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Outline

Example use case 

Introduction to data plane programming 

P4 language
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Example Use Case: 
Paxos in the Network
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The Promise of  
Software Defined Networking

Increased “network programmability” allows  
ordinary programs to manage the network 

Applications can leverage SDNs to improve performance  
through data plane configuration (e.g., route selection and QoS) 

Can application logic be moved into the network? 

This work focuses on the widely-deployed Paxos protocol
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Why Paxos?

Paxos is a fundamental building block for distributed applications 

e.g., Chubby, OpenReplica, and Ceph 

There exists extensive work on optimizing Paxos (e.g., Fast Paxos) 

Paxos operations can be efficiently implemented in hardware
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Outline of This Talk
Motivation 

Paxos Background 

Consensus in the Network 

Paxos in SDN Switches (and required OpenFlow extensions) 

Alternative consensus protocol (without OpenFlow changes) 

Evaluation 

Conclusions
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Paxos Background

7



Paxos Protocol
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Fast Protocol
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Coordinator

Key idea: optimize for the case 
when proposals don’t collide 

Optimistically uses fast rounds 
that bypass coordinator  

Only 2 message hops 

Requires 1 more acceptor 

If there is collision,  
revert to Classic Paxos 

ProposerProposerProposer

AcceptorAcceptorAcceptor

LearnerLearner



Observations

Performance metric (hops) does not account for network topology 

1 “classic” message hop has to travel through multiple switches 

Coordinators and acceptors are typically bottlenecks 

Must aggregate or multiplex messages 

“Fault tolerance” does not include the network devices
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Moving Paxos  
into the Network
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Paxos on Network Devices
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ProposerProposerProposer

LearnerLearner

Coordinator

AcceptorAcceptorAcceptor

Key idea: Move coordinator  
and acceptor (phase 2)  
logic into switches 

OpenFlow API not sufficient



Required Extensions
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Required Extensions
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ProposerProposerProposer

LearnerLearner

Coordinator

AcceptorAcceptorAcceptor

1. Generate round  
and sequence numbers

2. Persistent storage  
3. Stateful comparisons 
4. Storage cleanup



Hardware Feasibility
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Requirement Device Capability

Round & Sequence 
Generator Netronome NFP-6xxx, 

NetFPGA, 
Arista 7124FX

Stateful flow processing

Stateful Comparisons

Persistent Storage

Arista 7124FX 50 GB SSD logging
Storage Cleanup



Consensus without  
OpenFlow Extensions
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Can We Avoid Extensions?
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ProposerProposerProposer

LearnerLearner

Coordinator

AcceptorAcceptorAcceptor

Make optimistic assumptions 
about message order 

Like Fast Paxos,  
have “fast” and classic rounds



No Sequence Numbers Needed
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ProposerProposerProposer

LearnerLearner

Serializer

AcceptorAcceptorAcceptor

Rely on optimistic message ordering 
Use switch to increase probability



No On-Device State Needed
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ProposerProposerProposer

LearnerLearner

Serializer

AcceptorAcceptorAcceptor

Use additional servers as storage



No On-Device Logic Needed
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ProposerProposerProposer

LearnerLearner

Serializer

MinionMinionMinion

No coordinator 
Acceptors always “accept” 
Need an additional “minion”

Minion



Performance Assumption
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ProposerProposerProposer

LearnerLearner

Serializer

MinionMinionMinion Minion

Messages from serializer to  
minion are in the same order 
If not, execute slow round



Correctness Assumption
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ProposerProposerProposer

LearnerLearner

Serializer

MinionMinionMinion Minion

Messages from minion to  
servers are in same order 
If not, protocol breaks



NetPaxos Summary

Latency: Fewer “true” network hops, including switches 

Throughput: Avoids potential bottlenecks, reduced logic 

Fault tolerance: Serializer can easily be made redundant,  
other devices can fail, as with Classic Paxos
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Evaluation
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Experiments

Focus on two questions: 

Do our ordering assumptions hold? 

What is the potential benefit of NetPaxos? 

Testbed: 

Three Pica8 Pronto 3290 switches, 1Gbps links 

Send messages of 1 MTU size, with sequence numbers
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Assumptions Mostly Hold
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High Potential for Performance
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Disclaimer: Best case scenario 

9x increase in throughput 

90% reduction in latency
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Outlook

Formalizing protocol with Spin model checker 

Implementing a NetFPGA-based prototype 

Investigating root causes for packet reordering
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Conclusions

SDNs enable tight integration with the network,  
which can improve distributed application performance 

Proposed two approaches to moving Paxos logic into the network 

Paxos is a fundamental protocol. Performance improvements 
would have a great impact on data center applications
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Introduction to  
Data Plane Programming
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SDN is Not Enough

SDN allows you to program the control plane 

Many large data centers program host network stacks 
(hypervisors), roughly edge-based SDN 

Not yet able to program the data plane
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Data Plane Opportunities

Simplify and improve network management 

Extensions for debugging and diagnostics 

Dynamic resource allocation 

Enable critical new features 

Improved robustness 

Port-knocking 

Load balancing, enhanced congestion control
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Suppressing Innovation

OpenFlow provides an (intentionally) limited interface 

No state 

No computation 

Restricted to a fixed set of headers 

May need to customize hardware support 

Match tables usually have fixed width, depth, and execution order

33



Demand for New Features

SDNs and white boxes  
set the stage 

Large private networks  
want new features 

Rate of new feature arrivals 
exceeds rate of hardware 
evolution
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Getting New Features

No DIY solution. Must work with vendors at the “feature” level 

Hard to get consensus on the feature 

Long time to realize the feature 

Need to buy the new hardware 

What you get is not usually what you want
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Extensions to OpenFlow

OpenState project, G. Bianchi et al.  

http://openstate-sdn.org 

Mealy machine abstraction 

ONF Working Groups 

EXT-WG focused on extensions 

FAWG focused on forwarding abstractions
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Vision

What about the next version of OpenFlow? Or custom protocol? 

We all know how to program CPUs 

Supporting tools and infrastructure 

Allows fast iteration and differentiation 

Let’s you quickly realize your own ideas 

Challenge: How can we replicate this in the network?
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Networking is  
Late to the Game

38

Domain Target Hardware Language

Computers CPU C, Java, OCaml, 
JavaScript, etc.

Graphics GPU CUDA, OpenCL

Cellular Base 
Station DSP C, MATLAB, Data 

Flow languages

Networks ? ?



Two Questions

What do we need at the hardware level? 

Once we have that, how do we program it?
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Hardware Trend

PISA (Protocol Independent Switch Architecture) 

Fundamental departure from switch ASICS 

Programmable parsing 

Protocol independence (i.e., generic match-action units) 

Parallelism across multiple match-action units, and within 
each stage 

Power, size, or cost penalty is negligible
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Why Now?

I/O, memory, and bus  
dominate chip size 

Logic is getting proportionally 
smaller 

Programmability means larger 
logic. The rest stays the same. 

Very little power, area, or 
performance penalty for 
programmability.
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PISA Chip
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PISA Chip
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PISA Chip
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PISA Chip
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Key Players
Hardware manufacturers 

Proto-PISA chips already available: FlexPipe (Intel) and others (Cisco 
and Cavium) 

Full-fledged PISA chips on the horizon (Barefoot) 

High-level language 

P4 (p4.org) 

Compiler and development tools 

“Hour-glass design” with IR, profilers, debuggers
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Abstract Forwarding Model
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Abstract)Forwarding)Model)
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P4 Language Components
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P4)language)components)

Parser)
Program)

Control)Flow)

StateQmachine;44
Field4extrac:on4

Table4lookup4and4update;4
Field4manipula:on;44
Control4flow4

Field4assembly4

No:4memory4(pointers),4loops,4recursion,4floa:ng4point4

Match)Tables)
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Assembly)
(“deparser”))
Program)
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P4 Examples

Header Fields 

Parsing 

Tables 

Actions 

Control Flow
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Header Field and Parsing
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Header)Fields)and)Parsing)

header_type ethernet_t {
    fields {
        dstAddr : 48;
        srcAddr : 48;
        etherType : 16;
    }
}

parser parse_ethernet {
  extract(ethernet);
  return select(latest.etherType) {
    0x8100 : parse_vlan;
    0x800  : parse_ipv4;
    0x86DD : parse_ipv6;
  }
}

TCP4 New4

IPv44 IPv64

VLAN4Eth4Eth4
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Table (Match)
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Match)

table ipv4_lpm 
{    

reads {
        ipv4.dstAddr : lpm;
   }
   actions {
        set_next_hop;
        drop;    

}
}

ipv4.dstAddr) ac:on)

0.*4 drop

10.0.0.*4 set_next_hop

224.*4 drop

192.168.*4 drop

10.0.1.*4 set_next_hop

Lookup4key4
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Actions
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Ac:ons)

action set_next_hop(nhop_ipv4_addr, port) 
{    

modify_field(metadata.nhop_ipv4_addr, nhop_ipv4_addr);    
modify_field(standard_metadata.egress_port, port);    
add_to_field(ipv4.ttl, -1);

}

nhop_ipv4_addr) port)

10.0.0.104 14

10.0.1.104 24

ipv4.dstAddr) ac:on)

0.*4 drop

10.0.0.*4 set_next_hop

224.*4 drop

192.168.*4 drop

10.0.1.*4 set_next_hop
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Control Flow
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Control)Flow)

control ingress 
{
    apply(port);
    if (valid(vlan_tag[0])) {
        apply(port_vlan);
    }
    apply (bridge_domain);
    if (valid(mpls_bos)) {
        apply(mpls_label);
    }
    retrieve_tunnel_vni();
    if (valid(vxlan) or valid(genv) or valid(nvgre))  
    {
        apply(dest_vtep);
        apply(src_vtep);
    }
}

Match444444
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Match444444
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Match444444
Ac:on4

Match444444
Ac:on4

Match444444
Ac:on4

Match444444
Ac:on4
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Compilation
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Compiler4

Parser4Program4 Control4Flow4Match4Tables4+4
Ac:ons4

PISA4
Chip4
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Protocol API
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My4(running)4switch4

MPLS4(source)4

Forwarding)

Table4Popula:on4
MPLSQTE4

PISA4
Chip4

Linux4
Switch4Driver4

Switch4Run:me4API4

Table4Popula:on4

MPLSQTE4

Forwarding)

Add/delete4

Switch4Program4API4

Program4

Parser)
Program) Control)Flow)Match)Tables)
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Compiler4
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