Relation	Linear	Quadratic		
Equation	$y = mx + b \qquad \qquad y = a(x - h)^2 + k$			
No Transformations Equation アA2E NT	y=×	$\mathcal{Y} = \mathbf{x}^2$		
Key Points	x y -2 -2 -1 -1 0 O 1 (2 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Graph	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

Investigating Transformations of Quadratics

Investigation A: Compare $y = x^2$ and $y = x^2 + k$

Use a graphing calculator to graph the quadratic functions on the same set of axis and complete the following table.

Function	Value of k in $y = x^2 + k$	Direction of opening	Vertex	Axis of symmetry	Congruent to $y = x^2$?
$y = x^2$	0	up	(0,0)	x = 0	Yes
$y = x^2 + 2$	2	чр	(૧૨)	X=0	YES
$y = x^2 + 4$	4	ЧP	(O,4)	x=0	Ŋ
$y = x^2 - 1$	-1	UP	(0-I)	x = 0	N
$y = x^2 - 3$	-3	ЧP	(0,-3)	K=0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- J a. Sketch the graphs on the same axes. Label each parabola with its equation.
 - b. Describe how the value of k in $y = x^2 + k$ changes the graph of

y = x^2 . When k > 0 graph moves up k < 0 graph moves up c. What happens to the x-coordinates of all points on $y = x^2$

c. What happens to the x-coordinates of all points on $y = x^2$ when the function is changed to $y = x^2 + k$? What happens to the y-coordinates?

They move up or down

d. Without using a graphing calculator, sketch the graph of $y = x^2 + 85$

Investigation B: Compare $y = x^2$ and $y = (x-h)^2$

Clear all previous equations from your calculator. Repeat part **A** for the following:

Function	Value of h in	Direction of	Vertex	Axis of	Congruent to
	$y = (x - h)^2$	opening		symmetry	$y = x^2$?
$y = x^2$	0	up	(0,0)	x = 0	Yes
$y = (x-2)^2$	2	ЧР	(2,0)	x= 2	YEJ
$y = (x - 4)^2$	4	ЦР	(4P)	x-4	YES
$y = (x+2)^2$	-2	ЦР	(-2,0)	X=-2	YES
$y = (x+3)^2$	-3	UP	(-3,0)	×=-3	YES

- a. Sketch the graphs on the same axes. Label each parabola with its equation.
- b. Describe how the value of h in $y = (x h)^2$ changes the graph of

 $y = x^2$. When h > 0 it moves right h < 0 it moves left

c. What happens to the x-coordinates of all points on $y = x^2$ when the function is changed to $y = (x - h)^2$? What happens to the y-coordinates?

d. Without using a graphing calculator, sketch the graph of $y = (x-5)^2$

Investigation C: Compare $y = x^2$ and $y = ax^2$

Clear all previous equations from your calculator. Repeat part A for the following:

Function	Value of a in $y = ax^2$	Direction of opening	Vertex	Axis of symmetry	Congruent to $y = x^2$?
$y = x^2$	1	ир	(0,0)	x = 0	Yes
$y = 2x^2$	Z	1	(0,0)	X=0	NO
$y = 0.5x^2$	0.5	1	(0,0)	X=0	NO
$y = -2x^2$	12	\rightarrow	(<i>0</i> ,0)	X=0	NO
$y = -0.5x^2$	-0.5	\checkmark	(Q0)	X=0	NO 2X ²

withdes get

- a. Sketch the graphs on the same axes. Label each parabola with its equation.
- b. Describe how the value of *a* in $y = ax^2$ changes the graph of

vertical stretch vertical compression OCaci c. What happens to the x-coordinates of all points on $y = x^2$ when the function is changed to $y = ax^2$? What happens to the y-coordinates?

X remains the some

 $y = x^2$

d. Without using a graphing calculator, sketch the graph of $v = -3x^2$

4

Example A stone is dropped from the top of a 50-m cliff above a river. Its height, y, in metres, above the water can be estimated using the relation $y = -4.9x^2 + 50$, where x is the time, in seconds.

- b. Find the intercepts. What do they represent?

X2=3.2 how long it takes for the stone to reach the river. $X_{1} = -3.2$

c. How would the equation change if the stone were dropped from a 75-m cliff instead of a 50-m cliff?

 $y = -4.9 \times 2 + 75$

d. For what values of x is each equation valid?

XCO ble time connot be negative.

Reflection/Summary: Summarize the effect that *a*, *h*, and k, have on a parabola's:

