Debugging Clarion
Programs

Presented by
Russell B. Eggen

RADFusion, Inc.

Page: 1

Aussie DevCon 2006 Debugging

Page: 2

CHAPTER 1 - DEBUGGING.......cocoiiiiiiii b 5

WVHY DEBUG?.... ittt ettt e e e ettt e e e e e et e et e e e s se s bbb et e s eeseessab b e e e eeessesasbba e e e eessesasbbeseeaeseessbbabeeesssssasbeaneasessas 5
[0 N O] = = UL 1S TR 5
COMPUTERS NEVER LIE, BUT THEY ARE OFTEN WRONG......cccuttiiiiiiiiiiiiiieiie e e e siiitrees s e s s ssssassesssssssssssssssesesssssnnes 5
WHAT ISA GOOD DEBUGGER?....cciiiiiiitittiiiie s i ieiitbetis e st sesiaabastsesssasabbasssasssesabbaseeaassssasbbaseeasssssasbbaseeesesssassbrsnessessas 6
CHAPTER 2 - THE CLARION DEBUGGER....... oottt sttt stte et e e sttt n e s eaa e e s st n e s sbae e e snranas 7
INTRODUGCTION ...uutteeiieesieiiutreeeeesssesissbsstessssssasssseessssssasssssesssesssassssesssesssasssssesssessssssssssssssssssasssssesssssssnsssssesessssn 7
THREADINGoiiittttiiee et e ieittbe et e e s s s e sababeeeseessaabba b e e eeesssaaasbeeseeessasssbeesseessasasbe e e eeessassasbeeeeeeseassnbbaeeeeeseessnbbanesesseesnnses 7
LAUNCHING THE DEBUGGERutttiieiiiiiiititteeeeeeeieiisreeeeesssasassesesssseasisssssesssssssasssssssssssssnssssssessesssnsssssssseesssnssssssnees 7
SETTING UP Y OUR PROJECTuteeeiitteee ettt e e eteee s e ette e e eeaeessesaesesssssesesassesssassssesaassesesasseessassesessasbeessansenssssenessassenenn 7
[T o W To o T=T o] o] [=To1 A o] o1 o] 1 -SSR 7
Iyt = Tl B 1= =16 L] 1 TSR 8
BIrEAK POINES. ... eeiieiitiie ettt ettt ettt e e ettt e e sttt ee s sttt e e saabeesesabeeesssbeeesaaeeeeesaseeee et besesabaaeeesabeeesaarbenenaaes 10
oL oI (=] o] o[oo OSSP RURURUP 10
THE DATA WINDOWS ... iitttetiie e i e sttt e e s s e e sibbateea e s s s s bbbbeeesesssasbbabeeesesssasssb b e e seaessassabbeeeeasssssasbbabseassessanbbabeeaseasan 12
I AL (] o T YAV T o [T AR 12
Stack Trace (LOCAI) WINGOW........ociiieieieie ettt st sttt te e st e et st estesneene e e et s 13

A\ SIMPLE DEBUG SESSION ...uuuttttiieeiiiiitrteeeesessiiissseeessssiassssesssesssamisssssssssssssisssssesssssimsssseessessinmssseessesssonssmsse 13
RESTARTING THE DEBUGEEuuttiiiiiiiiiitieeiieesiiiitbaseeessssssbbsseeessssssssbssseesssssasssssssssssssssssssesssesssnsssssesssesssesssssenees 21
POST MORTEM DEBUGGING.....ueeeiiitreieieteeeeiseeesessteessassesssssesssssssesssassssssasssessssssesssassssssssssssssassesssassessssssssessssseeees 21
DEBUGGING AND THREADINGccvviieietteeeeiueeeeessteessassesssasseesssassesssassssesasssessssssesssasssssssssssessssesssassessssssssessssseeees 28
CONDITIONAL BREAKPOINTS. .. .ueiiiittieeeiteeeeiisseesssstesesassesessssseessassesesassessssassssessssesesasssesssassesssssssssssssseessassesessssens 28
DEBUGGING RUNAWAY PROCESSESuutiiiiiiiiiiitietiieeesesesibeseeessssssssssssesssesssssssssssees 29
T2 G 1 30
S Y N = 2T 31
CHAPTER 3 -USING API TO DEBUG ...ttt ettt ettt e st e e eatea e s saben s s snbaeeeenes 33
INTIRODUGCTIONuuttttieiieeiiisittteesesssassssbesteesssasssbesssasssassssbaseeasssasssssaseeasssesssbbasesasssesabbaseeesssssasbbabeeesesssassbabnnasassan 33
DEBUGV IEW cuttiiiiii i ittt tee e e e ee sttt et e s s s estabbas e e e s s e e saabbaseeasseesaa b b e aeeesses s ab b e b e eesess s s b babeeese s s s abbbbaeeses s s s sbabeeesesssassnbbnnnas 33
DEBUGER CLASS ... icttttiitie e i ieittt et e e st esbbeee e e e s st sabbaseeesseasab b s s e eessessa b bsbeeeaesssaabbabeeesess s s bsbeeeseessassbabeeeseessassnsbanes 33
FA oo [Tor L o] ¢ LU -SSR 33
ACHIVALE DEDUGET CIASS?.....iiiiiii ittt et et e s e e et e be s besbesteebeereenbesbesaeeteeneeneeneens 34
D101 0] 1= OSSPSR 34

(O [T Ul = =T T 1Y7 o] 34
DUMP QUEUE BENAVIOT ...ttt ettt bbb bbbttt bbbt b ettt 34

[F= 1[0 [@00 [T [U LR 37
The Fastest Way t0 Start the DEDUGOETcoueiiiriiiirie e 38
CHAPTER 4 - DRIVER DEBUGGING ...ttt ettt e st s e sentae s s sabanssabaeeennes 41
IINTIRODUGCTIONuuttttieiieeiiesitteeesesssessssbessessssassbbesesasssassssbasesasssasssssaseeasseesssbbesesasssssabbssesesssssasbbabaeesesssassbsbnnasassan 41
(D] AV A= = 3 =7 0! 1 N SO 41
DRIVER TRACING ON DEMAND ...tttiiiiiiiiititeiie s eiiibbeeeeessessbbsseeessssssabbsssessssssasbabeeesssssasssssesssesssasssresssesssassssrenees 43
L@] o 0] {1 [T 43
L@ o B T =T | TR 43
gt oo PSSR 43

S LY LY 7N =2 44
COMMON CODING PROBLEMS ...ttt ettt ettt e s ettt e s s et e s e s st e e s st b e e s sbeaesssabaesssbbneesanes 45
TN 205100 1T 45
PROGRAM JUST QUITS SUDDENLY ..uutteiteeiuteesteesutessseesstessseesssesssessssesssessssessnsessssessnsessnsessnsessssessnsessssessssessssees 45
RECUISIVE CAIIS ...ttt ettt ettt e s ettt e e e bt e e sb e e e e st b e e e saateeessabeeessstbesesasbassesabeeesssbbenesanes 45
2= 1o IS Tox [T IO SOV PR USRI 45
DI = 0 X €1 s TS 45

Page: 3

Aussie DevCon 2006 Debugging

APPENDIX A — DEBUGER CLASS REFERENCE........cccooiiiiiiiiiiiee e 47
INTRODUCTION . ..ceutteuteeuteeutesseesseesteesteeseesssesaessaeesaeasseasseanseaasesstesseesseesbessaeeasesaeesneesseasseabeanseensesssesaeesbeesbeessessesnses 47
L1 TS U TSP R USRI 47

L (010] 1Y o1 TP PR PR PSTPPRPN 47
Do)] o] OO T TP USOURR 47
IVIESSAGEceteeteesteeste et s et e sttt s h e s b e e s b e e as e e e e eae e ehe e eRe e R e e a R e e R Rt SR e e SR e e A Ee e ARe SRt S Re e SRE e eRe e R e e R e enReeReenReenReenReereennas 47
L (0] 1011/ oL T PR U PO PRTPUPRTPPTNt 47
Dol] o1 o] o USSR 47
DEBUGBREAKcitiiteiee it s ettt ettt sn et me e m e e et e s e em e s R e e n R e e e Re e e e e e e eR e e e R e e R e R e e e enrenR e nne e nreennenns 47
L (0] 1011/ 0L ST PP PSP P PUPPTOPRTPPPPTPTN 47
DTS od o1 o] o S 47
PSSR 48
L 010018 o= TP P TP TPV PRPRURPIN 48
Do)] o] OO T TP USOURR 48

Page: 4

CHAPTER 1 - DEBUGGING

Why Debug?

It does not matter how bright or clever you are or how well one can study and apply atopic. You
will encounter some undesirable behavior when running or testing your code. Bugsexist in all sorts
of forms, not just from your code either.

Y our code may indeed be at fault. Y ou may have incorrectly coded something or the code works
100% yet till the application does not work. That situation isfairly common, yet the causeis
hiding in plain sight — missing code!

It may be the cause of the problem isthe vendor’s fault. Documented behavior does not match
what you are observing, or it just plain does not work.

The problem may stem from a 3" party product inserted into your code. That can be tricky to
isolate. Common in this group is the 3" party vendor says its Softvelocity’s bug and vice versa
There are reasons to come to either conclusion.

Bugs do arise from data errors too. How many times have you tested code, proved it works, yet
wheninstalled at aclient’s site, it does not? Ever try to hook up arelation only to find it does not
see related records or even worse, the wrong ones? Usually, but not always clients introduce these
bugs, most commonly from conversion processes.

Don’t Code Bugs!

In aperfect world, you would just not code bugs. Some Clarion devel opers claim they don’t need
debuggers asthey don't code bugs. These few state they use templates to generate perfect code
every time. Granted, that isagreat tool to prevent common bugs. But those that state they don’t
code bugs are not believable. When they wrote those templates, did it work the first time they used
them? The more complex the template, the more ridiculous their claimis.

The best advice on coding | ever received stated simply; “1f you are not coding bugs, you are not
coding hard enough.”

That does not mean one ships bug ridden code! It means that no matter how careful you are, you
should be seeing a bug here and there. Coding, compiling, testing and fixing are al part of the
development cycle. Just writing code isasmall part of the effort.

Just like awriter who never makes grammar and spelling errors, no developer isimmune from
syntax errors and typos (which the compiler catches), or a short burst of temporary bad logic.

Computers Never Lie, But They are Often Wrong

One common, yet frustrating debug processiis the “there is nothing wrong with this code, but my
application does not work”. The temptation here isto jump to conclusions. By that | mean not a
proper investigation asto why.

| was once working on a bit of code that had a cosmetic issue that was driving me nuts. A second
pair of eyesisoften useful. Thisvery talented programmer jumped to a conclusion by stating it

Page: 5

Aussie DevCon 2006 Debugging

must be C6 and thread timing. Turned out that a SUSPENDed thread never gets a chanceto cycle
through it's ACCEPT loop. The solution required redesign of my code.

Of course the old favorite that always comes up when anew release arrives. “My code no longer
works, went back to the previous version, it works again. Bug in new release!l” Hate to break this
to you, but that is not a proper investigation! It is an incomplete investigation as observation of a
bug isthefirst step. If you can till ask “Why?”", you need to dig more. How many times has
something in Clarion been fixed, when no one knew about the bug existed only to cause a slight
changein behavior? You usualy see this around the drivers or statements that may affect them.

Y ou need to find out if something changed in the statement or driver. If so, you may need to adjust
your code.

With Clarion 6.x, and the threading changes from earlier releases, expect behavior changes. How
you deal with version issuesis a good reason to become good at debugging, especially when
upgrading your existing “stable” applications. Clarion 7 isjust around the corner.

One infamous example of this was an undocumented change between Clarion 5 and 5.5. About 3
SQL tables stopped giving usaunique ID. Thiswas passed to afunction that required a unique ID,
which promptly GPF' d. Turns out one of the driver strings were case sensitivein 5.5. Thisraised a
new connection and the expect ID did not match, thus the function failed with a GPF. Of course,
the function was fixed to not GPF as well.

What is a good Debugger?

To answer that, it depends on what you need at the time you notice non-optimum behavior in your
application. For therest of this session, | intend to cover the following topics:

» The Clarion Debugger
> Driver debugging

» API Debugging

» Third party offerings

Each of the above you should know. Y ou may not need them al for most things, but you will need
them eventually.

Page: 6

CHAPTER 2 - THE CLARION DEBUGGER

Introduction

The Clarion debugger has been around since it made its debut back with Clarion for DOS 3.0. That
isthefirst debugger Clarion developers ever had. | actually liked it asit was remarkably similar to
the MicroFocus Level 11 COBOL debugger. But that isall | am going to say on the matter as few
Clarion developersif any, still use DOS debuggers.

When Clarion for Windows arrived on the scene, it too had a debugger; two debuggers actualy: a
16-bit and 32-hit version. Today, as of Clarion 6, there is only the 32-bit debugger as Clarion 6
cannot make 16-hit applications. If you need 16-bit applications, you must stay at Clarion 5.5 or
earlier.

The 32-bit debugger is my focus today as | don’'t support 16-bit applications anymore. Also,
Clarion 6 isthe version | do all my development with.

Threading

Clarion 6 gave us true threading. Thisimpacted the debugger as some variables live on threads.
What this meansis that the Clarion 6 debugger does not behave the same as the earlier version. It
couldn't if it were to support threading. 1’1l be covering thisin more detail shortly.

Launching the Debugger

There are two ways to do this, viathe IDE or via shortcut/command line. The popular way isvia
the IDE. More on this shortly.

Setting up Your Project

If your project is not set up properly, you can't use the debugger effectively, not matter how you
start it.

Debugger project options

7 Global Options i
Glabal |Deﬂnes|

Title: ‘Glnbal Projects Options

Taget Type: [EXE 7|

Run-Time Lirary: [Standalone (CBORUN:DLL) ¥ |

[T Build Belease System
Debug Infarmation Funtime Checks
Mode Full ¥ [V Stack Owerflow

[™ Line Mumbers r
W &iray Index

Link Options

Stack Size: 32 Kbytes W Create Map File

ok | Cancel | Help |

Figure 1 — Project settings for debugging.

Page: 7

Aussie DevCon 2006 Debugging

The Application Generator by default has several options set to allow automatic access to the
Debugger. The project editor isthe sameif you hand code, so these settings have interest for the
hand coderstoo. These are the required settings:

The Global Options sheet contained in the Project Editor should have Debug Information set
to Full.

Build Release System should be disabled in the Global Options. (If this step is omitted, have
fun debugging your program in assembler mode!)

While not required to enable the debugger, the Runtime Checks should all be set. This
provides extra debug checks.

The application now includes the information the Debugger needs. Y ou can also turn on
debugging information for a single module in the project. The advantage of thisisthat it
reduces the overhead for the debugger. To do so, select only the source module you need to
debug, and press the Properties button. When the Compile Options dialog appears, set the
options as described above. You can also selectively disable debug information in specific
modules by setting debug information off. However, you can also control which modules to
activate when you first enter the Debugger.

32-Bit Debugging

Clarion 6 provides support for 32-bit project targets.

B C\Documents and Settings\Russ\My Documents\Education elasses\Threading\Coders.... [2 IR (2 Globals ()

-Library State”
i
IMCLUDE(“CUSYNCRN TNC*) COHCE ﬂc“: =
INCLUDE("CUSYNCRC . INC*) | ONCE 3 sandr
HAE
Dobuild
BODULE("API®)
SLEFP(Unsigned) . Unsigned. FROC, RAV. PASCAL NAME(‘Sleep')
END
END
HyFil
[
ey2
Koy 3 E amhd3
Fieldl LOKG
Field2 STRING(20)
Fieldd STRING(20)
Fieldd STRING(20)
END
END
Itew file bui o see il there i weird with the lile. There vass
|
| FILE, DRIVER(" TOPSFEED", *~FULLEUILD=0N"), FRE(ELD) , EINDA
| e E orgField), DUF, PRINARY
Hame), DUP
¥ ¥ BID: SomeString. BLD:HoreString) . DOP
|Recard
| LongFis -
»
oxm dddress Meduls) F Unknown EIP-00401098H ESE=0012FFFOH

0040144C sandr 8 “Thread®=150 {000000A0H)
00401348 sand:

004010FC ndr
0040800 nele
004010C8 sandr
00401128 sands

Figure 2 — The Debugger when first started.

Page: 8

Debugqging

Aussie DevCon 2006

Theinitial view isfour windows as shown above. Starting at the upper left and going clockwise,
you have the source, global, stack trace and procedures windows. The contents vary on the project

being debugged.

There may be times the debugger shows alot of source windows opening and then losing focus.
Don’t worry about it. The only source window you are interested in is the one where the problem
procedure lives. The Clarion 6 debugger has 3 ways of finding what you are looking for. Look at

the following figure:

W Procedures ‘:HE‘E‘

Procedurs

_main
=andr$sS__patch_process
sandr$$s detach process
sandr$$$__attach_process
Foutine PROGRESSUPDATE

DOBUILD

Address
0o0an1124
004010C3
004010DC
004010FC
004013248

0040144C | sandr

Hodule
sandr
sandr
sandr
sandr
sandr

Figure 3 — Sorted by procedure name.

M Procedures

Procedure

DOETILD

Routine PROGRESSUPDATE
_main

sandr&ss_attach process
sandr$$$__detach_process
sandr&s$_ patch_process

Address

00401348
00401124
004010FC
004010DC
004010C8

0040144C [sandr

Hodule

sandr

sandr
sandr
sandr
sandr

Figure 4 — Sorted by Address

Page -9

Aussie DevCon 2006 Debugging

M Procedures Q@@

Erocedure Address Hodule
_main 00401124 sandr
sandr$$$_ patch_process 004010C8 sandr
sandr3$5__detach_process 004010DC sandr
sandr$$$__attach_process 004010FC sandr
Foutins FROGRESSUEDATE 00401348 sandr
0040144C | sandr

Figure 5 — Sorted by Module.

If you know the name of the Procedure, click the PROCEDURE HEADER t0 sort in ascending order. Click
it once more to sort descending. Same for the other columns if you have the address information or
you know the module name the procedure resides.

Each column has a step locator to ease finding what you are looking for aswell. Best resultsin my
opinion are when the sort is by procedure name.

To open the source, simply click on the procebure NavE and the source file instantly opens for you
(which iswhy you ignore any and all open source windows up until this point).

Break Points

Break points are lines of source code causing the debugger to suspend executing the application
at that line of source. When this happens, the debugger takes over.

Y ou need to understand break points cold. If not, your debug session consists of wasteful
stepping through underlying source code (such as ABC, Handy Tools or other class code). If
you are really bored, you can do this, but I’d rather not. 1’ll get to stepping through source soon.

But why use them? Firgt, if you don’t set at least one, when will the debugger stop running your
application? Second, you need to pause the code execution by break points so you can inspect
what the application is seeing at a specific point. | mean variable contents.

Where do you put breakpoints? That isavery good question. Remember, debugging isan
investigation to find something wrong. If you can reproduce a problem, thenit’'seasy. You
have a good idea that the bug lives somewhere between the earliest place in the code' s execution
and the latest place. That istwo breakpoints. Place one midway between those two points if
you wish. You are now set to let the debugger run the application now.

Source Stepping

At the lower right of each source window is a button toolbar that looks like this:

Page: 10

Debuqgging Aussie DevCon 2006

NEREMEEN

Figure 6 — Source stepping navigation button.

The buttons mean the following actions:

Button Action

G Go

B Set Breakpoint

S Step Assembler

@) Step Over Assembler
T Step Source

E Step Over Source

C Go to Cursor

L Locate Line

Table 1 — Button commands

Tool tips easily identify each button as you hover the mouse over them. Y ou may also right-
click anywhere in the source window to show the following pop menu:

Go ()
Goto Cursor {C)
Set Breakpoint (E}
Step Assembler (=)
Step Qver Assembler (0)
Step Source (mn
Step Owver Source (E)
Locate Line... L)
Eind ... F
Find Again (A)

Figure 7 Pop-up menu.

Page - 11

Aussie DevCon 2006 Debugging

Y ou have two additional commands to find text stringsin your source. The letter in
parenthesis (or “brackets’ as our friends across the pond like to say) is the keystroke needed to
carry out the same action. The keystrokes are always there, even if the pop-up menu is not.

So you have break points set and you are ready to go. Hereisacommon mistake. |’'ve seen
many people who hate the debugger start stepping or stepping over source at this point. If |
had to do this action, | would never use the debugger again as thisisfar too much work. So
what is really going on here? Your application is not yet executing the module (most likely)
where the break points are!

So the execution starts at some source about global run and you find yourself deepin ABC in
two mouse clicks. Who would not be lost there?

Y ou have break points set, use them! Break points are to stop your application at that point.
So execute your application normally! Y ou do this with the co command. The instant your
application hits the break point the execution halts right there. Now you can start stepping
through and stepping over code!

The Data Windows

Its one thing to step through code, but what does the data look like at the exact point a break
stops execution of your program? Y ou have two types of data to deal with, global and stack
data. Thedataisarranged as atree structure. The default is a collapsed state, so to see any
details; you must press the plus sign to expand the tree, minus sign to collapse a tree.

The Global Window

Thisisthe window where you find global data. Thisincludes library data such as the last error,
which control hasfocus, first field, last field, etc.

id Globals (sand g@g|
..... i o
[l ACCEPTED a
Ll EERCR =
Ll EFRCRCODE = 0 (00000000H)
LI EVENT = 0
LI FIELD = 0
LI FIRSTFIELD = O
LI FOCUS = 0

LI KEYCODE = None (0 (00000000HY)
L[l LASTFIELID = 0
& CUSYHCHC
= =andr
LI BUILDING = 0 (0000000DO0H)
HYFILESF@:RECORD = "RECORD"
Ll HOTIFY HESSAGE = 999 (000003ETH)
L[| PARENTID = 0 (00000000H)
Ll PAUSED = 2 (00000002H)
LI REDD = 1 00000001H)
LI STARTED = 0 (0000000O0H)
| THREADID = 0 (0000000D0DH)
| WINDOW = 0 (00000000H)

Figure 8 — Global Data Window with expanded elements.

Page: 12

Debuqgging Aussie DevCon 2006

What populates in this window and their values varies by project and where the program has
suspended running.

Stack Trace (Local) Window

Thisisthe window for variables that are local to the current executing procedure. Y ou won't see
valid datain it until the debugger enters the procedure:

Stack Trace (sandr)
| Unknown EIP=01092741H EBP=00C&FFECH

IS DCEUILD EEP=00C6FFSCH
"Thread"=336 (00000150H)
| BUILDERWIN = 5843256 (00592938H)
#| BUILDSTATE = OFF
LI COMPLETED = 1 (00000001H)
| CURRENTEEY = &8 (H)
#| JUHE" =
| PROGRESSEBAR = 0 {00000000H)
#| RETVAL =

Figure 9 — Debugger in a local procedure.

The display in this window changes as you execute the debugee. There is more to cover with
these windows, which I' [l address |ater.

A Simple Debug Session

Toillustrate atypical debug session, Clarion 6 ships with a broken application. The name of the
application is Orders and it requires the ABC templates registered. It islocated in the
Clarion6\Examples\Tutor\Debug folder. I’ve included a modified version of this application. Open
the application and compileit. When you run it, you notice the highlight bar can page down and
page up. It can scroll up, but does nothing when scrolling down. That isabug. Quit the
application.

Press the peus button to launch the debugger from the IDE and start executing the Orders
application. Your initial view of the debugger isthis:

Page - 13

Aussie DevCon 2006 Debugging

7 C60dbx X COEX
File Debug Window Setup Help
B c:\CLARION6\LIBSRC\CWSYNCHC.CLW (orders) L: 12 of 133 FIE)X) [slobals (orders [-B[x
MEMBER ~f # "Library State"
| # ABBROVSE
B ' ABEIP
#| ABERROR
INCLUDE i 'CWSYHCHM INC') OHCE #| ABFILE
INCLUDE ('CWSYHCHC. INC'),ONCE S ABFUZZY
| = rETOOLEA
ICriticalProcedure Construct PROCEDURE() | ABUTIL

SELF . Sync &= NULL #| ORDERBCO
| oo™ # Orders
CriticalProcedure . Destrust PROCEDURE()

CODE
SELF.Kill(})
RETURH
CriticalProcedure. Init PROCEDURE (#*ISyncObject O)
CODE
SELF.Kill()
IF NOT O &= WULL
0.Wait()
SELF . Syac &= O
END
RETURN
CriticalProcedure Kill PROCEDURE()
CODE
IF NOT SELF.Sync &= NULL

SELF . Sync. Relsass()
SELF.Sync &= NULL

> @BE0TEC

[- |[B]%] #A stack Trace (orders =1 E3
Procedure Address Hodule ~ | F Unknown EIP-0041FCFOH EEP-0012FFFOH

ABEIP$85_ attach process 0042001C ABEIF El #| "Thread"=160 (000000AOH)

ABEIP$$5__detach_process 0041FFF4 AEEIF
ABERRORS3%__attach_process 004200A0 AEERROR
ABERRORS33__detach_process 00420080 AEERROR
ABERROR$33__patch_process 0042006C ABERROR
ABFILE$$3__attach_process 0041FFEC AEFILE
ABFILE$$3 _attach_thread 0041FF4C AEFILE
ABFILE$$3_ dstach_process 0041FF70 AEFILE
ABFILE$$3_ dstach_thread 0041FF00 AEFILE
ABUTIL$$3__dstach_thread 0041FFBC ABUTIL
ADDDOLLAR(STRING) 0041D97C ABUTIL
BROVSECLASS . ADDFIELD{»? , =7} 00405404 AEEROVSE
BROVSECLASS . ADDFIELD{*LONG. *LONG) 00405394 AEEROVSE
BROVSECLASS . ADDFIELD{*STRING, *STRING) 0040531C AEEROVSE
BROVSECLASS . ADDLOCATOR (LOCATORCLASS) 004052E8 AEEROVSE
BROVSECLASS . ADDSORTORDER(STEPCLASS, KE¥) 00405234 AEEROVSE
BROWSECLASS . ADDTOOLBARTARGET { TOOLEARCLASS) 004051B8 AEEROVSE
BROWSECLASS . APPLYRANGE 0040511C AEEROVSE
BROVSECLASS . ASK(E¥TE) 00405048 AEEROVSE
BROVSECLASS . ASKRECORD(BYTE) 0040501C AEEROVSE
BROVSECLASS . CHECKEIP 00404F08 AEEROVSE
BROVSECLASS . FETCH(BYTE) 00404018 AEEROVSE
BROVSECLASS . INIT(ILISTCONTROL, ¥IEV, BROWSEQUEUE 00404B24 ABEROVSE
BROVSECLASS . INIT(LONG. *STRING, VIEV. QUEUE . RELAT 00404C88 ABEROVSE
BROWSECLASS . INITSORT(BYTE) 00404ABC ABEROVSE
BROWSECLASS . KILL 004047DC ABEROVSE
BROWSECLASS . NEXT 0040478C ABEROVSE
BROVSECLASS . NOTIFYUFDATEERROR 0040475C ABEROVSE
BROWSECLASS . POSTREVSELECTION 004046E0 ABEROVSE
BROVSECLASS . PREVIOUS 00404630 ABEROVSE

Figure 10 — Initial view of debugger desktop.

Even though thisis asimple, 2 procedure application, the Procedures window appears quite busy.
Thisis because all the classes and their source files appear in the list. They are there because they
are used by this application, directly or indirectly.

I’ ve shown the bug is in the BrowseCustomer procedure, so you can locate that procedure by any
means you like. Assoon as you select BrowseCustomer from the procedure list, the source for it
opens and the highlight is on the first source line.

The bug was the inability to scroll down oneline. Where is scrolling controlled? With the source
window in focus, press F to open the Find dialog. Enter scroll and press ok. Thefirst stopisin the
window definition, so that is unlikely to be the source of the bug. Press A to find again.

Now the highlight is on amethod labeled ScrollOne. Makes sense as browse lists scroll. Press f
and enter scrollone in the entry. The highlight lands on BRW1:ScrollOne.

Page: 14

Debuqgging Aussie DevCon 2006

B C:\Clarion6\Examples)utor\Debugger\ORDER00Z.CLW (orders) L: 173 of 189 =3
.

BRW]1 RezetSort FROCEDURE(BYTE Force)
ReturnValus EYTE., AUTO

CODE
IF CHOICE(?CurrentTab) = 2
EETUREN SELF . SetSort(l.Force)
ELSE
EETUREN SELF . SetSort(2.Force)
EHD
FeturnValuse = PARENT ResetSort(Force)
RETURN ReturnValue

LOC:Flag EYTE(03k} Tz any non-zero value
CODE
IF LOC:Flag

Event = LOC: Flag
PARENT . ScrollOne(Event)
EHD

Fezizer Init PROCEDURE({BYTE AppStrategy=AppStrategy Feszize, BYTE SetWindowMin

CODE

PARENT . Init (AppStrategy., SetWindowdinSize, SetWindowvaxSize) =

SELF .SetFParentDefault= I Calculate defau |«
< | > [6)B)S)0)TEICIL)

Figure 11 — The Scroll One method.

A small method, so highlight the IF LOC:Flag and press B or double-click to set a break point.
Break points are indicated by the red color. If it looksyellow, you are not going color blind. Green
and red produces yellow. Move the highlight up or down one line to see that.

You are set up to debug. Remember, the program isreally not yet executing this procedure, itis
suspended at the initial start (and the global and stack trace windows reflect this). Y ou do not want
to step trace each line of code to this spot. Use the o command as | previously covered.

The program starts normally. Open the BrowseCustomer window and press scroLL bowN on the

toolbar. The debugger now takes control asit hit the break point. Y ou could look in the stack trace
to seeif you see anything interesting at this point:

Page - 15

Aussie DevCon 2006 Debugging

¢5 Stack Trace (orders)

[l Unknown EIP=01092741H EBP=00CFFFECH

#| BROWSECUSTOMER EBF=00CFFF8CH

& VINDOWHANAGER RUN EEP=00CFFEZ8H

& VINDOVHANAGER . ASKE EBP=00CFFE18H

VINDOWHANAGER TAKEEVENT EBF=00CFFCE4H

#| BROWSECLASS . WINDOWCOMPONENT . TAKEEVENT EBP=00CFFCC4H
#| BROWSECLASS TAKEEVEHNT EEFP=00CFFCE4H

#| BROWSECLASS TAKESCROLL{LONG) EBP=00CFFCS8H

BEW1 SCROLLONE(LOWG) EEF=00CFFC40H
"Thread"=344 (00000158H)

ZIEVENT = 4 (00000004H)

L] LOC:FLAG = 3 (03H)

#| SEIF = 00SCE3COH

Figure 12 — Stack Trace of BrowseCustomer

The highlight is the current stack (top of stack, bottom item in window). Nothing looks that odd.
Step through the code is a good option now. Press T to step trace and one line of code executes, and
the highlight moves down to the next line of code to execute. Watch the stack trace and press 1
again. The Event variable changed from 4 to 3. Still, nothing obvious here.

The next line of codeis PARENT.ScrollOne(Event). This means the next stop isan ABC method as
that iswhat is meant by “Parent”. Y ou can step trace or just step. If you just step, then the
debugger allows the program to run normally until it returns from the parent call. It will then
suspend execution again. Let’'stry both methods. Press E for Step Over Source (execute and stop
upon return).

The highlight bar locates to the END statement. Nothing really changed, so press c. The debugee
isnow in control. OK, now what? Did not find any bugs. So the code in your application revealed
nothing.

Remember, you still have abreak point set. Press scroLL bowN on the toolbar again. The debugger
isin control and the stack traceis like we found it before. Thistime, step through the
PARENT.ScrollOne(Event) method. When the highlight bar reaches that line of code, press 1 to
step trace. Y ou now see this source window:

Page: 16

Debuqgging Aussie DevCon 2006

B c:\CLARIONG6\LIBSRC\ABBROWSE.CLW (orders) L: 937 of 2349 =13
L

HighWalue ANY
CODE
IF SELF.Sort.Thumb &= HULL OR ~SELF.Sort . Thumb.SetlimitHeeded() OR ~SELF . A
RETURHN
EWD
SELF Re==t
IF SELF.Frevious=()}
RETURHN
END
HighWalus = SELF . Sort . FresElenent
SELF Re==t
IF SELF.He=t{)
RETURHN
END y
SELF . Sort.Thumb. Setlimit (SELF . Sort . FresElement . HighValue)

|BrowseClass . ScrollCne PROCEDURE(SIGWED Ev)
CODE
SELF . CurrentEvent = Ewv
IF Ev = Event:ScrolllUp AHND SELF . CurrentChoice > 1
SELF CurrentChoice —= 1
ELSIF Ev = Ewvent: ScrollDown AND SELF. CurrentChoice ¢ SELF . ListQueue. Record
SELF CurrentChoice += 1
ELSIF ~SELF.FileLoaded
SELF ItemsToFill = 1
SELF Fetch{CHOOSE(Ev = EVENT Scrolllp.1.21)
EWD

ErowszeClass . ScrollPage FROCEDURE(SIGHED Ewv)
LI SIGHNED, AUTO
SEL SIGHED, AUTO

CODE

< | > GIBIEI0MECL

Figure 13 — Debugging ABC methods.

Now look at the stack trace window. Different values loaded and you can see the passed Event
value (in variable Ev here). In order to ensure you don't get lost, when stepping through code in
this method, always use the sTep over source command as many ABC methods call other methods.
Unless you heed and want to step trace other ABC methods.

SELF.CurrentEvent = Ev isthe line of code executed once you press e. If you look at the stack

trace, you can see anode of the current treeis called SELF. Expand it. SELF will always have a
“record”, so expand that too. Whoa! Lots of items!

Page - 17

Aussie DevCon 2006 Debugging

#3 Stack Trace (orders) E|@|g|
=] —-» "RECORD" ~
[l ACTIVEINVISIELE = 0 (00H}
L] ATLOWONFILLED = 0 (00H)
Ll ARROWACTION = 0 (00H)
.| ASKPROCEDURE = 0 (00000000H)
#| BEHAVIOR = 08002240H
_| BUFFER = 0 (0000H)
| CHAHGECONTROL = 0 (00000000H)
| CURRENTCHOICE = 1 (00000001H)
| CURRENTEVEHT 3 (000000032H)
| DELETEACTION = 0 (00OH)
| DELETECONTROL = 0 (00000000H})
| DISPOSECREDERE = 0 (00H)
#| EDITLIST = 08002220H
| EDITVIAPORUP = 1 (01H)
& EIF = 00000000H
_| EHTERACTION = 0 {00H}
#| FIELDS = 080037DEH
.| FILELOADED = 0 {00H)
| FOCUSLOSSACTION = 0 (00H)
| FEEEEIF = 0O {00H}
| HASTHUME = 1 (01H}
| HIDESELECT = 0 (00H)
IIC = 08002248H
LI TNITED = 1 (D1H}
| THSERTCONTROL = 0 (00000000H) 3

Figure 14 — The BrowseClass SELF node expanded.

Thisisalist of properties of the browse class. “ SELF” means “whatever the current object is”.
Since classes don’'t know what their instance name is until runtime, “self” is merely a placeholder
for whatever it may be. You can seethe CurrentEvent is set to 3, just as the line of code just
stepped did.

The next line of code tests for EVENT:ScrollUp. Here iswhere the global window comes into the
picture. Eventsarein the runtime library, so the current event is shown there.

Page: 18

Debuqgging Aussie DevCon 2006

i Globals {orders)

=l "Librarv State"
| ACCEPTED = 0O
| ERROR =
| ERRORCODE = 0 (00000000H)Y
BB EVENT = EVENT:ScrollDown (4 (04H))
LI FIELD = ?EROWSE:1 {1 (01H))
LI FIRSTFIELD = ?BROWSE:1 (1 (0D1H))
LI FOCOS = 7EROWSE:1 (1 (01H))
LI EEYCODE = None (0 (00000000H))
| LASTFIELD = ?HELF (6 (06H))

#| ABEBROWSE

#| ABEIFP

#| ABERECE

#| AEFILE

#| ABFUZEY

#| ARTOOLBA

AFUTIL

#| CRDERBCO

#| Crders

Figure 15 — The last event is EVENT:ScrollDown.

Y ou can see the event is correct as you pressed the button to scroll down. So far, so good. The
code istesting for EVENT:ScrollUp so you know this condition code will fail thetest. Press e to
seeif it does.

It not only dropped through the first IF, but the ELSIF line too. This means the logic failed both | F
conditions. Y et, the second condition is what should have executed! The execution point is now
past the point where you are interested. So press Go.

The program is now running again. The breakpoint is still there, so press scroLL bown on the toolbar
again. Press T4 timesto get back to the BrowseClass.ScrollOne method. Y ou should be on the
SELF.CurrentEvent = Ev line. Ev has the event number passed to this method. Itis3. Remember
the Event value when the debugger first took over? 1t was4. What if you could change the 3to a4
before it gets passed to SELF.CurrentEvent?

In the stack trace, highlight Ev and right-click. A pop-up menu appears with one of the choices
being “edit variable”. Select it and then enter 4 in the entry provided and press ok.

Now press e and watch the execution. Now the second condition istrue! Thisis different behavior
than before! Press co and when the application runs normally, thisis what you see:

Page - 19

Aussie DevCon 2006 Debugging

4 Browse the Customer File g|

By Cugtomer Account Mumber |B_|,| Custorner Name |

[Cust] Company | Address | City [5T] Z2ip] Phone|
1000 Capital Avenue
117 Cir frest Clurkarm GA 00000 [000]

noooa 2222 First Avenue (Grand Prairie Q0000 | [ooa) o
00004 | K. Processing 22 2nd Street Farest Hills SC| 00000 | (O00) 0
Q0005 | Fidelity America A0ED Third Avenus Elen Burnie Ly | 00000 | [000) o
00006 | E azi Evergthing 1000 First Street Louizville kS | 00000 | [00a) o
Q0007 | Hawe Ewenything 2222 Evpenszive dye, Ewvanston GaA | 00000 | [0o0) o

Figure 16 — Highlight moved down one line.

Therefore, the bug is not with ABC, it worked perfectly. But it was passed the wrong event
number. The bug iswith the local method. Y ou can verify if that isindeed the case. Press scroLL
DOWN again to trigger the break point.

To test the theory the wrong event is passed, step source until the highlight is on the parent call.
Right-click Event and change it back to 4 (its original value). Once you’ ve donethis, press co. |If
al goeswell, the highlight should be on the 3" customer down:

4 Browse the Customer File E|

By Cuztomer Account Mumber |E5| Custarmer Mame

Cuzt | Company Address City 5T Zip F'hune|

00001 | ABC \widgets Company | 1000 Capital Avenue Chicago GA | 00000 | [000) 0

00002 | Acme Fasthers 111 Circle Street Durham G4, [00000 | [000) 0

E rzt Avenue Grand Prairie (0007 O

00004 | K. Proceszing 3122 2nd Street Forest Hills SC | 00000 | [ooo) o0

00005 | Fidelity Armerica B0E0 Third Avenue Glen Burnie L& | 00000 | [0o0) o

00008 | Easi Eventhing 1000 First Street Louigville kS | 00000 | [000) 0

00007 [Have Everything 2222 Expenzive Ave, | Evanston GA, | 00000 | [oo0) o

] | 2l

Figure 17 — Proving the bug.

Page: 20

Debuqgging Aussie DevCon 2006

Y ou now know what the bug is and can proveit. The debugger showed you.

While this may be asimple 2 procedure application, the typical debug session is very similar to the
stepstaken above. Thisistrue even with very complex and involved programs. The differenceis
you may need more breakpoints and afew “loops’ around to narrow your search for a bug.

When bugs can be reproduced, atypical debug session should last about 2-6 minutes, including set
up time.

Note: When you are finished with the debugger, shutdown the debugee first. Sometimes
that is not always possible with badly behaving programs.

Restarting the Debugee

Sometimes, you might have shut down the program by mistake. Leave the debugger running!
Choose FiLe » riLETODEBUG. A file dialog openslooking for your executable. Navigate to the
correct folder if needed and find the EXE. The debugger starts the programs and suspends at the
first line of execution, just asif you called it from the IDE.

The debugger sort of remembers your break points from the last run in such cases. They are till
visible, but they really don’'t work anymore. The workaround isto simply press B twice.

Post mortem debugging

The Clarion debugger may be installed as the system debugger. From the debugger menu, choose
seTup and the following option:

Options... I

Install as System Debugoer

Figure 18 — Installing the Clarion debugger as the system debugger.

If you install the Clarion debugger as your system debugger, and a program causes a GPF, you then
get thisdiaog:

Page - 21

Aussie DevCon 2006 Debugging

badprg.exe

badprg.exe has encountered a problem and needs to
cloze. We are zorny for the inconvenience.

[f oy were in the middle of zomething, the information you were warking on
might be lost.

Pleasze tell Microsoft about this problem.

We have created an ermar repart that you can send foouz, We will treat
this report az confidential and anonymous.

Figure 19 — GPF dialog as seen in Windows XP.

Notice the pesuc button. If you press this button, thiswill start the debugger with the dead program
(itisnot running). You may be prompted to load a source file. I’ve never needed that feature, so |
closeit. You should get an access violation message that would match the address if you inspected
the details on the GPF window above.

Program exception EI

@ Access Violation at 010D6F35

Figure 20 — Debugger displaying the access violation.

Simply press ok to close the message. The stack trace window isreally the only window that is
important.

The last item should be labeled “unknown”. That is the point where the GPF happened, but rarely
isthat the cause of the GPF. Look for the last good label before thispoint. In thisexample, itis
_main (whichisin every Clarion program). Right-click and you get this menu:

Goto (execute)

Locate In Assembler

Locate Closest Source Line Before
Locate Closest Source Line After

Figure 21 — Options to find that last bit of good code.

Page: 22

Debuqgging Aussie DevCon 2006

Choose Locate Closest Source Line Before if you have the source (and you should). The source
window opens with the last line of code executed before the GPF:

B D:\CWWork6\Education\Debugging\Code\BADPRG.CLW () L: 7 of 7 =13
FPROGRAM ~

HAF
ENWD

CODE
| &SSERT(Falsey

: > GEE0DECL

Figure 22 — Line of code that when executed, GPFs.

OK, that is cheating and this program’s design is meant to GPF. However, | wanted to show you
that this option does work and is no different than debugging a complex program that GPFs.

What you should take away from thisisthat a GPF isreally your friend when finding bugs. Just
like compiler errorsin finding poorly written code.

What about more complex problems? Some applications GPF the moment you launch them.
Remember, the GPF is not the problem. A GPF reports a problem. A program could GPF on
perfectly valid code!

The next example, the program GPFs when you press a button. Going to post-mortem debug mode,
the stack trace shows cryptic information:

Page - 23

Aussie DevCon 2006 Debugging

{3 Stack Trace () |'._| |E| E|

f Unknown EIP=01091FEAH EBF=0012FFF0H

=| Unknown EIP=01017BA0OH EEBEF=0012FFE&H
=l "Thread"=1996 (000007 CCH)

"EAK"=4 (00000004H)

"EBK"=4202588 (0040205CH)

"ECK"=10 (0000000AH)

"EDE"=111 (0000006FH)

"ESI"=0 (00000000H)

"EDI"=8988261 (008926R5H)

"EBP"=1245112 {(0012FFEEH)

"ESP"=1244768 (0012FEROH)

"EIP"=16874400 (01017BAOH)

"EFlag=s"=518 {(00000206H)

(I Sy S g g g g

Figure 23 — Not much useful information finding the GPF.

The above may be useful if you are good with assembler. My assembler is out of date (8088
assembler) and I’ m quite rusty withit. Up the proverbial creek without the proverbial paddle?
What about the global window?

Page: 24

Debuqgging Aussie DevCon 2006

Globals () (=3
H "Library State"
=l badprg
| WINDOW = BBB8AZ620H
=| WORK = "RECORD"
=l NOISE = NULL (0Re00REAH)
=] -= "RECORD"
CRWAVENAME = Access Error -=00000004
#| WORKQ = G2002FBBH
=] PLAYWAVE
#| SELF = Access Error -=003FFFFC

| XWAVENAME =

Figure 24 — Global window after a GPF.

When | expand Playwave, | see Access Errors. That isthe error itself, but what about the cause?
Going up one node, expand badprg. The “window” node looks fine as thereis a value there.
Expand work and | see noise has anull value. WorkQ appears fine. Expand Noise and you see
Record. Expand that and you see Access Error. Thisisthe earliest error. The only thing you do
know at this point is that a problem exists with Noise.

Therefore, inspect the source code. When you press the button, you get a GPF, so look at the code
for that:

Page - 25

Aussie DevCon 2006 Debugging

& D:\CWWorké\Education\Debugging\Code\BADPRG1.CLW () L: 1 of 74 =13
ENXD »
CODE
OPEH {(Window)
TARGET{FROF: Text} = Title
MTitlesString{FREOF Text} = Title
ACCEFT
CASE EVEHT()
QF EVENT : OpenWindow
Worl Work(&= NEW Typelus |Create an in=tan
? ASSERT (~Work Work(&= HULL)
IF Work FillQus()
Li=tl1{PROF :From} = Worl Work(
SELECT(7Li=tl.1}
EHD
OF EVENT : Accepted
CASE ACCEPTED)
COF ?CancelButton
POST(EVENT : Clo=eWindow)
OF ?0kButton
Worlk Hoize . WawelName = 'online. waw'
Worl Hoi=e . Plavy()
EHD
EHD
EHD
IF ~Worlk . Work(&= HULL
DISPOSE {Work Worl(l) I De=troy in=tance
EHD
IF ~Worl Hoi=ze &= HUOLL
DISPOSE (Work Hol=e) I De=strov instance
EHD

v
< | > (G)BI(S)0)(TI(EICIL]

Figure 25 — The source code looks fine, should play a wave when pressed.

The above code as seen in the debugger |ooks fine, nothing wrong with it. But it crashes. So,
something is wrong. Y ou cannot resolve the problem here, so your only option in thisinvestigation
isto go earlier. Yet at first glance, there is nothing earlier that applies to the problem. When | say
“earlier”, the only option is before the CODE line.

Page: 26

Debuqgging Aussie DevCon 2006

D:\CWWork6\Education\Debugging\Code\BADPRG1.CLW () L: 1 of 74 M=E3
IExample of crashing program ~
PROGRAM
IHCLUDE{ 'EQUATES . CLW'), OHCE
HAP
EHD
Title EQUATE('Ezanple of crashing program')
Flaylave CLASS(). TYPE.HODULE('PLAYUAVE CLW') LINE({ 'PLAYWAVE CLU')
Wavelane CSTRING(FILE HaxFileName)
Flay PROCEDURE ()
Flay FROCEDURE (STRING =Wavelame)
EHD
SECTION{ 'OBJECTDEF')
Typelus QUEUE, TYPE
HyString STRING(10)
END
WorkingCla=ss CLASS, TYPE, HODULE('WORKCLAS CLW') LINK('WORKCLAS CLW')
Work(&TypeQue
Hoi=e &Flayave
FillQu= PROCEDURE (). LOHG,FROC
EHD

SECTION({ 'RESTOFPROGRAM ')

Worl WorkingClass ICreate an instance

< > [G)BI(S)0)TIEICIL)

Figure 26 — The WorkingClass definition and instantiation.

There is nothing wrong with the class definition, nor itsinstantiation. This should work too (and it
does). WorkQ and Noise are both references. WorkQ fills a browse list with data, Noise plays a
wavefile.

In figure 25, you can see areference assignment to WorkQ and an ASSERT that asserts the
referenceisnot null. But where isthe reference assignment for Noise? What if you placed an
ASSERT for Noise?

There isyour problem, all the code isfine, yet it crashes. In this case, the problem is not the code
that isthere, it is code that isnot there! To test that, put an ASSERT(~Work.Noise &= NULL) in the
code. You could put it in the Open Window event or the button accepted event. |If the assert fires,
you proved your theory.

That is something you really cannot find with MESSAGE and STOP statements.

Remember, any object not instantiated GPFs when your codetriesto useit. If thisisthe cause of
GPFsin your application, MESSAGE and STOP cannot possibly help you. ASSERT does help
you. Part of ensuring you write safe code isto ASSERT something isthere. If not, the assert fires,
alerting you that you forgot something.

One of the best “hidein plain sight” causes of GPFsis aclass definition that is valid, yet it cannot
work. Hereisaconceptua example of this:

Page - 27

Aussie DevCon 2006 Debugging

ABCClass CLASS,MODULE (“ABC.CLW?),LINK(*ABC.CLW”, ABCLinkMode),DLL(_ABCDLLMode)
END

Listing 1 - Conceptual ABC Class definition.

There is nothing really wrong with the above listing. Yet, if you try to use anything from this class
(assume it has properties and methods), the program GPFs. The GPF happens about the time when
you launch the program. Y ou could post-mortem debug it and you will find that anything about the
above class has “ Access Error” next to it. That meansit was not instantiated or could not be
instantiated.

Noticethe LINK and DLL parameters. Y ou have thosetwo ABCLinkMode_and
ABCDLLMode flags. If these are missing from your project defines (which defaultsto zero) or
they are set incorrectly, expect a GPF. Thisisthe same cause if your app works as an EXE but
GPFsasaDLL.

The same istrue for 3" party classes that follow this convention (but use their own flags).
Fortunately, templates usually prevent this as they are responsible for putting those flagsin the
defines section of your project and setting them correctly. If not, speak to your vendor as they have
afatal bug.

Debugging and Threading

Before Clarion 6 came out, one of the useful things you can do with the debugger is place variables
in the watch window. Doing thisischild s play asall you need to do is right-click on avariable
and choose wartcH. If thisisyour first watch variable, a new window appears. Y ou can place
anything in awatch window, stack trace and/or global variables.

The purpose is to watch what happens to variable contents as code executesin your program. As
your code loops through ACCEPT for instance, you can see if the variable contents change, and if
so, to what. Global variables never go out of scopein awatch window, but stack trace variables
can (if you leave the procedure to run an ABC method for example). If avariable goes out of
scope, it will redisplay correctly once execution returns to the procedure.

That is, until Clarion 6 came along. The threading model isamajor paradigm shift for Clarion
developers as much as when ABC first shipped.

What happensisthat a variable placed in the watch window remains, but its value is gone from the
watch window. Instances of threaded variables are allocated at run time, so the debugger cannot
show these variables directly. Instead, stick to the stack trace window.

Conditional Breakpoints

The Clarion debugger does not support the concept of conditional breakpoints. It isnot afeature of
the debugger. This means debugging long processes that crash somewhere in the middle are next to
impossible. Or arethey? Thereisaway to use the concept of condition breakpoints, just not inside
the debugger.

Let’s say that you are running along posting procedure. Thisis not uncommon in accounting type
applications. Y et, when you get to record number 895,832, the program GPFs or hangs or just
quits. What isworse, you use akey or index for the processing, and likely filtered in some fashion.
This means the chances that the problem is record number 895,832 is next to nil. So inspection
with afile viewer is useless.

Page: 28

Debuqgging Aussie DevCon 2006

Say the process code looks like this:

ACC:AccountNo = LOC:AccountChosen

SET(ACC:AccountKey,ACC:AccountKey)

IF ~Access:Accounts.Fetch(ACC:AccountKey)
1Process code here

END

That’ s a simple enough concept, except it crashes after 5 minutes of processing. Just asimple edit
and you have your own condition breakpoint:

ACC:AccountNo = LOC:AccountChosen
SET(ACC:AccountKey,ACC:AccountKey)
IF ~Access:Accounts.Fetch(ACC:AccountKey)

ldx# += 1
IF 1dx# = 895832
Dummy” = “X marks the spot - Set break point here’
END
TProcess code here
END

Say what you want about implicit variables, but thisis a good use for them. Thisis one-off code, so
you really don’t care about the downsides of using them (but check your spelling!). Place the break
point where indicated.

Note: The text is easy to locate using the Find function in the debugger. Search for “X
marks the spot”, a bit of text not likely to occur anywhere else in your application.

Now it isa simple matter of using the co command. While you wait, go get a cup of coffee or take
ashort break. Once the condition becomes true, the debugger encounters the break point and takes
control of the execution of your application. It now becomes a simple matter of step tracing and
inspecting variables.

Debugging Runaway Processes

Imagine the horrifying scenario where you have a program that is caught in an infinite loop? But it
getsworse, thislooks like ahang. But more bad news, there is no window open, so nothing appears
on your desktop. And worst of al, you ran this application without the debugger. How does one
get the debugger inserted in this process?

The Clarion debugger has quite afew command line options. Hereisthelist:

C60DBX [redirection file] [INI file] [-s dliname [-s dllname ...]] program.EXE [parameters]
C60DBX [redirection file] [INI file] -p PID [-e EventNo]

The second form of the command line usage above is used to attach the debugger to an aready
running process.

redirection file A string constant that names an optiona redirection file. The file name MUST
have an RED extension. If present in the command line, the file name overrides the default
redirection file specified in the Debugger Options dialog and replaces it with the new name. Thefile
name must be enclosed in quotesiif it contains spaces.

Page - 29

Aussie DevCon 2006 Debugging

INI file A string constant that names an optional redirection file. The INI file MUST
have an INI extension. If present in the command line, it overrides the appropriate default INI file
name (C60EE.INI or C60PE.INI) located in the BIN directory. The file name must be enclosed in
quotesif it contains spaces.

dliname The name of aDLL loaded by the program. When the system loader loads this
DLL into processs virtual memory, the debugger suspends processing when the DLL entry point is
encountered.

program.EXE The program name to be debugged (the debuggee).
parameters Optional parameters passed to the debuggee

PID The debuggee's process ID in decimal or hexadecimal format. In the latter
case, the number must be ended with an H character (i.e., 27A3H).

EventNo The debug event number. This number is passed by the system if debugger is
installed as a System Debugger and it isinvoked because of afault.

A runaway process is an application already running with no clear way to safely shut it down. You
could use the task manager, but you may cause amemory leak, or risk leaving datafilesin an
opened state.

To shut down arunaway process, open the task manager. Find the rogue program and one of the
columnsis aProgram IDentification or PID number. Let'ssay its8088. Press start » rRuN and
then enter:

C60dbx —p 8088

The debugger then starts debugging the runaway process. Y ou can then put a breakpoint in the
code and when it hitsit, do whatever you need to have the application shutdown on its own. What
action you take there largely depend on the situation but one useful action is to edit variables so the
condition to shutdown the application begins.

Break In

As an dternative, Capesoft’s Breakin tool can be handy. Just start it from Clarion’s IDE (see
Accessories menu) and load the runaway application. 1t will load needed DL Ls then show you the
stack trace. Unlike the debugger, this stack trace is “upside down”, in other words, the most recent
stack ison top, itscaller isjust below it and so on. While an app is spinning out of control, this
display can seem abit odd looking. Just press Break and Breakln suspends the app.

Y ou may then inspect the stack trace in detail and usually spot the block of code that is causing the
application to run endlessly.

Page: 30

Debuqgging Aussie DevCon 2006

Summary

This section attempted to highlight the important options available to you when compiling and
debugging your program.

I’ ve shown how easy the debugger isto use and setup. I’ ve aso shown you do not (and should not)
have to step trace every line of code in your program.

I’ ve explained that debugging is not atool per se, but an investigation. The debugger isatool and a
powerful tool, which is easy to use despite the power it provides.

Page - 31

Aussie DevCon 2006 Debugging

Page: 32

CHAPTER 3 - UsING API 1O DEBUG

Introduction

| am resigned to the fact that no matter how much | demonstrate the Clarion debugger, there are
Clarion devel opers that will dangerously continue to use MESSAGE and STOP for debugging
reasons. MESSAGE and STOP are for displaying messages and should only be in your programs
for their intended use.

The appeal using these statements for debugging is obvious, they are easy to insert into your code
as a substitute for break points. But due to their own event handling, they can alter behavior of your
applications, but not aways. Anideal solution isto have something you can place in your code as
easily as MESSAGE or STOP, yet be safe.

DebugView

Thisisautility from Sysinternals. Itisfree. Itisnot part of the materias as the author of the utility
likes to keep track of downloads from their web site. You may find it at
http://www.sysinternals.com/ntw2k/utilities.shtml.

All DebugView doesis simply trap events and report them. It is configurable so that you may apply
certain filters and color code them if you want (to pick out certain events, or indicate severity levels
isone usefor filters). You use API calsto send messages that DebugView can trap and report.
Those callsarein aclassfor your use.

Debuger Class

That isnot atypo that is how it is spelt — deliberately. This classis ABC compliant in every way.
It even has atemplate wrapper for usein apps. It isalso handy for hand coded projects too. One of
the best usesis a safe replacement for why people use STOP and MESSAGE. The classfor thisis
included as part of this presentation.

Application Use

In any application you wish to use, be sure you register the Debuger template. Y ou application
merely needs the global extension. The settings of most interest to you are the following:

Page: 33

Aussie DevCon 2006 Debugging

Global Debuger Instance | Debuger Baze Class |

Debuger Clazs |

Debuger Yersion
Activate Debuger class 7 W

Mumber of duplicate mezsages before showing
a Warning? £ena = neser Warn.
Duplicates: [50 ¥ i

Az of DebugView 4.3, you can clear the dizplay.
Indicate the clear behavior below,
Clear Behavior [Mesver =]

Choose how pou wizh to durmp queue contents.
Mever: never dumps the queue to a file.

Prompt: Prompts for file narme.

Alwayps: Dumps to default file without prompting.
Dump Bueue Behavior: [Mever =]

Figure 27 — Global Debuger settings.
Activate Debuger class?

Checking this box activates the Debuger class. Clear the check to deactivateit. If you have a
DLL project and this app is not meant for debug use, then clear the check. All thisdoesis
prevent the startup messages and cluttering your display.

Duplicates

The duplicate messages happen in certain circumstances where the same event message is sent
over and over. For examplein alooping process, which causes the same message to be sent
many times, you can limit how long this happens before a message statement pops up. Set it to
zero to disable this feature.

Clear Behavior
The class can clear the display; this setting sets the default behavior.

Dump Queue Behavior

Indicates how the class behaves if you leave off the file name parameter of the Init() method.
This happens only when you use the DumpQue() method.

That isal that is needed to make the class work. If you compile and run the previous broken
Orders app, thisiswhat you see:

Page: 34

Debuqgging Aussie DevCon 2006

% DebugView on WAIO (local) M=]E3]
File Edit Capture Options Computer Help

sHdd | 4 &2- @ EBC| YP | A

* Tine Debug Print

282 3:52:54 PM [2144] "ORDERS - Program Started [April 19, 2006] @[3:52:54 FPH]- wvw
283 3:52:54 PM [2144] "ORDERS — Notice — Debuger forced on (IHIT)

284 3:52:54 PM [2144] "ORDERS - Debuger Class wersion 6.0.2

Figure 28 — Orders application started as seen in DebugView.

But that isal you see until you exit the application. Then you'll see a message that the program
quit. Thisisafast and simple test to ensure DebugView and the supporting classisworking

properly.

| should also note that afilter isin place. Y ou may need to filter messages depending on what is
going on with your machine. For example, if | remove al filters, DebugView shows these

messages constantly:
% DebugView on WAIO (local) =S
File Edit Capture Options Computer Help
=Hd | 4 &= @ EBO| i
& Tine Debug Print
282 3:52:54 PM [2144] "ORDERS - Program Started [April 19, 2006] @[3:52:54 PM]- v
283 3:52:54 PH [2144] "CRDERS - HNotice - Debuger forced on (INIT)
284 3:52:54 PH [2144] "ORDERS — Debuger Class wersion 6.0.2
971 3:54:05 PH [3924]
972 3:54:05 PM [3924] Got ACFRESENT KEY
973 3:54:05 PH [3924)]
974 3:54:05 PM [3924] Got DISCHARGING _KEY
975 3:54:05 PH [3924)]
976 3:54:05 PM [3924] Got EUNTIME TO EMPTY_ KEY
977 3:54:05 PM [e00]
978 3:54:05 PH [&00] Got ACPRESENT KEY
979 3:54:05 PHM [3924)]
980 3:54:05 PH [3924] Got REMAINING CAPACITY KEY
981 3:54:05 PM [e00]
982 3:54:05 FH [&00] Got OVERLOAD KEY
983 3:54:05 PH [&00]
984 3:54:05 PM [600] Got BATTERY_MANUFACTURE DATE KEY
985 3:54:05 PH [3924]
< >

Figure 29 — Computer talking to UPS device.

Thismakes it hard to see what you need to see. The DebugView class uses an “unshifted” tilde
character to “flag” messages sent by it. Thus open thefilter dialog and fill it is as follows:

Page - 35

Aussie DevCon 2006 Debugging

DebugView Filter [zl

Enter multiple filter match strings separated by the *;' character. 0K
iz a wildzard.

[nciude: |) w |

E:-cu:luu:le:| v| [Cancel]

_L d
T —

Highlight: Filker 1w

Figure 30 — Filter dialog.

To use the classin your application is quite simple. Use the CallABCMethod code template and
call DebugOut. It takes similar parameter as MESSAGE(). It may look like this:

7¢ Prompts for CallABCMet ﬂ

Object Name: |DE [+] | ak |
Method to Call |Meszage{STRING Body, | Cancel |
Pazzed Parameters |1 iz ' & CUS:Customer) ﬂ

[1
foom

'The value for customer iz ' & CUS:Custamer)
Cancel

Figure 31 — Using CallABCMethod code template to call Debug method.
That template generates code as follows:

1 Start of "Browser Method Code Section"
1 [Pricrity 2500]
IF LOC:Flag
Bt LOC - Flag
’DB.Hessage{'The wvalne for the Costomer is: " & CUOST:CostHuomber) i
=T lPriority SoO00]

Figure 32 — The DebugOut method.

When run and you trigger the buggy behavior, DebugView shows the following:

Page: 36

Debuqgging Aussie DevCon 2006

¢ DebugView on \WAIO (local) (=3
File Edit Capture Options Computer Help

EEHE | & &+ @ EBC | CF | 4

Time Debug Print

64 4:04:36 PM [2536] “ORDERS
65 4:04:36 PM [2536] “ORDERS
1] 4:04:36 PM [2536] "ORDERS
217 4:04:51 PM [2536] "ORDERS

Frogram Started [April 19, 2006 1] @[4:04:36 PM]- ww
Hotice — Debuger forced on (INIT)

Debuger Cla=s wersion 6.0.2

The wvalue for the Customer is: 3

Figure 33 — Message showing you a variable’s value.

Hand Coded Use

Using this classin a hand coded project is marginally more difficult. All you needto doisto
manually set up your project that the template does for you.

Thefirst step isto ensure the project defines variables are correctly set:

Page - 37

Aussie DevCon 2006 Debugging

7 Global Options x

Global Defines |

ABCDIMode_=:0 -
| ABCLinkMode =31
DebugerDliMode=:0

Debugerlinkhode=»1

hd
oK | Cancel | Help |

Figure 34 — Debuger flags defined and set.

Y our project may or may not be an ABC project, so the flags for ABC use may or may not bein
your defineslist. The DebugerDIIMode and _DebugerLinkMode_ flags are required. In the
figure above, they are set for EXE use. If your projectisaDLL or LIB, then reverse the flag
values. Zerois*off”, one or missingis“on”.

The second thing you need isto INCLUDE the class in the global section of your project:
INCLUDE("Debuger. INC®"),0NCE TInclude the Debuger class
Instantiate the classis al that is | eft:

DB Debuger

All you need now isto call the methods you need. An appendix describing the use of the
popular and common methods is part of this document if you wish to use more methods.

The Fastest Way to Start the Debugger

In the previous section, | showed how to use the debugger. Some people don't like the debugger
because they think it istoo much work to set up. For those who agree with that sentiment, here
isalittle tip on how to launch the debugger with no effort on your part.

It would be very nice to simply have the debugger start and pause at a breakpoint in source, just

like anyone with Visual Studio can do. To do thisin Clarion is harder than Visual Studio, it
requires one line of code. Oddly enough, this technique could be used in Visual Studio aswell.

Page: 38

Debuqgging Aussie DevCon 2006

Say you have a block of code you would like to launch the debugger, open the correct source,
execute the code up to the break point you are interested in. All without lifting afinger. Just
add the following code line;

DB.DebugBreak()

That's al you need to do. What this method does istrigger asimulated GPF. Just go through
the steps on post-mortem debugging. Except there is one difference, your application is still
running. Unlike areal post-mortem, you can step trace through your code, watch stack trace and
global variables, edit them, etc.

Thisis by far the easiest and fastest way to set up the Clarion debugger to begin debugging at
precisely the line of code you need.

Page - 39

Aussie DevCon 2006 Debugging

Page: 40

CHAPTER 4 - DRIVER DEBUGGING

Introduction

Regardless whether you use SQL or ISAM based files, there are times when you need to see what is
happening between your application and the data files. Clarion providesfile drivers so any Clarion
statement is the same from one backend to the next (with minor documented differences).

Problem behavior manifestsitself in many ways. Y ou may get random error codes, regardless of
backend. Y our application may have become slower. Innocent changes on your part may escape
notice of amajor effect on your application. Or a setting on the data server.

Driver tracing

Clarion ships with a utility to trace file driver calls. Thisworkswith SQL or ISAM drivers. Itis
located in the bin folder under the Clarion root folder (default C:\Clarion6\bin). Itiscalled
trace.exe. When started, it appears similar to this:

¥ Get/Set Tracing options for File Drivers E“E|E|
File Drier; DOFSFEED - E]

[¥] Show Clarion Statements Show record buffer contents

[]Flush contents

File to store tracing in: ||:::'-.,TF"STrac:e.bct E]

[O] [Cancel

Figure 35 — Trace utility

Using the orders application from earlier, below isatypical log file from starting the app, opening
the browse, and then closing the application:
06CCH(2) 16:28:59.031 CUSTOMER

FILE,DRIVER("TOPSPEED") ,NAME("CUSTOMER™) ,CREATE ,RECLAIM
06CCH(2) 16:28:59.031 CUST:BYNUMBER KEY (+CUST : CUSTNUMBER) ,OPT,NOCASE , PRIMARY

06CCH(2) 16:28:59.031 CUST:BYNAME KEY (+CUST : COMPANY) ,DUP ,OPT ,NOCASE
06CCH(2) 16:28:59.031 RECORD

06CCH(2) 16:28:59.031 CUST:CUSTNUMBER LONG

06CCH(2) 16:28:59.031 CUST:COMPANY STRING(30)

06CCH(2) 16:28:59.031 CUST:FIRSTNAME STRING(20)
06CCH(2) 16:28:59.031 CUST:MIDDLENAME STRING(20)

06CCH(2) 16:28:59.031 CUST:LASTNAME STRING(20)
06CCH(2) 16:28:59.031 CUST:ADDRESS STRING(30)
06CCH(2) 16:28:59.031 CUST:CITY STRING(20)
06CCH(2) 16:28:59.031 CUST:STATE STRING(2)
06CCH(2) 16:28:59.031 CUST:ZIP DECIMAL(5,0)
06CCH(2) 16:28:59.031 CUST:PHONE DECIMAL(11,0)

Page: 41

Taken:0.00 secs

06CCH(2) 16:28:59.
OPEN(C:\Clarion6\Examples\Tutor\Debugger\CUSTOMER.TPS:042C1D8H) Time Taken:0.01

secs

06CCH(2) 16:28:59.

062

062

Aussie DevCon 2006 Debugaing
06CCH(2) 16:28:59.031 END
06CCH(2) 16:28:59.031 END
06CCH(2) 16:28:59.031
06CCH(2) 16:28:59.031 GET_PROPERTY(CUSTOMER:042C1D8H) Time Taken:0.00 secs
06CCH(2) 16:28:59.031 GET_PROPERTY(CUSTOMER:042C1D8H) Time Taken:0.00 secs
06CCH(2) 16:28:59.031 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNUMBER[O]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.031 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNUMBER[O]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.031 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNUMBER[O]) Time
Taken:0.02 secs
06CCH(2) 16:28:59.046 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNUMBER[O]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.046 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNUMBER[O]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.046 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNUMBER[O]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.046 GET_PROPERTY(CUSTOMER:042C1D8H) Time Taken:0.00 secs
06CCH(2) 16:28:59.046 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNAME[1]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.046 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNAME[1]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.046 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNAME[1]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.046 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNAME[1]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.046 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNAME[1]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.046 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNAME[1]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.046 GET_PROPERTY(CUSTOMER:042C1D8H) Time Taken:0.00 secs
06CCH(2) 16:28:59.046 GET_PROPERTY(CUSTOMER:042C1D8H) Time Taken:0.00 secs
06CCH(2) 16:28:59.046 GETNULLS(CUSTOMER:042C1D8H) Error: File Not Open Time

GET_PROPERTY(C:\Clarion6\Examples\Tutor\Debugger\CUSTOMER.TPS:042C1D8H) Time

Taken:0.00 secs

06CCH(2) 16:28:59.

062

SETNULLS(C:\Clarion6\Examples\Tutor\Debugger\CUSTOMER.TPS:042C1D8H) Error:

Unsupported File Driver Function
06CCH(2) 16:29:01.
CLOSE(C:\Clarion6\Examples\Tutor\Debugger\CUSTOMER.TPS:042C1D8H) Time Taken:0.00

Secs

06CCH(1) 16:29:01.

343

515

Time Taken:0.00 secs

DESTROY(C:\Clarion6\Examples\Tutor\Debugger\CUSTOMER.TPS:042C1D8H) Time

Taken:0.00 secs

Listing 2 - Small driver trace log

Thereisalot of detail saved to the log, even with asimple action of starting the application,
opening a browse and then quitting. Using the trace utility, you can adjust to a certain extent, the
amount of datain thelog. If | did more than just open a browse, then memory dumps of the data
are also placed in the log.

Note: Be sure to turn off driver tracing when you are finished! Leaving it on impacts
performance and the log file grows quickly.

Special note: Whenever you are doing drive tracing, be sure to shutdown other applications

using the same driver first!

Page: 42

Debuqgging Aussie DevCon 2006

Thistool hasitsuses. The best iswhen you really don’'t have a good idea when trouble first starts.
Or perhaps you need to see which files or tables open first (or attempt to open). If you need to
know just the data when a particular procedure runs, then you must use other means.

Driver Tracing on Demand

If you really don’t wish to turn on driver logging globally as you would with the trace utility, then
consider turning it on in varying degrees. By that | mean you can turn it on when you enter a
procedure and turn it off when you return fromit. Or turn it on when a control is accepted and
turned off when another specific event happens. All sorts of combinations.

PROP:Profile

Property of aFILE that toggles logging out (profiling) all file1/O calls and errors returned by the
file driver to a specified text file. Assigning afilename to PROP:Profile initiates profiling, while
assigning an empty string (") turns off profiling. Querying this property returns the name of the
current log file, and an empty string (") if profiling is turned off.

PROP:Details

Thistellsthe driver to include record buffer contentsin the log file; however, if thefileis
encrypted, you must turn on both the Details switch and the ALLOWDETAILS switch to log
record buffer contents (see ALLOWDETAILS). Details=0 tellsthe driver to omit record buffer
contents. The Profile switch must be turned on for the Details switch to have any effect.

PROP:Log

This property writes a string to the log file.

As an example, the following is example code that writes what you want to alog file:

Customer{PROP:Profile} = "Customer.log®
Customer{PROP:Log} = "Event new selection. Current customer: " & CUST:Company
Customer{PROP:Profile} = “~

Listing 3 - Simple file logging.

Thislisting illustrates that you may turn on logging by naming afile where the dump statements go.
Itisatext file. Youmay use apath and file name, otherwise thefileisin the current folder. The
second line writes whatever you need in the log file. The last line turns off the logging. A typical
result would look like this:

OBE8H(2) 10:20:56.343 Event new selection. Current customer: ABC Widgets Company
OBE8H(2) 10:20:56.781 Event new selection. Current customer: Have Everything
OBE8H(2) 10:20:57.187 Event new selection. Current customer: Easi Everything

OBE8H(2) 10:20:57.578 Event new selection. Current customer: Fidelity America
OBE8H(2) 10:20:58.015 Event new selection. Current customer: K Processing

Listing 4 - Example dump log contents.

The advantages to using this method over the system wide method should be obvious. Y ou may put
anything you like in the dump file. Since you control the code, you may even use conditional logic
for when something is dumped to afile.

Asafinal suggestion, you could place any code like this as debug statements. Thisisthe form
where column one contains a question mark and at least one space. This has a hidden second

Page - 43

Aussie DevCon 2006 Debugging

benefit too. These debug statements are ideal places to locate code to set breakpoints when you do
need to use the debugger.

Summary

Dumping datato alog file is easy and straightforward. Y ou may turn on system wide driver tracing
if you are not sure where the problem lies or suspect a data error, like a customer ID pointing to a
wrong customer ID in theinvoice file. Once you've narrowed down where the problem may be,
you may use PROP:Profile to start the process of dumping datato alog file. PROP:Log writes
whatever string expression you want to the dump file, thus you are in complete and total control
over what goesin the dump file.

Page: 44

ComMMON CODING PROBLEMS

Introduction

Knowing how to code a GPF may sound strange as we tend to spend our production time not
coding errors. Thetheory hereisthat if you know how to code GPFs or produce them, then you are
less likely to have these in production code. Same for other coding errors that the compiler does not
complain about.

Program just quits suddenly

Thisiswhen you are running the application and it just shuts down with no warning, no errors. It’'s
like pressing aLT-F4. How do you trace that? Check for these reported causes:

Recursive calls

Too many recursive calls can exhaust resources. While you can code these in an application
(which Clarion does point out), one or two may not cause any issues other than just bad coding
design. It can get tricky if these calls are across DLLs. Thanksto Mike Hanson for thistip.

Bad slicing

Thisisthe condition where the begin slice is greater than the end. This can happen when oneis
thinking SUB but doing slicing.

xVal = 10; yval = 3
sVal = SUB(rval,xVval,yVval) IThis works
svVal = rVval[xval : yval] IEnds program with no GPF

Thanks to Carl Barnesfor thistip.

Delayed GPFs

Thisiswhen abit of bad code corrupts the stack, but the GPF happens later. Some situations make
using the debugger difficult and thisis one of them. One reason the debugger won't be much usein
this situation is that you don’'t have a good place to put some breakpoints. And if you think you
have an idea, the next pass through the suspect area, nothing happens.

One sure fire way to make life miserable isto rely on an implicit RETURN. This can corrupt the
stack and a GPF is not far away once this happens. Hereiswhat it would look like:

IF Somevar > 10
RETURN LEVEL:Benign
END

OK, that looks harmless. But what happens if the condition isfalse? Whereis the code for the
false side? The compiler will place an implicit RETURN here. But what does it return? Anything?
If you just place aRETURN by itself, at least the compiler would point out that avalue is missing.

The same theory holds for ROUTINEs. Explicit EXITs are alwaysagood idea. Plusyou get anice

benefit — you can put a breakpoint on these lines and check the values as a procedure or routine
returns to the calling code.

Page: 45

Aussie DevCon 2006 Debugging

Another cause could be abad dlice buffer overrun. Using the slice example above, you could make
the above code safe:

ASSERT(xVal > 0 AND xVal <= yVal AND |

xVal <= SIZE(rVval) AND |

yVal <= SIZE(rVval)) TAsserts before problem code below
sVal = rVval[xval : yval] TEnds program with no GPF

Thanksto Carl Barnes and Gordon Smith for thistip. | would also like to add that aliberal use of
ASSERTSsin your code can trap problems early.

Page: 46

APPENDIX A — DEBUGER CLASS
REFERENCE

Introduction

Thefollowing is aquick reference of the common methods of the DebugerClass. A full reference
isavailable for free at www.radfusion.com.

Init
Prototype
PROCEDURE(STRING ProgramName,BYTE DebugAlways=FALSE ,SHORT DuplicateCount=50),VIRTUAL
Description

ProgamName — A string constant or expression stating the name of the application

DebugAlways — Either true or false (default) - if true then Debuger on regardless of project
Debug setting. '/Debuger’ on the command line will also turn on the Debuger functions for that
launch asif this parameter is set to True.

DuplicateCount — The number of duplicate Debug messages in arow before warning message.
If zero, then do not track duplicates. Default is50.

Message
Prototype

PROCEDURE(STRING body,<STRING Header>,BYTE ShowMessage=FALSE,BYTE ForceDebug=FALSE),VIRTUAL
Description
Body — The body of the message, either a string constant or expression.
Header — An optional message header. A string constant or expression.
ShowMessage - if True then a MESSAGE() will be issued along with the DebugOutString
ForceDebug - If True then this overrides the debug setting.

DebugBreak
Prototype

PROCEDURE() , VIRTUAL

Description

This method is awrapper for the DebugBreak API call. This has the same effect as setting a
breakpoint. It isonly called if the DebugActive property istrue.

Page: 47

Aussie DevCon 2006 Debugging

Kill
Prototype
PROCEDURE()

Description

Sends an output string to DebugView indicating the program quit. It also setsthe DebugActive
property to false. It isautomatically called by the Destruct auto method. You could also call it
and re-issue an Init if you wanted to “restart” the class.

Page: 48

