
Datasize-Aware High Dimensional Configurations
Auto-Tuning of In-Memory Cluster Computing

Zhibin Yu
Shenzhen Institute of Advanced

Technology, CAS
Shenzhen, China
zb.yu@siat.ac.cn

Zhendong Bei
Shenzhen Institute of Advanced

Technology, CAS
Shenzhen, China
zd.bei@siat.ac.cn

Xuehai Qian
University of Southern California

Los Angeles, California
xuehai.qian@usc.edu

Abstract
In-Memory cluster Computing (IMC) frameworks (e.g., Spark)
have become increasingly important because they typically
achievemore than 10× speedups over the traditional On-Disk
cluster Computing (ODC) frameworks for iterative and in-
teractive applications. Like ODC, IMC frameworks typically
run the same given programs repeatedly on a given cluster
with similar input dataset size each time. It is challenging to
build performance model for IMC program because: 1) the
performance of IMC programs is more sensitive to the size
of input dataset, which is known to be difficult to be incorpo-
rated into a performance model due to its complex effects on
performance; 2) the number of performance-critical configu-
ration parameters in IMC is much larger than ODC (more
than 40 vs. around 10), the high dimensionality requires more
sophisticated models to achieve high accuracy.
To address this challenge, we propose DAC, a datasize-

aware auto-tuning approach to efficiently identify the high
dimensional configuration for a given IMCprogram to achieve
optimal performance on a given cluster. DAC is a significant
advance over the state-of-the-art because it can take the size
of input dataset and 41 configuration parameters as the pa-
rameters of the performance model for a given IMC program,
— unprecedented in previous work. It is made possible by two
key techniques: 1) Hierarchical Modeling (HM), which com-
bines a number of individual sub-models in a hierarchical
manner; 2)Genetic Algorithm (GA) is employed to search the
optimal configuration. To evaluate DAC, we use six typical
Spark programs, each with five different input dataset sizes.
The evaluation results show that DAC improves the perfor-
mance of six typical Spark programs, each with five different
input dataset sizes compared to default configurations by a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA
© 2018 Association for Computing Machinery.
ACM ISBN ISBN 978-1-4503-4911-6/18/03. . . $15.00
https://doi.org/http://dx.doi.org/10.1145/3173162.3173187

factor of 30.4× on average and up to 89×. We also report that
the geometric mean speedups of DAC over configurations
by default, expert, and RFHOC are 15.4×, 2.3×, and 1.5×,
respectively.

CCS Concepts • Computer systems organization →
Cluster architectures; • Software→ In-memory comput-
ing;

Keywords Big data, In-memory computing, Performance
tuning

ACM Reference Format:
Zhibin Yu, Zhendong Bei, and Xuehai Qian. 2018. Datasize-Aware
High Dimensional Configurations Auto-Tuning of In-Memory Clus-
ter Computing. In Proceedings of 2018 Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS’18). ACM,
New York, NY, USA, 14 pages. https://doi.org/http://dx.doi.org/10.
1145/3173162.3173187

1 Introduction
Recently, In-Memory cluster Computing (IMC) frameworks
such as Spark [41, 59] achievemuch higher performance than
traditional On-Disk cluster Computing (ODC), e.g., MapRe-
duce/Hadoop [7, 45] and Dryad [17], for iterative and in-
teractive applications. As a result, IMC has become increas-
ingly popular in the past few years. A survey from Typesafe
Inc. [47] shows that more than 500 organizations, including
big companies such as Google and many more small compa-
nies, use Spark in production as of early 2015. Spark has been
used in a wide range of domains including machine learn-
ing [30], graph computing [51], streaming computing [44],
and database management [3].
Typically, an IMC program runs repeatedly with similar

input dataset sizes. For example, the e-companies on Taobao
need to sort their products according to the saleroom every
day or every week [36]. In this scenario, the input dataset
size of different runs of the same program is almost the same
because it is determined by the total number of the sorted
products of an e-company. Depending on e-companies, the
data content may be significantly different. We call this kind
of programs as periodic (daily, weekly, and etc.) long jobs [36].
To achieve optimal performance of periodic long jobs,

the end users are required to determine a large number of
performance-critical configuration parameters. We consider

https://doi.org/http://dx.doi.org/10.1145/3173162.3173187
https://doi.org/http://dx.doi.org/10.1145/3173162.3173187
https://doi.org/http://dx.doi.org/10.1145/3173162.3173187

the key challenge as the high dimensional configuration is-
sue. For example, the performance of a Spark program can
be determined by more than 40 configuration parameters
such as spark.executor.cores, which specifies the num-
ber of cores, and spark.executor.memory, which specifies
the amount of memory used by the job, with nonlinear in-
teractions. As a result, manually tuning the configuration
parameters of a given IMC program to achieve the opti-
mal performance on a given cluster is extremely difficult. It
strongly motivates an auto-tuning approach to automatically
generate configuration parameters.
Due to the number of configuration parameters, naively

running a program with all configurations and choosing the
one with the best performance is not feasible because of:
1) the huge number of parameter combinations; and 2) the
long accumulative running time, — the execution of each
IMC program may take several minitues to hours. To over-
come the challenge, performance models are investigated to
predict the execution time of a program with a given config-
uration, making the configuration search dramatically faster
than the naive approach. Currently, this approach is widely
used to tune the performance of ODC programs [4, 5, 10, 12–
14, 19, 25, 48], and traditional distributed systems [35, 37].
The key is that the performance models must be highly accu-
rate with tolerable overhead in a certain environment such
as ODC or HPC. Otherwise, the optimal performance can
not be achieved.
To tune the performance of IMC program, a straightfor-

ward solution is to follow the same approach and apply the
existing performance models. However, two factors make
it not as trivial as expected: 1) the performance of IMC pro-
grams is more sensitive to the size of input dataset, which is
known to be difficult to be incorporated into a performance
model due to its complex effects on performance [52]; 2) the
number of performance-critical configuration parameters
in IMC is much larger than ODC (more than 40 vs. around
10) [13], the high dimensionality requires more sophisticated
models to achieve high accuracy. Due to the combination of
the two factors, building an accurate performance model for
IMC programs is quite challenging. This observation is sup-
ported by recent works. For example, [35] builds its model
with a large number of parameters (e.g., 27) but without
considering input dataset size. In contrast, [49][57] take in-
put dataset size as a parameter of their performance model
but they only consider 15 and 4 configuration parameters,
respectively.
To overcome the challenge, this paper proposes DAC, a

datasize-aware auto-tuning approach, that efficiently identi-
fies the optimal high dimensional configuration parameters
for IMC programs. DAC is a significant advance over the
state-of-the-art because it can take the size of input dataset
and 41 configuration parameters as the parameters of the
performance model for a given IMC program, — unprece-
dented in previous work. It is made possible by two key

techniques: 1) Hierarchical Modeling (HM), which combines
a number of individual sub-models in a hierarchical man-
ner. It is more practical to construct an accurate model by
combining multiple simpler sub-models than building an
accurate sophisticated large model. HM is performed recur-
sively, producing first-, second-, or higher-order hierarchical
models. 2) Genetic Algorithm (GA) is employed to search
the optimal configuration. While data skew may affect the
performance of an IMC program, we do not consider it in
this paper for a practical reason: the configuration parame-
ters of current IMC frameworks can only specify the same
settings for all tasks. In another word, a parameter related to
data skew cannot be conveyed in the configuration to affect
execution.

To evaluate DAC, we use six typical Spark programs, each
with five different input dataset sizes. The results show that
DAC improves the performance of all 30 executions com-
pared to default configurations by a factor of 30.4× on aver-
age and up to 89×. To compare with the configurations gen-
erated by DAC to auto-tuning approaches for ODC programs,
we reimplement RFHOC [4], the state-of-the-art approach, in
the context of Spark. We demonstrate that DAC significantly
outperforms RFHOC by a geometric mean speedup of 1.5×,
and even configurations determined by an expert by 2.3×
(geometric mean speedup).

The rest of the paper is organized as follows. Section 2
discusses the background and motivation. Section 3 explains
the DAC methodology. Section 4 describes our experimental
setup. Section 5 presents the results and analysis. Section 6
discusses the related work and Section 7 concludes the paper.

2 Background and Motivation
2.1 The Spark Framework
Spark [41] is a MapReduce-like IMC framework with APIs
in Scala, Java, and libraries for streaming, graph process-
ing, and machine learning [41], which can not be efficiently
processed by the traditional MapReduce ODC frameworks
such as Hadoop [45]. The key is that Spark employs a data
structure called Resilient Distributed Datasets (RDDs) [59] to
keep reusable intermediate results in memory. In fact, RDD
is an abstraction of cluster memory and allows users to ex-
plicitly control the partitioning to optimize data placement,
as well as manipulate it by a set of operators such as map and
hash-join.
As shown in Figure 1, the Spark framework generates a

DAG (directed acyclic graph) based on the codes of a Spark
application (job) when it is submitted. Subsequently, the
DAG is split into a collection of stages (e.g., stage1 and
stage2) with each containing a set of parallel tasks. Each
task, one per RDD partition (shown as p in the figure), com-
putes partial results of a Spark job. One Spark job may have
a number of stages, each of which may depend on other
stages [20]. This dependency is called lineage stored in a

p

p

p

p

p

p

p

p

Stage1

Stage2

p

p

Generate DAG and stages

p

p p

p

Stage3

p p

p

Executor Memory

Spark Memory
Spark.memory.fraction

0.75 or 75%

Storage Memory

Execution Memory

User Memory
1-Spark.memory.fraction

1-0.75=0.25 or 25%

Reserved

Memory

Running on cluster

…

Worker
Executor

BlockManager

p

p

p

task

task

task

Worker
Executor

BlockManager

p

p

p

task

task

task

Figure 1. An Overview of Spark Workflow.
RDD. Next, the DAG scheduler schedules the stages to ex-
ecute by a number of executors, as shown in Figure 1. The
resources can be used by an executor are specified by config-
uration parameters. For example, spark.executor.memory
specifies the memory size allocated for an executor. This
block of memory is further divided into execution memory,
user memory, and reserved memory (e.g., 300 MB) and their
sizes are controlled by spark.memory.fraction [32].
In summary, a Spark job is controlled by up to 160 con-

figuration parameters. They specify fourteen aspects in-
cluding application, runtime environment, shuffle behavior,
data serialization, memory management, execution behavior,
networking, Spark UI, scheduling, dynamic allocation, secu-
rity, encryption, sparkstreaming, and sparkR. Some parame-
ters such as spark.application.name do not affect perfor-
mance at all while others such as spark.executor.cores
and spark.executor.memory significantly do. We find that,
there are 41 parameters that can be easily tuned and signif-
icantly affect performance. We therefore focus on tuning
them in this paper. Note that Spark framework is just used
as an example of IMC to evaluate DAC, the principles of
DAC can be easily applied to other computing systems such
as HBase [40] which also requires end users to set a large
number of configuration parameters.

2.2 Motivation
As mentioned above, Spark has 41 configuration parameters
to be tuned, similarly, Hadoop, a traditional ODC framework
also has a number of parameters. In the following, we attempt
to answer two questions: 1)whether enough parameters have
been taken into account for Spark (IMC)? and 2) whether
the current performance modeling techniques for ODC can
be applied to IMC?

2.2.1 Input Dataset Size Sensitivity
We study two programs with two implementations for each:
Spark KMeans (Spark-KM), Hadoop KMeans (Hadoop-KM), Spark
PageRank (Spark-PR), and Hadoop PageRank (Hadoop-PR).
We run these four programs, with two input datasets (input-1
and input-2) for 200 times with a different configurations on
the same cluster. The goal is observe the execution time vari-
ation. For KMeans, input-1 and input-2 contain 40 and 80
millions of records (around 18 GB), respectively. For PageRank,
input-1 and input-2 are two page collections with 500

0
200
400
600
800
1000

Spark-KM Hadoop-KM Spark-PR Hadoop-PR

Input-1 Input-2

E
xe

cu
tio

n
tim

e

va

ri
at

io
n(

s)

Figure 2. Execution time variation between two implemen-
tations (Spark and Hadoop) of two programs: (KMeans and
PageRank) with the same two input datasets when the con-
figurations are randomly changed by 200 times. The Y-axis
represents the execution time variation which is equal to the
difference between the maximum and minimum execution
time observed during the 200 experiments. KM — KMeans,
PR — PageRank.
thousands and 1 million pages (around 100 GB), respectively.
To generate each configuration, we randomly generate a
value for each configuration parameter within its value range,
these values form a configuration vector ({c1, c2, ..., c41}). For
all experiments, each with a different random configuration,
we observe the maximum and normal execution time (Tmax
andTi) for each program-input pair.We then useTvar defined
by Equation (1) to represent the execution time variation
caused by different configurations.

Tvar = (
n∑
i=1

Tmax −Ti)/n, (1)

with n the total number of different configurations.
Figure 2 shows the execution time variation.We clearly see

that theTvar for program-input pair (Spark-KM, input-2) is
2.6× of that for (Spark-KM, input-1); similarly, the Tvar for
(Spark-PR,input-2) is 4.3× of that for (Spark-PR,input-1).
In contrast, the Tvar for program-input pair (Hadoop-KM,
input-2) is only 0.97× of that for (Hadoop-KM, input-1).
Similarly, theTvar for (Hadoop-PR, input-2) is 1.76× of that
for (Hadoop-PR, input-1). The results indicate that the exe-
cution time of Spark programs with different configurations
is more sensitive to input dataset size compared to Hadoop
programs. This key difference can be explained by the natural
difference between IMC and ODC: by placing as much as pos-
sible data in memory, the performance of IMC is higher but
more sensitive to the slight perturbations. In contrast, ODC
programs typically involve more slow I/O operations, which
is more stable with perturbations. This study motivates the
consideration of dataset size in performance modeling.

2.2.2 Limitations of ODC Modeling Techniques
Analytical modeling [12–14], statistic reasoning [10, 35], and
machine learning techniques [4, 19], have been used to con-
struct the performance model as a function of configuration
parameters for a Hadoop program or a high performance
computing program. Our goal is to investigate whether the
models built by these techniques are accurate enough for
Spark programs when the size of input dataset is taken into
account and the number of configuration parameters is as

0
10
20
30
40
50
60

PR KM BA NW WC TS AVG

RS ANN SVM RF
Er
ro
r(%

)

Figure 3. The prediction errors of the models constructed
by response surface (RS), artificial neural network (ANN),
support vector machine (SVM), and random forest (RF).

SearchingModelingCollecting

Spark Framework

Workload Conf
Generator

Run

Collect
execution time

Pv1
Pv2
…
Pvn

Pvi={ti,confi1,…,confi41 ,dsize}

Training Set

Modeling
Technique

Performance Model

Iterative Search

Optimized
Configuration

Performance Model

Genetic Algorithm

Evaluate

…

…

…

Input
Data

…

Figure 4. Block Diagram of DAC.

large as 41. To this end, we employ the statistic reasoning
technique—response surface (RS) used in [10] and the three
machine learning techniques — artificial neural network
(ANN) used in [21], support vector machine (SVM) used
in [19], and random forest (RF) used in Hadoop configura-
tion auto-tuning [4] to construct performance models for
six Spark programs (the experimental methodology is dis-
cussed in Section 4). We do not try analytical modeling tech-
niques [12–14] because it is already known that they suffer
from low accuracy caused by over-simplified assumptions [4].
To compare the model accuracy, we define prediction error
as follows.

err =
|tpre − tmea |

tmea
× 100%, (2)

in which tpre is the predicted execution time of a Spark
program-input pair and tmea is the real execution time. There-
fore, err reflects the relative difference between the predic-
tion and real measurement of a Spark program-input pair’s
execution time, and lower is better.

Figure 3 shows the prediction error comparison between
the models constructed by the four modeling techniques.
We see that the average errors of models built by RS, ANN,
SVM, and RF are 23%, 27%, 14%, and 18%, respectively. We
believe that performance models with such high errors can
not accurately identify the optimal configurations. There-
fore, our experiments demonstrate that existing modeling
techniques fail to build accurate performance models when
the input dataset size and 41 configuration parameters are
considered for Spark programs. This motivates the seek of
new modeling techniques.

3 DAC Methodology
DAC is a configuration tuning approach that automatically
adjusts the values of configuration parameters to optimize
performance for a given Spark program on a given cluster. It

is designed for Spark in a popular usage scenario in industry:
a Spark program repeatedly runs many times with similar
sizes of input datasets, while the data contents are different.

Figure 4 illustrates the block diagram of DAC, which con-
sists of three components: collecting,modeling, and searching.
The collecting component drives the experiments: it gener-
ates a number of configurations, automatically runs IMC
programs with the generated configurations, and collects
the execution times of the experiments. The modeling com-
ponent constructs a performance model as a function of the
high dimensional configuration parameters and the size of
input datasets for a given Spark program. The key innova-
tions in this component enable DAC to generate performance
model with such a large number of parameters, — unprece-
dented in previous auto-tuning approaches.

The searching component automatically searches the con-
figuration that produces optimal performance. Overall, the
modeling component relies on the results of the collecting
component, and the searching component selects the best
configuration from the outcome of modeling component.

3.1 Collecting Data
The goal of collecting performance data is to observe the
execution behavior of Spark programs with different config-
urations. Then, the observed behavior will be used to build
accurate performance models in other components. For a
given Spark program, we collect performance data as follows.

1) We develop a configuration generator (CG) to generate
a configuration which is a vector containing n configuration
parameter values each time.

confi = {ci1, ci2, ..., ci j , ..., cin } (3)
where confi is the ith configuration and ci j is the value of
the jth configuration parameter in the ith configuration. ci j
is randomly generated within its value range by CG. n is 41
corresponding to the 41 configuration parameters of Spark
(shown in Table 2) that can be easily adjusted and signifi-
cantly affect performance.
(2) We use the input dataset generator (DG) of each pro-

gram to generatem input datasets with significantly different
sizes. The size difference between any two datasets is at least
10%: |DSp − DSq |

min(DSp ,DSq)
× 100% ≥ 10% (4)

where DSp and DSq are the sizes of the pth and qth input
datasets, respectively (p < m and q < m). We setm to 10 to
achieve a good trade-off between the size diversity of the
input datasets and the time to collect the performance data.
A largerm increases the time needed to collect performance
data, whereas a smaller m decreases the size diversity of
input datasets and in turn fails to reflect the influence of
the size of input datasets on the configuration for optimized
performance.
(3) We call a program and its input dataset a program-

input pair, therefore, we have 10 program-pairs for a given

+

...

+
...

M2

M1

M1 M2

Mi

M1

M2

Mn

Step 1 Step 2 Step i Step n

...

M1

CMi-1 CMn-1

Figure 5. Overview of Hierarchical Modeling.
program. Subsequently, we run each program-input pair k
times with k different configurations. After the execution of
a program-input pair finishes, we construct a vector to store
the execution time and the corresponding configuration:

Pvi = {ti , ci1, ci2, ..., ci j , ..., cin ,dsizei }, i = 1, ...,k (5)

where Pvi is the performance vector of the ith execution of
the program-input pair, ti is the execution time of the ith
execution, ci j is the value of the jth configuration parameter
in the ith execution, dsizei is the size of the input dataset
used in the ith execution, and k is the number of times that
the program-input pair is executed. Again, the value of k
needs to be determined upfront and to be balanced: a large
k increases the time needed to collect performance data,
whereas a small k fails to collect enough amount of data for
training accurate models.

3.2 Modeling Performance
Asmentioned in Section 2.2.2, response surface (RS), artificial
neural network (ANN), support vector machine (SVM), and
random forest (RF) algorithms fail to build accurate enough
performance models for Spark programs. It implies that the
performance influenced by the combination of the size of
input datasets and high dimensional configuration parameters
of a Spark program shows much more complex behavior
than what is only influenced by low dimensional configu-
ration parameters. This is why existing approaches cannot
accurately capture it.
Considering the principles of the four existing modeling

techniques, they all try to build highly accurate and sophis-
ticated individual models based on training data. This typi-
cally leads to “over-fitting” problem that pervasively exists
in statistic reasoning and machine learning algorithms. The
problem is exaggerated with larger number of parameters.
Based on this insight, we propose a Hierarchical Modeling
(HM) approach. The key idea is to predict the performance
by the cooperation of multiple simpler models, rather than a
single sophisticated model.
Figure 5 illustrates HM mechanisms. In the first step, we

build an individual model (i.e., sub-model),M1, as a function
of the size of input datasets and configuration parameters.
The sub-model can be built by different modeling techniques
such as ANN and SVM but not by analytical modeling be-
cause of its over-simplified assumption. For simplicity, we
employ regression tree [22] to build the sub-models. We
thereby need to determine the tree complexity or tree size

(the number of nodes in a tree) to minimize prediction error,
e.g., execution time prediction error in the context of Spark
configuration space. In the second step, a different regres-
sion tree model (M2) is built to reflect the variation in the
execution time of a Spark job that is not captured byM1.
At this point, an initial combined model, CM1, is created

by combining the first two sub-models: α1M1 +α2M2, where
M1 andM2 are the predicted the execution time by the two
sub-models, and α1 and α2 are the respective coefficients
corresponding to learning rate. This procedure is performed
a number of times, and more sub-models are added to the
combined model. The number of times is determined by the
convergence of the model and the target accuracy such as
90%. If the target accuracy is met before the convergence,
then we have obtained the final model or first-order model.
If the target accuracy can not be satisfied after the combined
model (e.g., TM1) converges, we repeat the above procedure
to build another combined model TM2. Then, we perform
the second level combination: β1TM1+β2TM2, where β1 and
β2 are the corresponding coefficients of TM1 and TM2. This
combinedmodel is called second-order model. This procedure
can be performed recursively, e.g., more different levels of
models are hierarchically added to the final combined model,
until the target accuracy is satisfied.
Essentially, HM is a hierarchical sequential process in

which the original model remains unchanged at each step.
However, the execution time variation gradually reduces
as the HM proceeds and the model becomes more accurate.
Moreover, we introduce randomness into the HM process to
improve accuracy and convergence speed. It also helps tomit-
igate the “over-fitting” problem. We will determine several
model parameters, including tree complexity and learning
rate in Section 5.
To build a performance model using HM, the first step is

to construct a training set S which is a matrix as follows.

S = (Pvj), j = 1, 2, ..., 10 × k (6)

where Pvj is the jth performance vector obtained by the
collecting component. 10 corresponds to the number of input
datasets for each program and k represents the number of
different configurations used to execute a program-input
pair. Subsequently, we input the matrix S to HM to build a
performance model which can be described by:

t = f (c1, c2, ..., ci , ..., cn ,dsize) (7)

where t is the execution time of a program with input size of
dsize and the configuration is {c1, c2, ..., ci , ...cn }. Note that
f (c1, c2, ..., ci , ...cn ,dsize) is a data model which means there
is no formula for it. The formal description of constructing
models by HM is illustrated by Algorithm 1. Note that al-
though TM1 and TM2 (line 5 and 6) in HigherOrderProcedure
(order) call the same function, they are different because we
introduce randomness in the procedure.

Finally, we use the collecting component to collect a num-
ber (num) of performance vectors (shown in equation (5)),
which are different from those in the matrix S to cross-
validate the accuracy of the performance model. According
to the accepted/standard practice in statistical reasoning and
machine learning, we set num to a quarter of the size of the
training set S , which is (10 × k)/4.

Algorithm 1 The procedure of HM algorithm.
Input: S , tc (tree complexity), nt (number of trees), lr (learning rate)
Output: FM (the function defined by Equation (7))
1: Set the accuracy of TM to 0 and order to 1
2: WHILE (the accuracy of TM is lower than the target accuracy)
3: if (order == 1) then
4: TM = FirstOrderProcedure(S)
5: else
6: TM = TM × lr +HigherOrderProcedure(order − 1) × lr
7: end if
8: order = order + 1
9: ENDWHILE
10: Set FM to TM and return FM
11: END the procedure of HM algorithm
..
1: HigherOrderProcedure(order)
2: if (order == 1) then
3: TM = FirstOrderProcedure(S)
4: else
5: TM1 = HigherOrderProcedure(order-1)
6: TM2 = HigherOrderProcedure(order-1)
7: TM = TM1 × lr + TM2 × lr
8: end if
9: if (the accuracy of TM is higher than the target accuracy) then
10: Set FM to TM and return FM
11: else
12: Return TM
13: end if
14: END HigherOrderProcedure
..
1: FirstOrderProcedure(S)
2: Building a regression tree M1 with tc nodes on a Bootstrap sample

from S
3: for (i from 1 to nt) do
4: Building a regression tree Mi with tc nodes on a Bootstrap sample

from S
5: TM = TM + Mi × lr
6: if (the accuracy of TM is more than target accuracy) then
7: Set FM to TM and return FM
8: end if
9: if (converge) then
10: Break
11: end if
12: end for
13: Return TM
14: END FirstOrderProcedure

3.3 Searching Optimal Configuration
In this section, we will describe how to search the optimum
configuration for a Spark program. There exist many algo-
rithms to search complex configuration spaces, e.g., recursive
random search [56], pattern search [46], and genetic algo-
rithm (GA) [18, 26]. Random recursive search is sensitive to

{c1, , cm, dsize}{c1, , cm, dsize}

Performance ModelPerformance Model

Fitness

(Execution Time)

Fitness

(Execution Time)

Cross-Over

(random)

Cross-Over

(random)

{c11, c12 , c1m}

{cn1, cn2 , cnm}

{c11, c12 , c1m}

{cn1, cn2 , cnm}

Mutate

(rate:0.01)

Mutate

(rate:0.01)

11

22 33

44

New Configuration
Parameter Values

Initial Configuration
Parameter Values

{c1
',c2

' ,cm
'}{c1

',c2
' ,cm

'}

The genetic algorithm

Figure 6. Searching the optimum configuration.

getting stuck in local optima; pattern search typically suffers
from slow local (asymptotic) convergence rates [46]. GA is
a particular class of evolutionary algorithms that use tech-
niques inspired by evolutionary biology such as inheritance,
mutation, selection, and crossover [26]. In particular, GA is
well-known for being robust against local optima [18]. Our
goal is to find the configuration for optimized performance
of a Spark program-input pair from the global space of con-
figuration parameters, which is a complex space to explore
with many local optima. We therefore employ GA.

Figure 6 elaborates the searching procedure which con-
sists of four steps. In step 1⃝, we input a set of initial values
of the configuration parameters and the size of an input
dataset to the performance model of a Spark program, and
the performance model outputs an execution time. In step 2⃝,
we pass the execution time and the configuration parameter
values to the GA. Note that the configuration parameter val-
ues are popSize (which is a GA parameter) vectors randomly
selected from S but the element ti of each vector is removed.
The GA then performs a number of operations such as cross-
over and mutate on the configuration parameter values, and
generates a new set of configuration parameter values, as
shown in 3⃝. These configuration parameter values are in-
jected to the performance model to get another execution
time, as illustrated in 4⃝. Next, the execution time is passed
to the GA again. The step 2⃝ to 4⃝ might be repeated for a
number of times until the optimum configuration is found.

3.4 Implementation
We implement DAC on top of Spark 1.6 by using R [11] which
is a programming language and environment for statistical
computing. First, we use R to implement the CG (configu-
ration generator) of the collecting component of DAC. CG
generates a random value within the value range of each
configuration parameter, and writes the values of all the
41 configuration parameters into the configuration file of
Spark named spark-dac.conf. Subsequently, we call the
Spark submitter command, spark-submit, through R to sub-
mit a program to run with the configuration specified by
spark-dac.conf. When the execution completes, we col-
lect the execution time of the program, and store it with
the configuration parameter values and the size of the in-
put dataset, forming a vector defined by Equation (5). We

Table 1. Experimented applications in this study.

Application Abbr. input data size
PageRank PR 1.2, 1.4, 1.6, 1.8, 2 (million pages)
KMeans KM 160, 192, 224, 256, 288 (million points)
Bayes BA 1.2, 1.4, 1.6, 1.8, 2 (million pages)

NWeight NW 10.5, 11.5, 12.5, 13.5, 14.5 (million edges)
WordCount WC 80, 100, 120, 140, 160 (GB)
TeraSort TS 10, 20, 30, 40, 50 (GB)

repeat this procedure a number of times, e.g., 2000, to col-
lect a training set S which is stored in a CSV file. Next, we
implement Algorithm 1 in R to construct a performance
model which produces a R object to represent the model.
Finally, we pass a set of configuration parameter values and
the model (R object) to the GA implemented in R to search
the configuration for optimal performance of that program.
When the optimal configuration is found, we write it back to
spark-dac.conf to configure Spark for the program with
optimized performance.

4 Experimental Methodology
Our experimental platform consists of 6 DELL servers, one
serves as the master node and the other five serve as slave
nodes. Each server is equipped with 12 Intel(R) Xeon(R) CPU
E5-2609 1.90GHz six-core processor and 64GB PC3 memory.
There are in total 432 cores and 384 GBmemory in the cluster.
The OS of each node is SUSE Linux Enterprise Server 12. We
use Spark 1.6 as our experimental IMC framework. Although
newer versions of Spark have been released, the 1.6 version
is a main milestone and very popular in industry.

4.1 Representative Programs
We select representative programs from the Spark version of
Hibench which is widely used to evaluate the Spark frame-
work. HiBench has different kinds of real-world programs
including machine learning and web search. We choose 6
programs to evaluate DAC, shown in Table 1. These pro-
grams represent a sufficiently broad set of typical Spark pro-
gram behaviors. KMeans has good instruction locality but
poor data locality while Bayes is the opposite. While both
performing selective shuffling, the iteration selectivity of
PageRank is much higher compared to KMeans. NWeight is
an iterative graph-parallel algorithm implemented by Spark
GraphX which computes associations between two vertices
that are n-hop away. It consumes a lot of memory that it
stores the whole graph in memory and iterates over the
vertices. Compared to TeraSort and WordCount, these four
programs contain much larger number of iterations. Finally,
WordCount is CPU-intensive and TeraSort is both CPU and
memory-intensive. To evaluate DAC, we employ five differ-
ent sizes of input datasets (Table 1) for each program.

4.2 Configuration Parameters
As discussed earlier, we choose a wide range of Spark config-
uration parameters that significantly influence performance,

including shuffle behavior, data serialization, memory man-
agement, execution behavior, networking, etc. Table 2 shows
the 41 parameters in detail.
The last column of Table 2 provides the default values of

the parameters which are recommended by the Spark team
and can be found at [42]. The third column shows the value
range of each configuration parameter. This information is
not provided by the Spark team, and therefore we conducted
experiments to determine the value range for each parameter.
Note that the value ranges of these parameters might be
different for different clusters because some ranges depend
on cluster hardware configurations such as memory size.

5 Results and Analysis
In this section, we first determine the model parameters,
such as the number of training examples (ntrain), then the
results are presented and analyzed.

5.1 Determining ntrain
The amount of training data is the most important model
parameter that affects model accuracy and the cost. In our
evaluation, ntrain is equal to 10 × k because we have 10
different data sizes. The larger ntrain generally increases the
accuracy of the model constructed while the smaller ntrain
reduces the cost (e.g., the time needed to collect the training
data and train the model). To minimize the modeling cost and
achieve high accuracy simultaneously, we need to carefully
determine ntrain considering the trade-off. Since there is no
theoretical guidance to determine ntrain, we conduct the
following experiments.
We start by training the performance models for a Spark

program using 200 Spark configurations, and increase the
training set S by 200 each time. Figure 7 quantifies the re-
lationship between accuracy and the number of training
examples. For simplicity, we only show the maximum (Max),
minimum (Min), and mean (Mean) errors for the models of
all the experimented program-input pairs in the figure. The
general trend is that, the errors decrease when the number of
training examples increase. When ntrain reaches 2000, the
curves for the three errors become flat thereafter, indicating
diminishing return with more training data. Therefore, we
choose 2000 training examples as ntrain to train a perfor-
mance model for each Spark program.

5.2 Determining the lr, nt, and tc
To achieve an optimized performance model, we need to
determine three other important parameters for the first-
order HM model: learning rate (lr), the number of trees (nt),
and tree complexity (tc). The lr controls the contribution
of a sub-model when it is added to the first-order model. nt
represents the number of sub-models needed to construct the
first-order model. For the same accuracy, decreasing lr will
increase the number of sub-models (nt) required to build the
first-order model. Tree complexity (tc) specifies the number

Table 2. Description of the 41 Spark configuration parameters.

Configuration Parameters—Description Range Default

spark.reducer.maxSizeInFlight—Maximum size of map outputs to fetch simultaneously from each reduce task, in MB. 2–128 48
spark.shuffle.file.buffer—Size of the in-memory buffer for each shuffle file output stream, in KB. 2–128 32
spark.shuffle.sort.bypassMergeThreshold—Avoid merge-sorting data if there is no map-side aggregation. 100–1000 200
spark.speculation.interval—How often Spark will check for tasks to speculate, in millisecond. 10–1000 100
spark.speculation.multiplier—How many times slower a task is than the median to be considered for speculation. 1–5 1.5
spark.speculation.quantile—Percentage of tasks which must be complete before speculation is enabled. 0–1 0.75
spark.broadcast.blockSize—Size of each piece of a block for TorrentBroadcastFactory, in MB. 2–128 4
spark.io.compression.codec—The codec used to compress internal data such as RDD partitions, and so on. snappy, lzf,lz4 snappy
spark.io.compression.lz4.blockSize—Block size used in LZ4 compression, in KB. 2–128 32
spark.io.compression.snappy.blockSize—Block size used in snappy, in KB. 2–128 32
spark.kryo.referenceTracking—Whether to track references to the same object when serializing data with Kryo true,false true
spark.kryoserializer.buffer.max—Maximum allowable size of Kryo serialization buffer, in MB. 8–128 64
spark.kryoserializer.buffer—Initial size of Kryo’s serialization buffer, in KB. 2–128 64
spark.driver.cores—Number of cores to use for the driver process. 1–12 1
spark.executor.cores—The number of cores to use on each executor. 1–12 core #
spark.driver.memory—Amount of memory to use for the driver process, in MB. 1024–12288 1024
spark.executor.memory—Amount of memory to use per executor process, in MB. 1024–12288 1024
spark.storage.memoryMapThreshold—Size of a block above which Spark maps when reading a block from disk, in MB. 50–500 2
spark.akka.failure.detector.threshold—Set to a larger value to disable failure detector in Akka. 100–500 300
spark.akka.heartbeat.pauses—Heart beat pause for Akka, in second. 1000–10000 6000
spark.akka.heartbeat.interval—Heart beat interval for Akka, in second. 200–5000 1000
spark.akka.threads—Number of actor threads to use for communication. 1–8 4
spark.network.timeout—Default timeout for all network interactions, in second. 20–500 120
spark.locality.wait—How long to launch a data-local task before giving up, in second. 1–10 3
spark.scheduler.revive.interval—The interval length for the scheduler to revive the worker resource, in second. 2–50 1
spark.task.maxFailures—Number of task failures before giving up on the job. 1–8 4
spark.shuffle.compress—Whether to compress map output files. true,false true
spark.shuffle.consolidateFiles—If set to "true", consolidates intermediate files created during a shuffle. true,false false
spark.memory.fraction—Fraction of (heap space - 300 MB) used for execution and storage. 0.5–1 0.75
spark.shuffle.spill— Responsible for enabling/disabling spilling. true,false true
spark.shuffle.spill.compress—Whether to compress data spilled during shuffles. true,false true
spark.speculation—If set to "true", performs speculative execution of tasks. true,false false
spark.broadcast.compress—Whether to compress broadcast variables before sending them. Generally a good idea. true,false true
spark.rdd.compress—Whether to compress serialized RDD partitions. true,false false
spark.serializer—Class to use for serializing objects that are sent over the network or need to be cached in serialized form. java,kryo java
spark.memory.storageFraction—Amount of storage memory immune to eviction, expressed as a fraction of the size of the
region set aside by spark.memory.fraction.

0.5–1 0.5

spark.localExecution.enabled—Enables Spark to run certain jobs on the driver, without sending tasks to the cluster. true,false false
spark.default.parallelism—The largest number of partitions in a parent RDD for distributed shuffle operations. 8–50 #
spark.memory.offHeap.enabled—If true, Spark will attempt to use off-heap memory for certain operations. true,false false
spark.shuffle.manager—Implementation to use for shuffling data. sort,hash sort
spark.memory.offHeap.size—The absolute amount of memory which can be used for off-heap allocation, in MB. 10–1000 0

of nodes in a tree, which also influences the optimal nt . For
a given lr , fitting more complex trees leads to fewer sub-
models required for minimum error. Since these general rules
do not tell us the values of lr , nt , and tc , we again determine
the values of them by experiments. We try two values (1 and
5) for tc , five values (0.05,0.01,0.005, 0.001,0.0005) for lr , and
many values for nt .

Figure 8 shows the relationship between the nt , lr , and tc
for PageRank. As can be seen, when tc is equal to 1, nomatter
how we vary lr and nt , the minimum error is always equal
to or larger than 10%. This implies that the trees with one
nodes are too simple to achieve high accuracy. In contrast,
the minimum error decreases to 7.6% when tc is equal to
5. For a given lr , the error decreases with the increase of
nt and finally converges to the minimum error. However,
the convergence speed is slower with a small lr value. As
shown in Figure 8 (b), the curve for lr = 0.05 converges

0
5

10
15
20
25
30

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

Er
ro

r (
%

)

Mean Max Min

Figure 7. Performance model error as a function of the num-
ber of training examples (ntrain).

to the minimum error most quickly, and the convergence
happens at a point where nt equals 3600. We observe similar
curves for other experimented programs. Therefore, we set
tc , lr , and nt to 5, 0.05, and 3600, respectively.

5.3 Model Accuracy
With the model parameters determined for the first-order
HM model, we evaluate the accuracy of the generated per-
formance predication. If it is the case, we stop the model

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
1 100 800 1500 2200 2900 3600 4300 5000 5700 6400
2 0.00050.2699620.2507540.2353650.2233870.2124120.2022650.1935610.1850350.1773340.170244
3 0.0010.2670830.2336180.2109560.1924910.1767150.1626980.1513820.1433370.1365010.130976
4 0.0050.2456570.1555380.1242790.1140710.1096610.1035320.1009620.1006290.1006350.100686
5 0.010.2263620.1220230.1088080.1011190.1009520.1011890.1012720.1014980.101463 0.10145
6 0.050.1421850.101126 0.101410.1017960.1027140.1032210.1037770.1040150.1045580.105334

0.000526.99617 25.075423.5364722.3387421.24117 20.226519.3561118.5034917.7334417.02444
0.00126.7083223.3618221.0956419.2490917.6715316.2698415.1382114.3336813.6500913.09755
0.00524.5657115.5538412.4278511.4071210.9661410.3532210.0961610.0628710.0635410.06856
0.0122.6361612.2022910.8807710.1119110.09518 10.118910.1271610.1497810.1462610.14502
0.0514.2184910.1126110.1410110.1795910.2713910.3221110.3776810.4015110.4558410.53342

tc5:
100 800 1500 2200 2900 3600 4300 5000 5700 6400

0.00050.2668580.2323130.2060740.185916 0.170060.1585160.1489870.1412360.1350370.129642
0.0010.2613710.2031880.1679190.1473660.1339520.1242880.1165860.1107810.1054450.100131
0.0050.2240690.1195950.0946830.0891060.0878040.0870110.0867990.0867170.0865690.086425
0.010.1907020.093427 0.088760.0877150.0871170.0866040.0864670.0861690.0862420.086116
0.050.1105070.0879010.0864140.086053 0.085990.086079 0.085920.0858710.0856910.085698

100 800 1500 2200 2900 3600 4300 5000 5700 6400
0.000526.6858123.23128 20.607418.59164 17.00615.8516314.8986914.1235613.5036712.96418
0.00126.1370720.3187816.7919414.7366213.3951912.4287811.6585711.0780510.5445310.01314
0.00522.4068911.959489.468343 8.910598.7804448.701091 8.679958.6716868.656862 8.64253
0.0119.070179.3426788.8760238.7714648.7117278.6604078.6467338.616925 8.624218.611578
0.0511.05073 8.790128.6413958.6053028.5990478.6079498.5920178.5871298.5690828.569836

0

5

10

15

20

25

30

35

40

1
00

8
00

1
50
0

2
20
0

2
90
0

3
60
0

4
30
0

5
00
0

5
70
0

6
40
0

7
10
0

7
80
0

8
50
0

9
20
0

9
90
0

1
06
00

1
13
00

1
20
00

0.0005

0.001

0.005

0.01

0.05

Er
r
or
(
%)

(a)Number of trees(tree complexity=1)

0

5

10

15

20

25

30

35

40

1
00

8
00

1
50
0

2
20
0

2
90
0

3
60
0

4
30
0

5
00
0

5
70
0

6
40
0

7
10
0

7
80
0

8
50
0

9
20
0

9
90
0

1
06
00

1
13
00

1
20
00

0.0005

0.001

0.005

0.01

0.05

Er
r
or
(
%)

(b)Number of trees(tree complexity=5)

Figure 8. The relationship between number of trees (nt) and
errors for models fitted with five learning rates(lr) and two
levels of tree complexity (tc) for PageRank. (a) tc = 1; (b)
tc = 5.

0
10
20
30
40
50
60

PR KM BA NW WC TS AVG

RS ANN SVM RF HM

Er
ro
r(%

)

Figure 9. The average prediction errors of models built by
RS, ANN, SVM, RF, and HM.

building process, otherwise, a second-order model needs to
be further constructed. As described in Section 3.2, this pro-
cess is recursive. We compare the accuracy of models built
by RS, ANN, SVM, RF, and HM. We firstly use each modeling
technique to construct 6 performance models for the 6 pro-
grams based on the same training data set S . Subsequently,
we collect other 500 performance vectors which are different
from the 2000 vectors for S to form a testing set T . We plug
in the values of configuration parameters and the size of
input dataset of each vector in T to the performance model
to predict the execution time of a program. Then, equation
(2) is used to calculate the error between the predictions
and the real measurements. To test each model, we have 500
such errors and we use the average of them to represent the
accuracy of each model for each program.
Figure 9 compares the prediction errors of performance

models built by RS, ANN, SVM, RF, and HM. We see that the
prediction errors of the models built by HM are dramatically
lower than those of models constructed by other modeling
techniques. For the experimented programs, only the error
for TS slightly exceeds 10%. The average error of models
built by HM for all applications is only 7.6%. In contrast,
the average errors of models built by RS, ANN, SVM, and
RF are 22%, 30%, 15%, and 19%, respectively. The results
demonstrate the effectiveness of the first-order performance
model constructed by HM: taking account of the size of input
datasets and high dimensional configuration parameters,
our method is accurate enough for searching the optimum
configurations for Spark programs. In contrast, all other
existing modeling approaches incur large errors.

5.4 Error Distribution
Ourmodel accuracymeasures the average error of the testing
models. While the average error is a good metric to evaluate
a model’s accuracy statistically, it might hide large errors

real pre pred pr: pred ts: pred
2 41.33 40.4196 0.9104 108.479 103.9707 4.508331 108479 103970.7 41330 40419.6
5 53.965 49.67516 4.289843 57.748 59.07803 1.330028 57748 59078.03 53965 49675.16
6 39.192 36.51302 2.678976 59.634 64.45948 4.825477 59634 64459.48 39192 36513.02
8 70.851 91.71262 20.86162 98.109 99.4298 1.320795 98109 99429.8 70851 91712.62
15 54.62 57.34717 2.727165 63.012 65.30047 2.28847 63012 65300.47 54620 57347.17
18 42.592 42.40249 0.189508 90.843 91.77311 0.930108 90843 91773.11 42592 42402.49
20 44.682 41.40881 3.273186 86.07 86.08873 0.018733 86070 86088.73 44682 41408.81
27 47.13 46.81325 0.31675 78.902 80.89444 1.992444 78902 80894.44 47130 46813.25
29 80.283 55.55876 24.72424 121.158 138.6006 17.44261 121158 138600.6 80283 55558.76
30 47.98 44.91483 3.065166 74.3 94.20587 19.90587 74300 94205.87 47980 44914.83
32 50.061 49.66327 0.397734 77.358 77.78124 0.423245 77358 77781.24 50061 49663.27
37 80.017 79.8186 0.198402 65.666 65.09307 0.572933 65666 65093.07 80017 79818.6
42 81.357 80.83288 0.524125 73.257 73.78849 0.531488 73257 73788.49 81357 80832.88
54 55.378 44.60492 10.77308 78.223 77.9202 0.302804 78223 77920.2 55378 44604.92
58 64.577 64.39704 0.179956 67.283 67.59648 0.313482 67283 67596.48 64577 64397.04
63 59.856 53.83779 6.018211 74.565 75.65495 1.089953 74565 75654.95 59856 53837.79
64 50.155 58.90948 8.754476 79.076 80.53757 1.461575 79076 80537.57 50155 58909.48
67 63.781 49.36289 14.41811 71.034 71.30359 0.269593 71034 71303.59 63781 49362.89
68 76.504 106.42 29.916 186.559 162.813 23.74602 186559 162813 76504 106420
73 42.59 50.64768 8.057684 101.786 100.3272 1.458756 101786 100327.2 42590 50647.68
77 61.57 62.45006 0.880058 84.041 81.7917 2.249299 84041 81791.7 61570 62450.06
78 66.652 72.06023 5.408231 86.625 88.81704 2.192036 86625 88817.04 66652 72060.23
79 53.336 75.45812 22.12212 85.833 86.55854 0.725542 85833 86558.54 53336 75458.12
88 54.025 45.9631 8.061902 73.005 75.3789 2.3739 73005 75378.9 54025 45963.1
92 103.225 91.06162 12.16338 67.225 66.79148 0.433524 67225 66791.48 103225 91061.62
93 57.846 55.74262 2.103381 94.064 112.0359 17.97189 94064 112035.9 57846 55742.62
94 62.083 48.90311 13.17989 82.497 82.11067 0.386332 82497 82110.67 62083 48903.11
102 42.741 48.3853 5.644302 77.9 77.34958 0.550422 77900 77349.58 42741 48385.3
106 91.369 101.4526 10.08363 55.036 56.19722 1.161219 55036 56197.22 91369 101452.6
108 76.3 81.73769 5.437685 58.171 61.39265 3.22165 58171 61392.65 76300 81737.69
111 72.081 54.02667 18.05433 100.928 103.9325 3.004507 100928 103932.5 72081 54026.67
123 61.89 87.70937 25.81937 63.077 61.49857 1.57843 63077 61498.57 61890 87709.37
127 69.404 65.99879 3.405211 79.942 77.33852 2.603477 79942 77338.52 69404 65998.79
131 71.967 51.70674 20.26026 76.383 74.78265 1.60035 76383 74782.65 71967 51706.74
133 109.817 106.0237 3.793279 80.295 78.0693 2.225696 80295 78069.3 109817 106023.7
153 246.606 245.319 1.286977 120.41 134.9452 14.53525 120410 134945.2 246606 245319
167 47.066 63.95874 16.89274 78.164 79.06322 0.899217 78164 79063.22 47066 63958.74
171 59.964 62.9076 2.943595 79.648 82.94905 3.301048 79648 82949.05 59964 62907.6
175 42.58 46.251 3.671004 101.616 102.7081 1.092108 101616 102708.1 42580 46251
183 132.623 149.2172 16.5942 96.561 110.4323 13.87131 96561 110432.3 132623 149217.2
189 78.176 85.99691 7.820912 82.386 76.65409 5.731908 82386 76654.09 78176 85996.91
209 70.841 75.4635 4.622503 78.578 75.89243 2.685567 78578 75892.43 70841 75463.5
213 50.863 52.31414 1.451136 67.454 68.34077 0.886775 67454 68340.77 50863 52314.14
216 79.842 80.59078 0.748783 101.533 97.06865 4.464352 101533 97068.65 79842 80590.78
225 85.752 94.80201 9.050005 66.806 65.38573 1.420265 66806 65385.73 85752 94802.01
226 86.103 77.55173 8.551271 68.146 68.89204 0.746044 68146 68892.04 86103 77551.73
227 86.403 64.66801 21.73499 81.356 88.48604 7.130044 81356 88486.04 86403 64668.01
230 280.651 207.8146 72.83643 68.18 70.77012 2.590115 68180 70770.12 280651 207814.6
235 112.888 142.459 29.57095 84.409 85.30238 0.893383 84409 85302.38 112888 142459
240 188.841 164.2527 24.58828 80.489 79.09259 1.396411 80489 79092.59 188841 164252.7
242 160.449 151.0011 9.447879 102.733 101.1817 1.551257 102733 101181.7 160449 151001.1
248 70.859 78.85013 7.991134 57.723 59.95045 2.227446 57723 59950.45 70859 78850.13
249 51.845 64.25748 12.41248 84.76 84.03734 0.722662 84760 84037.34 51845 64257.48
258 74.359 95.13326 20.77426 82.921 80.6415 2.279505 82921 80641.5 74359 95133.26
259 115.075 116.3083 1.233275 59.051 59.65097 0.599966 59051 59650.97 115075 116308.3
261 94.731 98.83184 4.100839 108.555 110.0134 1.458395 108555 110013.4 94731 98831.84
269 289.577 184.9738 104.6032 74.115 70.55715 3.557852 74115 70557.15 289577 184973.8
276 131.318 89.89713 41.42087 108.053 100.4952 7.557844 108053 100495.2 131318 89897.13
278 69.701 67.35515 2.34585 98.196 90.69292 7.50308 98196 90692.92 69701 67355.15
286 90.795 87.12826 3.666738 113.506 111.2816 2.224425 113506 111281.6 90795 87128.26
290 85.728 110.3484 24.62037 95.286 90.3571 4.928904 95286 90357.1 85728 110348.4
297 134.754 128.0095 6.744507 61.562 63.30568 1.743677 61562 63305.68 134754 128009.5
299 82.329 81.0775 1.251499 69.252 71.91399 2.661992 69252 71913.99 82329 81077.5
303 80.494 89.01715 8.523151 73.898 65.01758 8.880423 73898 65017.58 80494 89017.15
323 58.531 63.43487 4.903868 113.939 127.5137 13.57475 113939 127513.7 58531 63434.87
333 72.803 60.04022 12.76278 74.344 78.30549 3.961495 74344 78305.49 72803 60040.22
334 127.042 131.5127 4.470709 87.722 87.33705 0.384948 87722 87337.05 127042 131512.7
341 204.249 204.9861 0.737082 71.28 72.91373 1.633725 71280 72913.73 204249 204986.1
345 108.984 118.2333 9.249305 97.105 94.57726 2.527744 97105 94577.26 108984 118233.3
352 80.583 80.71669 0.133694 64.915 66.85858 1.943575 64915 66858.58 80583 80716.69
353 80.583 79.90406 0.678937 157.396 140.41 16.98599 157396 140410 80583 79904.06
358 80.583 88.95095 8.367949 64.688 67.63359 2.945591 64688 67633.59 80583 88950.95
360 80.583 86.23497 5.651966 91.108 92.0797 0.971701 91108 92079.7 80583 86234.97
367 80.583 55.5872 24.9958 106.585 105.3332 1.251761 106585 105333.2 80583 55587.2
381 80.583 80.88065 0.297646 84.982 83.55437 1.427635 84982 83554.37 80583 80880.65
390 80.583 89.29736 8.714359 91.302 77.54485 13.75715 91302 77544.85 80583 89297.36
392 80.583 80.50655 0.076454 66.856 67.14736 0.291363 66856 67147.36 80583 80506.55
416 80.583 88.29249 7.709491 102.601 104.1974 1.596433 102601 104197.4 80583 88292.49
418 80.583 86.40723 5.824233 64.832 66.01245 1.180449 64832 66012.45 80583 86407.23
419 80.583 83.66197 3.078968 74.512 71.07451 3.437486 74512 71074.51 80583 83661.97
422 219.972 219.5635 0.408533 124.801 119.7542 5.046829 124801 119754.2 219972 219563.5
424 80.739 97.31797 16.57897 84.502 81.46038 3.041622 84502 81460.38 80739 97317.97
431 90.107 90.97786 0.870862 87.226 85.98445 1.241549 87226 85984.45 90107 90977.86
445 72.063 76.43165 4.368647 57.465 62.04879 4.583786 57465 62048.79 72063 76431.65
447 218.665 218.5874 0.077635 75.899 75.49291 0.406093 75899 75492.91 218665 218587.4
449 79.312 80.33564 1.023639 104.947 102.7226 2.224423 104947 102722.6 79312 80335.64
450 138.053 126.6215 11.43154 91.601 84.76344 6.837555 91601 84763.44 138053 126621.5
451 79.026 85.50895 6.482949 78.697 77.63501 1.06199 78697 77635.01 79026 85508.95

0

50

100

150

200

250

0 50 100 150 200 250
0

50

100

150

200

0 50 100 150 200
(b) Real excution time of Terasort(s)

Pr
ed

ic
te

d
ex

cu
tio

n
tim

e(
s)

(a) Real excution time of Pagerank(s)

Pr
ed

ic
te

d
ex

cu
tio

n
tim

e(
s)

Figure 10. Error distribution illustrating prediction versus
real measurement for 200 randomly selected Spark config-
urations. (a) shows the error distribution for PR. (b) shows
the error distribution for TS.

mean
0
1 154508.9 206549.7 203573.6 107186.4 234897.9 75935.9 156598.6 165239.8
2 146374 194055.3 201849.5 106924.4 234897.9 74050.67 156598.6 155244.2
3 143067.9 194055.3 197984.3 106924.4 234897.9 70849.41 156598.6 155244.2
4 140029.3 194055.3 196052.4 106924.4 233378.7 70849.41 155585.8 155244.2
5 130964.2 194055.3 196052.4 106924.4 231596.8 69074.38 154397.9 155244.2
6 125684.4 194055.3 192166.4 106762.8 229894.4 69074.38 153262.9 155244.2
7 128577.1 192987.9 192166.4 104917.8 229894.4 69074.38 153262.9 154390.3
8 123453.6 192537.9 192166.4 104055.4 229483.5 69074.38 152989 154030.3
9 123545.3 181967.9 190778 104055.4 229483.5 69042.16 152989 145574.4
10 116343.3 181967.9 189663.5 104055.4 226659 67716.91 151106 145574.4
11 108021.8 181967.9 189653.5 102811 226659 67716.91 151106 145574.4
12 106747.3 181967.9 186833.4 102811 226659 67716.91 151106 145574.4
13 100015.6 181967.9 186368 102811 226057.8 65984.25 150705.2 145574.4
14 98393.03 181967.9 181922.9 102811 226057.8 65984.25 150705.2 145574.4
15 107140.8 181329.5 181922.9 101742.5 226057.8 64603.21 150705.2 145063.6
16 100932.6 178737 181922.9 101742.5 224890.5 64603.21 149927 142989.6
17 99441.02 177824.7 178051.4 101742.5 224890.5 64060.39 149927 142259.8
18 98935.08 170148.1 178051.4 101742.5 223739.8 64060.39 149159.9 136118.5
19 99313.86 170148.1 178051.4 101042.1 223549.2 64060.39 149032.8 136118.5
20 94365.36 170148.1 176075.5 101042.1 221913.6 64060.39 147942.4 136118.5
21 85780.58 170148.1 176075.5 99408.2 221913.6 64060.39 147942.4 136118.5
22 87705.42 167856.3 176075.5 99408.2 221913.6 64060.39 147942.4 134285
23 85382.35 167856.3 175641.9 99408.2 219313.2 62689.99 146208.8 134285
24 84221.42 163536 174121.4 99408.2 219313.2 61863.5 146208.8 130828.8
25 88060.27 163045.3 174086 99224.56 219313.2 61863.5 146208.8 130436.2
26 84258.39 161279.5 173381.7 99148.46 217402.9 61202.03 144935.2 129023.6
27 82859.32 154836.8 168631.4 98596.36 217402.9 61158.55 144935.2 123869.4
28 78747.5 154836.8 168631.4 98596.36 217402.9 61158.55 144935.2 123869.4
29 81353.63 154836.8 168631.4 98179.19 217402.9 61158.55 144935.2 123869.4
30 75818.08 152181.6 168631.4 97479.28 217402.9 61158.55 144935.2 121745.3
31 74377.53 152181.6 168399.6 97479.28 217402.9 61158.55 144935.2 121745.3
32 71942.31 148989.6 168399.6 97166.36 215904.2 61158.55 143936.1 119191.7
33 71937.76 148096.2 168399.6 97166.36 214408.3 61111.31 142938.9 118477
34 72393.05 148096.2 168275.9 96953.45 214408.3 60046.11 142938.9 118477
35 72924.04 148096.2 165690.6 96953.45 213943.6 58934.77 142629.1 118477
36 72820.58 146135.7 165096.9 96953.45 213943.6 58496.08 142629.1 116908.5
37 72191.26 145099.7 165096.9 96953.45 213049.7 57036.34 142033.1 116079.7
38 71870.83 145099.7 161876.8 96899.46 212301.3 57036.34 141534.2 116079.7
39 73062.64 139332.5 161876.8 96598.5 210704.9 57036.34 140469.9 111466
40 71216.62 139225.5 161876.8 96347.39 210704.9 57036.34 140469.9 111380.4
41 70777.09 139225.5 161876.8 96347.39 210704.9 57036.34 140469.9 111380.4
42 69128.43 139225.5 161584.3 95933.42 210704.9 57036.34 140469.9 111380.4
43 68684.92 139225.5 160751.6 95933.42 210704.9 57036.34 140469.9 111380.4
44 68323.11 139225.5 160055.8 95933.42 210704.9 57036.34 140469.9 111380.4
45 67641.14 135450.1 160055.8 95757.57 210704.9 57036.34 140469.9 108360.1
46 67737.93 135450.1 160055.8 95757.57 210618.8 57036.34 140412.5 108360.1
47 67551.15 135450.1 160055.8 95757.57 210256 57036.34 140170.6 108360.1
48 66830.7 133531.8 159468.6 95681.52 209987.1 57036.34 139991.4 106825.4
49 66421.81 133531.8 158942.6 95681.52 209967.5 56729.03 139978.3 106825.4
50 65469.39 133531.8 158521.1 95681.52 208342.2 56503.8 138894.8 106825.4

60

80

100

120

140

160

0 8
1
6
2
4
3
2
4
0
4
8
5
6
6
4
7
2
8
0
8
8
9
6

E
x
ec

u
ti

o
n

 t
im

e
(s

)

The number of iterations for PR

120

140

160

180

200

220

0 8
1
6
2
4
3
2
4
0
4
8
5
6
6
4
7
2
8
0
8
8
9
6

E
x
ec

u
ti

o
n

 t
im

e
(s

)

The number of iterations for TS

100

110

120

130

140

150

160

170

0 8
1
6
2
4
3
2
4
0
4
8
5
6
6
4
7
2
8
0
8
8
9
6

E
x
ec

u
ti

o
n

 t
im

e
(s

)

The number of iterations for WC

94

96

98

100

102

104

106

108

0 8
1
6
2
4
3
2
4
0
4
8
5
6
6
4
7
2
8
0
8
8
9
6

E
x
ec

u
ti

o
n

 t
im

e
(s

)

The number of iterations for BA

135

140

145

150

155

160

1 9
1
7
2
5
3
3
4
1
4
9
5
7
6
5
7
3
8
1
8
9
9
7

E
x
ec

u
ti

o
n

 t
im

e
(s

)

The number of iterations for KM

50

55

60

65

70

75

80

0 8
1
6
2
4
3
2
4
0
4
8
5
6
6
4
7
2
8
0
8
8
9
6

E
x
ec

u
ti

o
n

 t
im

e
(s

)

The number of iterations for NW

Figure 11. The number of iterations for all the programs
PageRank(PR), Bayes(BA), WordCount(WC), TeraSort(TS),
KMeans(KM), and NWeight(NW).
for particular predictions due to outliers. To address this
issue, we now present the error distribution of our prediction
models using scatter plots.
Figure 10 shows two scatter plots produced by 200 real

measurements and 200 DAC predictions for programs PR
and TS for 200 randomly selected Spark configurations. The
X axis represents the real measurements and the Y axis de-
notes the execution times of the two programs predicted by
DAC. This figure clearly shows that the models are fairly
accurate across the entire Spark configuration space: all 200
data points for each application are located around the cor-
responding bisector, indicating that the predictions are close
to the real measurements. For other experiments, we also
observe similar results. Overall, we find that there are not
many outliers in our performance predictions, which is good
for optimizing the configurations for Spark.

5.5 Iteration Number of the GA
We employ GA to iteratively search the huge configuration
space to find the optimum configuration for a Spark pro-
gram. The time (or the number of iterations) needed for
convergence is our primary concern because longer time in-
curs higher cost to find the optimal configuration. Figure 11
shows how GA converges for all the experimented programs.
We see that, a small number of iterations, e.g., 50 to 70, is
typically enough. Moreover, different programs may need
different number of iterations. For example, PR, BA, and KM

0
2000000
4000000
6000000
8000000

10000000
12000000
14000000 DAC Default

Ex
ec

ut
io

n
tim

e
no

rm
al

iz
ed

to
 D

A
C

PageRank KMeans
56 73 69 55 81

1

0
5

10
15
20 DAC Default

E
xe

cu
tio

n
tim

e(
s)

-lo

g2
sc

al
e

PageRank KMeans Bayes NWeight Wordcount Terasort

56 73 69 55 81 13.7 12 13 23 39 41 36 32 32 32 78 45 52 89

1

AVG

30.3
1.5 1.9 7.6 6.4 5 2.6 2.5 2.5 2.7 2.9 2.2

(a)

0
200
400
600
800

1000
1200 DAC RFHOC Expert

E
xe

cu
tio

n
tim

e(
s)

(b)

Figure 12. Speedup of DAC over default configurations, RFHOC and the expert approach for all programs PageRank(PR),
Bayes(BA), WordCount(WC), TeraSort(TS), KMeans(KM), and NWeight(NW). The D1,..,D5 of each program correspond to the
input datasets listed from the left to the right by Table 1 for each program.

need 48, 56, and 57 iterations respectively to find the best
optimizations while other programs need 64 iterations. This
implies different optimization costs for different programs.
One may think that it is unnecessary to employ perfor-

mance models but instead to use real executions to search the
optimal configuration for a Spark program by GA because
it converges at most 64 iterations. Unfortunately, this is im-
practical for programs with relatively large input datasets
because the real execution may take long time to finish. For
example, TS with 50 GB of input dataset and a randomly
generated configuration takes 16 minutes to complete its
execution on our experimental cluster. In contrast, our per-
formance model only takes several milliseconds to predict
the execution time of TS with the same input dataset and
configuration.

5.6 Speedup
Figure 12 shows the speedups of the 30 program-input pairs
with DAC over default configurations and the RFHOC ap-
proach [4] . We reimplement RFHOC, the state-of-the-art
technique for Hadoop in the context of Spark for a fair com-
parison. As shown in Figure 12(a), DAC dramatically im-
proves the performance of the 30 program-input pairs with
default configurations by a factor of 30.4× on average and
up to 89×. This indicates that the default configurations
of Spark programs make them far from optimal. The rea-
son is that the default configurations do not consider the
characteristics of programs, especially when the size of in-
put datasets is very large. For example, the default value of
spark.executor.memory is 1024 MB. This may work well
for programs with small input datasets such as WC with 5
GB of input dataset. However, when the input dataset be-
comes large(e.g., 160 GB), this default value causes a lot of
out-of-memory failures, forcing Spark to rerun some tasks
many times and in turn take a long time to complete the
program execution.
As shown in Figure 12(b), DAC also significantly outper-

forms RFHOC. The speedup of DAC over RFHOC is 1.6×

on average and up to 3.3×. The reason is that the RFHOC
does not consider the significant impact of the size of in-
put datasets on finding the optimal configurations for IMC
programs. Moreover, RFHOC employs random forest (RF) to
build the performance models, which we show the models
are not accurate in Section 2.2.2.

We further compare the performance tuned byDAC against
that tuned by an expert. To perform this study, we manually
tune the performance of the experimented Spark programs
according to the tuning guide released by the Spark and
Cloudera team [16, 43], which we call expert approach. The
speedup of DAC over the expert approach is 2.99× on aver-
age and up to 16× as shown in Figure 12 (b). Therefore, the
manual tuning indeed improves the default configuration
but is still less effective than DAC. We believe it is due to two
key limitations of a manual expert approach. First, the recom-
mendations [16, 43] can not adapt to different programs. For
example, a recommendation suggests 2-3 tasks per CPU cores
in a cluster but this is not always true, especially for CPU-
intensive workloads like WC, since multiple tasks share the
same core will increase the contention for shared resources.
Second, some recommendations are qualitative rather than
quantitative. For example, if the Old Generation memory of
JVM, that contains the objects that are long lived and sur-
vived after many rounds of minor garbage collection [34],
is close to be full, the recommendation suggests lowering
spark.memory.fraction, but does not suggest how much.

We also report that the geometric mean speedups of DAC
over configurations by default, expert, and RFHOC are 15.4×,
2.3×, and 1.5×, respectively.

5.7 Overhead
We now report the overhead of DAC including the times
used to collect training data, train performance models, and
search optimum configurations. Table 3 shows the results.
The unit for the time used for collecting data is hour, for
model training is second, and for searching optimal configu-
ration is minute. As can be seen, collecting data incurs the

highest cost, — 70.3 hours on average and up to 92 hours.
While it seems long, it is a one-time cost and is still attractive
compared to manually configuration. It is important to re-
member that the targets of DAC are the iterative applications
which usually repeatedly run in data centers for months or
even longer. In this usage scenario, this high one-time cost is
amortized with a very large number of runs. Therefore, the
additional cover per run is very low.

5.8 Detailed Analysis: KM & TS
Finally, We provide a detailed analysis for KM and TS to
gain deeper insights. Figure 13 shows the execution times
of the five stages of KM. From the results, we see a num-
ber of interesting observations. First, DAC and RFHOC both
significantly reduce the execution time of KM. The perfor-
mance gain is larger with larger input dataset. Second, DAC
does not show significant improvement over RFHOC when
the size of input datasets is small, as shown Figure 13 (a).
However, when the input dataset is getting large, DAC out-
performs RFHOC significantly, see Figure 13 (b) and (c). This
is because DAC takes the effects of the size of input datasets
into account when optimizing configurations while RFHOC
does not. Thus, DAC could choose the proper configuration
parameters with different data sizes. Third, both DAC and
RFHOC significantly reduce the execution time of StageC
that iteratively performs data aggregation and collection but
DAC achieves more reduction than RFHOC, which is the
primary reason why DAC significantly improves the per-
formance of KM. In addition, DAC also reduces more time
for the StageA and StageD than RFHOC but not that much
for StageC. This is because the execution time of StageA
and StageD is much shorter than that of StageC. Actually,
we observe the similar ratios of reduced times to the total
execution times of StageA, StageD, and StageC, respectively.
This indicates that adjusting the configurations according to
the size of input datasets significantly helps one to reduce
the execution time of a program.

Figure 13 (d) and (e) shows that why DAC can reduce the
execution time of KMwith default configuration and RFHOC.
As can be seen, DAC significantly reduces the garbage collec-
tion time nomatter when KM runswith default configuration
or with the RFHOC produced configuration. The larger input
dataset, the more time can be saved by DAC.

Figure 14 shows the execution time comparison of Stage2
of TSwhich represents another application pattern: one stage

Table 3. Time Cost.

Workload Collecting(h) Modeling(s) Searching(m)

KMeans 92 10 7
Bayes 60 11 9

PageRank 67 9 10
TeraSort 68 11 8

WordCount 82 12 7
NWeight 53 12 9

0

50

100

150

200

250

d
e
fa

u
lt

R
F

H
O

C

D
A

C

E
x
ec

u
ti

o
n

 t
im

e(
s)

(a)D1

stage1

shuffle

sort

reduce

write

0

200

400

600

800

1000

1200

d
e
fa

u
lt

R
F

H
O

C

D
A

C

E
x
ec

u
ti

o
n

 t
im

e(
s)

(b)D3

SA SBstage1

shuffle

sort

reduce

write

0

200

400

600

800

1000

1200

d
efa

u
lt

R
F

H
O

C

D
A

C

E
x
ec

u
ti

o
n

 t
im

e(
s)

(c)D5

SA

SB

shuffle

sort

reduce

write

stageA

stageB

stageC

stageD

stageE

0

20

40

60

80

D1 D2 D3 D4 D5

default DAC

G
C

 t
im

e(
s)

(d)

0

0.5

1

1.5

2

D1 D2 D3 D4 D5

DAC RFHOC

G
C

 t
im

e(
s)

(e)

Figure 13. Performance of stages for KM with default con-
figuration, RFHOC, and DAC. StageA - reading input data;
StageB - taking samples; StageC - iteratively aggregating and
collecting data; StageD - collecting results; StageE - summa-
rizing results. D1,...,D5 represent the 5 input datasets from
the smallest to the largest. GC - garbage collection.

TS-Time
input-1 input-2 input-3 input-4 input-5

stage-1-default 20 26 51 102 126 60m 0 1 16 0.8 300 0 1 1 1010 1.65 0.64 1 122 0 0 64 28 0 0 14 100 6 11 7680 7168 0.9 250 250 7000 1200 3 330 0 1 36 3 47 0 1 150
stage-2-default 1020 3540 3240 4320 11880
stage-1-RFHOC 11 12 9 12 11 ts-10 124m 1 0 32 0.4 300 0 1 0 210 4 0.75 1 62 1 1 128 54 1 1 56 84 9 3 5632 10752 0.05 200 150 9000 4500 5 80 1 4 32 6 44 0 1 670
stage-2-RFHOC 19 90 138 276 420 ts-20 92m 1 1 40 0.8 1000 1 0 1 310 1.45 0.38 0 106 1 2 52 18 0 0 10 58 2 1 4096 7168 1 400 200 4000 4800 6 440 1 2 6 5 40 0 1 630
stage-1-DAC 5 6 4 6 10 ts-30 14m 1 1 60 0.8 200 0 0 1 510 3.85 0.47 1 92 1 0 118 42 0 1 128 94 8 6 3072 10752 1 150 350 7000 700 1 240 0 5 24 4 42 1 1 210
stage-2-DAC 21 45 72 90 120 ts-40 96m 1 1 10 0.95 900 1 0 0 310 2.9 0.4 0 72 0 1 76 16 0 1 62 52 2 7 7680 9216 0.65 250 200 9000 3300 7 430 0 2 2 5 44 0 0 670

ts-50 112m 1 1 58 0.8 100 0 0 0 810 1.8 0.51 0 104 0 1 30 118 1 0 60 32 4 5 9216 9216 0.7 450 450 5000 4000 4 490 0 9 34 6 49 1 1 1000
TS-GC

input-1 input-2 input-3 input-4 input-5
stage2-default 306 2040 900 1200 8640 km-4 112m 0 1 110 0.7 400 1 1 1 810 2.6 0.15 0 12 0 2 2 104 1 1 26 24 8 10 5120 5120 0.5 450 500 2000 900 1 40 1 4 10 3 32 1 1 710
stage2-RFHOC 1 10 34 102 210 km-6 122m 0 1 26 0.95 800 0 0 0 210 3.85 0.6 0 36 1 0 14 122 1 1 8 40 2 11 2560 4608 0.8 150 100 10000 1300 6 30 1 6 20 3 9 1 1 160
stage2-DAC 1 4 10 15 25 km-7 80m 1 1 82 0.9 400 0 0 0 410 2.2 0.88 1 28 0 1 16 54 0 0 72 110 4 7 5120 4096 0.7 500 300 9000 4000 1 410 1 4 6 7 13 1 1 800

km-8 82m 0 1 44 0.9 800 1 1 1 310 2.1 0.39 1 8 0 0 100 118 0 0 62 58 7 5 8704 5120 0.7 450 400 5000 1000 7 190 0 3 2 3 35 1 1 310
km-9 10 1 1 36 0.6 600 0 1 1 710 3.15 0.29 0 100 0 1 76 112 1 1 50 56 3 5 11264 4608 0.55 350 400 7000 1700 2 430 0 6 10 4 40 0 1 350

KM-Time
input-1 input-2 input-3 input-4 input-5

stage-1-default 84 132 138 143 130
stage-2-3-default 34 16 32 35 36
stage-4-13-default 52 62 620 620 300 68m 1 0 94 0.85 100 1 0 0 610 3.3 0.72 0 114 0 1 30 14 1 1 82 84 5 4 8704 5120 0.85 300 300 9000 1400 5 440 0 10 34 3 40 1 1 190
stage-14-17-default 33 38 220 230 30
stage-18-default 3 3 3 3 3
stage-1-RFHOC 43 40 78 66 88
stage-2-3-RFHOC 5 9 7 7 13
stage-4-13-RFHOC 38 55 89 88 99
stage-14-17-RFHOC 28 37 69 54 80 D1 D2 D3 D4 D5
stage-18-RFHOC 3 3 5 5 5 default 1020 3540 3240 4320 11880
stage-1-DAC 48 41 46 45 60 RFHOC 19 90 138 276 420
stage-2-3-DAC 4 4 7 5 7 DAC 21 45 72 90 120
stage-4-13-DAC 36 50 62 60 68
stage-14-17-DAC 30 39 41 54 55 default 9.99435 11.7895 11.6618 12.0768 13.5362
stage-18-DAC 3 4 5 4 5 RFHOC 4.24793 6.49185 7.10852 8.10852 8.71425

DAC 4.39232 5.49185 6.16993 6.49185 6.90689
KM-GC

input-1 input-2 input-3 input-4 input-5
stage-4-13-default 3 3 8 13 60 TS-GC
stage-4-13-RFHOC 0.7 0.9 1 1.2 1.5 input-1 input-2 input-3 input-4 input-5
stage-4-13-DAC 0.6 0.5 0.6 0.7 0.7 stage2-default306 2040 900 1200 8640

stage2-RFHOC 1 10 34 102 210
stage2-DAC 1 4 10 15 25

D1 D2 D3 D4 D5
default 8.25739 10.9944 9.81378 10.2288 13.0768
RFHOC 0 3.32193 5.08746 6.67243 7.71425
DAC 0 2 3.32193 3.90689 4.64386

0
2
4
6
8
10
12
14
16

D1 D2 D3 D4 D5

default RFHOC DAC

St
a
ge
2
ti
me
(s
)
-l
o
g
2

0
2
4
6
8
10
12
14

D1 D2 D3 D4 D5

default RFHOC DAC

G
C
ti
me
(s
)
-l
o
g
2
sc
al
e

Figure 14. Performance of Stage2 for TS with default con-
figuration, RFHOC, and DAC. GC — garbage collection.

dominates the execution time of the whole application. TS
only contains two stages: Stage1 and Stage2. Stage1 takes 10%
of the whole execution time while Stage2 takes 90% of that.
We can see that, DAC also significantly outperforms RFHOC
and the default configuration for TS (the left of Figure 14).
Similar to KM, the time reduction for the garbage collection
is the main reason for the performance improvement of TS.
In addition, when the size of input dataset increases, the
garbage collection time of applications with DAC increases
more slowly than that with RFHOC and default configura-
tions.

6 Related Work
In this section, we describe the configuration auto-tuning
studies related to Spark. The Spark official web site provides a
performance tuning guide for Spark programs [43]. Although
this guide is helpful, it is a manual approach which requires
developers have a deep understanding about Spark. In con-
trast, DAC is an automated tool. Juwei et al. [38] compared
the MapReduce with Spark and provided interesting insights.
However, this work does not propose a solution to improve
the performance of Spark programs while our DAC does. Kay
et al. [33] propose a block analysis approach to systematically
analyze the bottleneck of Spark programs using two SQL
workloads. While this work provides a good performance
analysis tool and reveal some bottlenecks of the SQL-like
programs, it does not optimize general Spark programs such
as those implementing machine learning algorithms. In con-
trast, DAC provides an approach to automatically optimize
the performance of general Spark programs.
Yao et al. [61] tried to improve the performance of Spark

programs by adaptively tuning the serialization techniques.

DAC is different from this work since it improves perfor-
mance by automatically adjusting a large set of Spark config-
uration parameters, instead of only the sterilization aspect.
Guolu et al. [49] propose to tune Spark configurations by
using regression tree, which is close to our work. However,
simply using regression tree model can not tackle the high
dimensional configuration issue of Spark. Their work only
uses 16 configuration parameters and improves performance
only by 36%. Tatsuhiro et al. [6] carefully characterize the
memory, network, JVM, and garbage collection behavior and
in turn optimize the performance of Spark workloads. How-
ever, this work only focuses on TPC-H workloads while our
DAC focuses on general-purpose Spark applications.

Another class of relatedworks attempt to optimize the con-
figurations of MapReduce/Hadoop applications. Herodotou
et al. [12–14] propose to build analytical performance mod-
els first and then leverage genetic algorithm to search the
optimum configurations for Hadoop workloads. Adem et
al. [10] suggest using a statistic reasoning technique named
response surface (RS) to construct performance models for
MapReduce/Hadoop programs and then implement the mod-
els in a MapReduce simulator. Zd.Bei et al. [4] propose a
random forest based approach to automatically tune the con-
figurations of Hadoop programs. These studies work well for
Hadoop programs but not Spark. We have demonstrated that
the optimal configurations of Spark applications are more
sensitive to input data size compared to Hadoop programs,
implying that the configuration auto-tuning techniques for
Hadoop workloads can not be easily extended to Spark ap-
plications.

Moreover, there aremany studies related to optimizeMapRe-
duce/Hadoop applications from Hadoop runtime optimiza-
tion [23, 28, 29, 31, 39, 50] and job scheduling [1, 24] aspects.
Our work does not optimize programs from these aspects
but focuses on tuning configurations, which can be comple-
mentary to these approaches.
System configuration may also cause errors and existing

studies focus on eliminating or reducing configuration er-
rors. Xu et al. [55] present a comprehensive survey on how
to handle the system configuration errors. Yin et al. [58] per-
form a characterization of many configuration errors in com-
mercial systems and they reveal that the parameter-related
configuration is very important. Xu et al. [54] argue that
software developers should take an active role in handling
misconfigurations as end users do. They also provide a tool
named SPEX to automatically infer configuration require-
ments from software source code. Zhang et al. [60] develop
a framework and tool called EnCore to automatically de-
tect software misconfigurations. Huang et al. [15] propose a
framework named ConfValley to easily, systematically, and
efficiently validate the configuration of cloud-scale systems.
Finally, Xu et al. [53] investigate thousands of customers of

one commercial storage system and two open-source sys-
tems about system configurations. They reveal a very inter-
esting insight: usually a number of configuration parameters
are not mandatory and can be safely removed. Unlike these
studies focusing on configuration errors, DAC focuses on
improving performance via configuration tuning.

Resource management related configuration optimization
of cloud computing platforms is yet another class of related
work. For instance, Paragon [8] is a machine learning based
approach to schedule the tasks in heterogeneous datacenters.
Later, Quasar [9] is proposed to manage a cluster to achieve
resource efficiency and to guarantee QoS. Liu et al. [27] em-
ploy a generic algorithm based parameter tuning to improve
the performance of interactive mobile applications in cloud.
Ansel et al. [2] propose to build an independent framework to
auto-tune performance for different programs. DAC differs
from these studies that DAC focuses on tuning configuration
parameters.

7 Conclusion
This paper proposes DAC, a datasize-aware auto-tuning ap-
proach to efficiently identify the high dimensional configura-
tion for a given IMC program to achieve optimal performance
on a given cluster. DAC is a significant advance over the state-
of-the-art because it can take the size of input dataset and
41 configuration parameters as the parameters of the perfor-
mance model for a given IMC program, — unprecedented in
previous work. To evaluate DAC, we use six typical Spark
programs, each with five different input dataset sizes. The
evaluation results show that DAC improves the performance
of six typical Spark programs, each with five different input
dataset sizes compared to default configurations by a factor
of 30.4× on average and up to 89×. We demonstrate that
DAC significantly outperforms RFHOC by a geometric mean
speedup of 1.5×, and even configurations determined by an
expert by 2.3× (geometric mean speedup).

Acknowledgments
We thank the reviewers for their thoughtful comments and
suggestions. This work is supported by the National Key
Research and Development Program of China under no.
2016YFB1000204; NSFC under grants no. 61672511, 61702495;
NSF-CCF-1657333, NSF-CCF-1717754, NSF-CNS-1717984, and
NSF-CCF-1750656. Outstanding technical talent program
of CAS. Additional support is provided by the major sci-
entific and technological project of Guangdong province
(2014B010115003), Shenzhen Technology Research Project
(JSGG20160510154–636747), and Key technique research on
Haiyun Data System of NICT, CASwith XDA06010500. Zhen-
dong Bei is the corresponding author. Contact: Zhibin Yu
(zb.yu@siat.ac.cn), Zhendong Bei (zd.bei@siat.ac.cn).

References
[1] Faraz Ahmad, Srimat T Chakradhar, Anand Raghunathan, and TN

Vijaykumar. 2014. ShuffleWatcher: Shuffle-aware Scheduling in Multi-
tenant MapReduce Clusters. In Proceedings of USENIX Annual Technical
Conference (ATC) (ATC’14). USENIX Association, Philadelphia, PA, 1–
12.

[2] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-
Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.
2014. OpenTuner: An Extensible Framework for Program Autotuning.
In Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques (PACT) (PACT’14). ACM Press, Edmonton,
Canada, 303–316.

[3] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin,
Ali Ghodsi, and Matei Zaharia. 2015. Spark SQL: Relational Data
Processing in Spark. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. 1383–1394.

[4] Zhendong Bei, Zhibin Yu, Huiling Zhang, Wen Xiong, Chengzhong
Xu, Lieven Eeckhout, and Shengzhong Feng. 2016. RFHOC: A Random-
Forest Approach to Auto-Tuning Hadoop’s Configuration. IEEE Trans-
actions on Parallel and Distributed Systems 27, 5 (June 2016), 1470–1483.
https://doi.org/10.1109/TPDS.2015.2449299

[5] Dazhao Cheng, Jia Rao, Yanfei Guo, and Xiaobo Zhou. 2014. Improv-
ing MapReduce Performance in Heterogeneous Environments with
Adaptive Task Tuning. In Proceedings of the 15th International Middle-
ware Conference (Middleware) (Middleware’14). USENIX Association,
Bordeaux, France, 97–108.

[6] Tatsuhiro Chiba and Tamiya Onodera. 2015.Workload Characterization
and Optimization of TPC-H Queries on Apache Spark. Technical Report.
IBM Research - Tokyo, IBM Japan, Ltd.

[7] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified
Data Processing on Large Clusters. In Proceedings of the International
Conference on Operating Systems Design and Implementation (OSDI)
(OSDI’12). USENIX Association, San Francisco, CA, 137–150.

[8] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-
Aware Scheduling for Heterogeneous Datacenters. In Proceedings of the
18th International Conference on Architecture Support for Programming
Languages and Operating Systems (ASPLOS) (ASPLOS’13). ACM Press,
Houston, TX, 77–88.

[9] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-
Efficient and QoS-Aware Cluster Management. In Proceedings of the
19th International Conference on Architecture Support for Programming
Languages and Operating Systems (ASPLOS) (ASPLOS’14). ACM Press,
Salt Lake City, UT, 1–12.

[10] Adem Efe Gencer, David Bindel, Emin Gun Sirer, and Robbert van
Renesse. 2015. Configuring Distributed Computations Using Response
Surfaces. In Proceedings of the annual ACM/IFIP/USENIX Middleware
conference (Middleware) (Middleware’15). USENIX Association, Van-
couver, Canada, 235–246.

[11] Robert Gentleman and Ross Ihaka. 2016. The R Project for Statistical
Computing. (Sept. 2016). Retrieved Januray 20, 2018 from https:
//www.r-project.org/

[12] Herodotos Herodotou. 2011. Hadoop Performance Models. Technical
Report CS-2011-05. Duke University, Durham, NC.

[13] Herodotos Herodotou and Shivnath Babu. 2011. Profiling, What-
If Analysis, and Cost-Based Optimization of MapReduce programs.
Journal of VLDB Endowment 4, 11 (Jan. 2011), 1111–1122. https:
//doi.org/10.1.1.222.8262

[14] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang
Dong, Fatma Bilgen Cetin, and Shivnath Babu. 2011. Starfish: A Self-
tuning System for Big Data Analytics. In Proceedings of the Biennial
International Conference on Innovative Data Systems Research (CIDR’11).
CIDRDB, 261–272.

[15] Peng Huang, William J. Bolosky, Abhishek Singh, and Yuanyuan Zhou.
2015. ConfValley: A Systematic Configuration Validation Framework
for Cloud Services. In Proceedings of the ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems (EuroSys) (EuroSys’15). USENIX
Association, Bordeaux, France, 1–16.

[16] Cloudera Inc. 2016. Tuning Spark Applications. (June 2016). Retrieved
Januray 20, 2018 from https://www.cloudera.com/documentation/
enterpr-ise/5-4-x/topics/admin_spark_tuning.html

[17] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fet-
terly. 2007. Dryad: Distributed Data-Parallel Programs form Sequential
Building Blocks. In Proceedings of the ACM SIGOPS/EuroSys European
Conference on Computer Systems (EuroSys) (EuroSys’07). USENIX Asso-
ciation, Lisbon, Portugal, 59–72.

[18] Manoj Kumar, Mohammad Husian, Naveen Upreti, and Deepti Gupta.
2010. Genetic algorithm: Review and Application. International Journal
of Information Technology and Knowledge Management 2, 2 (Jan. 2010),
451–454.

[19] Palden Lama and Xiaobo Zhou. 2012. AROMA: Automated Resource
Allocation and Configuration of MapReduce Environment in the Cloud.
In Proceedings of the 9th ACM International Conference on Autonomic
Computing (ICAC) (ICAC’12). ACM Press, San Jose, CA, 63–72.

[20] Jacek Laskowski. 2016. Mastering Apache Spark. (Jan. 2016). Re-
trieved Januray 20, 2018 from https://jaceklaskowski.gitbooks.io/
mastering-apache-spark/content/spark-dagscheduler-stages.html

[21] Benjamin C. Lee and David Brooks. 2010. Applied Inference: Case Stud-
ies in Micro-architectural Design. ACM Transactions on Architecture
and Code Optimization (TACO) 7, 2 (Sept. 2010), 8:1–8:35.

[22] Roger J Lewis. 2000. An introduction to classification and regression
tree (CART) analysis. In Proceedings of Annual Meeting of the Society
for Academic Emergency Medicine. San Francisco, CA, 1–14.

[23] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica.
2014. Tachyon: Reliable, memory speed storage for cluster computing
frameworks. In Proceedings of the ACM Symposium on Cloud Computing
(SoCC) (SoCC’14). ACM Press, Seattle, WA, 1–15.

[24] Shen Li, Shaohan Hu, Shiguang Wang, Lu Su, Tarek Abdelzaher, In-
dranil Gupta, and Richard Pace. 2014. Woha: Deadline-aware map-
reduce workflow scheduling framework over hadoop clusters. In Pro-
ceedings of the 2014 IEEE 34th International Conference on Distributed
Computing Systems (ICDCS) (ICDCS’14). IEEE, Madrid, Spain, 93–103.

[25] Guangdeng Liao, Kushal Datta, and Theodore L Willke. 2013. Gunther:
Search-Based Auto-Tuning of MapReduce. In Proceedings of Euro-Par
2013 Parallel Processing (EuroPar’13). Springer, Berlin, Heidelberg, 406–
419.

[26] Luo Lie. 2010. Heuristic Artificial Intelligent Algorithm for Genetic
Algorithm. Key Engineering Materials 439 (May 2010), 516–521.

[27] Weiqing Liu, Jiannong Cao, Lei Yang, Lin Xu, Xuanjia Qiu, and Jing
Li. 2017. AppBooster: Boosting the Performance of Interactive Mobile
Applications with Computation Offloading and Parameter Tuning.
IEEE Transactions on Parallel and Distributed Systems 28, 6 (June 2017),
1593–1606.

[28] Zhaolei Liu and TS Eugene Ng. 2017. Leaky Buffer: A Novel Abstrac-
tion for Relieving Memory Pressure from Cluster Data Processing
Frameworks. IEEE Transactions on Parallel and Distributed Systems 28,
1 (March 2017), 128–140. https://doi.org/10.1109/TPDS.2016.2546909

[29] Martin Maas, Tim Harris, Krste Asanovic, and John Kubiatowicz. 2015.
Trash Day: Coordinating Garbage Collection in Distributed Systems.
In Proceedings of the 15th USENIX Workshop on Hot Topics in Operating
Systems (HotOS) (HotOS XV). USENIX Association, Kartause Ittingen,
Switzerland, 1–6.

[30] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde,
Sean Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh,
Matei Zaharia, and Ameet Talwalkar. 2016. MLlib: Machine Learning
in Apach Spark. The Journal of Machine Learning Research 17, 1 (Jan.

https://doi.org/10.1109/TPDS.2015.2449299
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1.1.222.8262
https://doi.org/10.1.1.222.8262
https://www.cloudera.com/documentation/enterpr-ise/5-4-x/topics/admin_spark_tuning.html
https://www.cloudera.com/documentation/enterpr-ise/5-4-x/topics/admin_spark_tuning.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-dagscheduler-stages.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-dagscheduler-stages.html
https://doi.org/10.1109/TPDS.2016.2546909

2016), 1–7.
[31] KhanhNguyen, Lu Fang, Guoqing Xu, BrianDemsky, Shan Lu, Sanazsa-

dat Alamian, and Onur Mutlu. 2016. Yak: A high-performance big-
data-friendly garbage collector. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation (OSDI)
(OSDI’16). USENIX Association, Savannah, GA, 349–365.

[32] Andrew Or and Josh Rosen. 2016. Unified Memory Manage-
ment in Spark 1.6. (Jan. 2016). Retrieved Januray 20,
2018 from https://issues.apache.org/jira/secure/attachment/12765646/
unified-memory-management-spark-10000.pdf

[33] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and
Byung-Gon Chun. 2015. Making Sense of Performance in Data An-
alytics Frameworks. In Proceedings of the 12nd USENIX Symposium
on Networked Systems Design and Implementation (NSDI) (NSDI’15).
USENIX Association, Oakland, CA, 293–307.

[34] Pankaj. 2017. Java (JVM) Memory Model - Memory
Management in Java. (March 2017). Retrieved Ja-
nuray 20, 2018 from http://www.journaldev.com/2856/
java-jvm-memory-model-memory-management-in-java

[35] Simone Pellegrini, Radu Prodan, and Thomas Fahringer. 2012. Tuning
MPI Runtime Parameter Setting for High Performance Computing.
In Proceedings of IEEE International Conference on Cluster Computing
Workshops. IEEE Computer Society, Washington, DC, 213–221.

[36] Zujie Ren, Xianghua Xu, Jian Wan, Weisong Shi, and Min Zhou. 2012.
Workload Characterization on a Production Hadoop Cluster: A Case
Study on Taobao. In Proceedings of IEEE International Symposium on
Workload Characterization (IISWC) (IISWC’12). IEEE Computer Society,
San Diego, CA, 1–11.

[37] Anooshiravan Saboori, Guofei Jiang, and Haifeng Chen. 2008. Au-
totuning Configurations in Distributed Systems for Performance Im-
provements using Evolutionary Strategies. In Proceedings of the 28th
International Conference on Distributed Computing Systems (ICDCS)
(ICDCS’08). IEEE Computer Society, Beijing, China, 769–776.

[38] Juwei Shi, Yunjie Qiu, Umar Farooq Minhas, Limei Jiao, Chen Wang,
Berthold Reinwald, and FatmaOzcan. 2015. Clash of the Titans: MapRe-
duce vs. Spark for Large Scale Data Analytics. In Proceedings of the 42nd
International Conference on Very Large Data Bases (VLDB Endowment),
Vol.8, No.13 (VLDB’15), Vol. 8. Hawai’i, USA, 2110–2121.

[39] Xueyuan Su, Garret Swart, Brian Goetz, Brian Oliver, and Paul Sandoz.
2014. Changing engines in midstream: A java stream computational
model for big data processing. Proceedings of the VLDB Endowment 7,
13 (Sept. 2014), 1343–1354.

[40] Apache HBase Team. 2016. Apache HBase. (June 2016). Retrieved
Januray 20, 2018 from http://hadoop.apache.org/hbase/

[41] Aparch Spark Team. 2016. Aparch Spark. (March 2016). Retrieved
Januray 20, 2018 from http://spark.apache.org/

[42] Aparch Spark Team. 2016. Spark Configuration. (May 2016). Re-
trieved Januray 20, 2018 from http://spark.apache.org/docs/latest/
configuration.html

[43] Aparch Spark Team. 2016. Tuning Spark. (June 2016). Retrieved
Januray 20, 2018 from http://spark.apache.org/docs/latest/tuning.html

[44] Spark Streaming Team. 2016. Spark Streaming. (March 2016). Re-
trieved Januray 20, 2018 from http://spark.apache.org/streaming/

[45] White Tom. 2012. Hadoop: The definitive guide. O’Reilly Media, Inc.
[46] Virginia Torczon and Michael W Trosset. [n. d.]. From Evolutionary

Operation to Parallel Direct Search: Pattern Search Algorithms for
Numerical Optimization. Computing Science and Statistics 29 ([n. d.]).

[47] Inc. TypeSafe. 2015. Apache Spark Survey from Typesafe. (Jan.
2015). Retrieved Januray 20, 2018 from https://dzone.com/articles/
apache-spark-survey-typesafe-0

[48] Md. Wasi ur Rahman, Nusrat Sharmin Islam, Xiaoyi Lu, Dipti Shankar,
and Dhabaleswar K. Panda. 2016. MR-Advisor: A Comprehensive Tun-
ing Tool for Advising HPC Users to Accelerate MapReduce Applica-
tions on Supercomputers. In Proceedings of 2016 IEEE 28th International

Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD’16). IEEE Computer Society, Los Angeles, CA, 198–205.

[49] Guolu Wang, Jungang Xu, and Ben He. 2016. A Novel Method for
Tuning Configuration parameters of Spark Based onMachine Learning.
In Proceedings of the 2016 IEEE 18th International Conference on High
Performance Computing and Communications (HPCC) (HPCC’16). IEEE
Computer Society, Sydney, Australia, 586–593.

[50] Jingjing Wang and Magdalena Balazinska. 2016. Toward elastic mem-
ory management for cloud data analytics. In Proceedings of the 3rd
ACM SIGMOD Workshop on Algorithms and Systems for MapReduce
and Beyond. ACM Press, San Francisco, CA, 1–7.

[51] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica.
2013. GraphX: A Resilient Distributed Graph System on Spark. In Pro-
ceedings of the First International Workshop on Graph Data Management
Experimence and System. 1–5.

[52] Wen Xiong, Zhibin Yu, Lieven Eeckhout, Zhengdong Bei, Fan Zhang,
and Chengzhong Xu. 2015. SZTS: A Novel Big Data Transportation
System Benchmark Suite. In Proceedings of the 44th International Con-
ference on Parallel Processing (ICPP) (ICPP’15). IEEE, Beijin, China,
819–828.

[53] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasu-
pathy, and Rukma Talwadker. 2015. Hey, You Have Given Me Too
Many Knobs. In Proceedings of the 10th Joint Meeting on Foundations
of Software Engineering. ACM Press, Bergamo, Italy, 307–319.

[54] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng,
Ding Yuan, Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do Not
Blame Users for Misconfigurations. In Proceedings of the ACM Sym-
posium on Operating Systems Principles (SOSP) (SOSP’13). USENIX
Association, Farmington, Pennsylvania, 244–259.

[55] Tianyin Xu and Yuanyuan Zhou. 2015. Systems Approaches to Tack-
ling Configuration Errors: A Survey. Comput. Surveys 47, 4 (July 2015),
1–41.

[56] Tao Ye and Shivkumar Kalyanaraman. [n. d.]. A Recursive Random
Search Algorithm for Large-Scale Network Parameter Configuration.
ACM SIGMETRICS Performance Evaluation Review 31, 1 ([n. d.]).

[57] Nezih Yigitbasi, Theodore L. Willke, Guangdeng Liao, and Dick H. J.
Epema. 2013. Towards Machine Learning-Based Auto-tuning of
MapReduce. In Proceedings of the 21st International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS) (MASCOTS’13). IEEE Computer Society, San
Francisco, CA, 11–20.

[58] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N.
Bairavasundaram, and Shankar Pasupathy. 2011. An Empirical Study
on Configuration Errors in Commercial and Open Source Systems. In
Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP) (SOSP’11). USENIX Association, Cascais, Portugal, 159–172.

[59] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster Computing withWorking
Sets. In Proceedings of the 2nd USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud) (HotCloud’10). USENIX Association, Boston,
MA, 1–8.

[60] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu
Ge, Vasanth Bala, Tianyin Xu, and Yuanyuan Zhou. 2014. EnCore: Ex-
ploiting System Environment and Correlation Information for Miscon-
figuration Detection. In Proceedings of the 19th International Conference
on Architecture Support for Programming Languages and Operating Sys-
tems (ASPLOS) (ASPLOS’14). ACM Press, Salt Lake City, UT, 687–700.

[61] Yao Zhao, Fei Hu, and Haopeng Chen. 2016. An Adaptive Tuning
Strategy on Spark Based on In-memory Computation Characteris-
tics. In Proceedings of the 18th International Conference on Advanced
Communication Technology (ICACT) (ICACT’16). PyeongChang, Korea
(South), 484–488.

https://issues.apache.org/jira/secure/attachment/12765646/unified-memory-management-spark-10000.pdf
https://issues.apache.org/jira/secure/attachment/12765646/unified-memory-management-spark-10000.pdf
http://www.journaldev.com/2856/java-jvm-memory-model-memory-management-in-java
http://www.journaldev.com/2856/java-jvm-memory-model-memory-management-in-java
http://hadoop.apache.org/hbase/
http://spark.apache.org/
http://spark.apache.org/docs/latest/configuration.html
http://spark.apache.org/docs/latest/configuration.html
http://spark.apache.org/docs/latest/tuning.html
http://spark.apache.org/streaming/
https://dzone.com/articles/apache-spark-survey-typesafe-0
https://dzone.com/articles/apache-spark-survey-typesafe-0

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The Spark Framework
	2.2 Motivation

	3 DAC Methodology
	3.1 Collecting Data
	3.2 Modeling Performance
	3.3 Searching Optimal Configuration
	3.4 Implementation

	4 Experimental Methodology
	4.1 Representative Programs
	4.2 Configuration Parameters

	5 Results and Analysis
	5.1 Determining ntrain
	5.2 Determining the lr, nt, and tc
	5.3 Model Accuracy
	5.4 Error Distribution
	5.5 Iteration Number of the GA
	5.6 Speedup
	5.7 Overhead
	5.8 Detailed Analysis: KM & TS

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

