
Dataplane Programming

1

Outline

Example use case

Introduction to data plane programming

P4 language

2

Example Use Case:
Paxos in the Network

3

The Promise of  
Software Defined Networking

Increased “network programmability” allows  
ordinary programs to manage the network

Applications can leverage SDNs to improve performance  
through data plane configuration (e.g., route selection and QoS)

Can application logic be moved into the network?

This work focuses on the widely-deployed Paxos protocol

4

Why Paxos?

Paxos is a fundamental building block for distributed applications

e.g., Chubby, OpenReplica, and Ceph

There exists extensive work on optimizing Paxos (e.g., Fast Paxos)

Paxos operations can be efficiently implemented in hardware

5

Outline of This Talk
Motivation

Paxos Background

Consensus in the Network

Paxos in SDN Switches (and required OpenFlow extensions)

Alternative consensus protocol (without OpenFlow changes)

Evaluation

Conclusions

6

Paxos Background

7

Paxos Protocol

8

Coordinator

Goal: Have a group of
participants agree on one
result (i.e., consensus)

Protocol proceeds in rounds,
each round has two phases

Performance is measured  
in message hops

Classic Paxos requires 3 hops

ProposerProposerProposer

AcceptorAcceptorAcceptor

LearnerLearner

Paxos Protocol

8

Coordinator

Goal: Have a group of
participants agree on one
result (i.e., consensus)

Protocol proceeds in rounds,
each round has two phases

Performance is measured  
in message hops

Classic Paxos requires 3 hops

ProposerProposerProposer

AcceptorAcceptorAcceptor

LearnerLearner

Issues  
requests

Paxos Protocol

8

Coordinator

Goal: Have a group of
participants agree on one
result (i.e., consensus)

Protocol proceeds in rounds,
each round has two phases

Performance is measured  
in message hops

Classic Paxos requires 3 hops

ProposerProposerProposer

AcceptorAcceptorAcceptor

LearnerLearner

Paxos Protocol

8

CoordinatorAdvocates
requests

Goal: Have a group of
participants agree on one
result (i.e., consensus)

Protocol proceeds in rounds,
each round has two phases

Performance is measured  
in message hops

Classic Paxos requires 3 hops

ProposerProposerProposer

AcceptorAcceptorAcceptor

LearnerLearner

Paxos Protocol

8

Coordinator

Goal: Have a group of
participants agree on one
result (i.e., consensus)

Protocol proceeds in rounds,
each round has two phases

Performance is measured  
in message hops

Classic Paxos requires 3 hops

ProposerProposerProposer

AcceptorAcceptorAcceptor

LearnerLearner

Paxos Protocol

8

Coordinator

Goal: Have a group of
participants agree on one
result (i.e., consensus)

Protocol proceeds in rounds,
each round has two phases

Performance is measured  
in message hops

Classic Paxos requires 3 hops

ProposerProposerProposer

AcceptorAcceptorAcceptor

LearnerLearner

Chooses
a value / provides

memory

Paxos Protocol

8

Coordinator

Goal: Have a group of
participants agree on one
result (i.e., consensus)

Protocol proceeds in rounds,
each round has two phases

Performance is measured  
in message hops

Classic Paxos requires 3 hops

ProposerProposerProposer

AcceptorAcceptorAcceptor

LearnerLearner

Paxos Protocol

8

Coordinator

Goal: Have a group of
participants agree on one
result (i.e., consensus)

Protocol proceeds in rounds,
each round has two phases

Performance is measured  
in message hops

Classic Paxos requires 3 hops

ProposerProposerProposer

AcceptorAcceptorAcceptor

LearnerLearner
Provides

replication

Paxos Protocol

8

Coordinator

Goal: Have a group of
participants agree on one
result (i.e., consensus)

Protocol proceeds in rounds,
each round has two phases

Performance is measured  
in message hops

Classic Paxos requires 3 hops

ProposerProposerProposer

AcceptorAcceptorAcceptor

LearnerLearner

Fast Protocol

9

Coordinator

Key idea: optimize for the case
when proposals don’t collide

Optimistically uses fast rounds
that bypass coordinator

Only 2 message hops

Requires 1 more acceptor

If there is collision,  
revert to Classic Paxos

ProposerProposerProposer

AcceptorAcceptorAcceptor

LearnerLearner

Observations

Performance metric (hops) does not account for network topology

1 “classic” message hop has to travel through multiple switches

Coordinators and acceptors are typically bottlenecks

Must aggregate or multiplex messages

“Fault tolerance” does not include the network devices

10

Moving Paxos  
into the Network

11

Paxos on Network Devices

12

ProposerProposerProposer

LearnerLearner

Coordinator

AcceptorAcceptorAcceptor

Key idea: Move coordinator  
and acceptor (phase 2)  
logic into switches

OpenFlow API not sufficient

Required Extensions

13

ProposerProposerProposer

LearnerLearner

Coordinator

AcceptorAcceptorAcceptor

Required Extensions

13

ProposerProposerProposer

LearnerLearner

Coordinator

AcceptorAcceptorAcceptor

1. Generate round  
and sequence numbers

Required Extensions

13

ProposerProposerProposer

LearnerLearner

Coordinator

AcceptorAcceptorAcceptor

1. Generate round  
and sequence numbers

2. Persistent storage
3. Stateful comparisons
4. Storage cleanup

Hardware Feasibility

14

Requirement Device Capability

Round & Sequence
Generator Netronome NFP-6xxx,

NetFPGA,
Arista 7124FX

Stateful flow processing

Stateful Comparisons

Persistent Storage

Arista 7124FX 50 GB SSD logging
Storage Cleanup

Consensus without  
OpenFlow Extensions

15

Can We Avoid Extensions?

16

ProposerProposerProposer

LearnerLearner

Coordinator

AcceptorAcceptorAcceptor

Make optimistic assumptions
about message order

Like Fast Paxos,  
have “fast” and classic rounds

No Sequence Numbers Needed

17

ProposerProposerProposer

LearnerLearner

Serializer

AcceptorAcceptorAcceptor

Rely on optimistic message ordering
Use switch to increase probability

No On-Device State Needed

18

ProposerProposerProposer

LearnerLearner

Serializer

AcceptorAcceptorAcceptor

Use additional servers as storage

No On-Device Logic Needed

19

ProposerProposerProposer

LearnerLearner

Serializer

MinionMinionMinion

No coordinator
Acceptors always “accept”
Need an additional “minion”

Minion

Performance Assumption

20

ProposerProposerProposer

LearnerLearner

Serializer

MinionMinionMinion Minion

Messages from serializer to  
minion are in the same order
If not, execute slow round

Correctness Assumption

21

ProposerProposerProposer

LearnerLearner

Serializer

MinionMinionMinion Minion

Messages from minion to  
servers are in same order
If not, protocol breaks

NetPaxos Summary

Latency: Fewer “true” network hops, including switches

Throughput: Avoids potential bottlenecks, reduced logic

Fault tolerance: Serializer can easily be made redundant,  
other devices can fail, as with Classic Paxos

22

Evaluation

23

Experiments

Focus on two questions:

Do our ordering assumptions hold?

What is the potential benefit of NetPaxos?

Testbed:

Three Pica8 Pronto 3290 switches, 1Gbps links

Send messages of 1 MTU size, with sequence numbers

24

Assumptions Mostly Hold

25

0.
00

0.
10

0.
20

0.
30

Messages / Second

Pe
rc

en
ta

ge
 o

f P
ac

ke
ts

 R
es

ul
tin

g
in

 D
is

ag
re

em
en

t o
r I

nd
ec

is
io

n

10,000 30,000 50,000

Indecisive
Disagree

Performance assumption held  
up to 70% link capacity

Correctness assumption was
never violated

Traffic should not be bursty

High Potential for Performance

26

Disclaimer: Best case scenario

9x increase in throughput

90% reduction in latency

0.
5

1.
5

2.
5

3.
5

Messages / Second

La
te

nc
y

(m
s)

10,000 30,000 50,000

Basic Paxos
NetPaxos

Outlook

Formalizing protocol with Spin model checker

Implementing a NetFPGA-based prototype

Investigating root causes for packet reordering

27

Conclusions

SDNs enable tight integration with the network,  
which can improve distributed application performance

Proposed two approaches to moving Paxos logic into the network

Paxos is a fundamental protocol. Performance improvements
would have a great impact on data center applications

28

29

Introduction to  
Data Plane Programming

30

SDN is Not Enough

SDN allows you to program the control plane

Many large data centers program host network stacks
(hypervisors), roughly edge-based SDN

Not yet able to program the data plane

31

 
Data Plane Opportunities

Simplify and improve network management

Extensions for debugging and diagnostics

Dynamic resource allocation

Enable critical new features

Improved robustness

Port-knocking

Load balancing, enhanced congestion control

32

Suppressing Innovation

OpenFlow provides an (intentionally) limited interface

No state

No computation

Restricted to a fixed set of headers

May need to customize hardware support

Match tables usually have fixed width, depth, and execution order

33

Demand for New Features

SDNs and white boxes  
set the stage

Large private networks  
want new features

Rate of new feature arrivals
exceeds rate of hardware
evolution

34

Getting New Features

No DIY solution. Must work with vendors at the “feature” level

Hard to get consensus on the feature

Long time to realize the feature

Need to buy the new hardware

What you get is not usually what you want

35

Extensions to OpenFlow

OpenState project, G. Bianchi et al.

http://openstate-sdn.org

Mealy machine abstraction

ONF Working Groups

EXT-WG focused on extensions

FAWG focused on forwarding abstractions

36

Vision

What about the next version of OpenFlow? Or custom protocol?

We all know how to program CPUs

Supporting tools and infrastructure

Allows fast iteration and differentiation

Let’s you quickly realize your own ideas

Challenge: How can we replicate this in the network?

37

Networking is  
Late to the Game

38

Domain Target Hardware Language

Computers CPU C, Java, OCaml,
JavaScript, etc.

Graphics GPU CUDA, OpenCL

Cellular Base 
Station DSP C, MATLAB, Data

Flow languages

Networks ? ?

Two Questions

What do we need at the hardware level?

Once we have that, how do we program it?

39

Hardware Trend

PISA (Protocol Independent Switch Architecture)

Fundamental departure from switch ASICS

Programmable parsing

Protocol independence (i.e., generic match-action units)

Parallelism across multiple match-action units, and within 
each stage

Power, size, or cost penalty is negligible

40

Why Now?

I/O, memory, and bus  
dominate chip size

Logic is getting proportionally
smaller

Programmability means larger
logic. The rest stays the same.

Very little power, area, or
performance penalty for
programmability.

41

PISA Chip

42

Logical4Dataplane4View4

Switch4Pipeline4

PISA)Chip)

Queues4

Pa
rs
er
4

Fi
xe
d4
Ac
:o

n4

M
at
ch
4T
ab
le
4

M
at
ch
4T
ab
le
4

M
at
ch
4T
ab
le
4

M
at
ch
4T
ab
le
4

L24
IPv44

IPv64
ACL4

Ac
:o

n4
M
ac
ro
4

Ac
:o

n4
M
ac
ro
4

Ac
:o

n4
M
ac
ro
4

Ac
:o

n4
M
ac
ro
4

84

PISA Chip

43

M
at
ch
4T
ab
le
4

Ac
:o

n4
M
ac
ro
4

Mapping)Logical)Dataplane)Design)to)
PISA)Chip)

Queues4

Pa
rs
er
4

M
at
ch
4T
ab
le
4

M
at
ch
4T
ab
le
4

M
at
ch
4T
ab
le
4

L2
4T
ab
le
4

IP
v4
4T
ab
le
4

IP
v6
4T
ab
le
4

AC
L4
Ta
bl
e4

Ac
:o

n4
M
ac
ro
4

Ac
:o

n4
M
ac
ro
4

Ac
:o

n4
M
ac
ro
4

L24
IPv44

IPv64
ACL4

Logical4Dataplane4View4

Switch4Pipeline4

L24

IPv64
ACL4

IPv44
L2
4A
c:
on

4M
ac
ro
4

v4
4A
c:
on

4M
ac
ro
4

v6
4A
c:
on

44

AC
L4
Ac
:o

n4
M
ac
ro
4

94

PISA Chip

44

Logical4Dataplane4View4

Switch4Pipeline4

ReMconfigurability)

Queues4

Pa
rs
er
4

L2
4T
ab
le
4

IP
v4
4T
ab
le
4

AC
L4
Ta
bl
e4

IP
v6
4T
ab
le
4

M
yE
nc
ap
4

L24
IPv44

IPv64
ACL4

MyEncap4

L2
4A
c:
on

4M
ac
ro
4

v4
4A
c:
on

4M
ac
ro
4

AC
L4
Ac
:o

n4
M
ac
ro
4

Ac
:o

n4

MyEncap4

v6
4A
c:
on

4M
ac
ro
4

IP
v4
4

Ac
:o

n4

IP
v4
4

Ac
:o

n4

104

IP
v6
4

Ac
:o

n4

IPv64

PISA Chip

45

Pa
rs
er
4

L2
4T
ab
le
4

IP
v4
4T
ab
le
4

IP
v6
4T
ab
le
4

AC
L4
Ta
bl
e4

Match4
Memory4

Ac:on4
ALU4

PISA)(Protocol4Independent4Switch4Architecture)4
Q  Parallelism4across4pipelined4stages4
Q  Parallelism4within4each4stage4

L2
4A
c:
on

4M
ac
ro
4

v4
4A
c:
on

4M
ac
ro
4

v6
4A
c:
on

4M
ac
ro
4

AC
L4
Ac
:o

n4
M
ac
ro
4

114

Key Players
Hardware manufacturers

Proto-PISA chips already available: FlexPipe (Intel) and others (Cisco
and Cavium)

Full-fledged PISA chips on the horizon (Barefoot)

High-level language

P4 (p4.org)

Compiler and development tools

“Hour-glass design” with IR, profilers, debuggers

46

http://p4.org

Abstract Forwarding Model

47

Abstract)Forwarding)Model)

Parser4

Match444444
Ac:on4

Match444444
Ac:on4

Match444444
Ac:on4

Match444444
Ac:on4

Match444444
Ac:on4

Match444444
Ac:on4

Match444444
Ac:on4

Match444444
Ac:on4

Match444444
Ac:on4

Ingress4Stages4 Egress4Stages4Hdr4
Fields4

Queues4

244

TCP4

IPv44 IPv64

VLAN4Eth4

P4 Language Components

48

P4)language)components)

Parser)
Program)

Control)Flow)

StateQmachine;44
Field4extrac:on4

Table4lookup4and4update;4
Field4manipula:on;44
Control4flow4

Field4assembly4

No:4memory4(pointers),4loops,4recursion,4floa:ng4point4

Match)Tables)
+)Ac:ons)

Assembly)
(“deparser”))
Program)

254

P4 Examples

Header Fields

Parsing

Tables

Actions

Control Flow

49

Header Field and Parsing

50

Header)Fields)and)Parsing)

header_type ethernet_t {
 fields {
 dstAddr : 48;
 srcAddr : 48;
 etherType : 16;
 }
}

parser parse_ethernet {
 extract(ethernet);
 return select(latest.etherType) {
 0x8100 : parse_vlan;
 0x800 : parse_ipv4;
 0x86DD : parse_ipv6;
 }
}

TCP4 New4

IPv44 IPv64

VLAN4Eth4Eth4

274

Table (Match)

51

Match)

table ipv4_lpm
{

reads {
 ipv4.dstAddr : lpm;
 }
 actions {
 set_next_hop;
 drop;

}
}

ipv4.dstAddr) ac:on)

0.*4 drop

10.0.0.*4 set_next_hop

224.*4 drop

192.168.*4 drop

10.0.1.*4 set_next_hop

Lookup4key4

284

Actions

52

Ac:ons)

action set_next_hop(nhop_ipv4_addr, port)
{

modify_field(metadata.nhop_ipv4_addr, nhop_ipv4_addr);
modify_field(standard_metadata.egress_port, port);
add_to_field(ipv4.ttl, -1);

}

nhop_ipv4_addr) port)

10.0.0.104 14

10.0.1.104 24

ipv4.dstAddr) ac:on)

0.*4 drop

10.0.0.*4 set_next_hop

224.*4 drop

192.168.*4 drop

10.0.1.*4 set_next_hop

294

Control Flow

53

Control)Flow)

control ingress
{
 apply(port);
 if (valid(vlan_tag[0])) {
 apply(port_vlan);
 }
 apply (bridge_domain);
 if (valid(mpls_bos)) {
 apply(mpls_label);
 }
 retrieve_tunnel_vni();
 if (valid(vxlan) or valid(genv) or valid(nvgre))  
 {
 apply(dest_vtep);
 apply(src_vtep);
 }
}

Match444444
Ac:on4

Match444444
Ac:on4

Match444444
Ac:on4

Match444444
Ac:on4

Match444444
Ac:on4

Match444444
Ac:on4

304

Compilation

54

Compiler4

Parser4Program4 Control4Flow4Match4Tables4+4
Ac:ons4

PISA4
Chip4

314

Protocol API

55

My4(running)4switch4

MPLS4(source)4

Forwarding)

Table4Popula:on4
MPLSQTE4

PISA4
Chip4

Linux4
Switch4Driver4

Switch4Run:me4API4

Table4Popula:on4

MPLSQTE4

Forwarding)

Add/delete4

Switch4Program4API4

Program4

Parser)
Program) Control)Flow)Match)Tables)

+)Ac:ons)

Compiler4

56

