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ABSTRACT 
This article reviews the state-of-the-art on autonomous vehicles as of 2016, including their impact at 

socio-economic, energy, safety, congestion, and land-use levels. This impact study focuses on issues 

that are common denominator and are bound to arise independently of regional factors, such as (but 

not restricted to) change to vehicle ownership patterns and driver behaviour, opportunities for energy 

and emissions savings, potential for accident reduction and lower insurance costs, and requalification 

of urban areas previously assigned to parking. The challenges that lie ahead for carmakers, law and 

policy makers are also explored, with an emphasis on how these challenges affect the urban 

infrastructure and issues they create for municipal planners and decision-makers. The article 

concludes with a summarising SWOT analysis that integrates and relates all these aspects. 

 

 

Keywords: Reviews, transport planning, town and city planning 

     

  

Main Text Click here to download Main Text manuscript_driverless.docx 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade Aberta

https://core.ac.uk/display/149226686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.editorialmanager.com/muen/download.aspx?id=18084&guid=6e5b1a80-9f22-4788-8c8d-6dbbe48d55ff&scheme=1
http://www.editorialmanager.com/muen/download.aspx?id=18084&guid=6e5b1a80-9f22-4788-8c8d-6dbbe48d55ff&scheme=1


2 
 
 

1. Introduction 

The automotive industry is currently undergoing two major transformations, which will 

arguably shape the future of this industry and modern societies. The first of these transformations is 

the energy challenge, triggered by sustainability worries and environmental concerns, which calls for 

the industry to develop powertrains to replace the current status-quo, almost entirely dominated by 

the Internal Combustion Engine (ICE). The second, which is the main topic of this article, and is 

linked to the first, is the autonomous driving. 

The last decades witnessed massive advances in computers, software, sensors and 

communications. This progress provided the necessary technological support for taking on the 

challenge of making an autonomous vehicle (AV). Sensing that such an artefact could open new 

markets, major technological companies, such as Google or Apple, took on the AV challenge, with 

car companies following closely. As of today, just about every major car manufacturer has its own 

AV programme. 

From the business perspective, new business models appeared for the transport sector, such as 

car/ride-sharing services and modern on-demand, vehicle-as-a-service companies (UBER, Lyft, etc.). 

A combination of autonomous driving with the emerging business models may bring a new, 

disruptive mobility paradigm that has the potential to overcome many current and future mobility 

challenges. 

The new mobility paradigm can significantly alter the current car ownership model, replacing 

possession/renting with on-demand services, which are expected to become more affordable in the 

future. It should integrate AVs with public transport systems and non-motorised transport modes, 

combining them efficiently, with business services bridging the gaps between modes. 

Regardless, the mere existence and use of AVs can, as will be argued below, impact societies, 

the economy, cities, and the environment at many levels. Everything will, of course, depend on 

policy, consumer acceptance and market penetration. It is the purpose of this article to expose and 

discuss these impacts and, where possible, to explore further and quantify them. 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



3 
 
 

2. State-of-the-art 

Present state and levels of automation 

Fully automated driving has been pursued in a stepwise approach by carmakers, who have been 

developing and implementing ever-more complex driver assistance systems (DAS), in an effort to 

offer their customers plus-values. 

As of today, many conventional cars are already equipped with multiple DAS, which assist 

driving and manoeuvring (e.g., cruise control, lane assistance, fatigue monitoring, park assistance, 

traffic signal recognition, emergency braking, evasive steering, night vision, blind spot monitor, 360º 

cameras, traffic jam assist). See Bengler et al. (2014) for review on DAS and its goals. 

Integrating the various DAS leads to a certain degree of driving autonomy, making it necessary 

to define automation levels. Gasser and Westhoff (2012), NHTSA (2013), and SAE International 

(2014) define these according to both the capabilities of the available technology and the tasks 

performed by the human driver (see appendix 1 for a description of SAE levels). The Society of 

Automobile Engineers (SAE) defines six different levels while both the USA National Highway 

Traffic Safety Administration (NHTSA) and the Federal Highway Research Institute (BASt) in 

German define only five levels (ERTRAC, 2015). The SAE distinguishes high automation (fifth 

level) from full automation (sixth level) since the automation level depends on the driving scenario. 

It should be noted that in every definition, there is a key distinction between the third and fourth 

level. In the third level, human driver performs part of the dynamic driving task while in the fourth 

level that is performed by the automated driving system. 

Present day DAS are usually at the first three automation levels. Systems at upper levels are 

almost entirely in the development stage. 

 

Experiences on high/full automation 

Leading the pack on the quest for AVs are Google and Tesla, but there are many automakers 

and satellite companies in the race, some of them in cooperation (CB Insights, 2016). While high/full 

automation is still at a pilot stage, it is only a matter of time until the concept becomes a reality, as 

companies’ commitment and recent examples below show: 

In August 2013, the Mercedes-Benz S-Class S500 Intelligent drive completed the ‘Bertha Benz 

memorial route’ in fully autonomous mode (103 km of rural roads, small villages and major cities) 

(Ziegler et al., 2014). 

Volvo’s ‘Drive Me trial’ already has test AVs driving on Swedish roads and by 2017 it intends 

to have real-world customers using a fleet of 100 AVs on public roads (VOLVO, 2016). 
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Tesla implemented autopilot technology in October 2015 (Tesla, 2015), one of the most 

advanced assistance technologies, capable of replacing the driver in most situations. 

On September 2016, UBER launched its first driverless fleet in Pittsburgh, USA, the first time, 

driverless cars are accessible to the general public (Business, 2016). Besides the customers, there are 

two operators in the vehicle: a trained Uber engineer and a person taking notes.  

Lyft followed suit and associated with General Motors to deploy and test a fleet of self-driving 

Chevrolet Bolt electric taxis on public roads (WSJ, 2015b).  

Many more companies are preparing their own AV testing. See e.g. driverless-future (2016) for 

a roadmap of these companies. 

 

Regulation 

Legislators are becoming increasingly aware that AVs call for a revision of current regulation. 

Accordingly, in 2014 the governments of Austria, Belgium, France and Italy submitted an 

amendment to the Vienna Convention on Road Traffic (ECE, 1968), which stipulates that ‘every 

vehicle shall have a driver who shall at all times be able to control his vehicle’, in order to allow for 

“vehicle systems which influence the way vehicles are driven and to take account of recent technical 

developments” (ECE, 2014). This amendment came into force on 23/March/2016 and allows for a 

car to drive itself if the automated driving technologies are in conformity with the United Nations 

vehicle regulations, or can be overridden or switched off by the driver. However, the driver must be 

present and be able to take control at any time. A workgroup within the United Nations Economic 

Commission for Europe (UNECE) is elaborating a further update to the Vienna Convention to enable 

the use of driverless systems in future (Mercedes-Benz, 2016). 

Despite the above legal updates, at present in Europe AVs cannot be freely used on public 

roads because regulation regarding steering equipment only permits fully self-steering systems for 

speeds of up to 10 km/h (EU (European Union), 2008). Tests have been taken under ad hoc legal 

permits, specific conditions and places. 

Regulating AV use is but one of the legal challenges that lie ahead. As will be shown below, AVs 

have other implications that call for special legislation. 

 

3. Impacts of AVs 

Autonomous vehicles are expected to have a high impact on cities and societies. Societal 

changes are however slow-paced and gradual, contrasting with nowadays evolution of technology, 
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which is usually a swift affair. Nevertheless, it seems clear that AVs will, at some stage and to a 

certain degree, make part our lives. This section discusses how they may impact that life, assuming 

AVs reached full automation levels. 

 

Socio-economic impact 

Vehicle ownership 

This is possibly the biggest societal change AVs can bring. Currently people tend to have (or 

long-term rent) a car of their own, so as to benefit from ownership advantages, such as availability, 

flexibility, privacy, and comfort, unmatched by public transportation. Collective inefficiency is the 

price to pay for individual convenience, as private cars are mainly inactive during the day. They are 

essentially used in the peak hours (less than 1 hour per day – ITF (2015b); WSJ (2015a)), usually 

running with just one occupant. 

On-demand services, such as the taxi, provide some of the benefits of personal vehicles, 

without the nuisance of ownership responsibilities. The rise of mobile devices made it possible for 

new business models to appear in this sector, such as UBER or car/ride-sharing services. For the 

latter example, it is estimated that one vehicle can replace at four to eight personal vehicles (MOMO, 

2010), while Sivak and Schoettle (2015) estimate that the use of household vehicles by multiple 

residents could reduce vehicle ownership up to 43% (cited by Litman (2015)). Shared AVs have the 

potential to reduce the cost of the current on-demand services, in many use scenarios to values below 

the cost of ownership, thus fostering a change on the vehicle ownership paradigm. Indeed, even 

nowadays is not uncommon for people to systematically opt for on-demand services in densely 

populated cities, when they can afford it. Because AVs fleets have no expenses with driver salaries, 

they can lower on-demand services prices to more affordable levels (Chen et al., 2016).  

To understand how plausible this paradigm change can be, an estimation was made on how 

much taxi prices may come down considering a driverless fleet, based on simple assumptions and 

field data from a study of taxi services in Lisbon, Portugal (IMTT, 2006). Assuming that the taxi 

company passes 90% of driverless service savings to the customer, this results in a taxi fare 

reduction of roughly one-third. Considering scenarios of commuting and all-purpose use of a car 

(commuting plus three daily week-end trips), cost-comparison charts between three car usufruct 

models, namely small city car (ownership), taxi, and driverless taxi, can be derived. These are shown 

in Figures 1 and 2 below, as a function of commuting distance. More details on how the chart was 

derived can be found in Appendix 2. 
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(INSERT FIGURE 1 ABOUT HERE) 

(INSERT FIGURE 2 ABOUT HERE) 

Figure 1 shows that short-distance commuting (up to 5 km) becomes more economical if done 

resorting to a driverless AV on-demand service. If parking costs are considered, the advantage rises 

to commuting distances of up to 18 km. It is only when a vehicle is used for all-purposes that 

ownership becomes the more economical choice, and even then only if parking costs are not 

considered.  

The main conclusion of this analysis is thus that AVs extend the range of situations where 

using on-demand services is advantageous. These advantages will become even more obvious if on-

demand service fleets opt for electric AVs, which are cheaper to run. Although this study reflects the 

reality of a particular city and country (Lisbon, Portugal), it is plausible that its main assumptions, 

and thus its conclusions, hold in more general contexts. 

Whether AVs will trigger an usufruct model change is another story because week-end and 

vacation trips may be considered by each consumer. Also, as there is no human surveillance, 

driverless taxis are more prone to be vandalised, which increases running costs due to risk (Litman, 

2015). Still, AVs create a context where it becomes favourable for people to change their vehicle 

ownership model. This is especially true for households which currently have two vehicles (the 

average is 2.28 in the USA (Noor, 2008)), which can keep a family car for week-end and vacations 

and let go their smaller, commuting vehicle. 

 

Unemployment 

Unemployment is a major problem that can arise from automation advances. AVs will threat 

the job of professional drivers (see e.g. CNBC (2016)) and change the required skills for workers 

linked to mobility systems. Taxi and other on-demand services drivers may be the first to experience 

this threat, as corporations already began driverless experiments. The UBER experiment in 

Pittsburgh is one such example. Truck drivers may come next, as the sedentary and predictable 

driving style makes it “a job ripe for disruption” (The Guardian, 2016a). Also, as will be discussed 

below, automation allows the efficient technique of platooning of heavy weight vehicles, whose fuel 

efficiency gains may further encourage trucking companies to go AV. Even if the more demanding 

task of driving on national/municipal roads is, at a first stage, better done by a human driver, it is 

likely these become completely expendable as time goes on. 

Companies related to vehicle repair and maintenance may experience a reduction in demand 

for services, due to less accidents (see below). 
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Automation of manual labour work leads to more value for businesses, making the country, as 

a whole, richer. It also allows for creation of better, qualified jobs, as the increase in job offers for 

AV-related work shows (KPMG, 2015). However, more education and skills upgrade will not solve 

problems faced by displaced workers, a general socio-economic issue which AV dissemination will 

aggravate, and the solution to job losses lies in economic restructuring - cited by Palvia and Vemuri 

(2016). Several strategies have been proposed to solve this problem (Peters, 2016).  

 

Accident reduction and insurance premiums 

About 90% of all accidents are due to human-error (Bengler et al. (2014)). AVs have the 

potential to drastically reduce accidents, as AV driving is not subject to distraction, bad driving 

behaviour, and slow human reaction times. Consequently, it is expected that AVs have lower 

insurance prices (The Guardian, 2016b). Insurance companies will have to face up to new challenges 

such as accident liability. Schroll (2015) suggests the elimination of liability for any accidents 

involving self-driving cars, and recommends the creation of a National Insurance Fund to pay for all 

damages resulting from those accidents. In addition, other risks will arise, which will need to be 

evaluated by these companies, such as cyber risk and system failures. 

 

Equity 

Private AVs bring mobility to people who would otherwise be unable to drive such as e.g., 

teenagers, elderly, people without driver’s licence. Disabled people may also benefit from AVs, 

depending on their degree of disability. In a context of ageing population, they may contribute to 

solve some mobility problems of older people (EC, 2014). 

 

Energy/emissions and traffic impact 

Vehicular communications and platooning  

Vehicular communications have the potential for improving traffic efficiency and consequently 

reducing traffic delay. They can advise other AVs and non-AV drivers in advance about traffic 

events, optimising their driving by reducing stop times and unnecessary accelerations/decelerations, 

and lead to other ways of obtaining efficiency: Luo, Xiang et al. (2016) proposed a dynamic 

automated lane change manoeuvre based on vehicle-to-vehicle (V2V) communication, whereas 

Zohdy and Rakha (2016) developed a tool that optimises the movement of vehicles equipped with 

cooperative adaptive cruise control in the vicinity of intersections, which can reduce average 

intersection delay and fuel consumption by 90% and 45%, respectively. Again, the advantages of 
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these technologies are strongly dependent on their penetration rates. If all vehicles were autonomous, 

intersections could become fully smart, with traffic flowing in an interwoven way, for almost zero 

delay (Tachet et al., 2016). Since this situation is not expectable in the near-future, research has been 

done on how to best harmonise intersection flow with incoming AVs and non-AVs (Yang and 

Monterola, 2016). 

Vehicle-to-vehicle and vehicle-to-infrastructure (V2I) communications, whose reaction times 

are much shorter than human times, make platooning possible, i.e. to have vehicles riding very close 

to each other, reducing aerodynamic drag and consequently fuel consumption. Zabat et al. (1995) 

showed that fuel efficiency could improve up to 30% - cited by Alessandrini et al. (2015).  In 

addition, close riding reduces congestion. Platooning requires however legal changes for road 

cruising, as nowadays it is mandatory to keep a distance to next vehicle. 

The greater the market penetration of AVs and vehicular communications, the more effective 

platooning will be. Wang et al. (2015) found in simulations that both emissions and total travel delay 

of the platoon were reduced as market penetration of AVs increased. The same conclusion was 

reached by Li et al. (2015), who studied a fuel-saving strategy (Pulse-and-Glide) in a platoon with 

AVs and non-AVs.  

 

Electric vehicles and on-demand services  

On-demand services are also a natural stage for the massification of electric AVs (Chen et al., 

2016), as these are cheaper to operate and maintain (Egbue and Long, 2012), have zero emissions 

(important in an urban environment), and automatically look for a charging station when low on 

battery. If the above-argued rise in vehicle-as-a-service use becomes a reality, it will have as by-

product a speed up of vehicle fleet replacement, thereby facilitating the introduction of new, more 

fuel-efficient vehicles and technologies. More on-demand services usage also translates to less fuel 

used in seeking for a parking place, an activity which can represent 40% of fuel use in congested 

urban areas (Mitchell, 2007). 

 

Smaller and lighter vehicles 

OECD average car occupancy rate is about 1.5 (ITF, 2015a). Since AVs have a permanently 

vacant seat, vehicle-as-a-service companies are likely to invest on fleets of smaller, lighter two-seater 

cars, which are more efficient than general purpose vehicles with respect to costs, energy and space. 

Built-in safety and crash resistance features is one of the reasons conventional vehicles get 

heavy. As automation increases, AVs became safer and consequently some of these features can be 
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removed, reducing fuel consumption and emissions. According to MacKenzie et al. (2014), safety 

features contributed 112 kg out of 1452 kg (7.7%) of the average new USA car’s weight in 2011. 

The removal of safety weights would decrease fuel consumption by 5.5% - cited by Wadud et al. 

(2016). 

 

Automated eco-driving 

Eco-driving is a driving pattern which avoids high speeds and sharp accelerations/breaking. It 

can reduce fuel consumption and emissions by 5-20% (Barth and Boriboonsomsin, 2009) and 

improve safety. Eco-driving patterns can be programmed into AV control systems, which 

additionally can operate them more efficiently than human drivers. 

 

Traffic congestion and transport infrastructure 

Since AVs can provide mobility for more people, travel demand may increase. Sivak and 

Schoettle (2015) estimate this increase to go as high as 11%. The potential of AVs to reduce travel 

costs and travel time may also induce people to make more, and/or longer, trips – Jevon’s Paradox 

(Norton, 2015). However, more travel demand does not necessary implies more vehicles on the road. 

Dynamic ride sharing schemes can be used to collect unable driving people in the same 

neighbourhood and working/undertakings (leisure activities) in the same place (Fagnant and 

Kockelman, 2015). This increase in demand will depend on the new mobility pattern/vehicle 

ownership pattern.  

This demand increase can, to some extent, be accommodated by the infrastructure because 

AVs are more traffic-efficient, due to platooning and vehicle communication. In the same spirit, 

price decrease of on-demand services can make these more attractive as a hub transport mode 

between public transport modes, which are more space-efficient, further reducing congestion. 

It is therefore not clear whether AVs can ultimately lead to more or less traffic congestion. The 

land-use discussion below brings even more uncertainty to this issue. 

 

Land-use 

Mobility and land-use have been inherently intertwined. There has been much speculation 

concerning the land-use impacts of AVs (Heinrichs (2016); Alessandrini et al. (2015); Bajpai 

(2016)), as it may trigger multiple effects. For example, a reduction in vehicle ownership will 

arguably decrease parking requirements, while a reduction of travel costs and travel times might 

induce more urban sprawling.  
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Parking 

Currently cars are used only for short periods of time. Most of the time, they stay parked (WSJ, 

2015a). Finding a parking spot may, in addition to fuel waste, increase traffic up to 15% 

(Alessandrini et al., 2015). Fully AVs can mitigate these problems since they can drive passengers to 

their destination, and then drive home or to a parking area further away. It is however not clear 

whether society will accept empty AVs squandering fuel and polluting while looking for parking far 

away. On-demand services or shared AVs are more efficient in this respect, as they do not need 

parking.  

Nevertheless, AVs do have potential for saving parking space, not only by increasing the use of 

on-demand services, but also by reducing space required for self-parking, should it be necessary. 

According to Safdie (1998), compact storage of AVs in specialized depots requires only one quarter 

of the space currently required in a conventional parking (cited by Alessandrini et al. (2015)).  

 

Urban environment 

The increase of urban sprawl that lower travel costs/time may induce can be partly 

compensated by judiciously relocating space freed up from the decrease in parking needs. If this 

extra space from e.g., supressing a parking lane, is used to construct quality bikepaths, an increase in 

bicycle use can be expected (Cervero et al., 2013), decongesting the streets and possibly contributing 

to break the vicious cycle of automobile use (UN, 2012) and bring people to the city centres. An 

architectural study on possible street configuration changes for the city of San Francisco, USA, was 

presented in (Tierney, 2014). One of the examples given in that study featured a 100 ft wide street 

with eight lanes converted into a four-lane street with bike lanes and double the green space. 

Political decision making is crucial here: if freed-up space is not used to foster active travel 

modes or public transportation, it may be used for something else that goes in the opposite direction. 

 

Risks and Challenges 

Although the potential benefits of AVs are likely to be substantial, their use will pose several 

risks and challenges. The adoption of AVs will greatly depend on the way in which those risks and 

challenges are managed. It will not be an easy task since technologies have been evolving faster than 

the regulators can keep up. 
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Technological barriers/developments 

Prior to massification, AVs need to be able to operate competently in the heavily constrained 

2D environment that is traffic, especially urban traffic. Reaching navigation proficiency in this 

environment is much more complex than in the case of airplanes, which is the main reason auto-pilot 

appeared for airplanes much sooner than for cars. 

AVs use various sensors systems and digital maps to scan their nearby environment. All 

information is combined in an on-board computer system that uses sophisticated algorithms to 

determine if the vehicle can move to a new position, in a continuous process which makes decisions 

many times per second. This navigation system must be reliable in all weather conditions and 

environments for that, there is still a lot of work to do. 

Vehicle map position must precise and reliable in real-time, as well as environment 

information. Some situations have proved very challenging, mainly because technology is based on 

optical systems. For example: hidden lane markings, night-time, bad weather conditions, bridges, 

blinding light from the sun, obscured lights, unusual signage, four-way junctions, hand gestures, 

head nods and hand gestures, blocked GPS signal, etc. In addition AVs will need to be able to 

recognize and deal appropriately with unforeseen situations. 

Overcoming these situations reliably requires improving maps, sensors and computer 

algorithms. Deep learning systems (TechCrunch, 2016) may help dealing with unpredictable 

environments, as they can pass human-like decision making patterns to vehicles. This requires 

however a long learning period, which may delay time-to-market. Instead, some improvements can 

also be made to fix the infrastructure in order to be as predictable as possible (WIRED, 2016). 

In the quest for high-precision maps and GPS data, which are essential for AVs, the Japanese 

government and the European Union plan integration of their GPS satellite constellations (NIKKEY 

Asian Review, 2016). An alternative to GPS (or complement to it) was developed a team of USA 

researchers, exploiting existing environmental signals such as cellular and Wi-Fi (TECH i.e., 2016). 

Detailed street-level maps of cities using vector-based graphics have also been developed (Road 

Show, 2016). With this technology, AVs determine their position by calculating their distance to 

known objects, instead of using GPS. 

Other technological developments include: software for vehicle guidance without GPS by 

Oxbotica (Popular Science, 2016); a localizing ground-penetrating radar (LGPR) that works well in 

all weather conditions, day and night, developed by the MIT Lincoln Laboratory (MIT News, 2016); 

LIDAR technology, which allows AVs drive in the dark as in daylight (Fortune, 2016) (electrek@, 

2016). This technology has become increasingly cheaper and smaller (Autoevolution, 2016).  
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Challenges for municipalities 

As recognized by Fox (2016), “Currently, little planning is being done to prepare for driverless 

technology”. But municipal decision-makers will soon be prompted to plan the city for AVs. They 

will face both technical decisions (e.g., transport infrastructure issues) and political ones (e.g., land-

use policies), whose outcome may either favour a smooth AV transition or complicate matters. A 

breakdown of possible issues that municipalities may encounter can be found in (Guerra, 2015). 

 
Legal, liability and ethical issues 

Along with regulatory legislation on how AVs are to be used, the Highway Code and 

certification standards will need to be revised. The Gear 2030 (EC, 2016) presents a review of the 

EU legislation related with AVs, with special attention to the challenges that such vehicles will pose. 

Of particular importance is liability in accident cases. If an accident occurs, who is liable? The 

car’s owner, or the automaker? Some automakers (Mercedes, Volvo and Goggle) said they will 

accept responsibility and liability if their technology is at fault once it becomes commercially 

available (Jalopnik, 2015). Hevelke and Nida-Rümelin (2015) present a discussion about who should 

be held responsible for accidents of fully AVs from a moral stand point. According to them, 

automakers responsibility should be limited to not obstruct AVs improvements.  

As to ethical problems, these may arise before imminent crashing, with algorithm behaviour 

having to decide which humans to endanger (Goodall, 2014). 

 

Cybersecurity and data privacy 

Like with all electronical devices, AV cybersecurity is a serious issue. In 2015 two hackers 

remotely took control of a Jeep Cherokee (WIRED, 2015) and this year a team of hackers did the 

same for a Tesla Model S (The Guardian, 2016c), raising fears that a large-scale attack could bring a 

city to a halt. As result, some carmakers and service companies resorted to crowdsourcing, rewarding 

hackers who find bugs in theirs software. A set of automotive cybersecurity best practices was also 

published (AUTO-ISAC, 2016). 

AVs collect massive amounts of data as they operate, data which can be “foodstock” for 

business opportunities (Financial Post, 2016). Associated to this are data privacy and security issues. 

Authorities are becoming aware of these issues and draft regulations are starting to appear (DMV, 

2015). 
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4. SWOT analysis 

The SWOT table below summarises the discussion of previous sections. It is presented from a 

general, holistic perspective, not specifically a business-oriented one. One of its key features is that 

congestion and traffic demand could be interchanged, depending on the political choices made by 

municipal decision-makers. 

 (INSERT TABLE 1 ABOUT HERE) 

 

5. Conclusions and future 

The usually hard task of anticipating the future becomes even harder when a large change, such 

as the appearance of autonomous vehicles, is looming. Many consequences of their appearance are, 

at best, nebulous at the present stage, along with how deep they might reach. What seems to be 

consensual is the fact that AVs will bring, sooner or later, a paradigm change in transport. Whether 

this change will come from widespread adhesion to new car usufruct models, traffic efficiency, 

electric powering, other factors or any combination of former is not clear. Neither is what practical 

implications it will have on cities, especially if one considers that cities change due to many factors.  

This research summarised the possible impacts of AVs and the state-of-the-art with respect to 

academic research on the subject. It also argued that AVs can make alternative car usufruct models 

more affordable, possibly to an extent large enough that these can subsequently shape the city and 

traffic. However, technological hurdles must be surpassed before any of these come to fruition. 

Recent Tesla auto-pilot crashes prove even the more basic AV functions need vital upgrades, leaving 

harnessing of all AV potential still far away.  

An AV-based society requires a different collective mind-set. People will need time to adapt, 

and it is likely that some die-hards will never give-up being at the helm. Nevertheless, with big 

companies so committed to AV development, it is only a matter of time before some of the 

aforementioned impacts unveil. Some forecasts as to what the future may bring can be found in the 

recent work of (Litman, 2015). 

With research on AVs impacts still at its infancy, the field is ripe for exploring and modelling 

them in a quantitative way, anticipating their extent and side effects. Research on usufruct model 

changes, traffic demand and congestion, and how to best integrate AV with normal traffic rank on 

top of this to-do list, given their potential to shape the city and its urban way of life. Extending the 

study presented in this article in section 3 to more cities and countries may help estimate short- to 

mid-term regional penetration rates. 
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APPENDIX 1 

 

 
Source: SAE International (2014) 

  

SAE 
level Name Narrative Definition 

Execution of 
Steering and 
Acceleration/ 
Deceleration 

Monitoring 
of Driving 

Environment 

Fallback 
Performance 
of Dynamic 

Driving Task 

System 
Capability 

(Driving 
Modes)

0 No 
Automation 

the full-time performance by the human driver of all 
aspects of the dynamic driving task, even when enhanced 
by warning or intervention systems 

Human driver Human driver Human driver n/a 

1 Driver 
Assistance 

the driving mode-specific execution by a driver assistance 
system of either steering or acceleration/deceleration using 
information about the driving environment and with the 
expectation that the human driver perform all remaining 
aspects of the dynamic driving task 

Human driver 
and system Human driver Human driver Some driving 

modes 

2 Partial 
Automation 

the driving mode-specific execution by one or more driver 
assistance systems of both steering and acceleration/ 
deceleration using information about the driving 
environment and with the expectation that the human 
driver perform all remaining aspects of the dynamic 
driving task 

System Human driver Human driver Some driving 
modes 

3 Conditional 
Automation 

the driving mode-specific performance by an automated 
driving system of all aspects of the dynamic driving task 
with the expectation that the human driver will respond 
appropriately to a request to intervene 

System System Human driver Some driving 
modes 

4 High 
Automation 

the driving mode-specific performance by an automated 
driving system of all aspects of the dynamic driving task, 
even if a human driver does not respond appropriately to a 
request to intervene 

System System System Some driving 
modes 

5 Full 
Automation 

the full-time performance by an automated driving system 
of all aspects of the dynamic driving task under all 
roadway and environmental conditions that can be 
managed by a human driver 

System System System All driving 
modes 

               Automated driving system (“system”) monitors the driving environment 

           Human driver monitors the driving environment 
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APPENDIX 2 

This appendix discusses the assumptions made for the usufruct model study. For the three 

different car usufruct models, small city car (ownership), taxi, and driverless taxi, these assumptions 

were made as follows. 

First, taxi company income and expenses were taken from the IMTT taxi study for the city of 

Lisbon, Portugal (IMTT, 2006). Driver salary was removed from the expenses and depreciation was 

increased to that for a vehicle costing an excess 10 000 EUR over a regular one (extra cost of 

driverless capabilities (Litman, 2015). Considering other variables as constant, e.g., service 

frequency; average service kilometres; occupancy percentage; day/night service percentages 

(respectively 65%/35%); fuel costs, it was calculated that a decrease of 32% on taxi fares was 

possible, assuming that the taxi company would want an increase of 10% on its profit margin. 

Second, based on taxi fares for regular taxis and driverless taxis, yearly commuting costs were 

evaluated as function of commuting distance for both taxi types, assuming five days/week of 

commuting (two trips/day). For the all-purpose case, along with commuting, six week-end trips were 

also considered (three each week-end day). This resulted in the dashed lines of figures 1 and 2. Note 

that Portuguese week-end taxi fares are more expensive than week-days fares, which is why taxis are 

more advantageous for commuting only. 

Finally, to evaluate ownership costs, it was assumed commuting would be carried out on a 

small city car (12 000 EUR cost), considering 7 litres/100 km consumption, 2016 gasoline costs, 200 

EUR insurance costs, 100 EUR circulation tax, and yearly linear depreciation for 10 year vehicle life 

cycle with 10% buyback value. This resulted in the dark solid lines of figures 1 and 2. The grey solid 

lines on these figures show ownership costs if a flat rate of 150 EUR/month is added for parking 

expenses (average monthly parking cost in Lisbon). 
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P
O
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I
T
I
V
E

I N T E R N A L

STRENGTHS
Accident reduction
Cheaper insurance policies
Equity (mobility for all)
Increased traffic efficiency
Increased on-demand services
Reduced travel costs
Reduced parking demand

WEAKNESSES
Lack of regulation/certification
Reliance on technology
Costly technology
Technological issues to be solved
Legal & liability issues
Ethical issues

N
E
G
A
T
I
V
E

OPPORTUNITIES
Change vehicle ownership paradigm
Use of smaller vehicles
Fosters use of electric vehicles
Requalification of parking space
Congestion reduction
Emissions reduction

THREATS
Unemployment
Urban expansion
Increased traffic demand
Data privacy
Data security

E X T E R N A L

Table_1 Click here to download Table Table_1_swot.pdf 
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