

Dear AP Chemistry student,
I am excited that you are enrolled to take AP Chemistry in the 2020-2021 school year with me. As you are probably already aware, this is a difficult course that requires dedication, a fair amount of work and a love for chemistry. This year's course may be structured a little differently, or we might have some new challenges given the global situation, but we will get through it! Our ultimate goal is to prepare for the exam on Friday, May 7, 2021 at 8 am .

AP Chemistry is meant to be a second-year course....that is, there is a lot of new material to cover and very little time to go over topics you studied in Honors Chemistry with Ms. Turk. However, because Chemistry is comprehensive, we cannot forget about all the concepts and skills you learned in the last school year. To that end, I have put together this notes and problems packet for you to complete during the summer. I do not recommend trying to do it all at once - but practicing a little at a time every few days will help to flex those brain muscles and help you to retain the necessary knowledge over the summer. This packet will form the first chapter of your AP Chemistry Notebook in our course. You could email me or message me on Schoology with questions as they arise, and you could consider watching review videos online if you are stuck. Khan Academy is great, as well as Mr. Anderson and/or Tyler DeWitt. If after that you still cannot come to an answer, star it, and we can address it when we return.

At the end of the first week of class, I will evaluate your completion of this packet (award credit) and the first assessment in AP Chemistry will follow shortly thereafter (within the first three weeks of class). If you make an effort to review this material, I do not anticipate you having any difficulty with the first test.

In that spirit, enjoy your summer and I look forward to a new year of AP Chemistry with you!
Good Luck!
Mrs. Guille
aguille@pdsdstudents.org
***You should be able to find most of these topics in your notes from Ms. Turk, even with the COVID virtual learning. \underline{I} created a Google Classroom (class join code: j7hcfu7) for us where I can post additional helpful notes, videos, etc. that may be useful in helping you to review. It may be helpful to look up information if you are struggling.
**A written effort is expected for all problems. However, if you truly get stuck on some of these problems, do not hesitate to contact a classmate for help. It is ok to work together to gain an understanding, but you will do yourself no good if you just copy the work.

Recommendations for materials in this course:

- Obtain a three ring binder with lined paper to do your work in. It will be helpful in the fall once we start class to be able to add pages to your notebook as you will receive a lot of paperwork and do a lot of problem solving for this class.
- A scientific calculator (does not have to be graphing)
- Notecards for writing down pertinent information to use for review later (common ions as you will not have a charge sheet to use on tests or quizzes; rules (solubility, etc.); strong acids and bases, etc.)
- Purchase an AP Chemistry study guide. AP Chemisry Crash Course by Adrian Dingle is cheap and very reliable. It also has a link to practice exams.

\therefore 二
\％辿
吕㕣気
为

AP ${ }^{\text {® }}$ CHEMISTRY EQUATIONS AND CONSTANTS

Throughout the exam the following symbols have the definitions specified unless otherwise noted.

L, mL	$=\operatorname{liter}(\mathrm{s})$, milliliter(s)	mm Hg	$=$ millimeters of mercury
g	$=\operatorname{gram}(\mathrm{s})$	J, kJ	$=$ joule(s), kilojoule(s)
nm	$=$ nanometer(s)	V	$=\operatorname{volt(s)}$
atm	$=\operatorname{atmosphere}(\mathrm{s})$	mol	$=\operatorname{mole}(\mathrm{s})$

ATOMIC STRUCTURE

$$
\begin{aligned}
& E=h v \\
& c=\lambda v
\end{aligned}
$$

$$
\begin{aligned}
& E=\text { energy } \\
& v=\text { frequency } \\
& \lambda=\text { wavelength }
\end{aligned}
$$

Planck's constant, $h=6.626 \times 10^{-34} \mathrm{~J}$ s Speed of light, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Avogadro's number $=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Electron charge, $e=-1.602 \times 10^{-19}$ coulomb

EQUILIBRIUM

$$
\begin{aligned}
K_{c} & =\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}, \text { where } a \mathrm{~A}+b \mathrm{~B} \rightleftarrows c \mathrm{C}+d \mathrm{D} \\
K_{p} & =\frac{\left(P_{\mathrm{C}}\right)^{c}\left(P_{\mathrm{D}}\right)^{d}}{\left(P_{\mathrm{A}}\right)^{a}\left(P_{\mathrm{B}}\right)^{b}} \\
K_{a} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
K_{b} & =\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{HB}^{+}\right]}{[\mathrm{B}]} \\
K_{w} & =\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \text { at } 25^{\circ} \mathrm{C} \\
& =K_{a} \times K_{b} \\
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right], \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
14 & =\mathrm{pH}+\mathrm{pOH} \\
\mathrm{pH} & =\mathrm{p} K_{a}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
\mathrm{p} K_{a} & =-\log K_{a}, \mathrm{p} K_{b}=-\log K_{b}
\end{aligned}
$$

Equilibrium Constants

K_{c} (molar concentrations)
K_{p} (gas pressures)
K_{a} (weak acid)
K_{b} (weak base)
K_{w} (water)

$$
\begin{aligned}
\ln [\mathrm{A}]_{t}-\ln [\mathrm{A}]_{0} & =-k t \\
\frac{1}{[\mathrm{~A}]_{t}}-\frac{1}{[\mathrm{~A}]_{0}} & =k t \\
t_{1 / 2} & =\frac{0.693}{k}
\end{aligned}
$$

$$
\begin{aligned}
k & =\text { rate constant } \\
t & =\text { time } \\
t_{1 / 2} & =\text { half-life }
\end{aligned}
$$

GASES, LIQUIDS, AND SOLUTIONS

$$
\begin{aligned}
P V & =n R T \\
P_{A} & =P_{\text {total }} \times X_{\mathrm{A}}, \text { where } X_{\mathrm{A}}=\frac{\text { moles A }}{\text { total moles }} \\
P_{\text {total }} & =P_{\mathrm{A}}+P_{\mathrm{B}}+P_{\mathrm{C}}+\ldots \\
n & =\frac{m}{M} \\
\mathrm{~K} & ={ }^{\circ} \mathrm{C}+273 \\
D & =\frac{m}{V} \\
K E \text { per molecule } & =\frac{1}{2} m v^{2} \\
\text { Molarity, } M & =\text { moles of solute per liter of solution } \\
A & =a b c
\end{aligned}
$$

$$
\begin{aligned}
P & =\text { pressure } \\
V & =\text { volume } \\
T & =\text { temperature } \\
n & =\text { number of moles } \\
m & =\text { mass } \\
M & =\text { molar mass } \\
D & =\text { density } \\
K E & =\text { kinetic energy } \\
v & =\text { velocity } \\
A & =\text { absorbance } \\
a & =\text { molar absorptivity } \\
b & =\text { path length } \\
c & =\text { concentration }
\end{aligned}
$$

Gas constant, $R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

$$
\begin{aligned}
& =0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& =62.36 \mathrm{~L} \text { torr mol }^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

$$
1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=760 \text { torr }
$$

$$
\mathrm{STP}=273.15 \mathrm{~K} \text { and } 1.0 \mathrm{~atm}
$$

Ideal gas at $\mathrm{STP}=22.4 \mathrm{~L} \mathrm{~mol}^{-1}$

THERMODYNAMICS/ELECTROCHEMISTRY

$$
\begin{aligned}
q & =m c \Delta T \\
\Delta S^{\circ} & =\sum S^{\circ} \text { products }-\sum S^{\circ} \text { reactants } \\
\Delta H^{\circ} & =\sum \Delta H_{f}^{\circ} \text { products }-\sum \Delta H_{f}^{\circ} \text { reactants } \\
\Delta G^{\circ} & =\sum \Delta G_{f}^{\circ} \text { products }-\sum \Delta G_{f}^{\circ} \text { reactants } \\
\Delta G^{\circ} & =\Delta H^{\circ}-T \Delta S^{\circ} \\
& =-R T \ln K \\
& =-n F E^{\circ} \\
I & =\frac{q}{t}
\end{aligned}
$$

$q=$ heat
$m=$ mass
$c=$ specific heat capacity
$T=$ temperature
$S^{\circ}=$ standard entropy
$H^{\circ}=$ standard enthalpy
$G^{\circ}=$ standard Gibbs free energy
$n=$ number of moles
$E^{\circ}=$ standard reduction potential
$I=$ current (amperes)
$q=$ charge (coulombs)
$t=$ time (seconds)
Faraday's constant, $F=96,485$ coulombs per mole of electrons
1 volt $=\frac{1 \text { joule }}{1 \text { coulomb }}$

Common Polyatomic Ions

acetate	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
ammonium	$\mathrm{NH}_{4}{ }^{+}$
arsenate	$\mathrm{AsO}_{4}{ }^{3-}$
arsenite	$\mathrm{AsO}_{3}{ }^{3-}$
azide	$\mathrm{N}_{3}{ }^{-}$
benzoate	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}$
borate	$\mathrm{BO}_{3}{ }^{\text {- }}$
bromate	$\mathrm{BrO}_{3}{ }^{-}$
carbonate	$\mathrm{CO}_{3}{ }^{2-}$
chlorate	$\mathrm{ClO}_{3}{ }^{-}$
chlorite	$\mathrm{ClO}_{2}{ }^{-}$
chromate	$\mathrm{CrO}_{4}{ }^{2-}$
cyanide	CN^{-}
dichromate	$\mathrm{Cr}_{2} \mathrm{O}^{2-}$
dihydrogen phosphate	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
dihydrogen phosphite	$\mathrm{H}_{2} \mathrm{PO}_{3}{ }^{-}$
hydrogen carbonate	$\mathrm{HCO}_{3}{ }^{-}$
hydrogen phosphate	$\mathrm{HPO}_{4}{ }^{2-}$
hydrogen phosphite	$\mathrm{HPO}_{3}{ }^{2-}$
hydrogen sulfate	$\mathrm{HSO}_{4}{ }^{-}$
hydrogen sulfide	HS^{-}
hydrogen sulfite	$\mathrm{HSO}_{3}{ }^{-}$
hydroxide	OH^{-}
hypochlorite	ClO^{-}
iodate	$1 \mathrm{O}_{3}{ }^{-}$
manganate	$\mathrm{MnO}_{4}{ }^{2-}$
nitrate	$\mathrm{NO}_{3}{ }^{-}$
nitrite	$\mathrm{NO}_{2}{ }^{-}$
oxalate	$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
perchlorate	$\mathrm{ClO}_{4}{ }^{-}$
permanganate	MnO_{4}^{-}
peroxide	$\mathrm{O}_{2}{ }^{\text {- }}$
phosphate	$\mathrm{PO}_{4}{ }^{3-}$
phosphite	$\mathrm{PO}_{3}{ }^{3-}$
silicate	$\mathrm{SiO}_{3}{ }^{2-}$
sulfate	$\mathrm{SO}_{4}{ }^{2-}$
sulfite	$\mathrm{SO}_{3}{ }^{2-}$
tartrate	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}{ }^{2-}$
thiocyanate	SCN^{-}
thiosulfate	$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$

$\mathrm{AsO}_{3}{ }^{\text {- }}$	arsenite
$\mathrm{AsO}_{4}{ }^{3-}$	arsenate
$\mathrm{BO}_{3}{ }^{3-}$	borate
$\mathrm{BrO}_{3}{ }^{-}$	bromate
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	acetate
$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$	oxalate
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}{ }^{2-}$	tartrate
$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}$	benzoate
ClO^{-}	hypochlorite
$\mathrm{ClO}_{2}{ }^{-}$	chlorite
$\mathrm{ClO}_{3}{ }^{-}$	chlorate
$\mathrm{ClO}_{4}{ }^{-}$	perchlorate
CN^{-}	cyanide
$\mathrm{CO}_{3}{ }^{\text {- }}$	carbonate
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	dichromate
$\mathrm{CrO}_{4}{ }^{2-}$	chromate
$\mathrm{H}_{2} \mathrm{PO}_{3}{ }^{-}$	dihydrogen phosphite
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	dihydrogen phosphate
HCO_{3}^{-}	hydrogen carbonate
$\mathrm{HPO}_{3}{ }^{2-}$	hydrogen phosphite
$\mathrm{HPO}_{4}{ }^{2-}$	hydrogen phosphate
HS^{-}	hydrogen sulfide
$\mathrm{HSO}_{3}{ }^{-}$	hydrogen sulfite
$\mathrm{HSO}_{4}{ }^{-}$	hydrogen sulfate
$1 \mathrm{O}_{3}{ }^{-}$	iodate
MnO_{4}^{-}	permanganate
$\mathrm{MnO}_{4}{ }^{\text {- }}$	manganate
$\mathrm{N}_{3}{ }^{-}$	azide
$\mathrm{NH}_{4}{ }^{+}$	ammonium
$\mathrm{NO}_{2}{ }^{-}$	nitrite
$\mathrm{NO}_{3}{ }^{-}$	nitrate
$\mathrm{O}_{2}{ }^{\text {- }}$	peroxide
OH^{-}	hydroxide
$\mathrm{PO}_{3}{ }^{3-}$	phosphite
$\mathrm{PO}_{4}{ }^{3-}$	phosphate
$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$	thiosulfate
SCN^{-}	thiocyanate
$\mathrm{SiO}_{3}{ }^{2-}$	silicate
$\mathrm{SO}_{3}{ }^{2-}$	sulfite
$\mathrm{SO}_{4}{ }^{2-}$	sulfate

AP Chemistry Summer Review Part I: Physical \& Chemical Changes, Matter \& Energy

1. Label each as either physical or chemical change.
a. corrosion of aluminum metal by hydrochloric acid
b. melting wax
c. pulverizing an aspirin tablet
d. digesting a Three Musketeers ${ }^{\circledR}$ bar
e. explosion of nitroglycerin
f. a burning match
g. metal warming up, due to the burning match
h. water vapor condensing on the metal
i. the metal oxidizes, becoming dull and brittle
j. salt being dissolved by water
2. For each process described, state whether the material being discussed (in bold) is a mixture or compound, and state whether the change is physical or chemical.
a. An orange liquid is distilled (boiled to separate components with different boiling points), resulting in the collection of a red solid and a yellow liquid.
b. A colorless, crystalline solid is decomposed, leaving a pale yellow-green gas and and a soft, shiny metal.
c. A cup of tea becomes sweeter as sugar is added to it.
3. Classify each as mixture (homogeneous or heterogeneous) or pure substance (elements or compounds).
a. water
b. blood
c. the oceans
d. iron
e. brass (an alloy of zinc and copper)
f. wine
g. sodium bicarbonate (baking soda)
4. Explain how the five states of matter and energy are related. (HINT: Think of the motion of the particles!)
5. Consider the burning of gasoline and the evaporation of gasoline. Which represents a physical change and represents a chemical change? Give the reason for your answer.
6. A) Label the arrows on the diagram below with the correct phase change processes. B) Draw a particle diagram representing each phase.

Solid
Liquid
Gas
7. Describe the three main intermolecular forces and explain how their relationship is important in determining a compound's state of matter at a particular temperature. \rightarrow This is a major concept on the AP Chem Exam!

AP Chemistry Summer Review Part II: Uncertainty in Measurement and Calculations:

1. Exact Numbers:

Counted numbers and definitions do not involve any measurement and are considered as exact numbers

Definitions: 1 week = 7 days.
1 mile $=5,280$ feet
1 yard = 3 feet

Counted: 5 Players on the basketball court.
23 students in a room
25 pennies used by a class in an experiment.
5 rocks

2. Measured Numbers:

All measured numbers have some degree of uncertainty.

When recording measurements, record only the significant figures. Record measurements to include one decimal estimate beyond the smallest increment on the measuring device.

Examples (consider a measuring instrument like a ruler):

$>$ If smallest increment $=1 \mathrm{~m}$, then record measurement o 0.1 m (i.e. 3.1 m)
$>$ If smallest increment $=0.1 \mathrm{~m}$, then record measurement to 0.01 m (i.e. 5.67 m)
$>$ If smallest increment $=0.01 \mathrm{~m}$, then record measurement to 0.001 m (i.e. 12.675 m)
c. Unless otherwise stated the uncertainty in the last significant figure (the uncertain digit) is assumed to be ± 1 unit. Modern digital instruments and many types of volumetric glassware will state the level of uncertainty.

3. Rules for counting Significant Figures.

a.Non-Zero Numbers: Non-zero numbers are always significant.
b. Zeros:

1: Leading zeros that come before the first non-zero number are never significant
2. Captive zeros (sandwich zeros) that fall between two non-zero digits are always significant.
3. Ending zeros that appear after the last non-zero digit are significant only when a decimal point appears somewhere in the number.

Examples:

Number	0.005	5005	5005.00	500.	0.0050
Sig Figs	1	4	6	3	2

c. Scientific Notation: Significant figures are recorded in the mantissa (number $1 \leq x<10$) Examples:

Number	3.0×10^{3}	5.998×10^{5}	6.00000×10^{-23}	0.5×10^{4}
Sig Figs	2	4	6	1

4. Rules for Using Significant Figures in Calculations

(a) Multiplication, Division, Powers and Roots:-"LEAST SIG.FIG RULE"

1. The result should be reported to the same number of significant figures as the measured number having the least number of significant figures.
2. Only consider the number of significant figures in each of the measured numbers! (not constants)

Example 1:
$2.3 \times 5.78=$ Calculator returns 13.294
2.3 has 2 sig.fig
5.78 has 3 sig.fig.
$2.3 \times 5.78=13$ The answer must be rounded to show 2 sig.fig
Example 2.
$\frac{1.67 \times 10^{5} \times 0.00045}{2 \times 10^{-23}}=$ calculator returns $2.505000000 \times 10^{24}$
1.67×10^{5} has 3 sig.figs
0.00045 has 2 sig.figs
2×10^{-23} has 1 sig.fig
$\frac{1.67 \times 10^{5} \times 0.00045}{2 \times 10^{-23}}=3 \times 10^{24}$ (rounded to 1 sig.fig)

Example 3
$\sqrt{2.3}=$ calculator returns 1.516575089
2.3 has 2 sig.figs
$\sqrt{2.3}=1.5$ round answer to 2 sig.figs

(b) Addition and Subtraction: "LEAST PRECISE DECIMAL RULE"

1. The result should be reported with the same decimal precision as the measured number having the uncertain digit in the least precise decimal place.
2. Only consider the decimal precision in each of the measured numbers! (not constants)

Example 5:Watch for mumbers ending with zero! $10+0.0110=$ calculator returns 10.0110

10 : the uncertain digit appears in the 10^{1} place
0.0110 : the uncertain digit appears in the 10^{-4} place $10+0.0110=10 \quad$ round answer to the 10^{1} place

Rationale: The uncertainty in the measured number 10 is ± 1. The uncertainty alone in the first number (10) is greater than the entire second number (0.0110).

Example 4: $a-c$
a. $123 \mathrm{~cm}+5.35 \mathrm{~cm}=128 \mathrm{~cm}$ (rounded to 10°)
b. $1.0001 \mathrm{~m}+0.0003 \mathrm{~m}=1.0004 \mathrm{~m}$ (rounded to 10^{-4})
c. $1.002 s-0.998 s=0.004 s$ (rounded to 10^{-3})

(c) Addition/Subtraction combined with Multiplication/Division

1. Always perform the addition portion of the calculation 1st to determine the correct decimal precision of the sum. (least precise decimal rule)
2. Once the precision of the sum has been determined you can count the number of significant figures in the sum to apply the "least sig.fig rule" in performing the multiplication.
3. Do not round until the final calculation has been completed.

(d) Scientific Notation with different powers of 10:

Example 7 :
$1.38 \times 10^{4}+7.98 \times 10^{5}+6.89 \times 10^{3}=$ calculator returns 8.18690×10^{5}
$1 s t$: Change all numbers to have the same power of 10
7.98×10^{5} : multiply the mantissa by 10^{1} and the power of ten by $10^{-1}=79.8 \times 10^{4}$
6.89×10^{3} : multiply the mantissa by 10^{-1} and the power of ten by $10^{1}=0.698 \times 10^{4}$
8.18690×10^{5} : multiply the mantissa by 10^{1} and the power of ten by $10^{-1}=81.8690 \times 10^{4}$
2nd: Compare the precision of the decimal places
1.38×10^{4} : unceratin digit appears in the 10^{-2} of the mantissa
79.8×10^{4} : unceratin digit appears in the 10^{-1} of the mantissa
0.698×10^{4} : unceratin digit appears in the 10^{-3} of the mantissa
$1.38 \times 10^{4}+79.8 \times 10^{4}+0.698 \times 10^{4}=81.9 \times 10^{4}$ (rounded to 10^{-1} in the mantissa)
3 rd : Return to standard scientific notation
81.9×10^{4} : multiply mantissa by 10^{-1} and the power of ten by $10^{1}=8.19 \times 10^{5}$

Problems

How many significant figures in the following numbers:

1. \qquad $1,245 \mathrm{~m}$
2. \qquad 0.030m
3. \qquad $10,000 \mathrm{~m}$
4. \qquad $1.340 \times 10^{23} \mathrm{~m}$
5. \qquad $3.02003 \times 10^{14} \mathrm{~m}$
6. \qquad 0.0000001 m
7. \qquad 1,000 .
8. \qquad 0.10000010

9: Convert the following numbers into standard scientific notation:
a. $96.3 \times 10^{4} \mathrm{~g}$ \qquad
b. $0.05 \times 10^{23} \mathrm{~s}$ \qquad
c. $123 \times 10^{-7} \mathrm{~m}$ \qquad
Problems 10-18: Perform the following Calculations and record your answers in the proper number of significant figures and units.
10. $0.6030 s+0.82 s=$
11. $4.1 m+0.3789 m-153.22 m=$
12. $3.1567 \times 10^{2} g+9.212 \times 10^{4} g-4.677 \times 10^{6} g=$
13. $\frac{0.307 g}{\left(1.0 \times 10^{-3}\right) m l}=$
14. $\frac{1.26 \times 10^{-3} \mathrm{~kg}}{(3.2 m+10 m+8.9 m)\left(4.3 \times 10^{-6} s\right)}=$
15. $\sqrt[3]{5.33 \times 10^{5} \mathrm{~m}}=$

Part II: Simple Metric Conversions and Consistent Units

Section 1: Metric Conversions

One of the major benefits of using the metric system is the ability to move from a large unit of measure to a smaller unit of measure simply by moving the decimal point or changing the exponent. For example, 0.003 km is easily changed to 3.00 m and $4.50 \times 10^{2} \mathrm{~nm}$ is easily changed to 4.50×10^{-7} m by applying a few simple rules.

Step 1: Determine the number of decimal places between the units involved in the conversion. * Memorize the chart at the end of this document including prefixes! The most common units are shown in the graph below. You can use the mnemonic King Henry Died by Drinking Chocolate Milk (Kilo, Hecto, Deka, Base, Deci, Centi, Milli) to help remember these.

Decimal places from base	3	0	-2	-3	-6	-9
Unit	$\mathrm{km}=10^{3} \mathrm{~m}$	$\mathrm{~m}=10^{0} \mathrm{~m}$	$\mathrm{~cm}=10^{-2} \mathrm{~m}$	$\mathrm{~mm}=10^{-3} \mathrm{~m}$	$\mu \mathrm{~m}=10^{-6} \mathrm{~m}$	$\mathrm{~nm}=10^{-9}$

Move decimal to the right to convert to a Smaller

Step 2: for Standard Numbers: If you are converting from a large unit to a smaller unit the number will get bigger and the decimal place will move to the right. If you are converting from a smaller unit to a larger unit the number will get smaller and the decimal place will be moved to the left. A way to remember the direction of the decimal shift is to use this mnemonic:

Large Unit \rightarrow Small Unit \rightarrow Large Number

$$
\text { Small Unit } \rightarrow \text { Large Unit } \rightarrow \text { Small Number }
$$

Example: Convert 0.003 km to cm .
Step 1: There are 5 decimals between $\boldsymbol{k m}$ and $\boldsymbol{c m} .(3-(-2))=5$
Step 2: $\mathbf{k m}$ is larger than $\mathbf{c m}$ so the number must become larger. The decimal must be moved to the right by a total of 5 decimal places. Therefore $0.003 \mathrm{~km}=300 \mathrm{~cm}$

Scientific Notation: If you are converting from a large unit to a smaller unit the number becomes larger which means the exponent must increase. If you are converting from a smaller unit to a larger unit the number will become smaller and the exponent will decrease. An easy way to remember the direction of the decimal shift is to use the previously stated rule of thumb:

Example: Convert $3.0 \times 10^{-3} \mu \mathrm{~m}$ to cm .
Step 1: There are 4 decimals between $\mu \mathbf{m}$ and $\boldsymbol{c m} .(-6(-2))=-4)$
Step 2: $\mu \mathrm{m}$ is smaller than $\mathbf{c m}$ which means the number must become smaller! The exponent must be decreased by 4 . Therefore $3.00 \times 10^{-3} \mu \mathrm{~m}=3.00 \times 10^{-7} \mathrm{~cm}$
> You can also always use dimensional analysis/factor labeling to do these metric conversions!

Section 2: Using Consistent Units in Calculations:
When performing calculations, it is important to verify that all of the basic units of measurement (length, mass, time, etc) are measured in the same metric prefix.

Example: An ant was observed to travel 3.00 m south, turn to the west and move an additional $\mathbf{5 0 . 1} \mathbf{c m}$, and finally turn to the north and travel an additional 0.0110 km . Determine the total distance in meters traveled by the ant.

Solution: The first step is to recognize that the three distances have been given to you in different units of length. Before you can perform the addition you will need to convert all of the measurements to the same unit of length. In this case the most convenient choice is the meter. Make certain to preserve the correct number of significant figures as you make the conversions.

$$
3.00 \mathrm{~m}=3.00 \mathrm{~m}(3 \mathrm{sf}) 50.1 \mathrm{~cm}=0.501 \mathrm{~m}(3 \mathrm{sf}) 0.0110 \mathrm{~km}=11.0 \mathrm{~m}(3 \mathrm{sf})
$$

We can now proceed with the addition: $\quad(3.00 m+0.501 m+11.0 m)=14.501 \mathrm{~m}$ Next use the addition rule (least precise decimal) and round to 10^{-1} : Reported Answer: 14.5 m

Problems

Part (a): Make the following conversions - preserve the number of significant figures in the answer!

1. 450 nm \qquad mm
2. 43000 mm \qquad m
3. $3.98 \times 10^{-3} \mathrm{~km}$ \qquad m
4. 456 mm \qquad km
5. 136000 m \qquad km
6. $2.68 \times 10^{6} \mathrm{~m}$ \qquad km
7. 450 mm \qquad m
$8.4 .89 \times 10^{12} \mathrm{~mm}$ \qquad km
8. $456000 \mu \mathrm{~m}$ \qquad mm
9. 23 cm \qquad mm
\qquad cm
10. $2.34 \times 10^{4} \mathrm{~cm}$ \qquad m
\qquad $n m$

Unit Multiplication - Dimensional Analysis - Factor Labeling

Units:

In the world of mathematics numbers often exist as abstract and unit-less entities. However, in the world of physics and chemistry where numbers are based upon experimentation and measurement all numbers are based in a physical reality. As a result, every number consists of two important parts. The first is a magnitude and the second equally important part is a unit. It is the unit that gives physical, real-world meaning to the number. We never write one without the other!

Examples: Note that these are all "equivalence statements"!

> 12 inches in one foot
> 365 days in one year
> 7 days in one week
> 1.0×10^{9} bytes in one gigabyte

Derived Units and Calculations

Many of the common units we use are actually derived units that result from performing mathematical operations on the basic units. When performing mathematical operations the units are treated and manipulated as if they were algebraic variables. Here are a few examples:

$$
\begin{aligned}
& \begin{array}{l}
\text { Area }=(\text { length }-\mathbf{m}) \times(\text { width }-\mathbf{m})=\mathbf{m}^{2} \\
\text { Volume }=(\text { length }-\mathbf{m}) \times(\text { width }-\mathbf{m}) \times(\text { height }-\mathbf{m})=\mathbf{m}^{3} \\
\underline{\text { Velocity }}=(\text { distance traveled }-\mathbf{m}) / / \text { time }-\mathbf{s})=\mathbf{m} / \mathbf{s} \\
\underline{\text { Density }}=(\text { mass }-\mathbf{g}) /(\text { volume }-\mathrm{mL})=\mathbf{g} / \mathbf{m L}
\end{array}
\end{aligned}
$$

Unit Conversions

It is often necessary to convert from one system of units to another. The most efficient way to do this is using a process known as "unit multiplication", "factor labeling" or "dimensional analysis".

Example No. 1: Consider a pin measuring 2.85 cm in length in the metric system. What would be the corresponding length in the English system?
Step 1: find an equivalence statement: i.e. $1 \mathrm{inch}=2.54 \mathrm{~cm}$
Step 2: Now divide both sides by $2.54 \mathrm{~cm}: \rightarrow 1 \mathrm{inch} / 2.54 \mathrm{~cm}=1$ or $2.54 \mathrm{~cm} / 1 \mathrm{inch}=1$
This gives rise to two conversion factors:
Step 3: Chose the conversion factor that will result in the cancellation of the original unit

$$
2.85 \mathrm{~cm} \times \frac{1 \text { inch }}{2.54 \mathrm{~cm}}=1.12 \text { inches }
$$

Note that the units for cm cancels out (cm is in both the numerator and denominator) leaving the desired units of inches!

"goal posting"

One useful version of this method is called "goal posting". Step 1: Draw a "goal post"with the horizontal bar extending on each side. Step 2: Place the original number and unit to the left. Place the final unit on the right. Step 3: Move the original unit (cm) from the top left (numerator) to the bottom of the conversion factor (denominator). Now there is no confusion about which form of the conversion factor you will use. If you have done this correctly the original units on the top (cm) will be cancelled by the same unit in the denominator of the conversion factor.

Dimensional Analysis

1. I have 470 milligrams of table salt, which is the chemical compound NaCl . How many liters of NaCl solution can I make if I want the solution to be $0.90 \% \mathrm{NaCl}$? (9 grams of salt per 1000 grams of solution).

The density of the NaCl solution is 1.0 g solution $/ \mathrm{mL}$ solution.
2. I have a bar of gold that is $7.0 \mathrm{in} \times 4.0 \mathrm{in} \times 3.0 \mathrm{in}$. The density of gold is $19.3 \mathrm{~g} / \mathrm{cm}^{3}$. The price of gold currently is $\$ 1,945.94$ per ounce. How much is my gold bar worth?
3. If the RDA for vitamin C is 60 mG per day and there are 70 mg of vitamin C per 100 G of orange, how many 3 oz . oranges would you have to eat each week to meet this requirement?
4. Owls generally maintain territories of 3 acres. How many owls could live in a large wooded area of 20 hectares? (1 hectare $=1$ sq. dekameter $=100 \mathrm{~m} 2=2.47$ acres)
5. The speed of light is $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Convert this speed into feet per year.
6. Many candy bars have 9 G of fat per bar. If during a "chocolate attack" you ate one pack of candy (0.6 dekabars), how many ounces of fat would you have eaten?
B) There are approximately 9 Calories per gram of fat, how many Calories is this?
C) A Calorie is 4184 joules (J). It takes 4.184 J to heat 1 gram of water by $1^{\circ} \mathrm{C}$. If you wanted to raise the temperature of water by $10^{\circ} \mathrm{C}$, how many liters of water could you heat with the energy from a pack of candy bars? (Density of water $=1 \mathrm{~g} / \mathrm{mL}$) - This one is hard!
7. I have 14.25 ng of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$. If 180.18 grams is the mass of 6.10×10^{23} molecules of glucose, how many carbon atoms are in my sample?

Part IIIa: Subatomic Particles, Isotopes and Ions

Element or Ion	Abbreviation	Atomic Number (Z)	Average Atomic Mass (\mathbf{A})	Protons* *	Neutrons* (for most common isotope unless otherwise noted)	Electrons* $^{(16.00}$
Oxygen	O	8				
Bismuth	Bi	F		209.0		
Carbon	C	6	12.01			
Carbon-14	${ }^{14} \mathrm{C}$		14.00	6		15
Pb-208		15	30.97			23
		55.845			18	
Potassium lon (cation)	K^{+}	39.10				
Sulfur lon (anion)	S^{2-}	32.07				

*- Calculate the number of protons, neutrons, and electrons for the most prevalent isotope

Average Atomic Masses:

Silver has two isotopes, one with 60 neutrons and the other with 62 neutrons. Give the chemical notation for each of these isotopes and calculate the relative abundance for each isotope given that the average atomic mass for silver is 107.87 amu .

Potassium has three isotopes. The number of neutrons and the natural abundance of these are: 20 neutron (93.23%); 21 neutrons (0.012%); and 22 neutrons (6.73%). Give the chemical notation for each of these isotopes and calculate the average atomic mass for potassium.

In the space below, write the electron configurations of the following elements:
I. Oxygen
2. Chlorine
3. Sodium
4. Aluminum \qquad
5. Argon
6. Iron
7. Potassium \qquad
8. Scandium
9. Bromine
10. Barium \qquad
II. lodine
12. Strontium \qquad
13. Yttrium \qquad
14. Cadmium
15. Tin

Determine what elements are denoted by the following electron configurations:
II) $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
12) $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{1}$
13) $\quad 1 s^{2} 2 s^{2} 2 p^{3}$
14) $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{6} 6 s^{2} 4 f^{14} 5 d^{6}$
15) $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{3}$

Draw the orbital diagrams for the flowing elements: Example: $\operatorname{Mg}\left(12 e^{-}\right) \overline{1 s} \overline{2 s} \overline{2 p}-\frac{}{3 \mathrm{~s}}$
16) Nitrogen
17) Sodium
18) Chlorine
19) Potassium
20) Iron
21) Zinc
22) Selenium
23) Ruthenium
24) Antimony
25) Xenon
\qquad

Part IV: Periodic Trends

1. On the blank periodic table, color and label:
a. alkali metals
b. alkaline metals
c. transition metals
d. nonmetals
e. metalloids
f. halogens
g. noble gases
h. inner transition metals
2. On the blank periodic table, color and label.
a. the s block
b. the p block
c. the d block
f. the f block
3. On the blank periodic table, draw arrows to show the following periodic trends across each period and down each group. Be sure to label which way the trend is increasing and which way it is decreasing.
a. Atomic radius
b. Ionization energy
c. Electronegativity

Part IV: Periodic Trends Worksheet

Directions: Use your notes to answer the following questions.

1. Rank the following elements by increasing atomic radius: carbon, aluminum, oxygen, potassium.
2. Rank the following elements by increasing electronegativity: sulfur, oxygen, neon, aluminum.
3. Why does fluorine have a higher ionization energy than iodine?
4. Why do elements in the same family generally have similar properties?
5. Indicate whether the following properties increase or decrease from left to right across the periodic table.
a. atomic radius (excluding noble gases)
b. first ionization energy
c. electronegativity
6. What trend in atomic radius occurs down a group on the periodic table? What causes this trend?
7. What trend in ionization energy occurs across a period on the periodic table? What causes this trend?
8. Circle the atom in each pair that has the largest atomic radius.
a. Al or B
c. Na or Al
e. S or O
b. O or F
d. Br or Cl
f. Mg or Ca
9. Circle the atom in each pair that has the greater ionization energy.
a. Li or Be
c. Ca or Ba
e. Na or K
b. P or Ar
d. Cl or Si
f. Li or K
10. Define electronegativity.
11. Circle the atom in each pair that has the greater electronegativity.
a. Ca or Ga
c. Br or As
e. Li or O
b. Ba or Sr
d. Cl or S
c. O or S

Part V: Chemical Bonding

Section 1: Ionic Bonding

lonic bonds involve a transfer of electrons from one atom (or atomic group) to another. Cations are positive ions resulting from the loss of electrons. Anions are negative ions resulting from the gain of electrons. Atoms generally lose or gain electrons to achieve a "stable octet" or set of 8 electrons in the valence shell (although there are exceptions!)

Metals tend to have low electronegativity and ionization energy and tend to form cations.
Nonmetals tend to have high electronegativity and tend to form anions.
Things to know - study the charts available on the course website!

1. Placement of metals and nonmetals on Periodic Table.
2. The charges/oxidation states taken by elements in different groups of Periodic Table.
3. Charges of common metals that take multiple charges (multivalent metals).
4. Common Polyatomic lons (memorize the chart - both names and formulas with charges!).

Section 2: Covalent Bonding

Covalent bonds involve a sharing of electrons between atoms. Usually both elements in a covalent bond are nonmetals.

Equal sharing of electrons produces a nonpolar covalent bond and occurs when the bonding atoms have equal or very similar electronegativity. Unequal sharing of electrons occurs when atoms have significantly different electronegativities and results in a polar covalent bond in which one atom has a partial negative charge and the other a partial positive charge.

Things to know:

1. Be able to determine whether a bond is ionic, polar covalent or nonpolar covalent based on the elements bonding and electronegativity chart.
2. Draw a basic Lewis Dot structure showing the placement of all electrons.

Bonding occurs on a spectrum based on the difference in electronegativity between the two atoms involved in the bond. Memorize the rules below and have a general sense of the electronegativities of common elements (\& how the trend runs along the periodic table)!

Difference in electronegativity

0.5		1.0	2.0
Nonpolar Covalent	Moderately Polar Covalent	Very Polar-covalent bond	Ionic bond

Rules of thumb:

$\Delta \mathrm{EN}>2.0 \rightarrow$ Bond is ionic
$\Delta \mathrm{EN}<0.5 \rightarrow$ Bond is nonpolar covalent
$0.5 \leq \Delta \mathrm{EN} \leq 1.6 \rightarrow$ Bond is polar covalent
$1.6<\Delta \mathrm{EN} \leq 2.0 \rightarrow$ Bond is polar covalent IF it involves two nonmetals, otherwise ionic.

Problems!

Bonding between	More electronegative element and value	Less electronegative element and value	Difference in electronegativity	Bond Type
Sulfur \& Hydrogen				
Sulfur and cesium				
Chlorine and bromine				
Calcium and chlorine				
Oxygen and hydrogen				
 hydrogen				
Iodine and iodine				
Copper and Sulfur				
 Fluorine				
Carbon and Oxygen				

Part VI: Nomenclature of Binary Compounds

> ** Before you start naming compounds or writing formulas from names be sure to review which elements are metals, transition metals \& nonmetals and the charges they take as well as common polyatomic ions with their charges (makes this much easier!)

Part 1: Determine if the compound is ionic or covalent to decide which set of naming rules to apply:
A. Ionic compound:
i. Compound contains a polyatomic ion
ii. Compound contains a metal and a nonmetal
B. Covalent compound:
i. Compound contains only nonmetal elements

Part 2: Ionic Compound Nomenclature

A. Name the cation

i. Univalent metal cations = same name as the element
a. $\mathrm{Na}^{+}=$sodium, $\mathrm{Ba}^{2+}=$ barium, $\mathrm{Al}^{3+}=$ aluminium etc.
b. These are usually Group 1,2 and 13 elements
ii. Multivalent metal cations = same name as element + charge denoted by Roman Numeral in parenthesis
a. $\mathrm{Fe}^{2+}=\operatorname{Iron}(\mathrm{II}), \mathrm{Fe}^{3+}=\operatorname{Iron}(\mathrm{III})$
b. Multivalent metal cation are usually in the transition metal block (Iron, Copper, Nickel, Chromium etc.)
c. Silver is always $1+\left(\mathrm{Ag}^{+}\right)$so it has no Roman Numeral
d. Zinc is always $2+\left(\mathrm{Zn}^{2+}\right)$ so it has no Roman Numeral
e. An easy way to remember charges for Al, Zn and Ag is noting that they form a diagonal step down starting with Al going down to the left (3+, 2+ and 1+)
f. Pb and Sn are two metals not in the transition block that can take either the charge 2+ or $4+$. As such, Pb and Sn always have a Roman Numeral when being named in a compound.
iii. If the cation is a polyatomic ion - it takes the same name as the ion. I.e.
$\mathrm{NH}_{4}{ }^{+}$is ammonium.

B. Name the anion

i. Anion that is based on a nonmetal element:
a. Use the root of the elemental name
b. Change the suffix to -ide
c. $\mathrm{Cl}^{-}=$chloride, $\mathrm{O}^{2-}=$ oxide, $\mathrm{P}^{3-}=$ phosphide, $\mathrm{N}^{3-}=$ nitride etc.
ii. Anion that is a polyatomic ion:
a. Use the name of the polyatomic ion
b. $\mathrm{SO}_{4}{ }^{2-}=$ sulfate, $\mathrm{PO}_{3}{ }^{3-}=$ phosphite, $\mathrm{CrO}_{4}{ }^{2-}=$ chromate etc.
C. Examples:
$\mathrm{MgCl}_{2}=$ magnesium chlorid
$\mathrm{FeCl}_{3}=$ iron (III) chloride
$\mathrm{NH}_{4} \mathrm{Cl}=$ ammonium chloride
$\mathrm{Sn}_{3}\left(\mathrm{PO}_{4}\right)_{2}=$ Tin (II) phosphate
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=$ ammonium sulfate

Part 3: Covalent Compound Nomenclature

A. Name the first element - use Greek Prefixes (except mono)

i. Select the appropriate Greek prefix using subscript of the element
a. $M o n o=o n e$
b. $\mathrm{Di}=\mathrm{two}$
c. Tri $=$ three
d. Tetra = four
e. Penta = five
f. Hexa = six
g. Hepta = seven
h. Octa $=$ eight
i. \quad Nona = nine
j. Deca = ten
ii. Name the first element using the prefix and the element name:
a. Do not use the prefix mono- for the first element. If there is only one atom of the first element in the compound "mono" is implied
B. Name the second element
i. Select the appropriate Greek prefix using the subscript of the element
ii. Use the root of the element name for the second element
iii. Convert the suffix of the elemental name to -ide.

C. Examples:

$\mathrm{H}_{2} \mathrm{O}=$ dihydrogen monoxide (the o from mono- gets dropped in monoxide)
$\mathrm{CO}_{2}=$ carbon dioxide
$\mathrm{CO}=$ carbon monoxide
$\mathrm{PCl}_{5}=$ phosphorus pentachloride
$\mathrm{S}_{2} \mathrm{O}_{3}=$ disulfur trioxide

Names to Formulas of Chemical Compounds

Metals or Polyatomic lons Involved?

Yes

Example - iron (III) sulfate

1. Use the name to determine the two ions in the compound $\rightarrow \mathrm{Fe}$ and $\mathrm{SO}_{4}{ }^{2-}$
2. Write the cation first (remember Roman Numeral = charge on metal cation). Then write the anion. Include charges (for now) $\rightarrow \mathrm{Fe}^{3+} \mathrm{SO}_{4}{ }^{2-}$
3. Balance the charges on the two ions to obtain a neutral formula unit. The easy way is to "criss-cross" so that the charge on the cation becomes the subscript of the anion. The charge of the anion becomes the subscript on the cation. Use the lowest whole number ratio of subscripts! $\rightarrow \mathrm{Fe}^{3+\mathrm{SO}_{4}{ }_{4}^{2-} 3}$
4. If the subscript of a polyatomic ion is greater than 1 , put the whole polyatomic ion symbol in parentheses and the subscript outside the parenthesis. \rightarrow $\mathrm{Fe}^{3+}{ }_{2}\left(\mathrm{SO}_{4}{ }^{2-}\right)_{3}$
5. Erase any ion charges in the formula $\rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Examples: Cation + Monoatomic Anion

sodium fluoride $=\mathrm{NaF}$, calcium bromide $=\mathrm{CaBr}_{2}$, ammonium chloride $=\mathrm{AlCl}_{3}$, iron (II) oxide $=\mathrm{FeO}$, iron (III) oxide $=\mathrm{Fe}_{2} \mathrm{O}_{3}$ Examples: Cation + Polyatomic Anion Copper (ii) phosphate $=\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$, ammonium carbonate $=\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

Covalent

1. $1^{\text {st }}$ Greek prefix denotes subscript of first element
2. Write element symbol and subscript
\square
3. $2^{\text {nd }}$ Greek prefix denotes subscript of second element 4. Write symbol and subscript for second element

Examples:

carbon monoxide $=\mathrm{CO}$ dinitrogen tetraoxide $=\mathrm{N}_{2} \mathrm{O}_{4}$ sulfur hexafluoride $=\mathrm{SF}_{6}$ dihydrogen monoxide $=\mathrm{H}_{2} \mathrm{O}$ dihydrogen dioxide $=\mathrm{H}_{2} \mathrm{O}_{2}$ carbon tetrahydride $=\mathrm{CH}_{4}$

Part VI: Problems - More Naming Practice!
vanadium (V) phosphate \qquad
sodium permanganate \qquad
MnF_{2} \qquad
$\mathrm{Ni}\left(\mathrm{SO}_{3}\right)_{2}$ \qquad
phosphorus triiodide \qquad
$\mathrm{H}_{3} \mathrm{PO}_{4}$ \qquad
HI \qquad
$\mathrm{Pb}_{3} \mathrm{~N}_{4}$ \qquad
$\mathrm{Sn}(\mathrm{OH})_{2}$ \qquad
SiCl_{4} \qquad
HClO_{2} \qquad
Sodium sulfate \qquad
Hydrosulfuric acid \qquad
Nitrogen trifluoride \qquad
\qquad
Calcium phosphide \qquad
$\mathrm{B}_{2} \mathrm{Si}$ \qquad
PCl_{5} \qquad
Perbromic acid \qquad
Manganese (IV) carbonate \qquad
$\mathrm{C}_{2} \mathrm{H}_{4}$ \qquad
Carbon disulfide \qquad Iron (III) nitrate \qquad
Copper (II) phosphite \qquad
Sulfur hexachloride \qquad

Write the Name or the Chemical Formula

Antimony tribromide \qquad
Lithium oxide \qquad
Tin (II) hydroxide \qquad
$\mathrm{B}_{2} \mathrm{Si}$ \qquad
Iron (III) phosphide \qquad
Hydrogen iodide \qquad
$\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ \qquad
Dinitrogen trioxide \qquad
Sodium hydroxide \qquad
$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ \qquad
$\mathrm{Si}_{2} \mathrm{Br}_{6}$ \qquad
Phosphorus triiodide \qquad

Aluminum sulfide \qquad
$\mathrm{P}_{4} \mathrm{~S}_{5}$ \qquad
chlorine dioxide \qquad
NF_{3} \qquad
Cobalt (III) carbonate \qquad
SeF_{6} \qquad
$\mathrm{Be}\left(\mathrm{NO}_{3}\right)_{2}$ \qquad
$\mathrm{Na}_{2}\left(\mathrm{SO}_{3}\right)_{3}$ \qquad
lodine pentafluoride \qquad
Hexaboron silicide \qquad
$\mathrm{Cu}\left(\mathrm{HCO}_{3}\right)_{2}$ \qquad
CH_{4} \qquad

Writing Chemical Formulas Practice I

Fill in the symbols and charges of the ions and then write the correct chemical formulas and the chemical names in the corresponding blocks. The first one is done for you.

| IONS | Sodium
 $\mathbf{N a}^{+}$ | Calcium | Aluminum | Ammonium | Hydrogen |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chloride
 $\mathbf{C l}^{-}$ | NaCl
 Sodium chloride | | | | |
| Acetate | | | | | |
| Oxide | | | | | |
| Sulfite | | | | | |
| Phosphate | | | | | |
| Iodide | | | | | |

Part VII: Mole Conversions Notes \& Practice Worksheet

There are three mole equalities. They are:
$1 \mathrm{~mol}=6.02 \times 10^{23}$ particles
$1 \mathrm{~mol}=$ molar mass in grams (periodic table)
$1 \mathrm{~mol}=22.4 \mathrm{~L}$ for a gas at STP
Each equality can be written as a set of two conversion factors. They are:
$\left(\frac{1 \text { mole }}{6.02 \times 10^{23} \text { particles }}\right)$ or $\left(\frac{6.02 \times 10^{23} \text { particles }}{1 \text { mole }}\right)$
$\left(\frac{1 \text { mole }}{\text { molar mass in grams }}\right)$ or $\left(\frac{\text { molar mass in grams }}{1 \text { mole }}\right)$
$\left(\frac{22.4 \mathrm{~L}}{1 \text { mole }}\right)$ or $\left(\frac{1 \text { mole }}{\mathbf{2 2 . 4 L}}\right)$ at Standard Temperature and Pressure $\left(0^{\circ} \mathrm{C}\right.$ and 1 atm$)$

Example Problems:

1. How many moles of magnesium is 3.01×10^{22} atoms of magnesium?

$$
3.01 \times 10^{22} \text { atoms }\left(\frac{1 \text { mole }}{6.02 \times 10^{23} \text { atoms }}\right)=5 \times 10^{-2} \text { moles }
$$

2. How many molecules are there in 4.00 moles of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?

$$
4.0 \text { oles }\left(\frac{6.02 \times 10^{23} \text { molecules }}{1 \text { mole }}\right)=2.41 \times 10^{24} \text { molecules }
$$

3. How many moles in 28 grams of CO_{2} ?

$$
\text { Molar mass of } \mathrm{CO}_{2} \quad \begin{array}{r}
1 \mathrm{C}= \\
\\
\\
\\
2 \mathrm{O}=2 \times 12.01 \mathrm{~g}=12.01 \mathrm{~g} \\
4.00 \mathrm{~g}=\frac{32.00 \mathrm{~g}}{44.00 \mathrm{~g} / \mathrm{mol}}
\end{array}
$$

$28 \mathrm{~g} \mathrm{CO}_{2}\left(\frac{\mathbf{1} \text { mole }}{44.00 \mathrm{~g}}\right)=0.64$ moles CO_{2}
4. What is the mass of 5 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?

$$
\begin{aligned}
& \text { Molar mass } \mathrm{Fe}_{2} \mathrm{O}_{3} \quad 2 \mathrm{Fe}=2 \times 55.6 \mathrm{~g}=111.2 \mathrm{~g} \\
& \\
& 3 \mathrm{O}=3 \times 16.0 \mathrm{~g}=48.0 \mathrm{~g}
\end{aligned}
$$

$$
5.2 \mathrm{~g} / \mathrm{mol}
$$

5 moles $\mathrm{Fe}_{2} \mathrm{O}_{3}\left(\frac{159.2 \mathrm{~g}}{1 \text { mole }}\right)=800$ grams $\mathrm{Fe}_{2} \mathrm{O}$
5. Determine the volume, in liters, occupied by 0.030 moles of a gas at STP.

$$
0.030 \mathrm{~mol}\left(\frac{\mathbf{2 2 . 4} \mathrm{~L}}{\mathbf{1} \text { mole }}\right)=0.67 \mathrm{~L}
$$

6. How many moles of argon atoms are present in 11.2 L of argon gas at STP?

$$
11.2 \mathrm{~L}\left(\frac{1 \text { mole }}{22.4 L}\right)=0.500 \text { moles }
$$

Mixed Mole Conversion Examples: \quad Given unit \rightarrow Moles \rightarrow Desired unit
7. How many oxygen molecules are in 3.36 L of oxygen gas at STP?

$$
\text { 3.36 } \mathrm{L}\left(\frac{\mathbf{1} \text { mole }}{\mathbf{2 2 . 4} L}\right)\left(\frac{\mathbf{6 . 0 2 \times 1 0 ^ { 2 3 } \text { molecules }}}{\mathbf{1} \text { mole }}\right)=9.03 \times 10^{22} \text { molecules }
$$

8. Find the mass in grams of 2.00×10^{23} molecules of F_{2}

$$
\text { Molar mass } 2 \mathrm{~F}=2 \times 19 \mathrm{~g}=38 \mathrm{~g} / \mathrm{mol}
$$

$$
2.00 \times 10^{23} \text { molecules }\left(\frac{1 \text { mole }}{6.02 \times 10^{23} \text { particles }}\right)\left(\frac{38 \mathrm{~g}}{1 \text { mole }}\right)=12.6 \mathrm{~g}
$$

Problems I: Mole Conversions Practice - Show Work

1. How many moles are 1.20×10^{25} atoms of phosphorous?
2. How many atoms are in 0.750 moles of zinc?
3. How many molecules are in 0.400 moles of $\mathrm{N}_{2} \mathrm{O}_{5}$?
4. Find the number of moles of argon in 452 g of argon.
5. Find the grams in $1.26 \times 10^{-4} \mathrm{~mol}$ of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.
6. Find the mass in 2.6 mol of lithium bromide.
7. What is the volume of 0.05 mol of neon gas at STP?
8. What is the volume of 1.2 moles of water vapor at STP?
9. Determine the volume in liters occupied by 14 g of nitrogen gas at STP.
10. Find the mass, in grams, of 1.00×10^{23} molecules of N_{2}.
11. How many particles are there in 1.43 g of a molecular compound with a gram molecular mass of 233 g ?
12. Aspartame is an artificial sweetener that is 160 times sweeter than sucrose (table sugar) when dissolved in water. It is marketed by G.D. Searle as Nutra Sweet. The molecular formula of aspartame is $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$.
a) Calculate the gram molar mass of aspartame.
b) How many moles of molecules are in 10 g of aspartame?
c) What is the mass in grams of 1.56 moles of aspartame?
d) How many molecules are in 5 mg of aspartame?
e) How many atoms of nitrogen are in 1.2 grams of aspartame?

Chemical Reactions Review Sheet

Types of Chemical Reactions:

Combination or Synthesis
Decomposition
Single Replacement
Double Replacement

$$
A+B \rightarrow A B
$$

$A B \rightarrow A+B$
$A+B C \rightarrow B+A C$
$A B+C D \rightarrow A D+C B$

Can be a) acid-base if the reactants are acid \& base and products are salt \& water.
b) can be precipitation if a solid product forms

Hydrocarbon Combustion
$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{y} \mathrm{O}_{z}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Oxidation-Reduction - Involve a transfer of electrons. Occurs during combustion, single replacement and can occur during synthesis and decomposition.

Problems:

1. A reaction occurs when aqueous lead (II) nitrate is mixed with an aqueous solution of potassium hydroxide. Write an overall, balanced equation for the reaction, including state designations.
2. For the following three reactions, label the type, predict the products (make sure formulas are correct), and balance the equation.
\qquad a.
$\mathrm{C}_{3} \mathrm{H}_{4}(\mathrm{~g})+\quad \mathrm{O}_{2}(\mathrm{~g}) \rightarrow$
\qquad b. \qquad $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+$ \qquad $\mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow$
\qquad c. \qquad $\mathrm{Al}(\mathrm{s})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow$
\qquad d. \qquad $\mathrm{HBr}(\mathrm{aq})+$ $\mathrm{KOH}(\mathrm{aq}) \rightarrow$
\qquad e. \qquad $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \quad+$ \qquad $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow$
3. In the following equations, label the oxidized element and the reduced element.
a. $2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaCl}(\mathrm{s})$
b. $2 \mathrm{NaBr}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaCl}(\mathrm{s})+\mathrm{Br}_{2}(\mathrm{l})$

Table 11.2
Activity Series of Metals

	Name	Symbol
	Lithium	Li
	Potassium	K
	Calcium	Ca
	Sodium	Na
	Magnesium	Mg
	Aluminum	Al
	Zinc	Zn
	Iron	Fe
	Lead	Pb
	(Hydrogen)	(H)*
	Copper	Cu
	Mercury	Hg
	Silver	Ag

*Metals from li ta Na will replace H from acids and water; from Mg to Pb they will replace H from acids only.

Table 11.3

Solubility Rules for lonic Compounds

Compounds	Solubility	Exceptions
Salts of alkali metals and ammonia	Soluble	Some lithium compounds
Nitrate salts and chlorate salts	Soluble	Few exceptions
Sulfate salts	Soluble	Compounds of $\mathrm{Pb}, \mathrm{Ag}, \mathrm{Hg}$, Ba, Sr, and Ca
Chloride salts	Soluble	Compounds of Ag and some compounds of Hg and Pb
Carbonates, phosphates, chromates, sulfides, and hydroxides	Most are insoluble	Compounds of the alkali metals and of ammonia

Reaction Quest Review

1. What are 4 signs that a reaction is taking place? Think back to the lab:
2. What is does it mean when a substance is reduced? When it is oxidized? How is a single replacement reaction an oxidation-reduction reaction?
3. What are the 5 main types of chemical reactions? What type of reaction is an acid-base neutralization?
4. What does (s), (g), (I) and (aq) mean when placed near a chemical formula in an equation?
A) WRITE THE FORMULA FOR EACH MATERIAL CORRECTLY.
B) BALANCE THE EQUATION. SOME REACTIONS REQUIRE COMPLETION.
C) FOR EACH REACTION TELL WHAT TYPE OF REACTION IT IS.
D) For double and single replacement reactions - write the net ionic equations.
5. sulfur trioxide and water combine to make sulfuric acid.
6. lead II nitrate and sodium iodide react to make lead iodide and sodium nitrate.
7. calcium fluoride and sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ make calcium sulfate and hydrofluoric acid
8. calcium carbonate decomposes when you heat it to leave calcium oxide and carbon dioxide.
9. ammonia gas when it is pressurized into water will make ammonium hydroxide.
10. sodium hydroxide neutralizes carbonic acid
11. zinc sulfide and oxygen become zinc oxide and sulfur.
12. lithium oxide and water make lithium hydroxide
13. aluminum hydroxide and sulfuric acid neutralize to make water and aluminum sulfate.
14. sulfur burns in oxygen to make sulfur dioxide.
15. barium hydroxide and sulfuric acid make water and barium sulfate.
16. aluminum sulfate and calcium hydroxide become aluminum hydroxide and calcium sulfate.
17. copper metal and silver nitrate react to form silver metal and copper II nitrate.
18. propane burns (with oxygen)
19. zinc and copper II sulfate yield zinc sulfate and copper metal
20. sulfuric acid reacts with zinc
21. calcium oxide and aluminum make aluminum oxide and calcium
\qquad
\qquad

Net Ionic Equation Worksheet

READ THIS: When two solutions of ionic compounds are mixed, a solid may form. This type of reaction is called a precipitation reaction, and the solid produced in the reaction is known as the precipitate. You can predict whether a precipitate will form using a list of solubility rules such as those found in the table below. When a combination of ions is described as insoluble, a precipitate forms. There are three types of equations that are commonly written to describe a precipitation reaction. The molecular equation shows each of the substances in the reaction as compounds with physical states written next to the chemical formulas. The complete ionic equation shows each of the aqueous compounds as separate ions. Insoluble substances are not separated and these have the symbol (s) written next to them. Water is also not separated and it has a (l) written next to it. Notice that there are ions that are present on both sides of the reaction arrow \rightarrow that is, they do not react. These ions are known as spectator ions and they are eliminated from complete ionic equation by crossing them out. The remaining equation is known as the net ionic equation.

For example: The reaction of potassium chloride and lead II nitrate
Molecular Equation: $2 \mathrm{KCl}(a q)+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)->2 \mathrm{KNO}_{3}(a q)+\mathrm{PbCl}_{2}(s)$
Complete Ionic Equation: $2 \mathrm{~K}^{\dagger}(a q)+2 \mathrm{Cl}^{-}(a q)+\mathrm{Pb}^{2+}(a q)+2 \mathrm{NO}^{3-}(a q)->2 \mathrm{~K}^{+}(a q)+2 \mathrm{NO}^{-}(a q)+\mathrm{PbCl}_{2}(s)$
Net Ionic Equation: $2 \mathrm{Cl}^{-}(a q)+\mathrm{Pb}^{2+}(a q)->\mathrm{PbCl}_{2}(s)$
Directions: Write balanced molecular, ionic, and net ionic equations for each of the following reactions. Assume all reactions occur in aqueous solution. Include states of matter in your balanced equation.

1. Sodium chloride and lead II nitrate

Molecular Equation:

Net Ionic Equation:

2. Sodium carbonate and Iron II chloride

Molecular Equation:

Net Ionic Equation:

3. Ammonium phosphate and zinc nitrate

Molecular Equation:

Net Ionic Equation:

4. Iron III chloride and magnesium metal

Molecular Equation:

Net Ionic Equation:

5. Silver nitrate and magnesium iodide

Molecular Equation:

Net Ionic Equation:

6. Aluminum and copper (II) perchlorate

Molecular Equation:

Net Ionic Equation:

7. Sodium and water

Molecular Equation:

Net Ionic Equation:

8. Zinc and hydrochloric acid

Molecular Equation:

Net Ionic Equation:

Steps to Find Empirical \& Molecular Formulas

Remember this:
"Percent to mass, Mass to mole,
Divide by small, Make it whole"

1. Determine the mass in grams of each element present in the sample. "Percent to mass" If the information in the problem is in terms of percent composition of each element \rightarrow
a) assume you have 100 g of the sample to start with
b) The grams of each element (out of the 100 g sample) will just be the numerical value of its percent composition.

EXAMPLE: You have a sample that is 40.0% carbon, 6.73% hydrogen and the rest oxygen. Find the empirical and molecular formulas.

Step 1: $40.0 \%+6.73 \%=46.73 \%$. The percentage of oxygen is $100 \%-46.73 \%=53.27 \%$
If I have 100 g of sample to start with, I have:
40.0 grams Carbon, 6.73 grams Hydrogen and 53.27 grams Oxygen
2. Calculate the number of moles of each element. "Mass to mole"

Step 2: \quad Moles of Carbon $=40.0 \mathrm{~g} \mathrm{C} \mathrm{x} 1 \mathrm{~mol} \mathrm{C} / 12.01 \mathrm{~g} \mathrm{C}=3.331 \mathrm{~mol} \mathrm{C}$
Moles Hydrogen $=6.73 \mathrm{~g} \mathrm{Hx} 1 \mathrm{~mol} \mathrm{H} / 1.01 \mathrm{~g}=6.663 \mathrm{~mol} \mathrm{H}$
Mole Oxygen $=53.27 \mathrm{~g} \mathrm{Ox} 1 \mathrm{~mol} \mathrm{O} / 16.0 \mathrm{~g}=3.33 \mathrm{~mol} \mathrm{O}$
DO NOT ROUND THESE NUMBERS \rightarrow KEEP SEVERAL DECIMAL PLACES
3. Divide each by the smallest number of moles to obtain the simplest whole number ratio.

"Divide by small"

Step 3: The molar ratio of the elements in my compound is $\mathrm{C}_{3.331} \mathrm{H}_{6.663} \mathrm{O}_{3.33}$. I want a whole number ratio, so I will divide all the subscripts by the smallest number of moles (3.331) to get:

$$
\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{O}_{1} \rightarrow \text { so my empirical formula is } \mathrm{CH}_{2} \mathrm{O}
$$

If your number after dividing are values like 2.07 , 1.1 etc. then round to the nearest whole number. If they are values like $3.5,2.333$ etc., then go to step 4 .
4. If whole numbers are not obtained* in step 3), multiply through by the smallest integer that will give all whole numbers

"Make it whole"

Let's say that my empirical formula turned out to be $\mathrm{C}_{2.333} \mathrm{H}_{4} \mathrm{O}_{2} .2 .333$ is not close enough to 2 to round down to 2 . But I can multiply my formula through by 3 to get this:

$$
\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{6}
$$

5. Finding molecular formula: If the molar mass of your empirical formula matches the molar mass of the final compound (as stated in the problem) \rightarrow Hooray! You are done: your empirical formula IS your molecular formula.

Step 5: For my example in step 1, it says that the molecular weight (molar mass) of my compound is $180.18 \mathrm{~g} / \mathrm{mol}$

My empirical formula is $\mathrm{CH}_{2} \mathrm{O}$ from step 3 has a molar mass of $(12.01+2 \times 1.01+16)$ $\mathrm{g} / \mathrm{mol}=30.03 \mathrm{~g} / \mathrm{mol}$. So my empirical formula is not my molecular formula.

Now, divide molar mass of compound/molar mass of empirical formula:

$$
180.18 \mathrm{~g} / \mathrm{mol} \div 30.03 \mathrm{~g} / \mathrm{mol}=6
$$

The molar mass of my compound is 6 times the molar mass of my empirical formula.
Multiply the empirical formula subscripts by 6 to get the final molecular formula:
$6\left(\mathrm{CH}_{2} \mathrm{O}\right)=\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{1 2}} \mathbf{O}_{\mathbf{6}} \rightarrow$ The compound in my sample is glucose!

Steps to Solving Limiting Reagent Problems

Suppose 13.7 g of $\mathrm{C}_{2} \mathrm{H}_{2}$ reacts with $18.5 \mathrm{~g} \mathrm{O}_{2}$ according to the reaction below. What is the mass of CO_{2} produced? What is the limiting reagent?

$$
2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

1. Find the mass of product yielded by the given amount of the first reactant. You can use either product $\left(\mathrm{CO}_{2}\right.$ or $\left.\mathrm{H}_{2} \mathrm{O}\right)$, but since the question asks about CO_{2}, it will be easier to use this product:

2. Find the mass of the same product (in this case CO_{2}) yielded by the given amount of the second reactant.

$18.5 \mathrm{~g} \mathrm{O}_{2}$	$1 \mathrm{~mole} \mathrm{O}_{2}$	4 mole CO$_{2}$	$44.02 \mathrm{~g} \mathrm{CO}_{2}=$		
	$32.00 \mathrm{~g} \mathrm{O}_{2}$	$5 \mathrm{~mole} \mathrm{O}_{2}$	$1 \mathrm{~mole} \mathrm{CO}_{2}$	\quad	$20.4 \mathrm{~g} \mathrm{CO}_{2}$
:---					

3. Since the 18.5 grams of O_{2} produces less $\boldsymbol{C O}_{2}$, it is the limiting reagent in this problem. This amount of O_{2} gets used up first and "limits" how much CO_{2} can be produced. The amount of CO_{2} that can be produced is 20.4 grams (which you already calculated!)
4. You can repeat steps 1 and 2 for any number of reactants that you have a given mass for. The limiting reagent will ALWAYS be the reactant that produces the least amount of product (because it gets used up first).
5. Finding the amount of excess reagent: The excess reagent is the one that is NOT the limiting reagent. There will be some of this reagent leftover after the limiting reagent is completely used up.

Figure out how much of the excess reagent must react completely with the given amount of the limiting reagent. Then subtract this amount from the given amount of the excess reagent.

$18.5 \mathrm{~g} \mathrm{O}_{2}$	1 mole O$_{2}$	2 mole C $_{2} \mathrm{H}_{2}$	$26.02 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{2}$
	$32.00 \mathrm{~g} \mathrm{O}_{2}$	5 mole O$_{2}$	$1 \mathrm{~mole} \mathrm{C}_{2} \mathrm{H}_{2}$

1. a) Nicotine is a stimulant and an addictive chemical found in tobacco. An analysis of nicotine produces the following percent composition: 74.03\% carbon, 17.27% nitrogen, and 8.70\% hydrogen. What is the empirical formula of nicotine?
b) Further tests show that the molar mass of nicotine is $162.23 \mathrm{~g} / \mathrm{mol}$. Given this information, what is the molecular formula of nicotine?
2. An ionic sample with a mass of 0.5000 g is determined to contain the elements indium and chlorine. If the sample has 0.2404 g of chlorine, what is the empirical formula of this ionic compound?
3. A 16.4 g sample of hydrated calcium sulfate is heated until all the water is driven off. The calcium sulfate that remains has a mass of 13.0 g . Find the formula and the chemical name of the hydrate.
4. $\quad \mathrm{C}_{3} \mathrm{H}_{8}+\ldots$
a. What type of reaction is written above? \qquad
b. Predict the products of the reaction and balance it.
c. If I start with 5.00 grams of $\mathrm{C}_{3} \mathrm{H}_{8}$ and 5.00 grams of O_{2}, what is the limiting reagent? What is my theoretical yield of the carbon containing product?
d. I get a percent yield of 75%. How many grams of the carbon containing product did I make?
5. Magnesium undergoes a single replacement reaction with hydrochloric acid.
a) Write the Balanced Equation:
b) Which element is oxidized? \qquad Which element is reduced? \qquad
c) How many grams of hydrogen gas can be produced from the reaction of 3.00 g of magnesium with 4.00 g of hydrochloric acid?
d) Identify the limiting and excess reactants. How many grams of the excess reagent are leftover?
e) If the hydrogen gas is produced at $48^{\circ} \mathrm{C}$ and 2.5 atm of pressure, what is the volume produced in liters?
6. Sulfur reacts with oxygen to produce sulfur trioxide gas.
a) Write the Balanced Equation:
b) If 6.3 g of sulfur reacts with 10.0 g of oxygen, what is the theoretical yield of sulfur trioxide gas in grams?
c) What is the limiting reagent? How many grams of the excess reagent is leftover?
d) The sulfur trioxide gas produced had a volume of 5.4 L and was produced at $98^{\circ} \mathrm{C}$. What is the pressure of the gas in kPa ?

Part IX: Gas Laws, Molarity, pH and Putting it all Together

1. The following questions pertain to the reaction below:
\qquad $\mathrm{HBr}+$ \qquad $\mathrm{Ca} \rightarrow$
a. What type of reaction is shown above? \qquad
b. Predict products and then balance the reaction.
c. Name the ionic product of the reaction. \qquad
d. Which element is oxidized? \qquad Which element is reduced? \qquad
e. 1.7 grams of Ca are mixed with 850.6 mL of 0.043 M HBr . What is the maximum theoretical yield of the gaseous product in grams?
f. How many grams of the excess reagent are leftover?
g. What is the pH of the HBr solution?
h. What is the OH^{-}concentration of the HBr solution?
i. If the gas is produced at $89^{\circ} \mathrm{C}$ and 1.7 atm of pressure, what is the volume of gaseous product in mL ?
j. The pressure of the gas is changed to 250 mmHg and the volume is changed to 1.54 L . What is the temperature of the gas now?

Question 2: The following questions pertain to the reaction below

$ـ_{3} \mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})}+\ldots \quad \mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})} \rightarrow$
a) What type of reaction is shown above? \qquad (HINT:
It could be two of the types we learned about because one product is insoluble which one? \qquad).
b) Predict the products and balance the reaction.
c) Write the net ionic reaction for the reaction above.
d) Name the reactants and products. Identify acid, base, conjugate acid and conjugate base.
e) If I have 7.62 grams of $\mathrm{Ca}(\mathrm{OH})_{2}$, what volume of $0.050 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ would be required to react with it completely?
f) In the reaction, only 6.89 grams of the solid product were produced. What is the percent yield of the reaction?
g) How many grams of the $\mathrm{Ca}(\mathrm{OH})_{2}$ remained unreacted?

Question 3:

It takes combustion of 58.8 mL of liquid propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$, which has a density of $0.493 \mathrm{~g} / \mathrm{cm}^{3}$, to cook my hamburger. If air is 21.0% by volume O_{2}, how many liters of air at $27.0^{\circ} \mathrm{C}$ and 105.0 kPa will it take to cook my burger? (NOTE: this is not happening at STP!)
a) Write and balance the combustion reaction for propane
b) Calculate the grams of propane used to cook the burger
c) Calculate the moles of oxygen used to cook the burger
d) Calculate the volume of O_{2} used to cook the burger
e) Calculate the volume of air used to cook the burger

