\qquad

Investigating Transformations of Quadratics

Relation	Linear	Quadratic
Equation	$y=m x+b$	$y=a(x-h)^{2}+k$
No Transformations Equation parent	$y=x$	$y=x^{2}$
Key Points	x y -2 -2 -1 -1 0 0 1 1 2 2	x y -2 $(-2)^{2}=4$ -1 $(-1)^{2}=1$ 0 $(0)^{2}=0$ 1 $(1)^{2}=1$ 2 $(2)^{2}=4$
Graph		

MPM2D1
Day 2: Investigating Transformations of Quadratic Relations
\qquad
Chapter 4: Quadratic Relations

Investigation A: Compare $y=x^{2}$ and $y=x^{2}+k$
Use a graphing calculator to graph the quadratic functions on the same set of axis and complete the following table.

a. Sketch the graphs on the same axes. Label each parabola with its equation.
b. Describe how the value of k in $y=x^{2}+k$ changes the graph of $y=x^{2}$. $k<0$ graph moves down
c. What happens to the x-coordinates of all points on $y=x^{2}$ when the function is changed to $y=x^{2}+k$? What happens to the y-coordinates?
I hoy move
orb
d. Without using a graphing calculator, sketch the graph of $y=x^{2}+85$

\qquad
Day 2: Investigating Transformations of Quadratic Relations
Chapter 4: Quadratic Relations
Investigation B: Compare $y=x^{2}$ and $y=(x-h)^{2}$

Clear all previous equations from your calculator. Repeat part A for the following:

Function	Value of h in $y=(x-h)^{2}$	Direction of opening	Vertex	Axis of symmetry	Congruent to $y=x^{2}$
$y=x^{2}$	0	up	$(0,0)$	$x=0$	Yes
$y=(x-2)^{2}$	2	$4 P$	$(2,0)$	$x=2$	$Y E S$
$y=(x-4)^{2}$	4	$4 P$	$(4 P)$	$x=4$	$Y E S$
$y=(x+2)^{2}$	-2	$4 P$	$(-2,0)$	$x=-2$	Y YES
$y=(x+3)^{2}$	-3	UP	$(-3,0)$	$x=-3$	YES

a. Sketch the graphs on the same axes. Label each parabola with its equation.
b. Describe how the value of h in $y=(x-h)^{2}$ changes the graph of $y=x^{2}$.

> when
c. What happens to the x-coordinates of all points on $y=x^{2}$ when the function is changed to $y=(x-h)^{2}$? What happens to the y-coordinates?

* y-coordinates remain the some
d. Without using a graphing calculator, sketch the graph of $y=(x-5)^{2}$

MPM2D1
Day 2: Investigating Transformations of Quadratic Relations Investigation C: Compare $y=x^{2}$ and $y=a x^{2}$

Clear all previous equations from your calculator. Repeat part A for the following:

Function	Value of a in $y=a x^{2}$	Direction of opening	Vertex	Axis of symmetry	Congruent to $y=x^{2} ?$
$y=x^{2}$	1	up	$(0,0)$	$x=0$	Yes
$y=2 x^{2}$	2	\uparrow	$(0,0)$	$X=0$	NO
$y=0.5 x^{2}$	0.5	\uparrow	$(0,0)$	$X=0$	NO
$y=-2 x^{2}$	-2	\downarrow	$(0,0)$	$X=0$	NO
$y=-0.5 x^{2}$	-0.5	\downarrow	$(0,0)$	$X=0$	NO $2 x^{2}$

a. Sketch the graphs on the same axes. Label each parabola with its equation.
b. Describe how the value of a in $y=a x^{2}$ changes the graph of $y=x^{2}$.
c. What happens to the x-coordinates of all points on $y=x^{2}$ when the function is changed to $y=a x^{2}$? What happens to the y-coordinates?
X remains the some

d. Without using a graphing calculator, sketch the graph of $y=-3 x^{2}$

Example A stone is dropped from the top of a $50-\mathrm{m}$ cliff above a river. Its height, y , in metres, above the water can be estimated using the relation $y=-4.9 x^{2}+50$, where x is the time, in seconds.
a. Graph the relation.

b. Find the intercepts. What do they represent?

$$
x_{1}=-3.2 \quad x_{2}=3.2 \text { how long it taker for the stone }
$$

c. How would the equation change if the stone were dropped from a $75-\mathrm{m}$ cliff instead of a $50-\mathrm{m}$ cliff?

$$
y=-4.9 x^{2}+75
$$

d. For what values of x is each equation valid?

$$
x<0 \text { b/c time connot be negative. }
$$

\qquad
Reflection/Summary: Summarize the effect that a, h, and k, have on a parabola's:

- To graph $y=x^{2}+k$, translate the graph of $y=x^{2}$ vertically k units.
- If $k>0$, then the graph is translated k units upward.
- If $k<0$, then the graph is translated k units downward.

- To graph $y=a x^{2}$, stretch or compress the graph of $y=x^{2}$ vertically by a factor of a. - If $a<0$, the parabola is reflected in the x-axis.
- If $a>1$ or $a<-1$, then the graph is stretched vertically (narrows).
- If $-1<a<0$ or $0<a<1$, then the graph is compressed vertically (widens).

- To graph $y=(x-h)^{2}$, translate the graph of $y=x^{2}$ horizontally h units.
- If $h>0$, then the graph is translated h units to the right. - If $h<0$, then the graph is translated h units to the left.

