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DC Circuits and Kirchhoff’s Laws 
 

So far we have learned about Ohm’s law and the rules for finding equivalent resistances 
for resistors in series and parallel. In this lab we will begin by finding the currents flowing through 
a simple DC (Direct Current- meaning input voltage is constant) circuit that can be evaluated in 
terms of an equivalent resistance. Then we will build a more complicated circuit, called a 
Wheatstone bridge.  We will learn a more general method of analyzing circuits called Kirchhoff’s 
laws. Finally, we will write a program in Mathematica that will help us efficiently solve these two 
circuits for the unknown currents so that the theoretical values may be compared with our 
measurements. 
 
Materials – Breadboard with DC voltage source, two variable resistor boxes, a digital multimeter, 
330 Ω resistor, 220 Ω resistor, 10 Ω resistor, cables, alligator clips, computer with Mathematica 
 
Part 1: A simple DC circuit 
 

1. You will be building the circuit in Figure 1. To prepare use the multimeter to measure and 
record the resistance of each resistor.  

2. Construct the circuit shown using values of V = 5.0 V, RA = 100 Ω (use the variable resistor 
box), RB = 330 Ω, and RC = 220 Ω.  

3. Measure and record the voltage drop in four locations: across the voltage source and across 
each of the three resistors. To do this, put the multimeter on the DC voltage setting in 
parallel with each element. Note: The 
meter reads the voltage at the red 
terminal minus the voltage at the black 
terminal, so make sure you record 
which way you are measuring across 
the circuit element.  

4. Now measure the current flowing 
through each of the elements by putting 
the multimeter on the DC current 
setting in series with the element. Note: 
When measuring current, always begin 
with the red lead in the 10A socket on 
the multimeter and only move it to the 
40mA socket for a more precise reading 
if the current reads less than 40mA. 
Sending more current through the 
meter’s circuits than it can handle 

Figure 1 - The first circuit used in this lab. It can be solved 
using the rules of equivalent resistance for resistors in 
series and in parallel. 
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could blow a fuse. You must again record the direction that the multimeter is measuring in 
(red minus black) since the current can be going one of two directions.  
 

5. Now use the rules for resistors in series and in parallel to solve for what the voltages and 
currents should be if the resistors and the voltage source have their ideal values. How do 
these compare to your measured values? Quote a %-error as part of your results. 

  
Part 2: Kirchhoff’s laws and the Wheatstone bridge 
 
Now take a look at the circuit shown in Figure 2. This is a Wheatstone bridge, a circuit that is often 
used to find the resistance of an unknown resistor.  
 

1. Discuss and record: Are the 
resistors in series, parallel, both, 
or neither series nor parallel? 

 
2. To solve for the currents in this 

circuit we must appeal to a new 
concept called Kirchhoff’s laws. 
Kirchhoff came up with two laws, 
known as the loop rule and the 
junction rule.  Justify with words 
why Kirchhoff’s loop rule is true. 
Hint: think about dragging a charge 
all the way around the circuit from 
the positive terminal back to the 
positive terminal. Does it change 
potential energy? 

 
Kirchhoff’s Loop Rule: The sum of all the changes in potential around any loop in a circuit must 
be zero. Mathematically, this can be expressed as 
 

𝑉 = 0
$%%&

. 

 
3. We can assume the change in potential across a resistor to be given by Ohm’s law, so the 

potential either falls or increases by 𝑉 = 𝐼𝑅 depending on whether we are going with or 
against the current across that resistor. Using this we can add up all the voltage changes 
around a loop. As an example, taking the circuit from page 1, Figure 1 containing V, RA, 
and RB and assuming the current is flowing clockwise around the loop, Kirchhoff’s loop 

Figure 2 - The Wheatstone bridge, a circuit that must 
be evaluated using Kirchhoff's laws. 
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rule gives us 𝑉 − 𝐼+𝑅+ − 𝐼,𝑅, = 0, where 𝐼+ and 𝐼, are the current through resistors A and 
B respectively.  

 
The direction we evaluate the loop in doesn’t matter. If we apply the loop rule in the 
counterclockwise direction, we will have the same equation multiplied by -1, which is identical to 
the equation we just arrived at. 
 
How many “loops” can you identify in Figure 2?  A loop is any path where you end in the 
same location you start. 
 

4. The loop rule is not enough, however. We need to have additional equations that directly 
link the different currents together in order to solve for them. This brings us to the other of 
Kirchhoff’s laws: the junction rule.  

 
 
Kirchhoff’s Junction Rule: The sum of all currents entering and leaving a junction in the circuit 
must be zero. Mathematically this can be expressed as 
 

𝐼 = 0
-./012%/

. 

 
Let’s use the circuit in Figure 1 as an example again. There is a junction between resistors RA, RB, 
and RC. If we assume that current 𝐼+ is entering the junction and currents 𝐼, and 𝐼3  are leaving it 
we have that Kirchhoff’s junction rule gives us 𝐼+ − 𝐼, − 𝐼3 = 0.  
 
Justify with words why Kirchhoff’s junction rule is true. 
 
Part 3: Caveats to Kirchhoff’s Rules; How to apply them correctly  
 
Using the loop and junction rules we can write down and solve a system of equations for currents, 
voltages, and resistances in a DC circuit. We mention three caveats about Kirchhoff’s laws. 
 
Caveat 1: Mind your signs.  

If you are going from the negative to the positive side of a battery use +V (a positive charge 
would gain potential energy). If you are going from the positive to the negative side use –V. If you 
are going around the loop in the same direction as the local current write V = –IR (a positive charge 
is losing energy) for the voltage across the resistor. Conversely, if your loop goes in the opposite 
direction of the current write V = IR. 
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Caveat 2: Be consistent with current direction signs.  Before writing any equations you must 
choose a direction for the current in each part of the circuit at the start. If you guess wrong, that’s 
OK! Your solution will simply have a negative current along the segments you guessed incorrectly, 
indicating that the current is actually flowing the other way.  
 
What is important is that you consistently apply Kirchhoff’s laws consistently using the current 
directions you select at the outset. Otherwise your signs may be mixed up in separate equations 
and your solution incorrect.  
 
Caveat 3: Not all of the equations for loops and junctions are independent of each other. 
In Figure 1 you could write the loop rule for each of the three possible loops and the junction rule 
for the two possible junctions.  
 

1. Try it for yourself: write down the equations from the junction rule for the two junctions 
in Figure 1. 

 
We see that the same three currents are involved in both junctions, so the junction rule provides 
only one independent equation.  
 
Similarly, the equations for any two of the three loops can be substituted into each other to yield 
the equation for the third loop, so only two of the loops yield independent equations. You must 
make sure that you’ve found enough independent equations to solve the system.  
 

2. Apply Kirchhoff’s rules to solve for the current in the circuit in Figure 1. You know the 
values of the resistors and the voltage source. Solve without using “equivalent resistance”. 
You should get the same result as before. 

 
Part 4: Build and Analyze the Wheatstone Bridge 
 

1. Now construct the Wheatstone bridge as shown in Figure 2. Use values of V0 = 5 V, R1 = 
300 Ω (resistor box), R2 = 220 Ω, R3 = 100 Ω (resistor box), R4 = 330 Ω, and R5 = 10 Ω.  

 
2. Measure and record the voltage across each of the five resistors and the voltage source 

using the multimeter as you did with the previous circuit.  
 

3. Then measure and record the current through each of the six elements using the multimeter. 
Again, you must pay attention to the orientation of the multimeter in the circuit when 
measuring. 
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4. Use your values to show that Kirchhoff’s loop rule applies to the voltage changes around 
the three loops abdca, cdfec, and abdfeca. Use your measurements to show that Kirchhoff’s 
junction rule applies to the currents at junctions c and d. Explain any discrepancies in your 
measurements with Kirchhoff’s laws. 

 
Part 5: Solving DC circuits using Mathematica 
 
For both of the circuits above, we’d like to solve for the unknown currents assuming the resistors 
and voltage source are known to be ideal (so we can compare our measurements to theoretically 
expected values). Solving the circuit to find the currents is not difficult in principle, but it can be 
tedious and mistake-prone when there are many loops and junctions. Every application of either 
the loop rule or junction rule provides a new equation which contains several variables. In the case 
of the Wheatstone bridge, there are six unknown currents, so we are required to solve a system of 
six equations in six variables. Fortunately, we can write a short program in Mathematica that will 
do all of the algebra for us. 
 
Open Mathematica and start a new file (called a “notebook” by the program). Let us solve the first 
circuit that we constructed above. Enter the code given below into your notebook. The indentation 
inside the Simplify and Solve functions should occur automatically. You can enter subscript 
mode by holding Ctrl+_ and exit it by holding Ctrl+Space. When you are done, hit Shift+Enter to 
execute it. 
 
(* Solving DC Circuits using Mathematica *) 
 
(* Simple example *) 
Simplify[ 
 Solve[ 
  {V – iA RA - iB RB == 0 && 
    iC RC - iB RB == 0 && 
    iA == iB + iC}, 
  {iA, iB, iC} 
 ] 
] 
 
You should now see output beneath your code that looks like the following: 
 
{{𝑖+ →

7(9:;9<)
9>(9:;9<);9:9<

, 𝑖, →
79<

9>(9:;9<);9:9<
, 𝑖3 →

79:
9>(9:;9<);9:9<

}}. 

 
Let’s analyze what we did here. The first two lines are comments with (* *) acting as the 
comment operator. Mathematica ignores these lines when running the code. The next two 
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commands are the functions Simplify and Solve, and the code nested inside each set of square 
brackets contains the arguments that each function operates on. Simplify takes the expression 
enclosed and performs algebraic manipulations on it to give it a more elegant form (e.g. it cancels 
double minus signs, creates common denominators, factors, reduces fractions, etc.). Sometimes 
this is just aesthetic, but for particularly complicated expressions that may not be easily simplified 
by eye, this capability is very useful. 
 
The really important function here is Solve. Solve takes two sets of arguments: a set of 
equations and a set of variables. The three equations enclosed in the curly braces and separated by 
&& are two applications of the loop rule and one use of the junction rule. Note the double equals 
sign. This means ‘equals’ in a mathematical sense, whereas a single equals sign is used to assign 
a value to a variable. Also, the choice of i rather than I is intentional here. Mathematica 
automatically interprets I as the unit imaginary number ‘i’ instead of as a variable, which is not 
what we want. After the list of equations, another set of curly braces tells Mathematica which set 
of variables to solve for. Here we have chosen the three currents, though we could choose any 
three of the seven variables to solve for and Mathematica would find a solution in terms of the 
remaining four. The output text shows the three currents in terms of the other variables, as 
expected. Go ahead and save your program. 
 
To find a numerical solution, we can define four variables V, RA, RB, and RC to have certain values. 
Add four lines above Simplify and below the comments that look like this: 
 
V=5 
RA=100 
RB=330  
RC=220 
 
and hit Shift+Enter to evaluate. Your output should look like this: 
 
{{𝑖+ →

A
BCB

, 𝑖, →
D
DDE

, 𝑖3 →
C
BCB
}}, 

 
where these values are in amps because the voltage and resistance were given respectively in volts 
and ohms. If we had chosen different initial directions for the three currents when applying the 
loop and junction rules, some of these values would have been negative. This would mean that the 
current is actually flowing in the opposite direction that we first guessed. 
 
Mathematica remembers the values you assigned each of the four variables V, RA, RB, and RC even 
if you delete the lines of code that assign them. To return to the symbolic solution, you need to 
clear the variable assignments. To clear the value of the variable V, type and execute V=. (and do 
the same for the other variables). You can also assign variables to be identified with other variables. 
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For example, to solve the circuit in the special case when RB, and RC have the same resistance, you 
can type and execute RB=RC. This will produce a symbolic solution only in terms of V, RA, and RC, 
eliminating RB. 
Mathematica notebooks execute code in units called cells. The thin blue bracket on the far right-
hand side of the notebook shows you what lines are contained in what cells (along with a further 
breakdown into the inputs and outputs of a cell). Right now we only have one cell, but typing 
beneath the output of this cell will start a whole second cell. Move the cursor below the output 
Mathematica generated to start creating this new cell. When the cursor is in the second cell, 
Shift+Enter will only execute the contents of that cell and ignore the first one. 
 
In the second cell, add code to solve the Wheatstone bridge circuit for each of the six currents. 
You now need to input six independent equations rather than three into your Solve function. Use 
the format of the code from the first cell to guide you. Find the symbolic solution first. It may 
surprise you how complicated the expressions appear for what still looks like a fairly simple circuit. 
Imagine doing it all by hand! Then add the numerical assignments to your variables to get numbers 
which you can compare to your measurements of the current. If your calculation seems very 
different from your measurements, that may indicate you’ve either programmed your equations 
incorrectly or that you’ve measured the current in your circuit incorrectly. 
 
Report a %-error between the theoretical values you calculated and the measured values you found. 
Instead of the ideal values, you can also try using exactly the resistance and voltage source values 
you measured with the multimeter in your program to see if that yields a solution closer to your 
measured currents, but you only need to report the %-error when compared to the currents expected 
from the ideal values. Include your program as part of what you turn in for this week (or, if your 
TA allows, just include the full solution of the circuit worked out by hand). You may want to use 
this program to check your solutions to homework problems on DC circuits, but it should not be a 
substitute for knowing how to do the algebra yourself. On an exam you won’t be able to use 
Mathematica to help you out! 
 


