
1

DDS
Data Distribution Service

Tutorial

Gerardo Pardo-Castellote, Ph.D.
Real-Time Innovations, Inc.

© Real-Time Innovations.All Rights Reserved.

Agenda

Part I. DDS Overview
• Background
• Communication model
• DDS Entities
• Listeners, Conditions, WaitSets
• Quality of Service

Part II. DDS in Action
• Examples and Applications
• Topic management
• Data visibility and access control
• Application patterns
• Logging and monitoring
• Legacy applications

2

Part I DDS Overview
Background
Communication model
DDS Entities
Listeners, Conditions, WaitSets
Quality of Service

© Real-Time Innovations.All Rights Reserved.

The net-centric vision

Vision for “net-centric applications”
Total access to information for real-time

applications
This vision is enabled by the internet and

related network technologies
Challenge:

“Provide the right information at the right place
at the right time… no matter what.”

3

© Real-Time Innovations.All Rights Reserved.

Challenges implementing vision

Computers are connected by a variety of
“transports”
• Busses (e.g. VME)
• LANs (e.g. ethernet)
• Wireless links

Applications use communication endpoints to
send/receive information

The overall application is a complex dynamic
“web” of logical inter-connections
• OK for loose information aggregations World

Wide Web
• Extremely challenging for real-time, or safety-

critical systems

è Middleware must be used to isolate applications from
communications infrastructure

© Real-Time Innovations.All Rights Reserved.

Middleware

Network middleware: A library
between the operating
system and the application

It insulates application from the
raw network and provides an
easier way to communicate

Hardware (e.g. Ethernet)

Network stack (e.g. IP)

Middleware

Application

Middleware

Application Application Application Application Application

4

© Real-Time Innovations.All Rights Reserved.

DDS

Point-to-Point
Telephone, TCP
Simple, high-bandwidth
Leads to stove-pipe systems

Client-Server
File systems, Database, RPC, CORBA, DCOM
Good if information is naturally centralized
Single point failure, performance bottlenecks

Publish/Subscribe Messaging
Magazines, Newspaper, TV
Excels at many-to-many
communication
Excels at distributing time-critical
information

Middleware information Models

Replicated Data
Libraries, Distributed databases
Excels at data-mining and analysis

© Real-Time Innovations.All Rights Reserved.

DDS Standard

Data Distribution Service for Real-Time Systems
• Adopted in June 2003
• Finalized in June 2004
• Joint submission (RTI, THALES, MITRE, OIS)
• API specification for Data-Centric Publish-Subscribe communication
for distributed real-time systems.

RTI’s role
• Member of OMG since 2000
• Co-authors of the original DDS RFP
• Co-authors of the DDS specification adopted in June 2003
• Chair of the DDS Finalization Task Force completed March 2004
• Chair of the DDS Revision Task Force
• Providers of a COTS implementation of the specification (NDDS.4.0)

5

© Real-Time Innovations.All Rights Reserved.

OMG Middleware standards

DDS and CORBA address different needs

Complex systems often need both…

DDS
Distributed data

• Publish/subscribe
• Multicast data
• Configurable QoS

Best for
• Quick dissemination to many nodes
• Dynamic nets
• Flexible delivery requirements

CORBA
Distributed object

• Client/server
• Remote method calls
• Reliable transport

Best for
• Remote command processing
• File transfer
• Synchronous transactions

© Real-Time Innovations.All Rights Reserved.

What is DDS

DCPS = Data Centric Publish_Subscribe
• Purpose: Distribute the data

DLRL = Data Local Reconstruction Layer
• Purpose: provide an object-based model to access data ‘as

if’ it was local

Application

DCPS

DLRL

6

Part I DDS Overview
Background
Communication model
DDS Entities
Listeners, Conditions, WaitSets
Quality of Service

© Real-Time Innovations.All Rights Reserved.

DDS

Provides a “Global Data Space” that is accessible to
all interested applications.
• Data objects addressed by Topic and Key
• Subscriptions are decoupled from Publications
• Contracts established by means of QoS
• Automatic discovery and configuration

Distributed
Node

Global Data Space

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

P

P
PP

P

P

X

P

P

7

© Real-Time Innovations.All Rights Reserved.

Publish Subscribe Model

Data Producer Middleware Consumers

Newspaper

Reporter does not need to
know where subscribers live.

Subscribers do not need to
know where reporter lives.

• Efficient mechanism for data communications

© Real-Time Innovations.All Rights Reserved.

Topic-based publish-subscribe

Track
Command

S S S

Publishers Subscribers

8

© Real-Time Innovations.All Rights Reserved.

Topic-based publish-subscribe

Publish-subscribe allows infrastructure to prepare itself…
… Such that when the data is written it is directly sent to

the subscribers

S

Track
Command

Publishers Subscribers

S S

© Real-Time Innovations.All Rights Reserved.

• Used to sort specific instances

• Do not need a separate Topic for
each data-object instance

• Topic key can
be any field
within the Topic.

Example:

Topic

Data object addressing: Keys
Address in Global Data Space = (Topic, Key)
Multiple instances of the same topic

L
o

c
1,

 G
P

S
 P

o
s

L
o

c
2,

 G
P

S
 P

o
s

L
o

c
3,

 G
P

S
 P

o
s

S2S1

1

2

3

1

2

3

1

2

3

4

Data
Reader

Subscriber

struct LocationInfo
{

int LocID; //key
GPSPos pos;

};

9

© Real-Time Innovations.All Rights Reserved.

DDS communications model

Publisher declares information it has and specifies the Topic
• … and the offered QoS contract
• … and an associated listener to be alerted of any significant status

changes
Subscriber declares information it wants and specifies the Topic

• … and the requested QoS contract
• … and an associated listener to be alerted of any significant status

changes
DDS automatically discovers publishers and subscribers

• DDS ensures QoS matching and alerts of inconsistencies

Track

Offered
QoS

Requested
QoSListener

Failed to
produce

data

Listener

Failed to
get data

Part I DDS Overview
Background
Communication model
DDS Entities
Listeners, Conditions, WaitSets
Quality of Service

10

© Real-Time Innovations.All Rights Reserved.

PIM Overview

Topic

QosPolicy

Publisher Subscriber

<<interface>>
Listener

DataReader

DCPSEntity

DataWriter

DomainParticipant

Data

DCPSItem

WaitSet

StatusCondition

Condition

<<summary>>
A DomainParticipant is the entry-point
for the service and isolates a set on
applications that share a physical
network.

1

qos

*

1

* 0..1

attached_listener

1*

0..1

attached_condition

*

*

1

*

* <<implicit>>
*

1

*

1

© Real-Time Innovations.All Rights Reserved.

DomainParticipantPublisher

DataWriter

Subscriber

DataReader

DCPS Entities

DomainParticipant ~ Represents participation of the application in the communication
collective

DataWriter ~ Accessor to write typed data on a particular Topic

Publisher ~ Aggregation of DataWriter objects. Responsible for disseminating
information.

DataReader ~ Accessor to read typed data regarding a specific Topic

Subscriber ~ Aggregation of DataReader objects. Responsible for receiving information

Publisher

Topic

11

© Real-Time Innovations.All Rights Reserved.

Domains and Participants

1

2

31
2

3

1

1

DomainParticipant NodeDomain

Domain Domain

Node

© Real-Time Innovations.All Rights Reserved.

DDS Publication

Domain Participant

Topic

User Application:
• Creates all DDS entities
• Configures entity QoS
• Associates DW with Topic
• Provides data to DW

Data
Sample

S

Data
Writer

Publisher

12

© Real-Time Innovations.All Rights Reserved.

Example: Publication
Publisher publisher = domain->create_publisher(

publisher_qos,
publisher_listener);

Topic topic = domain->create_topic(
“Track”, “TrackStruct”,
topic_qos, topic_listener);

DataWriter writer = publisher->create_datawriter(
topic, writer_qos, writer_listener);

TrackStructDataWriter twriter =
TrackStructDataWriter::narrow(writer);

TrackStruct my_track;
twriter->write(&my_track);

© Real-Time Innovations.All Rights Reserved.

DDS Subscription Listener

User Application:
• Creates all DDS entities
• Configures entity QoS
• Associates DR with Topic
• Receives Data from DR using
a Listener

Listener
DATA_AVAILABLE

Domain Participant

Topic

Listener
DATA_ON_READERS

S

Data
Reader

Subscriber

Listener:
read,take

S

13

© Real-Time Innovations.All Rights Reserved.

Example: Subscription

Subscriber subs = domain->create_subscriber(
subscriber_qos, subscriber_listener);

Topic topic = domain->create_topic(
“Track”, “TrackStruct”,
topic_qos, topic_listener);

DataReader reader = subscriber->create_datareader(
topic, reader_qos, reader_listener);

// Use listener-based or wait-based access

© Real-Time Innovations.All Rights Reserved.

How to get data (listener-based)
Listener listener = new MyListener();
reader->set_listener(listener);

MyListener::on_data_available(DataReader reader)
{

TrackStructSeq received_data;
SampleInfoSeq sample_info;
TrackStructDataReader treader =

TrackStructDataReader::narrow(reader);

treader->take(&received_data,
&sample_info, …)

// Use received_data
}

14

© Real-Time Innovations.All Rights Reserved.

S

DDS Subscription Wait-Set

User Application:
• Creates all DDS entities
• Configures entity QoS
• Associates DR with Topic
• Blocks & waits for data from

DR(s) (like select)

Wait for Data

Domain Participant

Topic

Subscriber S
Read/take

Data
Reader

© Real-Time Innovations.All Rights Reserved.

How to get data (wait-based)
Condition foo_condition =

treader->create_readcondition(…);

waitset->add_condition(foo_condition);

ConditionSeq active_conditions;
waitset->wait(&active_conditions, timeout);
…
FooSeq received_data;
SampleInfoSeq sample_info;

treader->take_w_condition(&received_data,
&sample_info,
foo_condition);

// Use received_data

15

© Real-Time Innovations.All Rights Reserved.

DDS Content Filtered Topics

Content Filtered
Topic

“Filter Expression ”
Ex. Value > 260

Value = 249

Topic Instances in Domain

Instance 1

Value = 230Instance 2

Value = 275Instance 3

Value = 262Instance 4

Value = 258Instance 5

Value = 261Instance 6

Value = 259Instance 7

The Filter Expression and Expression Params
will determine which instances of the Topic
will be received by the subscriber.

Optional

Topic

© Real-Time Innovations.All Rights Reserved.

DDS Subscription Objects (MultiTopic)

Topic Topic Topic

Data
Reader

Data
Reader

Data
Reader

Listener
(optional)

** Listeners Wait-Set or
conditions available

MultiTopic

Optional

Domain Participant Domain Participant

SubscriberSubscriber Subscriber

MultiTopics can combine, filter and rearrange data from multiple topics

Data
Reader

Topic

16

Part I DDS Overview
Background
Communication model
DDS Entities
Listeners, Conditions, WaitSets
Quality of Service

© Real-Time Innovations.All Rights Reserved.

Listeners, Conditions & WaitSets

Middleware must notify user application of
relevant events
• Arrival of data
• QoS violations
• Discovery of relevant entities
• These events may be detected asynchronously by

the middleware
• … Same issue arises with POSIX signals…

DDS allows the application a choice:
• Either get notified asynchronously using a Listener
• Or wait synchronously using a WaitSet

Both approaches are unified using STATUS
changes

17

© Real-Time Innovations.All Rights Reserved.

Status changes
DDS defines

• A set of enumerated STATUS
• The statuses relevant to each kind of DDS Entity

A DDS entity maintains a value for each of related STATUS

DataWriterPUBLICATION_MATCH

DataWriterOFFERED_INCOMPATIBLE_QOS

DataWriterLIVELINESS_LOST

DataReaderSUBSCRIPTION_MATCH

DataReaderSAMPLE_LOST

DataReaderDATA_AVAILABLE

DataReaderRUQESTED_INCOMPATIBLE_QOS

DataReaderREQUESTED_DEADLINE_MISSED

DataReaderLIVELINESS_CHANGED

SubscriberDATA_ON_READERS

TopicINCONSISTENT_TOPIC

EntitySTATUS

struct LivelinessChangedStatus {
long active_count;
long inactive_count;
long active_count_change;
long inactive_count_change;

}

© Real-Time Innovations.All Rights Reserved.

Listeners, Conditions and Statuses
A DDS Entity is associated with

• A listener of the proper kind (if activated)

• A StatusCondition (if activated)

The Listener for an Entity has a separate operation for each
of the relevant statuses

on_inconsistent_topicTopicINCONSISTENT_TOPIC

on_data_on_readersSubscriberDATA_ON_READERS

on_sample_lostDataReaderSAMPLE_LOST

on_subscription_matchDataReaderSUBSCRIPTION_MATCH

on_publication_matchDataWriterPUBLICATION_MATCH

on_offered_incompatible_qosDataWriterOFFERED_INCOMPATIBLE_QOS

on_publication_matchDataWriterLIVELINESS_LOST

on_data_availableDataReaderDATA_AVAILABLE

on_requested_incompatible_qosDataReaderRUQESTED_INCOMPATIBLE_QOS

on_requested_deadline_missedDataReaderREQUESTED_DEADLINE_MISSED

on_liveliness_changedDataReaderLIVELINESS_CHANGED

Listener operationEntitySTATUS

18

© Real-Time Innovations.All Rights Reserved.

Listeners & Condition duality

A StatusCondition can be selectively
activated to respond to any subset of the
statuses

An application can wait changes in sets of
Status Conditions using a WaitSet

Each time the value of a STATUS changes
DDS
• Calls the corresponding Listener operation
• Wakes up any threads waiting on a related status

change
Asynchronous notification

via Listener operation

Synchronous notification
via activation/wakeup of

conditions/waitsets

DDS EntityStatus Change

Part I DDS Overview
Background
Communication model
DDS Entities
Listeners, Conditions, WaitSets
Quality of Service

19

© Real-Time Innovations.All Rights Reserved.

QoS Contract “Request / Offered”

QoS Request / Offered:
Ensure that the compatible
QoS parameters are set.

QoS:Durability
QoS:Presentation
QoS:Deadline
QoS:Latency_Budget
QoS:Ownership
QoS:Liveliness
QoS:Reliability

Offered
QoS

Requested
QoS

X

QoS not
compatible

Communication not established

Topic

Subscriber

Data
Reader

Data
Writer

Publisher

Topic

© Real-Time Innovations.All Rights Reserved.

QoS: Reliability

Data
Writer

R

BEST_EFFORT
• Sample delivery is

not guaranteed

Topic
BE

Data
Reader

BE

SubscriberPublisher

Data
Writer

BE

Publisher

Topic
R

Data
Reader

R

SS S S

Missed samples

S7 S5S6 S4 S3S2 S1

RELIABLE
• Sample delivery is
guaranteed

S7

S5
S6

S4
S3
S2
S1

history

20

© Real-Time Innovations.All Rights Reserved.

QoS: History: Last x or All

Data
Writer

Keep All

KEEP_LAST: “depth”
integer for the number of
samples to keep at any one
time

Data
Reader
Keep all

Publisher Subscriber

Topic

S5S7 S2S4 S1

KEEP_ALL:
Publisher: keep all until delivered
Subscriber: keep each sample
until the application processes
that instance

S7

S5
S6

S4
S3
S2
S1

S7

S5
S6

S4
S3 Data

Reader
KeepLast4

Subscriber

S7

S5
S6

S4

S3S6

Data
Writer

KeepLast 2

Publisher

S7
S6

Topic

S7 S6 S5 S4 S3

© Real-Time Innovations.All Rights Reserved.

State propagation
System state

• Information needed to describe future behavior of the system
• System evolution defined by state and future inputs.

• Minimalist representation of past inputs to the system

State variables
• Set of data-objects whose value codifies the state of the system

Relationship with DDS
• DDS well suited to propagate and replicate state
• Topic+key can be used to represent state variables
• KEEP_LAST history QoS exactly matches semantics of state-

variable propagation

Significance: Key ingredient for fault-tolerance and
also present in many RT applications

21

© Real-Time Innovations.All Rights Reserved.

QoS: Deadline

Topic

Publisher

Data
Writer

Subscriber

Data
Reader

DEADLINE “deadline period”

deadline

Commits
to provide
data each
deadline
period.

Expects data every
deadline period.

S X S S S S S

Listener

Failed to
get data

© Real-Time Innovations.All Rights Reserved.

QoS: Liveliness – Type, Duration

Domain
Participant

Data
Writer

Topic

Publisher

LP S LP LP

lease_duration

X

Data
Reader

Subscriber

Listener

Liveliness Message

Domain Participant

Type:
AUTOMATIC = Infrastructure Managed
MANUAL = Application Managed

Failed to
renew
lease

22

© Real-Time Innovations.All Rights Reserved.

QoS: Time_Based_Filter

Domain
Participant

Data
Writer

Topic

Publisher

SS S S S

minimum separation

Data
Reader

Subscriber

Data Samples

“minimum_separation”: Data Reader does
not want to receive
data faster than the
min_separation time

SS

Discarded
samples

© Real-Time Innovations.All Rights Reserved.

QoS: Ownership_Strength

Data
Writer

OWNERSHIP_STRENGTH
“Integer to specify the
strength of an instance”Topic

Data
Reader

Subscriber

Domain
Participant

Publisher

Data
Writer

Publisher

S=1 S=4 S=4

Note: Only applies to Topics with Ownership=Exclusive

Ownership Strength: Specifies which writer is
allowed to update the values of data-objects

S

23

© Real-Time Innovations.All Rights Reserved.

QoS: Latency_Budget

Physical I/F

Transport

DDS

Application

Publication

t1

t2

Physical I/F

Transport

DDS

Application

Subscription

t3

Latency = t1 + t2 + t3

• Intended to provide time-critical information to the
publisher for framework tuning where possible.

• Will not prevent data transmission and receipt.

© Real-Time Innovations.All Rights Reserved.

QoS: Resource_Limits

Specifies the resources that the Service can
consume to meet requested QoS

Domain
Participant

Topic

1
2
3

1
2

4

1
2
3

Data
Reader

Subscriber

max_samples:
max # data
samples for a
single DW or
DR, across all
instances

max_instances:
max # instances
for a single DW
or DR

max_samples_per
_instance: max # data
samples per instance

……

24

© Real-Time Innovations.All Rights Reserved.

QoS: USER_DATA

Entity:

Domain Participant (user_data)
DataReader (user_data)
DataWriter (user_data)

DDS Node

ignore_participant()
ignore_publication()
ignore_subscription()
ignore_topic()

User data can be used to authenticate an
origination entity.

Remote Application

Authenticate
Origin

DDS Node

Accept
Entities

yes

no

Note: USER_DATA is
contained within the DDS
metadata.

Definition: User-defined portion of Topic metadata

Example: Security Authentication

© Real-Time Innovations.All Rights Reserved.

QoS: Partition

Publisher

Domain
Participant

Topic
A

Topic
B

Subscriber

Data
Writer

Data
Writer

Data
Reader

Data
Reader

Topic
C

Data
Writer

Data
Reader

Partition
U,Z

Data
Reader

Partition: Logical “namespace” for topics

** Partition string names
must match between
publisher and subscriber

Subscriber

Partition
X,Y

Partition
U,W

25

© Real-Time Innovations.All Rights Reserved.

QoS: Durability

Topic

Publisher

Domain
Participant

Data
Writer

saved in Transient affected by QoS: History and QoS: Resource_Limits

Publisher

Domain Participant

Data
Writer

Local
Memory

Durability =
Transient

Durability =
Volatile

Durability Kind:
VOLATILE – No Instance History Saved
TRANSIENT – History Saved in Local Memory
PERSISTENT – History Saved in Permanent
storage

Perm.
Storage

Durability = Persistent

Durability determines
if/how instances of a
topic are saved.

© Real-Time Innovations.All Rights Reserved.

QoS: Presentation

•Governs how related data-instance changes are presented
to the subscribing application.

•Type: Coherent Access and Ordered Access

• Coherent access: All changes (as defined by the Scope) are
presented together.

• Ordered access: All changes (as defined by the Scope) are
presented in the same order in which they occurred.

•Scope: Instance, Topic, or Group

• Instance: The scope is a single data instance change.
Changes to one instance are not affected by changes to
other instances or topics.

• Topic: The scope is all instances by a single Data Writer.

• Group: The scope is all instances by Data Writers in the
same Subscriber.

26

© Real-Time Innovations.All Rights Reserved.

QoS: Quality of Service (1/2)

YESN/AT,DWTRANSPORT PRIORITY

YESN/AT,DWLIFESPAN

NONOT,DRDESTINATION ORDER

NOYEST,DR,DWRELIABILITY

YESN/ADRTIME BASED FILTER

NOYEST,DR,DWLIVELINESS

YESN/ADWWRITER DATA LIFECYCLE

YESN/ADRREADER DATA LIFECYCLE

YESYEST,DR,DWLATENCY BUDGET

YESYEST,DR,DWDEADLINE

ChangeableRxOConcernsQoS Policy

© Real-Time Innovations.All Rights Reserved.

QoS: Quality of Service (2/2)

NONOT,DR,DWRESOURCE LIMITS

NOYESP,SPRESENTATION

NOYESTOWNERSHIP

NONOT,DR,DWHISTORY

NOYEST,DR,DWDURABILITY

YESNOP,SPARTITION

YESN/ADWOWNERSHIP STRENGTH

YESNODP, P, SENTITY FACTORY

YESNOP,SGROUP DATA

YESNOTTOPIC DATA

YESNODP,DR,DWUSER DATA

ChangeableRxOConcernsQoS Policy

27

© Real-Time Innovations.All Rights Reserved.

DDS targets applications that need to distribute data
in a real-time environment

DDS is highly configurable by QoS settings

DDS provides a shared “global data space”
• Any application can publish data it has
• Any application can subscribe to data it needs
• Automatic discovery
• Facilities for fault tolerance
• Heterogeneous systems easily accommodated

Summary

Distributed
NodeGlobal Data

Space

Distributed
Node

Distributed
Node

PP
P

P

Part II DDS In Action
Examples and Applications
Topic management
Data visibility and access control
Application patterns
Logging and monitoring

28

© Real-Time Innovations.All Rights Reserved.

Navy OA projects adopting DDS

DD(X)
Ship Self Defense System (SSDS)
LCS
Spy OA
Sea Slice
LPD 17

© Real-Time Innovations.All Rights Reserved.

JSF

Electronic countermeasures system

29

© Real-Time Innovations.All Rights Reserved.

Future Combat Systems (FCS)

Has specified DDS as part of SoSCOE
Large complex real-time data-distribution
Wireless with intermittent connectivity
Highly heterogeneous
Highly dynamic

© Real-Time Innovations.All Rights Reserved.

Trains

RETF
• Goal: revamp and standardize railroad communications

• Wireless, wired, real-time, enterprise

• 5 Railroads
• 2 locomotive manufacturers
• A couple of associations
• ARINC hired to coordinate project

Big project
• All trains in US
• 10k trains
• 100k control stations

Early stages
• Releasing RFP

30

© Real-Time Innovations.All Rights Reserved.

Omron (pre DDS-standard)

Tokyo traffic control
• “Metropolitan highway line”

Architecture
• Control center
• Hundreds of terminals

Goal
• Show drivers traffic conditions
• Report problems
• Control flow

© Real-Time Innovations.All Rights Reserved.

Industrial Automation (pre DDS-standard)

Schneider Automation
(N)DDS is the primary communication channel for:

• PLC’s, MotorDrive, HMI, etc.
• Reduces factory floor wiring
• Provides real time communication for synchronizing multiple devices

31

© Real-Time Innovations.All Rights Reserved.

Simulation Systems (pre DDS-standard)

National Advanced Driving Simulator
• Virtual Proving Ground
• DDS ties together the geographically-distributed

simulators to create one large simulation

CAE SimXXI Flight Simulators
• DDS for real-time communications between simulator

subsystems
• IEEE-1394 (FireWire) physical layer for speed and

determinism

Part II DDS In Action
Examples and Applications
Topic management
Data visibility and access control
Application patterns
Logging and monitoring
Legacy applications

32

© Real-Time Innovations.All Rights Reserved.

Topic Management

Good topic selection leads to
• Better interfaces
• Easier integration
• Improved scalability
• Decreased system size
• Faster startup and discovery times

How to go about choosing topics?
• By Sender “Role”
• By Receiver “Role”
• By Message ID
• By Data Role
• By Data Type

© Real-Time Innovations.All Rights Reserved.

Topic Management

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

P

P

P

X
P

PPP

P
Global Data Space

By Sender “Role” - MixerTank3Data
By Receiver “Role” - AirTrackCorrelator
By Message ID - Filter23ToGUI12
By Data Role - AAWTracks
(By Data Type - CommandString)

33

© Real-Time Innovations.All Rights Reserved.

Topic Management

Has the largest impact on system ‘openness’…

DDS Elements
• Topic Keys

• Can dramatically decrease system size
• Used for reliable many-to-one (i.e. ALARM topic)
• Enables seamless scaling of system

• Topic QoS
• Convenient way to describe information model

• Data Types specified in IDL and can be reused
• ContentFilteredTopic and MultiTopic also control scope

Part II DDS In Action
Examples and Applications
Topic management
Data visibility and access control
Application patterns
Logging and monitoring
Legacy applications

34

© Real-Time Innovations.All Rights Reserved.

Data Visibility - Domains

Single Domain System
• Container for applications that want to communicate
• Applications can join or leave a domain in any order
• New Applications are “Auto-Discovered”
• An application that has joined a Domain is also called a

“Domain Participant”

Multiple Domain System
• Use Multiple domains for Scalability, Isolation or Testing

N1 App 1
Pub/Sub
(A,B/C,D)

N2 App 2
Subscribe
(C)

N4 App 4
Pub/Sub
(D/C,E,F)

N4 App 5
Publish
(C)

N3 App 3
Pub/Sub
(E,F/A,C)

N5 App 6
Subscribe
(B,C)

Domain

© Real-Time Innovations.All Rights Reserved.

Data Visibility

Bridging – common requirements
• Desired not to have all applications fully

interconnected – (controlling system size)
• Clusters of machines can pub/sub any Topic in

another cluster
• Number of clusters can be static or dynamic

• Often required to respond to dynamic events
• Creation of new topics or appearance of new nodes

35

© Real-Time Innovations.All Rights Reserved.

Data Visibility – Bridging

Connecting groups of computers together
• Domains

• Static, tied to physical properties of the transport

• Partitions
• Dynamic, can take time to propagate

• Built-in Topics
• Dynamic monitoring of what is where

?

© Real-Time Innovations.All Rights Reserved.

Data Visibility – Partition QoS

An additional criteria that must be satisfied
• DataReaders / DataWriters must

• Have Same Topic
• Be in the same Domain
• Have Matching PARTITION QoS

Can be changed at run-time
• Can have propagation delay

Doesn’t isolate Discovery traffic

36

© Real-Time Innovations.All Rights Reserved.

Data Visibility – Bridging Example

….. Displays

Displays should be running the same software
Each Display is configured differently
Additional need to manage all displays centrally

Compute & Control

Sensors

May need to switch sensor-sets dynamically

Dynamic Sensor configurations…

© Real-Time Innovations.All Rights Reserved.

Data Access Control

A.K.A: Security
• Access Control and Authentication
• In many systems it is desired that some data not be distributed

to unintended recipients.
• In many systems it is desired that some data not be distributed

to unverified recipients.
Basic Pub/Sub paradigm is such that if a topic is in the

Domain, it is available.
• There isn’t the concept of a ‘connection’ that can be easily

secured.
Could be needed at many levels

• Participant, Publisher/Subscriber, Topic
Many needs for dynamic security policies
Participants may be allowed some data, but not all.

37

© Real-Time Innovations.All Rights Reserved.

Data Access Control

DDS doesn’t provide security (e.g. encryption) but rather
the hooks necessary for applications to use.

Using Built-in topics, you have the ability to selectively
ignore objects in the domain
• i.e “DCPSPublication”, “DCPSSubscription”
• ignore_xxx() API (can’t un-ignore)

Use QoS passed during discovery
• USER_DATA, GROUP_DATA, TOPIC_DATA
• Hierarchical in nature

• Could be allowed as a Participant, but not allowed to subscribe
to a certain topic.

• Can be used to pass PKI certificates
Custom serialization / de-serialization routines
Can implement custom transport

X

Part II DDS In Action
Examples and Applications
Topic management
Data visibility and access control
Application patterns
Logging and monitoring
Legacy applications

38

© Real-Time Innovations.All Rights Reserved.

Application Patterns

Applications can be loosely categorized to
operate within the following states:

Steady state behavior
• Moving data around subject to desired QoSs

Initialization phase
• Discovery
• Authenticating

Exception handling
• What to do when things go wrong…

© Real-Time Innovations.All Rights Reserved.

Application Patterns

Many applications usually can be categorized into*

• “Commander” application
• “Sensor” application
• “HMI” application

Application ‘types’ benefit from different QoS policies
• Reliable / Best-effort transmission
• Use of redundancy (OWNERSHIP)
• Transport: Multicast / Unicast (Discovery & Data Delivery)
• Discovery properties (LIVELINESS)
• State propagation (HISTORY, DURABILITY)

As well as DDS implementation specifics (threading)

* A known over-simplification

39

© Real-Time Innovations.All Rights Reserved.

Application Patterns

“Commander” applications
• Commands often need to be reliable since order matters
• Usually have some concept of state (DURABILITY, HISTORY)

• Late-joiners need the last issued configuration command or status
message (TRANSIENT_LOCAL)

• Care about the health of their DataReaders
• Need to know if someone has stop ‘receiving’ data (Listeners / WaitSet)

• For systems wide configuration commands, multicast is very
convenient

• Commands have a built-in timeout (LIFESPAN)

• Order of commands may be important:
• May need to order a set of topics when written (PRESENTATION)

• May need consistent order for commands originating in different
computers: BY_SOURCE_TIMESTAMP (DESTINATION_ORDER)

• Requirements of redundancy and automatic failover (OWNERSHIP)

© Real-Time Innovations.All Rights Reserved.

Application Patterns

“Sensor” Application
• Usually just reporting data
• Access to data can be limited (USER_DATA)
• The most recent value is the only one of interest

• Best-effort transmission (RELIABILITY)

• Keep only the the last value (HISTORY)

• Many Sensors reporting of the same kind
• Use Keys for managing instances within a Topic

• Primary / secondary Sensors for redundancy (EXCLUSIVE OWNERSHIP)
• Alarm sensors may benefit from ordered access:

• INSTANCE/TOPIC/GROUP access_scope (PRESENTATION)
• Alarms may originate from any source (SHARED OWNERSHIP)
• Detection sensor failures

• Continuous updates: DEADLINE
• Sporadic updates (e.g. digital I/O): LIVELINESS

40

© Real-Time Innovations.All Rights Reserved.

Application Patterns

“HMI” Application
• Process data in a discernable order

• take_instance(), take_next()
• Use ViewState (NEW/NOT_NEW), InstanceState (ALIVE/NOT_ALIVE), and SampleState (READ/NOT_READ)

• For repetitive sensor data, often the most current is all that is needed
• Use RELIABILITY= BEST_EFFORT, HISTORY= KEEP_LAST)

• For sporadic command data reliability is important
• Use RELIABILITY= RELIABLE, HISTORY= KEEP_ALL)

• Only certain subsets of data are of interest
• Use ContentFilteredTopics for selecting based on content
• Use TIME_BASED_FILTER for selecting based on timing

• Need to know when you lose connectivity
• Take different actions depending on down-time (LIVELINESS)

• Want to ‘batch’ processing of received data/threading concerns
• Read/take asynchronously

• Want to know if specific data missed
• Use DEADLINE

Part II DDS In Action
Examples and Applications
Topic management
Data visibility and access control
Application patterns
Logging and monitoring
Legacy applications

41

© Real-Time Innovations.All Rights Reserved.

Logging / Monitoring

Everyone needs it to some degree
• Log Events
• Log Data

Issues
• Sometimes want globally ordered
• Easy to get locally ordered
• Data content extraction, using defined IDL types

Log DDS meta-traffic
Infrastructure can provide additional tools

© Real-Time Innovations.All Rights Reserved.

Logging / Monitoring - Listeners

DataWriteron_publication_match()

DataReaderon_subscription_match()
DataReaderon_request_incompatible_qos()
DataReaderon_request_deadline_missed()
DataReaderon_liveliness_changed()
DataReaderon_sample_rejected()
DataReaderon_data_available()
DataReaderon_sample_lost()
Subscriberon_data_on_readers()

DataWriteron_offered_incompatible_qos()
DataWriteron_offered_deadline_missed()
DataWriteron_liveliness_lost()
Topicon_inconsistent_topic()

DDS Listeners – can be monitored, logged, or ignored

42

Part II DDS In Action
Examples and Applications
Topic management
Data visibility and access control
Application patterns
Logging and monitoring
Legacy applications

© Real-Time Innovations.All Rights Reserved.

Legacy Applications and DDS

Emerging needs in existing programs
• Open interfaces
• Interoperability with others
• Maintainability
• Performance issues
• New Transports, hardware, and software

Transition to DDS implementation usually occurs in
several steps
• First pass of integration: pass around current messages
• “Middle” ground: Some QoS utilized, porting some topics

43

© Real-Time Innovations.All Rights Reserved.

Legacy Applications and DDS

Map current communication infrastructure to Topics
• Usually take a MessageID => Topic approach first
• Can further sub-class messages by using both sender and

receiver roles – thus reducing number of Topics

Reuse existing serialization/deserialization code, NDDS
messages are all “opaque”

QoS settings tend to be very simple
• All messages “reliable” for example

Determine most compatible threading model
• Listener verses WaitSet for the DataReaders

Address issues of scaling and system scope
• Domains, Partitions, and other discovery properties

© Real-Time Innovations.All Rights Reserved.

Legacy Applications and DDS

Further integration efforts involve
• Re-distribution of Topics and DataTypes
• Changing the threading models
• Re-examining QoS properties and their settings
• Tuning Discovery and startup properties
• Adding security and authentication

44

Conclusion

© Real-Time Innovations.All Rights Reserved.

DDS enables the net-centric vision
The right information

• DDS is based on publish-subscribe technology
• Each application gets exactly what it wants!

To the right place
• DDS includes automatic discovery
• System automatically locates publishers and subscribers

At the right time…
• QoS contracts allow applications to specify what they need
• DDS automatically monitors QoS and notifies of violations

… no matter what
• Built-in redundancy, lack of centralized logic, strength-arbitration

logic, facilitate development of a fault-tolerant system

45

Thank you

References:
OMG DDS specification:

http://www.omg.org/cgi-bin/doc?ptc/04-04-12
General material on DDS and RTI’s implementation:

http://www.rti.com/dds
Comments/questions: gerardo@rti.com

