next timer event [sec]
}

};

}

Generic use case: Real time timestamp
Implements a custom DMCC command to set the real time (send current time in seconds starting Jan 1 1970, as output
by date +”%s” command). Prepend output with real time timestamp.

// communication script
var time_offset=0;

function CommHandler()
{

var peer_name;

return {

onConnect: function (peerName)
{

peer_name = peerName;
this.expectFramed("||;1>SET TIME.NOW ", "\r\n", 128); //
some pattern unlikely to happen
// enable the handler for this connection:
return true;

},
onDisconnect: function ()
{

},
onError: function (errorMsg)
{

},
onExpectedData: function (inputString) {

realTime = parseInt(inputString)*1000;
localTime = (new Date()).getTime();
time_offset = realTime - localTime;
this.send("||[0]\r\n");
return true;

},

150

DataMan Application Development

onUnexpectedData: function (inputString) {

return false;

},
onTimer: function () {
}
};

}

// data formatting script
function onResult (decodeResults, readerProperties, output)
{

var d = new Date();
var real = new Date(time_offset+d.getTime());

output.content = real.toString() + " " + decodeResults[0].content + "\r\n";

}

Customer Protocols implemented in various CR releases
Communication with cmf400 Profibus gateway

var CMF400_PROTOCOL_STATUS =
{

RUNNING: {value: 0, name: "Running"},
SYNCRONIZING: {value: 1, name: "Sync"},
CONFIGURING: {value: 2, name: "Config"},
STOPPED: {value: 3, name: "Stop"}

};
// make the enum non-modifyable
Object.freeze(CMF400_PROTOCOL_STATUS);

var cmf400_protocol_stx = '\x02'; // header
var cmf400_protocol_etx = '\x03'; // termination

// VT Parameter to be converted into script configuration constant values:
// "/Communication/Interfaces/COM1/Protocol")
var vt_param_comif_com1_protocol = 1;
// "/Communication/Protocols/CMF400/Profibus node number"), 3);
var vt_param_profibus_node_number = 1;
// "/Communication/Protocols/CMF400/Profibus mode"), 3);*/
var vt_param_profibus_mode = 1;

// TODO: how to configure parameter, where to store them with a out of stock firmware?
var cmf400_protocol_profibus_node_number = 1;

var cmf400_protocol_profibus_mode = 1;

var cmf400_protocol_test_diagnostic_enabled = 0;

var cmf400_protocol_test_diagnostic = 'TEST';

// Protocol strings
var cmf400_gateway_init = '+Gateway-Init+';
var cmf400_gateway_ident_ok = '+GW SOK TSICDPS';
var cmf400_gateway_ident_no = '+GW SNO TSICDPS';
var cmf400_gateway_run = '+GW-RUN+';
var cmf400_gateway_error = '+GW-ERR';

151

DataMan Application Development

// Formatting helper function
function zero_prefix(num, size)
{

var s = "000000000" + num;
return s.substr(s.length - size);

}

function CommHandler()
{

// The current protocol state
var cmf400_status = CMF400_PROTOCOL_STATUS.STOPPED;

function _configTimedOut()
{

if (cmf400_status == CMF400_PROTOCOL_STATUS_CONFIGURING)
{

cmf400_status = CMF400_PROTOCOL_STATUS_STOPPED;
this.setTimer(30.0);
onTimer = _onSync;

}

}

function _onSync()
{

if (cmf400_status == CMF400_PROTOCOL_STATUS.SYNCRONIZING)

{

this.send(cmf400_protocol_stx + cmf400_gateway_init +
cmf400_protocol_etx);
this.setTimer(1.0);
onTimer = _onSync;

}

}
function _onTimer()
{

if (cmf400_status == CMF400_PROTOCOL_STATUS.STOPPED)
{

cmf400_status = CMF400_PROTOCOL_STATUS.SYNCRONIZING;
return;

}

}

return {

onConnect: function (peerName)
{
expectFramed("", cmf400_protocol_etx, 510); //
is 510 an arbitrary limit?
cmf400_status = CMF400_PROTOCOL_
STATUS.SYNCRONIZING;
this.onTimer = _onSync;
this.setTimer(0.0001);
return true;

152

DataMan Application Development

},
onDisconnect: function ()
{

},
onExpectedData: function (inputData)
{

data = inputData.slice(1,inputData.length-1);
if (cmf400_status == CMF400_PROTOCOL_STATUS.SYNCRONIZING)
{

if (data == cmf400_gateway_ident_ok || data ==
cmf400_gateway_ident_no)
{

cmf400_status = CMF400_PROTOCOL_
STATUS.CONFIGURING;
var msg = cmf400_protocol_stx;

msg += "+GW S000 H000";
msg += " X" + zero_prefix(vt_param_
comif_com1_protocol, 3);
msg += " N" + zero_prefix(vt_param_
profibus_node_number, 3);
msg += " M" + zero_prefix(vt_param_
profibus_mode, 3);
msg += cmf400_protocol_etx;
this.send(msg);
this.onTimer = _configTimedOut;
this.setTimer(10.0);

}

}
if (data == cmf400_gateway_error)
{

cmf400_status = CMF400_PROTOCOL_
STATUS.STOPPED;
this.setTimer(30.0);
this.onTimer = _onTimer;

}
else if (data == cmf400_gateway_run) // missing check for
status, e.g. CMF400_PROTOCOL_STATUS.CONFIGURING?
{

cmf400_status = CMF400_PROTOCOL_STATUS.RUN;
this.setTimer(0);
this.onTimer = _onTimer;

}
return true;

},
onUnexpectedData: function (inputData)
{

// ignore all unexpected data
return true;

},
onTimer: _onSync

};

}

153

DataMan Application Development

function onResult (decodeResults, readerProperties, output)
{

//assuming single code
var content = cmf400_protocol_stx+decodeResults[0].content+cmf400_protocol_etx;
output.content = content;

}

Pass weight string input along with decode string

// the constructor:

var input_string = "";

function CommHandler()
{

// private properties and methods:

var num_trigger = 0;
var my_name;
var num_send = 99;

function privFunc ()
{
}

// public properties and methods:

return {

onConnect: function (peerName)
{

my_name = peerName;
num_send = this.send(my_name + ": connected\r\n");
num_send = this.expectFramed("\x02", "\x03", 128);
return true;

},
onDisconnect: function ()
{

},
onExpectedData: function (inputString) {
input_string = inputString;
return true;
},

onUnexpectedData: function (inputString) {
return true;
}

};

}

154

DataMan Application Development

//Empty data formatting entry point function
function onResult (decodeResults, readerProperties, output)
{

if (decodeResults[0].decoded)
{

output.content = input_string + decodeResults[0].content + "\r\n"
input_string = "";

}

}

FMPCS protocol

// This must be in the global scope, otherwise, it is undefined
var bConnected = false;

dmccSet('TRIGGER.TYPE', 0);
dmccSet('SYMBOL.4STATE-IMB', 1);
dmccSet('SYMBOL.DATAMATRIX', 1);
dmccSet('SYMBOL.I2O5', 1);
dmccSet('SYMBOL.PDF417', 1);
dmccSet('SYMBOL.POSTNET', 1);

function CommHandler()
{

var tray = "0000";
var speed = 0;

var package_id_expr = new RegExp("I([0-9]{9})");
var package_idtray_expr = new RegExp('^I([0-9]{9}),T([0-9]{4})');
var config_msg_expr = new RegExp('^CS([0-9]{3}),M([ab]),L([0-9]{4})$');

var ErrorToId = {

'Buffer Overflow': 101,
'Trigger Overrun': 102
};

return {

onConnect: function (peerName)
{

if(peerName == "COM1" || bConnected)
return false;
this.expectFramed("", "\r", 128);
this.send(dmccGet('DEVICE.FIRMWARE-VER').response +
',"Cognex ' + dmccGet('DEVICE.TYPE').response + '"\r\n');
this.send('Ha,"DataMan READY"\r\n');
bConnected = true;
return true; // activate this connection

},
onError: function (msg) // TODO: this is new!
{

155

DataMan Application Development

var errno = ErrorToId[msg];
if (!errno)
errno = 100;
this.send('E' + errno + ',"' + msg + '"\r\n');
},
// We delay sending the result until trigger off to be sure that the
package id is received.
setResult: function (decodeResults) {
storedDecodeResults = decodeResults;
},
onDisconnect: function ()
{

bConnected = false;
},

onExpectedData: function (input)
{

var input = input.replace(/\n/g, '');
switch(input.charAt(0).toUpperCase())

case 'B':

dmccCommand("TRIGGER", true);
break;

case 'E':

dmccCommand("TRIGGER", false);
break;

case 'I':

var match = package_idtray_
expr.exec(input);
if(!match)

match = package_id_
expr.exec(input);

packageID = match[1];
if(match[2])

tray = match[2];

else

tray = "0000";

break;

156

DataMan Application Development

case 'C':

var match = config_msg_expr.exec(input);
if (match.length == 4)
{

speed = parseInt(match[1], 10);
mode = match[2];
lengthLimit = parseInt(match[3],
10);

}
break;

case 'P':

this.send('Q\r\n');
break;

case 'Q':

// pong response, not used
break;

}
return true;

},
onUnexpectedData: function (input) {
return true;
}

};
}

The data formatting formats the result based on global variables set by the communication handler:

var packageID = "000000000"; // reset the package id
var mode = 'a';
var lengthLimit = 9999;

function getFixedPsocId(id_)
{

var id = id_;
switch (id.charAt(1))
{

case 'd':

id = "[D0";
break;

case 'X':

switch (id.charAt(2))
{

157

DataMan Application Development

case '0':
case '1':
id = "[P0";
break;
case '2':
case '3':
id = "[L0";
break;
case '5':
case '6':
case '7':
case '8':
case '9':
case 'A':
id = "[O0";
break;

}
break;

}
return id;

}
function onResult (decodeResults, readerProperties, output)
{

var my_decode_results = new Array();

for(var i = 0; i < decodeResults.length; i++)
{

if(!decodeResults[i].decoded)
continue;
switch (decodeResults[i].symbology.name)
{

case 'Interleaved 2 of 5':

// b=throw away 6 digit I2of5 ending in 9
if ((mode == 'b' && decodeResults
[i].content.length == 6 && decodeResults
[i].content.charAt(5) == '9'))

continue;

case 'Data Matrix':

if (decodeResults[i].content.length >
lengthLimit)

continue;

case 'PDF417':

if (decodeResults[i].content.length >
lengthLimit)

continue;

default:

my_decode_results.push(decodeResults[i]);

}

}

158

DataMan Application Development

var msg = 'D' + packageID + ',S,W,V';
if (my_decode_results.length == 0)
{

msg += ',?';
output.content = "no result";

}
else
{

for(var i = 0; i < my_decode_results.length; i++)
{

msg += ',' + getFixedPsocId(decodeResults
[i].symbology.id);

switch (my_decode_results[i].symbology.name)
{

case 'Data Matrix':
case 'PDF417':
msg += encode_base64(my_decode_results
[i].content);
break;
case 'POSTNET':
case 'PLANET':
case 'XYZ OneCode':
case 'Interleaved 2 of 5':
default:

msg += my_decode_results
[i].content;

}

}

}
packageID = "000000000"; // reset the package id
output.Telnet = output.Serial = msg + '\r\n';

}

Input match string, output from script (30x)

function CommHandler()
{

return {

onConnect: function (peerName)
{

this.expectFramed('\x02', '\x03', 256);
return true;

},
onDisconnect: function ()
{
},
onExpectedData: function (inputString) {

159

DataMan Application Development

if (inputString.length >= 11)
{

var new_match_string = inputString.substr(11,
inputString.length);
for (var i = 1; i <= 3; i++) {

dmccSet("DVALID.PROG-TARG", i);
dmccSet("DVALID.MATCH-STRING", new_match_
string);

}
// The following DMCC command resets all statistic values
// the CR reset only a view of them
dmccCommand("STATISTICS.RESET");

}
this.send("DEBUG: "+inputString + "\r\n");
return true;

},
onUnexpectedData: function (inputString) {

return true;

},
onTimer: function (inputString) {
}

};
}

Data formatting delegates output to communication handler objects

var comm_handler = new Array(0);

// Converts read data to all upper case. Single code only.
function onResult (decodeResults, readerProperties, output)
{

output.content = '';
output.SetupTool = decodeResults[0].content;
if (decodeResults[0].decoded) {

for (var i = 0; i < comm_handler.length; i++)
{
comm_handler[i].sendResultTelegram(decodeResults);

}

}

}

160

DataMan Application Development

// Parameter:
var system_id = '\x43'; // the system ID
var heartbeat_time_s = 5.0; // heartbeat timer in sec [0-50] (0 is disabled)
var append_crlf = true; // wether to

function CommHandler()
{

function getChecksum(data)
{

var sum = 0;
for(var i = 0; i < data.length; i++)
sum += data.charCodeAt(i);
return 0x7F - (sum % 0x7f);

}

var TelegramState = {

WAIT4CONTENT: {value: 0, name: "Wait For Content"},
CHECKSUM: {value: 1, name: "Header Received"}

};

var errorCodes = {

undef_index: 0x31,
multi_index: 0x32,
index_in_use: 0x33,
telegram_error: 0x34,
trigger_overrun: 0x40,
buffer_overflow: 0x41,

};

var filler = '#';
var separator = ',';

var telegram_types = {

heartbeat: {type: 'F', content: system_id+'\xf7'},
init_resp: {type: 'J', content: system_id},
};

// initialization: J
// index: S

var telegram;
var status;
var index;
var all_index = new Array();

return {

sendResultTelegram: function (decodeResults)
{

var data = system_id;
var length = 0;

161

DataMan Application Development

if (!index)
{

this.sendErrorTelegram(errorCodes.undef_index);

index = '9999';

}

data += index;
for (var i = 0; i < decodeResults.length; i++) {

length = decodeResults[i].content.length;
data += String.fromCharCode(length / 256, length % 256);

}

data += separator + filler;
length = 0;
for (var i = 0; i < decodeResults.length; i++) {

length += decodeResults[i].content.length;
data += decodeResults[i].content;

}
if (length & 0x1)

data += filler;

data += String.fromCharCode(getChecksum(data));
this.sendTelegram({type: system_id, content: data});

index = null; // invalidate the used index

},
sendErrorTelegram: function (errcode)
{

var errtel = {type: 'F', content: system_id+String.fromCharCode
(errcode)}

this.sendTelegram(errtel);

},
sendTelegram: function (telegram)
{

var data = telegram.type + telegram.content;
data = '\x02'+data+String.fromCharCode(getChecksum(data))+'\03';
this.send(data);
if (append_crlf)

this.send('\r\n');

},
checkTelegram: function(data, checksum)
{

var exp_checksum = getChecksum(data);
if (checksum != exp_checksum) {

this.sendErrorTelegram(errorCodes.telegram_error);

} else {

switch (data[0])
{

case 'I':

162

DataMan Application Development

this.sendTelegram(telegram_types.init_resp);

this.setTimer(0.0); // disable the
heartbeat timer
all_index = new Array(0);
break;
case 'S':
if (index) {

this.sendErrorTelegram(errorCodes.multi_index);

break;

}
index = data.substr(1, 4);
if (all_index.indexOf(index) >= 0)

this.sendErrorTelegram(errorCodes.index_in_use);

else

all_index.push(index);

break;

default:

break;

}

}

},

onConnect: function (peerName)
{

status = TelegramState.WAIT4CONTENT;
this.expectFramed('\x02', '\x03', 203);
this.setTimer(heartbeat_time_s);
index = null;
comm_handler.push(this);
all_index = new Array();
return true;

},
onDisconnect: function ()
{

var index = comm_handler.indexOf(this)
comm_handler.splice(index,1);

},

onExpectedData: function (inputString) {

switch (status)
{

case TelegramState.WAIT4CONTENT:

this.expectFramed('', '', 1); // actually, disable framing
telegram = inputString;
status = TelegramState.CHECKSUM;
break;

case TelegramState.CHECKSUM:

this.expectFramed('\x02', '\x03', 203); // enable framing
for the next telegram
this.checkTelegram(telegram, inputString.charCodeAt(0));
status = TelegramState.WAIT4CONTENT;
break;

163

DataMan Application Development

default:

throw("unknown state");

}
return true;

},
onUnexpectedData: function (inputString) {
this.expectFramed('\x02', '\x03', 203); // enable framing for the
next telegram
status = TelegramState.WAIT4CONTENT;
return true;

},
onTimer: function (inputString) {
this.sendTelegram(telegram_types.heartbeat);
this.setTimer(heartbeat_time_s);
}

};
}

Event Callback
The callback mechanism allows to register handler for trigger and input events. Handler for these events can be
registered by the registerHandler method:

callback_handle registerHandler(eventid, callback, ...)

The registerHandler function requires the following arguments:

o eventid – identifier for the event type to register for

o callback – function object to execute on event

Available events identifier are defined in a constant object named “Callback”. Optional arguments can be used to
configure the event, e.g. to filter the sensitivity.

A handle is returned that must be used to de-register the callback. To de-register the handler use the deregisterHandler
function:

deregisterHandler(callback_handle)

o callback_handle – handle returned by the registerHandler method.

It is possible to register the callback handler within the global scope, e.g. to be used in data formatting.

Event Types
Current available events that can be registered are “onInput” and “onTrigger” events.

onInput event: It calls the callback function on input signal and button changes. The optional third argument allows to set
filter for certain inputs. The object “ConstInput” defines masks for inputs:

o Input0:

o Input1:

o Input2:

o Input3:

o Input4:

164

DataMan Application Development

o Input5:

o Input6:

o InputAll

o BnTrig

o BnTune

The input mask can be combined. The input values are sampled with an accuracy of 1 ms. The callback function for the
onInput event has one argument for the new state of the input.

onTrigger event: It executes the callback function on trigger start and trigger end events. The callback function for the
onTrigger event has two arguments: The first argument is the trigger object, the second argument the boolean state of
the trigger, true for a trigger start and false for a trigger end.

Examples
The example defines three event handler:

l onInput0 – reacting on input0 signal and the switch button

l onInput1 – reacting on input1 signal

l onTrigger – reacting on trigger events

function CommHandler()
{

return {

onConnect: function (peerName)
{

this.peer = peerName;
this.input1 = registerHandler(Callback.onInput,
this.onInput0.bind(this),
ConstInput.Input0|ConstInput.BnTrig);
this.input2 = registerHandler(Callback.onInput,
this.onInput1.bind(this), ConstInput.Input1);
this.ontrigger = registerHandler(Callback.onTrigger,
this.onTrigger.bind(this));
return true;

},

onDisconnect: function ()
{

deregisterHandler(this.input1);
deregisterHandler(this.input2);
deregisterHandler(this.ontrigger);

},

onTrigger: function (trigger, state) {

if (state)

this.send("call onTrigger: started trigger with index " +
trigger.index + "\r\n");

else

this.send("call onTrigger: end trigger with index " +
trigger.index + "\r\n");

165

DataMan Application Development

},
onInput0: function (inputs) {

this.send("call onInput0 for '" + this.peer + ", inputs=" + inputs +
"\r\n");

},

onInput1: function (inputs) {

this.send("call onInput1 for '" + this.peer + ", inputs=" + inputs +
"\r\n");

}

};
}

With the following event sequence: input1 on, input0 on, input0 off, input1 off, software trigger, switch on, switch off, we
get the following output on the terminal:

call onInput1 for 'COM1, inputs=2
call onTrigger: start trigger with index 9
call onInput0 for 'COM1, inputs=1
call onTrigger: end trigger with index 9
call onInput0 for 'COM1, inputs=0
NO-READ
call onInput1 for 'COM1, inputs=0
call onTrigger: start trigger with index 10
NO-READ
call onTrigger: end trigger with index 10
call onInput0 for 'COM1, inputs=4096
call onTrigger: start trigger with index 11
call onInput0 for 'COM1, inputs=0
call onTrigger: end trigger with index 11
NO-READ

The following example registers a handler on Input1 events and stores the state in a global variable. The state of the
input is output by the data formatting.

var ginputs = false;

registerHandler(Callback.onInput, onInput, ConstInput.Input1);

// Default script for data formatting
function onResult (decodeResults, readerProperties, output)
{

output.content = "Input: "+ginputs+" \r\n";

}

function onInput(inputs)
{

ginputs = (inputs & ConstInput.Input1) ? true : false;

}

166

DataMan Application Development

	Legal Notices
	Table of Contents
	Symbols
	About This Manual
	Networking
	Connecting Your DataMan to the Network
	Connecting Your Corded DataMan Reader to the Network
	Connecting Your DataMan Intelligent Base Station to the Network
	Direct Connection to Your Computer

	Connecting Your Reader Across Subnets
	Connecting Your DataMan to the Network Wirelessly
	Troubleshooting a Network Connection

	Industrial Network Protocols
	EtherNet/IP
	DMCC
	Reader Configuration Code
	Setup Tool
	Getting Started
	Object Model
	Rockwell ControlLogix Examples
	Rockwell CompactLogix Examples

	SLMP Protocol
	DMCC
	Reader Configuration Code
	Setup Tool
	SLMP Protocol Scanner
	Getting Started
	Network Configuration
	Data Block Configuration
	Interface
	Examples

	ModbusTCP
	DMCC
	Reader Configuration Code
	Setup Tool
	Modbus TCP Handler
	Getting Started
	Network Configuration
	Data Block Configuration
	Interface
	Operation
	Examples

	PROFINET
	DMCC
	Reader Configuration Code
	Setup Tool
	Getting Started
	Modules
	Operation
	Siemens Examples

	Industrial Protocols for the Wireless DataMan
	Protocol Operation
	Ethernet Address
	PLC Triggering
	Soft Events
	DMCC

	Offline Buffering
	Status of Industrial Protocols

	DataMan Application Development
	DMCC Overview
	Command Syntax
	Command Header Syntax
	Header Examples

	DMCC Application Development
	DataMan SDK Contents
	Using the SDK
	Helper Utilities
	Using the Helper Utilities

	Script-Based Data Formatting
	DMCC Support

	Error Management
	Formatting Script

	Output
	Code Completion and Snippets
	Custom Communication Protocol API
	Event Callback
	Event Types
	Examples

