
\qquad
Pre-AP Geometry: Spring Semester Final Exam Review
Multiple Choice
Identify the choice that best completes the statement or answers the question.
$-1 / 201$.
Given that two points on line m are $P(9,2)$ and $Q(-11,3)$, write a ratio expressing the slope of m.

$$
\frac{3-2}{-11-9}=\frac{1}{-20}
$$

19.5 2. The ratio of the side lengths of a quadrilateral is 4:3:4:7, and its perimeter is 117 meters. What is the length of the shortest side?

$$
\begin{gathered}
4 x+3 x+4 x+7 x=117 \quad x=6.5 \\
18 x=117
\end{gathered}
$$

$$
3(6.5)
$$

45 3. A tree is standing next to a 40 -foot high building. The tree has an 18 -foot shadow, while the building has a 16 -foot shadow. How tall is the tree, rounded to the nearest foot?

$$
\frac{40}{x}=\frac{16}{18} \Rightarrow x=45
$$

A
4. Given $\triangle A B C \sim \triangle J K L$, find the perimeter and area of $\triangle J K L$.

a. $P=42 \mathrm{ft}, A=40.5 \mathrm{ft}^{2}$
c. $P=18.7 \mathrm{ft}, A=9 \mathrm{ft}^{2}$
b. $\quad P=40.5 \mathrm{ft}, A=42 \mathrm{ft}^{2}$
d. $\quad P=9 \mathrm{ft}, A=18.7 \mathrm{ft}^{2}$

$$
\frac{12}{18}=\frac{28}{x}
$$

$$
12 x=504
$$

$$
\left(\frac{12}{18}\right)^{2}=\frac{18}{x}
$$

$$
\begin{aligned}
& \frac{144}{324}=\frac{18}{x} 144 x=5832 \\
& x=40.5
\end{aligned}
$$

$$
20 x+20=14 x-14
$$

$-5 \frac{2 / 3}{}$
5. $\frac{x+1}{x-1}=\frac{14}{20}$

Find x and the measures of the indicated parts.

6.

$A B$ and $B C$
(a.) $x=5, A B=14, B C=8$
b. $x=-1.6, A B=0.8, B C=1.4$
c. $x=5, A B=6, B C=2$
d. $x=-1.6, A B=7.2, B C=4.6$

The polygons are similar, but not necessarily drawn to scale. Find the values of x and y. 7.

$$
\begin{gathered}
x=9 \\
y=27
\end{gathered}
$$

$$
\begin{array}{ll}
\frac{x-1}{6}=\frac{16}{12} \quad \frac{16}{12}=\frac{y+1}{21} \\
12 x-12=96 & 12 y+12=336 \\
12 x=108 \quad x=9 \quad & 12 y=324 \\
y=27
\end{array}
$$

$x=20 \sqrt{8}$ Michele wanted to measure the height of her school's flagpole. She placed a mirror on the ground 48 feet from the flagpole, then walked backwards until she was able to see the top of the pole in the mirror. Her eyes were 5 feet above the ground and she was 12 feet from the mirror. Using similar triangles, find the height of the flagpole to the nearest tenth of a foot.

$$
\frac{5}{x}=\frac{12}{48} \quad x=20
$$

$$
\frac{x}{x+5}=\frac{x-2}{x+1}
$$

$$
x=8
$$

10.

$$
\frac{24}{x}=\frac{36}{12}
$$

$$
x=8
$$

$$
\frac{8.3}{6.7}=\frac{x}{11.6}
$$

Not drawn to scale
$x=8$ 12. Two ladders are leaning against a wall at the same angle as shown. How far up the wall does the shorter ladder reach?

$$
\frac{24}{x}=\frac{48}{16}
$$

$$
\begin{aligned}
\frac{4-x}{x} & =\frac{6}{5} \\
6 x & =20-5 x \\
11 x & =20 \\
x & =1.8
\end{aligned}
$$

(a. $1 \frac{9}{11}$
c. $2 \frac{1}{3}$
b. 2
d. 3
\forall_{P} 14. Write the tangent ratios for $\angle P$ and $\angle Q$.

$$
\text { Tank } \frac{20}{21}
$$

Not drawn to scale
a. $\tan P=\frac{29}{21} ; \tan Q=\frac{21}{29}$
c. $\tan P=\frac{21}{20} ; \tan Q=\frac{20}{21}$
b. $\tan P=\frac{20}{21} ; \tan Q=\frac{21}{20}$
d. $\tan P=\frac{29}{20} ; \tan Q=\frac{20}{29}$

Find the value of x. Round to the nearest tenth. 12.515.
$\cos 28=\frac{11}{x}$

$$
x=\frac{11}{\cos 28}
$$

$$
\sin 20=\frac{x}{18}
$$

$$
18 \sin 20=x
$$

Not drawn to scale

Not drawn to scale

Not drawn to scale
Not drawn to scale
18.

$44^{\circ} 19$

44

Not drawn to scale

$$
\sin ^{-1} \frac{7}{15}
$$

20. Find the value of w and then x. Round lengths to the nearest tenth and angle measures to the nearest degree.

a. $w=7.7, x=44$
b. $w=6.4, x=54$

$$
\begin{gathered}
\sin 50=\frac{\omega}{10} \\
10 \sin 50=\omega \\
\omega=7.7
\end{gathered}
$$

c. $\quad w=7.7, x=54$
d. $w=6.4, x=44$

Find the value of x. Round the length to the nearest tenth.
21.

Not drawn to scale
4 22. Find the geometric mean of the pair of numbers 2 and 8.

$$
\sqrt{2.8}
$$

B
23. Find x, y, and z.

a. $\quad x=5, y=5 \sqrt{2}, z=5 \sqrt{7}$

$$
\begin{aligned}
& \frac{x}{5}=\frac{5}{10} \\
& 10 x=25 \\
& x=2.5 \\
& \text { c. } x=3, y=4, z=\sqrt{153}
\end{aligned} \quad \frac{\frac{25}{2}}{y}=\frac{\frac{25}{2}}{5}
$$

b. $x=2.5, y=\frac{5 \sqrt{5}}{2}, z=5 \sqrt{5}$
24. Jessie is building a ramp for loading motorcycles onto a trailer. The trailer is 2.8 feet off of the ground. To avoid making it too difficult to push a motorcycle up the ramp, Jessie decides to make the angle between the ramp and the ground 15°. To the nearest hundredth of a foot, find the length of the ramp.
10.82

$$
\sin 15=\frac{2.8}{x} \quad x=\frac{2.8}{\sin 15}
$$

25. Use your calculator to find the angle measures $\sin ^{-1}(0.7), \cos ^{-1}(0.3)$, and $\tan ^{-1}(38.4)$ to the nearest tenth of a degree.
a. $\sin ^{-1}(0.7)=44.4^{\circ}, \cos ^{-1}(0.3)=72.5^{\circ}, \tan ^{-1}(38.4)=88.5^{\circ}$
b. $\sin ^{-1}(0.7)=0.8^{\circ}, \cos ^{-1}(0.3)=1.3^{\circ}, \tan ^{-1}(38.4)=1.5^{\circ}$
c. $\sin ^{-1}(0.7)=1.3^{\circ}, \cos ^{-1}(0.3)=0.8^{\circ}, \tan ^{-1}(38.4)=1.5^{\circ}$
d. $\sin ^{-1}(0.7)=72.5^{\circ}, \cos ^{-1}(0.3)=44.4^{\circ}, \tan ^{-1}(38.4)=88.5^{\circ}$

403 26. The largest Egyptian pyramid is 146.5 m high. When Rowena stands far away from the pyramid, her lin of sight to the top of the pyramid forms an angle of elevation of 20° with the ground. What is the horizontal distance between the center of the pyramid and Rowena? Round to the nearest meter.

$$
403=20^{\circ} x{ }^{\circ} \text { of the pyramid and Rowena? Round to the nearest meter. } \quad \operatorname{Tan} 20=\frac{146.5}{x} \quad x=\frac{146.5}{\operatorname{Tan} 20}
$$

27. Use a calculator to find the trigonometric ratios $\sin 123^{\circ}, \cos 95^{\circ}$, and $\tan 125^{\circ}$. Round to the nearest hundredth.
a. $\sin 123^{\circ}=-0.09, \cos 95^{\circ}=0.84, \tan 125^{\circ}=-1.43$
b. $\sin 123^{\circ}=-0.46, \cos 95^{\circ}=0.73, \tan 125^{\circ}=-0.78$
(c. $\sin 123^{\circ}=0.84, \cos 95^{\circ}=-0.09, \tan 125^{\circ}=-1.43$
d. $\sin 123^{\circ}=0.84, \cos 95^{\circ}=0.996194698092, \tan 125^{\circ}=-1.43$
13.8 28. Find $A B$. Round to the nearest tenth.

ABS \rightarrow Law of sines

$$
\frac{\sin 50}{12}=\frac{\sin 62}{x}
$$

201 29. A dam needs a supporting beam. The dam leans at an 80° angle and is 200 ft tall. If the base of the supporting beam is placed 75 feet from the base of the dam and the beam extends to the top of the dam, how long must the beam be?

$$
\begin{aligned}
& \text { SAL } \rightarrow \text { Law of os sines } \\
& a^{2}=b^{2}+c^{2}-2 b \cos A \\
& a^{2}=200^{2}+45^{2}-2(200)(-5) \cos 80 \\
& a^{2}=40415.6 \\
& \sqrt{a^{2}}=\sqrt{40415,6} a=2011
\end{aligned}
$$

30. Find x, y, and z.
a ord

a. $x \approx 13.7, y \approx 31.5, z \approx 37.5$
c. $x \approx 31.5, y \approx 37.5, z \approx 13.7$
b. $x \approx 37.5, y \approx 13.7, z \approx 31.5$
d. $x \approx 13.7, y \approx 31.5, z \approx 37.5$

A water slide is 400 yards long with a vertical drop of 36.3 yards. Find the angle of depression of the

32. A playground is situated on a triangular plot of land. Two sides of the plot are 175 feet long and they meet at an angle of 70°. For safety reasons, a fence is to be placed along the perimeter of the property. How much fencing material is needed?
Fencing:

SOS \rightarrow Law of cosine
$\left.a^{2}=175^{2}+175^{2}-21125\right)(128) \cos 70$
$a^{2}=40301.3$
$a=200,75$
33. Lack, Rachel, and Maddie are unraveling a huge ball of yarn to see how long it is. As they move away from each other, they form a triangle. The distance from Rack to Rachel is 3 meters. The distance from Rachel to Maddie is 2.5 meters. The distance from Maddie to Lack is 4 meters. Find the measures of the three angles in the triangle.

$$
\cos z=\frac{3^{2}+4^{2}-2,5^{2}}{2(3)(4)}
$$

SSS - Law of cosine

$$
\cos z=\frac{18,75}{24}=38,6
$$

$$
\cos m=\frac{4^{2}+2.5^{2}-3^{2}}{2(2.5)(4)}
$$

34. Find the perimeter and area of the parattefogram. Round to the nearest tenth if necessary.

$$
\begin{aligned}
& \cos m=\frac{13,25}{2(2,5)(4)} \\
& \text { nearest tenth if neceservy }
\end{aligned} \quad \mathrm{m}=48,5
$$

$$
\cos ^{-1} \frac{13.25}{20} \approx 49^{\circ}
$$

a. $88 \mathrm{~mm} ; 415.7 \mathrm{~mm}^{2}$
c. $44 \mathrm{~mm} ; 415.7 \mathrm{~mm}^{2}$
b. $44 \mathrm{~mm} ; 346.4 \mathrm{~mm}^{2}$
d. $88 \mathrm{~mm} ; 346.4 \mathrm{~mm}^{2}$
35. Find the perimeter and area of the parallelogram. Round to the nearest tenth if necessary.

$$
\begin{aligned}
& 10 \sqrt{3} \cdot 24 \\
& A=240 \sqrt{3} \approx 415.7 \\
& P=20+24+20+24=88
\end{aligned}
$$

\qquad

B
36. Find the area of the figure. Round to the nearest tenth if necessary.

$$
\begin{aligned}
\frac{5.7 \cdot 4.2}{2} & =11.97 \\
& \approx 12
\end{aligned}
$$

a. $13.1 \mathrm{ft}^{2}$
c. $23.9 \mathrm{ft}^{2}$
b. $12 \mathrm{ft}^{2}$
d. $12.8 \mathrm{ft}^{2}$
37. Find the area of a regular hexagon with a perimeter of 90 centimeters. Exact value.

$$
\begin{aligned}
& \text { centimeters. Exact value. } 9 / 6=15 \\
& P=90 \quad S=9
\end{aligned}
$$

38. Find the area of a circle having a circumference of 34π. Round to the nearest tenth. Use 3.14 for pi.

$$
C=2 \pi r \quad r=17
$$

Find the area of the figure. Round to the nearest tenth if necessary.

\qquad 39.

(Trap)

$$
\begin{aligned}
& 1 / 2 h\left(b_{1}+b_{2}\right) \\
& 1 / 2 \cdot 12(24+16) \\
& 240
\end{aligned}
$$

40. Find the area of the rhombus.

41. Find the area of $Q Q$ in terms of π.

A
42. Find the area of the triangle with vertices $A(-3,2), B(1,-2)$, and $C(1,3)$.

$$
\frac{5.4}{2}=10
$$

a. 10 units 2
c. 8 units 2
b. 20 units 2
d. 12 units 2
43. The base length of the triangle with vertices $A(1,1), B(9,1)$, and $C(5,5)$ is multiplied by 2 . Describe the effect of the change on the area.
a. The area is multiplied by 4 .
c. The area is multiplied by 2 .
b. There is no effect on the area.
d. The area is multiplied by 8 .
44. The radius of $\odot A$ is multiplied by $\frac{1}{3}$. Describe the effect of the change on the area.

$$
\left(\frac{1}{3}\right)^{2}
$$

All	P	$A \mid V$
x	x	$x^{2} \mid x^{3}$

a. The area is multiplied by 3 .
c. There is no effect on the area.
b. The area is multiplied by $\left(\frac{1}{3}\right)^{2}$.
d. The area is multiplied by $\frac{1}{3}$.
45. The area of a parallelogram is $420 \mathrm{~cm}^{2}$ and the height is 35 cm . Find the corresponding base.
$b=12$

$$
A_{D}=b h
$$

$$
\begin{aligned}
420 & =b \cdot 35 \\
12 & =b
\end{aligned}
$$

Find the area of the trapezoid. Leave your answer in simplest radical form.

Not drawn to scale
Find the area of a regular hexagon with side length of 8 m . Answers in exact value.

$36 \sqrt{3}$
48. Find the area of an equilateral triangle with side 12.

$$
\begin{aligned}
& P=36 \\
& A=1 / 22 \sqrt{3} .36
\end{aligned}
$$

$$
\begin{array}{l|l|l}
30 & 60 & 90 \\
\hline 2 \sqrt{3} 16
\end{array}
$$

B
49. Find the area of an e
a. $96 \sqrt{3} \mathrm{~m}^{2}$
b. $144 \sqrt{3} \mathrm{~m}^{2}$
c. $18 \sqrt{3} \mathrm{~m}^{2}$
d. $12 \sqrt{3} \mathrm{~m}^{2}$
$P=72$

$$
4 \sqrt{3} \cdot \sqrt{3}=12
$$

$$
A=1 / 2 \cdot 72 \cdot 4 \sqrt{3}
$$

$900 \sqrt{3}$
50. A regular hexagon has a perimeter of 150 m . Find its area. Leave your answer in simplest radical form.

$$
1 / 2 \cdot 12 \sqrt{3} \cdot 150
$$

$$
P=150
$$

51. The widths of two similar rectangles are 16 darn and 14 cm . What is the ratio of the perimeters? Of the areas?
a. $8: 7$ and $64: 49$
c. $9: 8$ and $81: 64$
b. $9: 8$ and $64: 49$
d. $8: 7$ and $81: 64$

$$
P=\frac{16}{14}=\frac{8}{7} \quad A=\left(\frac{8}{7}\right)^{2}=\frac{64}{49}
$$

The figures are similar. The area of one figure is given. Find the area of the other figure to the nearest whole number.
52. A rectangular napkin costs $\$ 3.25$. A similar tablecloth is five times longer and five times wider. How $\overline{\text { much }}$ would you expect to pay for the tablecloth?

481.25

$3.25 \cdot 25$
Find the area of the regular polygon. Give the answer to the nearest tenth.

53. square with radius 16 ft $1 / 2 \cdot 8 \sqrt{2} \cdot 64 \sqrt{2}$
54. $\quad=\frac{512}{\text { Grade } 7}$

$$
\frac{16}{\sqrt{2}} \Rightarrow 8 \sqrt{2}
$$

54. Grade 7 students were surveyed to determine how many hours a day they spent on various activities. The results are shown in the circle graph below. Find the measure of each central angle in the circle graph.
a. Sleeping
b. Eating

How Students Spend Their Time

 $100 x=2880$

$$
x=28.8
$$

55. Find the area of the shaded portion of the figure. Each vertex of square $A B C D$ is at the center of a circle. Leave your answer in terms of π.

$$
\begin{aligned}
& 2 \cdot 2-\pi r^{2} \\
& 4-3.14=.86
\end{aligned}
$$

a. 4- 4
b. $4-\frac{1}{2} \pi$
c. $4-\frac{\pi}{4}$
d. π

Find the circumference. Leave your answer in terms of π.

56.

57. Find the length of arc $X P Y$. Leave your answer in terms of π.

$$
\begin{aligned}
& \frac{90}{360} \cdot 2 \pi \cdot 8 \\
& \frac{1}{4} 16 \pi=4 \pi
\end{aligned}
$$

a. $24 \pi \mathrm{~m}$
b. $12 \pi \mathrm{~m}$
c. $4 \pi \mathrm{~m}$
d. $720 \pi \mathrm{~m}$
58. Find the exact area of the shaded region.

$A_{\text {sector }}-A_{\Delta}$

$$
1 / 2 \cdot 24 \sqrt{3} \cdot 12
$$

$$
144 \sqrt{3}
$$

59. Find the area of the shaded region. Leave your answer in terms of π and in simplest radical form.

$A_{0}-A_{\text {seq }}$.
or $A_{\frac{300}{30}}$ of $0+A_{\Delta}$

$$
A_{0}-\left[A_{\text {sab }}-A_{\Delta}\right]
$$

Use formulas to find the lateral area and surface area of the given prism. Show your answer to the nearest whole number.
60.

$C 61$.

Not drawn to scale
a. $192 \mathrm{~m}_{4} ; 287 \mathrm{~m}_{4}^{\text { }}$
b. $342 \mathrm{~m}^{2} ; 287 \mathrm{~m}^{2}$
(c.) $192 \mathrm{~m}_{4}{ }^{4} ; 382 \mathrm{~m}_{4}{ }^{\text {c }}$
d. $342 \mathrm{~m}^{\text { }} ; 382 \mathrm{~m}^{\text {4 }}$

$$
\begin{aligned}
& P=48 \\
& B=95 \\
& L A=48 \cdot 4=192
\end{aligned}
$$

$S A=192+2(95)$ 382

Find the surface area of the pyramid shown to the nearest whole number.

62.

$P=20$
$\lambda=6$
$S A=\frac{1}{2} P P+B$
年. $20 \cdot 6+25$

Not drawn to scale

b. $145 \mathrm{ft}^{4}$
c. $60 \mathrm{ft}^{4}$
d. $25 \mathrm{ft}^{4}$
63. Find the surface area of the figure to the nearest whole number.

a. $310 \mathrm{ft}^{4}$
b. $155 \mathrm{ft}^{4}$
c. $135 \mathrm{ft}^{4}$
d. $74 \mathrm{ft}^{4}$

Are the two figures similar? If so, give the similarity ratio of the smaller figure to the larger figure.
64.

$$
\frac{6}{18}=\frac{5}{15}=\frac{17}{51}
$$

Not drawn to scale
a. yes; 1:3
b. yes; 1:2
c. yes; 1: 5
d. no
65.

Find the similarity ratio of a cube with volume $729 \mathrm{~m}^{3}$ to a cube with volume $3375 \mathrm{~m}^{3}$.
a. $81: 225$
b. $3: 5$

$$
\frac{\sqrt[3]{729}}{\sqrt[3]{3375}}=\frac{9}{15}=\frac{3}{5}
$$

d. $225: 81$

Find the lateral area and surface area of the right cylinder. Give your answer in terms of π.

$2 \pi r h+2 \pi r^{2}$
10 m

$$
\begin{gathered}
2.3 .10 \\
\angle A .60 \pi
\end{gathered}
$$

$S A=60 \pi+2 \cdot 3_{18 \pi}^{2} \pi$
67. The length, width, and height of the right rectangular prism are tripled. Describe the effect on the surface $\overline{\text { area. }}$

3 in.

24 in.

a. The surface area is multiplied by 3 .
b. The surface area is multiplied by 9 .
c. The surface area is multiplied by 27 .
d. The surface area is multiplied by 81 .
68. Find the lateral area and surface area of a regular square pyramid with base edge length 6 m and slant height 8 m .

$$
\begin{aligned}
& P=24 \\
& B=36 \\
& l=8
\end{aligned}
$$

69. Find the surface area of the composite figure. Round to the nearest square centimeter.

a. $\quad 550 \mathrm{~cm}^{2}$
(c.) $725 \mathrm{~cm}^{2}$
b. $656 \mathrm{~cm}^{2}$
d. $814 \mathrm{~cm}^{2}$
70. A fish tank is in the shape of a rectangular prism. The height of the tank is 18 m . The width of the tank is $1,42 \overline{77}$ in. The length of the tank is 38 in . Find the amount of water the tank can hold to the nearest gallon. (Hint: 1 gallon \approx $0.134 \mathrm{ft}^{3}$.)

71. Fine the volume of a cylinder with a base area of 25π in 2 and height equal to the radius. Give your answer both in terms of π and rounded to the nearest tenth.

$$
\begin{array}{ll}
\pi r^{2}=1 \\
\pi r^{2} & =25 \pi \\
r=5
\end{array}
$$

$$
V=B h
$$

$$
25 \pi \cdot 5=125 \pi
$$

72. Find the volume of a rectangular pyramid with length 11 m , width 7 m , and height 8 m . Round to the nearest tenth, if necessary.

$$
v=\frac{1 / 3 B h}{1 / 3 \pi .8}
$$

391.1113.

Find the volume of a cone with a base circumference of $19 \pi \mathrm{~cm}$ and a height 6 cm less than twice the radius. Give your answer both in terms of π and rounded to the nearest tenth.

$$
\begin{aligned}
& c=2 i r \\
& 19 \pi_{0}=2 \pi i r
\end{aligned}
$$

$$
\begin{gathered}
V=1 / 3 \pi r^{2} h \\
1 / 3 \pi \cdot 9.5^{2} \cdot 13 \\
\\
\\
\hline 391.1 \pi
\end{gathered} \begin{gathered}
6 \text { less then } \\
=\sqrt{13}
\end{gathered}
$$ 6 less then 19

$\left.\begin{array}{l}\text { 74. Find the diameter of a sphere with volume } 972 \pi \mathrm{in}^{\prime} . \\ \text { c. } 12.5 \mathrm{in} .\end{array} \frac{4}{3}\right) \pi r^{3}=972 \pi$
a. 28.6 in .
b) 18 in .
d. 9 in .

$$
d=18
$$

$$
\begin{aligned}
& r^{3}=972\left(\frac{3}{4}\right) \quad r=9 \\
& r^{3}=729
\end{aligned}
$$

75. Find the surface area of a sphere with volume $288 \pi \mathrm{~m}^{3}$. Give your answer in terms of π.

$$
\begin{aligned}
& \text { d the surface area of a sphere with volume } 288 \pi \mathrm{~m}^{3} \text {. Give your answer in terms of } \quad 4 \pi{ }^{288 \pi}=\left(\frac{4}{3}\right) \pi r^{3} \quad 4 \pi\left(6^{2}\right)=144 \pi \mathrm{~m}^{2}
\end{aligned}
$$

$$
216=r^{3} \quad r=6
$$

Assume that lines that appear to be tangent are tangent. O is the center of the circle. Find the value of x. (Figures are not drawn to scale.)
\qquad 76.

$$
m \angle O=111
$$

$$
360-90-90-111=69^{\circ}
$$

77. $\overline{B C}$ is tangent to circle A at B and to circle D at C (not drawn to scale). $\overline{A B}=7, B C=18$, and $D C=5$. Find $A D$ to the nearest tenth.

$$
2^{2}+18^{2}=c^{2}
$$

$$
\sqrt{328}=c
$$

$$
18.11=c
$$

78. Pentagon RSTUV is circumscribed about a circle. Solve for x for $-R S=10, S T=13$, $\overline{T U}=11, U V=12$, and $V R=12$. The figure is not drawn to scale.

$$
\left.\begin{array}{rr}
12-(8-x) & \\
4+x & 4+x+x \\
4+12 \\
4+2 x & =12 \\
11-(3+x) & 2 x
\end{array}\right) 8 \text { 8 } x=4
$$

Find the value of x. If necessary, round your answer to the nearest tenth. The figure is not drawn to scale.
79.

80.

$$
\begin{aligned}
10 x & =8(15) \\
10 x & =120 \\
x & =12
\end{aligned}
$$

81. $\overline{W Z}$ and $\overline{X R}$ are diameters. Find the measure of arc $Z W X$. (The figure is not drawn to scale.)

$$
180+416=226^{\circ}
$$

82. Find the measures of the indicated angles. Which statementisAOT true? (The figure is not drawn to stale.

$$
\begin{aligned}
& a=53^{\circ} \\
& d=37^{\circ} \\
& c=74^{\circ} \\
& b=106^{\circ}
\end{aligned}
$$

83. Find $A B$. Round to the nearest tenth if necessary.

Quad

$$
\begin{aligned}
& 82=(x+15) x \\
& 64=x^{2}+15 x \\
& 0=x^{2}+15 x-64
\end{aligned}
$$

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Write the standard equation for the circle.
\qquad 84. center $(2,7), r=4$

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-2)^{2}+(y-7)^{2}=16
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& a=1 \\
& b=15 \\
& c=-64 \frac{-15 \pm \sqrt{15^{2}-4.1} \cdot 64}{2} \\
& \frac{-15 \pm \sqrt{481}}{2} \\
&=\frac{-15 \pm 21.9}{2}
\end{aligned}
\end{aligned}
$$

$=3.45$

$$
C(-9,-5) \quad r=\sqrt{64}=8
$$

85. Find the center and $\left[C(-9,-5)^{h} r=\sqrt{64}=8\right]^{h}$
86. Write the standard equation of the circle in the graph.

87. Find the point of tangency and write the equation of the tangent line at this point.

(a.) point of tangency: $B(3,0)$; equation of the tangent line: $x=3$
b. point of tangency: $B(3,0)$; equation of the tangent line: $y=3$
c. point $O f$ tangency: $C(2, O)$; equation of the tangent line: $x \not A y=3$
d. point of tangency: $A(0, \phi)$;

$$
\begin{aligned}
& \text { Point of tangency }(3,0) \\
& \text { equation of line } x=3
\end{aligned}
$$

equation of the tangent line: $y=x+3$

88. A satellite rotates 50 miles above Earth's atmosphere. An astronaut works on the satellite and sees the sun rise over Earth. To the nearest mile, what is the distance from the astronaut to the horizon? (Hint: Earth's radius is about 4,000 miles.)
89. $\overline{A B}$ and $\overline{A C}$ are tangent to $\odot \mathrm{P}$. Find $A B$.

$$
\begin{aligned}
& 11 y=3 y+4 \\
& 8 y=4 \\
& y=\frac{4}{8}=\left(\frac{1}{2}\right)
\end{aligned}
$$

$$
(010) 360=
$$

Green 5\% ${ }^{A}$
91. Find $\mathrm{m} \angle C A D$.

$$
\frac{158}{2}=79^{\circ}
$$

(a.) $\mathrm{m} \angle C A D=79^{\circ}$
c. $\mathrm{m} \angle C A D=90^{\circ}$
b. $\mathrm{m} \angle C A D=158^{\circ}$
d. $\mathrm{m} \angle C A D=89^{\circ}$
92. Find $\mathrm{m} \angle B P D$.

$$
\frac{164+146}{2}=
$$

93. Find $\mathrm{m} \angle A$.

$$
\frac{115-35}{2}=40
$$

94. Two of the muscles that control eye movement are attached to the eyeball and intersect behind the eye as shown. If $\mathrm{m}(\operatorname{arc}) A B F=300^{\circ}$, what is $\mathrm{m} \angle A D F$?

(a.) $\mathrm{m} \angle A D F=120^{\circ}$
c. $\mathrm{m} \angle A D F=240^{\circ}$
b. $\mathrm{m} \angle A D F=60^{\circ}$
d. $\mathrm{m} \angle A D F=30^{\circ}$
95. Find the value of x. Round to the nearest hundredth.

96. A forest ranger spots a fire from a 21-foot tower. The angle of depression from the tower to the fire is 12°.
a. Draw a diagram to represent this situation.
b. To the nearest foot, how far is the fire from the base of the tower? Show the steps you 99fx use to find the solution.

97. In the given figure, what is the aremutside the circles but inside the square? Express your answers in terms of π.

98. Find the area of the shaded region. Express your answer in terms of π.

99. Find the surface area and volume of the hemisphere. Leave in terms of π.

$$
\begin{array}{rlrl}
S A & =1 / 2 \text { sphere }+ \text { Great (0) } \\
& =3 \pi r^{2} & V=\frac{2}{3} \pi r^{3} \\
S A & =116.5^{2} & & \frac{2}{3} \pi .6 .75 \pi
\end{array} \quad V=183.11
$$

100. Three balls are packaged in a cylindrical container as shown below. The balls just touch the top, bottom, and sides of the cylinder. The diameter of each ball is 13 cm .

$$
\begin{aligned}
V_{\text {ball }} & =\left(\frac{4}{3} \pi r^{3}\right){ }_{3}^{3} \\
b & =4 \pi \cdot 6.3^{3} \\
& =1098.5 \pi
\end{aligned}
$$

a. What is the volume of the cylinder? Explain your method for finding the volume.
b. What is the total volume of the three balls? Explain your method for finding the total volume.
c. What percent of the volume of the container is occupied by the three balls? Explain how you find the percent.

