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Abstract  

We investigate market-price convergence in the competitive Texas electricity market in 

the presence of large-scale wind generation using a large data sample of over 30,000 hourly 

observations for the period of December 1, 2010 to May 31, 2014.  Hourly premiums vary by 

time-of-day and month.  Simple univariate analysis suggests patterns related to the day-of-the-

week, although multivariate regression analysis reveals that this pattern is weak.  The levels of 

the premiums are small and the forward premiums for a given hour exhibit serial correlation across 

days.   An increase in wind generation tends to increase the premiums.  This effect is significant for six 

of the 24 hours for non-West zones and half of the hours for the wind-rich West zone.  The size of the 

effect of rising wind generation on the West zone’s premium is larger than the effects on premiums in 

other zones.  However, an increase in wind generation tends to reduce the forward premium’s 

volatility in nearly all hours. 

Taken together, these findings suggest that ERCOT’s day-ahead market (DAM) and real-

time market (RTM) exhibit modest trading inefficiency.  But making a sizable arbitrage profit on 

a consistent basis is difficult because of the unpredictable nature of wind generation.  To be sure, 

accurate wind generation may arguably improve arbitrage profitability, especially for the West 

zone that houses most of Texas’ wind farms.  However, if the wind forecast accuracy also 

improves price convergence, the arbitrage profit diminishes as well. 
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1. Introduction 

Electricity market reform and deregulation in the U.S. have led to day-ahead and real-

time wholesale market trading in the transmission grids of Pennsylvania–New Jersey–Maryland 

(PJM), New York, New England, California, and Texas (Sioshansi, 2013).  A day-ahead hourly 

forward premium is the day-ahead market (DAM) price for a given hour minus the real-time 

market (RTM) price for the same hour.
1
  A growing literature examines the relationship between 

spot market prices and forward or futures prices in these restructured electricity markets, in light 

of electricity’s important role in modern economies and the unique attributes of this commodity.  

The high costs and technical challenges inherent in storing electricity make real-time electricity 

market prices exceptionally volatile and sensitive to various random factors that affect real time 

load-resource balances, including unanticipated power plant outages, unpredictable weather 

events, unanticipated fluctuations in demand, and intermittent wind and solar generation. 

Forward or futures markets enable market participants to manage market price risks, 

while introducing opportunities for trading and risk allocation to electricity resellers (for 

example, local distribution companies and retail service providers), power generators, and 

financial market participants.  The degree of convergence between forward and spot markets has 

been used to measure the trading efficiency of a restructured market (Borenstein et al. 2008; 

Eydeland and Wolyniec, 2003).  And the introduction of forward or futures markets may impact 

the overall success of efforts to restructure electricity markets by reducing volatility in a spot 

market (Kalantzis and Milonas, 2013).   

                                                           
1
 While market structures vary, we shall use the term “real-time market” to refer to markets that set prices minutes 

ahead of pricing or settlement intervals.  In the U.S., prices in the forward or futures markets are generally set on a 

day-ahead basis.  
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While Keynes (1930) speculated that a futures contract’s forward premium (= futures 

price – spot price) should generally be negative, many studies report positive forward premiums.  

Such studies include analyses of electricity futures traded on the New York Mercantile Exchange 

for delivery at the California-Oregon Border by Shawky et al. (2003), day-ahead forward 

premiums in the New York market by Hadsell and Shawky (2007), day-ahead forward premiums 

in the California market by Borenstein et al. (2008), day-ahead forward premiums in the PJM 

market by Hadsell (2011), and month-ahead premiums in the Iberian power market by Herráiz 

and Monroy (2009).  Persistent, positive (negative), and sufficiently-large forward premiums 

imply that arbitrage profit can be made by selling (buying) electricity in the day-ahead market 

and buying (selling) the same power in the real-time market.   

While premiums in electricity markets tend to be positive, numerous studies report that 

they have significant seasonal or hourly patterns.  While positive premiums are reported by 

Botterud et al. (2010) for the Nordic market, Lucia and Torró (2011) found that premiums vary 

seasonally and are negligible in the summer.  Furió and Meneu (2010) find periods of positive 

and negative premiums in Spain’s month-ahead futures market and attribute the periodic pattern 

to unexpected variations in demand and hydroelectric power generation.  Bunn and Chen (2013) 

report large positive premiums in the U.K. futures market in the winter peak period, smaller 

positive premiums in the winter off-peak period, and small negative premiums in the summer 

peak and off-peak periods.  Longstaff and Wang (2004) observe positive premiums during peak 

evening hours but negative premiums during early afternoon hours in the PJM market.  Haugom 

and Ullrich (2012) find that PJM’s premiums have been greatly reduced or eliminated in more-

recent years.  Viehmann (2011) reports positive premiums in the German market during evening 

peak hours in winter months and negative premiums during non-peak hours of low demand.  



5 

 

Woo et al. (under review) found that the positive day-ahead forward premiums in California’s 

electricity markets depend on wind generation and vary by hour and month-of-year. 

Virtual bidding (VB) that allows a trader to buy (sell) in the day-ahead market with the 

liquidation obligation to sell (buy) in the real-time market may improve convergence between 

the DAM and RTM market prices.  Improvement is said to occur when the introduction of VB 

shrinks the forward premium’s size and volatility.  Examining the New York market, Hadsell 

and Shawky (2007) conclude that VB has decreased premiums during off-peak hours, but has 

increased premiums during peak hours.  Hadsell (2007) finds VB has reduced the price volatility 

in New York’s real-time and day-ahead markets, and Jha and Wolak (2013) and Woo et al. 

(under review) report a similar finding for the California electricity market.   

This paper analyzes day-ahead hourly premiums in the Electric Reliability Council of 

Texas (ERCOT) market.  Our interest in the ERCOT markets is motivated by three reasons.  

First, the ERCOT Interconnection is large, accounting for about 8% of the total electricity 

generation in the U.S.
2
  Second, we are unaware of any prior published analyses of ERCOT 

markets’ forward premiums,
3
 even though, this is regarded as a very successful restructured 

market and the performance of futures markets, may provide an overall indication of the 

efficiency of a market.  Third, Texas has the largest installed capacity of wind generation in the 

U.S. and rising wind generation has been found to dampen the ERCOT market prices (Woo, et 

al., 2011), although very little is known about how forward premiums move with the highly-

                                                           
2
 Generation in ERCOT was  324,859.7 GWH in 2012, as reported to NERC:  

http://www.nerc.com/pa/RAPA/ESD/Pages/default.aspx.  Total U.S. generation was 4,047,765 GWH in that year, 

according to the U.S. Department of Energy’s Energy Information Administration:   

http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_1_1. 

3
 We note, however, that the excellent annual reports published by Potomac Economics, the market monitor for 

ERCOT, contribute simple graphical analyses of the performance of ERCOT’s day-ahead and real-time markets. 

http://www.nerc.com/pa/RAPA/ESD/Pages/default.aspx
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unpredictable wind generation.  As renewable energy generation in the world’s electricity 

markets increases, its impact on the formation of electricity prices in competitive wholesale 

markets becomes increasingly important. 

Our empirical examination has two parts.  The first part is a descriptive analysis of hourly 

price data for the 36-month period from December 1, 2010 to May 31, 2014.  The second 

component is an estimation of five location-specific sets of 24 hourly regressions based on prior 

studies of the fundamental drivers of wholesale electricity market prices (Woo, et al., 2011, 

2013).     

The key findings are as follows: 

 As in many other electricity markets, electricity premiums are generally positive and vary by 

hour and month of the year. 

 ERCOT’s hourly DAM and RTM prices for various zones are noisy and weakly 

correlated.  These prices can be negative and at times hit the price caps.  This suggests 

modest trading inefficiency that deserves further investigation. 

 Based on the descriptive statistics, ERCOT’s zonal hourly day-ahead forward premiums are 

positive, on average, and highly correlated.  The size of the average premiums is small – 

between $1.5 and $2.5 per MWh. 

 Based on our regression results, the forward premiums for a given hour exhibit serial 

correlation across days.  Rising wind generation tends to reduce the volatility of the forward 

premium. 

 Based on our regression results, an increase in wind generation raises the forward premiums.    

This effect is significant for 25% of the 24 hours for non-West zones and half of the hours for 

the West zone.  The sizes of the effects in the West zone are larger than in other zones. 
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 Based on our regression results, there are month-of-year effects.   

 The day-of-week effects suggested by simple univariate graphical analysis tend to be 

insignificant in our multivariable regression models. 

Taken together, these findings suggest that the ERCOT’s DAM and RTM markets show 

modest trading inefficiency.  But making sizable arbitrage profit consistently is difficult because 

of the unpredictable nature of wind generation.  To be sure, accurate wind generation may 

arguably improve arbitrage profitability, especially for the West zone that houses most of Texas’ 

wind farms.  However, if the wind forecast accuracy also improves price convergence, the 

arbitrage profit diminishes as well. 

The following section reviews ERCOT’s electricity market features, offering a contextual 

background of our forward premium analysis.  Section 3 describes our hourly data sample, 

explores temporal patterns in the forward premiums, and identifies a relationship between wind 

generation and the size of the premiums.  In Section 4 we conduct a simple test for market 

efficiency.  Section 5 provides regression results, conducted to better isolate the factors 

contributing to the observed patterns in the premiums.  Section 6 concludes. 

 

2. ERCOT market description 

The ERCOT market is often cited as North America’s most successful attempt to 

introduce competition in both generation and retail segments of the power industry (Distributed 

Energy Financial Group, 2011; Alliance for Retail Choice, 2007; and Center for Advancement of 

Energy Markets, 2003).  This market covers about 75% of the area of America’s leading state in 

electricity generation and consumption, and serves about 85% of Texas’ total electricity load.  

Although there is no synchronous interconnection to North America’s Eastern or Western grids, 
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the Texas grid can exchange about 860 MW with other reliability councils in the U.S. and 

Mexico through direct current links. 

In the wholesale sector, there is competition among a large number of generators, 

although one generation company, Luminant, holds a market share of roughly 20%.  There 

presently is no “capacity market” to maintain a target reserve margin.  Consequently, market 

forces are heavily relied upon to preserve reliability and resource adequacy and offer caps have 

been raised to relatively-high levels in hopes of providing sufficient compensation to the 

generation sector.   

The competitive wholesale market has evolved over time, with an important structural 

change occurring on December 1, 2010, upon the introduction of a nodal market structure.  

Under the new structure, ERCOT assumed a central role in dispatching all resources using a 

security-constrained economic dispatch (SCED) model.  Nodal prices are used to determine the 

compensation provided to generators, while a demand-weighted average of the nodal prices 

within various zones is calculated to bill load-serving entities (LSEs) for wholesale energy 

purchases (Zarnikau, et al., 2014).   

The creation of a formal day-ahead market (DAM) with VB accompanied the nodal 

market’s introduction.  The DAM is a voluntary, financially-binding forward energy market, 

which matches willing buyers and sellers, subject to various constraints.  In the DAM, offers to 

sell energy can take the form of either a three-part supply offer
4
 or an energy-only offer.  Offers 

and bids are location-specific.  Hourly market-clearing DAM prices used to settle DAM’s 

transactions result from the least-cost dispatch that co-optimizes with ancillary services and 

                                                           
4
 An offer may include the following three components:  Startup Offer, a Minimum-Energy Offer, and an Energy 

Offer Curve. 
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certain congestion revenue rights.  Deviations from a scheduled DAM transaction are settled at 

the 5-minute RTM prices.  By providing market participants with a means to make financially-

binding forward purchases and sales of power for delivery in real-time, the DAM enables market 

participants to hedge energy and congestion costs on a day-ahead basis, mitigate the risk of price 

volatility in real-time, and coordinate generation commitments.   

In ERCOT, settlement point prices are calculated at three levels: resource nodes, load 

zones, and hubs (ERCOT, undated).  A load zone is a set of adjacent electrical buses with similar 

prices, reflecting the expectation of minor intra-zonal transmission constraints.  Given the role of 

load zones within ERCOT’s settlement system, average locational marginal prices (LMPz) have 

significant importance to the market. 

The zones used in the calculation of LMPz values generally correspond with those 

defined under the zonal market structure in place prior to December 1, 2010, although the former 

South zone was split up to permit Austin Energy, the Lower Colorado River Authority (LCRA), 

and CPS Energy (San Antonio) to have their own zones.  The present zones are indicated in 

Figure 1. 

The offer caps on wholesale market prices were raised to $3,000 per MWh at the start of 

the nodal market and DAM, and were further increased to $4,500 per MWh effective August 

2012 to encourage the construction of new generating capacity.   In August 2012, the Public 

Utility Commission of Texas (PUCT) approved a plan to gradually raise the offer caps to $9,000 

per MWh, with an initial increase to $5,000 per MWh on June 1, 2013 and a further increased to 

$7,000 per MWh on June 1, 2014, just beyond the time frame examined here. 
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In the months following the introduction of the nodal market and the DAM, prices often 

spiked.  A cold front in early February 2011 led to unusual winter price spikes.  The summer of 

2011 was one of the hottest on record in Texas, leading to higher-than-expected demand and 

numerous price spikes.  In contrast, prices in 2013 reached the offer cap only once.  This 

market’s increasing reliance upon generation from wind farms has placed downward pressure on 

energy prices in recent years (Woo, et al., 2011).   

3. Descriptive statistics 

While the current ERCOT market is divided into eight zones, our analysis will focus on 

five zones: North, Houston, West, LCRA, and South.  The North and Houston zones account for 

about 37% and 27%, respectively, of the energy sales in this market, while the South and West 

zones contribute 12% and 9%.  The North, Houston, South, and West zones provide the stage for 

nearly all of the state’s retail competition, and most of the competitive generation resides within 

those zones.  The Lower Colorado River Authority (LCRA) zone is included in this analysis 

because it includes numerous rural electric cooperatives and municipal utilities.  Our analysis 

does not include the CPS (San Antonio), AEN (Austin), and RAYBN (Rayburn) zones, chiefly 

because each of them is dominated by a single vertically-integrated utility system.   

Our analysis for these five zones focuses on the time period beginning with the initiation 

of the nodal market and the DAM on December 1, 2010 through May 31, 2014.  The zonal DAM 

price is the hourly price set in the DAM for each zone.  The zonal RTM price is a load-weighted 

average of the RTM market prices in each zone.
5
   

                                                           
5
 While real-time prices are set at least every 5 minutes, 15-minute prices are used in ERCOT’s market settlement 

processes.  Thus, the 5-minute prices are first converted into 15-minute prices using a load-weighted average. 
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3.1 RTM price vs. DAM price  

Figures 2 through 6 provide scatterplots of the hourly RTM price versus the hourly DAM 

price for each of the five zones selected for analysis.  These figures suggest that the DAM and 

RTM prices are highly volatile and weakly correlated.  At times they reach or exceed the price 

caps of $3000 per MWh, $4500 per MWh, and $5,000 per MWh in effect during our period of 

analysis.  Prices in excess of the caps may occur when certain inter-zonal transmission 

constraints are binding during periods that coincide with the acceptance of high-price energy 

offers.6   

3.2 Hourly day-ahead forward premiums 

The hourly day-ahead forward premium is the hourly DAM price minus the hourly RTM 

price.  Table 1 presents the premiums’ summary statistics by zone.  As in most other electricity 

markets, the forward premium is positive.  The premium is considerably higher in the West zone 

and its adjacent LCRA zone.  The West zone hosted the majority of the state’s wind generation 

during this period.  Moreover, premiums have the greatest volatility in the West zone, as 

evidenced by the higher standard deviation shown in Table 1.  Since prices converge in the 

absence of transmission constraints, the premiums are mostly highly correlated with r > 0.9 (p-

value < 0.0001). 

3.3 Hour-of-day patterns in price premiums 

Figures 7 through 18 show that the hourly premiums generally tend to have the same 

patterns among zones, as the high correlation among zones would suggest.    However, in some 

                                                           
6
 For a more technical explanation, see Dan Jones, Potomac Economics, MCPE and Offer Cap/Floor Consistency, 

etc., presentation to ERCOT TAC/WMS, June 13, 2008, available at:  

www.ercot.com/content/meetings/wms/keydocs/2008/0613/Jones_TAC_(20080613).ppt. 
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fall and spring months, the West zone, in particular, displays a pattern in forward premiums that 

differ from the other zones.  In these months, the ERCOT market has its greatest dependence 

upon wind generation.  To wit, Figure 16 reports the divergence in patterns among zones for 

October. 

Figures 19-21 portray the overall average of the hourly zonal premiums for three zones: 

North, Houston and West because the LRCA and South zones have the very similar premium 

patterns.  Each figure demonstrates the premiums vary by hour with differing means and 

volatilities implied by the 5- and 95-percentiles.  The range of premiums tends to be the greatest 

in the late afternoon in each zone, with the West zone exhibiting the greatest range, by far.  The 

premiums significantly differ from zero in each zone at the hours ending at 8 a.m., 9 a.m., or 

both.  In all three zones, the premiums are significantly different from zero during the last hour 

of each day.  In contrast to the West zone, the North and Houston zones exhibit small ranges of 

premiums, yet significant values, during the hours ending 18 (6 p.m.) and 19 (7 p.m.). 

3.4 Day-of-week patterns in price premiums. 

Figures 22 - 24 suggest a day-of-week pattern in the premiums in North, Houston and 

West, with statistically significant means during Thursday, Friday, Saturday, and Sunday.  

However, the regression analysis presented later suggests that the day-of-week effects on 

premiums are generally insignificant after controlling for the influence of month-of-year and 

wind generation. 

3.5 Month-of-year patterns in price premiums 
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Figures 25-27 show how ERCOT forward premiums in North, Houston and West, varied 

by month over the period of this study.  These figures show the forward premiums’ means and 

volatilities vary by month.  The effects of the offer caps on the monthly means, however, are not 

discernible.  As noted earlier, unusually hot weather during the summer of 2011 and a severe 

freeze during February 2011 resulted in numerous price spikes during those months.  These 

figures suggest that these weather events affected the price premiums, as well.  There have been 

far fewer price spikes in subsequent years, during which the price caps have been higher. 

3.6.  Wind generation and forward premiums 

Large-scale wind generation provides power on an“as-available” basis, is intermittent, 

and is largely outside the control of the ERCOT Independent System Operator.
7
  We explore 

wind generation as a potential determinant of forward premiums because rising wind energy 

output tends to reduce the RTM price (Woo et al., 2011, 2014), to the point that the RTM price 

can become negative,
8
 thus greatly magnifying the forward premium.  Wind generation data 

were obtained from the ERCOT website.
9
  Wind generation data for the entire ERCOT market 

were used, since zone-specific data are not readily available.    

Figures 28 through 30 suggest ERCOT forward premiums in the North, Houston and 

West zones depend on wind generation.  Specifically, rising wind generation tends to increase 

the premiums’ mean and reduce the premiums’ volatility.  The range of premiums in the West 

zone is far greater than in the North or Houston zones.   

                                                           
7
 While an independent system operator can curtail wind generation, it cannot increase wind generation like 

dispatchable generation (e.g., natural-gas turbines). 
8
 An example is the minimum-load condition when the system load cannot fully absorb the non-dispatchable 

generation output from wind farms.  As a result, negative prices are used to induce dispatchable- generation (e.g., 

natural-gas turbines) owners to curtail their output so as to maintain the real-time load-resource balance. 
9
 www.ercot.com. 
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4.  Testing the market efficiency hypothesis 

 The efficient market hypothesis (EMH) suggests that, absent transaction cost, the RTM 

price moves in tandem with the DAM price with no arbitrage opportunity between the two prices 

(Siegel and Siegel, 1990).  To test this hypothesis, we apply the simple bivariate regression 

model: 

 Yht  = α + β Xht  +  εht       (1) 

where Yht = RTM price, Xht = DAM price, and εht = AR(n) error.  The price data used to estimate 

equation (1) are stationary based on the Phillips-Perron (Phillips and Perron, 1988) unit root test 

results that firmly reject the hypothesis of non-stationarity for all zones (p-values < 0.01), thus 

assuaging any concerns about spurious price regression (Granger and Newbold, 1974).  The 

testable hypothesis is H0: α = 0 and β =1, whose rejection implies that the price data do not 

support the EMH under the assumption of zero transaction costs.  Table 2 reports the regression 

results using the maximum likelihood method in the SAS/ETS PROC AUTOREG command.  It 

yields the following observations: 

 The R
2
 values are around 0.2, indicating a modest data fit by the regressions. 

 All regressions have statistically significant intercepts (p-value < 0.01).  The slope estimates 

are also statistically significant, lying between 0.49 and 0.56.  

 The AR parameter estimates suggest AR(5) errors. 

 The F-statistics reject H0: α = 0 and β =1 (p-value < 0.01) for all locations. 

These observations suggest trading inefficiency and arbitrage opportunities. 
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5.  Regression Analysis 

5.1 Model 

Figures 22 through 30 suggest that day-of-week, month-of-year, and wind generation may 

drive ERCOT’s forward premiums.  However, they do not delineate each driver’s individual 

effect.  Hence, we estimate 24 hourly regressions, each with the following specification:
10

 

Zht = h + d hd Ddt + m hm Mmt + h Wht + ht   (2) 

In equation (2), the dependent variable is Zht = forward premium for hour h and day t for a 

particular market price series, representing the North, Houston, West,  LCRA, and South zones.
11

  

The systematic portion is represented by the first four terms on the right hand side of equation 

(2).   

The first independent variable on the right-hand-side of equation (1) is the hour-specific 

intercept h.  Based on the variables introduced below, h measures the average premium for hour 

h in December on a Sunday, after controlling for the effects of month-of-year, day-of-week, and 

wind generation.  

We use indicator Dmt = 1 to indicate if day t is d = 1 (Sunday), …, 6 (Friday); 0 otherwise.  

The day-of-week effect for hour h is measured by the coefficient hd.  

We use binary indicator Mmt = 1 to indicate if day t is in month m = 1 (January), …, 11 

(November); 0 otherwise.  The month-of-year effect for hour h is measured by the coefficient 

hm.  

                                                           
10

 We tested a single equation approach that uses hourly dummies to capture the hour-of-day effects.  The 

approach’s assumption of constant month-of-year and wind generation effects are rejected by the data. 
11

 We applied the Phillips-Perron unit-root test (Phillips and Perron, 1988) to decisively reject (p-value < 0.01) the 

hypothesis that the forward premium data series are non-stationary.  The other metric variable in equation (2) is 

wind generation Wht, which is also found to be stationary. 
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The last independent variable is Wht, which is ERCOT’s hourly wind generation (MW) in 

hour h on day t.  Its hour-specific effect on the forward premium is given by the coefficient h. 

The hour-specific random error in equation (2) is ht for hour h on day t.  We consider 

three stochastic specifications: (a) ht is AR(1), with an heteroskedastic variance that is an 

exponential function of wind generation (SAS, 2008, p.351); (b) ht is an AR(1) error; and (c) ht 

follows a GARCH (1, 1) process (Bollerslev, 1986).  Obtained via PROC AUTOREG in 

SAS/ETS (2008), we adopt (a) because (b) is rejected by the data and (c) leads to a non-

stationary GARCH (1, 1) process with undefined variance.   

 

5.2 Results 

Tables 3 through 12 report the regression results.  Estimates presented in bold font are 

statistically significant at the 1% level.  Using the 5% significance level results in an almost 

identical presentation of significant estimates.   

Based on Tables 3 through 7, residuals are serially correlated for the same hour across 

days and statistically significant heteroskedasticity is evident in all zones.  The hetero wind 

coefficient is consistently negative in all hours and in all zones, suggesting an increase in wind 

generation tends to reduce the volatility of the forward premium.  This finding contrasts with the 

results from a similar modeling effort in California (Woo et al., under review), where the picture 

was not so clear. 

The estimates of h in Table 8 suggests that the hourly average premiums are mostly 

insignificant on a Saturday in December, after controlling for the effects of wind generation, 

month-of-year, and day-of-week.  Yet, exceptions hold in some zones in hours ending 1 a.m., 2 

a.m., 3 a.m., and 3 p.m. 
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The estimates of h in Table 1 show the wind generation effect by hour, after controlling 

for the effects of day-of-week and month-of-year.  An increase in wind generation tends to 

increase the forward premium.  The effect is statistically significant in the hours ending 2 a.m., 3 

a.m., and 7 p.m. (hour 19) in all zones.  It is significant in the last hour of the day in four of the 

five zones.  The size of the effect tends to be the highest in the wind-rich West zone, with 

significant estimates in half of the hours. 

In contrast to the univariate analysis presented in Figures 22 through 24, Table 10 

suggests that day-of-week effects are weak, after controlling for the effects of wind generation, 

monthly patterns, and autocorrelation. 

Month-of-year effects are more-pronounced, as suggested in Tables 11 and 12.  These 

effects are particularly significant in the hours ending 2 a.m., 3 a.m., and late afternoon hours. 

 

6.  Conclusion 

In the competitive ERCOT electricity market, day-ahead hourly premiums vary by time-

of-day and month.  The levels of the premiums are small (between $1.5 and $2.5 per MWh), and 

the forward premiums for a given hour exhibit serial correlation across days.  Day-ahead prices 

are poor predictors of real-time prices, thus suggesting a modest level of trading inefficiency and 

opportunities for arbitrage.  An increase in wind generation tends to increase the premiums.  This 

effect is significant for six of the 24 hours for non-West zones and half of the hours for the wind-

rich West zone.   

Making a sizable arbitrage profit on a consistent basis is difficult because of the 

unpredictable nature of wind generation.  Wind generation tends to increase the premiums, 
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although an increase in wind generation also tends to reduce the forward premium’s volatility in 

nearly all hours.  As Texas increases its reliance upon this renewable resource in the coming 

years and as other regions of the world increase their reliance upon renewable resources, an 

understanding of the relationship between intermittent resources and market prices will increase 

in importance.  

Accurate forecasts of wind generation may arguably improve arbitrage profitability, 

especially for the West zone that houses most of Texas’ wind farms.  However, if the wind 

forecast accuracy also improves price convergence, the arbitrage profit diminishes as well.  In 

recent years, improving the accuracy of wind generation forecasts has indeed been a priority for 

ERCOT.  On February 26, 2008, a mismatch between load and generation led to a sudden drop 

in system frequency and outages resulted.  ERCOT’s day-ahead forecast anticipated 1,000 MW 

of wind that ultimately was not available.  Following this event, ERCOT began deliberately 

under-forecasting wind power output.
12

  Nearly two years later, on January 28, 2010, a strong 

cold front moved southward from the Texas Panhandle into the Sweetwater, Texas region.  The 

approaching front stalled and then moved backward.  ERCOT’s wind forecast model was 

incapable of predicting wind generation levels under this unusual weather event and two 

different and conflicting 600 MW dispatch instructions to fossil fuel generators were issued -- 

one to ramp generation up  and the other to ramp generation down.  Following these events, the 

critical importance of accurate wind generation forecasts became apparent and ERCOT 

implemented a more-advanced wind forecasting system.   

                                                           
12

 NPRR210 Wind Forecasting Change to P50.  Comments of Morgan Stanley.  Presentation to Technical Advisory 

Committee of ERCOT. April 8, 2010. 
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These findings suggest that the ERCOT’s day-ahead market (DAM) and real-time market 

(RTM) show modest trading inefficiency.  Yet, such inefficiencies might be expected in the first 

three and a half years of a new market structure, particularly when a new nodal wholesale real-

time pricing system is accompanied by a new formal day-ahead market.  As noted earlier, 

forward premiums appear to have declined and efficiencies have been improved in other 

electricity markets in the U.S. as markets have matured.  It will be interesting to see whether the 

ERCOT market demonstrates similar improvement in the coming years. 
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Figure 1. ERCOT Map with Zones Delineated.  Approximate locations of the Austin Energy (AEN), 

LCRA, Rayburn, and CPS zones are indicated.   
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Figure 2. North zone’s scatter plot of hourly RTM price vs. hourly DAM price for the period of 

12/01/2010 – 05/31/2014 (r = 0.420). 
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Figure 3 Houston zone’s scatter plot of hourly RTM price vs. hourly DAM price for the period of 

12/01/2010 – 05/31/2014 (r = 0.407). 
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Figure 4. West zone’s scatter plot of hourly RTM price vs. hourly DAM price for the period of 

12/01/2010 – 05/31/2014 (r = 0.437). 
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Figure 5. LCRA zone’s scatter plot of hourly RTM price vs. hourly DAM price for the period of 

12/01/2010 – 05/31/2014 (r = 0.418). 
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Figure 6. South zone’s scatter plot of hourly RTM price vs. hourly DAM price for the period of 

12/01/2010 – 05/31/2014 (r = 0.418). 

 



29 

 

 

Figure 7. Comparison of average zonal premiums: January 
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Figure 8. Comparison of average zonal premiums: February 
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Figure 9. Comparison of average zonal premiums: March 
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Figure 10. Comparison of average zonal premiums: April 
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Figure 11. Comparison of average zonal premiums: May 
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Figure 12. Comparison of average zonal premiums: June 
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Figure 13. Comparison of average zonal premiums: July 
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Figure 14. Comparison of average zonal premiums: August 
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Figure 15. Comparison of average zonal premiums: September 
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Figure 16. Comparison of average zonal premiums: October 
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Figure 17. Comparison of average zonal premiums: November 
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Figure 18. Comparison of average zonal premiums: December 
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Figure 19. North zone’s forward premiums’ mean, 5
th
 and 95

th
 percentiles ($/MWh) by hour for the period 

of 12/01/2010 – 05/31/2014.  For each hour, the bars “━” indicate the 5- and 95 percentiles, the unfilled 

triangles “△” the means that are not statistically different from zero (p-value > 0.05), the solid triangles 

“▲” the means that are statistically different from zero (p-value ≤ 0.05). 

 

 

Figure 20. Houston zone’s forward premiums’ mean, 5
th
 and 95

th
 percentiles ($/MWh) by hour for the 

period of 12/01/2010 – 05/31/2014.  For each hour, the bars “━” indicate the 5- and 95 percentiles, the 

unfilled triangles “△” the means that are not statistically different from zero (p-value > 0.05), the solid 

triangles “▲” the means that are statistically different from zero (p-value ≤ 0.05).   
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Figure 21. West zone’s forward premiums’ mean, 5
th
 and 95

th
 percentiles ($/MWh) by hour for the period 

of 12/01/2010 – 05/31/2014.  For each hour, the bars “━” indicate the 5- and 95 percentiles, the unfilled 

triangles “△” the means that are not statistically different from zero (p-value > 0.05), the solid triangles 

“▲” the means that are statistically different from zero (p-value ≤ 0.05).   

 

 

Figure 22. North zone’s forward premiums’ mean, 5
th
 and 95

th
 percentiles ($/MWh) by day-of-week for 

the period of 12/01/2010 – 05/31/2014.  For each day of week, the bars “━” indicate the percentiles, the 

unfilled triangles “△” the means that are not statistically different from zero (p-value > 0.05), the solid 

triangles “▲” the means that are statistically different from zero (p-value ≤ 0.05).    
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Figure 23. Houston zone’s forward premiums’ mean, 5
th
 and 95

th
 percentiles ($/MWh) by day-of-week for 

the period of 12/01/2010 – 05/31/2014.  For each day of week, the bars “━” indicate the percentiles, the 

unfilled triangles “△” the means that are not statistically different from zero (p-value > 0.05), the solid 

triangles “▲” the means that are statistically different from zero (p-value ≤ 0.05).    

 

 

 

Figure 24. West zone’s forward premiums’ mean, 5
th
 and 95

th
 percentiles ($/MWh) by day-of-week for 

the period of 12/01/2010 – 05/31/2014.  For each day of week, the bars “━” indicate the percentiles, the 

unfilled triangles “△” the means that are not statistically different from zero (p-value > 0.05), the solid 

triangles “▲” the means that are statistically different from zero (p-value ≤ 0.05). 
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Figure 25. North zone’s forward premiums’ monthly mean, 5
th
 and 95

th
 percentiles ($/MWh) for the 

period of 12/01/2010 – 05/31/2014.  For each month, the bars “━” indicate the percentiles.  The triangles 

show the means for the $3000/MWh price cap period, the squares show the means for the $4500/MWh 

price cap period, and the diamonds show the means for the $5000/MWh price cap period.  The solid 

triangles, squares and diamonds indicate means that are statistically different from zero (p-value ≤ 0.05) 

 

Figure 26. Houston zone’s forward premiums’ monthly mean, 5
th
 and 95

th
 percentiles ($/MWh) for the 

period of 12/01/2010 – 05/31/2014.  For each month, the bars “━” indicate the percentiles.  The triangles 

show the means for the $3000/MWh price cap period, the squares show the means for the $4500/MWh 

price cap period, and the diamonds show the means for the $5000/MWh price cap period.  The solid 

triangles, squares and diamonds indicate means that are statistically different from zero (p-value ≤ 0.05). 
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Figure 27: West zone’s forward premiums’ monthly mean, 5
th
 and 95

th
 percentiles ($/MWh) for the period 

of 12/01/2010 – 05/31/2014.  For each month, the bars “━” indicate the percentiles.  The triangles show 

the means for the $3000/MWh price cap period, the squares show the means for the $4500/MWh price 

cap period, and the diamonds show the means for the $5000/MWh price cap period.  The solid triangles, 

squares and diamonds indicate means that are statistically different from zero (p-value ≤ 0.05). 

 

Figure 28. North zone’s forward premiums’ mean, 5
th
 and 95

th
 percentiles ($/MWh) by wind generation 

interval for the period of 12/01/2010 – 05/31/2014.  The interval definitions are:  1 = “0-10 percentile of 

wind generation data”, …, 10 = “91-100 percentile of wind generation data”.   The bars “━” indicate the 

premiums’ percentiles, the unfilled triangles “△” the means that are not statistically different from zero 

(p-value > 0.05), the solid triangles “▲” the means that are statistically different from zero (p-value ≤ 

0.05). 
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Figure 29. Houston zone’s forward premiums’ mean, 5
th
 and 95

th
 percentiles ($/MWh) by wind generation 

interval for the period of 12/01/2010 – 05/31/2014.  The interval definitions are:  1 = “0-10 percentile of 

wind generation data”, …, 10 = “91-100 percentile of wind generation data”.   The bars “━” indicate the 

premiums’ percentiles, the unfilled triangles “△” the means that are not statistically different from zero 

(p-value > 0.05), the solid triangles “▲” the means that are statistically different from zero (p-value ≤ 

0.05). 

 

Figure 30. West zone’s forward premiums’ mean, 5
th
 and 95

th
 percentiles ($/MWh) by wind generation 

interval for the period of 12/01/2010 – 05/31/2014.  The interval definitions are:  1 = “0-10 percentile of 

wind generation data”, …, 10 = “91-100 percentile of wind generation data”.   The bars “━” indicate the 

premiums’ percentiles, the unfilled triangles “△” the means that are not statistically different from zero 

(p-value > 0.05), the solid triangles “▲” the means that are statistically different from zero (p-value ≤ 

0.05). 

 



47 

 

Table 2. Summary statistics of forward price premiums in the period of 12/01/2010 – 05/31/2014. 

Zone N Mean Std Dev Sum Minimum Maximum 

North 30,668 1.93 92 59155 -4439 2584 

Houston 30,668 1.92 94 58763 -4296 2585 

West 30,668 2.47 97 75666 -4465 2572 

LCRA 30,668 2.03 94 62196 -4628 2593 

South 30,668 1.54 95 47293 -4310 2589 

 

Correlation coefficients 

Zone North Houston West LCRA South 

North 1 0.96 0.95 0.98 0.92 

Houston 0.96 1 0.92 0.97 0.92 

West 0.95 0.92 1 0.93 0.87 

LCRA 0.98 0.97 0.93 1 0.93 

South 0.92 0.92 0.87 0.93 1 
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Table 3. Maximum likelihood estimation of Equation (1): Yht = α + β Xht  +  εht where Yht = RTM price, Xht 

= DAM price, and εht = AR(5) error.  Each regression’s sample has 30,668 hourly observations for the 

period of 12/01/2010 – 05/31/2014 

Variable North Houston West LCRA South 

Sample Mean RTM 34.15 34.51 37.96 34.84 35.46 

Sample Mean DAM 36.08 36.43 40.43 36.87 37.00 

RMSE 83.77 86.12 89.80 85.86 87.64 

Adjusted R
2 

0.2086 0.1959 0.2173 0.2067 0.2382 

Intercept: α 16.26 

(<.0001) 

16.35 

(<.0001) 

16.09 

(<.0001) 

15.93 

(<.0001) 

14.77 

(<.0001) 

Slope: β 0.4957 

(<.0001) 

0.4985 

(<.0001) 

0.5408 

(<.0001) 

0.5127 

(<.0001) 

0.5590 

(<.0001) 

AR(1) parameter 0.1693 

(<.0001) 

0.1587 

(<.0001) 

0.1558 

(<.0001) 

0.1677 

(<.0001) 

0.2373 

(<.0001) 

AR(2) parameter 0.0383 

(<.0001) 

0.0468 

(<.0001) 

0.0274 

(<.0001) 

0.0351 

(<.0001) 

-0.0154 

0.0098 

AR(3) parameter 
0.0424 

(<.0001) 

0.0403 

(<.0001) 

0.0456 

(<.0001) 

0.0375 

(<.0001) 

0.0453 

(<.0001) 

AR(4) parameter 
-0.0302 

(<.0001) 

-0.0253 

(<.0001) 

-0.0280 

(<.0001) 

-0.0228 

(<.0001) 

-0.0307 

(<.0001) 

AR(5) parameter 
-0.0650 

(<.0001) 

-0.0672 

(<.0001) 

-0.0608 

(<.0001) 

-0.0695 

(<.0001) 

-0.0637 

(<.0001) 

F-statistic for testing 

H0: α = 0 and β =1, 3562 

(<.0001) 

3436 

(<.0001) 

4151 

(<.0001) 

3701 

(<.0001) 

3776 

(<.0001) 
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Table 4. North zone’s regression results based on Equation (2) that postulates (a) the hourly premium 

varies by day-of-week, month-of-year year and wind generation; and (b) the random error is AR(1) and 

has heteroskedastic variance that is an exponential function of wind generation.  The regression’s sample 

has 30,668 hourly observations for the period of 12/01/2010 – 05/31/2014.  The bold estimates are 

significant at the 1% level.   

Hour Adjusted R
2
 AR(1) parameter Hetero Intercept Hetero Wind 

1 0.0405 -0.0282 15.67 -0.00010 

2 0.0549 -0.0647 11.48 -0.00018 

3 0.0778 -0.1706 7.95 -0.00008 

4 0.0147 -0.3570 8.00 0.00017 

5  -0.1911 83.75 -0.00061 

6 0.0091 -0.1553 85.54 -0.00001 

7 0.0194 -0.1197 172.57 -0.00009 

8  -0.1627 542.48 -0.00090 

9 0.0078 -0.2742 71.45 -0.00001 

10 0.0072 -0.1960 59.55 0.00003 

11 0.0104 -0.1879 19.13 0.00066 

12 0.0146 -0.0685 82.54 -0.00039 

13 0.0141 -0.0161 40.05 -0.00054 

14 0.0012 -0.0643 134.26 -0.00102 

15  0.1954 328.87 -0.00135 

16 0.0127 0.4412 261.37 -0.00070 

17 0.0276 0.3739 308.76 -0.00065 

18 0.0379 0.2937 199.31 -0.00066 

19 0.0184 0.0877 126.16 -0.00077 

20 0.0618 0.0731 34.48 -0.00039 

21 0.0341 0.0671 32.22 -0.00029 

22 0.0191 0.0506 35.90 -0.00036 

23 0.0288 0.0677 28.89 -0.00025 

24 0.0373 0.0578 20.49 -0.00024 
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Table 5. Houston zone’s regression results based on Equation (2) that postulates (a) the hourly premium 

varies by day-of-week, month-of-year year and wind generation; and (b) the random error is AR(1) and 

has heteroskedastic variance that is an exponential function of wind generation.  The regression’s sample 

has 30,668 hourly observations for the period of 12/01/2010 – 05/31/2014.  The bold estimates are 

significant at the 1% level.   

Hour Adjusted R
2
 AR(1) parameter Hetero Intercept Hetero Wind 

1 0.0462 -0.0043 16.44 -0.00012 

2 0.0589 0.0131 10.85 -0.00021 

3 0.0840 -0.0308 7.07 -0.00007 

4 0.0172 -0.3745 7.73 0.00014 

5 0.0001 -0.1980 82.41 -0.00063 

6 0.0082 -0.1741 87.47 -0.00002 

7 0.0178 -0.1182 753.16 -0.00083 

8 0.0085 -0.1721 356.67 -0.00069 

9 0.0091 -0.2612 70.08 0.00000 

10 0.0075 -0.2292 24.72 0.00040 

11 0.0104 -0.1990 21.57 0.00060 

12 0.0138 -0.1044 59.60 -0.00016 

13 0.0020 -0.0208 17.50 0.00041 

14 0.0158 -0.0444 97.55 -0.00032 

15  0.1746 329.87 -0.00119 

16 0.0147 0.4015 278.09 -0.00065 

17 0.0273 0.3462 345.44 -0.00070 

18 0.0381 0.2992 193.12 -0.00064 

19 0.0189 0.0803 125.03 -0.00079 

20 0.0872 0.0487 30.75 -0.00039 

21 0.0398 0.0503 32.33 -0.00032 

22 0.0221 0.0392 35.76 -0.00036 

23 0.0302 0.0945 28.15 -0.00027 

24 0.0479 0.0645 22.53 -0.00043 
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Table 6. West zone’s regression results based on Equation (2) that postulates (a) the hourly premium 

varies by day-of-week, month-of-year year and wind generation; and (b) the random error is AR(1) and 

has heteroskedastic variance that is an exponential function of wind generation.  The regression’s sample 

has 30,668 hourly observations for the period of 12/01/2010 – 05/31/2014.  The bold estimates are 

significant at the 1% level.   

Hour Adjusted R
2
 AR(1) parameter Hetero Intercept Hetero Wind 

1 0.0779 0.0921 21.85 -0.00032 

2 0.0623 0.0795 15.53 -0.00021 

3 0.0691 0.0611 14.70 -0.00018 

4 0.0318 -0.1899 29.74 -0.00027 

5 0.0103 -0.1399 70.82 -0.00054 

6 0.0096 -0.1816 85.13 -0.00001 

7 0.0180 -0.1012 174.52 -0.00010 

8 0.0088 -0.1645 441.10 -0.00078 

9 0.0122 -0.2376 140.60 -0.00029 

10 0.0159 -0.1781 69.42 -0.00001 

11 0.0185 -0.1737 86.22 0.00001 

12 0.0300 -0.0479 103.80 -0.00041 

13 0.0183 0.0189 80.46 -0.00052 

14 0.0110 -0.0203 135.13 -0.00065 

15 0.0101 0.1914 268.29 -0.00081 

16 0.0200 0.4204 261.17 -0.00058 

17 0.0333 0.3563 302.94 -0.00055 

18 0.0447 0.2854 196.37 -0.00055 

19 0.0350 0.0873 130.17 -0.00061 

20 0.0639 0.0625 49.97 -0.00040 

21 0.0308 0.0397 54.19 -0.00044 

22 0.0305 0.0746 49.69 -0.00047 

23 0.0522 0.1219 31.80 -0.00039 

24 0.0781 0.1336 22.96 -0.00028 
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Table 7. LCRA zone’s regression results based on Equation (2) that postulates (a) the hourly premium 

varies by day-of-week, month-of-year year and wind generation; and (b) the random error is AR(1) and 

has heteroskedastic variance that is an exponential function of wind generation.  The regression’s sample 

has 30,668 hourly observations for the period of 12/01/2010 – 05/31/2014.  The bold estimates are 

significant at the 1% level.   

Hour Adjusted R
2
 AR(1) parameter Hetero Intercept Hetero Wind 

1 0.0462 -0.0080 15.79 -0.00012 

2 0.0623 -0.0175 10.95 -0.00020 

3 0.0926 -0.0954 6.55 -0.00004 

4 0.0153 -0.3277 6.67 0.00024 

5 0.0005 -0.2071 85.33 -0.00061 

6 0.0095 -0.1659 87.46 -0.00001 

7 0.0165 -0.0849 790.05 -0.00087 

8 0.0065 -0.1010 379.59 -0.00077 

9 0.0070 -0.2379 96.61 -0.00014 

10 0.0072 -0.2043 61.33 0.00002 

11 0.0115 -0.1988 20.35 0.00063 

12 0.0159 -0.0916 89.71 -0.00040 

13 0.0183 -0.0135 30.14 -0.00016 

14 0.0117 -0.0505 103.54 -0.00058 

15  0.1965 276.52 -0.00105 

16 0.0142 0.4411 264.61 -0.00069 

17 0.0281 0.3675 319.44 -0.00066 

18 0.0413 0.2984 195.70 -0.00062 

19 0.0175 0.0907 129.21 -0.00074 

20 0.0505 0.0947 38.45 -0.00044 

21 0.0336 0.0521 30.91 -0.00020 

22 0.0252 0.0342 35.16 -0.00028 

23 0.0328 0.0440 27.84 -0.00025 

24 0.0529 0.0615 22.71 -0.00043 
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Table 8. South zone’s regression results based on Equation (2) that postulates (a) the hourly premium 

varies by day-of-week, month-of-year year and wind generation; and (b) the random error is AR(1) and 

has heteroskedastic variance that is an exponential function of wind generation.  The regression’s sample 

has 30,668 hourly observations for the period of 12/01/2010 – 05/31/2014.  The bold estimates are 

significant at the 1% level.   

Hour Adjusted R
2
 AR(1) parameter Hetero Intercept Hetero Wind 

1 0.0406 0.0027 15.17 -0.00007 

2 0.0719 0.0739 9.50 -0.00017 

3 0.0850 0.0928 7.93 -0.00012 

4 0.0189 -0.3274 11.59 0.00002 

5 0.0008 -0.1657 82.95 -0.00064 

6 0.0108 -0.1774 85.65 -0.00001 

7 0.0183 0.0214 529.85 -0.00077 

8 0.0073 0.1971 200.49 -0.00074 

9 0.0009 0.2113 209.86 -0.00099 

10 0.0090 0.2763 93.78 -0.00044 

11 0.0100 -0.1416 75.98 0.00003 

12 0.0125 0.3684 68.68 -0.00046 

13 0.0132 -0.0070 50.77 -0.00022 

14 0.0168 -0.0537 122.07 -0.00059 

15 0.0043 0.1739 300.91 -0.00090 

16 0.0130 0.4194 269.99 -0.00063 

17 0.0259 0.3541 338.92 -0.00071 

18 0.0362 0.2889 202.08 -0.00060 

19 0.0141 0.1951 121.74 -0.00072 

20 0.0366 0.1803 52.52 -0.00047 

21 0.0257 0.0890 45.93 -0.00015 

22 0.0166 0.0277 37.74 0.00002 

23 0.0350 0.0728 27.75 -0.00021 

24 0.0567 0.1153 21.34 -0.00041 
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Table 9. Estimates of h, the hourly premium in December on a Sunday, after controlling for the effects of 

month-of-year, day-of-week, and wind generation.  They are based on Equation (2) with the AR(1) and 

heteroskedastic error specification for the period of 12/01/2010 – 05/31/2014.  The bold estimates are 

significant at the 1% level. 

Hour North Houston South LCRA West 

1 -5.1429 -5.5172 -5.0613 -5.8598 -4.9089 

2 -4.2804 -4.0905 -3.7935 -4.1404 -4.0085 

3 -2.6724 -2.4963 -2.6078 -2.4464 -3.3347 

4 -1.6894 -1.4938 -1.6057 -1.6623 -1.4102 

5 -1.2157 -1.0259 -1.1335 -0.9552 -1.2937 

6 -2.7637 -2.6948 -3.8170 -2.7112 -4.9401 

7 -2.2571 -8.1247 -9.1708 -10.6660 -4.3978 

8 3.9558 6.4032 1.7231 3.5288 5.3828 

9 6.0062 6.8011 1.7411 4.6829 4.4759 

10 2.7368 5.0130 1.4447 1.9331 1.2812 

11 2.1958 2.4105 0.9333 2.0617 -3.4144 

12 -1.2930 -0.9524 0.3224 -0.6975 -3.9851 

13 -1.4032 -2.1469 -1.3915 -2.6291 -1.1488 

14 -3.1871 1.4889 2.5709 1.1089 -0.4740 

15 10.5360 9.3599 4.4573 7.7699 2.3561 

16 -4.7216 -1.9284 -7.9028 -3.7289 -9.3777 

17 -9.8486 -6.9090 -9.0750 -8.5523 -13.8210 

18 -26.0860 -25.5990 -23.7020 -24.7560 -28.0360 

19 -6.9855 -5.0873 -3.2989 -0.1785 -6.2107 

20 2.9402 4.1649 2.1319 6.0575 1.3401 

21 0.1678 -0.3350 1.7329 1.9396 -1.2210 

22 -2.0054 -1.7458 2.2376 -0.5137 -2.6296 

23 -6.8994 -6.2320 -5.2810 -6.2565 -4.2551 

24 -0.4835 -0.3366 -0.6981 -0.5544 -2.1710 
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Table 10. Estimates of h, the wind generation effect by hour, after controlling for the effects of day-of-

week and month-of-year.  They are based on Equation (2) with the AR(1) and heteroskedastic error 

specification for the period of 12/01/2010 – 05/31/2014.  The bold estimates are significant at the 1% 

level.  

Hour North Houston South LCRA West 

1 0.0008 0.0009 0.0008 0.0009 0.0013 

2 0.0005 0.0005 0.0005 0.0005 0.0009 

3 0.0005 0.0006 0.0006 0.0006 0.0011 

4 0.0004 0.0004 0.0004 0.0004 0.0008 

5 0.0004 0.0004 0.0004 0.0004 0.0009 

6 0.0007 0.0001 0.0010 0.0008 0.0015 

7 0.0045 0.0055 0.0064 0.0059 0.0054 

8 0.0015 0.0009 0.0022 0.0013 0.0016 

9 -0.0004 -0.0004 0.0009 0.0001 0.0009 

10 0.0004 -0.0001 0.0013 0.0004 0.0020 

11 0.0007 0.0007 0.0009 0.0007 0.0031 

12 0.0014 0.0013 0.0013 0.0015 0.0031 

13 0.0009 0.0019 0.0014 0.0012 0.0018 

14 0.0007 0.0008 0.0011 0.0010 0.0017 

15 -0.0008 -0.0003 0.0011 -0.0002 0.0017 

16 0.0015 0.0013 0.0024 0.0014 0.0030 

17 0.0030 0.0027 0.0032 0.0028 0.0048 

18 0.0022 0.0020 0.0022 0.0022 0.0033 

19 0.0023 0.0020 0.0023 0.0017 0.0034 

20 0.0005 0.0002 0.0010 0.0002 0.0016 

21 0.0006 0.0007 0.0007 0.0005 0.0017 

22 0.0006 0.0006 0.0000 0.0004 0.0014 

23 0.0008 0.0008 0.0008 0.0008 0.0014 

24 0.0006 0.0006 0.0007 0.0007 0.0014 
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Table 11. p-values for testing H0: No day-of-week effects, after controlling for the effects of month-of-

year and wind generation.  They are based on Equation (2) with the AR(1) and heteroskedastic error 

specification for the period of 12/01/2010 – 05/31/2014.  The bold estimates are significant at the 1% 

level. 

Hour North Houston South LCRA West 

1 0.6946 0.7306 0.7478 0.6619 0.0485 

2 0.1025 0.0309 0.0377 0.0469 0.0517 

3 0.0600 0.1244 0.1164 0.1287 0.1149 

4 0.9745 0.9796 0.9676 0.9841 0.6934 

5 0.8473 0.9580 0.8734 0.9960 0.8646 

6 0.9997 0.9995 0.9997 0.9997 0.9994 

7 0.8774 <.0001 0.0635 <.0001 0.8557 

8 0.8366 0.1728 0.0365 0.0325 0.0138 

9 0.9993 0.9993 0.9782 0.9990 0.9840 

10 0.9993 0.9734 0.9289 0.9978 0.9482 

11 0.5758 0.7410 0.9997 0.6408 0.9764 

12 0.9936 0.9997 0.9766 0.9971 0.1485 

13 0.4655 0.5289 0.9999 0.9767 0.0832 

14 <.0001 0.9877 0.1080 0.8134 0.1465 

15 <.0001 0.2585 0.0435 0.3952 0.0004 

16 0.3367 0.0272 0.0304 0.0590 0.0496 

17 0.1458 0.0134 0.0823 0.0128 0.0160 

18 0.1108 0.1937 0.4972 0.1505 0.0130 

19 0.1644 0.8585 0.7986 0.4404 0.0004 

20 0.8182 0.9292 0.2733 0.9580 0.1428 

21 0.5666 0.9154 0.7641 0.9786 0.2032 

22 0.9679 0.9463 0.9992 0.9749 0.0322 

23 0.3368 0.4220 0.4545 0.4002 0.0076 

24 0.8892 0.1969 0.0608 0.1319 0.0589 
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Table 12. p-values for testing H0: No month-of-year effects, after controlling for the effects of day-of-

week and wind generation.  They are based on Equation (2) with the AR(1) and heteroskedastic error 

specification for the period of 12/01/2010 – 05/31/2014.  The bold estimates are significant at the 1% 

level. 

Hour North Houston South LCRA West 

1 0.8519 0.5829 0.5820 0.8075 0.1556 

2 <.0001 0.0007 0.0002 0.0009 0.3299 

3 <.0001 <.0001 <.0001 <.0001 0.1138 

4 1.0000 0.9999 0.9992 1.0000 0.9214 

5 0.9259 0.6656 0.3636 0.8271 0.8928 

6 1.0000 1.0000 0.9998 1.0000 0.9999 

7 0.4830 <.0001 0.0627 <.0001 0.7313 

8 0.4536 0.9927 0.9937 0.7732 0.8134 

9 1.0000 0.9999 0.4405 1.0000 0.9938 

10 1.0000 0.9999 0.9994 1.0000 0.9980 

11 0.3065 0.6264 1.0000 0.2087 0.9999 

12 0.9794 0.9999 0.7651 0.9001 0.6581 

13 0.2428 0.8351 0.9997 0.9992 0.1260 

14 <.0001 0.9954 0.8113 0.8584 0.3198 

15 <.0001 <.0001 0.9390 0.0062 0.4328 

16 <.0001 <.0001 <.0001 <.0001 <.0001 

17 <.0001 <.0001 <.0001 <.0001 <.0001 

18 <.0001 <.0001 <.0001 <.0001 <.0001 

19 0.0008 0.0043 0.4273 0.0008 0.0283 

20 0.2131 0.1235 0.0602 0.0711 0.0005 

21 0.7682 0.9667 0.7299 0.9933 0.0007 

22 0.9997 0.9994 0.9983 0.9999 0.0905 

23 0.9256 0.9026 0.7668 0.9574 0.0005 

24 0.1406 0.0003 0.0003 0.0007 0.0148 
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Table 13. p-values for testing H0: No day-of-week and month-of-year effects, after controlling for the 

effect of wind generation.  They are based on Equation (2) with the AR(1) and heteroskedastic error 

specification for the period of 12/01/2010 – 05/31/2014.  The bold estimates are significant at the 1% 

level. 

Hour North Houston South LCRA West 

1 0.6341 0.3285 0.3432 0.4863 0.0355 

2 <.0001 <.0001 <.0001 <.0001 0.0391 

3 <.0001 <.0001 <.0001 <.0001 0.0383 

4 1.0000 0.9999 0.9971 1.0000 0.7559 

5 0.8979 0.6566 0.3337 0.9560 0.9037 

6 1.0000 1.0000 1.0000 1.0000 1.0000 

7 0.6508 <.0001 0.0003 <.0001 0.8555 

8 0.1356 0.3438 0.0065 0.2804 0.1846 

9 1.0000 1.0000 0.3888 1.0000 0.9902 

10 1.0000 1.0000 0.9926 1.0000 0.9619 

11 0.0685 0.4034 1.0000 0.0326 0.9999 

12 0.9986 1.0000 0.9033 0.9824 0.3479 

13 0.1602 0.6194 0.9999 0.9957 0.0018 

14 <.0001 0.9998 0.3370 0.7623 0.0241 

15 <.0001 <.0001 0.0301 0.0006 <.0001 

16 <.0001 <.0001 <.0001 <.0001 <.0001 

17 <.0001 <.0001 <.0001 <.0001 <.0001 

18 <.0001 <.0001 <.0001 <.0001 <.0001 

19 <.0001 0.0004 0.3451 <.0001 <.0001 

20 0.1569 0.3074 0.0211 0.1224 <.0001 

21 0.0109 0.8560 0.3013 0.9857 0.0002 

22 0.9959 0.9964 0.7683 0.9724 0.0047 

23 0.6446 0.7603 0.5422 0.7945 <.0001 

24 0.0976 <.0001 <.0001 0.0002 0.0139 

 

 


