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Geometry is Coming…



Applications of DDG: Geometry Processing



Applications of DDG: Shape Analysis



Applications of DDG: Numerical Simulation



Applications of DDG: Architecture & Design



Applications of DDG: Discrete Models of Nature



• First and foremost: how to think about shape…

• …mathematically (differential geometry)

• …computationally (geometry processing)

• Central Theme: link these two perspectives

• Why? Shape is everywhere!

• computational biology, industrial design, computer vision, machine learning, 
architecture, computational mechanics, fashion, medical imaging…

• Flat images are old news :-)

What Will We Learn in This Class?



Course Web Page
• All course information is spelled out in detail on course webpage:

• All communication goes through this site (assignments, discussion, etc.)

• Register account from link at end of menu:

http://geometry.cs.cmu.edu/ddg

http://geometry.cs.cmu.edu/ddg


Assignments
• Derive geometric algorithms from first principles (pen-and-paper)

• Implement geometric algorithms (coding)

• Discrete surfaces
• Exterior calculus
• Curvature
• Smoothing
• Parameterization
• Distance computation
• Direction Field Design (Pick 6 of 7!)



Homework Submission
• All homework must be submitted digitally

• All source files in a single zip file called solution.zip

• All written exercises in a single PDF file called exercises.pdf

• Either typeset (e.g., LaTeX) or scans/photos of written work.

• Convert images to PDF using Preview (Mac) or imagetopdf.com

• Email to geometry.collective@gmail.com with requested string in the 
subject line (e.g., DDG19A0)

• Will receive written feedback via email as marked-up PDF

• Will grade random subset of questions; you get 100% on the rest :-)

http://imagetopdf.com
mailto:geometry.collective@gmail.com


Late Policy
• Assignments due at 5:59:59pm on due date (Eastern time zone)
• Can use five late days throughout semester

• Must indicate which late day you’re using by putting one of five 
“Latonic” solids on your submission (draw by hand or include PDF):

• All subsequent late work will receive a zero!

LATE

LATE
LATE LATE

LATE

1 2 3 4 5



“I can’t give you a brain, but I 
can give you a diploma.”

—Frank L. Baum

Grade Breakdown

• Assignments – 90% (pick 6 out of 7*)
       (15%) A0: Combinatorial Surfaces
       (15%) A1: Exterior Calculus
       (15%) A2: Normals & Curvature
       (15%) A3: Surface Fairing
       (15%) A4: Surface Parameterization
       (15%) A5: Geodesic Distance
       (15%) A6: Direction Field Design

• Participation – 10%
       (5%) – in-class/web participation
       (5%) – reading summaries/questions

*Complete 7th assignment for up to 12% extra credit.



• Language for talking about local properties of shape

• How fast are we traveling along a curve?

• How much does the surface bend at a point?

• etc.

• …and their connection to global properties of shape

• So-called “local-global” relationships.

• Modern language of geometry, physics, statistics, …

• Profound impact on scientific & industrial development in 20th century

What is Differential Geometry?



• Also a language describing local properties of shape

• Infinity no longer allowed!

• No longer talk about derivatives, infinitesimals…

• Everything expressed in terms of lengths, angles…

• Surprisingly little is lost!

• Faithfully captures many fundamental ideas

• Modern language of geometric computing

• Increasing impact on science & technology in 21st century.

What is Discrete Differential Geometry?



Discrete Differential Geometry—Grand Vision

Translate differential geometry into 
language suitable for computation.

GRAND VISION



How can we get there?
A common “game” is played in DDG to obtain discrete definitions:

One often encounters a so-called “no free lunch” scenario: no single 
discrete definition captures all properties of its smooth counterpart.

1.Write down several equivalent definitions in the smooth setting.

2. Apply each smooth definition to an object in the discrete setting.

3. Determine which properties are captured by each resulting 
inequivalent discrete definition.



Example: Discrete Curvature of Plane Curves
• Toy example: curvature of plane curves

• Roughly speaking: “how much it bends”

• First review smooth definition

• Then play The Game to get discrete definition(s)

• Will discover that no single definition is “best”

• Pick the definition best suited to the application

• Today we’re gonna quickly cover a lot of ground…

• Will start more slowly from the basics next lecture



Curvature of a Curve—Motivation



Curves in the Plane
• In the smooth setting, a parameterized curve is a map* taking each point 

in an interval [0,L] of the real line to some point in the plane       :

*Continuous, differentiable, smooth…



Curves in the Plane—Example
• As an example, we can express a circle as a parameterized curve    :



Discrete Curves in the Plane
• Special case: a discrete curve is a piecewise linear parameterized curve, 

i.e., it is a sequence of vertices connected by straight line segments:

Shorthand:



Discrete Curves in the Plane—Example
• A simple example is a curve comprised of two segments:



• Informally, a vector is tangent to a curve if it 
“just barely grazes” the curve.

• More formally, the unit tangent (or just 
tangent) of a parameterized curve is the map 
obtained by normalizing its first derivative:

Tangent of a Curve

• If the derivative already has unit length, then we say the curve is arc-
length parameterized and can write the tangent as just



Tangent of a Curve—Example
• Let’s compute the unit tangent of a circle:



• Informally, a vector is normal to a curve if it 
“sticks straight out” of the curve.

• More formally, the unit normal (or just normal) 
can be expressed as a quarter-rotation      of the 
unit tangent in the counter-clockwise direction:

Normal of a Curve

• In coordinates (x,y), a quarter-turn can be achieved by* 
simply exchanging x and y, and then negating y:

*Why does this work?



Normal of a Curve—Example
• Let’s compute the unit normal of a circle:

Note: could also adopt the 
convention                    .
(Just remain consistent!)



Curvature of a Plane Curve
• Informally, curvature describes “how much a curve bends”

• More formally, the curvature of an arc-length parameterized plane 
curve can be expressed as the rate of change in the tangent*

*Here the angle brackets denote the usual dot product, i.e.,                                            .

KEY IDEA

Curvature is a second derivative.



Curvature: From Smooth to Discrete

KEY IDEA

Curvature is a second derivative.

SMOOTH DISCRETE

Can we directly apply this definition to a discrete curve?

No! Will get either zero or “∞”. Need to think about it another way…



What is Discrete Curvature?

KEY IDEA

Curvature is a second derivative.

SMOOTH DISCRETE

No! Will get either zero or “∞”. Need to think about it another way…

Can we directly apply this definition to a discrete curve?



When is a Discretization “Good?”
• How will we know if we came up with a good definition?

• Many different criteria for “good”:

• satisfies (some of the) same properties/theorems as smooth curvature

• converges to smooth value as we refine our curve

• efficient to compute / solve equations

• …
Complex Ta = gamma[i] - gamma[i-1];
Complex Tb = gamma[i+1] - gamma[i];
double kappa = (Tb*Ta.inv()).arg();



Curvature, Revisited
• In the smooth setting, there 

are several other equivalent 
definitions of curvature.

• IDEA: perhaps some of these 
definitions can be applied directly 
to our discrete curve!



Turning Angle
• Our initial definition of curvature was the rate 

of change of the tangent in the normal direction.

• Equivalently, we can measure the rate of change 
of the angle the tangent makes with the horizontal:



Integrated Curvature
• Still can’t evaluate curvature at vertices of a 

discrete curve (at what rate does the angle change?)

• But let’s consider the integral of curvature along 
a short segment:

• Instead of derivative of angle, we now just have 
a difference of angles.

• This definition works for our discrete curve!



Discrete Curvature (Turning Angle)
• This formula gives us our first definition of discrete curvature, as just 

the exterior angle at the vertex of each curve:

• Here we encounter another theme from discrete differential geometry: 
the quantities we want to work with are often more naturally expressed 
as integrated rather than pointwise quantities.

(exterior angle)

(discrete curvature)



Length Variation
• Are there other ways to get a definition for discrete curvature?
• Well, here’s a useful fact about curvature from the smooth setting:

The fastest way to decrease the length of a curve is to move it 
in the normal direction, with speed proportional to curvature.

• Intuition: in flat regions, moving the curve doesn’t change its length;  
in curved regions, the change in length (per unit length) is large:



Length Variation
• More formally, consider an arbitrary variation of the curve.  I.e., suppose 

we have another curve*                             .  One can show that

*Technical note: must go to zero at endpoints (i.e., pass through the origin).

• Therefore, the motion that most quickly decreases length is                .



Gradient of Length for a Line Segment
• This all becomes much easier in the discrete setting: just take the 

gradient of length with respect to vertex positions.

• First, a warm-up exercise.  Suppose we have a single line segment:

• How can we move the point b to most quickly increase its length?



Gradient of Length for a Discrete Curve
• To find the motion that most quickly increases the total length L, 

we now just have to sum the contributions of each segment:

• Using some simple trigonometry, we can 
also express the length gradient in terms of 
the exterior angle 𝜃i and the angle bisector Ni:



Discrete Curvature (Length Variation)
• How does this help us define discrete curvature?

• Recall that in the smooth setting, the gradient of 
length is equal to the curvature times the normal.

• Hence, our expression for the discrete length 
variation provides a definition for the discrete 
curvature times the discrete normal.



A Tale of Two Curvatures
• Let’s recap what we’ve done so far.  We considered starting 

points that are equivalent in the smooth setting…
1. turning angle
2. length variation

• …which led to two inequivalent definitions of curvature 
in the discrete setting:
1.  
2.

• For small angles, they agree.  But in general, which one is “better”?  
And are there more possibilities?  Let’s keep going…



Steiner Formula
• Steiner’s formula is closely related to our last approach: it says that if 

we move at a constant speed in the normal direction, then the change 
in length is proportional to curvature:

• The intuition is the same as before: for a constant-distance normal 
offset, length will change in curved regions but not flat regions:



Discrete Normal Offsets
• How do we apply normal offsets in the discrete case?
• The first problem is that normals are not defined at vertices!
• We can at very least offset individual edges along their normals:

• The question now is: how can we connect the normal-offset segments 
to get the final normal-offset curve?



Discrete Normal Offsets
• There are then several natural ways to connect segments:

(A) along a circular arc of radius ε
(B)  along a straight line
(C) extend edges until they intersect

• If we now compute the total length of the 
connected curves, we get (after some work…):



Discrete Curvature (Steiner Formula)
• Since Steiner’s formula says that the change in length is proportional 

to curvature, we get yet another definition for curvature by comparing 
the original and normal-offset lengths.

In fact, we get three definitions: 
two we’ve seen before and one 
we haven’t:



Osculating Circle
• One final idea is to consider 

the osculating circle, which is 
(roughly speaking) the circle 
that best approximates a curve 
at a given point p:

• More precisely, if we consider a circle passing through the point p itself 
and two equidistant points a and b to the “left” and “right” (resp.), the 
osculating circle is the limit as a and b approach p.

• The curvature is then the reciprocal of the radius:



Discrete Curvature (Osculating Circle)
• A natural idea, then, is to consider the circumcircle of three consecutive 

points on a discrete curve (i.e., the circle touching all three points):

• We then get a fourth definition of discrete curvature:



A Tale of Four Curvatures
• Starting with four equivalent definitions of smooth curvature, we ended 

up with four inequivalent definitions for discrete curvature:

So… which one should we use?



Pick the Right Tool for the Job
• Answer: pick the right tool for the job!

• For a given application, which properties are most 
important to us?  Which quantities do we want to 
preserve?  How much computation are we willing to 
do?  Etc.

• E.g., in a physical simulation we might care about 
preserving energy but not momentum—or 
momentum, but not energy.

• Ok… but what about curvature?



Toy Example: Curvature Flow
• A simple example is curvature flow, where a closed curve 

moves in the normal direction with speed proportional 
to curvature:

• Shows up in many places (finding silhouettes in images, 
annealing in metals, closed geodesics on manifolds…)

• Some key properties:
• (TOTAL) Total curvature remains constant throughout the flow.
• (DRIFT) The center of mass does not drift from the origin.
• (ROUND) Up to rescaling, the flow is stationary for circular curves.



Discrete Curvature Flow—No Free Lunch
• We can approximate curvature flow by repeatedly 

moving each vertex a little bit in the direction of the 
discrete curvature normal:

• But no choice of discrete curvature simultaneously 
captures all three properties of the smooth flow*:

*In fact, it’s impossible!



No Free Lunch—Other Examples
• Beyond this “toy” problem, the no free lunch scenario is quite common 

in discrete differential geometry.

• Many examples (e.g., Whitney-Graustein / Kirchoff analogy for curves; 
conservation of energy, momentum, and symplectic form for 
conservative time integrators; discrete Laplace operators…)

• At a more practical level: The Game played in DDG often leads to new 
& unexpected ways of formulating geometric algorithms.  (E.g., faster, 
simpler, clearer guarantees, …)

• Will see much more of this as the course continues!



• Overview article from Notices of the AMS:

• Written for broad mathematics audience

• Quite mathematical for non-math majors!

• Don’t sweat the details

• Try to get the high-level story

• Think of it like learning a foreign language…

First Reading Assignment

“A Glimpse into Discrete Differential Geometry”
Crane & Wardetzky (2017)

http://geometry.cs.cmu.edu/glimpse.pdf

http://geometry.cs.cmu.edu/glimpse.pdf


Thanks!
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