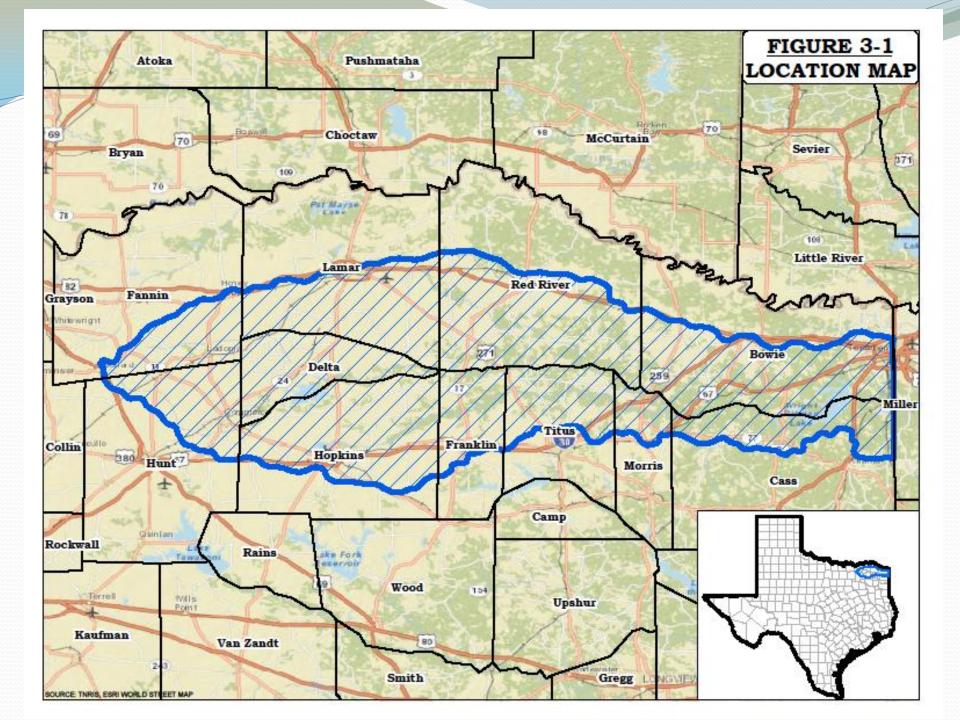
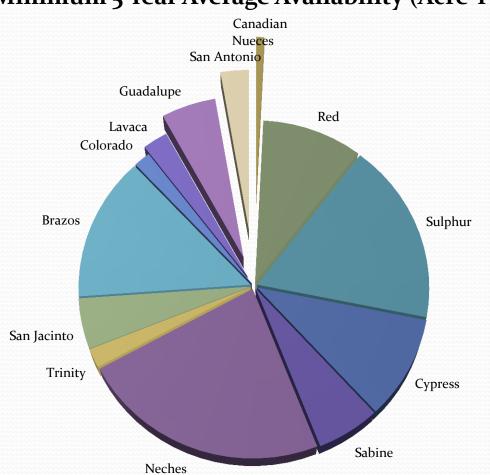
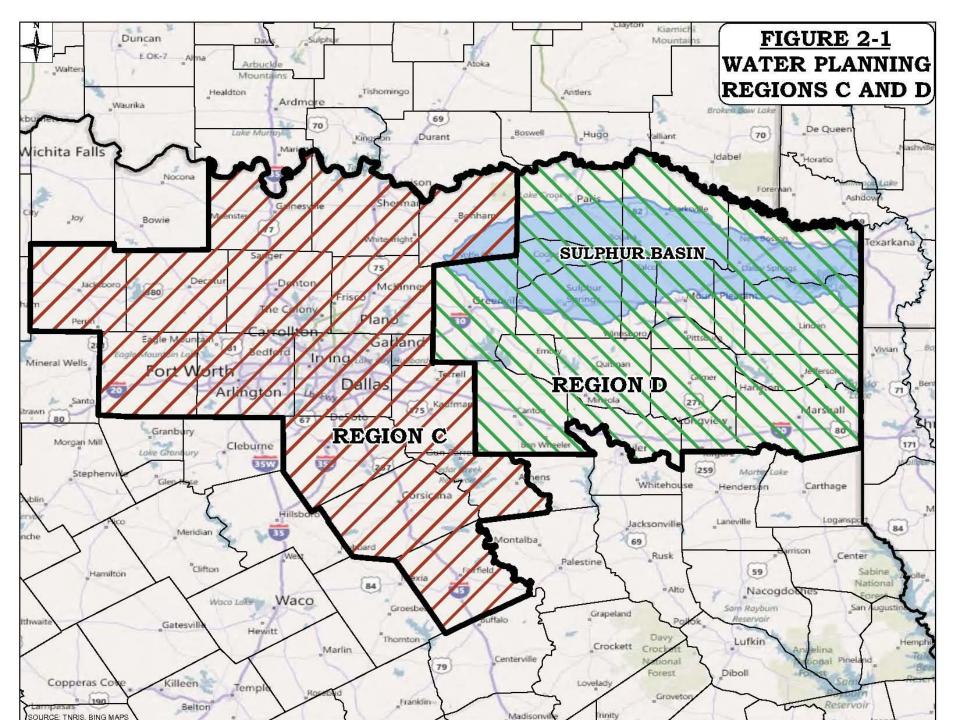

Role of Watershed-Scale Sediment Management in Enhancing Regional Water Supply and Ecological Function

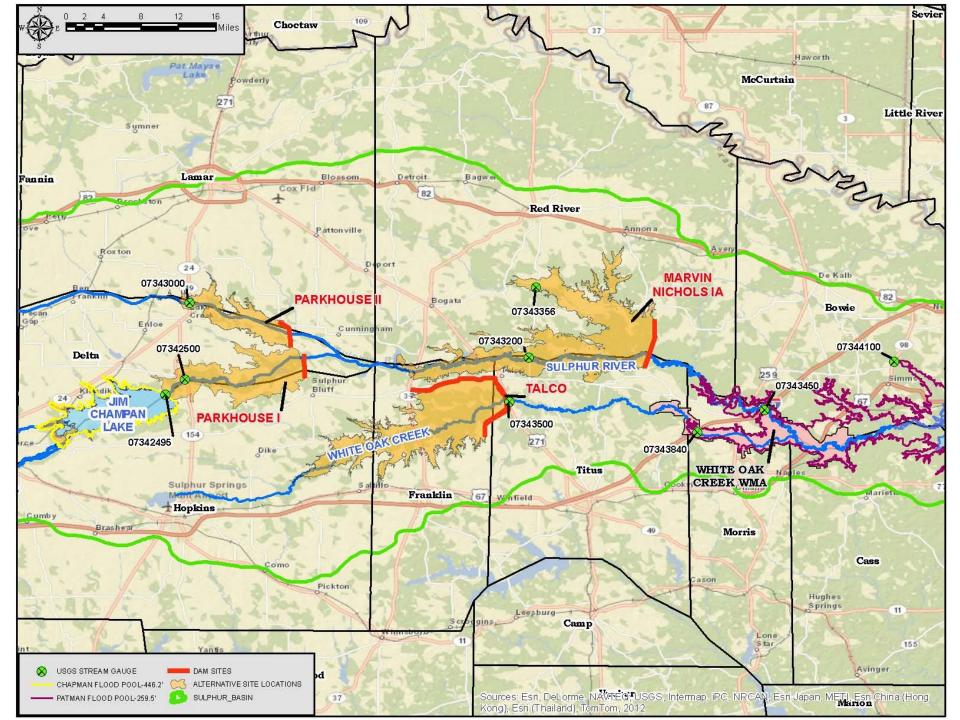

NCER

David Coffman, M.S. & Becky Griffith, Ph.D. July 31, 2013

Texas River Basins







Minimum 5 Year Average Availability (Acre-Feet)

Initial Yield - Wright Patman

Bottom of Conservation Pool at 220 ft

Max Conservation Pool Elevation (feet)	Firm Yield (AFY)	Yield above Current Contract (AFY)*
Interim	40,263	0
Ultimate	201,413	21,413
227.5	255,693	75,693
232.5	460,963	280,963
237.5	658,273	478,273
242.5	772,663	592,663
247.5	891,913	711,913
252.5	1,034,363	854,363
257.5	1,155,013	975,013
259.5	1,208,533	1,028,533

* 180,000 af/yr

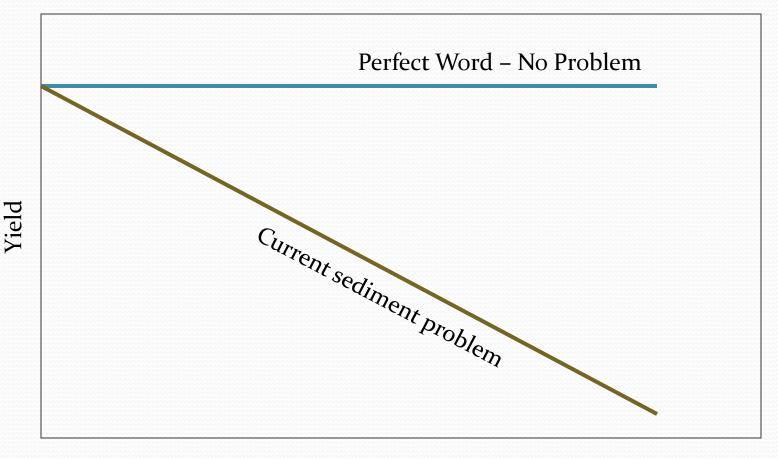
Initial Yield, Alternative Sites (acre-feet/yr)

Reservoir	Initial Yield
George Parkhouse I	124,300
George Parkhouse II	124,200
Marvin Nichols IA	590,000
Jim Chapman Lake Reallocation (increase)	25,000

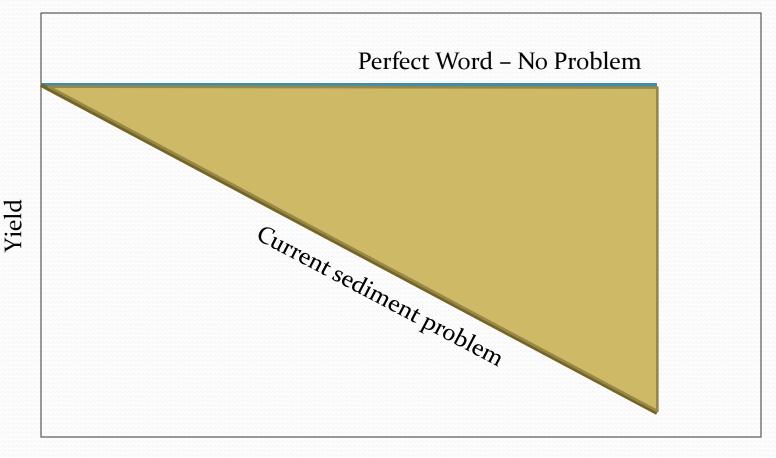
Initial Yield, Talco Configurations (acre-feet/yr)

Maximum Elevation	Configuration 1	Configuration 2		Configuration 3	
		500 cfs Pumping Rate	2500 cfs Pumping Rate	500 cfs Pumping Rate	2500 cfs Pumping Rate
328	66,200	81,700	96,100	104,900	121,400
350	169,600	204,200	231,000	204,400	240,900
360	226,400	273,800	314,900	273,200	315,900
370	265,100	320,800	392,000	329,700	397,400

Wright Patman Storage Losses


- Original (1956) storage capacity: 158,000 ac-feet
- 1997 Volumetric Survey: 115,715 ac-feet
- 2010 Volumentric Survey: 97,927 ac-feet
- Estimated Annual Storage Loss due to Sediment:
 730-1362 acre-feet (TWDB, 2012)

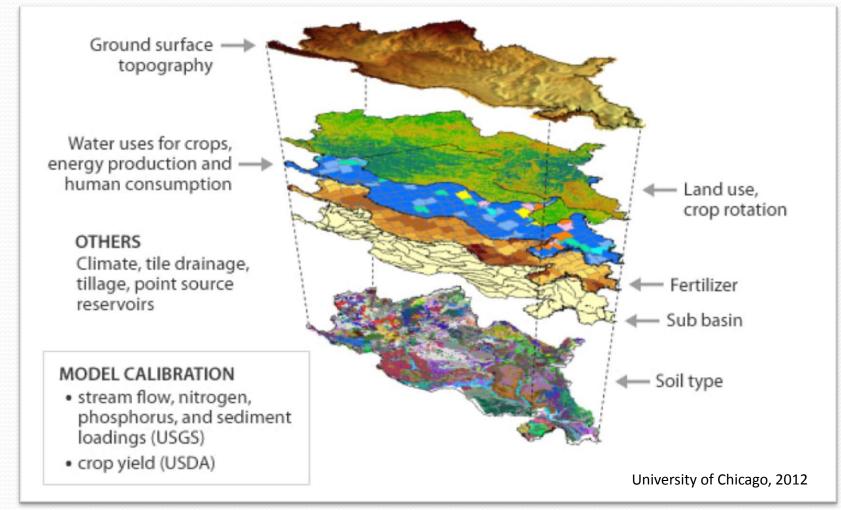
Generic Yield Curve over Time


Perfect World – No Problem

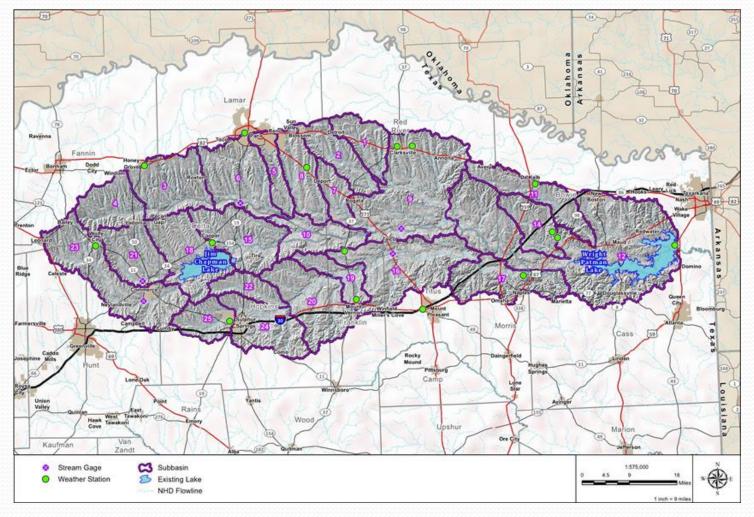
Yield

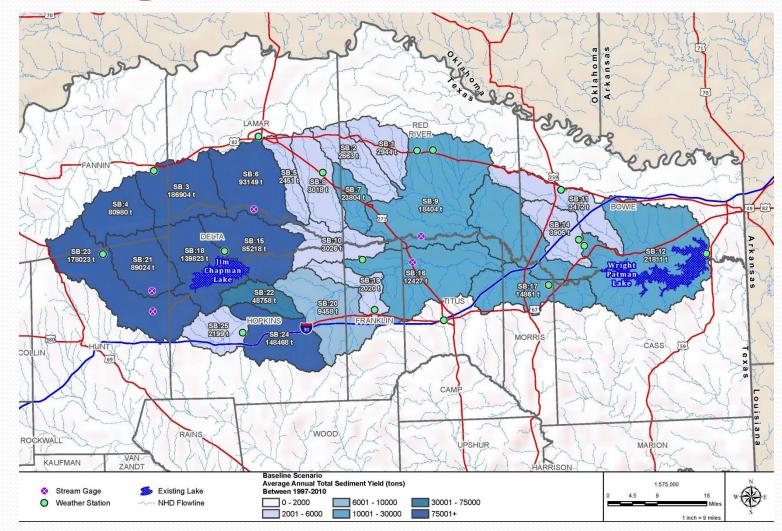
Generic Yield Curve over Time

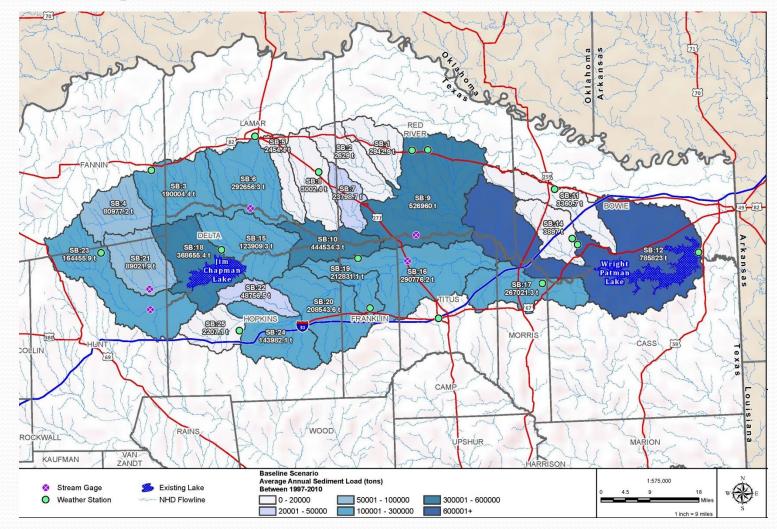
Generic Yield Curve over Time


Soil and Water Assessment Tool

Upland Processes


- SWAT
- Predict effects of management on water, sediment, nutrient, and pesticide yields on large, un-gaged river basins
- Dr. Jeffery Arnold, USDA-ARS
- 30 years of continuous model development


Soil and Water Assessment Tool


SWAT Model

Average Annual Total Yield

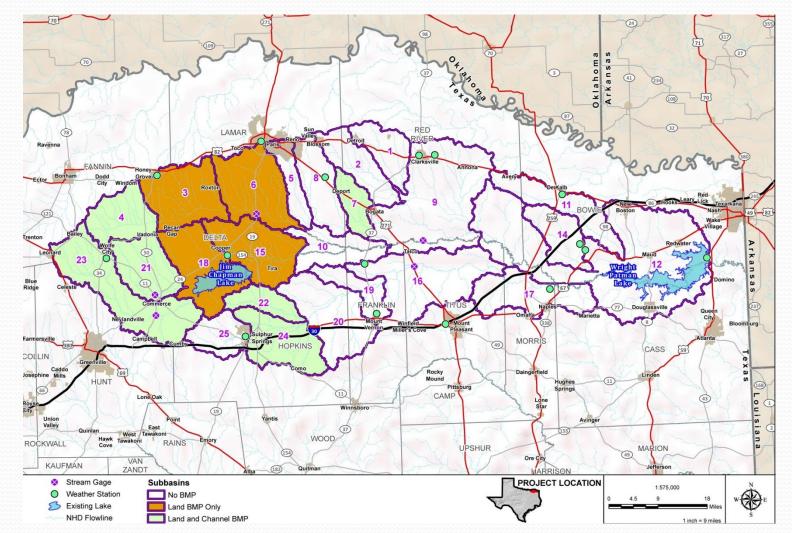
Average Annual Sediment Load

Wright Patman Yields over Time

Minimum Elevation – 220 ft

Max Elevation (feet)	Sediment Condition	Firm Yield (AFY)
Interim Curve		38,953
Ultimate Curve	-	196,293
227.5	2020 (without Ralph Hall)	251,313
237.5		655,023
252.5		1,031,993
Interim Curve		37,713
Ultimate Curve	_	192,033
227.5	2040 (with Ralph Hall)	240,633
237.5		646,873
252.5		1,025,243
Interim Curve		34,283
Ultimate Curve	2070 (with Ralph Hall)	180,283
227.5		220,153
237.5		632,373
252.5		1,014,063

Alternative Project Yields over Time (acre-ft/yr)


Reservoir	Initial	2070
Parkhouse I	124,300	123,500
Parkhouse II	124,200	121,000
Marvin Nichols IA	590,000	581,300
Talco (350)	204,200	200,000
Talco (370)	320,800	321,400

Modified Sediment Condition

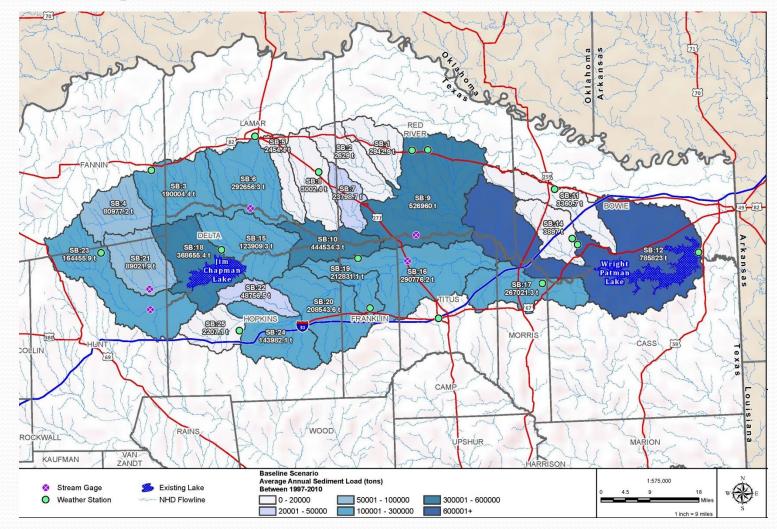
('Intensive' Scenario)

- Six Best Management Practices simulated in SWAT model
 - Filter Strips
 - Terracing
 - Cropland to Pasture Conversion
 - Critical Pasture Planting (perennial grasses)
 - In-channel Grade Control
 - Riparian Buffer Strips
- Ten of 28 sub basins targeted

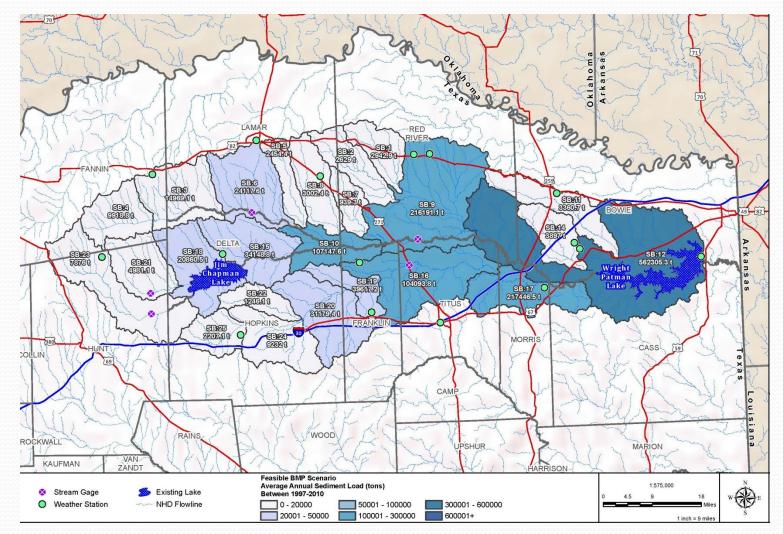
Land and Channel BMPs

Number/Extent of BMP's Simulated ('Intensive' Scenario)

- 10 Sub basins
- Total Area = 1,539,883 acres
 - Filter Strips = 1,564 acres
 - Terrace = 118,891 acres
 - Cropland to Pasture = 154,619 acres
 - Critical Pasture Planting = 1,310,466 linear feet
 - Channel Grade Control
 - 352,788 linear feet
 - Approximately 22, 3-foot drops
 - Riparian Buffer Strip = 702,096 linear feet


'Feasible' Scenario

- Based on initial results, number of BMP's reduced to four:
 - Filter Strips
 - Cropland to Pasture Conversion
 - In-channel Grade control
 - Riparian Buffer Strips


Reduction in Sediment Yield for Targeted Sub basins

Sub basin	Existing Conditions	Intensive BMP Scenario	Feasible BMP Scenario	Intensive BMP Scenario	Feasible BMP Scenario
	(Ⅳ	letric tons/hect	are)	(% reducti	on)
3	4.932	0.161	0.280	97	94
4	3.110	0.280	0.381	91	88
6	2.256	0.091	0.161	96	93
7	1.743	0.042	0.069	98	96
15	2.263	0.077	0.138	97	94
18	3.449	0.074	0.125	98	96
21	3.138	0.110	0.176	96	94
22	3.413	0.020	0.087	99	97
23	3.194	0.072	0.155	98	95
24	4.531	0.065	0.187	99	96

Average Annual Sediment Load

Feasible BMP Scenario - Load

Bottom Line

- Reduced sediment loads to Wright Patman Lake
 - Intensive BMP Scenario 31% (240,767 metric tons per year)
 - Feasible BMP Scenario 28% (223,518 metric tons per year)
- Benefits to other reservoirs and riparian landowners would be additive to Wright Patman benefits
 - have not yet been estimated

Modified Sediment Conditions Average Annual Sediment Load (metric tons)

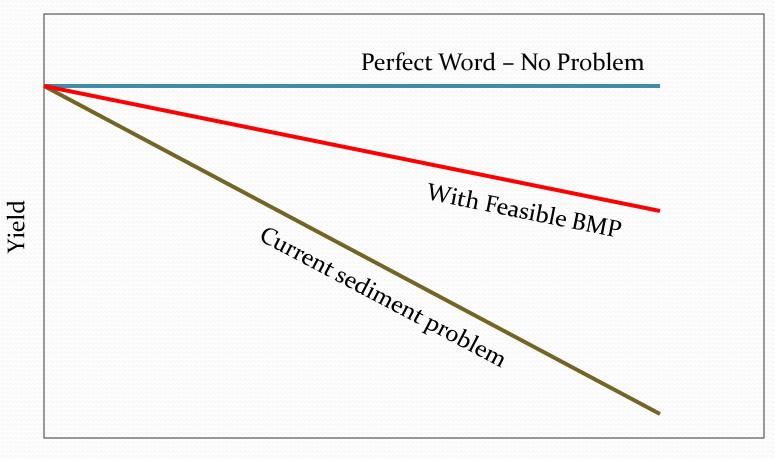
Reservoir	Sediment Load	Reduction in Comparison with Baseline	Wright Patman Sediment Load	Reduction in Comparison with Baseline
Parkhouse I	34,149	89,753	550,702	178,323
Parkhouse II	24,118	268,538	546,294	91,316
Marvin Nichols IA	216,191	310,769	447,696	338,127
Talco	39,617	173,214	566,742	193,941

Water Availability Modeling Results – Modified Watershed Conditions

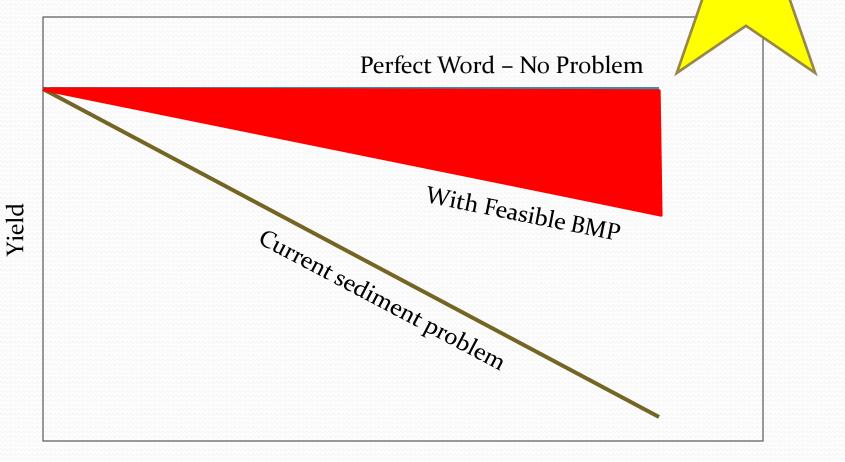
Effect of Sediment Modification on Reservoir Yield

- Results of 'Feasible' scenario only
- Future yields based on storage reduction compared to existing condition
- WAM modified to reflect altered:
 - Storage volume/surface area relationship
 - Available storage at various elevations
 - Sediment loads converted to volume based on measured density from core samples at Wright Patman
 - Available storage modified based on reduced loss

Wright Patman Yield under Mitigated Sediment Condition


Conservation Pool Max Elevation (feet)	Sediment Condition	Firm Yield (AFY)	Sediment Condition	Firm Yield (AFY)	Increase in Firm Yield due to BMPs (AFY)
Interim Curve		38,953		38,953	0
Ultimate Curve		196,293		196,293	0
227.5	2020	251,313	2020	251 ,313	0
237.5		655,023		655,023	0
252.5		1,031,993		1,031,993	0
Interim Curve	2040	37,713	2040 (with	38,303	590
Ultimate Curve		192,033		194,013	1,980
227.5		240,633	Feasible BMPs)	244,113	3,480
237.5		646,873	reasible bivit sy	649,323	2,450
252.5		1,025,243		1,027,243	2,000
Interim Curve		34,283		35,983	1,700
Ultimate Curve		180,283	2070 (with	186,113	5,830
227.5	2070	220,153	Feasible BMPs)	230,303	10,150
237.5		632,373	reasible bivit s)	639,533	7,160
252.5		1,014,063		1,019,333	5,270

Reservoir Yield under Mitigated Sediment Condition


(acre-feet/yr)

Reservoir	2030 Yield	2070 Yield	Improvement in 2070 Yield
Parkhouse I	124,300	123,900	400
Parkhouse II	124,200	123,900	2,900
Marvin Nichols IA	589,900	586,400	5,100
Talco (350)	204,200	203,900	3900
Talco (370)	320,800	321,700	300

Results

Results

Cumulative Savings Feasible BMP Scenario

(acre-ft)

Reservoir	Priority
Wright Patman (227.5 ft msl)	240,000
Wright Patman (237.5 ft msl)	170,000
Wright Patman (252.5 ft msl)	130,000
Parkhouse I	8,000
Parkhouse II	59,000
Marvin Nichols IA	104,000
Talco (350)	76,000
Talco (370)	6,000

Additional Benefits

- Landowners
- Transportation
- Environmental

Additional Needs

- Assess additional benefits
- Quantify cost
- Estimate participation
- Study Effect of reservoir shoreline erosion

Thank you!

David K. Coffman, M.S.

Environmental Science & Remediation Group 817-735-7582 office David.Coffman@freese.com

Becky Griffith, Ph.D.

Water Resource Planning Group 817-735-7548 office <u>Becky.Griffith@freese.com</u>

Freese and Nichols, Inc.

4055 International Plaza, Suite 200 Fort Worth, TX 76109 817-735-7300 www.freese.com

