
	

Continue

https://feedproxy.google.com/~r/skout/mBVl/~3/A3Ryygt5BCM/uplcv?utm_term=debugging+with+fiddler+the+complete+reference+pdf

Debugging	with	fiddler	the	complete	reference	pdf

Debugging	with	Fiddler	The	complete	reference	from	the	creator	of	the	Fiddler	Web	Debugger	Eric	Lawrence	Debugging	with	Fiddler	Cover	Photo:	Nicholas	Wave;	©IStockPhoto.com/@by_nicholas	Everything	else:	©2012	Eric	Lawrence.	All	rights	reserved.	Please	don’t	pirate	this	book	in	whole	or	in	part.	Beyond	the	nine	years	I’ve	spent	developing
Fiddler,	I	spent	nine	months	on	this	book	and	I’d	like	to	be	able	to	pay	for	the	coffee	I	drank	while	writing	it.	:)	Book	Version	LULU	1.00	/	Fiddler	Version	2.3.9.9	Legalese	Trademarks	mentioned	in	this	book	are	(obviously)	the	property	of	their	respective	owners,	and	are	only	used	to	identify	the	products	or	services	mentioned.	This	book	is	provided
"as	is.”	In	no	event	shall	I,	the	author,	be	liable	for	any	consequential,	special,	incidental	or	indirect	damages	of	any	kind	arising	out	of	the	delivery,	accuracy,	or	use	of	this	book.	This	book	was	written	with	care,	but	no	one	warrants	that	it	is	error-free.	On	the	contrary,	I	guarantee	that	this	book	contains	at	least	a	few	errors,	and	I	promise	to	be
suitably	embarrassed	when	you	point	them	out	to	me	(so	that	I	may	update	the	next	version.		@ericlaw	on	Twitter	ii	|	Introduction	ACKNOWLEDGEMENTS	This	book,	and	Fiddler	itself,	would	not	have	been	possible	without	myriad	contributions	from	hundreds	of	people	around	the	world.	First,	I’d	like	to	thank	my	wife	Jane,	a	source
of	inspiration,	encouragement,	and	immense	patience	as	I’ve	spent	innumerable	nights	and	weekends	working	on	Fiddler	and	authoring	this	book.	Next,	thanks	to	my	parents	and	grandmother,	who	instilled	in	me	a	voracious	appetite	for	books	and	the	idea	that	one	day	I	should	try	my	hand	at	writing	one.	I	beg	my	friends’	forgiveness	for	declining	so
many	gatherings	over	the	years	to	stay	home	and	write	more	code.	I’m	grateful	for	the	many	contributions	of	colleagues	too	numerous	to	mention	(they	know	who	they	are!),	and	to	the	broader	Fiddler	community	for	providing	a	steady	stream	of	encouragement,	suggestions	and	bug	reports.	My	colleague	Jim	Moore	warrants	a	special	mention	for	his
careful	review	of	the	draft	version	of	this	book,	and	his	valuable	feedback	on	Fiddler	over	the	years.	I’d	also	like	to	acknowledge	the	many	dozens	of	donors	who	supported	Fiddler	financially	as	it	became	costly	to	maintain	and	distribute.	Lastly,	I’d	like	to	thank	you,	dear	reader,	for	caring	enough	about	Fiddler	to	pick	up	this	book!	iii	|	Introduction
TABLE	OF	CONTENTS	Acknowledgements	...iii	Table	of	Contents	...	iv	INTRODUCTION	...	1	Origins
..	2	About	this	book..	4	A	Quick	Primer...	6	Basic	Concepts
...	6	Usage	Scenarios	...	7	An	Incomplete	List	of	Things	Fiddler	Can	Do	...	7	An	Incomplete	List	of	Things	Fiddler	Cannot	Do
...	7	EXPLORING	FIDDLER	...	9	Getting	Started..	10	System	Requirements
..	10	Installing	Fiddler..	10	Permissions	and	XCOPY	Deployment	...	10	Updating	Fiddler
...	11	Uninstalling	Fiddler...	11	The	Fiddler	User-Interface	...	12	The	Web	Sessions	List
...	12	Understanding	Icons	and	Colors	..	13	Keyboard	Reference	..	15	Web	Sessions	Context	Menu
...	15	Fiddler’s	Main	Menu	..	20	The	File	Menu	..	20	The	Edit	Menu
...	20	The	Rules	Menu	...	21	Performance	Submenu	..	22	The	Tools	Menu
...	23	The	View	Menu..	23	The	Help	Menu	..	24	Fiddler’s	About	Box
..	25	iv	|	Introduction	Fiddler’s	Toolbar	..	26	Fiddler’s	Status	Bar	..	27	QuickExec
...	28	QuickExec	Selection	Commands	..	28	Default	FiddlerScript	Commands	..	30	Application	Hotkeys
..	33	Statistics	Tab	...	34	The	Filters	tab	...	36	Hosts
..	36	Client	Process	..	37	Request	Headers..	37	Breakpoints
..	38	Response	Status	Code	...	38	Response	Type	and	Size..	39	Response	Headers
...	39	The	Timeline	tab	...	40	Mode:	Timeline	..	40	Mode:	Client	Pipe
Map..	41	Mode:	Server	Pipe	Map	...	42	Using	the	Timeline	for	Performance	Analysis..	42	The	AutoResponder	tab
...	43	Specifying	the	Match	Condition	...	44	Matching	Against	Request	Bodies	..	45	Specifying	the	Action	Text
..	45	Using	RegEx	Replacements	in	Action	Text	..	46	Drag-and-Drop	support	..	47	FARX
Files..	48	The	TextWizard	..	49	Character	Encodings	..	50	The	Composer	tab
..	51	Request	Options	..	51	Raw	Requests	..	52	Parsed
Requests...	52	v	|	Introduction	Issuing	Sequential	Requests..	52	File	Upload	Requests	..	53	Automatic	Request	Breakpoints
...	54	The	Log	tab	...	55	The	Find	Sessions	Window	..	56	The	Host	Remapping	Tool
...	58	TECHNIQUES	AND	CONCEPTS...59	Retargeting	Traffic	with	Fiddler	..	60	Method	#1	-	Rewriting
..	60	Method	#2	-	Rerouting	..	60	Method	#3	-	Redirecting..	61	Features	to	Retarget	Requests
...	61	Comparing	Sessions	...	63	UltraDiff...	64	Comparing	Multiple	Sessions	at	Once
...	64	Debugging	with	Breakpoints	...	65	Setting	Breakpoints	...	65	Tampering	Using
Inspectors...	66	The	Breakpoint	Bar..	66	Resuming	Multiple	Sessions	...	67	CONFIGURING	FIDDLER	AND	CLIENTS
...69	Fiddler	Options...	70	General	Options	...	70	HTTPS	Options
..	71	Extensions	Options	..	72	Connections	Options	...	72	Appearance	Options
..	74	HeaderEncoding	Setting	..	75	Preferences	..	76	Configuring	Clients
..	77	Capturing	Traffic	from	Browsers	..	77	Firefox	..	77	Opera
...	78	vi	|	Introduction	Other	Browsers	..	78	Capturing	Traffic	from	Other	Applications	...	79	WinHTTP
...	79	.NET	Framework	...	79	Java...	80	PHP	/
CURL...	81	Capturing	Traffic	from	Services	..	81	Capturing	Traffic	to	Loopback	..	81	Loopback	Bypasses
...	81	Loopback	Authentication..	82	Loopback	Blocked	from	Metro-style	Windows	8	Apps	..	82	Running	Fiddler	on	Mac	OSX
...	84	Capturing	Traffic	from	Other	Computers	..	85	Capturing	Traffic	from	Devices	..	86	Apple	iOS	Proxy	Settings
..	87	Windows	Phone	Proxy	Settings	...	87	Windows	RT	Proxy	Settings	...	88	Other	Devices
..	88	Using	Fiddler	as	a	Reverse	Proxy	...	88	Acting	as	a	Reverse	Proxy	for	HTTPS	..	89	Chaining	to	Upstream	Proxy	Servers
...	89	Chaining	to	SOCKS	/	TOR...	90	VPNs,	Modems,	and	Tethering	...	91	DirectAccess
...	91	Memory	Usage	and	Fiddler’s	Bitness	..	92	Buffering	vs.	Streaming	Traffic	..	94	Request	Buffering
..	94	Response	Buffering	..	94	COMET...	94	HTML5	WebSockets
...	96	Fiddler	and	HTTPS	...	98	Trusting	the	Fiddler	Root	Certificate	..	99	Machine-wide	Trust	on	Windows	8
...	99	vii	|	Introduction	Manually	Trusting	the	Fiddler	Root	...	100	Additional	HTTPS	Options	..	101	Configuring	Clients	for	HTTPS	Decryption
..	102	Browsers	...	102	Firefox	..	102	Opera
...	102	Cross-machine	scenarios	...	102	HTTPS	and	Devices	...	103	Windows	Phone
..	103	Android	and	iOS	...	103	Buggy	HTTPS	Servers	...	104	Certificate
Validation...	105	Certificate	Pinning	...	105	Fiddler	and	FTP	..	107	Fiddler	and	Web	Authentication
...	108	HTTP	Authentication	..	108	Automatic	Authentication	in	Fiddler	...	109	Authentication	Problems
...	110	Channel-Binding	...	110	WinHTTP	Credential	Release	Policy	..	110	Loopback	Protection
...	110	HTTPS	Client	Certificates	..	111	INSPECTORS	..	113	Overview
..	114	Auth	..	116	Caching	...	118
Cookies..	119	Headers	...	120	Context	Menu	..	121	Keyboard	Shortcuts
...	121	Editing	..	121	HexView	...	123	ImageView
..	125	viii	|	Introduction	JSON..	126	Raw	...	127	SyntaxView
...	128	TextView	...	130	Transformer	..	131	Background	on	Response	Encodings
..	131	Adding	and	Removing	Encodings	using	the	Transformer..	132	Other	Ways	to	Remove	Encodings	...	133	WebForms
...	134	WebView...	135	XML...	136	EXTENSIONS
...	137	Overview	..	138	Popular	3rd	Party	Extensions	...	138	Performance	Add-ons
...	138	Security	Add-ons...	138	Extensions	I’ve	Built	..	138	JavaScript
Formatter...	140	Gallery...	141	Full-Screen	View	..	141	Content	Blocker
..	143	Traffic	Differ	...	144	FiddlerScript	Editors	..	145	FiddlerScript	Tab
...	145	ClassView	Sidebar	...	146	Fiddler2	ScriptEditor	...	146
SAZClipboard...	148	AnyWHERE	..	149	STORING,	IMPORTING,	AND	EXPORTING	TRAFFIC...	151	Session	Archive	Zip	(SAZ)	Files
..	152	Protecting	SAZ	Files	..	153	FiddlerCap	..	154	Capture	Box
...	154	ix	|	Introduction	Capture	Options	Box	...	155	Tools	Box	..	156	Fiddler’s	Viewer
Mode...	158	Importing	and	Exporting	Sessions	..	159	Import	Formats	..	159	Export	Formats
..	159	HTML5	AppCache	Manifest...	160	HTTPArchive	v1.1	and	v1.2	..	161	MeddlerScript
..	162	Raw	Files..	162	Visual	Studio	WebTest	..	163	WCAT
Script..	163	FIDDLERSCRIPT	..	165	Extending	Fiddler	with	FiddlerScript..	166	About	FiddlerScript
...	166	Editing	FiddlerScript	...	167	Updating	FiddlerScript	at	Runtime	..	168	Resetting	to	the	Default	FiddlerScript
..	168	FiddlerScript	Functions	..	169	Session	Handling	Functions	..	169	OnPeekAtRequestHeaders
...	169	OnBeforeRequest...	169	OnPeekAtResponseHeaders	...	169	OnBeforeResponse
..	169	OnReturningError	...	170	General	Functions	..	170	Main
...	170	OnRetire...	170	OnBoot	...	170	OnShutdown
...	170	OnAttach..	170	OnDetach	...	170	OnExecAction(sParams:	string[])
...	170	x	|	Introduction	FiddlerScript	and	Automation	Tools	...	172	Quiet	Mode	..	172	Driving	Fiddler	from	Batch	Scripts
..	172	Driving	Fiddler	from	Native	or	.NET	Code	...	173	Extending	Fiddler’s	UI	-	Menus...	175	Extending	the	Tools	Menu
..	175	Extending	the	Web	Sessions	Context	Menu	...	176	Extending	the	Rules	Menu	..	176	Boolean-bound	Rules
..	176	String-bound	Rules	...	177	Creating	New	Top-Level	Menus	...	179	Extending	Fiddler’s	UI	-	Adding	Columns	to	the	Web	Sessions
List	..	181	Binding	Columns	using	Attributes	...	181	Binding	Columns	using	AddBoundColumn	..	183	FiddlerObject	Functions
...	185	FiddlerObject.ReloadScript()	..	185	FiddlerObject.StatusText	...	185	FiddlerObject.log(sTextToLog)
...	185	FiddlerObject.playSound(sSoundFilename)	..	186	FiddlerObject.flashWindow()	...	186	FiddlerObject.alert(sMessage)
..	186	FiddlerObject.prompt(sMessage)	...	186	FiddlerObject.createDictionary()	..	186	FiddlerObject.WatchPreference(sPrefBranch,	oFunc)
...	187	Referencing	Assemblies	...	188	Example	Scripts	..	189	Request	Scripts
...	189	Add	(or	Overwrite)	a	Request	Header	...	189	Remove	Request	Headers	...	189	Flag	Requests	that	Send	Cookies
..	189	Rewrite	a	Request	from	HTTP	to	HTTPS	...	189	Swap	the	Host	Header	..	189	Drop	a	Connection
..	190	xi	|	Introduction	Prevent	Response	Streaming	..	190	Response	Scripts	..	190	Hide	Sessions	that	Returned	Images
..	191	Flag	Redirections	...	191	Replace	Text	in	Script,	CSS,	and	HTML	...	191	Remove	All	DIV	Elements
..	191	More	Examples	..	191	EXTENDING	FIDDLER	WITH	.NET	CODE	...	193	Extending	Fiddler	with
.NET...	194	Project	Requirements	and	Settings	...	194	Debugging	Extensions	...	194	Best	Practices	for	Extensions
...	195	Best	Practice:	Use	an	Enable	Switch	...	195	Best	Practice:	Use	Delay	Load...	195	Best	Practice:	Beware	“Big
Data”..	197	Best	Practice:	Use	the	Reporter	Pattern	for	Extensions	...	197	Interacting	with	Fiddler’s	Objects..	199	The	Web	Sessions	List
...	199	Session[]	GetAllSessions()	...	199	Session	GetFirstSelectedSession()	...	199	Session[]	GetSelectedSessions()
..	199	Session[]	GetSelectedSessions(int	iMax)	..	199	void	actSelectAll()	...	199	void
actSelectSessionsMatchingCriteria(doesSessionMatchCriteriaDelegate	oDel)........................	199	void	actRemoveSelectedSessions()	...	200	void	actRemoveUnselectedSessions()	..	200	bool	actLoadSessionArchive(string	sFilename)
...	200	void	actSaveSessionsToZip()	..	200	void	actSaveSessionsToZip(string	sFilename,	string	sPwd)	...	200	void	actSessionCopyURL()
...	200	void	actSessionCopySummary()	..	200	void	actSessionCopyHeadlines()	..	200	int	FiddlerApplication.UI.lvSessions.SelectedCount
..	201	xii	|	Introduction	SimpleEventHandler	FiddlerApplication.UI.lvSessions.OnSessionsAdded	201	Session	Objects	...	201	oRequest
..	201	requestBodyBytes	..	201	oResponse	..	201	responseBodyBytes
...	202	oFlags	...	202	void	Abort()	...	202
bBufferResponse..	202	bHasReponse	...	202	bypassGateway	...	202	clientIP
...	202	clientPort..	202	bool	COMETPeek()	...	202
fullUrl...	203	PathAndQuery	..	203	port	...	203	host
...	203	hostname..	203	bool	HostnameIs(string)	...	203	bool	HTTPMethodIs(string)
...	203	bool	uriContains(string)	..	203	id	..	203	isFTP
..	203	isHTTPS	...	203	isTunnel	...	203	LocalProcessID
..	203	bool	utilDecodeRequest()..	203	bool	utilDecodeResponse()	...	204	responseCode
..	204	state	..	204	BitFlags	..	204	Timers
..	205	xiii	|	Introduction	Sending	Strings	to	the	TextWizard	...	207	Logging	..	207	Interacting	with	the
FiddlerScript	Engine	..	208	Programming	with	Preferences	...	210	Preference	Naming	..	210	The	IFiddlerPreferences	Interface
...	210	Storing	and	Removing	Preferences	...	210	Internally,	all	preference	values	are	stored	as	strings;	the	...	211	Retrieving	Preferences
...	211	Watching	for	Preference	Changes	...	211	Notifications	in	Extensions	...	212	Notifications	in	FiddlerScript
...	212	Building	Extension	Installers	...	213	Building	Inspectors...	216	Inspecting	the	Session	Object
..	220	Dealing	with	HTTP	Compression	and	Chunking...	222	Decoding	a	Copy	of	the	Body	...	222	Using	the	GetRe*BodyAsString	Methods
...	223	Using	the	utilDecode*	Methods	..	223	Inspector	Assemblies	...	224	Building	Extensions
..	225	Understanding	Threading	...	226	Integrating	with	QuickExec...	226	Example	Extension
..	227	Extension	Assemblies	..	232	Building	Import	and	Export	Transcoders	...	233	Direct	Fiddler	to	load	your	Transcoder	assemblies
...	233	The	ProfferFormat	Attribute	...	233	The	ISessionImporter	Interface...	234	The	ISessionExporter	Interface
...	234	Handling	Options	..	235	Providing	Progress	Notifications	...	235	Notes	on	Threading	and	Transcoders	in	FiddlerCore
...	237	xiv	|	Introduction	Beyond	Files	...	237	Example	Transcoder	..	237	FIDDLERCORE
..	243	Overview	..	245	Legalities	..	245	Getting	Started	with	FiddlerCore
...	246	Compiling	the	Sample	Application	..	246	FiddlerCoreStartupFlags	...	248	The	FiddlerApplication	Class
..	250	FiddlerApplication	Events	..	250	RequestHeadersAvailable	Event	..	250	BeforeRequest	Event
...	250	OnValidateServerCertificate	Event	..	250	OnReadResponseBuffer	Event..	250	ResponseHeadersAvailable
Event..	251	BeforeResponse	Event	...	252	BeforeReturningError	Event	...	252	AfterSessionComplete	Event
..	252	FiddlerAttach	Event	..	252	FiddlerDetach	Event	...	252	OnClearCache	Event
...	252	OnNotification	Event	..	253	FiddlerApplication	Methods	...	253	Startup()
...	253	Shutdown()	..	253	IsStarted()...	253
IsSystemProxy()...	253	CreateProxyEndpoint()	...	253	DoImport()	...	254	DoExport()
...	254	GetVersionString()	..	254	GetDetailedInfo()...	254	ResetSessionCounter()
..	254	xv	|	Introduction	FiddlerApplication	Properties	and	Fields	..	254	isClosing	..	254	Log
...	254	oDefaultClientCertificate	..	255	oProxy	..	255	oTranscoders
...	255	Prefs	...	255	The	Rest	of	the	Fiddler	API	...	255	Common	Tasks	with	FiddlerCore
...	256	Keeping	track	of	Sessions..	256	Getting	Traffic	to	FiddlerCore	..	256	Trusting	the	FiddlerCore	Certificate
..	257	Generating	Responses	...	258	Other	Resources	..	258	APPENDICES
...	259	Appendix	A:	Troubleshooting	...	260	Missing	Traffic	...	260	Interference	from	Security	Software
...	261	Problems	Downloading	Fiddler	...	261	Problems	Installing	Fiddler	..	261	Problems	Running
Fiddler..	261	Corrupted	Proxy	Settings	..	262	Resetting	Fiddler..	262	Troubleshooting	Certificate	Problems
..	263	Wiping	all	traces	of	Fiddler	...	264	Fiddler	crashes	complaining	about	the	"Configuration	System"...	264	Fiddler	randomly	stops	capturing	traffic
...	265	Fiddler	stalls	when	streaming	RPC-over-HTTPS	traffic	..	265	Appendix	B:	Command	Line	Syntax	...	267	Option	Flags
...	267	Examples	..	267	Appendix	C:	Session	Flags	...	268	Session	Display
Flags...	268	xvi	|	Introduction	Breakpoint	and	Editing	Flags	..	269	Networking	Flags	..	270	Authentication	Flags
..	271	Client	Information	Flags	..	272	Performance	Simulation	Flags	..	272	HTTPS
Flags...	273	Request	Composer	Flags	...	275	Other	Flags	...	275	Appendix	D:	Preferences
...	278	Network	Preferences	...	278	HTTPS	Preferences	..	282	Fiddler	UI	Preferences
...	284	FiddlerScript	Preferences	..	287	TextWizard	Preferences	...	288	Request	Composer	Preferences
...	288	Path	Configuration	..	289	Miscellaneous	...	290	Extension	Preferences
..	291	Raw	Inspector	..	291	JavaScript	Formatter	...	291	Certificate	Maker
...	291	Index	...	294	xvii	|	Introduction	Introduction	ORIGINS	First,	a	confession—the	Fiddler	Web	Debugger	is	not	the	result	of	a	grand	vision	or	the	ambition	to	develop	the
world’s	most	popular	debugging	proxy.	A	tool	born	of	necessity,	I	never	set	out	to	build	a	platform	so	flexible,	powerful,	and	complicated	that	I’d	be	forced	to	spend	nine	months	writing	a	book	to	explain	how	to	fully	take	advantage	of	it.	But	here	we	are.	Before	diving	into	the	technical	chapters,	I	will	begin	by	sharing	the	story	behind	how	Fiddler
came	to	be.	As	a	student	at	the	University	of	Maryland	in	the	spring	of	1999,	I	had	the	chance	to	interview	for	a	Program	Management	position	on	a	new	team	at	Microsoft.	One	of	my	final	interviewer’s	first	questions	was	“How	does	HTTP	work?”	Knowing	only	the	basics,	I	gave	an	incomplete	and	somewhat	inaccurate	answer,	but	didn’t	embarrass
myself	too	badly.	That	summer	and	the	following,	I	worked	on	features	for	the	first	version	of	SharePoint.	On	rare	occasions,	I	found	myself	looking	at	web	traffic	in	Microsoft	Network	Monitor	(NetMon),	a	powerful	but	then	primitive	and	difficult-to-use	packet	sniffer.	In	the	early	summer	of	2001,	I	joined	Microsoft	full-time	as	the	Program	Manager
for	the	Office	Clip	Art	organizer	client	and	web	site.	At	that	time,	most	of	the	developers	and	testers	working	on	my	team	were	new	to	web	development,	having	previously	been	responsible	for	writing	native	code	applications	in	C	and	C++.	It	was	quickly	apparent	that	the	debugging	process	was	overly	cumbersome—many	of	my	colleagues	were	loath
to	use	NetMon.	I	even	watched	some	developers	debugging	HTTP	requests	by	hovering	over	variables	in	Visual	Studio,	examining	the	raw	traffic	in	hex:	Having	authored	a	number	of	small	utilities	over	the	years,	I	was	confident	that	I	could	code	something	to	make	web	debugging	simpler.	My	first	simplistic	effort	was	based	on	taking	an	existing	C++
proxy	server	and	making	minor	modifications	to	it	so	that	it	would	spew	HTTP	traffic	to	the	system	console:	2	|	Introduction	It’s	generous	to	call	this	effort	primitive—the	proxy	couldn’t	handle	secure	traffic	or	authentication	protocols.	Nontext	content	was	another	problem—comically,	the	utility	would	try	to	render	binary	content	as	ASCII.	Old-school
console	users	may	recall	that	the	octet	0x07	represents	the	“bell”	character,	and	when	it’s	displayed	in	the	console,	a	system	beep	is	played.	Soon	after	its	release,	the	hallways	of	the	Office	Online	team	sounded	like	a	Las	Vegas	casino,	as	binary	content	flowed	through	the	debug	proxies	running	in	each	tester’s	office.	Despite	the	very	annoying
limitations,	this	tool	was	still	popular,	and	I	was	inspired	to	get	started	on	the	next	version.	I	mocked	up	a	quick	little	demo	in	Borland	Delphi,	a	native	code	language	used	by	most	of	my	development	work	at	the	time.	The	colorful	UI	foreshadowed	Fiddler’s	eventual	appearance:	However,	as	I	pondered	the	security	and	memory-management
implications	of	writing	a	proxy	server	in	native	code,	I	soon	decided	that	my	next	effort	would	be	developed	in	C#,	a	new	language	being	developed	by	the	Visual	Studio	team	that	my	best	friend	had	just	joined.	The	notion	of	writing	a	HTTP	proxy	server	from	scratch	in	.NET	posed	just	two	significant	challenges:	I	didn’t	really	know	how	HTTP	worked,
and	I	didn’t	know	how	to	code	in	C#.	Fortunately,	given	a	few	bucks	and	a	lot	of	spare	weekends,	both	shortcomings	would	be	remedied.	Two	books	were	my	constant	companions:	HTTP:	The	Definitive	Guide	and	the	C#	Cookbook.	Chapter	by	chapter,	I	learned	about	HTTP	and	C#	.NET,	and	week-by-week	Fiddler	came	to	life.	About	six	months	after
I	started,	I	had	a	basic	version	of	Fiddler	available:	3	|	Introduction	Like	its	predecessors,	it	too	had	a	large	number	of	limitations	(and	thousands	of	bugs)	but	it	was	eagerly	adopted	by	colleagues	whose	PC	speakers	were	in	danger	of	burning	out	from	the	incessant	beeps	of	my	first	proxy	utility.	Over	the	subsequent	years,	Fiddler	was	progressively
enhanced	with	two	extensibility	models,	a	mechanism	to	automatically	generate	and	modify	responses,	and	support	for	secure	(HTTPS)	traffic,	FTP,	and	HTML5	WebSockets.	About	this	book	After	nearly	9	years	and	one	hundred	version	updates,	Fiddler	has	evolved	into	a	powerful	utility	and	platform	that	can	perform	a	wide	variety	of	tasks.	It	has	a
rich	extensibility	model	and	a	community	of	add-on	developers	who	have	broadened	its	usefulness	as	a	performance,	security,	and	load-testing	tool.	Questions	in	email,	online	discussion	groups,	and	numerous	conferences	over	the	years	made	it	overwhelmingly	apparent	that	most	users	only	exploit	a	tiny	fraction	of	Fiddler’s	power.	I	came	to	realize
that	thousands	of	users	would	get	a	lot	more	out	of	Fiddler	if	there	were	a	complete	reference	to	the	tool	available.	This	book	is	the	product	of	that	realization.	As	Fiddler’s	developer,	I’ve	found	it	both	easy	and	challenging	to	write	this	book.	It’s	easy,	because	I	understand	Fiddler	deeply,	down	to	its	very	foundation,	and	can	consult	the	source	code	to
research	obscure	details.	On	the	other	hand,	it’s	been	very	challenging,	as	every	time	I	choose	an	interesting	scenario	or	feature	to	write	about,	I’m	forced	to	think	deeply	about	that	scenario	or	feature.	Commonly,	I’ve	found	myself	developing	improvements	to	revise	Fiddler	and	minimize	or	eliminate	the	need	to	write	about	the	topic	in	the	first	place.
As	a	result,	I’ve	rewritten	large	portions	of	both	this	book	and	Fiddler	itself.	It’s	been	a	slow	process,	but	both	projects	have	benefitted.	Publication	of	this	book	will	roughly	coincide	with	the	release	of	Fiddler	version	2.4.0.0	in	the	early	summer	of	2012.	If	you’re	using	a	later	version	of	Fiddler,	you	will	find	some	minor	differences,	but	the	core
concepts	will	remain	the	same.	This	book	is	deliberately	limited	in	scope—it	covers	nearly	every	aspect	of	Fiddler	and	FiddlerCore,	but	it	is	not	a	tutorial	on	HTTP,	SSL,	HTML,	Web	Services	or	the	myriad	other	topics	you	may	want	to	understand	to	fully	exploit	Fiddler’s	feature	set.	If	you	want	a	deeper	understanding	of	web	protocols,	I	can
recommend	the	references	I	consulted	during	the	development	of	Fiddler:		Hypertext	Transfer	Protocol	--	HTTP/1.1	from	4	|	Introduction		HTTP:	The	Definitive	Guide	by	David	Gourley		Web	Protocols	and	Practice:	HTTP/1.1,	Networking	Protocols,	Caching,	and	Traffic	Measurement	by	Balachander	Krishnamurthy	and	Jennifer	Rexford		SSL	&	TLS
Essentials:	Securing	the	Web	by	Stephen	A.	Thomas	This	book	can	be	read	either	“straight	through”	or	you	can	use	the	Table	of	Contents	and	Index	to	find	the	topics	most	interesting	to	you.	Please	consider	skimming	all	of	the	chapters,	even	those	that	don’t	seem	relevant	to	your	needs,	because	each	chapter	often	contains	tips	and	tricks	you	might
not	find	elsewhere.	I	encourage	you	to	begin	by	reading	the	primer	in	the	next	chapter,	which	lays	out	some	terminology	and	the	basic	concepts	that	you’ll	need	to	understand	to	get	the	most	out	of	Fiddler	and	this	book.	Enjoy!	5	|	Introduction	A	QUICK	P	RIMER	In	this	section,	I’ll	provide	some	basic	information	about	Fiddler	that	will	help	you	get
started	and	build	a	foundation	for	the	rest	of	the	book.	Basic	Concepts	Fiddler	is	a	special-purpose	proxy	server	that	runs	on	your	Windows-based	computer.	Locally-running	programs	like	web	browsers,	Office	applications,	and	other	clients	send	their	HTTP	and	HTTPS	requests	to	Fiddler,	which	then	typically	forwards	the	traffic	to	a	web	server.	The
server’s	responses	are	then	returned	to	Fiddler,	which	passes	the	traffic	back	to	the	client.	Virtually	all	programs	that	use	web	protocols	support	proxy	servers,	and	therefore	Fiddler	can	be	used	with	almost	any	app.	When	it	starts	capturing,	Fiddler	registers	itself	with	the	Windows	Internet	(WinINET)	networking	component	and	requests	that	all
applications	begin	directing	their	requests	to	Fiddler.	Some	applications	do	not	automatically	respect	the	Windows	networking	configuration	and	may	require	manual	configuration	in	order	for	Fiddler	to	capture	their	traffic.	Fiddler	can	be	configured	to	work	in	more	exotic	scenarios,	including	server-to-server	(e.g.	Web	Services)	and	device-to-server
traffic	(e.g.	iPad	or	Windows	Phone	clients).	By	default,	Fiddler	is	designed	to	automatically	chain	to	any	upstream	proxy	server	that	was	configured	before	it	began	capturing—this	allows	Fiddler	to	work	in	network	environments	where	a	proxy	server	is	already	in	use.	Because	Fiddler	captures	traffic	from	all	locally-running	processes,	it	supports	a
wide	range	of	filters.	These	enable	hiding	of	traffic	which	is	not	of	interest	to	you,	as	well	as	highlighting	(using	colors	or	font	choice)	of	traffic	deemed	interesting.	Filters	can	be	applied	based	on	the	source	of	the	traffic	(e.g.	the	specific	client	process)	or	based	on	some	characteristic	of	the	traffic	itself	(e.g.	what	hostname	the	traffic	is	bound	for,	or
what	type	of	content	the	server	returned).	Fiddler	supports	a	rich	extensibility	model	which	ranges	from	simple	FiddlerScript	to	powerful	Extensions	which	can	be	developed	using	any	.NET	language.	Fiddler	also	supports	several	special-purpose	extension	types,	the	most	popular	of	which	is	called	an	Inspector,	so	named	because	it	enables	you	to
inspect	a	single	request	or	response.	Inspectors	can	be	built	to	display	all	response	types	(e.g.	the	HexView	Inspector)	or	tailored	to	support	a	type-specific	format	(e.g.	the	JSON	Inspector).	If	you’re	a	developer,	you	can	build	Fiddler’s	core	proxy	engine	into	your	applications	using	a	class	library	named	FiddlerCore.	Fiddler	can	decrypt	HTTPS	traffic
and	display	and	modify	the	requests	that	would	otherwise	be	inscrutable	to	observers	on	the	network	using	a	man-in-the-middle	decryption	technique.	To	permit	seamless	debugging	without	security	warnings,	Fiddler’s	root	certificate	may	be	installed	in	the	Trusted	Certificates	store	of	the	system	or	web	browser.	6	|	Introduction	A	Web	Session
represents	a	single	transaction	between	a	client	and	a	server.	Each	Session	appears	as	a	single	entry	in	the	Web	Sessions	List	shown	at	the	left	side	of	the	Fiddler	interface.	Each	Session	object	has	a	Request	and	a	Response,	representing	what	the	client	sent	to	the	server	and	what	the	server	returned	to	the	client.	The	Session	object	also	maintains	a
set	of	Flags	that	record	metadata	about	the	session,	and	a	Timers	object	that	stores	timestamps	logged	in	the	course	of	processing	the	session.	Proxy	servers	are	not	limited	to	simply	viewing	network	traffic—Fiddler	got	its	name	from	its	ability	to	“fiddle”	with	outbound	requests	and	inbound	responses.	Manual	tampering	of	traffic	may	be	performed
by	setting	a	request	or	response	breakpoint.	When	a	breakpoint	is	set,	Fiddler	will	pause	the	processing	of	the	session	and	permit	manual	alteration	of	the	request	and	the	response.	Traffic	rewriting	may	also	be	performed	automatically	by	script	or	extensions	running	inside	of	Fiddler.	By	default,	Fiddler	operates	in	buffering	mode,	whereby	the
server’s	response	is	completely	collected	before	any	part	of	it	is	sent	to	the	client.	If	the	streaming	mode	is	instead	enabled,	the	server’s	response	will	be	immediately	returned	to	the	client	as	it	is	downloaded.	In	streaming	mode,	response	tampering	is	not	possible.	Captured	sessions	can	be	saved	in	a	Session	Archive	Zip	(SAZ)	file	for	later	viewing.
This	compressed	file	format	contains	the	full	request	and	response,	as	well	as	flags,	timers,	and	other	metadata.	A	lightweight	capture-only	tool	known	as	FiddlerCap	may	be	used	by	non-technical	users	to	collect	a	SAZ	file	for	analysis	by	experts.	Fiddler	supports	Exporter	extensions	that	allow	storing	captured	sessions	in	myriad	other	formats	for
interoperability	with	other	tools.	Similarly,	Fiddler	supports	Importer	extensions	that	enable	Fiddler	to	load	traffic	stored	in	other	formats,	including	the	HTTP	Archive	(HAR)	format	used	by	many	browsers’	developer	tools.	Usage	Scenarios	Some	of	the	most	common	questions	I	get	are	of	the	form:	“Can	I	use	Fiddler	to	accomplish	?”	While	there	are	a
huge	number	of	scenarios	for	which	Fiddler	is	useful,	and	a	number	of	scenarios	for	which	Fiddler	isn’t	suitable,	the	most	common	tasks	fall	into	a	few	buckets.	Here’s	a	rough	guide	to	what	you	can	and	cannot	do	with	Fiddler:	An	Incomplete	List	of	Things	Fiddler	Can	Do		View	web	traffic	from	nearly	any	browser,	client	application,	or	service.		Modify
any	request	or	response,	either	manually	or	automatically.		Decrypt	HTTPS	traffic	to	enable	viewing	and	modification.		Store	captured	traffic	to	an	archive	and	reload	it	later,	even	from	a	different	computer.		“Play	back”	previously-captured	responses	to	a	client	application,	even	if	the	server	is	offline.		Debug	web	traffic	from	most	PCs	and	devices,
including	Mac/Linux	systems,	smart	phones,	and	tablet	computers.		Chain	to	upstream	proxy	servers,	including	the	TOR	network.		Run	as	a	reverse	proxy	on	a	server	to	capture	traffic	without	reconfiguring	the	client	computer	or	device.		Grow	more	powerful	with	new	features	added	by	FiddlerScript	or	the	.NET-based	extensibility	model.	An
Incomplete	List	of	Things	Fiddler	Cannot	Do	While	Fiddler	is	a	very	flexible	tool,	there	are	some	things	it	cannot	presently	do.	That	list	includes:	7	|	Introduction		Debug	non-web	protocol	traffic.	o	Fiddler	works	with	HTTP,	HTTPS,	and	FTP	traffic	and	related	protocols	like	HTML5	WebSockets	and	ICY	streams.	o		Fiddler	cannot	“see”	or	alter	traffic
that	runs	on	other	protocols	like	SMTP,	POP3,	Telnet,	IRC,	etc.	Handle	huge	requests	or	responses.	o	Fiddler	cannot	handle	requests	larger	than	2	gigabytes	in	size.	o	Fiddler	has	limited	ability	to	handle	responses	larger	than	2gb.	o	Fiddler	uses	system	memory	and	the	pagefile	to	hold	session	data.	Storing	large	numbers	of	sessions	or	huge	requests
or	responses	can	result	in	slow	performance.		“Magically”	remove	bugs	in	a	website	for	you.	o	While	Fiddler	will	identify	networking	problems	on	your	behalf,	it	generally	cannot	fix	them	without	your	help.	I	can’t	tell	you	how	many	times	I’ve	gotten	emails	asking:	“What	gives?	I	installed	Fiddler	but	my	website	still	has	bugs!”	With	that	quick	primer
out	of	the	way,	let’s	dive	in!	8	|	Introduction	Exploring	Fiddler	GETTING	STARTED	Fiddler	is	available	to	download	by	visiting	.	It	is	strongly	recommended	that	you	only	download	Fiddler	from	this	official	source,	as	some	unscrupulous	websites	have	repackaged	the	program	using	installers	that	will	also	install	unwanted	software	(for	instance	adware
or	browser	toolbars).	System	Requirements	Fiddler	is	supported	on	all	versions	of	Windows	from	XP	to	Windows	8.	The	only	prerequisite	to	installing	Fiddler	is	having	the	Microsoft	.NET	Framework	version	2	or	later	installed.	The	.NET	Framework	is	present	by	default	on	Windows	Vista	or	later,	and	can	be	installed	using	WindowsUpdate	on
Windows	XP.	If	your	system	has	only	.NET	4	installed	(for	instance,	most	Windows	8	systems	do	not	have	.NET	2.0,	3.0,	or	3.5	installed)	you	will	need	to	download	the	“Fiddler4”	package	which	is	compiled	to	run	natively	on	the	.NET	v4	CLR.	Like	most	.NET	programs,	Fiddler	will	run	in	32bit	mode	on	32bit	systems	and	64bit	mode	on	64bit	systems.
Fiddler	runs	best	on	64bit	systems,	even	those	with	less	than	4	gigabytes	of	RAM.	While	not	required,	having	Internet	Explorer	9	or	later	installed	provides	Fiddler	with	a	bit	of	extra	functionality	and	is	strongly	recommended.	In	particular,	when	IE9+	is	installed,	Fiddler’s	WebView	Inspector	can	display	additional	media	types,	and	you	will	be	able	to
see	traffic	sent	to	without	additional	configuration	steps.	Additionally,	a	configuration	change	can	be	made	to	Internet	Explorer	to	indicate,	via	the	X-Download-Initiator	request	header,	why	each	request	was	issued.	A	basic	install	of	Fiddler	requires	less	than	5	megabytes	of	disk	space,	while	installing	the	most	popular	additional	plugins	will	require
another	5	megabytes	or	so.	Fiddler	will	run	on	systems	with	512	megabytes	of	RAM,	but	performance	dramatically	improves	on	systems	with	2	gigabytes	or	more	of	memory.	Installing	Fiddler	Fiddler’s	installer	is	simple—you’ll	be	asked	to	accept	the	terms	of	the	End	User	License	Agreement	(short	summary:	don’t	do	anything	illegal,	and	keep	in
mind	that	I	offer	no	warranties)	and	then	to	select	a	folder	to	which	Fiddler	will	be	installed.	You	should	accept	the	default	folder	location	unless	there’s	a	strong	reason	not	too—some	Fiddler	addons	will	blindly	assume	Fiddler	is	in	the	default	location	and	will	not	install	properly	if	it’s	not.	The	default	location	is	%ProgramFiles%\Fiddler2,	which	on
most	systems	will	be	C:\Program	Files\Fiddler2\,	or	C:\Program	Files	(x86)\Fiddler2\	for	64bit	systems.	Fiddler	installs	to	the	32bit	Program	Files	folder	only	because	the	installer	technology	is	32bit--	Fiddler	itself	will	run	in	64bit	mode	if	the	operating	system	supports	it.	After	a	successful	install,	a	web	page	will	open	providing	key	information	about
getting	started	with	Fiddler.	The	tool	itself	can	be	launched	using	the	Start	Menu	or	the	Fiddler	icon	in	your	browser	toolbar	or	menu.	Alternatively,	you	can	type	fiddler2	in	the	Windows+R	Run	prompt.	Permissions	and	XCOPY	Deployment	Fiddler	requires	Administrative	permissions	to	install	because	it	updates	machine-wide	folder	and	registry
locations.	If	you	don’t	have	administrative	permissions	on	a	target	machine,	you	can	perform	what	is	commonly	called	an	10	|	Exploring	Fiddler	XCOPY	Deployment.	Simply	install	Fiddler	on	a	different	computer,	then	copy	the	%ProgramFiles%\Fiddler2\	folder	to	the	target	machine	or	a	USB	key.	While	some	Fiddler	entry	points	will	not	be	available
(e.g.	the	Internet	Explorer	toolbar	button	and	the	FiddlerHook	extension	for	Firefox),	Fiddler	itself	will	run	successfully.	Updating	Fiddler	On	startup,	Fiddler	is	configured	to	make	a	web-service	request	to	determine	if	a	new	version	of	the	tool	is	available.	If	a	new	version	is	found,	you	will	be	provided	with	an	update	notice.	If	you	choose	Yes,	Fiddler
launches	your	browser	to	download	the	latest	setup	program;	after	closing	Fiddler,	you	can	run	the	setup	program	yourself.	If	you	instead	choose	Next	Time,	the	next	time	you	start	Fiddler,	it	will	automatically	download	and	install	the	latest	version.	If	you	choose	No,	the	prompt	closes	and	no	new	version	is	installed;	the	next	time	you	start	Fiddler,
you	will	again	be	notified	of	the	new	version.	Installing	Fiddler	updates	as	they	become	available	is	strongly	recommended,	as	each	update	typically	adds	features,	improves	performance,	and	removes	bugs.	At	present,	Fiddler	Extensions	do	not	participate	in	the	auto-update	feature,	so	you	should	periodically	look	for	new	versions	of	the	Extensions

you	use	on	their	developers’	websites.	Administrators	may	prevent	users	from	using	the	Help	>	Check	for	Updates	command.	To	do	so,	use	the	Windows	Registry	Editor	to	create	a	new	REG_STRING	value	named	BlockUpdateCheck	with	value	True	inside	the	registry	key	HKLM\SOFTWARE\Microsoft\Fiddler2.	Uninstalling	Fiddler	If	you	later	wish	to
uninstall	Fiddler,	you	can	do	so	using	the	Add/Remove	Programs	applet	in	your	Windows	Control	Panel.	Uninstalling	Fiddler	leaves	your	settings	intact	and	therefore	is	not	a	means	to	resolve	any	configuration	problems	you	may	encounter.	Instead,	see	the	Troubleshooting	section	in	the	appendix	of	this	book	for	more	help.	11	|	Exploring	Fiddler	THE
FIDDLER	USE	R-INTERFACE	The	Fiddler	User-Interface	can	be	overwhelming	because	it	exposes	a	great	deal	of	information	about	web	traffic	and	it	offers	a	significant	degree	of	customizability.	On	the	left	side	of	the	Fiddler	window	is	the	Web	Sessions	list,	and	on	the	right	a	set	of	tabbed	Views	that	display	information	about	the	Sessions	which	are
selected	in	the	Web	Sessions	list.	Above	these,	the	Main	Menu	and	Toolbar	offer	quick	access	to	common	operations.	At	the	bottom,	the	Status	Bar	shows	key	information	and	exposes	important	commands.	Just	below	the	Web	Sessions	list	is	a	small	command	line	box	called	QuickExec	that	permits	rapid	filtering	and	command	invocation	capabilities.
Tips:		Many	UI	controls	have	context	menus.	Right-click	early	and	often.		If	the	mouse	cursor	turns	into	a	pointing	hand,	the	UI	element	can	be	clicked.		Standard	keyboard	shortcuts	are	broadly	supported	(Use	CTRL+C	to	copy,	CTRL+A	to	select	all,	CTRL+G	to	go	to	a	specific	line	number,	F3	to	perform	a	search).		If	a	popup	message	box	is	shown,
pressing	CTRL+C	will	copy	its	text	to	the	clipboard.		Press	the	ESC	key	to	dismiss	dialog	boxes	or	clear	search	boxes.		To	reset	Fiddler’s	UI	to	its	default	layout,	hold	the	SHIFT	key	while	starting	Fiddler.		Remove	a	tab	from	the	Views	by	middle-clicking	the	tab	title.		Double-click	on	a	splitter	to	maximize	the	display	area	next	to	the	splitter.	The	Web
Sessions	List	The	Web	Sessions	list	is	the	most	important	feature	of	Fiddler—it	displays	a	short	summary	of	each	Session	that	Fiddler	has	captured.	Most	operations	in	Fiddler	begin	by	selecting	one	or	more	entries	in	the	Web	Sessions	list	and	12	|	Exploring	Fiddler	then	activating	other	features.	To	select	more	than	one	Session,	hold	the	CTRL	or
SHIFT	keys	while	clicking	the	desired	rows.	Double-click	or	press	Enter	to	activate	the	default	Inspectors	for	a	single	selected	Session.	When	the	Inspectors	are	activated,	they	will	automatically	decide	which	Inspector	is	best	suited	to	display	the	selected	Session’s	request	and	response.	Certain	key	information	is	displayed	in	the	columns	of	the	Web
Sessions	list,	including:		#	–	An	identification	number	generated	by	Fiddler.		Result	–	The	status	code	from	the	response.		Protocol	–	The	protocol	(HTTP/HTTPS/FTP)	used	by	the	Session.		Host	–	The	hostname	and	port	of	the	server	to	which	the	request	was	sent.		URL	–	The	URL	path,	file,	and	query	string	from	the	request.		Body	–	The	number	of
bytes	in	the	response	body.		Caching	–	Values	from	the	Response's	Expires	and	Cache-Control	headers.		Content-Type	–	The	Content-Type	header	from	the	response.		Process	–	The	local	Windows	Process	from	which	the	traffic	originated.		Custom	–	Shows	any	ui-CustomColumn	flag	value	set	by	FiddlerScript.		Comments	–	Shows	any	comment	set
using	the	toolbar’s	Comment	button.	You	can	resize	and	reorder	the	columns	in	the	Web	Sessions	list	by	adjusting	or	dragging	the	column	headers.	To	sort	the	entries	in	the	Web	Sessions	list	by	the	values	in	a	specified	column,	click	on	that	column’s	header.	New	columns	may	be	added	to	the	Web	Sessions	list	using	FiddlerScript,	Extensions,	or	the
QuickExec	box.	Understanding	Icons	and	Colors	The	default	text	coloring	of	each	row	in	the	Web	Sessions	list	derives	from	the	HTTP	Status	(red	for	errors,	yellow	for	authentication	demands),	traffic	type	(CONNECTs	appear	in	grey),	or	response	type	(CSS	in	purple,	HTML	in	blue;	script	in	green,	images	in	grey).	You	can	override	the	font	color	by
setting	the	Session’s	ui-color	flag	from	FiddlerScript.	Each	row	is	also	marked	with	an	icon	for	quick	reference	as	to	the	Session’s	progress,	Request	type,	or	Response	type:	The	Request	is	being	sent	to	the	server.	The	Response	is	being	downloaded	from	the	server.	The	Request	is	paused	at	a	breakpoint	to	allow	tampering.	The	Response	is	paused	at
a	breakpoint	to	allow	tampering.	13	|	Exploring	Fiddler	The	Request	used	the	HEAD	or	OPTIONS	methods,	or	returned	a	HTTP/204	status	code.	The	HEAD	and	OPTIONS	methods	allow	the	client	to	acquire	information	about	the	target	URL	or	server	without	actually	downloading	the	specified	content.	The	HTTP/204	status	code	indicates	that	there	is
no	response	body	for	the	specified	URL.	The	Request	used	the	POST	method	to	send	data	to	the	server.	The	Response	is	HTML	content.	The	Response	is	an	image	file.	The	Response	is	a	script	file.	The	Response	is	a	Cascading	Style	Sheet	(CSS)	file.	The	Response	is	formatted	as	Extensible	Markup	Language	(XML).	The	Response	is	formatted	using
JavaScript	Object	Notation	(JSON).	The	Response	is	an	audio	file.	The	Response	is	a	video	file.	The	Response	is	a	Silverlight	applet.	The	Response	is	a	Flash	applet.	The	Response	is	a	font	file.	The	Response’s	Content-Type	is	not	a	type	for	which	a	more	specific	icon	is	available.	The	Request	used	the	CONNECT	method.	This	method	is	used	to	establish
a	tunnel	through	which	encrypted	HTTPS	traffic	flows.	The	Session	wraps	a	HTML5	WebSocket	connection.	The	Response	is	a	HTTP/3xx	class	redirect.	The	Response	is	a	HTTP/401	or	HTTP/407	demand	for	client	credentials,	or	a	HTTP/403	error	indicating	that	access	was	denied.	The	Response	has	a	HTTP/4xx	or	HTTP/5xx	error	status	code.	The
Session	was	aborted	by	the	client	application,	Fiddler,	or	the	Server.	This	commonly	occurs	when	the	client	browser	began	downloading	of	a	page,	but	the	user	then	navigated	to	a	different	page.	The	client	browser	responds	by	cancelling	all	in-progress	requests,	leading	to	the	Aborted	Session	state.	The	Response	is	a	HTTP/206	partial	response.	Such
responses	are	returned	as	a	result	of	the	client	performing	a	Range	request	for	only	a	portion	of	the	file	at	the	target	URL.	The	Response	is	a	HTTP/304	status	to	indicate	that	the	client’s	cached	copy	is	fresh.	14	|	Exploring	Fiddler	The	Web	Session	is	unlocked,	enabling	modification	after	normal	session	processing	has	been	completed.	Keyboard
Reference	The	following	keyboard	shortcuts	are	supported	by	the	Web	Sessions	list:	Spacebar	Activate	and	scroll	the	currently-focused	session	into	view.	CTRL+A	Select	all	sessions.	ESC	Unselect	all	sessions.	CTRL+I	Invert	selection;	selected	sessions	are	unselected	and	vice	versa.	CTRL+X	Remove	all	sessions	(subject	to	the
fiddler.ui.CtrlX.KeepMarked	preference.)	Delete	Remove	selected	sessions.	Shift+Delete	Remove	all	unselected	sessions.	R	Replay	the	current	request	SHIFT+R	Replay	the	current	request	multiple	times	(specified	in	the	subsequent	prompt).	U	Unconditionally	replay	the	current	request,	sending	no	If-Modified-Since	and	If-None-Match	headers.
SHIFT+U	Unconditionally	replay	the	current	request	multiple	times	(the	count	is	specified	in	the	subsequent	prompt).	P	Attempt	to	select	the	“parent”	request	that	triggered	this	request	and	set	focus	to	it.	This	feature	depends	on	the	HTTP	Referer	header’s	value.	C	Attempt	to	select	all	“child”	requests	that	were	provoked	by	this	response.	This
feature	depends	on	the	HTTP	Referer	header’s	value	or	the	Location	header	on	a	redirect.	D	Select	all	“duplicate”	requests	that	have	the	same	request	method	and	URL	as	the	current	session.	ALT+Enter	View	the	current	Session’s	properties.	SHIFT+Enter	Launch	Inspectors	for	this	session	in	a	new	Fiddler	window.	Backspace	or	“Back”	mouse
button	Insert	Activate	the	previously	selected	session.	CTRL+1	CTRL+2	CTRL+3	CTRL+4	CTRL+5	CTRL+6	M	Mark	the	selected	sessions	in	bold	and	one	of	the	colors	red,	blue,	gold,	green,	orange,	or	Toggle	marking	of	the	selected	sessions	using	a	bold	red	font.	purple.	Add	a	comment	to	selected	Sessions.	Web	Sessions	Context	Menu	Right-
clicking	on	the	column	headers	at	the	top	of	the	Web	Sessions	list	offers	a	context	menu	with	two	options:	Ensure	all	columns	are	visible	Ensures	that	all	columns	are	visible	by	resizing	each	to	at	least	30	pixels	15	|	Exploring	Fiddler	Learn	about	configuring	columns...	wide.	Opens	a	help	topic	which	explains	how	to	add	new	columns	to	the	Web
Sessions	list.	Right-clicking	in	the	body	of	the	Web	Sessions	list	shows	a	large	context	menu.	Many	of	the	options	are	available	only	if	one	or	more	sessions	are	selected	in	the	Web	Sessions	list.	This	menu	can	be	extended	by	FiddlerScript,	so	it	will	often	contain	additional	commands	that	are	not	listed	here.	The	AutoScroll	Session	List	option	controls
whether	or	not	Fiddler	automatically	scrolls	to	the	bottom	of	the	Web	Sessions	list	as	new	sessions	are	added.	The	Copy	submenu	enables	you	to	copy	the	information	of	your	choice	from	the	sessions	selected	in	the	Web	Sessions	list:	Just	Url	Copies	the	Urls	of	the	selected	Sessions	to	the	clipboard,	one	per	line.	You	may	also	invoke	this	command	by
pressing	CTRL+U	when	focus	is	in	the	Web	Sessions	list.	This	column	Copies	the	text	in	the	column	over	which	the	context	menu	was	opened.	The	text	for	each	of	the	Terse	summary	Copies	a	terse	summary	of	the	selected	Sessions	to	the	clipboard.	This	summary	includes	the	selected	Sessions	is	added	to	the	clipboard,	one	per	line.	Request	Method
and	URL,	and	the	responses’	status	codes	and	status	text.	If	a	response	is	a	HTTP/3xx	redirect,	the	text	will	include	the	target	Location	header.	You	may	also	invoke	this	command	by	pressing	CTRL+SHIFT+T	when	focus	is	in	the	Web	Sessions	list.	Headers	only	Copies	Sessions’	headers	to	the	clipboard.	The	text	is	copied	in	both	plaintext	and	HTML
formats,	so	you	will	see	different	results	if	you	paste	into	an	editor	that	handles	only	plain	text	(e.g.	notepad)	versus	one	that	handles	rich	text	(e.g.	Microsoft	Word).	As	this	is	the	“default”	command,	double	clicking	on	the	Copy	submenu	itself	will	invoke	a	header	copy.	You	may	also	invoke	this	command	by	pressing	CTRL+SHIFT+C	when	focus	is	in
the	Web	Sessions	list.	Session	Copies	complete	Sessions	to	the	clipboard.	The	text	is	copied	in	both	plaintext	and	HTML	formats,	so	you	will	see	different	results	if	you	paste	into	an	editor	that	handles	only	plain	text	versus	one	that	handles	rich	text.	You	may	also	invoke	this	command	by	pressing	CTRL+SHIFT+S	when	focus	is	in	the	Web	Sessions
list.	Full	Summary	Copies	the	information	shown	in	the	Web	Sessions	list	to	the	clipboard.	The	columns	are	delimited	by	tabs	which	enables	you	to	paste	this	information	into	Microsoft	Excel	or	other	programs	neatly.	You	may	also	invoke	this	command	by	pressing	CTRL+C	when	focus	is	in	the	Web	Sessions	list.	The	Save	submenu	exposes	options
that	allow	you	to	save	traffic	to	files:	All	Sessions	Saves	all	sessions	in	the	Web	Sessions	list	to	a	SAZ	file.	16	|	Exploring	Fiddler	...and	Open	as	Local	File	Saves	the	selected	sessions’	response	bodies	to	individual	files,	then	opens	each	file	in	the	registered	handler	for	the	response’s	file	type.	If	you	hold	the	CTRL	key	while	invoking	this	option,
Windows	will	prompt	you	to	select	which	application	to	use	to	open	the	file.	Selected	Sessions	Request	In	ArchiveZip	Saves	Sessions	selected	in	the	Web	Sessions	list	to	a	SAZ	file.	As	Text	Saves	selected	Sessions	to	a	single	text	file.	As	Text	(Headers	Saves	the	selected	Sessions’	request	and	response	headers	to	a	only)	single	text	file.	Entire	Request
Saves	the	selected	Sessions’	request	headers	and	bodies	to	individual	files.	Response	Request	Body	Saves	the	selected	Sessions’	request	bodies	to	individual	files.	Entire	Response	Saves	the	selected	sessions’	response	headers	and	bodies	to	individual	files.	This	option	is	useful	if	you	would	like	to	create	responses	file	that	you	can	later	play	back	using
the	AutoResponder.	Response	Body	Saves	the	selected	sessions’	request	bodies	to	individual	files.	This	option	is	useful	if	you	would	like	to	open	the	response	body	(say,	an	image)	in	another	program	that	would	be	confused	by	the	presence	of	HTTP	response	headers.	The	Remove	Submenu	allows	you	to	remove	All,	Selected,	or	Unselected	Sessions
from	the	Web	Sessions	list.	The	CTRL+X,	Delete,	or	Shift+Delete	keys	may	be	used	to	activate	these	commands	when	focus	is	in	the	Web	Sessions	list.	The	Comment…	menu	command	allows	you	to	add	or	update	the	Comment	field	for	one	or	more	selected	Web	Sessions.	The	Mark	submenu	allows	you	to	select	a	color	to	mark	the	Sessions	selected	in
the	Web	Sessions	list.	The	font	of	the	Sessions	will	be	bolded	and	colored	according	to	your	choice.	The	Unmark	option	will	unbold	the	selected	Sessions	and	revert	their	font	color	to	the	default.	The	Replay	submenu	offers	commands	that	replay	the	currently	selected	requests.	Reissue	Requests	Reissues	the	selected	requests	as	they	were	originally
sent.	If	you	hold	SHIFT	while	invoking	this	command,	Fiddler	will	prompt	you	for	the	number	of	times	the	requests	should	be	repeated.	You	may	invoke	this	command	by	pressing	the	R	key	in	the	Web	Sessions	list.	Reissue	Unconditionally	replay	the	selected	requests,	sending	no	If-Modified-Since	and	If-	Unconditionally	None-Match	headers	to
prevent	the	server	from	returning	a	HTTP/304	response.	If	you	hold	SHIFT	while	invoking	this	command,	Fiddler	will	prompt	you	for	the	number	of	times	the	requests	should	be	repeated.	You	may	invoke	this	command	by	pressing	the	U	17	|	Exploring	Fiddler	key	in	the	Web	Sessions	list.	Reissue	and	Edit	Reissues	the	selected	requests	as	they	were
originally	sent,	setting	a	request	breakpoint	on	each	new	Session	to	allow	you	to	use	Fiddler’s	Inspectors	to	modify	the	requests	before	they	are	sent	to	the	server.	Revisit	in	IE	For	each	selected	request,	navigates	to	the	request	URL	in	Internet	Explorer.	Note	that	Internet	Explorer	will	always	navigate	using	a	GET	request	and	its	own	headers	and
cookies,	regardless	of	what	HTTP	methods	and	headers	were	captured	on	the	sessions	you	are	replaying.	The	Select	submenu	allows	you	to	use	your	currently-selected	session	to	select	other	sessions:	Parent	Request	The	Parent	Request	option	will	attempt	to	use	this	request’s	Referer	header	and	request	ID	to	determine	what	session,	if	any,	was
responsible	for	this	request	being	sent.	For	instance,	if	you	invoke	this	command	on	a	JavaScript	request,	the	Session	selected	will	typically	be	the	HTML	page	that	caused	this	JavaScript	file	to	be	downloaded.	Pressing	the	P	key	while	focus	is	in	the	Web	Sessions	list	will	also	invoke	this	command.	Child	Requests	The	Child	Requests	option	will
attempt	to	use	this	request’s	URL	and	request	ID	to	select	any	requests	sent	as	a	result	of	this	response.	For	instance,	if	you	invoke	this	command	on	a	HTML	Session,	the	Sessions	selected	will	typically	be	the	CSS,	JS,	and	image	files	mentioned	in	the	HTML	markup.	Pressing	the	C	key	while	focus	is	in	the	Web	Sessions	list	will	also	invoke	this
command.	Duplicate	Selects	all	sessions	in	the	Web	Sessions	list	which	share	the	currently	selected	session’s	Requests	URL	and	HTTP	method.	The	Compare	command	is	available	only	when	two	sessions	are	selected	in	the	Web	Sessions	list.	Selecting	this	command	will	save	the	sessions	to	two	temporary	files	and	then	launch	the	configured
comparison	tool	to	allow	you	to	compare	the	requests	and	responses.	The	COMETPeek	command	will	take	a	“snapshot”	of	an	in-progress	response,	allowing	you	to	inspect	a	partial	response	before	it	has	been	completed.	This	command	is	useful	in	cases	where	a	web	application	is	using	the	COMET	pattern	to	return	a	never-ending	stream	of	data	to
the	client.	Since	the	stream	is,	by-definition,	without	end,	Fiddler	wouldn’t	otherwise	be	able	to	show	the	response	until	the	server	terminates	the	connection.	The	Abort	Session	command	will	terminate	the	client	and	server	connections	for	an	in-progress	request.	The	Clone	Response	command	is	only	available	when	two	sessions	are	selected	in	the
Web	Sessions	list	and	one	of	the	Sessions	is	currently	paused	at	a	breakpoint	and	the	other	Session	is	completed.	The	command	will	copy	the	response	from	the	completed	Session	to	the	paused	Session.	This	feature	enables	you	to	easily	replicate	a	previously	captured	(or	modified)	response	to	satisfy	a	later	request.	18	|	Exploring	Fiddler	The	Unlock
for	Editing	menu	command	unlocks	a	single	selected	Session,	allowing	you	to	edit	the	completed	Session’s	request	and	response	using	the	Inspectors.	You	may	invoke	this	command	by	pressing	F2	when	focus	is	in	the	Web	Sessions	list.	The	Inspect	in	New	Window	command	opens	a	Session	Inspector	window	which	allows	you	to	view	the	session’s
request,	response,	and	properties	in	a	standalone	window.	The	Properties…	command	opens	the	Session	Properties	window	which	displays	information	about	the	currently	selected	Session,	including	its	timers,	session	flags,	and	information	about	how	the	request	was	routed.	19	|	Exploring	Fiddler	FIDDLE	R’S	MAIN	MENU	The	main	menu	is
designed	to	provide	access	to	almost	all	of	Fiddler’s	functionality.	The	menu	system	can	be	augmented	by	FiddlerScript	or	Extensions,	but	in	this	section,	we’ll	discuss	only	Fiddler’s	default	menu	commands.	The	File	Menu	The	File	menu	contains	commands	to	start	and	stop	Fiddler’s	capture	of	web	traffic,	as	well	as	to	load	and	store	captured	traffic.
The	Capture	Traffic	toggle	controls	whether	Fiddler	is	registered	as	the	system	proxy.	When	Fiddler	is	registered	as	the	system	proxy,	applications	that	respect	the	WinINET	proxy	settings	(e.g.	Internet	Explorer	and	many	other	browsers)	will	send	their	web	requests	to	Fiddler.	The	FiddlerHook	add-on	for	Firefox	also	respects	this	menu	option.	Even
when	it	is	not	registered	as	the	system	proxy,	Fiddler	will	continue	to	display	and	process	any	requests	that	are	received.	The	Load	Archive	item	allows	you	to	reload	previously-captured	traffic	stored	in	a	SAZ	file.	The	Save	submenu	exposes	options	that	allow	you	to	save	traffic	to	files;	the	options	on	this	menu	are	the	same	as	those	on	the	Web
Sessions	list’s	context	menu.	The	Import	Sessions…	menu	command	enables	you	to	import	previously-captured	traffic	from	another	tool	or	file	format.	The	Export	Sessions	menu	allows	you	to	export	sessions	captured	by	Fiddler	to	many	different	file	formats.	You	may	choose	All	Sessions…	or	Selected	Sessions…	from	this	submenu.	The	Exit	menu
command	will	unregister	Fiddler	as	the	system	proxy	and	close	the	tool.	The	Edit	Menu	Most	of	the	commands	on	the	Edit	menu	apply	to	the	currently-selected	Sessions	in	the	Web	Sessions	menu,	and	thus	most	of	the	commands	are	disabled	unless	one	or	more	Sessions	are	selected.	The	Copy	Submenu	enables	you	to	copy	the	information	of	your
choice	from	the	Sessions	selected	in	the	Web	Sessions	list.	The	commands	on	this	menu	are	the	same	as	those	on	the	Web	Sessions	list’s	context	menu.	The	Remove	Submenu	allows	you	to	remove	All,	Selected,	or	Unselected	Sessions	from	the	Web	Sessions	list.	The	CTRL+X,	Delete,	or	Shift+Delete	key	combinations	may	be	used	to	activate	these
commands	when	focus	is	in	the	Web	Sessions	list.	The	Select	All	command	selects	all	entries	in	the	Web	Sessions	list.	You	may	invoke	this	command	by	pressing	CTRL+A	when	the	focus	is	in	the	Web	Sessions	list.	20	|	Exploring	Fiddler	The	Paste	Files	as	Sessions	command	will	generate	one	or	more	mock	Web	Sessions	based	on	the	contents	of	the
clipboard.	If	the	clipboard	contains	text	and	a	DataURI	can	be	found	starting	within	the	first	64	characters	of	the	text,	the	DataURI	will	be	parsed	out	of	the	markup	and	a	new	Session	will	be	created	and	added	to	the	Web	Sessions	list.	This	feature	is	very	useful	when	you	are	using	Fiddler	to	examine	markup	containing	a	DataURI-encoded	image,	and
you	want	to	see	what	the	image	looks	like.	Simply	copy	the	DataURI	from	the	markup	and	use	the	Paste	Files	as	Sessions	command	to	generate	a	new	Session	that	you	can	then	inspect	using	the	ImageView	Inspector.	If	the	clipboard	contains	a	binary	image	(for	instance,	if	you’ve	used	Alt+PrintScrn	hotkey	to	take	a	screenshot	of	the	active	window)
that	image	will	be	used	to	generate	and	add	a	mock	Session	to	the	Web	Sessions	list.	If	the	clipboard	contains	one	or	more	files	(e.g.	copied	from	Windows	Explorer)	each	file	will	be	used	to	generate	a	mock	Session	that	is	added	to	the	Web	Sessions	list.	This	feature	is	most	useful	when	you	are	building	a	SAZ	file	to	send	to	someone	else	and	want	to
include	a	file	that	was	not	transmitted	over	the	network.	For	instance,	a	web	developer	could	use	this	option	to	include	the	source	code	behind	a	given	ASPX	page	when	sending	a	SAZ	file	of	the	output	of	that	page	as	captured	by	Fiddler.	The	Mark	submenu	allows	you	to	choose	a	color	to	mark	the	selected	Sessions	in	the	Web	Sessions	list.	The	font	of
the	Sessions	will	be	bolded	and	colored	according	to	your	choice.	The	Unmark	option	will	unbold	the	Sessions	and	reset	their	font	color	to	the	default.	The	Unlock	for	Editing	menu	command	unlocks	a	single	selected	Web	Session,	allowing	you	to	edit	the	completed	Session’s	request	and	response	using	the	Inspectors.	You	may	invoke	this	command	by
pressing	F2	when	focus	is	in	the	Web	Sessions	list.	The	Find	Sessions…	command	opens	the	Find	Sessions	window	to	begin	a	search	of	captured	traffic.	You	may	press	CTRL+F	to	invoke	this	command.	The	Rules	Menu	The	Rules	menu	is	easily	extensible,	and	most	of	its	commands	are	generated	from	the	FiddlerScript	file.	The	Hide	Image	Requests
toggle	controls	whether	Sessions	that	returned	images	are	shown	in	the	Web	Sessions	list.	The	Hide	CONNECTs	toggle	controls	whether	Sessions	that	use	the	CONNECT	request	method	are	shown	in	the	Web	Sessions	list.	The	CONNECT	method	is	used	by	a	client	to	establish	a	“raw”	connection	to	a	server,	to	carry	either	HTTPS	or	WebSocket
traffic.	The	Automatic	Breakpoints	submenu	allows	you	to	control	whether	Fiddler	automatically	breaks	Before	Requests	or	After	Responses.	The	Ignore	Image	toggle	controls	whether	these	breakpoints	are	applied	to	requests	for	images.	The	Customize	Rules…	menu	command	will	open	your	current	FiddlerScript	file	using	the	configured	script
editor.	21	|	Exploring	Fiddler	When	checked,	the	Require	Proxy	Authentication	menu	item	will	respond	to	any	request	that	doesn’t	submit	a	Proxy-Authorization	header	by	returning	a	HTTP/407	response	demanding	proxy	credentials.	This	rule	is	useful	for	testing	HTTP	clients	to	ensure	that	they	work	properly	in	environments	with	authenticating
proxy	servers.	When	checked,	the	Apply	GZIP	Encoding	menu	item	will	apply	GZIP	HTTP	compression	to	all	responses	except	images,	so	long	as	the	request	contained	an	Accept-Encoding	header	that	included	the	gzip	token.	This	rule	is	useful	to	test	that	clients	that	advertise	GZIP	support	can	actually	decompress	content.	It	also	allows	you	to
experiment	with	the	performance	and	bytes-on-wire	count	for	compressed	traffic.	When	checked,	the	Remove	All	Encodings	toggle	removes	all	HTTP	Content-Encodings	and	Transfer-Encodings	from	requests	and	responses.	This	rule	is	also	exposed	by	the	Decode	button	on	the	Fiddler	toolbar.	The	remainder	of	the	commands	on	this	menu	are
provided	by	FiddlerScript,	and	thus	your	menu’s	commands	may	differ	from	the	commands	from	those	in	the	default	FiddlerScript.	You	can	examine	the	implementation	of	these	commands	(and	add	your	own)	by	clicking	the	Customize	Rules…	option	in	the	Rules	menu.	The	Hide	304s	option	hides	all	Sessions	whose	responses	bear	the	HTTP/304	Not
Modified	status.	The	Request	Japanese	Content	option	will	set	or	replace	all	requests’	Accept-Encoding	header	with	the	ja	token,	indicating	that	the	client	would	like	responses	in	the	Japanese	language.	The	User-Agents	submenu	allows	you	to	set	or	replace	all	requests’	User-Agent	header	with	a	specified	value.	You	can	select	among	the	values
provided,	or	use	the	Custom…	option	at	the	bottom	of	the	menu	to	specify	any	value	you	like.	Performance	Submenu	The	Performance	submenu	exposes	simple	options	that	impact	web	performance.	When	enabled,	the	Simulate	Modem	Speeds	option	will	set	Flags	on	all	subsequent	sessions.	The	requesttrickle-delay	flag	is	set	to	300	to	delay	all	sends
by	300ms	per	kilobyte	uploaded.	The	response-trickle-delay	flag	is	set	to	150	to	delay	all	sends	by	150ms/kb	downloaded.	When	set,	the	Disable	Caching	option	will	remove	all	If-None-Match	and	If-Modified-Since	request	headers	and	add	a	Pragma:	no-cache	request	header.	It	will	also	remove	any	Expires	header	on	the	response	and	set	the	Cache-
Control	response	header	to	no-cache.	This	option	cannot	prevent	a	browser	from	reusing	a	previously	cached	response	that	was	received	before	this	option	was	enabled.	Clear	your	browser’s	cache	(CTRL+SHIFT+DELETE)	after	enabling	this	option	for	best	results.	The	Show	Time-to-Last-Byte	will	display	the	number	of	milliseconds	that	it	took	to
receive	the	entire	response	in	the	Web	Sessions	list’s	Custom	column.	Similarly,	Show	Response	Timestamp	will	show	the	timestamp	at	which	the	server’s	response	was	completely	received	by	Fiddler	in	the	Web	Sessions	list’s	Custom	column.	22	|	Exploring	Fiddler	The	Cache	Always	Fresh	option	will	automatically	respond	to	any	conditional	HTTP
request	with	a	HTTP/304	response	indicating	that	the	client’s	cache	is	up-to-date.	This	option	can	dramatically	improve	performance	when	visiting	sites	that	fail	to	set	cache	expiration	dates	properly.	Pressing	CTRL+F5	in	the	browser	is	usually	enough	to	force	a	reload	from	the	server	in	spite	of	this	option,	because	browsers	will	omit	the	If-Modified-
Since	and	IfNone-Match	headers	on	forced-refresh	requests.	The	Tools	Menu	The	Fiddler	Options…	item	opens	the	Fiddler	Options	window.	The	WinINET	Options…	item	opens	the	Internet	Explorer	Internet	Options	window.	The	Clear	WinINET	Cache	item	will	clear	all	files	in	the	WinINET	cache	that	is	used	by	Internet	Explorer	and	many	other
applications.	The	Clear	WinINET	Cookies	item	will	clear	all	persistent	WinINET	cookies	sent	by	Internet	Explorer	and	many	other	applications.	Session	cookies	will	remain	unaffected.	The	TextWizard…	item	launches	the	TextWizard	window	to	permit	encoding	and	decoding	of	text.	The	Compare	Sessions	item	is	enabled	only	if	two	sessions	are
selected	in	the	Web	Sessions	list.	When	clicked,	a	differencing	tool	will	be	used	to	compare	the	two	Sessions.	The	HOSTS…	item	opens	Fiddler’s	Host	Remapping	tool.	The	View	Menu	The	Squish	Session	List	toggle	controls	whether	the	Web	Sessions	list	is	collapsed	horizontally,	giving	you	more	room	to	view	Inspectors	and	other	tabs.	You	can	toggle
this	setting	by	pressing	the	F6	key.	The	Stacked	Layout	list	reorganizes	the	Fiddler	user-interface	such	that	the	Web	Sessions	list	appears	atop	the	tabs.	This	can	be	useful	when	you	have	added	a	lot	of	custom	columns	and	want	more	space	to	see	those	columns.	23	|	Exploring	Fiddler	The	Show	Toolbar	toggle	controls	whether	the	Fiddler	toolbar	is
visible.	The	Statistics	item	activates	the	Statistics	tab;	you	can	invoke	this	command	by	pressing	F7.	The	Inspectors	item	activates	the	Inspectors	tab;	you	can	invoke	this	command	by	pressing	F8.	The	Composer	item	activates	the	Composer	tab;	you	can	invoke	this	command	by	pressing	F9.	The	Minimize	to	Tray	option	or	CTRL+M	will	minimize
Fiddler	to	the	system	tray.	The	Stay	on	Top	option	will	force	Fiddler	on	top	of	all	other	windows.	The	AutoScroll	Session	List	option	controls	whether	or	not	Fiddler	automatically	scrolls	to	the	bottom	of	the	Web	Sessions	list	as	new	sessions	are	added.	The	Refresh	option	and	the	F5	key	refresh	the	information	for	the	currently	selected	Sessions	in	the
Inspectors	or	Statistics	tab.	The	Help	Menu	The	Fiddler	Help	menu	item	will	open	your	web	browser	and	navigate	to	the	help	homepage	for	Fiddler.	You	can	access	this	item	by	pressing	the	F1	key.	The	Fiddler	Community	Discussions	link	opens	your	browser	to	the	Fiddler	discussion	group,	currently	hosted	by	Google	Groups.	The	HTTP	References
item	opens	a	page	with	links	to	various	references,	including	RFC2616.	When	you	enable	the	Troubleshoot	Filters…	option,	traffic	that	would	otherwise	be	hidden	is	instead	shown	in	a	strikethrough	font.	The	Comments	column	indicates	which	of	Fiddler's	filters	was	responsible	for	attempting	to	hide	24	|	Exploring	Fiddler	the	traffic.	If	you	ever	find
that	traffic	is	“missing”	from	Fiddler’s	Web	Sessions	list,	this	command	is	your	best	bet	for	resolving	the	problem.	The	Check	for	Updates…	option	contacts	a	web	service	to	determine	whether	you’re	running	the	latest	version	of	Fiddler.	If	you	are	not,	you	can	install	the	newest	version	immediately	or	the	next	time	Fiddler	starts.	The	Send	Feedback
option	composes	an	email	message	to	my	email	address.	The	About	Fiddler	option	opens	a	window	showing	the	current	Fiddler	version.	Fiddler’s	About	Box	At	the	top,	the	window	shows	information	about	the	running	version	of	Fiddler,	including	its	version	number,	whether	it’s	a	beta	version,	and	when	it	was	compiled.	The	next	paragraph	indicates
whether	Fiddler	is	running	in	32bit	or	64bit	mode,	and	how	much	Virtual	Memory	and	Working	Set	it	is	currently	using.	Below	that,	find	the	loaded	version	of	the	Microsoft	.NET	Framework,	and	the	current	Windows	version	information.	Next,	you’ll	see	a	counter	recording	the	number	of	times	you’ve	started	Fiddler.	Below	that,	you’ll	see	the
hostname	and	port	that	Fiddler	is	currently	using	on	your	computer.	The	Listening	to	line	shows	the	network	connectoids	on	which	Fiddler	is	registered.	The	Gateway	line	shows	information	about	any	upstream	proxy	server.	Lastly,	you’ll	see	my	contact	and	copyright	information.	You	may	press	Escape	or	Spacebar	to	close	the	window.	Hit	CTRL+C
to	copy	all	of	the	text,	or	select	a	desired	subset	of	the	text	with	your	mouse	and	press	CTRL+C	to	copy	only	that	text.	25	|	Exploring	Fiddler	FIDDLE	R’S	TOOLBAR	The	Fiddler	toolbar	provides	quick	access	to	popular	commands	and	settings.	The	buttons	and	their	functions	are:	Comment	Replay	Remove	Resume	Stream	Decode	Keep:	value	Process
Filter	Find	Save	Camera	Browse	Clear	Cache	Click	to	add	a	Comment	to	all	selected	Sessions.	The	comment	appears	in	a	column	of	the	Web	Sessions	list.	Click	to	reissue	the	selected	requests	to	the	server	again.	Hold	the	CTRL	key	while	clicking	to	reissue	the	requests	without	any	Conditional	Request	headers	(e.g.	IfModified-Since	and	If-None-
Match).	Hold	the	SHIFT	key	while	clicking	to	be	prompted	to	specify	the	number	of	times	each	request	should	be	reissued.	Shows	a	menu	of	options	for	removing	Sessions	from	the	Web	Sessions	list:		Remove	all	removes	all	Sessions	from	the	list.		Images	removes	all	Sessions	that	returned	an	image.		CONNECTs	removes	all	CONNECT	tunnels.		Non-
200s	removes	all	non-HTTP/200	responses.		Non-Browser	removes	all	requests	that	were	not	issued	by	a	web	browser.		Complete	and	Unmarked	removes	Sessions	which	are	in	the	Done	or	Aborted	state	and	which	are	unmarked	and	have	no	Comment	set.		Duplicate	response	bodies	removes	any	Session	which	has	no	response	body	or	has	a	response
body	which	was	received	in	an	earlier	Session	in	the	list.	Resumes	all	sessions	which	are	currently	paused	at	a	Request	or	Response	breakpoint.	Enable	the	Stream	toggle	to	disable	response	buffering	for	all	responses	except	those	for	which	a	breakpoint	was	set.	Enable	the	Decode	toggle	to	remove	all	HTTP	Content	and	Transfer	encodings	from
requests	and	responses.	The	Keep	dropdown	controls	how	many	Sessions	are	stored	in	the	Web	Sessions	list.	When	the	count	is	reached,	Fiddler	will	begin	removing	older	Sessions	to	attempt	to	limit	the	list	to	the	desired	value.	Incomplete	Sessions	and	those	with	comments,	markers,	or	open	Inspector	windows	are	not	removed.	Drag	and	drop	the
Process	Filter	icon	to	an	application	to	create	a	Filter	which	hides	all	traffic	except	for	that	which	originates	from	the	selected	process.	Right-click	the	Process	Filter	icon	to	clear	a	previously	set	filter.	Opens	the	Find	Sessions	window.	Saves	all	Sessions	to	a	SAZ	file.	Adds	a	JPEG-formatted	screenshot	of	the	current	desktop	to	the	Web	Sessions	list.	If
one	session	is	selected,	opens	Internet	Explorer	to	the	target	URL.	If	zero	or	multiple	Sessions	are	selected,	opens	Internet	Explorer	to	about:blank.	Clears	the	WinINET	caches.	Hold	CTRL	while	clicking	to	also	purge	persistent	cookies	stored	by	WinINET.	26	|	Exploring	Fiddler	TextWizard	Tearoff	MSDN	Search	Help	Online	Indicator	X	Opens	the
Text	Encoding	/	Decoding	Wizard	which	can	be	used	to	transform	text	between	various	encodings.	Creates	a	new	window	into	which	all	Views	are	placed;	the	Web	Sessions	list	expands	to	the	full	width	of	the	main	Fiddler	window.	Perform	a	search	in	the	Web	Content	area	of	MSDN.	Opens	Fiddler’s	help.	Indicates	whether	the	system	is	currently
online	or	offline.	When	online,	hovering	over	the	indicator	will	show	a	tooltip	containing	the	local	computer’s	hostname	and	IP	addresses.	Double-click	the	indicator	to	open	the	system’s	Network	Connections	control	panel.	Removes	the	toolbar.	To	restore	the	toolbar	later,	click	View	>	Show	Toolbar.	You	can	hover	over	any	element	of	the	toolbar	to
show	a	tooltip	that	tersely	explains	the	element’s	function.	You	can	reorganize	the	toolbar	by	holding	the	ALT	key	and	dragging	individual	toolbar	elements	to	a	new	location.	However,	these	changes	are	not	currently	saved	and	are	reset	when	Fiddler	restarts.	If	you’re	using	Fiddler	on	a	small	display,	the	shortened	toolbar	will	overflow	some	of	the
commands	into	a	dropdown	menu	on	the	far	right.	If	you’d	like,	you	may	set	the	preference	fiddler.ui.toolbar.ShowLabels	to	false	to	prevent	the	toolbar’s	text	labels	from	showing,	decreasing	the	toolbar’s	width.	Fiddler’s	Status	Bar	The	status	bar	along	the	bottom	of	Fiddler’s	main	window	shows	a	set	of	panels	that	display	information	about	the
current	Fiddler	configuration.	Several	of	these	panels	can	be	clicked	to	quickly	change	the	configuration.	From	the	left,	the	panels	are:	Capturing	Indication	Indicates	whether	Fiddler	is	currently	configured	as	the	system	proxy.	Click	the	panel	to	toggle	the	capturing	state.	Process-based	Filter	Indicates	whether	Fiddler	is	currently	configured	to
capture	traffic	from	only	one	type	of	process.	Click	the	panel	to	show	a	menu	of	process-type	filtering	options.	Breakpoint	Indicator	Indicates	whether	Fiddler	is	configured	to	breakpoint	all	requests,	all	responses,	or	neither.	Click	the	panel	to	quickly	toggle	breakpoint	functionality.	Session	Counter	Indicates	the	number	of	entries	in	the	Web	Sessions
list.	If	one	or	more	Sessions	are	selected,	the	indicator	will	show	the	number	of	Sessions	selected	and	the	total	number	of	Sessions,	e.g.	“2	/	5”.	Status	Information	By	default,	shows	the	URL	of	the	first	selected	Session.	This	panel	is	also	used	to	show	succinct	information	about	the	results	of	actions;	for	instance,	when	a	SAZ	file	is	loaded	or	saved,
that	fact	is	mentioned	here.	27	|	Exploring	Fiddler	QUICKE	XEC	The	QuickExec	box	below	the	Web	Sessions	list	provides	quick	keyboard	access	to	common	operations.	Use	the	Alt+Q	hotkey	to	set	focus	to	the	QuickExec	box	when	Fiddler	is	active—if	Fiddler	isn’t	active,	first	press	CTRL+ALT+F	to	activate	the	Fiddler	window.	While	QuickExec	is
focused,	pressing	CTRL+I	will	insert	the	URL	of	the	first	selected	Session	in	the	Web	Sessions	list.	You	can	also	drag/drop	one	or	more	Sessions	from	the	Web	Sessions	list	to	insert	their	URLs	in	the	QuickExec	box,	or	you	can	drag/drop	one	or	more	files	from	your	file	system	to	insert	their	file	paths.	QuickExec	Selection	Commands	The	QuickExec
allows	you	to	quickly	select	traffic	of	interest	based	on	search	criteria	you	specify.	After	typing	a	selection	command,	hitting	Enter	will	set	focus	to	the	Web	Sessions	list	if	the	search	returned	any	matches.	Command	?search	Action	Selects	Sessions	whose	URLs	contain	the	specified	search	text.	Example	?	example.com/pathchars	This	is	the	only	find-
as-you-type	search	feature	in	the	QuickExec	box.	For	?-prefixed	searches,	hitting	Enter	will	set	focus	to	the	Web	Sessions	list.	select	type	select	headeror-flag	value	All	other	search	types	require	that	you	press	Enter	to	begin	the	search.	Selects	Sessions	whose	response	Content-Type	header	contains	the	chosen	type.	Select	Sessions	where	the	named
Header	or	SessionFlag	case-insensitively	contains	the	specified	value	string.	Unless	preceded	by	a	slash,	asterisk	means	any	value.	Use	*	to	match	a	literal	asterisk.	select	css	select	image/jp	select	ui-comments	slow	select	ui-bold	*	select	ui-backcolor	red	select	ui-comments	*	select	@Request.Accept	html	>size	Select	Sessions	whose	response	size	is
greater	than	size	bytes.	Note:	the	character	“k”	is	converted	to	“000”,	allowing	you	to	easily	write	bytes	in	kilobytes	or	even	megabytes.	28	|	Exploring	Fiddler	select	@Response.Set-Cookie	domain	>40000000	>4000k	>4KK	Fiddler	Options	>	General	tab.	Beyond	its	global	hotkey,	Fiddler	supports	a	number	of	hotkeys	that	should	always	be	available
when	Fiddler	is	active:	ALT+Q	CTRL+R	CTRL+E	CTRL+Down	CTRL+Up	CTRL+T	CTRL+H	CTRL+0	CTRL+Plus	CTRL+Minus	CTRL+M	CTRL+SHIFT+DEL	F12	Set	focus	to	the	QuickExec	box	Open	the	FiddlerScript	rules	editor	Open	the	TextWizard	Select	the	next	session	in	the	Web	Sessions	list	Select	the	previous	session	in	the	Web	Sessions	list
Activate	the	TextView	Inspectors	Activate	the	HeaderView	Inspectors	Set	the	font	size	to	8.25pt	(the	default)	Increase	the	font	size	by	1pt	(up	to	32pt)	Decrease	the	font	size	by	1pt	(down	to	7pt)	Minimize	Fiddler	Clear	the	WinINET	cache	Toggle	registration	as	the	system	proxy	33	|	Exploring	Fiddler	STATISTICS	TAB	Fiddler’s	Statistics	tab	shows
basic	information	about	the	currently	selected	Web	Sessions.	Textual	information	is	shown	at	the	top	of	the	tab,	while	the	bottom	contains	a	pie	chart	showing	a	MIME-type	breakdown	of	the	traffic.	When	multiple	sessions	are	selected,	the	data	shown	includes:	Request	Count	The	number	of	Sessions	selected.	Unique	Hosts	The	count	of	unique	hosts
to	which	this	traffic	was	sent.	This	field	will	not	be	shown	if	all	selected	traffic	was	sent	to	the	same	server.	Bytes	sent	Total	number	of	outbound	bytes	in	the	HTTP	Request	headers	and	bodies.	The	number	of	bytes	for	each	is	shown	parenthetically	after	the	total	count.	Bytes	received	Total	number	of	inbound	bytes	in	the	HTTP	Request	headers	and
bodies.	The	number	of	bytes	for	each	is	shown	parenthetically	after	the	total	count.	Requests	started	at	The	time	that	the	first	byte	of	the	first	request	was	received	by	Fiddler.	Responses	completed	at	The	time	that	the	last	byte	of	the	last	response	was	sent	by	Fiddler	to	the	client	application.	Sequence	(clock)	duration	The	“clock	time”	between	the
start	of	the	first	request	and	the	end	of	the	last	response.	Aggregate	session	duration	The	summation	of	each	selected	Session’s	overall	time	from	request	to	response.	Because	sessions	are	usually	running	in	parallel,	this	time	can	be	longer	than	the	amount	of	“clock	time”	taken.	Similarly,	because	Sessions	may	be	selected	that	were	started	and
finished	with	idle	time	between	them,	this	time	can	be	much	shorter	than	the	amount	of	“clock	time”	between	the	first	and	last	request.	DNS	Lookup	time	The	total	amount	of	time	spent	in	DNS	resolution	for	all	selected	Sessions.	This	field	is	not	shown	if	no	time	was	spent	on	DNS	resolution	because	the	DNS	cache	served	all	requests,	or	all
connections	had	already	been	established.	TCP/IP	Connect	duration	The	total	amount	of	time	spent	in	establishing	TCP/IP	connections	for	all	selected	Sessions.	This	field	is	not	shown	if	no	time	was	spent	on	TCP/IP	connections	because	all	requests	occurred	on	reused	connections.	HTTPS	Handshake	duration	The	total	amount	of	time	spent	in	HTTPS
handshaking	for	all	selected	Sessions.	This	field	is	not	shown	if	no	time	was	spent	on	HTTPS	handshakes	because	all	sessions	were	HTTP,	decryption	is	disabled,	or	all	requests	occurred	on	already-secured	connections.	Response	Codes	The	count	of	each	unique	HTTP	response	code	among	the	selected	Sessions.	Response	Bytes	by	Content-Type	The
count	of	bytes	for	each	response	Content-Type	in	the	selected	Sessions.	This	information	is	also	presented	in	a	pie	chart	at	the	bottom	of	the	tab.	34	|	Exploring	Fiddler	Estimated	Performance	Very	rough	estimates	of	how	long	the	selected	traffic	would	spend	on	the	network	from	different	locales	or	when	utilizing	a	variety	of	connection	types.	This
data	is	simply	calculated	by	looking	at	the	number	and	size	of	the	selected	Sessions.	There	are	many	factors	that	impact	real-world	network	performance,	so	the	estimates	shown	here	may	be	wildly	inaccurate.	If	only	a	single	Session	is	selected,	the	Timers	for	that	Session	are	shown.	If	the	selected	Session	was	recorded	on	a	previous	day,	the	date
that	the	traffic	was	captured	will	also	be	listed--	this	can	be	helpful	when	examining	SAZ	files	captured	by	automated	logging	tools.	If	a	single	CONNECT	tunnel	is	selected,	the	number	of	bytes	sent	and	received	on	that	tunnel	will	be	shown	(unless	the	tunnel	is	configured	for	HTTPS	decryption,	in	which	case	this	information	can	be	inferred	from	the
decrypted	HTTPS	Sessions	in	the	Web	Sessions	list.)	The	bottom	of	the	tab	contains	a	pie	chart	which	is	hidden	by	default.	Click	the	Show	Chart	link	to	show	a	chart	of	the	selected	Sessions.	A	slice	is	shown	for	the	headers	and	each	MIME	type	in	the	selected	traffic;	the	size	of	the	slice	is	based	on	the	number	of	bytes	of	that	type.	The	Copy	this	chart
link	at	the	bottom-left	copies	the	chart	image	to	your	clipboard	as	a	bitmap,	suitable	for	pasting	into	reports	or	presentations.	35	|	Exploring	Fiddler	THE	FILTERS	TAB	The	Filters	tab	provides	a	“point-and-click”	means	of	applying	simple	filters	against	traffic	as	it	is	captured.	Every	setting	on	the	tab	can	be	mimicked	in	FiddlerScript	(usually	even
more	precisely	or	powerfully)	but	for	simple	jobs,	the	Filters	tab	will	probably	meet	your	filtering	needs.	The	Use	Filters	checkbox	at	the	top-left	of	the	tab	enables	the	filters	listed	below	to	run	against	traffic	as	it	is	captured.	When	Use	Filters	is	checked,	the	options	below	it	can	be	adjusted	to	control	whether	a	given	session:		Is	hidden		Is	flagged	in
the	Web	Sessions	list		Is	breakpointed	for	manual	tampering		Is	blocked	from	being	sent		Has	its	headers	modified	automatically	Fiddler	continues	to	proxy	traffic	from	hidden	Sessions,	even	though	they	aren’t	shown	in	the	Web	Sessions	list.	The	Actions	button	at	the	top-right	of	the	tab	allows	you	to	save	the	currently	selected	filters	as	a	Filterset,	to
load	a	previously	saved	Filterset,	and	to	run	the	current	Filters	against	previously-captured	traffic.	The	Help	option	launches	a	help	topic	about	the	Filters	tab.	Each	group	of	filtering	options	is	described	below.	Hosts	The	Hosts	box	provides	filters	that	are	based	on	the	hostname	of	the	request.	The	Zone	Filter	dropdown	allows	you	to	show	traffic	only
to	your	Intranet	(e.g.	dotless	hostnames)	or	only	to	the	Internet	(e.g.	dotted	hostnames).	This	is	a	useful	option	when	debugging	a	site	in	one	zone	while	referencing	webbased	documentation	from	the	other	zone.	36	|	Exploring	Fiddler	The	Host	Filter	dropdown	enables	you	to	flag	or	hide	traffic	to	domain	names	specified	in	the	textbox	under	the
dropdown.	Note	that	textbox	does	not	automatically	wildcard	subdomains.	That	means	that	if	you	have	“Show	only	the	following	Hosts”	set	and	only	fiddler2.com	is	in	the	list,	you	will	not	see	traffic	to	www.fiddler2.com.	To	see	traffic	to	subdomains,	add	a	wildcard	like	*.fiddler2.com.	This	wildcarded	entry	will	include	traffic	to	test.fiddler2.com	and
sub.fiddler2.com,	and	so	on.	If	you	want	to	see	traffic	to	the	root	domain	fiddler2.com,	change	the	wildcard	to	*fiddler2.com—	this	will	include	traffic	to	any	domain	that	ends	with	fiddler2.com	without	requiring	a	leading	dot.	List	multiple	hosts	by	using	a	semicolon	between	each.	Note:	When	the	background	of	the	text	box	is	yellow,	it	means	your
changes	have	not	yet	been	applied.	Click	anywhere	outside	the	box	to	save	your	changes	to	the	list.	Client	Process	Process	filters	allow	you	to	control	which	processes'	traffic	is	shown	within	Fiddler.	Fiddler	can	only	determine	which	process	issued	a	given	request	when	the	application	process	is	running	on	the	same	computer	as	Fiddler	itself.	The
Show	only	traffic	from	dropdown	contains	a	list	of	all	currently-running	processes	on	the	system;	select	a	process	to	show	only	traffic	from	that	specific	process.	The	Show	only	Internet	Explorer	traffic	option	hides	traffic	unless	the	process’	executable	name	begins	with	IE	or	the	request	bears	a	User-Agent	header	containing	compatible;	MSIE.	The
Hide	traffic	from	Service	Host	option	will	hide	traffic	from	svchost.exe,	a	system	process	that	synchronizes	RSS	Feeds	and	performs	other	background	network	activity.	Request	Headers	Using	these	options,	you	can	add	or	remove	HTTP	request	headers,	or	flag	requests	that	contain	certain	headers.	The	Show	only	if	url	contains	box	allows	you	to	hide
requests	based	on	the	URL.	You	can	demand	case-sensitivity	using	the	EXACT	prefix:	37	|	Exploring	Fiddler	EXACT:example.com/q=Case+Sensitive+String	…or	you	can	use	a	regular	expression:	REGEX:(?insx).*\.(gif|png|jpg)$	#only	show	image	requests	The	Flag	requests	with	header	option	allows	you	to	specify	a	HTTP	header	name,	that	if	present,
will	cause	the	session	to	be	bolded	in	the	Web	Sessions	list.	The	Delete	request	header	option	allows	you	to	specify	a	HTTP	header	name,	that	if	present,	will	be	removed	from	the	request	headers.	The	Set	request	header	option	allows	you	to	create	or	update	a	HTTP	Request	header	with	a	value	of	your	choice.	Breakpoints	The	breakpoints	box	enables
you	to	break	requests	or	responses	that	contain	the	specified	attributes.	Break	request	on	POST	option	will	set	a	request	breakpoint	for	any	request	whose	method	is	POST.	The	Break	request	on	GET	with	QueryString	option	will	set	a	request	breakpoint	for	any	GET	request	whose	URL	contains	a	query	string.	The	Break	on	XMLHttpRequest	option
will	set	a	request	breakpoint	for	any	request	that	can	be	determined	to	have	been	issued	by	the	XMLHttpRequest	object.	Because	requests	issued	by	the	XMLHttpRequest	object	are	generally	not	distinguishable	from	other	types	of	traffic,	this	feature	looks	for	an	X-Requested-With	header	(added	by	the	jQuery	framework).	It	will	also	check	for	an	X-
Download-Initiator	header	which	Internet	Explorer	10	and	later	can	be	configured	to	send.	The	Break	response	on	Content-Type	option	will	set	a	response	breakpoint	for	any	response	whose	Content-Type	response	header	contains	the	specified	text.	Response	Status	Code	Using	these	options,	you	can	filter	display	of	Sessions	based	on	the	response’s
status	code.	The	Hide	success	option	will	hide	any	response	whose	status	code	is	between	200	and	299	inclusive.	These	response	codes	are	used	to	indicate	a	successful	request.	The	Hide	non-2xx	option	will	hide	any	response	whose	status	code	is	not	between	200	and	299	inclusive.	The	Hide	Authentication	demands	option	will	hide	responses	with
the	401	and	407	status	code	used	to	prompt	the	client	for	credentials.	The	Hide	redirects	option	will	hide	responses	that	redirect	the	request.	The	Hide	Not	Modified	option	will	hide	responses	with	the	304	status	code	used	in	response	to	a	conditional	validation	request	to	indicate	that	the	client’s	cached	entity	remains	fresh.	38	|	Exploring	Fiddler
Response	Type	and	Size	Using	these	options,	you	can	control	what	types	of	responses	appear	within	the	Web	Sessions	list,	and	block	responses	matching	certain	criteria.	The	Type	dropdown	list	allows	you	to	hide	Sessions	whose	response	does	not	match	a	specified	type.		Show	all	Content-Types	performs	no	filtering.		Show	only	IMAGE/*	hides
Sessions	whose	Content-Type	header	does	not	specify	an	image	type.		Show	only	HTML	hides	Sessions	whose	Content-Type	does	not	specify	an	HTML	type.		Show	only	TEXT/CSS	hides	Sessions	whose	Content-Type	does	not	specify	the	text/css	type.		Show	only	SCRIPTS	hides	Sessions	whose	Content-Type	does	not	specify	a	script	type.		Hide	IMAGE/*
hides	Sessions	whose	Content-Type	specifies	an	image	type.	The	Hide	smaller	than	option	allows	you	to	hide	responses	whose	bodies	are	smaller	than	the	specified	number	of	kilobytes.	The	Hide	larger	than	option	allows	you	to	hide	responses	whose	bodies	are	larger	than	the	size	specified.	The	Time	HeatMap	checkbox	sets	a	background	color	for
each	Session	based	on	how	long	the	server	took	to	return	a	given	response	completely	(computed	using	the	Timers	object:	ServerDoneResponse	-	FiddlerBeginRequest).	Responses	that	take	less	than	50	milliseconds	show	in	shades	of	green.	Responses	that	take	between	50	and	300	milliseconds	are	not	colored.	Responses	that	take	between	300	and
500	milliseconds	show	in	yellow.	Responses	that	take	more	than	500	milliseconds	show	in	shades	of	red.	The	Block	script	files	option	will	return	a	HTTP/404	response	instead	of	the	returned	response	if	the	response	declared	a	script	Content-Type.	The	Block	image	files	option	will	return	a	404	response	if	the	response	declared	an	image	Content-Type.
The	Block	SWF	files	option	will	return	a	404	response	if	the	response	declared	an	Adobe	Flash	(application/x-shockwave-flash)	Content-Type.	The	Block	CSS	files	option	will	return	a	404	response	if	the	response	declared	a	CSS	Content-Type.	Response	Headers	Using	these	options,	you	can	add	or	remove	HTTP	response	headers,	or	flag	responses	that
contain	certain	headers.	The	Flag	responses	that	set	cookies	option	will	mark	in	bold	any	response	that	contains	a	Set-Cookie	header.	The	Flag	responses	with	header	option	allows	you	to	specify	a	HTTP	header	name,	that	if	present,	will	cause	the	Session	to	be	bolded	in	the	Web	Sessions	list.	The	Delete	response	header	option	allows	you	to	specify	a
HTTP	header	name,	that	if	present,	will	be	removed	from	the	response	headers.	The	Set	response	header	option	allows	you	to	create	or	update	a	HTTP	response	header	with	a	value	of	your	choice.	39	|	Exploring	Fiddler	THE	TIMELINE	TAB	This	tab	allows	you	to	view	between	1	and	250	selected	Sessions	as	a	“waterfall”	diagram,	which	is	useful	both
for	Performance	analysis	and	to	understand	how	requests	relate	to	one	another.	The	bulk	of	the	tab	is	the	view	of	the	selected	traffic.	Across	the	top	of	the	tab	is	the	title	which	displays	the	mode	(“Transfer	Timeline”,	by	default).	The	Help	link	at	the	top-right	opens	a	help	topic	about	the	feature.	Right-click	in	the	body	of	the	tab	to	see	the	context
menu.	It	exposes	the	following	options:	AutoScale	Chart	When	enabled,	the	chart	is	scaled	such	that	the	entire	chart	fits	in	the	horizontal	width	of	the	tab	without	a	horizontal	scrollbar.	Copy	Chart	Clicking	this	option	copies	the	chart	to	the	clipboard	in	bitmap	format,	suitable	for	pasting	into	other	documents.	Mode	(dropdown)	The	Mode	dropdown
controls	how	the	chart	is	displayed:		Timeline	–	displays	each	Session	on	its	own	line,	with	a	colored	bar	representing	its	duration.		Client	Pipe	Map	–	Displays	each	connection	between	a	client	program	and	Fiddler	on	its	own	line.	Connections	which	were	reused	for	multiple	sessions	will	display	multiple	colored	bars.		Server	Pipe	Map	–	Displays	each
connection	between	Fiddler	and	an	upstream	server	on	its	own	line.	Connections	which	were	reused	for	multiple	sessions	will	display	multiple	colored	bars.	The	Client	Pipe	Map	and	Server	Pipe	Map	modes	show	how	the	client	and	server	reuse	connections,	which	can	be	useful	in	identifying	performance	bottlenecks.	The	Timeline	tab	does	not
presently	display	any	CONNECT	tunnels	because	the	traffic	flowing	through	such	tunnels	is	either	opaque	or	tracked	by	one	or	more	decrypted	HTTPS	Web	Session	entries.	Mode:	Timeline	In	this	mode,	Fiddler	will	show	each	selected	Session	on	its	own	line,	with	filename	extracted	from	the	URL	written	to	the	left	of	the	bar.	Hovering	over	any	entry
will	show	more	information	about	the	entry	in	the	status	bar	at	the	bottom	of	the	tab.	Double-clicking	the	entry	will	inspect	that	Session;	holding	SHIFT	while	double-clicking	will	inspect	the	Session	in	a	new	window.	The	color	of	the	bar	is	determined	by	the	MIME	type	of	the	response;	light-green	for	images,	dark-green	for	JavaScript,	purple	for	CSS,
and	blue	otherwise.	40	|	Exploring	Fiddler	The	start	of	the	transfer	bar	is	drawn	at	the	time	when	the	client	sends	the	request	to	Fiddler	(Timers.ClientBeginRequest).	The	end	of	the	transfer	bar	is	drawn	at	the	time	when	the	response	to	the	client	is	completed	(Timers.ClientDoneResponse).	If	the	bar	is	"hatched"	rather	than	smooth,	this	indicates
that	the	HTTP	response	was	buffered	by	Fiddler	rather	than	being	streamed	to	the	client	as	it	was	read	to	the	server.	Buffering	alters	the	waterfall	diagram,	as	you	can	see	in	the	Timeline	below	where	none	of	the	images	begin	to	download	until	their	containing	page	completes:	The	black	vertical	line	in	the	bar	indicates	the	time	to	first	byte	of	the
server's	response	(Timers.ServerBeginResponse).	The	two	small	circles	before	the	bar	indicate	whether	the	Session	was	transmitted	on	reused	connections.	A	green	circle	shows	that	a	connection	was	reused	while	a	red	circle	means	that	the	connection	was	newly	created.	The	top	circle	represents	the	client's	connection	to	Fiddler;	the	bottom	circle
represents	Fiddler's	connection	to	the	server.	A	red	X	icon	after	the	bar	indicates	that	the	server	sent	a	Connection:	close	header	(or	failed	to	send	a	Connection:	Keep-Alive	header	for	a	HTTP/1.0	response),	preventing	subsequent	reuse	of	the	connection.	The	gray	arrow	icon	indicates	that	the	server's	response	was	a	redirect	(302).	The	red	!	icon
server	returned	an	error	code	(4xx,	5xx).	indicates	that	the	Mode:	Client	Pipe	Map	In	this	mode,	the	Timeline	will	show	each	inbound	connection	from	a	client	on	its	own	line.	At	the	left	edge	of	the	chart	is	the	connection	identifier,	which	shows	the	process	name,	process	ID,	and	client	port	number.	For	instance,	41	|	Exploring	Fiddler
iexplore:1364(p14421)	identifies	that	the	client	was	Internet	Explorer	process	number	1364,	using	port	14421	to	connect	to	Fiddler.	Connections	which	were	reused	for	multiple	sessions	will	display	multiple	horizontal	bars:	Mode:	Server	Pipe	Map	In	this	mode,	the	Timeline	will	show	each	outbound	connection	from	Fiddler	to	a	server	on	its	own	line.
At	the	left	edge	of	the	chart	is	the	connection	identifier,	which	shows	the	outbound	port	number	and	the	hostname	of	the	target	server.	For	instance	p14357->twimgs.com	indicates	that	Fiddler	used	port	14357	on	your	computer	to	establish	a	connection	to	port	80	on	twimgs.com.	Connections	which	were	reused	for	multiple	sessions	will	display
multiple	horizontal	bars:	Using	the	Timeline	for	Performance	Analysis	The	Timeline	tab	provides	an	information-rich	view	of	how	your	application	is	using	the	network.	You	can	easily	identify	slow	requests	(long	bars),	bottlenecks	where	requests	are	blocked	due	to	connection	limits	(stair-step	groups	of	six	requests),	and	cases	where	connections	were
unnecessarily	closed	(red	X	icons).	Using	this	information,	you	may	be	able	to	adjust	your	application	to	better	order	requests	to	optimize	network	performance.	42	|	Exploring	Fiddler	THE	AUTORESPONDER	TAB	This	tab	exposes	some	of	the	most	powerful	functionality	in	Fiddler.	It	permits	you	to	create	rules	that	will	automatically	trigger	in
response	to	requests,	typically	reacting	by	returning	a	previously-captured	response	without	hitting	the	server.	Across	the	top	of	the	tab	are	a	set	of	options	which	control	the	AutoResponder’s	behavior,	while	most	of	the	tab	contains	the	Rules	List	that	maps	inbound	URL	Match	Conditions	to	Actions.	The	Enable	automatic	responses	checkbox	controls
whether	the	AutoResponder	is	active.	When	this	option	is	unchecked,	the	rest	of	the	tab	is	disabled.	The	Unmatched	requests	passthrough	option	controls	what	happens	when	a	Session	does	not	match	any	of	the	specified	rules.	When	ticked,	unmatched	requests	are	sent	to	the	server	normally,	as	if	the	AutoResponder	feature	didn’t	exist.	When
unticked,	Fiddler	will	generate	a	HTTP/404	Not	Found	response	for	any	unconditional	HTTP	request	that	does	not	match	any	of	the	rules.	If	a	client	sends	a	conditional	request	containing	If-None-Match	or	IfModified-Since	headers,	the	AutoResponder	will	return	a	HTTP/304	Not	Modified	response.	The	Enable	Latency	option	controls	whether
requests	that	match	a	rule	are	acted	upon	immediately,	or	if	the	action	is	delayed	by	the	number	of	milliseconds	specified	in	the	rule’s	Latency	column.	The	Latency	column	is	hidden	when	latency	is	disabled.	Enable	the	option	to	more	accurately	simulate	a	real-world	server’s	response	times,	or	disable	the	option	for	improved	performance.	The	Import
button	allows	you	to	import	a	previously-captured	SAZ	file;	each	Session	in	the	imported	file	will	be	used	to	generate	a	new	rule	in	the	Rules	list.	You	can	also	import	a	FARX	file	which	contains	rules	exported	from	the	AutoResponder	tab.	The	center	of	the	tab	is	a	listview	that	contains	the	rules.	The	first	column	specifies	the	Match	Condition,	which	is
used	to	determine	if	an	incoming	request	matches	the	rule.	The	checkbox	preceding	the	Match	Condition’s	text	controls	whether	the	rule	is	enabled.	The	second	column	contains	the	action	to	undertake	if	the	rule	is	matched.	The	Action	Text	may	specify	a	local	filename	to	return,	or	may	specify	another	type	of	action.	When	a	rule	is	selected,	the	Rule
Editor	box	at	the	bottom	of	the	tab	enables	you	to	adjust	the	rule’s	Match	Condition	and	Action	Text.	The	Test	link	allows	you	to	test	your	Match	Condition	against	the	sample	URL	of	your	choice;	this	feature	can	be	helpful	if	your	regular	expression	skills	have	grown	rusty	over	the	years.	43	|	Exploring	Fiddler	After	making	any	changes	to	the	Match
Condition	or	Action	Text,	click	the	Save	button	to	update	the	rule.	If	you	select	multiple	rules,	the	Rule	Editor	will	hide	the	Match	Condition	box	and	provide	the	option	to	update	all	selected	rules’	Action	Text	at	once.	This	capability	allows	you	to	easily	specify	multiple	rules	that	trigger	the	same	response.	Specifying	the	Match	Condition	By	default,
the	Match	Condition	performs	a	case-insensitive	match	against	the	request	URL.	So,	if	you	want	a	rule	to	match	any	request	whose	URL	contains	the	word	fuzzle,	simply	type	fuzzle	in	the	box.	The	rule	will	match	any	of	the	following	URLs:	A	Match	Condition	of	*	will	match	all	inbound	requests.	By	specifying	the	NOT:	prefix,	a	rule	will	match	any
request	whose	URL	does	not	case-insensitively	contain	the	provided	string.	So,	if	you	want	a	rule	to	match	any	request	whose	URL	does	not	contain	the	word	fuzzle,	simply	type	NOT:fuzzle	in	the	box.	Unless	the	text	fuzzle	is	found	anywhere	in	the	request’s	URL	(case-insensitively),	the	rule	will	match.	By	specifying	the	EXACT:	prefix,	you	can	require
that	the	request’s	URL	exactly	match	the	target	URL,	casesensitively.	So,	a	rule	of	EXACT:	will	match:	…but	it	will	not	match	any	of	the	following	URLs:	By	specifying	the	REGEX:	prefix,	you	can	provide	a	regular	expression	which	will	be	evaluated	against	the	request	URL.	Expressions	are	evaluated	using	the	.NET	regular	expression	engine.	There
are	many	great	books	that	explain	how	to	develop	powerful	regular	expressions;	this	book	is	not	one	of	them.	I	recommend	to	get	started.	A	few	sample	regular-expression	rules	are:	Rule	REGEX:.+	REGEX:.+\.jpg.*	44	|	Exploring	Fiddler	Matches	Any	URL	of	one	or	more	characters	Any	URL	that	contains.jpg	after	at	least	one	other	character
REGEX:.+\.jpg$	REGEX:.+\.(jpg|gif|png)$	REGEX:^https.+$	REGEX:(?insx).*\.(jpg|gif|png)$	Any	URL	that	ends	with	.jpg	Any	URL	that	ends	with	.jpg	or	.gif	or	.png	Any	URL	that	begins	with	https	Any	URL	that	ends	with	.jpg	or	.gif	or	.png,	case-insensitively	You	can	specify	regular	expression	options	(like	case-sensitivity)	by	leading	the	expression
with	an	appropriate	declaration.	The	option	string	(?insx)	works	well;	it	turns	on	case-insensitivity,	requires	explicit	capture	groups,	enables	single-line	syntax,	and	enables	comments	after	the	#	character.	Comments	are	useful	to	combat	regular	expressions’	“write	once,	read	never”	nature.	Without	an	informative	comment,	you	may	quickly	forget
what	your	carefully-crafted	regular	expression	was	meant	to	match.	Matching	Against	Request	Bodies	In	some	cases,	a	site	may	use	the	same	request	URL	for	many	unrelated	operations,	specifying	the	operation	desired	in	the	request’s	body	instead	of	the	URL.	You	may	extend	your	Match	Condition	to	examine	a	POST	or	PUT	request’s	body	by
specifying	the	URLWithBody:	prefix	for	your	Match	Condition.	When	this	prefix	is	used,	the	portion	of	the	string	up	to	the	first	space	character	is	used	as	the	Match	Condition	for	the	request’s	URL,	while	the	remainder	of	the	string	is	used	as	a	Match	Condition	for	the	string-representation	of	the	request’s	body.	You	should	make	the	URL	portion	of
the	Match	Condition	as	specific	as	possible	to	minimize	the	number	of	request	bodies	that	the	AutoResponder	is	forced	to	evaluate.	If	a	request	has	no	body,	it	will	not	match	any	URLWithBody	rule.	Your	Match	Condition	may	specify	the	EXACT:,	NOT:,	and	REGEX:	prefixes	for	both	the	URL	and	the	body.	For	example:	URLWithBody:upload.php
TextToFindInBody	URLWithBody:login.php	EXACT:Action=Login	URLWithBody:ping.php	NOT:POST	Data	I	Do	Not	Care	About	URLWithBody:EXACT:	REGEX:^.+TextToFind.*$	URLWithBody:REGEX:^.+/upload.php.*$	REGEX:^.+TailOfPOST$	Keep	in	mind	that	most	POSTs	from	Web	Forms	encode	the	body	text,	so	you	should	ensure	that	your
Match	Condition	accounts	for	such	encoding.	For	instance,	to	match	the	following	POST:	POST	HTTP/1.1	Content-Type:	application/x-www-form-urlencoded	Content-Length:	54	2=This+is+some+text&fileentry2=&_charset_=windows-1252	Your	Match	Condition	should	look	like	this:	URLWithBody:/sandbox/FileForm.asp	This+is+some+text
Specifying	the	Action	Text	The	Action	Text	instructs	the	AutoResponder	how	to	react	when	a	Match	Condition	is	hit.	The	Action	may	involve	returning	content,	redirecting	the	request,	or	performing	some	other	action.	45	|	Exploring	Fiddler	Any	Action	may	be	either	Final	or	Non-Final.	Non-Final	Actions	allow	the	request	to	match	multiple	rules.	As
soon	a	rule	specifying	a	Final	action	is	reached,	the	matching	process	exits	and	no	further	rules	are	processed	for	that	Session.	Rules	are	evaluated	in	the	order	that	they	appear,	so	you	should	adjust	the	order	of	the	rules	to	match	your	needs.	Action	Text	filename	Explanation	Return	contents	of	filename	as	the	response.	Final?	yes	Return	the	contents
of	the	targetURL	as	the	response.	This	action	yes	effectively	retargets	the	request	to	a	different	URL	without	informing	the	client	application.	*redir:	Return	a	HTTP/307	Redirect	to	the	target	URL.	Unlike	a	plain	URL,	yes	using	the	*redir	prefix	ensures	that	the	client	knows	where	its	request	is	going,	so	it	can	send	the	correct	cookies,	etc.	*bpu	Set	a
request	breakpoint.	no	*bpafter	Set	a	response	breakpoint.	no	*delay:####	Delay	sending	request	to	the	server	by	the	specified	number	of	no	milliseconds.	*flag:flagname=value	Set	a	Session	Flag	to	a	specified	value.	For	instance,	use	no	*flag:ui-bold=1	to	bold	the	item	in	the	Web	Sessions	list.	Leave	the	value	blank	to	delete	the	specified	Session
Flag.	*drop	Close	the	client	connection	immediately	without	sending	a	re-	yes	sponse.	The	closure	is	graceful	at	the	TCP/IP	level,	returning	a	FIN	to	the	client.	*reset	Close	the	client	connection	immediately	without	sending	a	re-	yes	sponse.	The	closure	is	abrupt	at	the	TCP/IP	level,	returning	a	RST	to	the	client.	*exit	Stop	processing	rules.	yes	The
AutoResponder	is	most	commonly	used	to	return	a	local	file	from	disk.	When	that	file	is	loaded,	Fiddler	will	scan	it	for	a	set	of	HTTP	headers	at	the	start	of	the	file.	If	present,	those	headers	will	be	returned	on	the	response,	with	the	rest	of	the	file	as	the	body.	If	no	headers	are	found,	Fiddler	will	automatically	generate	a	set	of	default	headers,	and
return	the	entire	contents	of	the	file	as	the	body.	When	the	local	file	is	returned,	the	session	is	shown	with	a	Lavender	background	in	the	Web	Sessions	list.	Using	RegEx	Replacements	in	Action	Text	Fiddler’s	AutoResponder	permits	you	to	use	regular	expression	group	replacements	to	map	text	from	the	Match	Condition	into	the	Action	Text.	For
instance,	the	rule:	Match	Text	REGEX:.+/assets/(.*)	46	|	Exploring	Fiddler	Action	Text	1	…will	map	a	request	for	to	.	The	following	rule:	Match	Text	REGEX:.+example\.com.*	Action	Text	…will	rewrite	the	inbound	URL	so	that	all	URLs	containing	example.com	are	passed	as	a	URL	parameter	to	a	page	on	proxy.webdbg.com.	Many	sites	serve	up
“crunched”	or	“minified”	versions	of	their	scripts	on	production	servers,	but	also	keep	the	original	version	of	the	script	available	for	debugging	purposes.	For	instance,	the	crunched	version	of	a	script	will	be	at	the	URL:	…and	the	uncrunched	version	will	be	available	at:	You	can	write	a	RegEx	replacement	rule	that	maps	requests	for	the	crunched
version	to	the	original	version	like	so:	Match	Text	REGEX:(?insx)^	(?'path'.+)_c\.js$	Action	Text	${path}.js	This	rule	captures	the	path	to	the	file	in	the	variable	named	path	and	that	variable	is	later	used	to	replace	the	${path}	token	in	the	Action	Text.	Beyond	changing	the	URL’s	host	or	path,	you	can	create	similar	rules	that	modify,	add,	or	remove
query	string	parameters.	The	replacement	functionality	is	smart	enough	to	swap	forward-slashes	for	backslashes	when	mapping	URLs	to	files,	so	the	rule:	Match	Text	REGEX:(?insx).+/assets/(?'fname'[^?]*).*	Action	Text	C:\users\ericlaw\desktop\${fname}	…will	map	a	request	for	to	C:\users\ericlaw\desktop\img\	1.png.	Drag-and-Drop	support	The
AutoResponder	allows	you	to	easily	create	new	AutoResponder	rules	using	drag-and-drop.	You	can	drag-anddrop	files	or	folders	full	of	files	from	Windows	Explorer	to	automatically	generate	rules	for	those	files.	Alternatively,	you	can	drag-drop	sessions	from	the	Web	Sessions	list	to	reuse	responses	captured	previously.	You	may	edit	a	rule's	stored
response	by	selecting	the	rule	and	hitting	Enter	or	by	selecting	the	Edit	Response	item	on	the	rule’s	context	menu.	47	|	Exploring	Fiddler	The	context	menu	on	the	Rules	listview	exposes	the	following	commands:	Remove	Promote	Rule	Demote	Rule	Set	Latency…	Clone	Rule	Edit	Response	Generate	File	Edit	File	With…	Open	URL	Export	All…	Deletes
the	selected	rules.	Alternatively,	select	one	or	more	rules	and	press	Delete.	Moves	the	rule	one	slot	earlier	in	the	list.	Alternatively,	select	one	rule	and	press	the	Plus	key.	Moves	the	rule	one	slot	later	in	the	list.	Alternatively,	select	one	rule	and	press	the	Minus	key.	Prompts	you	for	a	number	of	milliseconds	to	use	as	a	latency	value	when	the	rule	is
matched.	For	instance,	if	you	specify	50	and	a	filename,	Fiddler	will	wait	50	milliseconds	before	returning	the	selected	file	as	the	response.	You	may	specify	a	leading	+	or	-	indicator	if	you	wish	to	adjust	the	current	latency	value	rather	than	setting	it	to	an	absolute	value.	Makes	a	copy	of	the	current	rule	and	appends	it	to	the	list.	For	a	rule	that	is
backed	by	a	file,	opens	that	file	for	editing.	For	a	rule	that	is	backed	by	a	previously-captured	response,	opens	a	standalone	Inspectors	window	to	enable	editing	the	response.	For	a	rule	that	is	backed	by	a	previously-captured	response,	saves	that	response	to	a	file	and	adjusts	the	rule	to	point	to	that	file.	Use	this	when	you	need	to	edit	a	response
using	a	standalone	editor	like	Expression	Web	or	Visual	Studio.	Prompts	you	to	select	an	application	to	use	to	edit	the	specified	response.	Use	this	to	edit	a	response	using	a	standalone	editor	which	is	not	the	default	program	for	handling	the	saved	response’s	file	type.	Opens	the	URL	specified	in	the	Match	Condition	using	the	default	web	browser.
Prompts	you	to	save	the	current	set	of	rules	as	a	FARX	file.	This	file	can	be	later	imported	to	reload	the	rules.	FARX	Files	Fiddler	AutoResponder	XML	(FARX)	files	contain	a	set	of	AutoResponder	rules.	Your	current	set	of	AutoResponder	rules	is	automatically	saved	on	exit	and	reloaded	when	you	restart	Fiddler.	This	automatically	saved	file	is	named
AutoResponder.xml,	but	if	you	use	the	Export	command	to	save	a	separate	file,	it	will	have	a	.farx	file	extension.	FARX	files	contain	the	full	set	of	rules,	including	any	previously	captured	responses	used	for	playback.	Binary	responses	are	base64	encoded	and	compressed	to	help	reduce	the	size	of	the	file,	but	a	large	set	of	AutoResponder	rules	(or	a
small	set	of	rules	with	large	responses)	can	cause	a	FARX	file	to	grow	very	large.	Because	your	default	set	of	AutoResponder	rules	is	automatically	reloaded	when	Fiddler	starts	up,	a	large	default	FARX	file	can	make	Fiddler	slow	to	start.	To	avoid	problems	with	slow	startup,	export	large	Rule	sets	to	a	FARX	file	of	your	choosing	and	remove	those
rules	from	your	default	list	before	closing	Fiddler.	48	|	Exploring	Fiddler	THE	TE	XTWIZARD	When	interacting	with	web	content,	text	is	often	encoded	using	one	or	more	formats.	The	TextWizard	allows	you	to	quickly	transform	text	to	and	from	popular	formats.	The	TextWizard	can	be	opened	by	clicking	Tools	>	TextWizard	or	by	pressing	CTRL+E.
You	may	open	multiple	copies	of	the	TextWizard	at	the	same	time.	At	the	top	of	the	TextWizard	is	the	Input	box	into	which	you	can	type	or	paste	the	input	text.	Along	the	bottom	left	is	a	set	of	Transformations	you	can	apply	to	generate	the	output	text,	which	is	shown	in	the	read-only	Output	box	at	the	bottom	right.	The	list	of	available	transformations
is	hardcoded,	and	only	one	transformation	can	be	applied	at	one	time.	If	you’d	like	to	“chain”	multiple	transformations,	use	the	Send	output	to	input	button	to	copy	the	last	operation’s	Output	into	the	Input	box,	then	select	the	next	transformation	to	apply.	As	the	tool	opens,	if	text	(32kb	or	less)	is	present	on	the	system	clipboard,	it	is	automatically
pasted	into	the	Input	box.	The	selected	transformation	is	applied	immediately	as	the	text	in	the	Input	box	is	updated.	The	title	bar	indicates	the	number	of	characters	in	the	input	and	the	number	of	characters	of	output	generated.	If	any	transformation	results	in	creation	of	a	null	character	(which	would	terminate	the	string	prematurely),	the
TextWizard	will	replace	the	null	character	with	the	Unicode	Replacement	Character	(0xFFFD,	�).	The	View	bytes	checkbox	allows	you	to	view	the	output	in	hexadecimal,	which	can	be	useful	when	decoding	binary	content	that	is	not	easily	represented	as	text.	49	|	Exploring	Fiddler	The	Send	output	to	input	button	allows	you	to	replace	the	input	text
with	the	output	text,	used	when	chaining	a	series	of	transformations.	Available	transformations	include:	To	Base64	From	Base64	URLEncode	URLDecode	HexEncode	To	JS	string	From	JS	string	HTML	Encode	HTML	Decode	To	UTF-7	From	UTF-7	To	DeflatedSAML	From	DeflatedSAML	Converts	the	Input	string	into	UTF-8	and	then	encodes	the	result
down	to	a	7-bit	ASCII	string	using	Base64	encoding.	Decodes	the	Input	string	from	7-bit	ASCII	to	a	byte	array,	then	interprets	the	result	as	a	UTF-8	string.	Applies	the	URL	Encoding	Rules	to	the	Input	string.	Decodes	escape	sequences	from	the	Input	String.	Converts	each	character	of	the	input	string	into	its	hexadecimal	equivalent	preceded	by	a	%
character.	Replaces	\	with	\\,	Carriage	Returns	with	\r,	Line	Feeds	with	,	"	with	\",	and	any	character	over	ASCII	127	with	\uXXXX	where	XXXX	is	the	Unicode	code	point.	Reverses	the	To	JS	string	operation.	Encodes	the	Input	string	using	HTML	Entities;	for	instance	<	becomes	Fiddler	Options,	and	ensure	the	Allow	remote	computers	to	connect
checkbox	is	checked.	Restart	if	needed.	3.	Choose	Rules	>	Customize	Rules.	4.	Inside	the	OnBeforeRequest	handler,	add	a	new	line	of	code:	if	(oSession.HostnameIs("webserver")	oSession.host	=	"webserver:80";	5.	On	the	Kindle,	navigate	to	Requests	from	the	tablet	will	appear	in	Fiddler.	The	requests	are	forwarded	from	port	8888	to	port	80	where
your	webserver	is	running.	The	responses	are	sent	back	through	Fiddler	to	the	device,	which	has	no	idea	that	the	content	originally	came	from	port	80.	If	you’d	like,	you	can	use	Fiddler	as	a	reverse	proxy	without	changing	the	port	that	the	client	application	targets.	To	do	so,	you	must	reconfigure	both	your	web	server	software	and	Fiddler.	First,
reconfigure	your	web	server	to	listen	on	a	new	port.	For	instance,	if	your	web	server	runs	on	port	80,	you	must	reconfigure	it	to	run	on	port	81.	Then,	configure	Fiddler	to	listen	on	port	80,	using	the	box	on	the	Tools	>	Fiddler	Options	>	Connections	tab.	Acting	as	a	Reverse	Proxy	for	HTTPS	One	problem	with	running	as	a	reverse	proxy	is	that	the
client	never	knows	that	its	traffic	is	really	flowing	through	a	proxy	server.	That	means	that	if	the	client	makes	a	HTTPS	request	to	Fiddler,	it	does	not	establish	a	CONNECT	tunnel	first,	it	instead	attempts	to	begin	a	HTTPS	handshake	immediately.	Fiddler,	expecting	a	HTTP	request,	will	consider	the	binary	HTTPS	handshake	as	malformed	traffic	and
will	abort	the	connection.	This	problem	can	be	solved	by	creating	an	additional	network	listener	for	Fiddler	to	receive	HTTPS	connections.	In	the	QuickExec	box	below	the	session	list,	type	!listen	444	WebServer	This	will	create	a	new	network	listener	on	port	444	which	will	expect	all	inbound	connections	to	start	with	a	HTTPS	handshake.	Fiddler	will
act	as	the	server,	returning	a	certificate	for	whatever	hostname	was	specified	in	the	second	parameter	to	the	listen	command.	In	the	example	above,	the	certificate	would	match	any	request	to	.	After	the	secure	connection	is	established,	your	OnBeforeRequest	handler	may	route	the	inbound	secure	requests	to	the	actual	server.	Chaining	to	Upstream
Proxy	Servers	By	default,	Fiddler	will	adopt	the	current	system’s	proxy	settings	and	use	those	settings	as	the	default	upstream	gateway	proxy	for	all	outbound	requests:	89	|	Configuring	Fiddler	and	Clients	Fiddler	supports	all	types	of	proxy	settings,	including	manually	specified	proxies,	proxy	scripts,	and	automatically	detected	(WPAD)	proxies.	Any

proxy	bypass	list	will	also	be	respected.	Your	system’s	default	proxy	settings	(see	Internet	Explorer’s	Tools	>	Internet	Options	>	Connections	>	LAN	Settings	screen)	are	used	as	the	upstream	gateway	by	default.	That’s	true	even	if	you	don’t	normally	use	Internet	Explorer	for	anything	else,	or	you	rely	upon	a	dialup	modem	or	VPN	connection	that	has
a	different	default	proxy.	If	you	wish	to	prevent	Fiddler	from	automatically	chaining	to	your	system’s	default	proxy,	untick	the	Chain	to	upstream	gateway	proxy	option	inside	Tools	>	Fiddler	Options	>	Connections.	If	required,	you	may	use	FiddlerScript	to	override	the	default	gateway	proxy	for	any	Session.	To	do	so,	set	the	X-OverrideGateway	flag.	If
you	set	the	flag’s	value	to	DIRECT	then	Fiddler	will	bypass	the	gateway	and	send	the	request	directly	to	the	target	server.	If	you	set	the	value	to	an	address:port	combination	like	myproxyserver:80,	Fiddler	will	instead	use	the	specified	proxy	for	that	Session.	Chaining	to	SOCKS	/	TOR	By	default,	Fiddler	expects	a	proxy	specified	by	the	X-
OverrideGateway	flag	to	use	the	CERN	proxy	protocol	used	by	nearly	all	proxies.	However,	one	less	popular	proxy	standard	exists,	called	SOCKS.	In	the	SOCKS	protocol,	the	client	sends	the	proxy	a	binary	preface	which	specifies	the	target	address	to	which	a	TCP/IP	connection	should	be	made.	After	the	SOCKS	proxy	confirms	that	the	requested
connection	tunnel	has	been	generated,	the	client	sends	its	web	traffic	through	the	tunnel.	The	SOCKS	protocol	is	occasionally	used	by	corporate	Virtual	Private	Networking	(VPN)	software,	but	it	is	also	used	to	make	connections	into	the	TOR	Project.	The	TOR	Project	can	be	thought	of	a	global	proxy	network	designed	to	provide	anonymity	for	users	of
the	project.	TOR	network	requests	are	bounced	between	worldwide	endpoints	in	an	attempt	to	prevent	network	monitors	from	determining	the	origin	of	any	given	request.	SOCKS	protocol	version	4a	also	allows	the	proxy	server	to	perform	DNS	lookups,	enhancing	privacy.	When	connected	to	TOR	using	SOCKS	v4a,	DNS	resolution	happens	privately
in	the	cloud	rather	than	from	your	local	computer.	Beyond	enhancing	privacy,	one	other	interesting	aspect	of	the	TOR	network	is	that	it	allows	you	to	experience	your	site	as	if	you	were	coming	from	a	different	location.	For	instance,	when	using	TOR	I	visited	a	page	with	advertising.	The	ads	were	in	Dutch	because	my	request	exited	the	TOR	network
in	Amsterdam.	When	setting	the	X-OverrideGateway	flag,	use	the	socks=	prefix	to	indicate	that	Fiddler	should	use	the	SOCKS	v4a	protocol	when	speaking	to	the	upstream	server.	For	instance,	the	TOR	installer	sets	up	an	entry	point	to	the	TOR	network	using	a	SOCKS	proxy	on	port	8118	called	Polipo.	You	can	add	the	following	inside	your
FiddlerScript’s	OnBeforeRequest	method	to	route	any	request	to	test.example.com	through	the	TOR	network:	90	|	Configuring	Fiddler	and	Clients	if	(oSession.HostnameIs("test.example.com"))	{	oSession["x-OverrideGateway"]	=	"127.0.0.1:8111";	}	If	you’d	instead	prefer	to	send	all	of	your	web	traffic	via	TOR,	you	can	simply	set	the	X-
OverrideGateway	flag	unconditionally	for	each	Session.	VPNs,	Modems,	and	Tethering	When	you	establish	a	VPN,	3G	tethering,	or	dial-up	modem	connection	in	Windows,	WinINET	will	use	that	connection’s	proxy	settings	for	all	requests.	To	ensure	that	such	traffic	is	captured	by	Fiddler,	ensure	that	the	Monitor	all	connections	box	is	checked	inside
Tools	>	Fiddler	Options	>	Connections.	Some	uncommon	network	software	products	operate	outside	of	the	WinINET	layer.	When	connected	using	such	software,	your	web	traffic	may	not	be	visible	to	Fiddler	because	it	is	being	captured	and	routed	using	mechanisms	beyond	WinINET’s	control.	DirectAccess	Recent	versions	of	Windows	support	a
technology	known	as	DirectAccess	(that	permits	remote	access	to	a	corporate	network	without	establishing	a	VPN.	DirectAccess	is	integrated	into	WinINET	so	that	requests	which	flow	over	DirectAccess	are	never	sent	to	the	system	default	proxy.	Unfortunately,	this	behavior	means	that	Fiddler	cannot	observe	traffic	when	DirectAccess	is	in	use.	It
appears	that	individual	DirectAccess	configuration	entries	can	be	updated	in	the	registry	to	specify	a	per-target	proxy	server,	but	debugging	via	this	mechanism	would	prove	very	cumbersome.	Instead,	when	using	Fiddler	in	such	an	environment,	engineers	typically	use	Remote	Desktop	to	access	a	desktop	PC	running	inside	the	corporate	network,
then	run	Fiddler	and	the	client	application	on	that	PC.	91	|	Configuring	Fiddler	and	Clients	MEMORY	USAGE	AND	FIDDLE	R’S	BITNESS	Fiddler	stores	the	entire	request	and	response	in	memory;	this	means	that	Fiddler	can	use	large	amounts	of	memory	(RAM)	while	it	is	running.	The	Operating	System’s	memory	manager	is	designed	to	manage	the
use	of	memory	by	applications	and	ensures	that	even	if	Fiddler	is	using	a	large	amount	of	memory,	rarely-accessed	objects	are	swapped	out	of	system	RAM	into	the	disk-based	pagefile.	However,	even	with	lots	of	RAM	and	disk	space,	Fiddler	may	occasionally	show	a	warning	message:	Exception	of	type	'System.OutOfMemoryException'	was	thrown.	at
System.IO.MemoryStream.set_Capacity(Int32	value)	at	System.IO.MemoryStream.EnsureCapacity(Int32	value)	at	System.IO.MemoryStream.Write(Byte[]	buffer,	Int32	offset,	Int32	count)	at	Fiddler.Session.Execute(Object	objThreadstate)	This	message	is	somewhat	misleading	because	the	system	isn’t	really	out	of	memory—instead,	this	means	that
the	memory	manager	could	not	find	a	contiguous	block	of	address	space	large	enough	to	store	the	request	or	response.	This	problem	most	often	occurs	when	downloading	large	files	(e.g.	a	video	over	a	hundred	megabytes	in	size).	No	matter	how	much	RAM	you	have,	a	32bit	process	is	limited	to	an	address	space	of	2	gigabytes	in	size.	Each	object	in
that	address	space	can	cause	“fragmentation”	that	could	prevent	storage	of	large	objects	by	splitting	available	memory	into	chunks	that	are	too	small	to	store	an	entire	response	within	one	contiguous	block.	On	a	32bit	computer,	if	you	have	thousands	of	sessions	in	Fiddler’s	Web	Sessions	list,	fragmentation	can	prevent	a	response	as	small	as	a	few
megabytes	from	being	stored.	You	can	reduce	the	incidence	of	this	problem	by	clearing	Fiddler’s	Web	Sessions	list	periodically.	Alternatively,	use	the	Keep	Only	box	on	the	toolbar	to	automatically	trim	the	Web	Sessions	list	to	a	fixed	number	of	sessions	to	free	up	space.	Out-of-memory	errors	are	rarely	encountered	when	Fiddler	runs	on	a	64bit
version	of	Windows	because	the	64bit	address	space	is	so	large	that	you	cannot	possibly	fill	it	or	fragment	it	enough	to	prevent	storage	of	even	giant	sessions.	However,	even	on	64bit	computers,	each	individual	request	and	response	is	limited	to	2	gigabytes	due	to	an	underlying	limit	within	the	.NET	Framework.	On	a	32-bit	machine,	you	can	help
avoid	out-of-memory	errors	when	downloading	huge	files	by	adding	the	following	code	to	your	FiddlerScript	inside	the	OnPeekAtResponseHeaders	function.	This	snippet	will	cause	files	larger	than	5	megabytes	to	stream	to	the	client	and	Fiddler	will	not	keep	a	copy:	92	|	Configuring	Fiddler	and	Clients	//	This	block	enables	streaming	for	files	larger
than	5mb	if	(oSession.oResponse.headers.Exists("Content-Length"))	{	var	sLen	=	oSession.oResponse["Content-Length"];	if	(!isNaN(sLen))	{	var	iLen	=	parseInt(sLen);	if	(iLen	>	5000000)	{	oSession.bBufferResponse	=	false;	oSession["ui-color"]	=	"yellow";	oSession["log-drop-response-body"]	=	"save	memory";	}	}	}	If	you're	building	on	FiddlerCore
or	writing	a	Fiddler	Extension,	you	can	use	similar	logic:	FiddlerApplication.ResponseHeadersAvailable	+=	delegate(Fiddler.Session	oS)	{	//	This	block	enables	streaming	for	files	larger	than	5mb	if	(oS.oResponse.headers.Exists("Content-Length"))	{	int	iLen	=	0;	if	(int.TryParse(oS.oResponse["Content-Length"],	out	iLen))	{	//	File	larger	than	5mb?
Don't	save	its	content	if	(iLen	>	5000000)	{	oS.bBufferResponse	=	false;	oS["log-drop-response-body"]	=	"save	memory";	}	}	}	};	By	default,	Fiddler	will	always	run	in	64bit	mode	when	running	on	a	64bit	version	of	Windows.	In	rare	instances,	you	may	prefer	to	run	Fiddler	in	32bit	mode.	For	instance,	you	must	run	in	32bit	mode	when	you’re	using	an
extension	that	requires	native	binaries	that	are	only	available	as	32bit	modules	(e.g.	Silverlight	4)	or	your	FiddlerScript	depends	upon	other	modules	unavailable	in	64bit.	For	example,	the	Microsoft.Jet.OLEDB.4.0	database	provider	used	to	write	to	Microsoft	Access	.MDB	database	files	is	not	available	in	64bit	mode.	To	force	Fiddler	to	run	in	32bit
mode	on	64bit	Windows,	use	the	ForceCPU.exe	tool	located	in	the	Fiddler	installation	folder.	93	|	Configuring	Fiddler	and	Clients	BUFFERING	VS	.	S	TREAMING	TRAFFIC	In	order	to	enable	modification	of	requests	and	responses,	Fiddler	is	configured	to	completely	buffer	request	and	response	messages	before	passing	them	along	to	their
destinations.	Request	Buffering	When	a	client	connects	to	Fiddler,	Fiddler	reads	the	entire	HTTP	request	from	the	client.	If	a	breakpoint	is	set,	the	request	is	then	paused	to	allow	tampering	using	the	Inspectors.	After	the	request	is	resumed,	the	server	connection	is	established	and	Fiddler	transmits	the	entire	request	to	the	server.	Fiddler	does	not
expose	any	mechanism	to	“stream”	a	HTTP	request	to	the	server	as	it	is	read	from	the	client—	requests	are	always	buffered	completely	before	sending.	HTML5	WebSockets	are	the	one	exception	to	this	rule—	WebSocket	messages	stream	bi-directionally.	Response	Buffering	After	sending	the	request	to	the	server,	Fiddler	begins	reading	its	response.
Some	common	web	scenarios	(particularly	streaming	audio	and	video)	are	impacted	negatively	by	response	buffering,	so	Fiddler	permits	streaming	of	responses.	Streamed	responses	cannot	be	modified	using	Fiddler’s	Inspectors.	By	default,	only	audio	and	video	responses	are	configured	to	stream.	You	can	configure	all	responses	to	stream	using	the
toggle	on	the	Fiddler	toolbar,	or	you	may	stream	selectively	on	a	per-response	basis	by	setting	the	Session’s	bBufferResponse	property	to	false	using	FiddlerScript.	When	streaming	is	enabled	for	a	response,	each	block	of	data	read	from	the	server	is	immediately	passed	to	the	client	application.	By	default,	if	the	client	application	closes	its	connection
to	Fiddler,	Fiddler	will	continue	to	read	the	response	from	the	server	to	permit	collection	of	the	entire	response.	If	you’d	prefer	Fiddler	to	abort	the	download	if	the	client	disconnects,	set	the	fiddler.network.streaming.AbortIfClientAborts	preference	to	true.	When	buffering	is	disabled	for	a	response,	FiddlerScript’s	OnBeforeResponse	method	runs
after	the	response	is	fully	returned	to	the	client.	This	(perhaps	surprising)	behavior	allows	operations	that	don’t	modify	the	response	(e.g.	logging	the	response	body	to	a	database)	to	work	properly	for	all	Sessions.	If	your	code	needs	to	determine	whether	a	given	response	was	streamed,	it	can	test	the	Session’s	BitFlags:	bool	bWasStreamed	=
oSession.isFlagSet(SessionFlags.ResponseStreamed));	If	you	need	to	modify	the	response	body	before	it	is	sent	to	the	client,	you	must	disable	streaming	by	setting	oSession.bBufferResponse=true	in	either	the	OnBeforeRequest	or	OnPeekAtResponseHeaders	handlers.	COMET	Fiddler’s	Inspectors	will	only	show	the	response’s	body	after	the	response
data	has	been	completely	read	from	the	server.	But	what	happens	if	the	server’s	response	never	ends?	Such	responses	occur	with	streaming	radio	stations	and	on	sites	that	use	a	web	programming	technique	called	COMET.	94	|	Configuring	Fiddler	and	Clients	With	COMET,	a	server	uses	a	“hanging	frame”	or	other	mechanism	to	push	data	to	the
client	using	a	long-held	HTTP	connection	that	trickles	data	to	the	client	as	needed.	HTML5	introduces	a	similar	mechanism	called	“Server	Sent	Events”	which	works	using	the	same	general	mechanism.	Because	a	server’s	COMET	response	never	really	“finishes,”	the	data	returned	on	that	connection	is	not	normally	visible	to	Fiddler’s	Inspectors	until
the	connection	closes.	To	enable	such	data	to	be	inspected,	Fiddler	offers	the	COMETPeek	command	on	the	Web	Session’s	context	menu.	When	you	invoke	the	command,	Fiddler	will	take	a	“snapshot”	of	the	in-progress	response,	allowing	you	to	inspect	the	partial	response	read	from	the	server.	Fiddler’s	default	behavior	of	buffering	responses	wreaks
havoc	with	sites	that	depend	on	COMET.	That’s	because	the	server’s	response	never	ends	and	therefore	Fiddler’s	buffering	of	a	COMET	stream	will	usually	cause	the	web	application	to	stall.	Unfortunately,	COMET	responses	aren’t	marked	in	any	way,	so	you	will	need	to	manually	exempt	such	responses	from	buffering	if	you	do	not	wish	to	enable	the
Streaming	option	globally.	95	|	Configuring	Fiddler	and	Clients	HTML5	WEBSOCKE	TS	The	HTML5	specification	introduces	WebSockets,	a	technology	that	enables	real-time	socket	communication	between	a	client	and	server.	To	create	a	WebSocket,	the	client	first	establishes	a	HTTP(S)	connection	to	the	server.	Next,	the	client	and	server	handshake
and	agree	to	use	the	WebSocket	protocol	for	subsequent	traffic	on	the	connection.	The	ws://	and	wss://	URI	schemes	are	used	for	plaintext	and	secure	WebSockets	respectively,	even	though	the	initial	handshakes	take	place	over	HTTP	or	HTTPS.	To	help	ensure	that	WebSocket	traffic	flows	unimpeded	through	an	proxy	(like	Fiddler),	clients	will	first
establish	a	CONNECT	to	the	proxy,	requesting	a	tunnel	to	the	destination	server.	If	the	WebSocket	URI	uses	the	wss://	scheme,	a	HTTPS	handshake	then	occurs.	If	the	unsecure	ws://	scheme	was	used,	then	the	HTTPS	handshake	is	skipped.	The	client	then	uses	the	newly-established	connection	to	send	a	HTTP	GET	request	with	an	Upgrade	header
proposing	a	switch	to	the	WebSocket	protocol.	If	the	server	agrees	to	change	protocols,	it	sends	a	HTTP/101	Switching	Protocols	response.	You	can	easily	observe	this	process	using	the	Web	Sessions	list	and	Inspectors:	After	the	handshake,	the	client	and	server	may	send	each	other	WebSocket	messages	in	any	order.	Unlike	HTTP’s	request-response
pattern,	the	server	may	send	WebSocket	messages	to	the	client	without	the	client	first	sending	a	WebSocket	message	to	the	server.	Because	HTTP	messages	are	no	longer	exchanged	on	a	connection	which	has	been	upgraded	to	the	WebSocket	protocol,	you	will	not	see	the	WebSocket	messages	in	the	Web	Sessions	list	or	the	request	or	response
Inspectors.	However,	Fiddler	does	have	the	ability	to	parse	WebSocket	messages,	and	in	future	versions	of	Fiddler,	a	new	type	of	Inspector	will	be	introduced	to	enable	display	and	modification	of	WebSocket	traffic.	For	now,	WebSocket	messages	96	|	Configuring	Fiddler	and	Clients	from	the	client	and	server	are	shown	in	the	Log	tab.	The	bytes	of
these	messages	are	parsed	and	displayed	in	plaintext:	Upgrading	Session	#47	to	websocket	[WebSocket	#47]	Server->Client	(12	bytes)	TYPE:	TEXT.	MESSAGE:	connected,	FLAGS:	10000001	DATA:	10	bytes.	-----------------------------[WebSocket	#47]	Client->Server	(14	bytes)	TYPE:	TEXT.	MESSAGE:	timer,	FLAGS:	10000001	DATA:	6	bytes,	masked	using
KEY:	BD-36-84-D5.	-----------------------------[WebSocket	#47]	Server->Client	(23	bytes)	TYPE:	TEXT.	MESSAGE:	time,2012/4/30	14:50:38	FLAGS:	10000001	DATA:	23	bytes.	-----------------------------[WebSocket	#47]	Client->Server	(8	bytes)	TYPE:	CLOSE.	CLOSE	REASON:	1001	FLAGS:	10001000	DATA:	2	bytes,	masked	using	KEY:	25-A2-56-AE.	---------------------
--------To	help	prevent	attacks	against	transparent	proxies	or	other	buggy	but	well-meaning	intermediaries,	a	client’s	WebSocket	messages	are	typically	“masked”	by	XOR’ing	the	message	text	against	a	masking	key	that	is	not	visible	to	JavaScript	running	on	the	client.	When	logging	the	client’s	WebSockets	messages,	Fiddler	automatically	unmasks	the
text	for	ease	of	reading.	As	the	standard	finalizes	and	browsers	implement	the	specification,	more	websites	will	begin	building	upon	WebSockets.	As	that	happens,	Fiddler	will	be	updated	to	better	support	this	exciting	new	protocol.	97	|	Configuring	Fiddler	and	Clients	FIDDLE	R	AND	HTTPS	When	visiting	a	HTTPS	site	in	Fiddler,	there’s	not	a	lot	to
see	by	default.	Instead	of	the	expected	list	of	requests	and	responses,	you’ll	only	see	one	or	more	CONNECT	tunnels:	The	HTTPS	protocol	sandwiches	an	encrypted	(SSL	or	TLS)	connection	between	HTTP	requests	and	the	underlying	TCP/IP	network	connection	upon	which	those	requests	are	sent.	Network	intermediaries	or	observers	are	thus
prevented	from	viewing	or	modifying	the	HTTP	traffic	thanks	to	the	use	of	the	cryptographic	protocols.	You	might	then	be	surprised	to	learn	that	Fiddler	can	both	view	and	modify	HTTPS	traffic	if	configured	appropriately.	Fiddler	achieves	this	by	using	a	“man-in-the-middle”	approach	to	HTTPS,	which	means	that	when	talking	to	the	client,	it	pretends
to	be	the	server,	and	when	talking	to	the	server,	it	pretends	to	be	the	client.	The	HTTPS	protocol	is	explicitly	designed	to	block	this	attack	by	using	digital	certificates	to	authenticate	the	identity	of	a	HTTPS	server	(and	optionally	the	client).	When	a	client	receives	a	certificate	from	the	server,	it	validates	that	the	certificate	itself	is	trustworthy	by
determining	whether	it	is	chained	to	a	Root	Certification	Authority	that	is	trusted	by	the	client	or	the	operating	system.	Since	you	are	typically	running	Fiddler	on	your	own	computer,	you	can	reconfigure	your	browser	or	operating	system	to	trust	Fiddler’s	root	certificate.	After	you	do	so,	the	client	application	will	not	complain	when	it	detects	that
traffic	is	being	protected	by	Fiddler-generated	certificates.	To	enable	HTTPS	traffic	decryption	in	Fiddler,	click	Tools	>	Fiddler	Options.	On	the	HTTPS	tab,	tick	the	box	labeled	Decrypt	HTTPS	traffic.	When	you	enable	HTTPS	decryption,	Fiddler	will	generate	a	self-signed	root	certificate	and	a	matching	Private	Key.	Fiddler	will	use	this	root	certificate
to	generate	HTTPS	server	certificates	(also	called	“End	Entity”	certificates)	for	each	secure	site	that	you	visit.	98	|	Configuring	Fiddler	and	Clients	Trusting	the	Fiddler	Root	Certificate	After	generating	the	root	certificate,	Fiddler	gives	you	the	opportunity	to	add	it	to	Windows’	Trusted	Root	Certificate	Authorities	store.	Adding	the	root	to	the	Trusted
Store	will	allow	the	HTTPS	server	certificates	Fiddler	later	generates	to	be	deemed	valid	by	browsers	and	other	applications.	This	will	help	stop	browsers	from	showing	warning	screens	and	prevent	applications	from	failing	to	connect	due	to	“trust	errors.”	Fiddler	and	Windows	show	prompts	to	warn	off	users	who	might	not	understand	the
implications	of	trusting	a	certificate:	If	you	click	Yes,	Windows	will	then	prompt	you	to	confirm	the	change:	These	warnings	are	deliberately	verbose	and	scary,	but	the	actual	level	of	risk	is	minimal.	Each	Fiddler	root	certificate	is	generated	uniquely	per-computer,	which	improves	security	by	ensuring	that	no	other	Fiddler	user	has	the	same	root
certificate.	As	such,	the	root	certificate	could	only	really	be	abused	by	malware	running	on	the	local	computer,	and	if	your	computer	is	already	infected	by	malware,	you	have	bigger	problems	to	worry	about.	Machine-wide	Trust	on	Windows	8	On	Windows	8,	Metro-style	applications	will	not	trust	Fiddler’s	root	certificate	unless	it	is	in	the	per-Machine
Trusted	Root	certificate	store.	Therefore,	after	the	prior	steps	add	the	certificate	to	your	per-User	Trusted	Root	certificate	store,	Fiddler	will	then	launch	an	administrative	program	to	add	the	certificate	to	the	Machine	store:	99	|	Configuring	Fiddler	and	Clients	If	you	click	Yes	to	launch	the	utility,	it	will	confirm	the	operation:	After	you	click	through
this	flurry	of	prompts,	Fiddler’s	root	certificate	will	be	installed	and	applications	that	rely	on	the	Windows	certificate	store	will	no	longer	present	security	errors	when	Fiddler	is	decrypting	their	traffic.	To	later	remove	all	Fiddler-generated	certificates,	untick	the	Decrypt	HTTPS	traffic	checkbox	and	then	press	the	Remove	Interception	Certificates
button.	Manually	Trusting	the	Fiddler	Root	If	you’d	prefer	to	manually	trust	the	FiddlerRoot,	launch	certmgr.msc	and	drag	the	DO_NOT_TRUST_FIDDLERROOT	certificate	from	the	Personal	folder	to	the	Trusted	Root	Certification	Authorities	folder.	If	you	wish	to	make	this	change	on	a	machine-wide	basis:	1.	Right-click	the
DO_NOT_TRUST_FIDDLERROOT	certificate	from	the	Personal	folder	and	choose	All	Tasks	>	Export.	2.	Export	the	certificate	as	DER	Encoded	X509	Binary	to	FiddlerRoot.cer	on	your	desktop.	3.	Launch	mmc.exe.	4.	Click	File	>	Add/Remove	Snap-In.	5.	Select	the	Certificates	snap-in	and	press	Add.	6.	When	prompted	This	snap-in	will	always	manage
certificates	for:	choose	Computer	Account	7.	Click	Local	Computer,	then	Finish,	then	OK.	8.	Open	the	Certificates	(Local	Computer)	node.	9.	Right-click	the	Trusted	Root	Certificate	Authorities	folder	and	choose	All	Tasks	>	Import.	10.	Choose	the	file	you	exported	in	step	#2	and	import	it.	100	|	Configuring	Fiddler	and	Clients	Additional	HTTPS
Options	Before	closing	the	Fiddler	Options	window,	consider	using	the	dropdown	to	configure	which	processes	should	have	their	traffic	decrypted:	If	you	only	plan	to	decrypt	browser	traffic,	choose	that	option	to	avoid	decrypting	traffic	from	other	applications	that	aren’t	of	interest	to	you.	Beyond	saving	CPU	cycles	and	memory,	doing	so	can	prevent
problems	with	applications	that	are	not	using	HTTPS	in	standard	ways	(e.g.	Outlook	uses	RPC-over-HTTPS	tunnels	to	connect	to	Exchange	Server)	or	that	will	not	respect	the	Fiddler	root	certificates’	presence	in	the	Windows	Trusted	store	(e.g.	Dropbox).	You	may	also	use	the	textbox	to	list	servers	for	which	HTTPS	traffic	should	not	be	decrypted.	For
instance,	I	use	the	following	settings	to	prevent	decryption	of	Outlook	Web	Access	and	Dropbox	traffic:	Use	semicolons	to	delimit	the	hostnames	in	the	list,	and	use	*	as	a	wildcard	character.	101	|	Configuring	Fiddler	and	Clients	CONFIGURING	CLIENTS	FOR	HTTPS	DECRYPTION	While	most	applications	(Internet	Explorer,	Microsoft	Office,	Chrome,
Safari,	etc.)	use	the	Windows	Certificate	Store	to	validate	certificate	chains,	some	applications	maintain	their	own	certificate	stores.	For	instance,	Java	Runtime	Environments	often	have	their	own	certificate	stores,	and	the	Firefox	and	Opera	browsers	also	maintain	their	own	certificate	lists.	To	configure	such	clients	to	trust	Fiddler-generated
certificates,	you	must	first	obtain	Fiddler’s	root	certificate	as	a	.CER	file.	You	have	two	options	to	do	so:	1>	Click	the	Export	Root	Certificate	to	Desktop	button	on	the	Fiddler	Options	window’s	HTTPS	tab.	2>	Visit	in	the	browser	and	click	the	FiddlerRoot	Certificate	link	to	download	the	certificate	as	a	.CER	file.	After	you	have	the	root	certificate	file,
you	can	add	it	to	the	client	application’s	Trusted	certificates	list.	Browsers	Firefox	In	Firefox,	click	Tools	>	Options.	Click	the	Advanced	button,	and	switch	to	the	Encryption	tab.	Click	View	Certificates	to	open	the	Certificate	Manager.	Click	the	Authorities	tab	and	click	the	Import	button.	Select	the	FiddlerRoot.cer	file	and	click	Open.	Tick	the	Trust
this	CA	to	identify	websites	checkbox	and	press	Ok.	Firefox	will	now	trust	HTTPS	server	certificates	generated	by	Fiddler.	Opera	In	Opera,	click	Opera	>	Settings	>	Preferences.	Click	the	Advanced	tab,	and	click	Security	in	the	list.	Click	Manage	Certificates.	Click	the	Authorities	tab	and	click	the	Import…	button.	Select	the	FiddlerRoot.cer	file	and
click	Open.	Click	the	Install	button	and	click	the	Ok	button	to	confirm	that	you	want	to	trust	the	certificate.	Opera	will	now	trust	HTTPS	server	certificates	generated	by	Fiddler.	Cross-machine	scenarios	If	you	have	configured	Fiddler	to	proxy	HTTPS	traffic	from	other	computers,	those	other	computers	must	be	manually	configured	to	trust	the	root
certificate	from	the	Fiddler	server	machine.	You	can	enable	this	trust	by	downloading	the	root	certificate	from	the	page,	then	using	the	manual	certmgr.msc	steps	to	trust	that	root	certificate.	One	important	reminder:	Each	Fiddler	root	certificate	is	generated	uniquely	per-machine.	If	a	client	PC	has	previously	generated	a	Fiddler	root	certificate,	that
root	certificate	will	interfere	when	proxying	traffic	through	Fiddler	running	on	a	different	machine.	That’s	because	the	root	certificates	will	not	match	(they’ll	have	the	same	Subject	CN	but	different	public	keys).	This	mismatch	will	cause	fatal	errors	when	establishing	HTTPS	connections--	even	if	the	client	102	|	Configuring	Fiddler	and	Clients	has
been	configured	to	trust	both	root	certificates.	To	avoid	this	problem,	you	must	first	remove	all	existing	Fiddler	root	certificates	from	the	client	before	trusting	the	new	root	certificate	downloaded	from	the	Fiddler	server	machine.	HTTPS	and	Devices	Windows	Phone	In	order	for	a	Windows	Phone	device	to	trust	the	FiddlerRoot	certificate,	you	must
install	the	certificate	onto	the	phone.	To	do	so,	open	from	the	device,	and	download	the	root	certificate.	Tap	to	open	the	FiddlerRoot.cer	file,	and	when	prompted	by	the	Install	certificate?	screen,	click	the	Install	button.	Android	and	iOS	Fiddler’s	default	Certificate	Maker	is	based	on	the	makecert.exe	command-line	tool.	The	certificates	it	generates
are	accepted	by	virtually	all	Windows	clients	and	most	other	platforms	as	well.	However,	Apple	iOS	devices	including	the	iPad,	iPhone,	and	iPod	require	that	the	root	and	server	certificates	contain	additional	metadata	not	included	in	makecert.exe-generated	certificates.	Some	Android	distributions	have	similar	requirements.	To	enable	Fiddler	to
generate	certificates	compatible	with	these	devices,	download	the	Certificate	Maker	plugin	for	Fiddler	from:	This	plugin	requires	Windows	Vista	or	later.	It	replaces	the	default	certificate	generation	code	in	Fiddler	with	a	version	based	on	the	open-source	Bouncy	Castle	cryptography	library.	The	plugin	generates	iOS-compatible	certificates	by	default,
and	respects	several	Preferences	to	enable	compatibility	with	a	wide-variety	of	platforms.	For	instance,	at	least	one	Android	platform	requires	that	server	certificates	must	not	have	the	Critical	constraint	applied	to	their	EKU.	You	can	configure	the	Certificate	Maker	plugin	to	remove	that	constraint	by	using	QuickExec	to	set	the	preference:	prefs	set
fiddler.certmaker.bc.ee.criticaleku	false	The	server	certificates	that	generated	by	this	plugin	are	not	placed	in	the	Windows	Certificate	store	and	are	instead	kept	only	in	memory	only.	Every	time	Fiddler	restarts,	new	server	certificates	will	be	generated.	In	contrast,	makecert.exe-generated	certificates	are	individually	added	to	the	Personal
certificates	store	as	they	are	generated,	and	are	only	removed	when	you	push	the	Remove	Interception	Certificates	button.	After	configuring	Fiddler	to	generate	certificates	that	are	compatible	with	your	device,	you	must	configure	the	device	to	trust	Fiddler’s	root	certificate.	To	do	so,	configure	your	device	to	use	Fiddler	as	its	proxy	as	described
earlier	in	this	book.	Then	open	from	your	device,	and	download	the	root	certificate.	Open	the	FiddlerRoot.cer	file:	103	|	Configuring	Fiddler	and	Clients	Tap	the	Install	button.	You’ll	then	see	a	warning,	which	you	may	acknowledge	by	pressing	the	Install	button:	After	Fiddler’s	root	certificate	is	installed,	your	device’s	browser	and	applications	should
no	longer	complain	about	certificate	errors	when	Fiddler	is	decrypting	their	traffic.	If	you	later	decide	to	uninstall	the	root	certificate	from	the	device,	open	the	Settings	app,	click	General,	and	scroll	down	to	Profiles	at	the	bottom.	Select	the	DO_NOT_TRUST_FiddlerRoot	profile,	and	tap	Remove.	Buggy	HTTPS	Servers	A	small	number	of	HTTPS
servers	implement	the	TLS	protocol	handshake	incorrectly	and	will	fail	when	Fiddler	handshakes	with	them.	The	same	connection	failure	will	occur	when	a	web	browser	connects	to	the	server,	but	that	failure	may	be	silently	handled	by	the	browser	automatically	falling	back	to	use	an	older	version	of	the	handshake	protocol.	Fiddler	can	be	configured
to	offer	only	specific	protocol	versions	to	the	server	in	order	to	accommodate	buggy	implementations.	From	FiddlerScript,	you	can	add	the	following	code	in	the	Main()	function	to	limit	Fiddler	to	offering	only	SSLv3	when	making	HTTPS	connections:	CONFIG.oAcceptedServerHTTPSProtocols	=	System.Security.Authentication.SslProtocols.Ssl3;
Alternatively,	you	can	limit	the	protocols	on	a	per-request	basis.	Inside	the	OnBeforeRequest	function,	add	code	like	so:	104	|	Configuring	Fiddler	and	Clients	if	(oSession.HTTPMethodIs("CONNECT")	&&	oSession.HostnameIs("buggy.example.com"))	{	oSession["x-OverrideSslProtocols"]	=	"ssl3.0";	}	By	offering	only	SSLv3,	you	can	accommodate
servers	that	do	not	properly	support	extensions	or	other	features	of	the	TLS	protocol.	Certificate	Validation	When	Fiddler	connects	to	a	HTTPS	server,	it	will	validate	the	server’s	certificate	to	ensure	that	the	certificate	is	valid	and	contains	the	target	site’s	hostname.	By	default,	any	certificate	errors	are	presented	for	you	to	decide	how	to	proceed:	If
you	choose	No,	the	connection	will	be	dropped.	If	you	choose	Yes,	the	certificate	error	will	be	ignored	and	the	connection	will	be	used	normally.	Fiddler	will	cache	your	decision	until	restarted.	Because	Fiddler	generates	its	own	certificate	to	secure	the	connection	from	the	client,	the	client	application	will	be	unaware	that	the	server’s	certificate	was
invalid.	Certificate	Pinning	A	very	small	number	of	HTTPS	client	applications	support	a	feature	known	as	“Certificate	Pinning”	whereby	the	client	application	is	hardcoded	to	accept	only	one	specific	certificate.	Even	if	the	connection	uses	a	certificate	that	chains	to	a	root	that	is	otherwise	fully-trusted	by	the	operating	system,	such	applications	will
refuse	to	accept	an	unexpected	certificate.	To	date,	some	Twitter	and	Dropbox	apps	include	this	feature,	and	Windows	8	Metro	apps	may	opt-in	to	requiring	specific	certificates	rather	than	relying	upon	the	system’s	Trusted	Root	store.	When	a	Certificate-Pinned	application	performs	a	HTTPS	handshake	through	a	CONNECT	tunnel	to	Fiddler,	it	will
examine	the	response’s	certificate	and	refuse	to	send	any	further	requests	when	it	discovers	the	Fiddler-generated	certificate.	105	|	Configuring	Fiddler	and	Clients	Unfortunately,	there	is	no	general-purpose	workaround	to	resolve	this;	the	best	you	can	do	is	to	exempt	that	application’s	traffic	from	decryption	by	setting	the	x-no-decrypt	Session	flag
on	the	CONNECT	tunnel.	This	flag	will	prevent	Fiddler	from	decrypting	the	traffic	in	the	tunnel	and	it	will	flow	through	Fiddler	uninterrupted.	106	|	Configuring	Fiddler	and	Clients	FIDDLE	R	AND	FTP	Like	HTTP,	the	File	Transfer	Protocol	(FTP)	is	a	TCP/IP-based	protocol	used	for	transferring	files,	but	it	predates	and	is	not	compatible	with	HTTP.
However,	the	protocol	remains	the	one	exception	to	the	rule	that	Fiddler	can	only	view	HTTP-based	protocols.	That’s	because	when	a	client	browser	or	application	is	configured	to	proxy	FTP	traffic	using	a	CERN-style	proxy	(like	Fiddler),	the	client	will	convert	FTP	download	requests	into	HTTP	GET	requests	before	sending	them	to	the	proxy.	The
client’s	expectation	is	that	the	proxy	will	then	act	as	a	gateway,	converting	each	FTP-over-HTTP	request	into	a	FTP	request	that	will	be	sent	to	the	origin	server	using	the	FTP	protocol.	Only	the	HTTP	request’s	URL	and	Authorization	header	are	used	in	the	FTP	request;	all	other	request	headers	are	ignored.	Fiddler	can	deal	with	FTP	traffic	in	three
ways:	1.	By	acting	as	a	HTTP-to-FTP	gateway.	2.	By	chaining	to	an	upstream	CERN-style	proxy	server	(e.g.	Microsoft	ISA)	which	will	act	as	the	HTTP-to-FTP	gateway.	3.	By	responding	to	requests	using	the	Fiddler	AutoResponder	(or	other	features).	To	configure	Fiddler	to	register	as	the	system’s	FTP	proxy,	click	Tools	>	Fiddler	Options.	On	the
Connections	tab,	tick	the	Capture	FTP	requests	option	and	restart	Fiddler.	If	Fiddler	receives	a	FTP	request	which	is	not	sent	to	an	upstream	gateway	proxy	and	which	is	not	handled	by	an	AutoResponder	rule,	it	will	attempt	to	connect	to	the	server	using	the	FTP	protocol.	Fiddler	will	reformat	the	FTP	server’s	response	as	an	HTTP	response	and
return	it	to	the	client.	There	are	several	limitations	when	acting	as	a	HTTP-to-FTP	gateway;	for	instance,	some	of	the	Session’s	Timers	will	not	be	set.	Streaming	of	FTP	responses	is	not	supported--	the	complete	FTP	response	will	be	buffered	before	being	converted	and	returned	to	the	client.	107	|	Configuring	Fiddler	and	Clients	FIDDLE	R	AND	WEB
AUTHENTICATION	Most	public	websites	use	HTML	Forms	for	authentication—they	prompt	the	client	for	a	username	and	password.	If	the	credentials	supplied	are	valid,	the	client	gets	a	login	cookie	that	is	sent	for	all	subsequent	requests.	Fiddler	can	easily	view	and	submit	such	cookies.	However,	HTTP	and	HTTPS	offer	two	native	mechanisms	for
authenticating	a	client:		HTTP	Authentication		HTTPS	Client	Certificates	Fiddler	can	be	used	with	servers	using	either	form	of	authentication.	HTTP	Authentication	With	HTTP	Authentication,	the	client	makes	a	HTTP	request	and	the	server	responds	with	a	HTTP/401	or	HTTP/407	response	demanding	credentials.	HTTP/401s	are	sent	by	servers	that
require	authentication,	while	HTTP/407s	are	sent	by	proxy	servers.	There	are	four	common	authentication	schemes	in	use	in	HTTP:		Basic		Digest		NTLM		Negotiate	In	Basic	authentication	(RFC	2617)	the	client	supplies	the	username	and	password	in	the	Authorization	request	header.	The	client’s	credentials	are	simply	base64-encoded	and	can	be
trivially	decoded	using	the	Auth	Inspector.	The	Basic	authentication	scheme	is	primitive	and	obviously	unsafe	to	use	over	unencrypted	HTTP	connections.	In	Digest	authentication,	also	described	in	RFC	2617,	the	server	presents	a	challenge	to	the	client	using	the	WWWAuthenticate	response	header.	The	client	combines	the	challenge	data	and	its
knowledge	of	the	user’s	password	to	compute	a	message	digest	that	proves	to	the	server	that	it	knows	the	password.	This	authentication	scheme	is	stronger	than	Basic	but	is	rather	uncommon,	owing	to	limited	server	support	and	various	client	bugs.	The	NTLM	authentication	scheme	is	rarely	used	on	the	public	Internet	but	is	commonly	used	on
Windows-based	Intranets.	When	the	server	presents	a	HTTP/401	to	the	client,	the	client	reissues	the	request	indicating	that	it	supports	NTLM,	then	the	server	provides	a	challenge.	The	client	uses	the	challenge	and	the	credentials	to	generate	the	reply	to	the	challenge,	and	the	server	returns	the	resource	if	the	challenge	was	answered	successfully.
This	pattern	means	that	when	NTLM	authentication	occurs,	the	client	receives	two	HTTP/401	challenges	before	the	resource	is	finally	returned	with	a	HTTP/200.	108	|	Configuring	Fiddler	and	Clients	Unlike	Basic	and	Digest,	the	NTLM	scheme	is	not	generally	per-request.	Instead	NTLM	is	per-connection,	meaning	that	a	single	authentication	proof
will	be	used	to	authorize	all	subsequent	requests	on	the	same	connection.	That’s	why	you’ll	often	see	a	flurry	of	HTTP/401s	when	first	loading	an	Intranet	site,	then	don’t	see	any	subsequent	authentication	challenges	on	later	page	loads.	The	Negotiate	authentication	scheme	(sometimes	called	Integrated	Windows	Authentication)	is	a	“wrapper”
protocol	that	uses	either	the	NTLM	or	Kerberos	protocol	under	the	covers.	At	the	HTTP	layer,	Negotiate	generally	behaves	very	much	like	NTLM,	requiring	between	one	and	three	roundtrips	per	request.	When	NTLM	or	Negotiate	is	used	through	a	proxy	server,	client	applications	require	that	the	proxy	add	a	ProxySupport:	Session-Based-
Authentication	response	header.	This	header	indicates	that	the	proxy	understands	that	authenticated	connections	must	not	be	shared	between	different	clients.	Fiddler	adds	this	header	automatically.	Automatic	Authentication	in	Fiddler	Fiddler	is	able	to	automatically	authenticate	to	servers	that	use	the	Digest,	NTLM	and	Negotiate	protocols.	When
Fiddler	automatically	authenticates,	the	client	that	issued	the	request	will	not	see	the	interim	HTTP/401	or	HTTP/407	responses.	That’s	because	Fiddler	itself	consumes	these	responses,	answers	the	server’s	challenges,	and	returns	data	to	the	client	only	after	authentication	is	complete.	To	have	Fiddler	automatically	respond	to	a	server	or	gateway
proxy’s	authentication	challenges,	set	the	X-AutoAuth	property	on	the	Session	to	a	plaintext	credential	string.	If	you	use	a	value	of	(default),	then	Fiddler	will	use	the	credentials	of	the	Windows	logon	user	account	in	which	Fiddler	is	running:	static	function	OnBeforeRequest(oSession:	Session)	{	//	To	use	the	current	Fiddler	user's	credentials:	if
(oSession.HostnameIs("ServerThatDemandsCreds"))	{	oSession["x-AutoAuth"]	=	"(default)";	}	//	or,	to	use	explicit	credentials...	if	(oSession.HostnameIs("ServerUsingChannelBinding"))	{	oSession["x-AutoAuth"]	=	"redmond\\ericlaw:$$w0rd";	}	//...	Warning:	If	Fiddler	is	configured	to	accept	requests	from	other	devices	or	user-
accounts,	using	(default)	creates	a	security	vulnerability.	That’s	because	those	requests	will	be	authenticated	using	the	credentials	of	the	account	in	which	Fiddler	is	running.	If	the	Automatically	Authenticate	box	is	ticked	on	the	Options	subtab,	requests	from	the	Composer	tab	automatically	set	the	x-AutoAuth	flag	to	the	value	of	the
fiddler.composer.AutoAuthCreds	Preference.	For	scenarios	that	require	HTTP	Basic	authentication,	you	can	simply	generate	the	required	username:password	string,	base64-encoding	it	using	the	TextWizard.	Take	the	base64-encoded	credential	string	and	add	it	as	the	value	of	109	|	Configuring	Fiddler	and	Clients	an	Authorization	or	Proxy-
Authorization	request	header.	That	header	can	be	added	to	outbound	requests	using	the	Filters	tab,	FiddlerScript,	or	the	Composer	tab’s	Request	Headers	box.	Authentication	Problems	Because	Fiddler	acts	as	a	proxy	and	offers	powerful	capabilities	like	HTTPS	decryption,	sometimes	authentication	scenarios	are	impacted	when	Fiddler	is	running.
Three	common	Authentication	issues	relate	to	Channel-Binding	Tokens,	WinHTTP	credential	release,	and	Loopback	authentication	protections.	Each	will	be	described	in	turn.	Channel-Binding	One	shortcoming	of	the	NTLM	authentication	scheme	is	that	it	can	fall	victim	to	“pass-through”	attacks.	In	such	an	attack,	the	client	is	lured	to	a	malicious	site
which	presents	an	authentication	challenge	that	was	originally	generated	by	a	victim	server.	The	client	dutifully	responds	to	the	authentication	challenge,	and	the	malicious	site	uses	that	client’s	challenge-response	to	authenticate	to	the	victim	server.	This	attack	permits	the	attacker	to	steal	data	from	the	victim	server	using	the	unwitting	client’s
credentials.	To	address	this	problem,	the	concept	of	Channel-Binding	was	introduced.	Channel-Binding	binds	the	authentication	challenge-response	to	the	underlying	connection	so	that	it	cannot	be	reused	on	another	connection.	Typically	this	works	by	binding	the	credentials	to	the	current	HTTPS	connection.	Channel-Binding	is	enabled	via	the
Extended	Protection	option	in	IIS.	Channel-Binding	presents	a	problem	for	Fiddler	because	the	client	binds	its	credentials	to	its	connection	to	Fiddler,	such	that	when	Fiddler	forwards	those	credentials	to	the	actual	server,	the	server	rejects	them.	To	resolve	this	problem,	you	can	configure	Fiddler	to	itself	authenticate	to	the	server,	taking	the	client
out	of	the	loop.	Because	Fiddler	itself	generates	the	challenge-response,	using	the	Channel-Binding	information	matching	its	own	connection	to	the	server,	the	credentials	will	be	accepted.	To	configure	Fiddler	to	authenticate	on	the	client’s	behalf,	use	the	X-AutoAuth	flag	described	in	the	“Automatic	Authentication	in	Fiddler”	section	above.	WinHTTP
Credential	Release	Policy	The	WinHTTP	network	stack	does	not	support	the	concept	of	security	zones,	which	means	that	it	sometimes	will	refuse	to	respond	to	authentication	challenges	when	a	proxy	like	Fiddler	is	involved.	This	problem	sometimes	appears	when	attempting	to	download	documents	from	SharePoint	sites	using	the	Microsoft	Office
client	applications.	You	can	resolve	this	problem	by	configuring	Fiddler	to	authenticate	on	the	client’s	behalf	using	the	X-AutoAuth	flag.	Alternatively,	see	to	learn	how	to	modify	the	AuthForwardServerList	in	the	registry.	Loopback	Protection	Windows	also	attempts	to	protect	the	user	against	“loopback	authentication”	attacks.	In	these	attacks,	a
client	thinks	that	it	is	authenticating	with	a	remote	server	but	it	is	really	authenticating	back	to	the	local	computer.	Such	attacks	usually	attempt	to	elevate	privilege	from	a	low-privilege	process	to	a	higher-privilege	local	process.	When	Windows	encounters	an	unexpected	attempt	to	authenticate	to	the	local	machine,	the	authentication	request	will	be
blocked.	To	disable	loopback	protection,	set	the	flag	DisableLoopbackCheck=1	as	described	at:	.com/kb/926642.	110	|	Configuring	Fiddler	and	Clients	HTTPS	Client	Certificates	In	addition	to	the	HTML	Forms-based	and	HTTP	Authentication	protocols,	a	third	authentication	type	is	used	for	high-security	sites.	HTTPS	Client	Certificates	are	a	very
strong	form	of	authentication	used	in	some	high-stakes	scenarios	like	banking	and	document-signing.	When	using	Client	Certificate	authentication,	the	client	supplies	a	client	certificate	to	the	server	that	cryptographically	proves	the	identity	of	the	user.	One	of	the	key	design	goals	of	Client	Certificate	authentication	is	to	prevent	network
intermediaries	(like	Fiddler)	from	abusing	the	client’s	credentials.	Even	if	the	client	application	sent	its	certificate	to	Fiddler,	Fiddler	cannot	successfully	reuse	that	certificate	to	respond	to	the	server’s	demand,	because	the	client	never	provides	Fiddler	with	its	private	key.	To	resolve	this	limitation,	you	can	supply	any	necessary	client	certificates	and
private	keys	directly	for	Fiddler	to	use	when	handshaking	with	the	server.	By	default,	if	a	server	prompts	the	client	for	a	certificate,	Fiddler	will	look	inside	the	%USERPROFILE%\Documents\Fiddler2\	folder	for	a	file	named	ClientCertificate.cer	and	will	use	that	certificate	when	responding	to	the	server’s	certificate	demand.	In	some	cases,	you	may
want	to	use	a	different	client	certificate	for	each	secure	connection.	To	do	so,	specify	the	location	of	the	certificate	using	the	https-Client-Certificate	property	on	the	CONNECT	tunnel	to	the	secure	server.	For	instance,	you	can	write	code	like	this:	static	function	OnBeforeRequest(oSession:	Session)	{	if	(oSession.HTTPMethodIs("CONNECT")	{	if
(oSession.HostnameIs("exampleA"))	{	oSession["https-Client-Certificate"]	=	"C:\\certs\\CertA.cer";	}	else	if	(oSession.HostnameIs("exampleB"))	{	oSession["https-Client-Certificate"]	=	"C:\\test\\CertB.cer";	}	}	//...	A	.CER	file	does	not	contain	the	private	key	associated	with	the	certificate’s	public	key.	Instead,	the	.CER	file	merely	acts	as	reference	to
Windows’	Personal	certificates	store	(certmgr.msc).	The	Windows	certificate	store	holds	the	private	key	associated	with	the	certificate	and	releases	it	only	as	needed.	Client	certificates	stored	on	a	Smartcard	will	automatically	appear	within	the	Personal	store	when	the	Smartcard	is	inserted:	111	|	Configuring	Fiddler	and	Clients	When	the	Smartcard
is	inserted,	you	may	export	a	.CER	file	from	certmgr.msc	and	use	it	just	like	any	other	client	certificate.	Note	that	your	Smartcard	must	remain	inserted	for	Fiddler	to	use	its	private	key.	If	the	desired	certificate	isn't	yet	installed	Windows’	Personal	certificates	store	(e.g.	you	only	have	a	.pfx	file)	you	must	first	import	it	into	the	certificate	store,	then
export	a	.CER	file.	After	your	certificate	is	installed,	simply	rightclick	the	certificate	and	choose	All	Tasks	>	Export….	Save	the	.CER	file	to	either	the	default	ClientCertificate.cer	location	or	the	location	you	will	specify	via	the	https-Client-Certificate	flag.	112	|	Configuring	Fiddler	and	Clients	Inspectors	OVERVIEW	Fiddler’s	Inspectors	are	used	to
display	the	request	and	response	for	the	selected	Session	in	the	Web	Sessions	list.	Inspectors	appear	in	two	places:	On	the	Inspectors	tab	in	the	main	Fiddler	window,	and	in	the	standalone	Inspect	Session	windows.	The	latter	are	opened	using	the	command	on	the	Web	Sessions	context	menu.	On	the	Inspectors	tab,	the	Request	Inspectors	are	shown
in	a	panel	at	the	top,	and	the	Response	Inspectors	are	shown	at	the	bottom.	You	can	switch	between	Inspectors	by	clicking	on	the	desired	Inspector’s	name	(e.g.	HexView).	When	you	first	double-click	or	press	the	Enter	key	on	a	session	in	the	Web	Sessions	list,	the	Inspectors	tab	will	become	active.	Each	request	or	response	inspector	will	be	polled	to
ask	it	how	applicable	it	is	to	inspecting	the	selected	request	and	response.	For	instance,	the	ImageView	Inspector	returns	a	high	“score”	for	image/*	types	while	returning	a	low	score	for	textual	types.	In	contrast,	the	TextView	Inspector	returns	a	high	score	for	textual	types	and	a	low	score	for	binary	formats.	Whichever	inspectors	return	the	highest
score	for	the	Session	will	become	active.	To	force	Fiddler	to	always	activate	a	particular	Request	Inspector,	set	the	fiddler.ui.inspectors.request.alwaysuse	preference	to	the	title	of	the	Inspector’s	tab.	To	force	Fiddler	to	always	activate	a	specific	Response	Inspector,	set	the	fiddler.ui.inspectors.response.alwaysuse	preference	to	the	title	of	the
Inspector’s	tab.	A	thin	blue	line	splits	the	top	and	bottom	panels;	you	can	use	the	mouse	to	move	the	line	and	resize	the	panels.	Double-clicking	the	line	will	maximize	the	Response	Inspectors	panel,	as	this	is	the	panel	most	users	use	most	of	the	time.	114	|	Inspectors	To	get	even	more	display	area,	the	Inspectors	tab	can	be	extracted	from	the	main
window,	either	by	clicking	the	Tearoff	button	in	the	toolbar	or	by	typing	the	command	tearoff	in	the	QuickExec	box.	Closing	the	Inspectors	window	will	return	them	to	their	default	position	on	the	main	window.	Right-clicking	on	an	individual	request	or	response	inspector’s	tab	will	show	a	menu	containing	two	options:	Inspector	Properties	and	Hide
Inspector.	The	first	shows	information	provided	by	the	Inspector	about	itself,	while	the	second	will	remove	the	inspector	from	the	Inspectors	tab.	To	restore	a	hidden	Inspector	later,	edit	the	fiddler.inspectors.hidelist	Preference	and	restart,	or	hold	the	SHIFT	key	while	starting	Fiddler.	By	default,	the	Inspectors	are	ReadOnly	when	inspecting	a
session,	unless	the	session	is	currently	paused	at	a	breakpoint.	Additionally,	the	Inspectors	will	permit	editing	if	the	session	is	in	an	Unlocked	state,	which	can	be	achieved	by	using	the	command	on	the	Edit	menu.	Most	Inspectors	will	display	with	a	specific	background	color	while	in	ReadOnly	mode,	and	a	different	color	(typically	white)	when	editing
is	permitted.	The	default	ReadOnly	color	is	light-blue,	and	can	be	changed	using	the	Tools	>	Fiddler	Options	>	Appearance	tab.	The	remainder	of	this	chapter	will	describe	each	of	the	Inspectors	included	with	Fiddler.	115	|	Inspectors	AUTH	Type	Allows	Editing	Request	&	Response	No	Fiddler’s	Auth	Inspector	interprets	the	contents	of	the
Authorization-	and	Authentication-	related	headers	on	requests	and	responses.	Typically,	these	headers	can	be	found	on	HTTP/401	and	HTTP/407	responses	that	demand	credentials,	and	the	subsequent	requests	that	provide	the	requested	credentials.	For	instance,	if	you	enable	the	“Require	Proxy	Authentication”	rule	in	the	Rules	menu,	Fiddler	will
return	a	HTTP/407	response	demanding	that	the	user	supply	credentials	for	each	request.	This	demand	is	made	by	the	Proxy-Authenticate	header,	which	the	Auth	Response	Inspector	displays:	After	the	user	enters	the	name	UserName	and	the	password	SecretKey	in	the	browser’s	Authentication	dialog,	the	browser’s	subsequent	requests	supply	a
Proxy-Authorization	header	with	the	user’s	credentials.	Since	the	authentication	scheme	in	use	in	this	scenario	is	HTTP	Basic,	the	credentials	are	encoded	using	base64	encoding.	The	Auth	Request	Inspector	decodes	the	string	automatically	and	displays	it	in	plaintext:	Of	course,	most	websites	will	use	a	stronger	form	of	authentication,	either	HTTP
Digest	or	the	Windows	NTLM	or	Negotatiate	schemes.	The	latter	are	especially	popular	on	Windows	networks.	Fiddler’	Auth	inspector	knows	how	to	parse	NTLM	blobs	and	will	show	you	the	information	contained	within	those	blobs,	like	so:	-[NTLM	Type3:	Authentication]-----------------------------Provider:	NTLMSSP	Type:	3	OS	Version:	6.2:8329	Flags:
0xa2888205	Unicode	supported	in	security	buffer.	Request	server's	authentication	realm	included	in	Type2	reply.	NTLM	authentication.	Negotiate	Always	Sign.	Negotiate	NTLM2	Key.	Target	Information	block	provided	for	use	in	calculation	of	the	NTLMv2	response.	Supports	56-bit	encryption.	Supports	128-bit	encryption.	116	|	Inspectors
lmresp_Offset:	134;	lmresp_Length:	24;	lmresp_Length2:	24	ntresp_Offset:	158;	ntresp_Length:	396;	ntresp_Length2:	396	Domain_Offset:	88;	Domain_Length:	14;	Domain_Length2:	14	User_Offset:	102;	User_Length:	14;	User_Length2:	14	Host_Offset:	116;	Host_Length:	18;	Host_Length2:	18	msg_len:	554	Domain:	REDMOND	User:	ericlaw	Host:
ERICLAWT8	lm_resp:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	nt_resp:	42	40	AE	AB	3E	D7	7F	02	B5	F9	76	D7	C9	5E	6B	82	01	01	00	00	00	00	00	00	05	96	B2	D4	01	23	CD	C1	D3	D9	8A	33	47	87	40	3D	00	00	00	00	02	00	52	...	The	Auth	Inspector	cannot	currently	parse	Kerberos	authentication	messages,	but	will	show
the	decoded	bytes	of	the	challenge	and	response.	117	|	Inspectors	CACHING	Type	Allows	Editing	Response	only	No	The	Caching	Response	Inspector	examines	the	HTTP	response	headers	to	determine	whether	the	selected	response	is	cacheable	under	the	rules	of	HTTP,	and	if	so,	for	how	long.	It	consults	the	response	headers	Cache-Control,	Expires,
Pragma,	Vary,	ETag,	Age,	and	Last-Modified	in	its	evaluation	of	the	response.	Some	browsers	(including	Internet	Explorer)	support	the	specification	of	caching	information	in	HTML	documents	using	META	HTTP-EQUIV	tags.	The	Caching	Inspector	scans	responses	that	have	a	HTML	Content-Type	and	will	display	any	HTTP-EQUIV	or	PRAGMA
directives	found	in	the	markup.	For	responses	which	do	not	explicitly	specify	their	cacheability	or	freshness	lifetime,	the	Caching	Inspector	will	compute	the	“heuristic	freshness	lifetime”	using	the	Last-Modified	header	and	the	algorithm	suggested	in	RFC2616.	You	can	learn	more	about	how	browsers	utilize	caches	at	.	118	|	Inspectors	COOKIES	Type
Allows	Editing	Request	&	Response	No	The	Cookies	Inspector	displays	the	contents	of	any	outbound	Cookie	and	Cookie2	request	headers	and	any	inbound	Set-Cookie,	Set-Cookie2,	and	P3P	response	headers.	Note	that	the	Cookie2	and	Set-Cookie2	headers	are	uncommonly	used	and	not	supported	by	Internet	Explorer	and	some	other	browsers.	The
display	of	the	cookies	is	basic	(you	can	see	the	same	information	in	the	Headers	inspector).	This	Inspector’s	value	primarily	consists	of	examining	the	P3P	response	header,	if	present,	to	determine	whether	the	cookie	is	likely	to	be	stored.	P3P	(Platform	for	Privacy	Preferences)	is	a	standard	whereby	the	server	can	communicate	to	the	client	how	it	will
be	using	the	cookies	that	accompany	the	P3P	header.	Set-Cookie:	ASPSESSIONIDCCBTDCRD=CIFKIKJDFMJFFODAJPFMFKGN;	path=/	P3P:	CP="ALL	IND	DSP	COR	ADM	CONo	CUR	CUSo	IVAo	IVDo	PSA	PSD	TAI	TELo	OUR	SAMo	CNT	COM	INT	NAV	ONL	PHY	PRE	PUR	UNI"	The	tokens	in	the	P3P	header’s	CP	(Compact	Policy)	string	are
interpreted	by	the	Inspector	and	their	meaning	is	listed:	The	Inspector	will	further	evaluate	the	string	to	determine	whether	the	cookie	is	deemed	“acceptable”	by	the	default	privacy	policy	used	by	Internet	Explorer.	It’s	worth	mentioning	that	some	sites	(Facebook	and	Google,	as	of	this	writing)	send	invalid	P3P	statements	to	circumvent	the	browser’s
privacy	features.	Under	the	rules	of	P3P,	unknown	tokens	(like	those	sent	by	such	sites)	are	deliberately	ignored.	The	Cookies	Request	Inspector	displays	the	size	of	the	outbound	Cookie	header,	helping	identify	over-sized	cookies	to	eliminate	or	shrink	to	improve	the	network	performance.	The	Cookies	Response	Inspector	flags	common	problems.	For
instance,	Internet	Explorer	will	refuse	to	set	a	cookie	for	any	server	whose	hostname	containing	an	underscore	character,	and	the	Inspector	will	warn	you	if	it	encounters	this	condition.	119	|	Inspectors	HEADERS	Type	Allows	Editing	Request	&	Response	Yes	Every	HTTP	request	begins	with	plaintext	headers	that	describe	what	resource	or	operation
is	sought	by	the	client.	The	first	line	(the	“Request	Line”)	of	the	request	contains	three	values,	the	HTTP	Method	(e.g.	“GET”	or	“POST”),	the	URL	path	which	is	being	requested	(e.g.	“/index.htm”),	and	the	HTTP	version	(e.g.	“HTTP/1.1”).	Following	the	Request	Line	are	one	or	more	lines	containing	name-value	pairs	of	metadata	about	the	request	and
the	client,	such	as	the	User-Agent	and	Accept-Language.	Similarly,	every	HTTP	response	begins	with	plaintext	headers	that	describe	the	result	of	the	request.	The	first	line	of	the	response	(the	“Status	Line”)	contains	the	HTTP	version	(e.g.	“HTTP/1.1”),	the	response	status	code	(e.g.	“200”)	and	the	response	status	text	(e.g.	“OK”).	Following	the	Status
Line	are	one	or	more	lines	containing	name-value	pairs	of	metadata	about	the	response	and	the	server,	such	as	the	length	of	the	response	file,	its	Content-Type,	and	information	about	how	the	response	may	be	cached.	The	Headers	Inspector	allows	you	to	view	the	HTTP	headers	of	the	request	and	the	response,	showing	the	namevalue	pairs	in	a
treeview	below	the	Request	Line	or	Status	Line.	The	name-value	pairs	of	headers	are	grouped	based	on	their	function	and	then	sorted	alphabetically	by	name.	Groupings	are	simply	for	your	ease	of	reading,	and	are	not	sent	on	the	network.	For	Request	headers,	the	groups	include	[Cache,	Client,	Entity,	Transport,	Cookies/Login,	Miscellaneous].	For
Response	headers,	the	groups	include	[Entity,	Transport,	Cookies/Login,	Security,	Miscellaneous].	By	default,	the	contents	of	the	Headers	Inspector	are	read-only	and	cannot	be	edited.	While	in	ReadOnly	mode,	the	background	color	of	the	treeview	and	the	Raw	Headers	box	will	display	using	the	ReadOnly	appearance	color	(lightblue).	When	you
select	a	Web	Session	paused	at	a	breakpoint,	or	when	you	select	the	Unlock	for	Editing	option	on	the	Edit	menu,	the	Headers	Inspector	is	shown	in	Edit	mode.	While	in	Edit	mode,	the	background	color	is	the	default	window	color	(white),	and	the	contents	of	the	headers	may	be	edited.	Click	the	Raw	hyperlink	at	the	top-right	of	the	Inspector	to	display
the	plaintext	of	the	headers	as	they	are	sent	on	the	network.	Click	the	Header	Definitions	link	to	view	a	help	topic	describing	common	HTTP	headers	and	their	use.	Due	to	limitations	in	the	Windows	treeview	control,	only	the	first	260	characters	of	the	header’s	name	and	value	are	shown.	To	view	headers	which	exceed	this	length,	select	the	header
and	press	Enter	or	F2,	or	right-click	the	header	and	choose	View	Header.	The	Header	Viewer	window	will	open	in	read-only	mode	and	allow	you	to	inspect	the	full	name	and	value.	The	length	(in	characters)	of	the	value	will	be	displayed	in	the	title	bar	of	the	window.	While	the	Inspector	is	in	ReadOnly	mode,	any	Cookie	request	headers	are	broken	out
into	name-value	pairs	for	easier	reading.	While	in	Edit	mode,	any	Cookie	header	is	shown	as	a	single	line	as	it	is	actually	sent	to	the	server.	120	|	Inspectors	Context	Menu	Right-clicking	on	the	list	of	Headers	will	show	a	menu	with	the	following	options:	View	Header	Edit	Header	Copy	Header	Copy	Value	only	Send	to	TextWizard	Add	Header	Remove
Header	Paste	Headers	Lookup	Header	Open	the	Header	Viewer	window	for	the	selected	header.	(Only	shown	in	Edit	mode)	Open	the	Header	Editor	window	for	the	selected	header.	Copy	the	entire	selected	header	to	the	clipboard.	Copy	the	selected	header’s	Value	to	the	clipboard.	Send	the	selected	header’s	Value	to	the	TextWizard	to	permit
decoding	of	encoded	text.	When	in	Edit	mode,	create	a	new	blank	header.	When	in	Edit	mode,	remove	the	selected	header.	When	in	Edit	mode,	attempt	to	add	new	headers	based	on	the	information	on	the	clipboard.	Open	a	web	page	with	information	about	the	selected	HTTP	header.	Keyboard	Shortcuts	After	selecting	a	session	in	the	Web	Sessions
list,	you	can	press	CTRL+H	to	activate	the	Request	and	Response	Header	Inspectors.	Within	the	Inspector,	the	following	hotkeys	are	available:	CTRL+C	CTRL+SHIFT+C	F2	or	Enter	CTRL+V	Insert	Delete	Copy	the	selected	header	to	the	clipboard.	Copy	the	selected	header’s	value	to	the	clipboard.	Open	the	Header	Viewer	or	Header	Editor	window
for	the	selected	header.	When	in	Editing	mode,	attempt	to	add	one	or	more	new	headers	based	on	the	text	on	the	clipboard.	When	in	Editing	mode,	create	a	new	blank	header.	When	in	Editing	mode,	remove	the	selected	header.	Editing	When	the	Inspector	is	in	Edit	mode,	you	can	make	changes	to	the	headers	before	they	are	sent	to	the	server	or	the
client.	If	you	would	like	to	edit	the	entire	set	of	headers	at	once,	click	the	Raw	link	at	the	top-right	of	the	Inspector.	The	Raw	Headers	window	will	appear	and	enable	you	to	save	the	new	set	of	headers.	Alternatively,	you	can	directly	change	the	contents	of	the	Request	or	Status	Line	by	editing	the	text	in	the	box	at	the	top	of	the	Inspector.	To	edit	an
individual	name-value	header,	select	it	and	press	F2	or	hit	Enter	and	the	Header	Editor	window	will	appear.	To	add	a	new	Header,	press	the	Insert	key;	a	new	header	will	appear	and	the	Header	Editor	will	automatically	open.	121	|	Inspectors	You	may	update	the	name	and	value	of	the	new	header	using	the	boxes,	or	you	may	click	the	Header
Templates	button	at	the	bottom	of	the	window	to	choose	from	commonly-used	headers.	122	|	Inspectors	HEXVIEW	Type	Allows	Editing	Request	&	Response	Yes	The	HexView	Inspector	allows	you	to	view	the	request	and	response	headers	and	body	using	a	hexadecimal	edit	box.	This	capability	is	most	useful	when	inspecting	binary	content.	The
Inspector	contains	a	HexEdit	control	organized	into	three	vertical	columns.	In	the	left	column,	in	light	grey,	is	the	hexadecimal	address	for	the	adjacent	line	of	bytes.	In	the	center	column	are	the	hexadecimal	representations	of	the	individual	bytes.	The	right	column	redisplays	those	bytes,	interpreted	as	ASCII	text.	If	the	HexView	is	configured	to	show
the	headers,	the	request	headers	will	be	shown	using	in	blue	text	and	response	headers	will	be	shown	in	green.	The	body	bytes	are	shown	in	black.	At	the	bottom	of	the	Inspector	is	a	status	bar	containing	three	panels.	The	first	panel	shows	the	current	cursor	position	within	the	bytes	in	decimal	form	and	hexadecimal	form.	If	the	Inspector	is
configured	to	show	the	header	bytes,	the	offset	will	automatically	reset	to	zero	when	the	cursor	enters	the	body	bytes.	If	one	or	more	bytes	are	selected	in	the	control,	the	middle	panel	displays	the	length	of	the	current	byte	selection.	The	right	panel	indicates	the	current	mode:	Read	only,	Overwrite,	or	Insert.	The	Inspector	is	in	Read	only	mode
except	when	the	Session	is	paused	at	a	breakpoint	or	is	Unlocked	for	Editing.	In	Edit	mode,	you	may	press	the	Insert	key	to	toggle	between	overwriting	bytes	and	inserting	new	bytes.	The	HexView	Inspector’s	context	menu	offers	the	following	items:	Insert	File	Here…	Select	Bytes…	Save	Selected	Bytes…	Goto	Offset…	Find	Bytes…	Find	String…	In
Edit	mode,	inserts	the	bytes	of	a	selected	file	at	the	current	cursor	position.	Prompts	you	for	a	number	of	bytes	to	select,	then	selects	that	number	of	bytes	starting	at	the	current	cursor	position.	Enter	a	leading	$	character	if	you	wish	to	specify	the	number	of	bytes	in	Hexadecimal	format.	Tip:	This	feature	can	be	useful	if	you	wish	to	examine	HTTP
Chunked	Encoding	blocks,	as	the	length	of	each	block	is	specified	as	a	hexadecimal	number.	When	one	or	more	bytes	are	selected,	this	item	enables	saving	the	selected	bytes	to	a	file	of	your	choosing.	Enables	you	to	move	the	cursor	to	a	selected	byte	of	the	content.	Enter	a	leading	+	or	–	character	to	specify	the	offset	from	the	current	cursor	position
instead	of	the	start	of	the	content.	Enter	a	leading	$	character	if	you	wish	to	specify	the	number	of	bytes	in	Hexadecimal	format.	Enables	you	to	specify	a	sequence	of	hexadecimal	characters	to	search	for.	The	search	begins	at	the	current	cursor	position.	Press	F3	to	continue	the	search	after	each	match.	Enables	you	to	specify	a	sequence	of
characters	to	search	for	(the	bytes	will	be	interpreted	as	UTF-8	characters).	The	search	begins	at	the	current	cursor	position.	Press	F3	to	continue	the	search	after	each	match.	123	|	Inspectors	Show	Headers	Set	Bytes	per	Line…	124	|	Inspectors	This	checkbox	controls	whether	the	header	bytes	will	be	displayed	within	the	control.	When	unticked,
only	the	body	bytes	will	be	shown.	Note:	In	current	versions	of	Fiddler,	this	option	is	automatically	unticked	when	the	HexView	Inspector	enters	Edit	mode,	as	the	Inspector	currently	does	not	support	editing	of	headers.	Enables	you	to	specify	how	many	bytes	to	show	on	each	line	of	the	display.	Enter	0	to	instruct	the	HexView	to	automatically	select
the	number	of	bytes	based	on	the	available	width	(a	minimum	of	four	bytes	per	line	will	be	shown).	IMAGEVIEW	Type	Allows	Editing	Response	No	The	ImageView	Inspector	allows	you	to	view	the	response	as	an	image.	The	Inspector	can	display	most	common	web	image	formats,	including	JPEGs,	PNGs,	and	GIFs,	as	well	as	less	common	formats
including	cursors,	images,	bitmaps,	EMF/WMF,	and	TIFF.	The	Inspector	does	not	support	display	of	SVG	graphics;	if	IE9	or	later	is	installed,	SVG	responses	can	be	viewed	using	the	WebView	Inspector.	The	grey	panel	at	left	shows	information	about	the	currently	selected	image,	including	its	size	in	bytes,	pixel	dimensions,	and	file	format.	At	the
bottom	of	the	grey	panel	is	a	dropdown	that	allows	you	to	control	how	the	image	is	scaled:		No	scaling	–	Images	are	shown	at	their	native	dimensions.		Autoshrink	–	Images	that	are	larger	than	the	display	area	are	scaled	down.		Scale	to	fit	–	Images	that	are	larger	than	the	display	area	are	scaled	down,	and	images	that	are	smaller	than	the	display	area
are	scaled	up	to	fill	the	area.	The	Inspector’s	context	menu	allows	you	to	copy	the	image	to	the	clipboard	as	a	bitmap,	or	quickly	save	the	image	file	to	your	Windows	desktop	using	the	current	time	as	the	basis	for	the	filename.	Also	available	is	an	option	to	copy	the	image	as	a	DataURI,	a	text	format	which	can	be	embedded	in	HTML	or	stylesheets	and
displayed	in	modern	browsers	(IE8+).	If	the	resulting	URI	is	over	32kb	in	length,	Fiddler	will	warn	you	that	that	IE8	does	not	support	32kb+	URIs;	IE9	or	later	will	be	required	to	render	the	image.	The	final	option	on	the	menu	allows	you	to	change	the	background	color	(normally	light	blue)	which	can	provide	useful	contrast	when	examining	small	or
transparent	images.	Middle-clicking	on	the	image	will	silently	copy	the	image	to	your	Desktop	folder.	Double-clicking	on	the	image	will	open	a	full-screen	view.	In	full-screen	view,	the	following	functions	are	available:	Key	or	Mouse	action	Enter	or	Z	H	V	R	Mousewheel	up	Mousewheel	down	Escape	Function	Toggle	Zoom	between	Full-Screen	and
Actual	Size	Flip	the	image	horizontally	Flip	the	image	vertically	Rotate	the	image	clockwise	by	90	degrees.	Zoom	to	Full-Screen	Show	Actual	Size	Exit	the	full-screen	viewer	To	more	rapidly	view	a	large	number	of	image	responses,	use	the	GalleryView	extension.	125	|	Inspectors	JSON	Type	Allows	Editing	Request	&	Response	No	The	JSON	Inspector
interprets	the	selected	request	or	response	body	as	a	JavaScript	Object	Notation	(JSON)	formatted	string,	showing	a	treeview	of	the	JSON	object’s	nodes.	If	the	body	cannot	be	interpreted	as	JSON,	the	treeview	will	remain	empty.	Unlike	most	inspectors,	the	JSON	Inspector	is	able	to	render	the	data	even	if	the	request	or	response	is	compressed	or
has	HTTP	Chunked	Encoding	applied;	you	do	not	need	to	remove	the	encoding	to	display	the	content.	Many	responses	delivered	with	the	JSON	Content-Type	are	not	really	JSON.	Instead,	they’re	JSONP,	a	JavaScript	file	consisting	of	a	single	function	call	with	a	string	argument	containing	JSON.	The	JSON	Inspector	is	able	to	handle	many	types	of
JSONP	by	ignoring	the	leading	function	call	and	trailing	parenthesis	and	semicolon.	However,	some	JSONP	is	malformed	such	that	the	name	component	of	the	name/value	pairs	is	unquoted:	the	JSON	Inspector	cannot	handle	this	type	of	malformedness	and	will	refuse	to	parse	the	content.	The	context	menu	offers	two	options:	Copy,	to	copy	the
selected	node	to	the	clipboard	(or	press	CTRL+C),	and	Send	to	TextWizard,	to	send	the	selected	node’s	content	to	the	TextWizard	window	for	encoding	or	decoding.	The	Expand	All	button	in	the	footer	will	expand	all	nodes	of	the	tree,	while	the	Collapse	button	will	collapse	all	nodes	of	the	tree.	The	JSON	tree	will	be	automatically	expanded	if	the	body
contains	less	than	2000	nodes;	for	performance	reasons,	you	must	manually	expand	the	tree	for	larger	documents.	126	|	Inspectors	RAW	Type	Allows	Editing	Request	&	Response	Yes	The	Raw	Inspector	allows	you	to	view	the	complete	request	and	response,	including	headers	and	bodies,	as	text.	The	term	“raw”	is	a	bit	of	a	misnomer,	because	Fiddler
is	still	interpreting	the	bytes	of	the	request	and	response;	if	you	need	a	purely	“raw”	view	of	network	traffic,	use	a	packet	sniffer	like	Microsoft	Network	Monitor	(NetMon)	or	Wireshark.	Most	of	the	Inspector	is	a	large	text	area	that	displays	headers	and	the	body	interpreted	as	text	using	the	character	set	detected	using	the	headers,	the	byte-order-
marker,	or	an	embedded	META	tag	declaration.	Pressing	CTRL+G	in	the	text	area	allows	you	to	move	the	cursor	to	a	specific	line	number.	When	right-clicking,	the	text	area’s	context	menu	offers	standard	Cut,	Copy	and	Paste	options.	The	menu	also	offers	an	option	to	send	the	currently	selected	text	to	the	TextWizard	tool.	There	are	two	checkboxes
on	the	menu:	one	controls	whether	Word	Wrap	is	enabled	and	the	other	controls	whether	the	AutoTruncate	feature	is	enabled.	Along	the	bottom	of	the	Inspector	is	a	bar	that	offers	additional	features.	First	is	a	search	box	that	allows	you	to	select	matching	text	within	the	content.	The	search	text	is	case-insensitive	and	does	not	support	regular
expressions.	Pressing	the	Up	or	Down	arrow	keys	in	the	search	box	will	scroll	the	text	area	above	(to	allow	you	to	view	search	results	in	context).	Matches	are	selected	as	you	type,	and	the	box	will	turn	green	if	a	match	was	found	or	red	if	no	further	matches	were	found.	Pressing	Enter	or	F3	will	select	the	next	match.	Pressing	CTRL+Enter	will
highlight	all	matches	in	the	content.	The	View	in	Notepad	button	saves	the	text	content	to	a	temporary	file	and	opens	a	text	editor	to	view	the	file.	The	text	editor	launched	is	controlled	by	the	fiddler.config.path.texteditor	preference;	notepad.exe	is	the	default.	The	Inspector	replaces	any	null	bytes	with	the	Unicode	replacement	character	(�)	and	as
such	can	be	used	to	view	binary	response	bodies,	although	the	HexView	remains	more	suitable	for	that	task.	Because	displaying	large	binary	bodies	in	the	textbox	can	require	large	amounts	of	CPU	time	and	memory,	the	Inspector	is	configured	to	automatically	truncate	the	display	of	large	responses.	The	threshold	at	which	truncation	occurs	is
controlled	by	the	Content-Type	and	four	preferences:					fiddler.inspectors.request.raw.truncatebinaryat	fiddler.inspectors.request.raw.truncatetextat	fiddler.inspectors.response.raw.truncatebinaryat	fiddler.inspectors.response.raw.truncatetextat	By	default,	binary	Content-Types	are	truncated	at	128	bytes,	and	text	types	are	truncated	at	262144
bytes.	Truncation	can	be	disabled	using	the	context	menu.	127	|	Inspectors	SYNTAXVIEW	Type	Allows	Editing	Request	&	Response	Yes	The	SyntaxView	Inspector	allows	you	to	view	request	and	response	body	text	highlighted	according	to	type-specific	rules.	This	is	a	very	useful	feature	when	reading	HTML,	XML,	CSS,	and	JavaScript.	The	Inspector
uses	the	ContentType	header	when	deciding	which	highlighting	rules	to	apply.	The	SyntaxView	Inspector	is	one	of	the	most	useful	Inspectors	available	for	Fiddler,	but	it	is	not	included	in	the	default	install	package	for	size	reasons.	Fiddler’s	installer	is	currently	around	750kb,	and	including	the	Syntax	Highlighting	extensions	would	nearly	double	that
size.	To	ensure	that	Fiddler	updates	are	as	compact	as	possible,	the	SyntaxView	extension	is	available	as	a	separate	download	from	.	Along	the	bottom	of	the	Inspector	is	a	bar	which	exposes	additional	features	and	functionality.	First	is	text	which	displays	the	current	caret	position	in	Line:Column	format.	Next	is	the	QuickFind	box	which	enables
inline	search.	Next	is	a	button	which	launches	advanced	Find	and	Replace	functionality.	At	the	far	right	of	the	bar	is	text	indicating	whether	the	Inspector	is	in	Read	Only	or	Edit	mode.	The	QuickFind	box	supports	the	use	of	Regular	Expressions;	simply	prefix	your	search	string	with	the	text	REGEX:	and	the	remainder	of	the	string	will	be	interpreted
as	a	regular	expression.	In	addition	to	the	standard	Cut,	Copy,	Paste,	Undo,	and	Redo	commands,	the	SyntaxView’s	Context	Menu	offers	the	following	features:	Send	to	TextWizard	Format	XML	128	|	Inspectors	Sends	the	currently-selected	text	to	the	TextWizard	window	for	encoding	or	decoding.	Attempts	to	parse	the	document	as	XML.	If	successful,
the	text	is	reformatted	as	an	indented	XML	treeview.	This	option	remains	available	Format	Script/JSON	Find…	Word	Wrap	Editor	Options…	even	when	the	Inspector	is	in	Read	Only	mode,	but	the	reformatting	is	only	permanently	applied	in	Edit	mode.	Attempts	to	parse	the	document	as	JavaScript/JSON.	The	text	will	be	reformatted	using	standard
JavaScript	indentation	styles.	This	option	remains	available	even	when	the	Inspector	is	in	Read	Only	mode,	but	the	reformatting	is	only	permanently	applied	in	Edit	mode.	Opens	a	Find	and	Replace	dialog	which	offers	a	variety	of	search	and	replacement	options.	This	checkbox	toggles	whether	text	is	word-wrapped.	Opens	an	options	window
containing	dozens	of	advanced	text	display	options.	129	|	Inspectors	TEXTVIEW	Type	Allows	Editing	Request	&	Response	Yes	The	TextView	Inspector	allows	you	to	view	the	request	and	response	bodies	as	text.	The	Inspector	truncates	its	display	at	the	first	null	byte	it	finds,	and	as	such	is	unsuitable	for	displaying	binary	content.	Most	of	the	Inspector
is	a	large	text	area	that	displays	the	body	text	interpreted	using	the	character	set	detected	using	the	headers,	the	byte-order-marker,	or	an	embedded	META	tag	declaration.	Pressing	CTRL+G	in	the	text	area	allows	you	to	move	the	cursor	to	a	specific	line	number.	When	right-clicking,	the	text	area’s	context	menu	offers	standard	Cut,	Copy	and	Paste
options	and	a	checkbox	to	enable	or	disable	word	wrapping.	The	menu	also	offers	an	option	to	send	the	currently	selected	text	to	the	TextWizard	tool.	Along	the	bottom	of	the	Inspector	is	a	bar	that	offers	additional	information	and	features.	The	first	box	shows	the	current	cursor	position	in	Line:Column	format.	The	next	box	shows	the	current
character	offset	within	the	content	in	Offset/Total	format.	The	third	box	shows	the	character	count	of	the	current	text	selection,	if	any.	Next	is	a	search	box	that	allows	you	to	select	matching	text	within	the	content.	The	search	text	is	case-insensitive	and	does	not	support	regular	expressions.	Pressing	the	Up	or	Down	arrow	keys	in	the	search	box	will
scroll	the	text	area	above	(to	allow	you	to	view	search	results	in	context).	Matches	are	selected	as	you	type,	and	the	box	will	turn	green	if	a	match	was	found	or	red	if	no	further	matches	were	found.	Pressing	Enter	or	F3	will	select	the	next	match.	Pressing	CTRL+Enter	will	highlight	all	matches	in	the	content.	The	View	in	Notepad	button	saves	the
text	content	to	a	temporary	file	and	opens	a	text	editor	to	view	the	file.	The	text	editor	launched	is	controlled	by	the	fiddler.config.path.texteditor	preference;	notepad.exe	is	the	default.	The	…	button	at	the	right	end	of	the	bar	saves	the	content	to	a	temporary	file	and	shows	Windows’	Open	With	prompt	to	allow	you	to	select	an	application	to	load	the
file.	130	|	Inspectors	TRANSFORMER	Type	Allows	Editing	Response	only	Always	Background	on	Response	Encodings	The	HTTP	specification	defines	a	number	of	response	encoding	methods	that	can	be	used	to	improve	performance.		Compression	algorithms	like	DEFLATE	can	be	applied	to	HTTP	bodies	to	shrink	the	number	of	bytes	that	must	be
transferred	over	the	network.	Text-based	Content-Types	like	HTML,	script,	and	CSS	shrink	by	up	to	80%	when	compressed.		Chunked	Transfer-Encoding	allows	transmission	of	a	body	without	knowing	its	length	ahead	of	time.	Ordinarily,	the	body’s	size	is	sent	as	a	Content-Length	header,	but	pre-calculating	a	body’s	size	could	require	a	great	deal	of
time	and	memory,	particularly	if	the	body	is	being	generated	by	running	a	database	query	or	other	operation.	Without	Chunked	Transfer-Encoding,	a	server	returning	a	response	of	indeterminate	size	would	be	forced	to	send	a	Connection:	close	header	and	close	the	connection	when	the	response	is	complete.	Such	closures	break	the	HTTP	Keep-Alive
mechanism	and	introduce	a	performance	bottleneck.	Chunking	works	by	sending	one	or	more	chunks	of	data,	each	preceded	by	a	Length	value	specified	as	a	hexadecimal	number.	A	chunk	length	of	0	signals	the	end	of	the	body.	For	instance,	here’s	a	response	which	has	been	chunked:	HTTP/1.1	200	OK	Content-Type:	text/plain	Transfer-Encoding:
chunked	2b	This	is	a	response	which	has	been	delivered	21	using	HTTP	Chunked	encoding.	To	r	38	educe	overhead,	the	chunks	should	be	larger	than	those	in	0c	this	exampl	18	e;	2kb	is	a	common	size.	0	131	|	Inspectors	Adding	and	Removing	Encodings	using	the	Transformer	Encodings	can	make	it	more	difficult	for	you	to	inspect	entity	bodies.	The
Transformer	Inspector	allows	you	to	add	or	remove	HTTP-based	encodings	from	the	response.	At	the	top	of	the	Transformer	tab,	the	current	body’s	size	is	listed;	keep	an	eye	on	this	number	as	you	add	or	remove	encodings.	The	Chunked	Transfer-Encoding	checkbox	adds	or	removes	Chunked	Transfer-Encoding	from	the	response.	Toggling	this

checkbox	applies	or	removes	the	encoding,	then	adds	or	removes	the	Transfer-Encoding	and	Content-Length	response	headers.	After	enabling	chunking,	the	HTTP	Compression	box	below	the	checkbox	is	disabled.	To	make	changes	to	compression,	you	must	first	remove	chunking,	then	adjust	HTTP	compression.	The	radio	buttons	in	the	HTTP
Compression	box	allow	you	to	compress	or	decompress	the	body:		No	compression:	the	body	is	not	compressed.		GZIP:	The	body	is	compressed	using	GZIP.	This	encoding	uses	DEFLATE	internally,	but	with	slightly	different	binary	formatting.		DEFLATE:	The	body	is	compressed	using	the	DEFLATE	(RFC1951)	algorithm.		BZIP2:	The	body	is
compressed	using	the	BZIP2	algorithm.	BZIP2	typically	provides	better	compression	than	GZIP	or	DEFLATE	at	the	cost	of	additional	CPU	time.	This	format	was	briefly	supported	by	the	Google	Chrome	browser	but	is	currently	not	supported	by	any	mainstream	browser	or	server.	It	exists	in	Fiddler	mostly	for	comparison	purposes	and	to	enable	testing
to	determine	how	clients	handle	unknown	encodings.	Selecting	a	radio	button	applies	or	removes	the	compression	from	the	body,	then	adds,	updates,	or	removes	the	Content-Encoding	header	and	adjusts	the	Content-Length	header.	You	can	use	this	Inspector	to	determine	how	effective	HTTP	compression	will	be	when	applied	to	your	content—for
most	textual	types,	compression	reduces	the	body’s	size	by	80%	or	so.	Unlike	most	Inspectors,	the	Transformer	Inspector	allows	you	to	modify	ReadOnly	(complete)	responses	without	unlocking	them	first.	This	capability	allows	you	to	more	simply	remove	encodings	on	Sessions	for	easy	inspection.	132	|	Inspectors	Presently,	the	Transformer	Inspector
is	available	for	responses	only.	Use	of	HTTP	encodings	for	requests	is	extremely	rare,	and	generally	not	supported	by	most	clients	or	servers.	Other	Ways	to	Remove	Encodings	Because	most	of	Fiddler’s	Inspectors	do	not	function	well	with	encoded	content,	when	an	encoded	Session	is	selected,	a	yellow	button	will	appear	above	the	list	of	Inspectors.
Clicking	the	button	will	immediately	remove	all	encodings	from	the	request	or	response.	You	can	remove	encodings	from	both	the	request	and	response	simultaneously	by	right-clicking	the	Session	in	the	Web	Sessions	list	and	choosing	Decode	Selected	Sessions	from	the	context	menu.	Similarly,	enabling	the	Decode	option	in	the	toolbar	will
automatically	remove	all	encodings	as	Fiddler	reads	requests	from	the	client	and	responses	from	the	server.	133	|	Inspectors	WEBFORMS	Type	Allows	Editing	Request	only	Yes	The	WebForms	Request	Inspector	parses	the	request’s	query	string	and	body	for	any	HTML	form-data.	If	a	form	is	found,	it	is	parsed	and	the	name/value	pairs	are	displayed
in	the	grid	view.	For	instance,	the	following	request:	POST	/sandbox/FileForm.asp?Query=1	HTTP/1.1	Content-Type:	application/x-www-form-urlencoded	Host:	www.fiddler2.com	Content-Length:	54	2=Data%3e123&fileentry2=a%2etxt&_charset_=windows-1252	…is	displayed	as	follows:	This	Inspector	works	best	with	application/x-www-form-
urlencoded	data	used	by	most	simple	web	forms.	Support	for	multipart/form-data	forms,	commonly	used	for	file	uploads,	is	limited	to	display	only.	To	modify	a	file	upload,	use	the	HexView	Inspector	instead.	134	|	Inspectors	WEBVIEW	Type	Allows	Editing	Response	only	No	The	WebView	Response	Inspector	allows	you	to	view	responses	in	a	web
browser	control,	which	provides	a	quick	preview	of	how	a	given	response	may	appear	in	a	browser.	The	web	browser	control	is	configured	to	prevent	additional	downloads	when	rendering	the	response	to	prevent	muddling	your	Web	Sessions	list--	this	means	that	most	images,	styles,	and	objects	will	be	missing	from	the	displayed	content.	Additionally,
scripting	and	navigation	are	blocked,	providing	a	read-only	preview	of	HTML	pages.	Beyond	plain	XHTML	and	HTML,	the	WebView	Inspector	is	able	to	render	several	additional	media	types	if	IE8	or	later	is	present.	If	IE8	is	present,	the	Inspector	can	render	any	binary	image	(png,	jpg,	gif,	etc)	smaller	than	24kb.	This	limit	exists	because	the
Inspector	uses	a	Data	URI	to	render	the	image,	and	IE8’s	Data	URI	length	limit	is	32kb,	which	is	equal	to	24kb	of	binary.	When	IE9	is	present,	the	Inspector	can	display	images	up	to	1.5gb	in	size.	Additionally,	it	can	display	SVG	documents	and	will	generate	preview	pages	for	WOFF,	TTF,	and	EOT	font	files,	MP3	audio	files,	and	h264	video	files.	For
instance,	inspecting	a	WOFF	file	will	generate	the	following	display:	When	previewing	an	audio	or	video	file,	an	“AutoPlay”	checkbox	appears	at	the	top-right	of	the	tab.	When	this	box	is	ticked,	media	files	will	automatically	begin	playback	when	loaded.	When	unticked,	the	media	will	be	loaded	but	will	not	begin	playing	until	the	play	button	is	clicked
inside	the	preview.	135	|	Inspectors	XML	Type	Allows	Editing	Request	&	Response	No	The	XML	Inspector	interprets	the	selected	request	or	response	body	as	an	Extensible	Markup	Language	(XML)	formatted	string,	showing	a	treeview	of	the	XML	document’s	nodes.	If	the	body	cannot	be	interpreted	as	XML,	the	treeview	will	remain	empty.	Each	XML
element	is	represented	as	a	node	in	the	tree,	and	the	attributes	of	the	element	are	displayed	in	square	brackets	after	the	element’s	name.	Unlike	most	inspectors,	the	XML	Inspector	is	able	to	render	the	data	even	if	the	request	or	response	is	compressed	or	has	HTTP	Chunked	Encoding	applied;	you	do	not	need	to	remove	the	encoding	to	display	the
content.	The	treeview’s	context	menu	offers	two	options:	Copy,	to	copy	the	selected	node	to	the	clipboard	(or	press	CTRL+C),	and	Send	to	TextWizard,	to	send	the	selected	node’s	content	to	the	TextWizard	window	for	encoding	or	decoding.	The	Expand	All	button	in	the	footer	will	expand	all	nodes	of	the	tree,	while	the	Collapse	button	will	collapse	all
nodes	of	the	tree.	The	XML	tree	will	be	automatically	expanded	if	the	body	contains	less	than	2000	nodes;	for	performance	reasons,	you	will	have	to	manually	expand	the	tree	for	larger	documents.	136	|	Inspectors	Extensions	OVERVIEW	Fiddler’s	rich	extensibility	model	enables	developers	to	add	powerful	new	features	to	Fiddler	via	easily	installed
add-ons.	Popular	3rd	Party	Extensions	Independent	developers	have	built	many	Fiddler	extensions,	some	of	which	are	listed	in	the	directory	at	.	At	the	time	of	this	writing,	the	most	popular	3rd-party	extensions	enhance	Fiddler’s	ability	to	test	the	performance	and	security	characteristics	of	web	applications.	Performance	Add-ons	On	its	own,	Fiddler
can	be	used	for	many	important	performance-analysis	and	optimization	tasks,	but	several	extensions	add	even	more	power.		neXpert	Performance	Report	Generator	–	Written	by	a	Microsoft	Online	Services	testing	team,	neXpert	will	evaluate	your	websites’	adherence	to	performance	best-practices,	generating	a	report	which	flags	problems	and
recommends	solutions.	License:	Freeware.		StresStimulus	–	This	load-testing	extension	permits	you	to	record	and	run	load-test	scenarios	against	your	website	to	evaluate	its	ability	to	scale	to	handle	large	numbers	of	simultaneous	users.	License:	Free	trial.	Security	Add-ons	Many	Security	testing	goals	can	be	accomplished	with	Fiddler,	and	Web
Security	experts	have	built	several	powerful	add-ons	that	enable	even	novices	to	discover	and	resolve	security	issues.		Watcher	–	Developed	by	the	Casaba	Security	team,	Watcher	is	a	“passive	security	auditor”	which	observes	a	browser’s	interactions	with	your	site.	The	tool	scans	requests	and	responses,	flagging	potential	security	vulnerabilities.	This
powerful	tool	is	used	by	professional	security	penetration	testers	to	evaluate	major	sites.	License:	Open	Source.		x5s	–	Another	add-on	from	Casaba	Security,	x5s	evaluates	your	website’s	vulnerability	to	cross-site	scripting	bugs	caused	by	character-set	related	issues.	License:	Open	Source.		intruder21	–	This	add-on	enables	fuzz-testing	of	your	web
applications.	After	you	identify	target	requests	in	Fiddler,	this	extension	generates	fuzzed	payloads	and	launches	those	payloads	against	your	site.	License:	Freeware.		Ammonite	–	This	add-on	detects	common	website	vulnerabilities	including	SQL	injection,	OS	command	injection,	cross-site	scripting,	file	inclusion,	and	buffer	overflows.	License:	Free
trial.	Extensions	I’ve	Built	The	remainder	of	this	chapter	describes	the	most	useful	extensions	that	I	have	developed,	all	of	which	are	available	for	free	download	from	.	138	|	Extensions	Some	of	the	extensions	will	be	useful	for	most	users	of	Fiddler	and	aren’t	built	into	the	tool	simply	for	download	size	reasons.	Other	extensions	are	only	useful	for
narrow	scenarios,	and	providing	their	functionality	via	the	add-on	model	allows	me	to	prevent	“bloat”	in	Fiddler—and	ensure	that	Fiddler’s	add-on	model	is	powerful	enough	to	meet	the	needs	of	the	development	community.	Source	code	for	many	of	these	extensions	is	available	so	that	they	may	serve	as	examples	for	developers	who	wish	to	extend
Fiddler	to	better	meet	their	own	needs.	139	|	Extensions	JAVASCRIPT	FORMATTER	When	the	JavaScript	Formatter	is	installed,	you	can	right-click	on	any	Session	with	a	JavaScript	response	and	choose	Make	JavaScript	Pretty.	This	command	reformats	(or	“beautifies”)	JavaScript	to	significantly	improve	its	readability	if	it	had	been	“crunched”	or
“minified”.	For	instance,	the	following	line	of	script:	Is	reformatted	for	readability:	To	enable	automatic	reformatting	of	all	script	responses,	enable	the	Make	JavaScript	Pretty	option	on	Fiddler’s	Rules	menu.	When	JavaScript	is	reformatted	during	download,	the	client	will	only	see	the	reformatted	form,	which	can	be	helpful	when	you	are	using	the
browser’s	script	debugging	tools.	You	can	manually	control	whether	the	JavaScript	formatter	runs	on	a	response	using	the	X-Format-JS	session	flag.	When	this	flag	is	set	to	a	value	of	0,	the	extension	will	not	format	the	response	body,	even	if	the	Make	JavaScript	Pretty	option	is	enabled	on	the	Rules	menu.	Any	other	value	will	cause	the	JavaScript
response	body	to	be	formatted,	even	if	the	Make	JavaScript	Pretty	option	is	not	enabled	on	the	Rules	menu.	This	extension	is	not	compatible	with	a	very	small	number	of	responses,	for	which	the	reformatting	process	may	introduce	corruption.	That	problem	arises	in	two	scenarios:	first,	when	a	response	is	sent	with	a	JavaScript	MIME	type	but	it’s	not
actually	JavaScript	(seen	on	some	Google	properties).	Second,	the	reformatting	process	may	cause	problems	if	the	(very	obscure)	JavaScript	line-continuation	feature	is	used.	Line	continuation	allows	script	developers	to	end	a	line	with	a	backslash	and	the	JavaScript	engine	will	automatically	concatenate	that	line	with	the	following.	The	JavaScript
Formatter’s	parser	is	not	yet	aware	of	this	feature	and	will	not	format	such	lines	properly.	140	|	Extensions	GALLERY	The	Gallery	extension	is	designed	to	display	any	images	that	have	been	found	in	the	selected	Sessions.	This	extension	is	useful	when	you	wish	to	interact	with	a	large	number	of	images,	or	wish	to	quickly	select	a	Session	based	on	the
image	it	returned.	The	extension	has	only	a	few	options,	displayed	across	the	top	of	its	tab:	By	default,	each	image	is	shown	as	a	150x150	pixel	thumbnail,	and	images	smaller	than	10kb	in	size	are	ignored.	Clicking	the	Filter	sessions	link	will	select	the	Sessions	for	which	images	appear,	unselecting	any	Sessions	which	do	not	represent	images	or
whose	thumbnails	were	removed	from	the	view.	Clicking	the	Help	link	shows	text	to	explain	the	features	of	the	extension.	Hovering	over	a	thumbnail	will	show	the	Session	ID,	URL,	dimensions,	and	image	format	in	a	balloon	tip.	Middle-clicking	on	a	thumbnail	removes	the	image	from	the	Gallery	view.	Right-clicking	on	a	thumbnail	will	switch	away
from	the	Gallery	to	inspect	the	chosen	image’s	Session	using	the	Inspectors.	If	you	hold	Shift	while	rightclicking	or	double-clicking,	the	Inspectors	will	open	in	a	popup	window.	Full-Screen	View	Double-clicking	on	a	thumbnail	enters	the	full-screen	image	viewer	mode.	If	the	image’s	Session	has	a	Comment	set,	this	comment	is	shown	as	a	caption	at
the	bottom	of	the	screen.	While	in	full-screen	mode,	use	the	mouse	or	keyboard	to	control	the	view:		Exit	full	screen	mode	by	middle-clicking	or	pressing	the	Escape	key.		To	advance	to	the	next	image,	left-click,	hit	Spacebar,	hit	the	Right	arrow	key,	or	hit	Page	Down.	To	go	back	to	the	previous	image,	right-click,	hit	Shift+Spacebar,	hit	the	Left	arrow
key,	or	hit	Page	Up.		Press	the	Z	key,	Enter,	or	use	the	mouse	wheel	to	toggle	the	Zoom	level	(Actual	Size,	or	Stretch-to-Fit).	If	the	image	is	shown	Actual	Size	and	is	larger	than	the	screen,	you	can	use	the	mouse	to	pan	around	the	image.	141	|	Extensions		To	start	an	automatically-advancing	slideshow,	press	any	number	key	1	to	9,	representing	the
number	of	seconds	to	linger	on	each	image.	Press	the	0	key	to	cancel	the	slideshow’s	automatic	advancement.	By	combining	the	slideshow	with	the	Comment-displayed-as-Caption	feature,	you	can	use	Fiddler	as	a	basic	photo	presentation	tool.		Various	options	are	available	to	temporarily	change	the	appearance	of	an	image.	Press	H	to	flip	the
displayed	image	horizontally,	or	V	to	flip	the	image	vertically.	Hit	R	to	rotate	the	image	by	90	degrees	clockwise.	Press	I	to	invert	the	image’s	colors.	Press	S	to	apply	a	Sepia	tone,	and	G	to	convert	the	image	to	grayscale.	Pressing	C	will	swap	the	green	and	blue	colors	in	the	image.	Pressing	E	will	convert	the	image	to	grayscale	except	for	any	Red
pixels;	this	is	a	slow	operation	and	may	take	several	seconds	for	large	images.	Press	U	to	undo	all	of	the	manipulations	made	to	the	display	of	the	image.		Press	the	Delete	key	to	remove	the	image	from	the	Gallery	and	advance	to	the	next	image.	142	|	Extensions	CONTENT	BLOCKER	The	Content	Blocker	extension	enables	you	to	easily	block	selected
content	from	download	by	returning	a	HTTP/404	response	to	the	client.	This	functionality	allows	you	to	test	your	web	applications’	behavior	if	content	is	blocked	by	an	ad-blocker	or	the	Tracking	Protection	feature	found	in	IE8	and	later.	To	install	the	extension,	you	must	download	it	from	the	Fiddler	website	and	copy	the	DLL	into	your	\Program
Files\Fiddler2\Scripts	folder.	After	installing	the	extension,	a	new	ContentBlock	menu	will	appear	on	the	Fiddler	main	menu.	The	ContentBlock	menu	offers	several	simple	options:	Enabled	Block	Paths	Edit	Blocked	Hosts	Always	Block	Flash	Block	X-Domain	Flash	AutoTrim	to	400	sessions	Hide	Blocked	Sessions	When	checked,	blocking	is	enabled.
When	unchecked,	no	content	will	be	blocked.	When	checked,	requests	are	blocked	if	the	URL	path	contains	the	text	/ad	When	clicked,	this	menu	item	opens	a	new	window	that	allows	you	to	edit	the	list	of	hosts	from	which	content	will	be	blocked.	The	list	consists	of	fully-qualified	hostnames	and	is	delimited	by	semicolons.	When	checked,	Adobe	Flash
content	will	be	blocked,	regardless	of	its	origin.	When	checked,	Adobe	Flash	content	will	be	blocked	if	it	originates	from	a	different	site	than	the	requesting	page.	The	Referer	header	is	consulted	in	making	this	determination.	When	checked,	this	extension	will	automatically	trim	the	Web	Sessions	list	such	that	it	contains	no	more	than	400	sessions.
The	Keep	Only	dropdown	on	the	Fiddler	toolbar	offers	the	same	functionality.	When	checked,	Sessions	that	are	blocked	will	be	hidden	from	the	Web	Sessions	list.	You	can	easily	add	a	host	to	the	list	of	blocked	hosts	by	right-clicking	a	Session	in	the	Web	Sessions	list	and	choosing	Block	this	Host	from	the	context	menu.	This	extension	was	developed
as	an	example	of	how	to	use	the	Fiddler	extension	model	(its	source	is	included	in	the	download)	and	as	such	it	offers	some	redundant	functionality	that	can	be	found	in	other	parts	of	Fiddler.	143	|	Extensions	TRAFFIC	DIFFER	The	Traffic	Differ	extension	aims	to	help	you	easily	determine	how	two	sets	of	captured	traffic	are	different.	This	can	be
useful	if,	for	instance,	you	have	one	SAZ	file	captured	by	a	customer	that	encountered	a	problem	from	your	site	and	another	SAZ	file	captured	which	represents	the	“working”	case.	The	Traffic	Differ	enables	you	to	load	these	two	SAZ	files	and	then	compare	the	Sessions	within	them	as	a	whole.	Alternatively,	you	can	drag	and	drop	Sessions	from	the
current	Web	Sessions	list	to	either	of	the	Session	lists	and	use	those	Sessions	for	comparison.	Two	side-by-side	Session	lists	show	each	Session’s	status	code,	URL,	response	size,	and	a	hash	of	the	response	body.	To	compare	any	two	individual	Sessions	between	the	two	captures,	select	one	Session	in	each	list	and	then	click	the	Compare	Selected
Session	button.	The	file	comparison	tool	will	launch	and	compare	the	request	and	response	headers	and	body	text.	144	|	Extensions	FIDDLE	RSCRIPT	E	DITORS	The	Syntax	Highlighting	extensions	package	adds	a	new	FiddlerScript	tab	to	the	main	Fiddler	UI	and	also	provides	a	standalone	Fiddler2	ScriptEditor	application	offering	similar
functionality.	It	also	includes	the	SyntaxView	Inspectors,	described	in	the	Inspectors	chapter.	FiddlerScript	Tab	The	FiddlerScript	tab	allows	you	to	easily	view	and	update	your	FiddlerScript	rules	directly	in	the	Fiddler	UI.	Across	the	top	of	the	tab	are	a	few	UI	controls:	Save	Script	button	Go	to	dropdown	Saves	changes	made	to	the	script	This
dropdown	lists	key	methods	in	the	FiddlerScript.	Selecting	an	item	from	this	list	will	scroll	to	the	specified	method.	Choosing	the	*FiddlerScript	Reference	option	will	open	the	FiddlerScript	reference	web	page.	Find…	box	ClassView	button	Hidden	feature:	If	you	double-click	the	Go	to	text	label	itself,	the	script	source	code	will	collapse	to	definitions.
This	box	allows	you	to	search	your	script	for	the	specified	text	This	button	toggles	the	visibility	of	the	FiddlerScript	ClassView	sidebar.	Below	these	controls	is	a	syntax-aware	source	code	editor	containing	the	current	text	of	your	FiddlerScript.	The	editor	supports	context-sensitive	code	completion	and	will	show	available	properties,	fields	and	methods
in	a	popup	window	as	you	type:	Code	lines	that	you’ve	changed	will	show	a	yellow	bar	in	the	left	margin:	…until	you	save	your	changes,	at	which	point	the	bar	will	turn	green:	145	|	Extensions	If	Fiddler	encounters	a	script	error	when	compiling	your	script,	the	FiddlerScript	tab	will	activate	and	scroll	to	show	the	error.	ClassView	Sidebar	The
ClassView	sidebar	allows	you	to	explore	the	key	objects,	properties,	and	methods	available	to	your	script.	Note	that	the	ClassView	does	not	expose	all	available	functionality,	only	the	functionality	that	is	most	commonly	used	by	scripts.	Clicking	an	item	in	the	treeview	will	show	the	description	of	that	item	at	the	top	of	the	sidebar.	Pressing	CTRL+C	on
an	item	will	copy	the	item’s	name	to	the	clipboard,	allowing	you	to	easily	insert	it	in	your	script.	The	sidebar’s	items	are	color-coded	depending	on	their	type:	Color	Black	Blue	Green	Type	Method	Property	Field	Purple	Event	Fiddler2	ScriptEditor	The	Fiddler2	ScriptEditor	program	opens	when	you	click	Rules	>	Customize	Rules	or	hit	CTRL+R	in
Fiddler.	You	can	also	launch	the	Fiddler2	ScriptEditor	from	anywhere	in	Windows	by	tapping	Windows+R	and	typing	fse2	in	the	Windows	Run	prompt.	The	standalone	ScriptEditor	offers	the	same	general	functionality	as	the	FiddlerScript	tab,	with	the	convenience	of	running	in	its	own	window.	Unlike	the	FiddlerScript	tab,	however,	the	standalone
application	is	not	notified	of	script	compilation	errors	and	will	not	notify	you	of	any	problems	that	Fiddler	encounters	when	compiling	your	script.	The	Go	menu	offers	commands	to	navigate	quickly	to	important	methods	in	the	FiddlerScript,	and	to	scroll	to	a	specific	line.	146	|	Extensions	The	View	menu	offers	options	to	adjust	the	display	of	the	source
code,	including	changing	the	font	size,	showing	line	numbers,	and	expanding	and	collapsing	method	blocks.	It	also	includes	the	toggle	which	shows	and	hides	the	ClassView	Explorer	sidebar.	The	Insert	menu	offers	a	number	of	pre-built	snippets	that	you	can	add	to	your	script.	To	use	them,	place	the	cursor	where	you’d	like	the	snippet	added,	then
click	the	menu	item	representing	the	desired	snippet.	For	instance,	place	the	cursor	just	inside	the	Handlers	class’	opening	brace:	Then	click	Insert	>	Context	Menu	Item:	The	Editor	will	insert	a	template	ContextAction	block	which	will	add	a	new	menu	item	to	the	Web	Sessions	context	menu:	147	|	Extensions	SAZCLIPBOARD	The	SAZClipboard	is	a
simple	extension	that	allows	you	to	load	a	.SAZ	file	into	a	standalone	Session	list	in	its	own	window.	The	window	enables	you	to	drag	Sessions	between	this	clipboard	and	the	main	Fiddler	UI.	This	functionality	is	convenient	if	you're	using	the	Composer	or	AutoResponder	features,	both	of	which	accept	drops	of	Sessions	for	reuse.	To	use	the	extension,
click	New	SAZClipboard…	from	Fiddler’s	Tools	menu.	You	can	drag	and	drop	from	the	Web	Sessions	list	to	the	SAZClipboard,	or	load	a	SAZ	directly	into	it	using	the	button	at	the	bottom.	148	|	Extensions	A	N	Y	W	H	E	RE	Most	modern	browsers	support	geolocation,	a	feature	that	allows	JavaScript	to	determine	the	user’s	real-world	location.	Most
browsers	implement	this	functionality	by	querying	the	operating	system	for	a	list	of	nearby	Wi-Fi	access	points,	then	submitting	that	list	to	a	webservice	which	maps	the	nearby	access	points	to	a	longitude/latitude	pair.	The	webservice	provides	that	value	to	the	browser,	which	then	returns	it	to	JavaScript.	Fiddler’s	AnyWHERE	extension	allows	you	to
trivially	spoof	the	responses	to	geolocation	webservice	queries,	enabling	you	to	“trick”	the	browser	into	thinking	you’re	somewhere	you	are	not.	The	window	allows	you	to	type	in	your	current	location,	or	select	a	location	from	a	list	of	worldwide	points-of-interest:	Because	browser	geolocation	webservice	queries	travel	over	HTTPS,	you	must	enable
HTTPS	decryption	for	this	addon	to	operate.	This	extension	supports	IE9+,	FF4,	Chrome,	and	Opera,	but	it	will	not	work	if	the	browser’s	geolocation	feature	is	not	based	on	webservice	lookups.	For	instance,	when	IE10	is	running	on	a	Windows	8	device	that	includes	GPS	hardware,	Windows	will	use	that	hardware	rather	than	calling	a	webservice	to
determine	the	location.	Source	code	for	this	extension	is	provided	in	the	download	package.	149	|	Extensions	Storing,	Importing,	and	Exporting	Traffic	SESSION	ARCHIVE	ZIP	(SAZ)	FILES	Fiddler’s	default	save	format	is	the	Session	Archive	Zip	(SAZ)	file.	SAZ	files	are	simply	Zip	archives	that	are	constructed	in	a	particular	way	that	Fiddler
understands.	By	renaming	a	.SAZ	file	to	.ZIP,	you	can	use	Windows	Explorer	or	WinZip	to	explore	the	SAZ	file	to	see	how	it	works	under	the	covers.	The	SAZ	format	is	Fiddler’s	most	“lossless”	format—it	contains	all	of	the	headers	and	bodies	for	each	Session	that	Fiddler	captured,	along	with	metadata	including	comments,	color	markers,	and	timing
information.	Because	it	contains	all	of	the	traffic,	a	SAZ	file	may	grow	quite	large,	especially	if	it	contains	images,	sounds	or	video	responses.	In	contrast,	HTML,	script,	and	CSS	files	tend	to	compress	well,	at	about	a	5:1	ratio.	It	is	possible	to	store	SAZ	files	with	gigabytes	of	data	and	tens	of	thousands	of	Sessions,	but	because	such	files	are	unwieldy
to	load	or	transfer,	you	will	generally	want	to	use	Fiddler’s	filtering	features	to	minimize	the	amount	of	data	stored	in	any	given	SAZ.	You	can	later	reload	a	SAZ	file	into	Fiddler	to	view	the	Sessions	contained	within;	these	sessions	will	be	colored	with	a	light	grey	background	color	for	easy	of	identification.	One	thing	Fiddler	won’t	restore	in	Sessions
loaded	from	a	SAZ	file	is	Session	ID;	when	a	SAZ	is	loaded,	each	session	gets	a	new	ID	starting	at	the	current	index.	Before	sharing	a	SAZ	file	with	someone	else,	use	the	Comments	button	or	Edit	>	Mark	menu	to	tag	any	Sessions	of	interest.	If	Fiddler	reloads	a	Session	which	does	not	already	have	a	comment,	it	will	automatically	add	a	comment
containing	the	original	session’s	ID:	Tip:	The	AutoResponder	tab	is	able	to	import	a	SAZ	file	and	replay	the	responses	contained	within	to	mimic	the	original	traffic	flow	captured	in	the	SAZ	file.	Protecting	SAZ	Files	SAZ	files	contain	all	captured	web	traffic,	which	might	include	sensitive	information	like	usernames,	passwords,	cookies,	and	account
information,	if	such	information	was	captured	by	Fiddler.	Therefore,	you	should	only	share	SAZ	files	with	trusted	people	or	organizations.	If	a	SAZ	file	must	be	stored	in	an	unprotected	location	or	transferred	over	an	insecure	connection,	you	can	help	keep	it	private	by	encrypting	the	contents	before	saving.	To	do	so,	select	Password-Protected	SAZ	in
the	Save	as	type	dropdown	on	the	Save	Session	Archive	prompt.	After	choosing	to	save	in	encrypted	format,	a	password	will	be	requested:	Password-Protected	SAZ	files	are	encrypted	using	128-bit	AES	encryption,	a	strong	form	of	encryption	that	is	also	used	for	HTTPS	traffic	and	by	government	and	military	organizations.	Of	course,	to	keep	the	file
private,	your	password	must	be	kept	secret.	If	the	file	is	being	shared	with	someone	else,	you	must	securely	communicate	the	password	to	the	other	person.	Don’t	forget	your	password—there’s	no	practical	way	(short	of	brute-force	guessing)	to	reopen	your	SAZ	file	without	it.	The	preference	fiddler.saz.AES.Use256Bit	may	be	set	to	true	to	configure
Fiddler	to	use	256-bit	AES	instead	of	128bit.	Alternatively,	the	legacy	CONFIG.bUseAESForSAZ	property	may	be	set	to	false	to	configure	Fiddler	to	use	the	legacy	PKZIP	obfuscation	scheme,	which	is	very	fast	but	provides	much	weaker	protection	of	the	file’s	contents.	153	|	Storing,	Importing,	and	Exporting	Traffic	FIDDLE	RCAP	SAZ	files	have
proven	so	useful	in	capturing	and	reproducing	problems	with	web	applications	that	I	soon	found	that	many	web	developers	were	requesting	SAZ	captures	from	novice	PC	users.	In	the	hope	of	making	that	a	more	practical	request,	I	built	FiddlerCap.	FiddlerCap	is	a	lightweight	tool	designed	to	allow	non-technical	users	to	capture	SAZ	files	for	later
analysis	by	experts	using	the	full	Fiddler	debugger.	FiddlerCap	offers	a	simplified	user-interface	and	streamlined	workflow	for	capturing	web	traffic;	unlike	Fiddler	itself,	it	cannot	modify	traffic	and	has	no	extensibility	mechanisms.	Like	Fiddler,	you	can	use	FiddlerCap	to	collect	web	traffic	from	any	application	developed	using	any	technology.
FiddlerCap	is	built	atop	the	FiddlerCore	library	and	uses	a	FiddlerCore	proxy	instance	running	on	port	8889	to	capture	web	traffic.	Install	FiddlerCap	by	visiting	,	a	simple	page	which	provides	simple	step-by-step	instructions	on	how	to	use	the	tool	to	capture	web	traffic.	By	default,	FiddlerCap	installs	to	a	folder	on	your	desktop	and	it	does	not	require
Administrative	permissions.	To	simplify	worldwide	use,	FiddlerCap	has	been	localized	to	Spanish,	French,	Italian,	Japanese,	Portuguese,	and	Russian.	When	the	install	completes,	the	tool	automatically	opens.	The	window	is	divided	into	three	groups:	Capture,	Capture	Options,	and	Tools.	The	button	at	the	bottom	right	of	the	FiddlerCap	window	will
expand	the	window	to	show	a	simple	Session	list	of	the	captured	traffic.	Sessions’	content	cannot	be	inspected,	but	individual	sessions	may	be	removed	by	selecting	them	and	pressing	the	Delete	key.	Capture	Box	The	Capture	box	offers	the	minimum	set	of	controls	needed	to	collect	a	capture.	Press	the	Start	Capture	button	to	begin	capturing	web
traffic.	A	new	browser	window	will	open	for	you	to	reproduce	the	problem,	although	FiddlerCap	will	capture	traffic	from	any	process	that	respects	the	system	proxy	setting—not	just	that	single	browser	154	|	Storing,	Importing,	and	Exporting	Traffic	window.	The	FiddlerHook	extension	for	Firefox	is	not	available	for	FiddlerCap.	To	capture	Firefox’s
network	traffic,	open	the	browser’s	Tools	>	Options	>	Advanced	>	Network	>	Connection	Settings	screen	and	select	the	Use	System	Proxy	Settings	option.	After	the	problem	has	been	reproduced,	click	the	Stop	Capture	button	to	end	the	capture	of	traffic.	Lastly,	click	the	Save	Capture	button	to	select	where	to	save	the	.SAZ	file.	By	default,	the	SAZ
file	will	be	saved	on	the	desktop.	To	encrypt	the	SAZ	file	with	a	password,	select	the	Password-Protected	SAZ	option	in	the	Save	as	type	dropdown:	Capture	Options	Box	The	Capture	Options	box	controls	the	options	used	in	capturing.	The	Store	binaries	checkbox	(unticked	by	default)	controls	whether	binary	response	bodies	(e.g.	images,	audio,	video,
and	application/octet-stream	downloads)	will	be	stored	in	the	capture.	Omitting	these	bodies	(storing	only	their	headers)	can	dramatically	shrink	the	size	of	the	final	SAZ	file,	although	obviously	if	the	problem	being	reproduced	depends	on	the	content	of	such	downloads,	you	should	enable	the	Store	binaries	option.	The	Decrypt	HTTPS	traffic	checkbox
(unticked	by	default)	controls	whether	or	not	HTTPS	traffic	will	be	decrypted	by	FiddlerCap.	When	you	check	this	box,	an	explanatory	message	is	shown:	--------------------------A	note	about	HTTPS	Decryption	--------------------------HTTPS	decryption	will	enable	your	debugging	buddy	to	see	the	raw	traffic	sent	via	the	HTTPS	protocol.	This	feature	works	by
decrypting	SSL	traffic	and	reencrypting	it	using	a	locally	generated	certificate.	FiddlerCap	will	generate	this	certificate	and	remove	it	when	you	close	this	tool.	You	may	choose	to	temporarily	install	this	certificate	in	the	Trusted	store	to	avoid	warnings	from	your	browser	or	client	application.	--------------------------After	this	note	is	dismissed,	a	Windows
Security	prompt	is	presented	to	allow	you	to	trust	FiddlerCap’s	root	certificate:	155	|	Storing,	Importing,	and	Exporting	Traffic	When	FiddlerCap	is	closed,	it	will	automatically	delete	all	of	the	certificates	it	generated	during	the	capture,	prompting	for	permission	to	delete	the	root	certificate	from	the	Trusted	Certificates	store.	The	Store	cookies	and
POSTs	option	(checked	by	default)	controls	whether	FiddlerCap	will	store	POST	request	bodies	and	the	HTTP	headers	Cookie,	Set-Cookie,	Set-Cookie2,	Authorization,	and	Proxy-Authorization.	Disabling	this	option	can	slightly	shrink	the	capture	and	somewhat	reduces	the	amount	of	privacy-impacting	information	stored	in	the	capture.	Even	when	this
option	is	disabled,	however,	captures	obviously	may	contain	other	sensitive	information	and	thus	they	should	only	be	shared	with	trusted	parties.	The	Automatically	discard	traffic	after	#	minutes	option	allows	you	to	control	how	many	minutes	of	traffic	are	saved	in	the	SAZ	file.	This	option	is	most	useful	when	trying	to	capture	a	problem	that	only
happens	intermittently.	You	can	leave	FiddlerCap	running	in	the	background	and	it	will	periodically	expire	older	traffic	to	reduce	the	size	of	the	capture	and	the	amount	of	memory	used.	When	you	encounter	the	problem	you	are	trying	to	capture,	you	can	save	just	the	last	few	minutes’	worth	of	traffic	to	the	archive.	Tools	Box	The	Tools	box	offers
options	that	may	be	useful	in	reproducing	a	problem.	The	Clear	Cookies	button	will	purge	all	persistent	cookies	for	Internet	Explorer	and	other	applications	that	are	based	on	WinINET.	The	Clear	Cache	button	will	purge	all	cached	files	from	the	Internet	Explorer	/	WinINET	cache	to	help	ensure	that	all	responses	are	seen	by	FiddlerCap	instead	of
possibly	being	pulled	from	the	local	cache.	The	Clear	Capture	button	is	enabled	only	while	FiddlerCap	is	capturing;	it	immediately	clears	all	previously	captured	Sessions	from	the	capture.	156	|	Storing,	Importing,	and	Exporting	Traffic	The	Snapshot	button	will	take	a	screenshot	of	whatever	monitor	FiddlerCap	is	running	on	and	add	it	to	the	capture
as	a	JPEG-formatted	image.	It	will	be	stored	in	a	new	session	whose	URL	contains	the	current	timestamp	in	the	format	.	The	Flag	button	will	prompt	you	to	add	a	comment	to	the	capture:	The	comment	text	entered	will	be	stored	as	the	HTTP	response	body	of	a	new	Session	with	a	URL	of	.	157	|	Storing,	Importing,	and	Exporting	Traffic	FIDDLE	R’S
VIEWER	MODE	Ordinarily,	only	one	instance	of	Fiddler	may	be	started	at	a	time;	attempting	to	launch	a	new	instance	of	Fiddler	while	it’s	already	open	will	simply	reactivate	the	existing	Fiddler	instance.	However,	it	is	sometimes	useful	to	open	additional	instances	of	Fiddler	to	view	SAZ	files	or	compose	requests,	independent	of	the	existing	Fiddler
instance.	To	achieve	those	goals,	Fiddler	supports	opening	additional	Viewer	instances	by	passing	the	-viewer	command	line	argument,	or	by	right-clicking	on	a	SAZ	file	in	Windows	Explorer	and	choosing	Open	in	Viewer	from	the	context	menu.	Viewer	Mode	instances	can	be	identified	by	the	Viewer	Mode	icon	in	the	status	bar:	at	the	front	of	the
toolbar.	When	no	SAZ	file	is	loaded,	the	text	shows	FiddlerViewer:	and	by	the	text	You	can	identify	this	Viewer	instance	by	clicking	on	the	text	and	entering	a	new	title:	If	you	load	a	SAZ	file	into	the	instance,	the	text	will	change	to	the	name	of	the	SAZ	file,	with	a	tooltip	showing	the	full	path	to	the	file:	Fiddler	Viewer	instances	cannot	capture	traffic,
and	most	UI	changes	made	in	Viewer	mode	(e.g.	hiding	the	toolbar	or	reordering	columns	in	the	Web	Sessions	list)	will	be	discarded	when	the	instance	is	closed.	158	|	Storing,	Importing,	and	Exporting	Traffic	IMPORTING	AND	E	XPORTING	SESSIONS	Beyond	Fiddler’s	native	SAZ	format,	the	debugger	offers	a	rich	set	of	Importers	and	Exporters
(known	collectively	as	“Transcoders”)	that	allow	it	to	share	captured	network	traffic	with	other	tools.	In	addition	to	the	Transcoders	bundled	with	Fiddler,	an	extensibility	mechanism	permits	support	of	additional	formats	to	be	added	by	other	developers.	Fiddler’s	Import	and	Export	functionality	can	be	found	on	the	File	menu.	The	Import	Sessions…
command	will	allow	you	to	load	Sessions	from	other	formats,	while	the	Export	Sessions	submenu	allows	you	to	export	either	all	Sessions	or	only	the	Sessions	selected	in	the	Web	Sessions	list.	Import	Formats	The	current	version	of	Fiddler	includes	two	Import	formats:	HTTPArchive	and	F12	NetXML	format.	HTTPArchive	Format	(HAR;	is	a	lossy	JSON-
based	format	which	is	supported	by	a	number	of	tools	including	Firebug,	Chrome’s	Developer	tools,	and	HTTPWatch.	Versions	1.1	and	1.2	of	the	format	are	supported.	The	F12	NetXML	Format	is	a	very	similar	format	exported	by	the	IE	9	Developer	Tools’	Network	tab;	it’s	actually	just	an	HTTPArchive	file	encoded	using	XML	instead	of	JSON.	This
was	not	an	intentional	difference	on	Microsoft’s	part:	the	original	HTTPArchive	format	spec	defined	the	format	using	XML	syntax.	Only	a	small	comment	at	the	top	of	the	specification	noted	that	JSON	should	be	used	instead.	Fiddler	is	the	only	popular	tool	to	read	the	NetXML	Format;	you	can	use	Fiddler	to	load	NetXML	and	save	it	to	a	more	common
format	like	HAR.	Note	that	both	of	these	are	lossy	formats,	so	some	data	will	be	missing	(in	particular,	large	binary	bodies	like	images	will	not	be	present).	After	choosing	a	format	to	Import	from,	you	will	be	prompted	to	select	the	file	to	import.	The	selected	file	will	be	parsed	and	the	traffic	will	be	added	to	the	Web	Sessions	list.	Support	for	other
Import	formats	can	be	added	by	any	developer.	I’m	currently	working	on	an	Importer	that	allows	import	of	Wireshark	.pcap	and	NetMon	.cap	files.	Export	Formats	Fiddler	includes	a	broad	set	of	Exporters	that	allow	it	to	export	traffic	for	use	in	other	tools	or	applications.	The	remainder	of	this	chapter	describes	the	export	formats	supported	by
Fiddler	itself.	159	|	Storing,	Importing,	and	Exporting	Traffic	HTML5	AppCache	Manifest	HTML5	introduces	the	concept	of	an	Application	Cache,	which	allows	a	web	developer	to	provide	a	manifest	of	pages	that	should	be	cached	to	permit	offline	use.	The	manifest	specifies	which	resources	the	browser	should	download	into	the	AppCache	and	which
resources	should	always	be	retrieved	from	the	network.	Manifests	are	simply	text	files	and	you	can	create	them	with	your	text	editor	of	choice.	However,	this	process	can	be	tedious	and	begs	for	an	automated	solution.	Fiddler’s	HTML5	AppCache	Manifest	Exporter	makes	the	process	of	generating	a	manifest	a	straightforward	exercise:	1.	Clear	your
browser	cache.	2.	Start	Fiddler.	3.	Load	your	website	in	the	browser.	4.	In	Fiddler,	click	File	>	Export	Sessions	>	All	Sessions….	5.	In	the	Select	Format	window,	pick	HTML5	AppCache	Manifest.	6.	Click	Next.	In	the	Adjust	AppCache	Manifest	window,	check	any	resources	that	you	wish	to	exclude	from	the	CACHE	section	of	the	manifest;	those	will	be
added	to	the	NETWORK	section	of	the	manifest:	7.	If	you’d	like,	use	the	text	box	at	the	bottom	to	specify	a	Base	URL	if	the	resource	URLs	should	be	relative	to	the	manifest.	For	instance,	in	the	example	above,	I	will	place	the	manifest	in	the	folder	so	I	will	use	that	as	the	Base	URL.	8.	Click	the	Save	button	to	generate	and	display	the	manifest	in	your
text	editor:	160	|	Storing,	Importing,	and	Exporting	Traffic	9.	If	you’re	happy	with	the	manifest,	save	it	to	your	web	server	in	the	appropriate	location.	Ensure	that	your	web	server	is	configured	to	return	the	manifest	file	type	with	Content-Type:	text/cache-manifest	10.	In	your	web	page,	ensure	that	your	page	will	run	in	Standards	mode	(e.g.	using	the
HTML5	doctype)	and	add	a	manifest	attribute	on	the	HTML	element	pointing	to	your	application’s	manifest.	Keep	in	mind	that	when	the	browser	is	using	AppCached	content,	those	resources	will	be	reused	from	the	cache	and	not	pulled	from	the	network	(until	the	cache	is	expired).	Because	the	content	is	cached	locally,	you	will	not	see	requests	to	re-
download	that	content	in	Fiddler.	If	you	wish	to	use	Fiddler	to	modify	such	content,	you	will	need	to	clear	your	browser’s	cache	so	that	the	browser	is	forced	to	re-download	the	content	from	the	network	on	next	use.	HTTPArchive	v1.1	and	v1.2	The	HTTPArchive	format	is	a	JSON	format	that	contains	Web	Sessions’	headers,	some	bodies,	and	timing
information.	The	primary	difference	between	versions	1.1	and	1.2	of	the	format	is	that	the	newer	version	permits	the	inclusion	of	small	binary	bodies.	By	default,	Fiddler	will	store	text	bodies	up	to	1MB	in	length,	and	binary	bodies	up	to	32768	bytes	in	length;	these	values	can	be	changed	by	setting	the	appropriate	preferences:
fiddler.importexport.HTTPArchiveJSON.MaxTextBodyLength	fiddler.importexport.HTTPArchiveJSON.MaxBinaryBodyLength	If	a	body	is	too	long,	it	will	not	be	stored	in	the	file	and	instead	a	comment	will	be	added	to	the	Session	noting	the	omission.	161	|	Storing,	Importing,	and	Exporting	Traffic	MeddlerScript	Meddler	(is	a	HTTP	Traffic	generation
tool	which	I	developed	to	allow	building	of	tiny,	self-contained	reproductions	of	HTTP	traffic.	Meddler	is	essentially	a	“scripted	socket”	which	allows	very	lowlevel	manipulation	of	sockets,	a	capability	useful	for	debugging	browsers	or	other	clients.	When	you	export	Web	Sessions	to	MeddlerScript,	the	result	is	an	.MS	file	that	can	be	loaded	into
Meddler	to	“play	back”	that	traffic.	Conceptually,	this	is	very	similar	to	using	Fiddler’s	AutoResponder	tab	to	play	back	previously	captured	traffic	from	a	SAZ	file,	but	Meddler	scripts	can	be	easier	to	automate	and	they	permit	low-level	tweaks	(e.g.	“Wait	300ms	between	sending	the	headers	and	the	first	byte	of	the	body,	then	write	the	body	in	2048
byte	chunks	each	10	seconds	apart”)	which	cannot	be	easily	replicated	using	Fiddler	itself.	Unless	you’re	building	a	browser	or	other	HTTP	client,	exporting	MeddlerScript	probably	will	not	be	very	useful	for	you.	Raw	Files	The	Raw	Files	Exporter	allows	you	to	store	individual	response	bodies	to	files	on	disk.	This	can	be	tremendously	useful	when
dumping	media	content	to	disk.	For	instance,	say	you’ve	browsed	around	a	photography	website	and	collected	a	bunch	of	photos	in	the	Web	Sessions	list.	You	can	use	filters	and	other	features	in	Fiddler	to	select	only	the	photos	of	interest	(e.g.	JPG	files	over	20k).	You	can	then	select	File	>	Export	Sessions	>	Selected	Sessions	and	choose	Raw	Files	in
the	Select	Export	Format	box.	The	File	Exporter	window	allows	you	to	configure	the	export	process.	The	Path	box	allows	you	to	select	the	base	path	under	which	a	new	folder	will	be	created.	The	folder	will	be	automatically	named	\Dump-MonthDay-Hour-Minute-Second\.	The	Options	box	contains	two	checkboxes.	Recreate	Folder	Structure	will	create
subfolders	for	each	resource	based	on	the	hostname	and	path	of	the	file.	Use	this	to	mimic	a	site’s	hierarchy	on	your	local	disk.	The	Open	folder	when	complete	option	will	open	Windows	Explorer	to	display	the	root	folder	into	which	files	were	exported	when	the	export	has	completed.	Click	the	Export	>>	button	to	begin	the	export.	Beyond	dumping
media	files,	the	Raw	Files	Exporter	allows	you	to	easily	mirror	a	captured	website	to	your	disk.	You	can	then	drag/drop	the	contents	of	that	folder	to	the	AutoResponder	tab,	and	Fiddler	will	then	be	able	to	play	162	|	Storing,	Importing,	and	Exporting	Traffic	back	that	local	content	mirror	based	on	inbound	requests.	This	practice	can	be	very
convenient	for	debugging	a	website	when	you	want	to	use	other	tools	(e.g.	Expression	Web	or	Visual	Studio)	to	edit	HTML	content	locally.	Visual	Studio	WebTest	Generating	a	Visual	Studio	.WebTest	file	allows	you	to	use	the	Visual	Studio	Web	Test	product	to	reissue	previously	captured	requests	for	functional-testing	and	load-testing	purposes.	Visual
Studio	Web	Test	is	included	in	some	editions	of	Visual	Studio	2008	and	later.	WCAT	Script	As	explained	on	the	tool’s	website:	Web	Capacity	Analysis	Tool	(WCAT)	is	a	lightweight	HTTP	load	generation	tool	designed	to	measure	the	performance	of	a	web	server	within	a	controlled	environment.	WCAT	can	simulate	thousands	of	concurrent	users	making
requests	to	a	single	web	site	or	multiple	web	sites.	The	WCAT	engine	uses	a	simple	script	to	define	the	set	of	HTTP	requests	to	be	played	back	to	the	web	server.	Fiddler’s	WCAT	Exporter	allows	you	to	easily	generate	request-generation	scripts	for	WCAT	to	replay	against	your	servers	to	verify	their	ability	to	handle	load.	You	can	download	the	32bit	or
64bit	WCAT	installer	from	.	163	|	Storing,	Importing,	and	Exporting	Traffic	FiddlerScript	EXTENDING	FIDDLER	WITH	FIDDLE	RSCRIPT	The	earliest	versions	of	Fiddler	had	no	extensibility	model	at	all;	the	features	I	coded	were	all	that	users	had	available.	It	didn’t	take	long	to	recognize	that	I	would	never	be	able	to	keep	up	with	the	myriad	feature
requests	coming	in	from	Fiddler	users	who	were	using	the	tool	to	solve	a	huge	variety	of	problems.	One	of	the	biggest	early	limitations	was	that	Fiddler	only	offered	one	filter	(Hide	Images)	and	thus	it	was	easy	to	get	overwhelmed	by	the	sheer	volume	of	traffic	flowing	through	the	tool.	I	had	planned	to	build	a	filtering	interface	full	of	dropdown	fields
and	textboxes	which	would	allow	users	to	filter	traffic	based	on	boolean	criteria	that	I	would	make	available.	There	were	two	obvious	problems	with	this	approach:	first,	it	would	require	that	I	do	a	lot	of	tedious	UI	development,	and	second,	I	knew	that	most	users	wouldn’t	be	happy	with	it.	Advanced	users	find	it	very	cumbersome	to	build	complicated
queries	using	UI	controls,	and	novice	users	would	be	easily	confused	when	trying	to	build	complicated	queries	that	involved	nested	AND,	OR,	and	NOT	operators.	Fortunately,	laziness	often	leads	to	better	engineering.	I	remember	thinking	one	night:	“It’s	so	easy	for	me	to	build	complicated	filter	expressions	inside	Fiddler’s	code	itself.	If	only	users
could	just	write	code	to	do	filtering.”	Happily,	this	thought	led	to	a	“eureka”	moment--	the	recollection	that	the	.NET	Framework	makes	it	very	easy	to	build	a	script	engine	into	an	application,	and	exposing	the	application’s	object	model	to	that	script	engine	is	easy.	With	a	few	dozen	lines	of	code	added	in	late	2003,	Fiddler	got	infinitely	more	powerful.
Even	as	Fiddler	was	modernized	over	the	last	9	years,	including	the	introduction	of	Fiddler	extensions	and	many	built-in	filtering	capabilities,	the	FiddlerScript	engine	has	remained	an	indispensable	component	of	Fiddler.	By	mastering	FiddlerScript,	you	will	get	much	more	out	of	Fiddler.	About	FiddlerScript	As	each	Session	flows	through	Fiddler,
methods	in	the	CustomRules.js	script	file	are	run,	enabling	you	to	hide,	flag,	or	modify	Sessions	based	on	criteria	of	arbitrary	complexity.	Your	rules	script	can	be	modified	and	recompiled	dynamically	at	runtime	without	restarting	Fiddler.	This	book	does	not	provide	a	comprehensive	reference	to	the	JScript.NET	language	upon	which	FiddlerScript	is
based.	If	you	plan	to	code	especially	powerful	or	complicated	FiddlerScript,	you	should	consider	finding	a	copy	of	Microsoft	JScript.NET	Programming.	That	book	presents	a	comprehensive	view	of	the	language,	including	useful	information	I	haven’t	seen	anywhere	else.	(I	discovered	it	in	2012,	ten	years	after	its	only	printing.	In	one	of	those	“small
world”	coincidences,	it	was	authored	by	Justin	Rogers,	a	colleague	on	the	Internet	Explorer	team.)	JavaScript	is	a	language	familiar	to	most	Fiddler	users,	and	JScript.NET	isn’t	syntactically	much	different	than	the	C#	language	beloved	by	most	.NET	programmers.	There	are	two	deltas	that	JavaScript	developers	moving	to	JScript.NET	should	be
aware	of:	1.	JScript.NET	supports	a	C#-like	mechanism	for	declaring	classes	that	contain	fields,	properties	and	methods.	Fiddler	integrates	your	script	by	calling	methods	on	a	static	class	named	Handlers,	described	below.	166	|	FiddlerScript	2.	When	declaring	a	variable,	you	may	(and	should)	declare	that	variable’s	type.	Type	definition	improves	the
performance	of	the	generated	code	and	allows	the	compiler	to	flag	errors	at	compile	time	instead	of	runtime.	To	set	the	type	of	a	variable,	just	specify	the	type	after	the	variable	name	and	before	any	initial	value,	like	so:	var	sMyString:	String	=	"StringValue";	var	bMyBool:	boolean	=	false;	var	iMyInt:	int	=	42;	For	ease	of	development,	the
FiddlerScript	engine	will	automatically	call	specially-named	functions	in	your	script	when	events	of	interest	occur.	However,	less-interesting	events	do	not	get	this	special	treatment	and	you	must	directly	attach	handlers	for	such	events.	To	supply	an	event	handler	in	script,	call	the	hidden	add_EventName	method	generated	by	the	compiler	for	each
event.	For	instance,	to	handle	the	OnClearCache	event,	use	the	following	code:	//	Call	the	hidden	method	using	the	format	Object.add_EventName(handlerFunction)	FiddlerApplication.add_OnClearCache(catchClearCache);	//	Implement	the	event	handler	static	function	catchClearCache(sender,	args:CacheClearEventArgs)	{	MessageBox.Show("User
cleared	the	cache.");	}	If	you	do	attach	any	event	handlers	in	this	way,	you’ll	need	to	use	the	remove_EventName	method	to	remove	the	event	handler	in	your	script’s	OnRetire	function.	Over	the	years,	a	variety	of	powerful	features	were	added	to	FiddlerScript,	including	the	ability	to	extend	the	Fiddler	UI	and	accept	automation	commands	from	the
ExecAction.exe	command	line	tool.	As	Fiddler’s	scripting	capabilities	became	more	powerful,	I	began	building	some	core	features	of	Fiddler	(for	instance,	UserAgent	spoofing	and	performance	simulations)	in	FiddlerScript	because	users	often	wanted	to	customize	these	features	slightly.	By	implementing	such	features	in	the	easily-updated	script,
Fiddler	enables	users	to	customize	the	tool	to	their	exact	needs.	Editing	FiddlerScript	To	see	the	current	FiddlerScript	loaded	in	Fiddler,	choose	Customize	Rules	on	Fiddler's	Rules	menu.	The	configured	script	editor	will	launch	and	show	the	script.	By	default,	Notepad	will	be	used	as	the	script	editing	program,	but	you	can	adjust	this	preference	using
the	Tools	>	Fiddler	Options	>	Extensions	tab.	If	you	plan	to	do	any	non-trivial	modifications	to	the	FiddlerScript,	I	highly	recommend	that	you	install	the	Fiddler	ScriptEditor,	a	syntax-highlighting	editor	that	can	either	run	standalone	or	on	a	tab	within	Fiddler	itself.	When	installed,	the	Fiddler	ScriptEditor	will	set	itself	as	the	default	script	editor.	167
|	FiddlerScript	Updating	FiddlerScript	at	Runtime	When	you	save	the	CustomRules.js	file,	Fiddler	will	play	a	sound	while	reloading	the	source	code	and	attempting	to	recompile	it.	If	compilation	succeeds,	the	new	script	will	be	used	for	all	subsequent	Sessions.	If	compilation	fails,	you’ll	be	shown	an	error	message	and	no	script	will	run	until	the	error
is	corrected	and	the	script	is	recompiled.	The	compiler’s	error	message	will	show	the	offending	line	and	attempt	to	explain	the	nature	of	the	error:	Keep	in	mind	that	each	time	your	script	is	recompiled,	the	previously-running	script	is	first	discarded.	This	means	that	the	current	values	of	variables	or	properties	in	the	script	will	be	reset	to	their	default
values	every	time	the	script	is	reloaded.	If	you	need	to	preserve	a	variable’s	value	from	the	old	script	to	the	new	one,	you	should	use	a	Preference	to	load	and	store	the	value.	See	the	OnRetire	method	for	more	information.	Resetting	to	the	Default	FiddlerScript	Don’t	worry	about	“breaking”	your	script—if	you	make	a	mistake	and	corrupt	the	script	to
the	point	where	you	don’t	know	how	to	fix	it,	simply	delete	the	CustomRules.js	file	from	the	%USERPROFILE%\My	Documents\Fiddler2\Scripts	folder.	The	next	time	Fiddler	is	started,	your	CustomRules.js	file	will	be	recreated	by	copying	the	SampleRules.js	file	from	the	Fiddler	application	folder.	One	important	consequence	of	updating	your
CustomRules.js	file	is	that	when	you	install	new	versions	of	Fiddler,	your	old	rules	file	will	be	preserved.	Any	new	or	updated	rules	stored	in	the	SampleRules.js	file	will	not	be	loaded	unless	you	delete	your	CustomRules.js	file	or	copy	the	updated	content	from	the	sample	script.	168	|	FiddlerScript	FIDDLE	RSCRIPT	FUNCTIONS	When	FiddlerScript	is
compiled,	Fiddler	obtains	references	to	several	key	static	functions,	all	of	which	are	found	on	a	class	named	Handlers.	Each	of	these	functions	and	their	use	is	described	in	this	section.	Session	Handling	Functions	As	each	Session	is	processed,	the	Fiddler	invokes	specially-named	functions	in	your	FiddlerScript.	If	your	script	contains	the	named
function,	it	will	be	invoked	with	one	argument--	a	reference	to	the	current	Session.	Each	function	should	be	declared	as	a	public	static	function.	These	functions	are	called	on	the	Session’s	background	handler	thread,	not	the	UI	thread,	and	thus	you	should	avoid	making	any	UI	calls	from	within	these	functions.	OnPeekAtRequestHeaders	The
OnPeekAtRequestHeaders	function	runs	as	soon	as	the	request	headers	have	been	read	from	the	client.	This	function	generally	runs	before	the	request	body	has	been	read,	so	avoid	manipulating	the	oSession.requestBodyBytes	array	to	avoid	causing	a	null-reference	exception.	In	practice,	this	function	is	rarely	useful,	because	until	the	complete
request	has	been	read,	there’s	not	a	lot	your	script	can	do.	OnBeforeRequest	The	OnBeforeRequest	function	executes	after	the	client’s	complete	request	has	been	read	and	before	the	request	is	sent	to	the	server.	This	function	gives	you	the	opportunity	to	modify	the	request’s	headers	or	body	before	the	server	sees	it.	OnPeekAtResponseHeaders	The
OnPeekAtResponseHeaders	function	runs	as	soon	as	the	response	headers	have	been	read	from	the	server.	This	function	generally	runs	before	the	response	body	has	been	read,	so	avoid	manipulating	the	oSession.responseBodyBytes	array	to	avoid	causing	a	null-reference	exception.	One	of	the	best	uses	of	this	function	is	to	examine	the	response
headers	to	determine	whether	or	not	the	response	may	be	streamed	as	it	is	read	from	the	server.	If	the	response	should	be	buffered	so	that	its	body	may	be	modified	by	the	OnBeforeResponse	function,	set	oSession.bBufferResponse=true	inside	this	function.	OnBeforeResponse	The	OnBeforeResponse	function	typically	executes	after	the	server’s	full
response	has	been	read	and	before	the	response	is	sent	to	the	client.	This	function	gives	you	the	opportunity	to	modify	the	response’s	headers	or	body	before	the	client	browser	sees	it.	169	|	FiddlerScript	When	a	Session	has	buffering	disabled,	the	OnBeforeResponse	function	is	called	after	the	response	has	already	been	streamed	to	the	client.	Hence,
if	you	modify	the	previously-streamed	response	in	this	function,	only	Fiddler	will	see	the	modified	response—the	client	already	got	the	unmodified	original.	OnReturningError	The	OnReturningError	function	executes	in	the	event	that	a	Fiddler-generated	error	message	(for	instance,	“DNS	Lookup	Failed”)	is	returned	to	the	client.	This	provides	the
opportunity	to	customize	the	message	that	the	client	application	sees.	For	instance,	you	could	show	a	more	friendly	error	page,	log	the	error	in	a	database,	flag	the	error	in	the	Web	Sessions	list,	or	undertake	other	actions.	General	Functions	FiddlerScript	includes	a	number	of	functions	which	run	based	on	events	in	Fiddler	itself,	and	not	in	response
to	any	given	session.	Each	function	should	be	declared	as	a	public	static	function.	Main	This	function	runs	immediately	after	the	script	is	successfully	compiled.	It	provides	an	opportunity	to	reload	variables	in	the	script	from	the	Preferences	system,	or	perform	other	one-time	initialization.	OnRetire	This	function	runs	immediately	before	the	script	is
unloaded,	either	because	Fiddler	is	closing	or	because	a	new	script	is	being	loaded.	It	provides	an	opportunity	to	store	variables	from	the	script	into	the	Preferences	system,	detach	event	handlers	you’ve	added,	or	perform	other	cleanup.	OnBoot	This	function	runs	only	when	Fiddler	first	boots.	If	this	function’s	script	is	changed	at	runtime,	the	new
code	will	not	execute	until	the	next	time	you	start	Fiddler.	OnShutdown	This	function	runs	when	Fiddler	is	shutting	down.	In	practice,	there’s	rarely	a	need	to	put	any	code	in	this	function.	OnAttach	This	function	runs	after	Fiddler	registers	as	the	system	proxy.	By	default	this	will	happen	when	Fiddler	starts	up,	and	if	the	user	ever	toggles	capturing
off	and	back	on	using	the	status	bar	button	or	by	pressing	the	F12	key.	OnDetach	This	function	runs	after	Fiddler	has	unregistered	as	the	system	proxy	and	the	default	proxy	is	restored.	By	default	this	will	happen	when	Fiddler	shuts	down,	and	if	the	user	ever	disables	capturing	using	the	status	bar	button	or	by	pressing	the	F12	key.
OnExecAction(sParams:	string[])	This	function	runs	when	the	user	enters	a	command	in	the	QuickExec	box	beneath	the	Web	Sessions	list,	or	if	a	command	is	sent	to	Fiddler	from	the	ExecAction.exe	command	line	program.	The	single	parameter	passed	into	the	function	is	an	array	of	strings	which	are	tokenized	from	input	to	the	QuickExec	box.	The
OnExecAction	function	is	170	|	FiddlerScript	called	after	all	extensions	which	implement	the	IHandleExecAction	interface	have	the	opportunity	to	handle	(and	optionally	cancel)	the	command.	The	default	implementation	of	this	function	shows	how	you	can	use	it	to	set	script	variables,	run	functions,	or	otherwise	control	Fiddler’s	behavior.	171	|
FiddlerScript	FIDDLE	RSCRIPT	AND	AUTOMATION	TOOLS	Fiddler	was	designed	primarily	for	interactive	use,	where	you	directly	use	the	Fiddler	user-interface	to	perform	whatever	debugging	tasks	you’d	like	to	accomplish.	However,	Fiddler	includes	a	limited	set	of	features	to	support	automated	use.	Quiet	Mode	First	is	the	-quiet	command	line
argument.	When	Fiddler	is	activated	with	this	switch,	the	main	Fiddler	window	is	automatically	minimized	to	the	System	Tray.	Fiddler	will	automatically	suppress	most	of	its	prompts	and	alerts	when	running	in	quiet	mode;	for	instance,	no	Certificate	Warnings	or	HTTP	Errors	will	pop	up	message	boxes	in	this	mode.	The	CONFIG.QuietMode	property
can	be	respected	by	extensions	or	FiddlerScript	to	accommodate	the	quiet	mode	of	operation.	Driving	Fiddler	from	Batch	Scripts	Of	course,	running	Fiddler	silently	isn’t	usually	enough	to	accomplish	most	automation	goals—you	also	will	need	to	enable	your	test	harness	or	script	to	drive	Fiddler.	Depending	on	your	framework,	you	might	use	UI
Automation	to	drive	Fiddler’s	existing	interface	directly,	but	there’s	a	more	robust	and	reliable	option	available.	As	we	saw	previously,	the	OnExecAction	function	in	FiddlerScript	is	run	whenever	the	user	enters	a	command	in	the	QuickExec	box.	However,	that’s	not	the	only	way	to	invoke	script	commands—you	can	also	use	the	ExecAction.exe
command	line	tool	included	with	the	default	install	of	Fiddler.	For	instance,	if	you	wanted	to	invoke	the	dump	command	to	save	all	of	the	Sessions	in	the	Web	Sessions	list	to	a	SAZ	file,	you	can	simply	run:	"%PROGRAMFILES%\Fiddler2\ExecAction.exe"	dump	The	utility	will	pass	the	dump	command	into	Fiddler’s	extensions	and	FiddlerScript,	and	the
default	handler	in	the	FiddlerScript	file	will	perform	the	specified	action.	If	you	need	to	pass	multiple	parameters	into	the	tool,	you	can	do	so	by	quoting	the	arguments:	"%PROGRAMFILES%\Fiddler2\ExecAction.exe"	"select	text/html"	You	may	use	the	backslash	character	to	escape	quotation	marks	if	you	need	them	in	your	command:	ExecAction.exe
"prefs	set	\"MyExt.UI.Title\"	\"A	Quoted	Value\""	If	you	pass	an	incorrect	number	of	arguments	to	the	utility	(zero	or	more	than	one),	it	will	display	help	text	and	set	the	ERRORLEVEL	to	1.	If	the	utility	cannot	find	the	Fiddler	window,	it	will	display	a	message	indicating	that	Fiddler	could	not	be	found	and	set	the	ERRORLEVEL	to	2.	172	|	FiddlerScript
Driving	Fiddler	from	Native	or	.NET	Code	Under	the	covers,	the	ExecAction	utility	is	extremely	simple.	If	your	test	harness	is	written	in	C++	or	any	.NET	language,	you	can	easily	pass	messages	directly	to	Fiddler	without	relying	upon	ExecAction.exe.	Simply	determine	the	main	Fiddler	window’s	handle,	and	then	call	SendMessage	to	pass	a
WM_COPYDATA	structure	containing	the	desired	command’s	text.	Using	C++,	the	barebones	logic	is	as	follows:	#include	"stdafx.h"	int	_tmain(int	argc,	_TCHAR*	argv[])	{	HWND	hWndControl	=	FindWindow(NULL,	L"Fiddler	-	HTTP	Debugging	Proxy");	if	(NULL	==	hWndControl)	{	printf("ERROR:	Fiddler	window	was	not	found.");	return	2;	}
tagCOPYDATASTRUCT	oCDS;	oCDS.dwData	=	61181;	//	Use	61180	for	ANSI;	61181	for	Unicode	oCDS.cbData	=	lstrlen(argv[1])	*	sizeof(WCHAR);	oCDS.lpData	=	argv[1];	SendMessage(hWndControl,	WM_COPYDATA,	NULL,	(WPARAM)	wParam,	(LPARAM)	&oCDS);	return	0;	}	If	you’re	using	.NET	code,	first	you	must	define	some	functions	and
constants	for	PInvoke:	internal	const	int	WM_COPYDATA	=	0x4A;	[DllImport("user32.dll",	EntryPoint	=	"SendMessage")]	internal	static	extern	IntPtr	SendWMCopyMessage(IntPtr	hWnd,	int	Msg,	IntPtr	wParam,	ref	SendDataStruct	lParam);	[DllImport("user32.dll")]	internal	static	extern	IntPtr	FindWindow(string	lpClassName,	string	lpWindowName);
[StructLayout(LayoutKind.Sequential)]	internal	struct	SendDataStruct	{	public	IntPtr	dwData;	public	int	cbData;	public	string	strData;	}	Then,	simply	use	these	methods	to	send	the	command	string	to	the	Fiddler	window:	173	|	FiddlerScript	SendDataStruct	oStruct	=	new	Utilities.SendDataStruct();	oStruct.dwData	=	(IntPtr)	61181;	oStruct.strData	=
"TheString";	oStruct.cbData	=	Encoding.Unicode.GetBytes(oStruct.strData).Length;	IntPtr	hWnd	=	FindWindow(null,	"Fiddler	-	HTTP	Debugging	Proxy");	SendWMCopyMessage(hWnd,	Utilities.WM_COPYDATA,	IntPtr.Zero,	ref	oStruct);	You	can	use	this	technique	to	perform	lightweight	and	ad-hoc	automation	of	Fiddler.	For	more	complicated	jobs,
you	will	likely	instead	choose	to	build	a	custom	tool	based	on	the	FiddlerCore	class	library	described	in	the	final	chapter	of	this	book.	174	|	FiddlerScript	E	X	T	E	N	D	I	N	G	F	I	D	D	L	E	R	’	S	UI	-	M	E	N	U	S	When	Fiddler	compiles	your	script,	it	looks	for	attributed	methods	that	are	used	to	create	new	entry-points	in	the	Fiddler	user-interface.	You	can
add	new	items	to	the	Rules	menu,	Tools	menu,	and	Web	Sessions	context	menu,	as	well	as	adding	new	top-level	menus	of	your	own.	Extending	the	Tools	Menu	You	can	add	new	items	to	the	Tools	menu	by	adding	a	ToolsAction	attribute	to	a	method	in	your	script.	The	attribute	specifies	the	text	of	the	item	to	show	on	the	Tools	menu,	and	it	immediately
precedes	the	method	that	will	be	run	if	the	user	clicks	on	the	menu	item.	For	instance,	the	following	block,	when	placed	inside	your	Handlers	class,	will	add	an	item	titled	Launch	Opera	to	the	Tools	menu:	//	Launch	Opera	ToolsAction("Launch	Opera")	public	static	function	DoLaunchOpera()	{	System.Diagnostics.Process.Start("opera.exe",
String.Empty);	}	Your	method’s	signature	may	optionally	specify	a	single	parameter	which	will	receive	an	array	of	the	Sessions	currently	selected	in	the	Web	Sessions	list	when	the	menu	item	is	invoked.	//	Launch	Opera	to	the	URL	of	the	first	selected	session	ToolsAction("Launch	Opera	to	&URL")	public	static	function	DoLaunchOperaToURL(oS:
Session[])	{	if	(oS.Length	>	0)	{	System.Diagnostics.Process.Start("opera.exe",	oS[0].fullUrl);	}	}	If	the	user	clicks	on	your	menu	when	no	items	are	selected,	the	oS	array	will	have	a	Length	property	value	of	0.	To	specify	an	accelerator	key	for	your	menu	item,	include	an	ampersand	(&)	in	its	name.	The	&U	in	the	previous	example	creates	the
following	menu	item	with	the	U	key	as	an	accelerator:	175	|	FiddlerScript	Extending	the	Web	Sessions	Context	Menu	You	may	similarly	extend	the	Web	Sessions	context	menu	by	adding	a	ContextAction	attribute	to	a	method	in	your	script.	For	instance,	the	following	method	will	decompress	and	unchunk	the	HTTP	request	and	response	for	each
selected	session:	ContextAction("Decode	Selected	Sessions")	public	static	function	DoRemoveEncoding(oS:	Session[])	{	for	(var	x=0;	x	<	oS.Length;	x++)	{	oS[x].utilDecodeRequest();	oS[x].utilDecodeResponse();	}	}	The	new	context	menu	items	created	by	your	script	are	added	to	the	top	of	the	context	menu.	Extending	the	Rules	Menu	Your	script
may	add	new	entries	to	the	Rules	menu,	but	they	will	work	somewhat	differently	than	the	items	added	to	the	Tools	menu	and	Web	Sessions	context	menu.	Instead	of	annotating	a	function	using	an	attribute,	you	will	instead	annotate	a	variable	(field)	in	your	script	using	a	RulesOption	attribute.	For	instance,	to	add	the	Hide	304s	menu	item,	the
following	script	is	used:	RulesOption("Hide	304s")	public	static	var	m_Hide304s:	boolean	=	false;	Two	types	of	fields	in	your	script	may	be	bound	to	Rules	menu	items:	booleans,	and	strings.	Note:	The	default	value	of	the	field	is	used	to	set	the	initial	state	of	the	menu	item	when	the	script	is	compiled.	After	that	initial	setting,	the	binding	between	the
UI	and	the	field	is	one-directional.	That	means	that	when	the	user	clicks	a	field-bound	menu	item,	the	value	of	the	bound	boolean	or	string	is	changed,	but	if	the	script	itself	changes	the	boolean’s	or	string’s	value,	no	change	is	made	to	the	menu	item’s	state.	Boolean-bound	Rules	When	Fiddler	encounters	a	boolean	variable	in	the	script	that	is
annotated	with	a	RulesOption	attribute,	a	menu	item	will	be	created	using	the	text	provided.	The	menu	item’s	checked	state	will	track	the	value	of	the	boolean.	In	the	prior	example,	the	boolean’s	value	is	false,	so	the	menu	item	will	be	unchecked	by	default.	When	the	user	clicks	the	menu	item,	it	will	become	checked,	and	Fiddler	will	change	the	value
of	the	bound	m_Hide304s	variable	to	true.	Every	time	your	script	is	recompiled,	the	default	values	of	your	boolean	variables	are	restored,	and	the	checkmarks	on	the	Rules	menu	will	be	updated	accordingly.	Simply	declaring	the	attributed	m_Hide304s	variable	doesn’t	yet	do	anything	useful—the	variable	simply	tracks	the	state	of	the	menu	item.	The
functionality	of	the	rule	is	provided	by	a	block	of	code	added	to	the	OnBeforeResponse	method	found	later	in	the	script:	176	|	FiddlerScript	if	(m_Hide304s	&&	(304	==	oSession.responseCode))	{	oSession["ui-hide"]	=	"true";	//	Note:	This	block	could	be	placed	in	the	OnPeekAtResponseHeaders	method,	//	since	it	does	not	depend	upon	the	availability
of	the	response	body.	}	This	block	first	checks	to	see	if	the	rule	is	enabled	and	if	so,	checks	that	the	server	returned	a	HTTP/304.	If	so,	the	block	sets	the	ui-hide	flag	on	the	Session,	which	causes	it	to	be	hidden	from	the	Web	Sessions	list.	You	can	also	use	different	forms	of	the	RulesOption	attribute	to	create	submenus	of	options.	To	do	so,	provide	the
name	of	the	submenu	as	the	second	parameter	of	the	attribute.	For	instance,	the	following	three	fields	create	a	Performance	submenu	that	exposes	the	three	options:	RulesOption("Simulate	&Modem	Speeds",	"Per&formance")	public	static	var	m_SimulateModem:	boolean	=	false;	RulesOption("&Disable	Caching",	"Per&formance")	public	static	var
m_DisableCaching:	boolean	=	false;	RulesOption("&Show	Time-to-Last-Byte",	"Per&formance")	public	static	var	m_ShowTTLB:	boolean	=	false;	If	you	would	like	some	of	the	items	on	your	submenu	to	be	mutually	exclusive	(showing	as	a	radio	group	instead	of	a	set	of	checkboxes),	you	can	set	a	third	boolean	parameter	to	true,	and	you	can	add	a
splitter	after	a	menu	item	by	setting	yet	a	fourth	boolean	parameter	to	true.	To	create	this	menu:	Add	the	following	script:	RulesOption("Option	A",	"MyMenu",	true)	public	static	var	m_OptionA:	boolean	=	true;	RulesOption("Option	B",	"MyMenu",	true)	public	static	var	m_OptionB:	boolean	=	false;	RulesOption("Option	C",	"MyMenu",	true,	true)	public
static	var	m_OptionC:	boolean	=	false;	//	Splitter	after	option	177	|	FiddlerScript	RulesOption("Some	other	setting",	"MyMenu",	false)	public	static	var	m_OtherSetting:	boolean	=	true;	String-bound	Rules	When	Fiddler	encounters	a	string	in	the	script	that	is	annotated	with	a	RulesString	attribute,	a	new	submenu	item	will	be	created.	The	first
parameter	to	the	RulesString	constructor	is	a	string	containing	the	submenu’s	name,	while	the	second	parameter	is	a	boolean	indicating	whether	an	item	labeled	Disabled	should	be	added	to	the	submenu.	Possible	values	for	the	string’s	value	are	provided	by	adding	one	or	more	RulesStringValue	attributes	to	the	same	variable.	Each	RulesStringValue
will	create	a	new	mutually-exclusive	menu	item	on	the	new	submenu.	When	the	user	checks	one	of	the	menu	items,	the	variable	will	be	updated	to	the	string	value	selected	and	all	other	menu	items	on	the	menu	will	be	unchecked.	For	instance,	this	script:	RulesString("MyStringRule",	true)	RulesStringValue("MyMenuText1",	"MyValue1")
RulesStringValue("MyMenuText2",	"MyValue2")	RulesStringValue("MyMenuText3",	"MyValue3")	public	static	var	m_StringRule:	String	=	String.Empty;	…creates	the	following	menu:	By	default,	the	menu’s	items	will	be	sorted	alphabetically	by	the	menu	text.	In	some	cases,	you	may	wish	to	specify	a	different	order.	To	do	so,	use	the	RulesStringValue
overload	that	accepts	an	integer	ordering	parameter.	For	instance,	you	can	create	a	menu	that	looks	like	this:	…using	this	script:	RulesString("MyStringRule",	true)	178	|	FiddlerScript	RulesStringValue(1,	"First	Item",	"one")	RulesStringValue(2,	"Second	Item",	"two",	true)	RulesStringValue(3,	"Third	Item",	"three")	RulesStringValue(4,	"Fourth	Item",
"four")	RulesStringValue(5,	"Ask	me...",	"%CUSTOM%")	public	static	var	m_StringRule:	String	=	"two";	This	script	also	shows	how	to	set	one	of	the	entries	as	the	default	(see	the	last	parameter	on	the	“Second	Item”	RulesStringValue).	Also,	note	the	magic	value	%CUSTOM%	used	for	the	“Ask	me…”	menu	item.	When	clicked,	the	user	will	be
prompted	to	enter	a	value	for	the	variable:	When	the	prompt	is	shown,	the	current	value	of	the	string	variable	will	be	presented	for	the	user	to	modify.	Fiddler’s	Rules	>	User-Agents	feature	is	implemented	using	a	string	variable	named	sUA	bound	to	a	RulesString	submenu.	Inside	the	OnBeforeRequest	method,	script	checks	whether	the	bound
variable	is	set,	and	if	so,	uses	its	value	to	overwrite	the	request’s	User-Agent	header:	if	(null	!=	sUA)	{	oSession.oRequest["User-Agent"]	=	sUA;	}	Creating	New	Top-Level	Menus	Using	FiddlerScript,	you	can	also	easily	add	new	top-level	menus	that	expose	actions	of	your	choice.	To	do	so,	add	a	QuickLinkMenu	attribute	to	your	method	that	specifies
the	name	of	the	top-level	menu.	Then,	add	one	or	more	QuickLinkItem	attributes	that	specify	the	text	of	a	menu	item	and	a	string	to	pass	into	the	method	if	the	user	selects	the	specified	item.	For	instance,	the	following	text	will	add	a	new	Links	menu	containing	two	items:	QuickLinkMenu("&Links")	QuickLinkItem("IE	GeoLoc	TestDrive",	")
QuickLinkItem("FiddlerCore",	")	public	static	function	DoLinksMenu(sText:	String,	sAction:	String)	{	Utilities.LaunchHyperlink(sAction);	}	179	|	FiddlerScript	When	the	user	clicks	on	the	FiddlerCore	item,	the	DoLinksMenu	function	will	run,	passing	in	the	URL	associated	with	that	menu	item	in	the	second	parameter	to	the	function.	Items	in	the
menu	are	sorted	alphabetically	by	their	menu	text.	Of	course,	you’re	not	limited	to	creating	menus	of	links.	You	can	create	a	Browser	Launch	menu	that	will	allow	you	to	launch	the	browser	of	your	choice	to	the	URL	of	the	first	selected	session:	QuickLinkMenu("&Browse")	QuickLinkItem("&IE",	"iexplore.exe")	QuickLinkItem("&Firefox",	"firefox.exe")
QuickLinkItem("&Opera",	"Opera.exe")	QuickLinkItem("&Chrome",	"Chrome.exe")	public	static	function	DoBrowsersMenu(sText:	String,	sAction:	String)	{	var	oS	=	FiddlerApplication.UI.GetSelectedSessions();	var	sURL	=	String.Empty;	if	(oS.Length	>	0)	{	sURL	=	oS[0].fullUrl;	}	System.Diagnostics.Process.Start(sAction,	sURL);	}	Similarly,	you
could	use	a	switch()	statement	to	dispatch	command	invocations	for	handling	by	other	functions.	180	|	FiddlerScript	E	X	T	E	N	D	I	N	G	F	I	D	D	L	E	R	’	S	UI	-	A	D	D	I	N	G	C	O	L	U	M	N	S	LIST	TO	THE	WEB	SESSIONS	FiddlerScript	can	also	be	used	to	add	new	columns	to	the	Web	Sessions	list,	either	by	using	attributes	or	by	making	a	method	call.
Binding	Columns	using	Attributes	The	BindUIColumn	attribute	is	used	to	create	a	new	column	in	the	Web	Sessions	list	and	bind	to	it	a	method	in	the	script	that	will	calculate	the	text	for	that	column.	The	method	must	accept	a	Session	object	as	a	parameter,	and	return	a	string	as	its	result.	The	following	script	adds	a	new	column	to	the	Web	Sessions
list	that	shows	the	HTTP	Method	for	each	Session:	BindUIColumn("Method",	60)	public	static	function	FillMethodColumn(oS:	Session)	{	if	((oS.oRequest	!=	null)	&&	(oS.oRequest.headers	!=	null))	{	return	oS.oRequest.headers.HTTPMethod;	}	return	String.Empty;	}	After	this	function	is	added	to	the	script,	a	new	Method	column	is	added	to	the	UI
and	values	are	added	to	the	column	for	each	subsequent	Session:	Your	method	must	be	robust	against	being	called	before	the	data	it	relies	upon	is	ready.	For	instance,	if	you	were	to	add	a	column	that	counts	the	number	of	times	the	word	fuzzle	appears	in	the	HTTP	response,	your	method	should	immediately	return	an	empty	string	every	time	it	is
called	until	the	responseBodyBytes	array	is	created	after	the	response	is	read	from	the	server.	Otherwise,	the	method	will	throw	a	Null	Reference	Exception	every	time	it	is	called	before	the	server	response	is	completed.	Because	your	function	will	run	multiple	times	for	each	Session	as	the	Session	proceeds	from	one	state	to	the	next,	you	should
ensure	that	it	runs	as	quickly	as	possible.	One	strategy	to	minimize	the	work	of	this	function	is	to	cache	values	using	a	new	flag	on	the	Session	object.	Obviously,	the	benefit	of	caching	a	computed	value	will	increase	as	the	181	|	FiddlerScript	complexity	of	the	computation	of	that	value	increases.	For	instance,	if	the	calculation	involves	converting	the
responseBodyBytes	array	to	plaintext	and	searching	that	text	for	a	string,	this	can	be	a	very	expensive	operation	which	will	greatly	benefit	from	caching	its	result.	The	following	is	an	example	which	converts	a	non-binary	response	body	to	a	string	and	then	searches	it	for	the	word	“fuzzle”,	caching	the	result	of	the	search	in	a	flag	on	the	Session	object:
BindUIColumn("HasFuzzle",	60)	public	static	function	FillFuzzleColumn(oS:	Session)	{	//	Check	the	cache	and	return	the	value	if	we	already	computed	it	if	(oS.oFlags.ContainsKey("HasFuzzle"))	{	return	oS.oFlags["HasFuzzle"];	}	//	Exit	if	we	don't	yet	have	a	response	if	(!oS.bHasResponse)	{	return	String.Empty;	}	//	Avoid	looking	inside	binary
content	if	(Utilities.IsBinaryMIME(oS.oResponse.MIMEType))	{	oS.oFlags["HasFuzzle"]	=	"n/a";	return	"n/a";	}	var	s	=	oS.GetResponseBodyAsString();	var	i	=	-1;	if	(s.Length	>	0)	{	i	=	s.IndexOf("fuzzle",	StringComparison.OrdinalIgnoreCase);	if	(i	>=	0)	{	oS.oFlags["HasFuzzle"]	=	"Yes!";	return	"Yes!";	}	}	oS.oFlags["HasFuzzle"]	=	"Nope";	return
"Nope";	}	This	example	first	checks	the	cache	for	a	previously	computed	value,	and	if	one	is	found,	it	is	immediately	returned.	Next,	the	example	validates	that	the	data	it	needs	for	the	calculation	is	available.	If	not,	it	returns	an	empty	string.	Next,	it	checks	to	see	whether	the	response	body	is	advertising	a	binary	Content-Type;	if	so,	it	caches	an	“n/a”
182	|	FiddlerScript	result	and	returns	it.	Finally,	it	converts	the	response	body	to	a	string	and	hunts	for	the	target	word.	It	caches	and	returns	the	result	of	the	search.	The	complete	set	of	BindUIColumn	constructors	includes	versions	that	allow	you	to	indicate	that	the	column’s	contents	should	be	sorted	as	integers,	and	to	specify	the	column’s	width
and	its	relative	display	ordering	amongst	the	other	columns.	public	public	public	public	public	BindUIColumn(string	sTitle)	BindUIColumn(string	sTitle,	bool	bSortNumerically)	BindUIColumn(string	sTitle,	int	iWidth)	BindUIColumn(string	sTitle,	int	iWidth,	int	iDisplayOrder)	BindUIColumn(string	sTitle,	int	iWidth,	int	iDisplayOrder,	bool
bSortColumnNumerically)	Binding	Columns	using	AddBoundColumn	In	addition	to	adding	columns	by	annotating	a	function	with	the	BindUIColumn	attribute,	you	can	also	add	a	column	directly	by	calling	the	AddBoundColumn	method	on	the	Web	Sessions	listview.	Various	overloads	of	the	function	define	the	title	of	the	column,	its	width,	its	relative
display	ordering	amongst	the	other	columns,	its	sort	behavior,	and	a	flag	or	function	to	which	the	column	will	be	bound.	The	call:	FiddlerObject.UI.lvSessions.AddBoundColumn("ClientPort",	50,	"X-CLIENTPORT");	…adds	a	new	column	with	the	title	ClientPort	and	a	default	width	of	50	pixels.	The	contents	of	the	column	are	bound	to	the	value	of	each
session’s	X-ClientPort	flag,	which	will	be	empty	if	the	flag	does	not	exist.	The	third	parameter	allows	you	to	specify	either	a	Session	Flag	name,	or	the	name	of	a	request	or	response	header	using	the	@request	or	@response	prefixes.	For	instance:	FiddlerObject.UI.lvSessions.AddBoundColumn("Server",	50,	"@response.Server");	…will	create	a	column

with	the	title	Server,	displaying	the	contents	of	the	response’s	Server	header,	if	present.	Similarly,	FiddlerObject.UI.lvSessions.AddBoundColumn("Reason",	50,	"@request.X-Download-Initiator");	…will	create	a	column	with	the	title	Reason,	displaying	the	request’s	X-Download-Initiator	header’s	value,	if	present.	You	can	configure	IE9+	to	emit	this
header	on	each	request;	it	provides	a	terse	explanation	of	why	a	given	request	was	made.	For	instance,	it	will	indicate	if	the	request	was	caused	by	navigation,	an	IMG	tag’s	download,	etc.	See	to	download	configuration	scripts	that	enable	and	disable	sending	of	this	header.	You	may	also	call	AddBoundColumn	and	provide	a	callback	function’s	name,
along	with	a	boolean	indicating	that	the	column’s	values	should	be	interpreted	and	sorted	as	numbers.	For	instance:	183	|	FiddlerScript	//	Callback	function	that	returns	the	"Time	to	first	byte"	value	static	function	getTTLB(oS:	Session):	String	{	var	iMS	=	Math.round((oS.Timers.ServerDoneResponse	-
oS.Timers.FiddlerBeginRequest).TotalMilliseconds);	if	(iMS	>	0)	return	iMS.ToString();	return	0;	}	FiddlerObject.UI.lvSessions.AddBoundColumn("TTLB",	0,	50,	true,	getTTLB);	The	true	parameter	indicates	that	the	column’s	values	are	numeric,	while	the	0	parameter	indicates	that	this	should	be	inserted	as	the	first	column	displayed	in	the	Web
Sessions	list.	Note	that	the	display	order	parameter	is	relative,	not	absolute,	so	calling:	FiddlerObject.UI.lvSessions.AddBoundColumn("4",	FiddlerObject.UI.lvSessions.AddBoundColumn("3",	FiddlerObject.UI.lvSessions.AddBoundColumn("2",	FiddlerObject.UI.lvSessions.AddBoundColumn("1",	0,	0,	0,	0,	50,	40,	30,	20,	func4);	func3);	func2);	func1);	…
will	result	in	four	new	columns	of	increasing	width,	titled	1,	2,	3,	and	4,	in	that	order	from	left	to	right.	If	you’d	like	to	change	a	column’s	width	or	ordering	within	the	Web	Sessions	list,	you	can	use	the	SetColumnOrderAndWidth	method.	The	method	takes	three	parameters:	the	title	of	the	column	to	adjust,	the	new	position,	and	the	new	width.	The
latter	two	parameters	may	be	set	to	-1	to	leave	the	order	or	width	unchanged.	For	instance,	to	move	the	Protocol	column	to	the	far	left	of	the	Web	Sessions	list	without	changing	its	width,	call:	FiddlerApplication.UI.lvSessions.SetColumnOrderAndWidth("Protocol",	0,	-1);	Again,	keep	in	mind	that	column	ordering	behaves	as	an	insertion	operation.	So,
if	you	call:	FiddlerApplication.UI.lvSessions.SetColumnOrderAndWidth("#",	FiddlerApplication.UI.lvSessions.SetColumnOrderAndWidth("Result",	FiddlerApplication.UI.lvSessions.SetColumnOrderAndWidth("Protocol",	FiddlerApplication.UI.lvSessions.SetColumnOrderAndWidth("Host",	0,	1,	0,	0,	-1);	-1);	-1);	-1);	The	final	ordering	is	[Host,	Protocol,	#,
Result],	because	the	Host	column	was	inserted	at	index	0,	pushing	the	Result	and	Protocol	columns	rightward.	184	|	FiddlerScript	FIDDLE	ROBJE	CT	FUNCTIONS	The	FiddlerScript	engine	itself	provides	a	number	of	simple	utility	functions	and	properties	that	you	may	use	to	accomplish	common	tasks.	These	methods	and	properties	are	exposed	by
the	FiddlerObject	object	and	include:	FiddlerObject.ReloadScript()	This	method	instructs	Fiddler	to	reload	the	script	file	from	disk	and	recompile	it,	resetting	all	variables	to	their	default	values.	FiddlerObject.StatusText	This	property	allows	you	to	set	the	text	on	Fiddler’s	status	bar.	It	may	safely	be	set	from	any	thread,	as	it	will	internally	call
BeginInvoke	on	the	UI	thread	if	set	from	a	background	thread.	The	default	FiddlerScript	file	sets	the	status	bar	text	when	the	script	is	first	compiled:	static	function	Main()	{	var	today:	Date	=	new	Date();	FiddlerObject.StatusText	=	"	CustomRules.js	was	loaded	at:	"	+	today;	}	The	OnExecAction	handler	in	the	default	script	uses	the	StatusText
property	to	communicate	the	results	of	commands	to	the	user.	FiddlerObject.log(sTextToLog)	This	method	allows	you	to	log	text	to	Fiddler’s	event	log.	The	first	character	of	the	provided	text	may	be	an	exclamation	mark,	underscore,	or	forward	slash	to	cause	the	Log	tab	to	format	the	text	in	bold,	underlined,	or	italic	text	respectively.	The	following
example:	static	function	OnPeekAtResponseHeaders(oSession:	Session)	{	FiddlerObject.log("_Underlined\t#"	+	oSession.id.ToString());	FiddlerObject.log("!Bolded\t"	+	oSession.fullUrl);	FiddlerObject.log("/Italicized\t"	+	oSession.oResponse.MIMEType);	}	Yields	the	following	output:	185	|	FiddlerScript	FiddlerObject.playSound(sSoundFilename)	This
method	loads	and	plays	the	specified	.wav	audio	file.	This	can	be	useful	if	your	script	needs	to	draw	the	user’s	attention	to	an	exceptional	event.	FiddlerObject.flashWindow()	This	method	flashes	the	Fiddler	window’s	entry	in	the	Windows	task	bar	to	help	draw	the	user’s	attention.	FiddlerObject.alert(sMessage)	This	method	displays	the	provided
message	in	a	message	box	with	the	title	“FiddlerScript.”	FiddlerObject.prompt(sMessage)	This	method	and	its	overloads:	FiddlerObject.prompt(sMessage,	sDefaultValue)	FiddlerObject.prompt(sMessage,	sDefaultValue,	sTitle)	…allow	you	to	prompt	the	user	for	a	string	using	the	prompt	message	provided	in	the	first	parameter.	The	second	and	third
overloads	allow	you	to	optionally	specify	a	default	value	and	the	title	of	the	prompt	dialog	box.	For	instance,	this	line	will	prompt	the	user	for	a	HTML	tag	name:	var	sTagName:	String	=	FiddlerObject.prompt("Enter	a	HTML	tag	name",	"",	"Specify	Tag");	When	the	prompt	is	displayed,	Fiddler	will	flash	its	window’s	entry	in	the	Windows	task	bar	to
help	draw	the	user’s	attention.	If	the	user	presses	Cancel	on	the	prompt,	the	supplied	default	value	(or	String.Empty)	will	be	returned.	FiddlerObject.createDictionary()	This	method	allows	you	to	create	a	simple	Dictionary	object	suitable	to	pass	to	the	DoImport	and	DoExport	methods	on	the	FiddlerApplication	object.	This	method	is	necessary	because
the	JScript.NET	language	does	not	expose	any	other	way	to	create	a	generic	Dictionary	object.	The	following	example	generates	a	HAR	file	on	the	desktop	containing	all	of	the	captured	sessions:	var	oSessions	=	FiddlerApplication.UI.GetAllSessions();	var	oExportOptions	=	FiddlerObject.createDictionary();	oExportOptions.Add("Filename",
"C:\\users\\ericlaw\\desktop\\out1.har");	oExportOptions.Add("MaxTextBodyLength",	0);	oExportOptions.Add("MaxBinaryBodyLength",	0);	FiddlerApplication.DoExport("HTTPArchive	v1.2",	oSessions,	oExportOptions,	null);	186	|	FiddlerScript	FiddlerObject.WatchPreference(sPrefBranch,	oFunc)	This	method	allows	you	to	provide	a	callback	method
which	will	be	notified	when	any	change	occurs	within	the	specified	branch	of	Preferences.	static	function	Main()	{	FiddlerObject.WatchPreference("fiddler.script",	ObservePrefChange);	}	static	function	ObservePrefChange(oSender:	Object,	oPCEA:	PrefChangeEventArgs)	{	var	sMsg:	String	=	oPCEA.PrefName	+	"	changed	to	"	+	oPCEA.ValueString;
MessageBox.Show(sMsg,	"A	pref	was	changed");	}	This	method	exists	because,	if	your	FiddlerScript	were	to	call	FiddlerApplication.Prefs.AddWatcher	directly,	the	entire	script	engine	would	be	leaked	each	time	the	script	is	recompiled.	That	leak	would	occur	because	the	callback	event	could	not	be	garbage-collected	due	to	the	outstanding	reference
held	by	the	Preferences	object.	187	|	FiddlerScript	REFERENCING	ASSEMBLIES	The	.NET	Framework	offers	a	huge	library	of	functionality	that	you	can	take	advantage	of	in	your	FiddlerScript.	For	instance,	you	can	use	the	classes	in	System.Data	to	log	traffic	to	a	database,	or	use	classes	in	the	System.IO	namespace	to	write	files	to	disk.	To
reference	an	assembly	that	is	installed	in	the	system’s	Global	Assembly	Cache,	simply	add	the	appropriate	namespace	to	the	list	of	#import	statements	at	the	top	of	your	script:	Then	use	the	classes	as	needed:	You	can	also	use	methods	in	your	own	assembly	DLLs	even	if	those	assemblies	are	not	loaded	into	the	global	assembly	cache.	There	are	two
ways	to	enable	FiddlerScript	to	find	the	assembly.	The	first	is	to	add	the	Assembly’s	full	path	inside	Tools	>	Fiddler	Options	>	Extensions:	Alternatively,	you	may	use	a	Preference	to	specify	the	default	library	path	used	to	find	assemblies.	The	Preference	fiddler.script.LibPath	should	be	set	to	the	fully-qualified	path	that	contains	your	DLLs.	For
instance,	type	the	following	in	the	QuickExec	box	below	the	Web	Sessions	list:	prefs	set	fiddler.script.LibPath	"C:\src\Library	DLLs\"	…and	when	your	FiddlerScript	is	next	compiled,	Fiddler	will	look	for	referenced	assemblies	in	the	Library	DLLs	folder.	188	|	FiddlerScript	EXAMPLE	SCRIPTS	While	you	can	use	FiddlerScript	to	build	nearly	any	type	of
functionality	you	want,	in	most	cases	you	will	use	script	to	modify	either	the	request	or	response.	This	section	contains	a	few	examples	to	get	you	started.	Request	Scripts	Place	these	snippets	inside	the	OnBeforeRequest	function	so	that	they	run	before	the	request	is	sent	to	the	server.	Add	(or	Overwrite)	a	Request	Header	You	can	modify	request
headers	very	easily	using	the	indexer	property	on	the	oRequest	object:	oSession.oRequest["HeaderName"]	=	"New	value";	This	will	add	the	specified	header,	or	overwrite	the	first	existing	header	named	HeaderName.	To	add	the	Session’s	ID	to	the	outbound	request	headers	so	that	they	will	be	captured	in	the	server’s	logs,	use	the	line:
oSession.oRequest["X-Fiddler-SessionID"]	=	oSession.id.ToString();	Remove	Request	Headers	You	can	remove	all	headers	of	a	specified	name:	oSession.oResponse.headers.Remove("Cookie");	Flag	Requests	that	Send	Cookies	Session	flags	can	be	set	based	on	request	headers:	if	(oSession.oRequest.headers.Exists("Cookie"))	{	oSession["ui-
color"]="red";	oSession["ui-customcolumn"]	=	oSession.oRequest["Cookie"];	}	Rewrite	a	Request	from	HTTP	to	HTTPS	You	can	modify	the	UriScheme	property	for	requests	to	change	the	protocol	used:	if	(!oSession.isHTTPS	&&	!oSession.HTTPMethodIs("CONNECT")	&&	oSession.HostnameIs("myServer"))	{	oSession.oRequest.headers.UriScheme	=
"https";	}	189	|	FiddlerScript	Swap	the	Host	Header	When	Fiddler	gets	a	request	whose	URL	doesn’t	match	its	Host	header,	the	original	Host	value	is	stored	in	the	session	flag	X-Original-Host	and	then	the	Host	value	is	replaced	with	the	host	parsed	from	the	URL.	The	following	script	reverses	behavior	by	routing	the	request	to	the	host	specified	by
the	original	Host	header.	if	(oSession.BitFlags	&	SessionFlags.ProtocolViolationInRequest)	{	var	sOverride	=	oSession["X-Original-Host"];	if	(!String.IsNullOrEmpty(sOverride))	{	oSession["X-overrideHost"]	=	sOverride;	oSession["ui-backcolor"]	=	"yellow";	//	Be	sure	to	bypass	the	gateway,	otherwise	overrideHost	doesn't	work
oSession.bypassGateway	=	true;	}	}	Drop	a	Connection	FiddlerScript	can	drop	the	client’s	connection,	like	the	AutoResponder	Actions	*drop	and	*reset.	if	(oSession.uriContains("DropIt")	&&	(null	!=	oS.oRequest.pipeClient))	{	//	Use	this	to	close	the	connection	using	TCP/IP	RST	oS.oRequest.pipeClient.EndWithRST();	//	or	use	this	to	close	the
connection	using	TCP/IP	FIN	//	oS.oRequest.pipeClient.End();	//	So	that	the	UI	shows	what	we	did,	create	a	placeholder	//	response	for	display	purposes:	if	(this.state	<	SessionStates.SendingRequest)	{	oS.utilCreateResponseAndBypassServer();	}	oS.oResponse.headers.HTTPResponseCode	=	0;	oS.oResponse.headers.HTTPResponseStatus	=	"0
Connection	dropped	by	script";	oS.responseBodyBytes	=	new	byte[0];	oS.state	=	SessionStates.Aborted;	return;	}	Prevent	Response	Streaming	To	ensure	that	the	server’s	response	is	buffered	to	permit	tampering,	you	must	set	the	Session	object’s	bBufferResponse	field	before	the	response	is	read	from	the	server:	if	(oSession.HostnameIs("myServer")
&&	oSession.uriContains(".aspx"))	{	oSession.bBufferResponse	=	true;	}	190	|	FiddlerScript	Response	Scripts	You	can	modify	responses	just	as	easily.	If	your	code	only	needs	to	access	the	response’s	headers,	use	the	OnPeekAtResponse	headers	function.	If	you	need	access	to	the	response	body,	place	your	code	inside	the	OnBeforeResponse	function.
There,	the	script	will	run	after	the	response	body	is	read	from	the	server	but	before	the	response	is	returned	to	the	client.	That	is,	unless	buffering	is	disabled,	in	which	case	the	function	will	run	after	the	response	has	been	streamed	to	the	client,	hiding	any	modifications	you	make	to	the	body	from	the	client.	Hide	Sessions	that	Returned	Images	You
can	set	the	ui-hide	flag	to	hide	traffic	from	the	Web	Sessions	list:	if	(oSession.oResponse.MIMEType.Contains("image"))	{	oSession["ui-hide"]	=	"Script	hiding	images";	}	Flag	Redirections	Examine	the	responseCode	property	to	identify	redirects:	if	((oSession.responseCode	>	299)	&&	(oSession.responseCode	<	400))	{	oSession["ui-customcolumn"]	=
oSession.oResponse["Location"];	oSession["ui-bold"]	=	"redirect";	}	Replace	Text	in	Script,	CSS,	and	HTML	Change	any	CSS	vendor-prefixes	from	-Moz-	and	-WebKit-	to	-MS-:	if	(!Utilities.IsBinaryMIME(oSession.oResponse.MIMEType)	{	oSession.utilDecodeResponse();	oSession.utilReplaceInResponse("-moz-",	"-ms-");
oSession.utilReplaceInResponse("-webkit-",	"-ms-");	})	Remove	All	DIV	Elements	Use	regular	expressions	to	modify	the	response	body:	if	(oSession.oResponse.MIMEType.Contains("html"))	{	var	oBody	=	oSession.GetResponseBodyAsString();	//	Replace	all	content	of	DIV	tags	with	an	empty	string.	//	WARNING:	Doesn't	work	well	with	nested	DIVs.	var
oRegEx	=	/]*>(.*?)/gi;	oBody	=	oBody.replace(oRegEx,	"");	//	Set	the	response	body	to	the	div-less	string	oSession.utilSetResponseBody(oBody);	}	191	|	FiddlerScript	More	Examples	You	can	find	more	FiddlerScript	sample	code:		In	the	SampleRules.js	file	installed	with	Fiddler		At	192	|	FiddlerScript	Extending	Fiddler	with	.NET	Code	EXTENDING
FIDDLER	WITH	.	NE	T	While	FiddlerScript	provides	a	simple	and	lightweight	means	of	extending	Fiddler,	extending	Fiddler	with	.NET	assemblies	offers	significantly	more	power	and	an	improved	debugging	experience.	That’s	especially	true	if	you	plan	to	distribute	your	logic	to	other	users.	Extending	Fiddler	with	.NET	enables	you	to	build	your
extension	in	any	.NET	language	(C#	and	VB.NET	are	the	most	common	choices)	and	take	advantage	of	the	powerful	IntelliSense	and	debugging	features	of	Visual	Studio.	If	your	extension	limits	itself	to	the	classes	in	the	v2.0	Framework,	it	should	work	properly	on	every	Fiddler	user’s	system.	While	both	FiddlerScript	and	.NET	extensions	may	use
any	of	the	classes	in	the	.NET	Framework,	it	can	be	cumbersome	to	use	many	Framework	classes	from	FiddlerScript.	Compiled	.NET	extensions	typically	exhibit	significantly	faster	load-time	and	run-time	performance	as	compared	to	building	equivalent	functionality	in	FiddlerScript,	because	the	latter	must	be	recompiled	each	time	Fiddler	starts.
Extensions	can	be	installed	to	users’	machines	without	the	hassle	of	manual	modifications	of	the	user’s	FiddlerScript	source	file,	and	can	be	uninstalled	using	the	system’s	Control	Panel.	Each	extension’s	assembly	declares	the	minimum	version	of	Fiddler	with	which	it	is	compatible,	and	users	will	be	prompted	to	update	if	an	extension	requiring	a	later
Fiddler	version	is	encountered.	This	versioning	feature	helps	prevent	problems	where	code	that	works	great	on	your	computer	fails	spectacularly	on	another	user’s	machine	because	they’re	clinging	to	an	outdated	version	of	Fiddler.	Project	Requirements	and	Settings	Writing	extensions	for	Fiddler	requires	Visual	Studio	.NET	2005	or	later,	or	the	free
.NET	Framework	v2	commandline	compilers.	Fiddler2	loads	only	.NET	Common	Language	Runtime	(CLR)	v2.0	assemblies;	assemblies	that	target	the	v1.1	or	v4.0	CLR	will	not	be	loaded.	Fiddler	itself	requires	only	that	the	user	have	.NET	Framework	2.0	SP1	installed.	Your	extension	may	target	the	.NET	Framework	3.5	(which	includes	LINQ	and
other	useful	features)	since	that	framework	also	runs	on	the	v2.0	CLR.	However,	if	it	takes	such	a	dependency,	your	installer	must	ensure	that	the	user	has	the	required	Framework	version	installed,	or	the	user	will	encounter	“Class	not	found”	exceptions	as	your	extension	loads.	You	should	also	ensure	your	project	targets	AnyCPU	to	ensure	that
Fiddler	loads	it	when	running	on	a	64bit	system.	Debugging	Extensions	To	avoid	annoying	end-users	with	warnings	that	they	cannot	do	anything	about,	Fiddler	silently	handles	a	variety	of	problems	when	it	loads	and	calls	into	extensions.	However,	these	warnings	can	be	extremely	useful	to	extension	developers,	pointing	out	problems	that	prevent
extensions	from	functioning	properly.	194	|	Extending	Fiddler	with	.NET	Code	Extension	developers	should	set	the	fiddler.debug.extensions.showerrors	preference	to	true	ensure	that	exceptions	and	other	extension-related	errors	are	not	silently	caught.	Additionally,	they	should	set	the	fiddler.debug.extensions.verbose	preference	to	true	to	spew
logging	information	and	warnings	to	Fiddler’s	Log	tab.	Best	Practices	for	Extensions	On	the	Internet	Explorer	team,	we’ve	found	that	over	75%	of	browser	crashes	and	nearly	all	major	performance	problems	are	caused	by	buggy	browser	extensions.	Fortunately,	extension	quality	in	the	Fiddler	ecosystem	is	much	better,	but	it’s	still	the	case	that	an
extension	can	cause	Fiddler	to	crash	or	perform	more	slowly.	I’m	relying	on	you	to	help	ensure	that	users	have	a	great	experience	when	your	extension	is	running	inside	Fiddler.	The	simplest	way	to	minimize	your	extension’s	performance	impact	is	to	ensure	that	it	does	not	run	when	it’s	not	being	used.	There	are	two	key	strategies	for	doing	that:
offer	an	enable	switch,	and	use	a	delay-load	pattern.	Best	Practice:	Use	an	Enable	Switch	With	very	few	exceptions,	users	should	not	be	forced	to	uninstall	your	extension	to	disable	it--	most	users	will	only	want	your	extension	to	run	at	certain	times.	Extensions	should	offer	an	Enable	switch;	when	that	switch	is	off,	the	extension	should	do	as	little
work	as	possible.	For	instance,	inside	the	ContentBlock	extension,	each	method	that	handles	a	Session	first	checks	to	see	whether	blocking	is	enabled:	public	void	AutoTamperRequestBefore(Session	oSession)	{	//	Return	immediately	if	no	rule	is	enabled	if	(!bBlockerEnabled)	return;	//	...	This	best	practice	is	followed	by	Fiddler	itself—the
AutoResponder	and	Filters	tabs	have	enabling	checkboxes	at	their	top	and	only	process	Sessions	when	enabled.	Best	Practice:	Use	Delay	Load	Extensions	and	Inspectors	are	loaded	as	Fiddler	starts	up,	so	your	code	can	directly	impact	the	time	that	Fiddler	takes	to	load.	Because	some	users	will	restart	Fiddler	dozens	of	times	per	day,	load	time	is	a
very	important	factor	in	their	experience	with	the	tool.	In	many	cases,	a	user	may	not	use	your	Inspector	or	Extension	at	all	within	a	given	session.	For	instance,	perhaps	the	user	installed	your	Silverlight-troubleshooter	Inspector	for	one	project,	but	then	gets	pulled	away	to	go	help	with	a	HR	system	that	uses	only	WCF	Web	Services	and	no	Silverlight
at	all.	If	your	Inspector	uses	a	lot	of	memory	and	takes	a	long	time	to	load,	the	user	will	be	paying	a	penalty	for	having	it	installed	even	when	it’s	not	used.	To	avoid	that	problem,	use	the	Delay	Load	pattern,	in	which	expensive	operations	are	only	undertaken	if	needed.	This	pattern	can	be	effectively	applied	to	both	Inspectors	and	other	types	of
extensions.	For	instance,	the	FiddlerScript	tab	uses	a	syntax-highlighting	component	to	display	the	source	of	your	script	file;	this	component	requires	hundreds	of	millions	of	cycles	and	several	megabytes	of	memory	to	load.	If	this	component	was	195	|	Extending	Fiddler	with	.NET	Code	loaded	every	time	Fiddler	starts,	these	cycles	and	memory	are
wasted	if	the	user	doesn’t	interact	with	the	tab.	To	mitigate	this	problem,	the	FiddlerScript	tab	only	creates	the	syntax-highlighting	component	when	the	user	first	activates	the	extension’s	tab.	The	OnLoad	handler	for	the	extension	creates	its	tab,	adds	a	“Loading…”	label	to	it,	and	adds	a	handler	to	the	SelectedIndexChanged	event	to	detect	when	its
tab	is	being	activated.	public	void	OnLoad()	{	myPage	=	new	TabPage("FiddlerScript");	myPage.ImageIndex	=	(int)Fiddler.SessionIcons.Script;	this.lblLoading	=	new	System.Windows.Forms.Label();	this.lblLoading.Text	=	"Loading...";	myPage.Controls.Add(lblLoading);	FiddlerApplication.UI.tabsViews.TabPages.Add(myPage);
TabControlEventHandler	evtTCEH	=	null;	evtTCEH	=	delegate(object	s,	TabControlEventArgs	e)	{	if	(e.TabPage	==	myTabPage)	{	//	Create	heavyweight	components	used	to	display	UI	EnsureReady();	//	Remove	the	unneeded	event	handler.	FiddlerApplication.UI.tabsViews.Selected	-=	evtTCEH;	}	};	//	Subscribe	to	tab-change	events
FiddlerApplication.UI.tabsViews.Selected	+=	evtTCEH;	}	Only	when	the	extension’s	tab	is	activated	does	the	EnsureReady	method	run	to	create	the	heavyweight	component,	hiding	the	“Loading…”	label:	private	void	EnsureReady()	{	if	(null	!=	oEditor)	return;	lblLoading.Refresh();	//	Exit	if	we've	already	been	made	ready	//	Force	repaint	of
"Loading..."	label	//	Create	the	extension's	UI	(slow)	oEditor	=	new	RulesEditor(myPage);	lblLoading.Visible	=	false;	//	Remove	the	"Loading..."	label	}	This	pattern	is	also	used	by	the	SyntaxView,	HexView,	and	WebView	Inspectors,	all	of	which	depend	upon	components	that	are	expensive	to	construct.	Other	extensions	do	not	bother	with	the	Delay
Load	pattern	if	they	use	only	a	few	lightweight	controls	and	the	complexity	of	the	Delay	Load	pattern	isn’t	necessary.	196	|	Extending	Fiddler	with	.NET	Code	Best	Practice:	Beware	“Big	Data”	The	user’s	web	traffic	may	include	giant	responses	(e.g.	videos	or	other	files	that	are	hundreds	of	megabytes	in	size)	that	you	might	not	have	anticipated	when
building	your	extension.	Requests	can	be	quite	large	as	well,	but	in	practice,	enormous	downloads	are	much	more	common	than	large	uploads.	If	your	extension	doesn’t	defend	itself	from	“big	data,”	your	code	could	hang	Fiddler	when	the	user	selects	such	a	Session.	There	are	several	best	practices	to	help	prevent	hangs:		Ensure	that	your	extension
“fails	fast”	if	it	encounters	a	response	of	a	type	or	size	that	it	wasn’t	designed	to	handle.		Avoid	making	unnecessary	copies	of	data.	In	most	places,	Fiddler	uses	a	“copy	on	write”	architecture	to	prevent	unneeded	duplication	of	data,	and	your	extensions	should	do	the	same.		If	your	extension	attempts	to	render	data	by	replacing	embedded	nulls	using
the	Unicode	replacement	character	(0xFFFD,	rendered	as	�),	ensure	that	you	limit	how	much	data	you	attempt	to	show.	Otherwise,	rendering	a	binary	file	will	result	in	massive	memory	use,	because	the	embedded	nulls	will	not	terminate	the	text	passed	to	a	textbox	or	other	UI	control.	Fiddler’s	default	extensions	all	follow	these	best	practices	to	help
ensure	that	the	debugger	remains	responsive	even	when	dealing	with	huge	responses.	Best	Practice:	Use	the	Reporter	Pattern	for	Extensions	A	common	goal	when	building	an	extension	is	to	display	summary	data	about	the	currently	selected	Sessions	in	the	Web	Sessions	list.	For	instance,	the	Statistics	tab	shows	the	timing	data	and	size	of	the
selected	sessions,	while	the	Timeline	tab	shows	the	start	time	and	duration	of	each	selected	Session.	Extensions	of	this	sort	are	called	Reporters	because	they	generate	a	report	on	the	currently-selected	Sessions.	A	naïve	implementation	of	a	Reporter	would	recalculate	its	data	each	time	a	session	is	selected	or	unselected.	The	problem	with	that
approach	is	that	if	the	user	hits	CTRL+A	to	select	all	of	the	sessions	in	the	Web	Sessions	list	(or	CTRL+X	to	clear	it)	the	Reporter	will	end	up	doing	billions	of	redundant	calculations	whose	results	are	never	displayed	to	the	user.	To	avoid	that	problem,	instead	handle	the	FiddlerApplication.CalculateReport	event.	This	event	is	dispatched	as	the	user
selects	and	unselects	Sessions,	but	it	is	suppressed	during	certain	bulk	operations	(like	loading	a	SAZ	file	or	clearing	the	Web	Sessions	list),	ensuring	that	it	is	dispatched	only	after	the	bulk	update	is	completed.	The	event	is	also	suppressed	when	Fiddler	shuts	down,	helping	to	ensure	that	you	don’t	perform	expensive	work	as	Fiddler	is	unloading	and
disposing	of	its	objects.	Your	event	handler	implementation	must	have	the	following	signature:	public	delegate	void	CalculateReportHandler(Session[]	_arrSessions);	197	|	Extending	Fiddler	with	.NET	Code	Your	event	handler	will	be	called	at	the	appropriate	intervals,	and	an	array	of	the	currently	selected	Sessions	will	be	passed	as	the	only
parameter.	You	should	still	avoid	doing	any	redundant	work—for	instance,	if	your	tab	isn’t	presently	active,	you	should	suppress	calculations	until	it	is	activated.	The	Statistics	tab’s	CalculateReport	handler	looks	a	bit	like	this:	void	UpdateStatsTab(Session[]	_arrSessions)	{	//	If	we're	not	showing	the	Stats	tab	right	now,	bail	out.	if
(FiddlerApplication.UI.tabsViews.SelectedTab	!=	FiddlerApplication.UI.pageStatistics)	{	return;	}	try	{	if	(_arrSessions.Length	<	1)	{	ClearStatsTab();	return;	}	Dictionary	dictResponseSizeByContentType;	long	cBytesRecv;	string	sStats	=	BasicAnalysis.ComputeBasicStatistics(_arrSessions,	true,	out	dictResponseSizeByContentType,	out	cBytesRecv);
txtReport.Text	=	String.Format("{0}\r,	sStats);	}	catch	(Exception	eX)	{	Debug.Assert(false,	eX.Message);	}	}	By	using	the	CalculateReport	event,	your	extension	can	avoid	performing	unnecessary	work,	helping	to	keep	Fiddler	running	fast.	198	|	Extending	Fiddler	with	.NET	Code	INTERACTING	WITH	FIDDLER’S	OBJECTS	Most	FiddlerScript	and
extensions	use	Fiddler’s	object	model	to	interact	with	the	user-interface,	Session	objects,	the	FiddlerScript	engine,	and	features	like	the	TextWizard.	This	section	outlines	the	properties,	flags,	fields,	and	events	that	your	code	may	rely	upon.	The	Web	Sessions	List	Because	the	Web	Sessions	list	is	the	most	important	component	of	the	Fiddler	user-
interface,	your	code	will	often	need	to	interact	with	the	list’s	entries.	Fiddler	exposes	methods	on	the	FiddlerApplication.UI	object	to	interact	with	the	Web	Sessions	list.	Session[]	GetAllSessions()	This	method	will	return	an	array	containing	all	of	the	Sessions	in	the	Web	Sessions	list.	If	the	Web	Sessions	list	is	empty,	the	array’s	Length	will	be	0.
Session	GetFirstSelectedSession()	This	method	will	return	the	first	selected	Session	in	the	Web	Sessions	list,	or	null	if	no	entries	are	selected.	Session[]	GetSelectedSessions()	This	method	will	return	an	array	containing	all	of	the	Sessions	that	are	currently	selected	in	the	Web	Sessions	list.	If	no	entries	are	selected,	the	array’s	Length	will	be	0.
Session[]	GetSelectedSessions(int	iMax)	This	method	will	return	an	array	containing	all	of	the	Sessions	that	are	currently	selected	in	the	Web	Sessions	list,	up	to	the	maximum	number	specified.	If	no	entries	are	selected,	the	array’s	Length	will	be	0.	void	actSelectAll()	Selects	all	Sessions	in	the	Web	Sessions	list.	void
actSelectSessionsMatchingCriteria(doesSessionMatchCriteriaDelegate	oDel)	This	powerful	method	allows	you	to	supply	a	delegate	function	(similar	to	a	predicate	delegate)	that	is	evaluated	for	each	Session	in	the	Web	Sessions	list.	For	each	entry,	if	your	delegate	returns	true,	the	Session’s	entry	will	be	selected.	If	it	returns	false,	the	Session’s	entry
will	be	unselected.	For	instance,	say	that	you	want	to	select	all	Sessions	that	use	the	POST	request	method.	You	can	use	the	following	code:	FiddlerApplication.UI.actSelectSessionsMatchingCriteria(delegate(Session	oS)	{	return	oS.HTTPMethodIs("POST");	});	199	|	Extending	Fiddler	with	.NET	Code	Or,	if	you	want	to	select	all	Sessions	that	have	a
HTTP/200	response	status,	use	this:	FiddlerApplication.UI.actSelectSessionsMatchingCriteria(delegate(Session	oS)	{	return	(200	==	oS.responseCode);	});	void	actRemoveSelectedSessions()	Removes	all	selected	Sessions	from	the	Web	Sessions	list.	void	actRemoveUnselectedSessions()	Removes	all	unselected	Sessions	from	the	Web	Sessions	list.
bool	actLoadSessionArchive(string	sFilename)	Loads	the	sessions	from	the	specified	SAZ	file	and	adds	them	to	the	Web	Sessions	list.	void	actSaveSessionsToZip()	Saves	the	currently	selected	Sessions	to	a	SAZ	file	whose	filename	is	provided	by	the	user	in	a	Save	File	prompt.	The	“Zip”	part	of	this	method’s	name	reflects	the	fact	that	a	SAZ	file	is
merely	a	structured	Zip	archive.	void	actSaveSessionsToZip(string	sFilename,	string	sPwd)	Saves	the	currently	selected	Sessions	to	a	SAZ	file	named	by	the	provided	filename.	If	the	password	parameter	is	non-null,	the	SAZ	file	will	be	encrypted	using	the	specified	password.	void	actSessionCopyURL()	Copies	the	URLs	of	the	currently	selected
Sessions	to	the	clipboard,	one	per	line.	void	actSessionCopySummary()	Copies	all	of	the	text	from	the	Web	Sessions	listview	to	the	clipboard	for	each	of	the	selected	Sessions.	The	data	is	copied	in	both	tab-delimited	text	and	HTML	formats,	suitable	for	pasting	into	either	documents	or	spreadsheets.	void	actSessionCopyHeadlines()	Copies	a	terse
listing	of	the	selected	Sessions	to	the	clipboard.	For	instance,	when	loading	the	Fiddler	homepage,	the	data	copied	is:	GET	302	Object	moved	to	/fiddler2/	GET	200	OK	(text/html)	CONNECT	200	Connection	Established	()	GET	200	|	Extending	Fiddler	with	.NET	Code	200	OK	(text/css)	GET	200	OK	(image/gif)	int
FiddlerApplication.UI.lvSessions.SelectedCount	This	property	appears	directly	on	the	Web	Sessions	listview	and	returns	the	count	of	selected	Sessions	without	returning	those	items.	This	provides	a	quick	way	to	get	a	count	of	selected	Sessions	without	copying	those	sessions	into	an	array	as	the	GetSelectedSessions	method	does.	SimpleEventHandler
FiddlerApplication.UI.lvSessions.OnSessionsAdded	By	default,	Fiddler	queues	updates	to	the	list	for	a	short	period	of	time	to	help	ensure	UI	responsiveness.	This	event	fires	whenever	one	or	more	Sessions	is	visibly	added	to	Web	Sessions	list.	If	you	choose	to	provide	a	handler	for	this	event,	ensure	that	the	handler	does	not	perform	any	expensive
computations,	as	doing	so	will	block	the	UI	thread	and	severely	impair	performance.	Session	Objects	Each	Web	Session	is	represented	by	a	Session	object	which	exposes	fields,	properties,	and	methods	which	control	how	the	Session	is	processed	and	record	information	about	it.	oRequest	The	oRequest	object	represents	the	client’s	request.	It	exposes
key	properties	including	the	headers	object	which	contains	the	Request’s	headers.	The	headers	themselves	may	be	accessed	by	the	indexers	on	the	oRequest	or	Session	objects:	oSession.oRequest["HeaderName"]	==	oSession.oRequest.headers["HeaderName"]	==	oSession["REQUEST",	"HeaderName"];	The	oRequest	object’s	pipeClient	field,	if	set,
represents	Fiddler’s	connection	to	the	client.	requestBodyBytes	This	byte	array	contains	the	raw	bytes	of	the	client’s	request.	Because	the	body	may	be	encoded,	typically	the	GetRequestBodyAsString	and	utilSetRequestBody	methods	are	used	instead	of	manipulating	the	byte	array	directly.	oResponse	The	oResponse	object	represents	the	server’s
response.	It	exposes	key	properties	including	the	headers	object	which	contains	the	Response’s	headers.	The	headers	themselves	may	be	accessed	by	the	indexers	on	the	oResponse	or	Session	objects:	oSession.oResponse["HeaderName"]	==	oSession.oResponse.headers["HeaderName"]	==	oSession["RESPONSE",	"HeaderName"];	The	oResponse
object’s	MIMEType	property	returns	the	MIME-type	portion	of	the	response’s	Content-Type	header.	The	object’s	pipeServer	field,	if	set,	represents	Fiddler’s	connection	to	the	server.	201	|	Extending	Fiddler	with	.NET	Code	responseBodyBytes	This	byte	array	contains	the	raw	bytes	of	the	server’s	response.	Because	the	body	may	be	encoded,	typically
the	GetResponseBodyAsString	and	utilSetResponseBody	methods	are	used	instead	of	manipulating	the	byte	array	directly.	oFlags	This	StringDictionary	contains	flags	that	describe	the	Session.	A	full	list	of	Session	flags	can	be	found	in	Appendix	C.	You	may	access	this	collection	directly,	or	via	one	of	the	two	indexer	properties	exposed	by	the	Session
object.	oSession.oFlags["FlagName"]	==	oSession["FlagName"]	==	oSession["SESSION",	"FlagName"];	Note:	If	the	requested	Flag	does	not	exist,	the	indexers	have	slightly	different	behavior:	if	(!oSession.oFlags.ContainsKey("SomeKey")	{	Debug.Assert(oSession["SomeKey"]	==	null);	Debug.Assert(oSession.oFlags["SomeKey"]	==	null);
Debug.Assert(oSession["Session",	"SomeKey"]	==	String.Empty);	}	void	Abort()	Aborts	processing	of	the	current	Session.	This	closes	both	client	and	server	connections	(if	any)	and	moves	the	Session’s	state	to	Aborted.	bBufferResponse	This	boolean	field	controls	whether	the	response	will	be	streamed	to	the	client	as	it	is	read	from	the	server.
bHasReponse	This	readonly	property	returns	true	if	the	Session’s	state	>	ReadingResponse	and	oResponse	is	not	null.	bypassGateway	This	boolean	field	controls	whether	the	request	will	be	sent	to	the	upstream	gateway	proxy	server,	if	any	such	server	is	configured.	clientIP	This	string	records	the	IP	address	from	which	the	request	originated.
clientPort	This	integer	records	the	port	from	which	the	request	originated.	bool	COMETPeek()	Call	this	method	while	in	the	ReadingResponse	state	to	update	the	responseBodyBytes	array	with	the	partiallyread	response.	202	|	Extending	Fiddler	with	.NET	Code	fullUrl	This	property	stores	the	complete	request	URI,	including	protocol/scheme,	in	the
form	/filepath?query.	To	retarget	this	request	to	a	different	URL,	adjust	this	property	before	the	request	is	sent.	PathAndQuery	This	property	contains	the	path	and	query	string	from	the	request	URL.	port	This	property	contains	the	port	to	which	the	request	is	targeted.	host	This	property	stores	the	host	specified	in	the	request	headers;	this	value	may
include	a	port	number.	hostname	This	property	stores	the	hostname	specified	in	the	request	headers;	this	value	will	never	include	a	port	number.	bool	HostnameIs(string)	This	method	compares	the	supplied	hostname	to	the	hostname	of	the	request,	returning	true	if	a	case-insensitive	match	is	found.	bool	HTTPMethodIs(string)	This	method	compares
the	supplied	HTTP	Method	name	to	the	HTTP	Method	of	the	request,	returning	true	if	a	case-insensitive	match	is	found.	bool	uriContains(string)	This	method	searches	the	request	URI	for	the	supplied	string,	and	returns	true	if	a	case-sensitive	match	is	found.	id	This	readonly	integer	property	returns	the	Session’s	automatically-generated
identification	number.	isFTP	This	readonly	property	returns	true	if	the	Session	targets	the	FTP	protocol.	isHTTPS	This	readonly	property	returns	true	if	the	Session	targets	the	HTTPS	protocol.	isTunnel	This	readonly	property	returns	true	if	the	Session	is	a	CONNECT	tunnel	used	for	HTTPS	or	WebSocket	traffic.	LocalProcessID	This	readonly	integer
property	returns	the	process	ID	of	the	local	process	from	which	the	request	originated.	If	the	request	was	generated	from	a	remote	client,	this	property	will	return	0.	bool	utilDecodeRequest()	Call	this	method	to	remove	any	HTTP	compression	or	Chunked	Encoding	from	the	request	body.	203	|	Extending	Fiddler	with	.NET	Code	bool
utilDecodeResponse()	Call	this	method	to	remove	any	HTTP	compression	or	Chunked	Encoding	from	the	response	body.	responseCode	This	integer	property	contains	the	HTTP	status	code	from	the	server’s	response.	state	Each	Session’s	state	property	tracks	its	progress	through	the	following	SessionStates:	SessionState	Created	ReadingRequest
AutoTamperRequestBefore	HandTamperRequest	AutoTamperRequestAfter	SendingRequest	ReadingResponse	AutoTamperResponseBefore	HandTamperResponse	AutoTamperResponseAfter	SendingResponse	Done	Aborted	Description	The	Session	has	been	created	but	nothing's	happening	yet.	Fiddler	is	reading	the	request	from	the	client.	Fiddler
extensions	that	provide	an	AutoTamperRequestBefore	method	are	processing	the	request.	The	user	may	manually	edit	the	request	using	the	Fiddler	Inspectors.	Fiddler	extensions	that	provide	an	AutoTamperRequestAfter	method	are	processing	the	request.	Fiddler	is	sending	the	request	to	the	server.	Fiddler	is	reading	the	response	from	the	server.
Fiddler	extensions	that	provide	an	AutoTamperResponseBefore	method	are	processing	the	request.	The	user	may	manually	edit	the	response	using	the	Fiddler	Inspectors.	Fiddler	extensions	that	provide	an	AutoTamperResponseAfter	method	are	processing	the	request.	Fiddler	is	sending	the	response	to	the	client.	The	Session	is	complete.	The	Session
was	aborted	(the	client	disconnected	before	reading	the	response,	there	was	a	fatal	error	in	processing,	etc.)	The	Session	moves	from	one	state	to	the	next	until	it	reaches	the	Done	state;	in	the	event	of	an	error,	the	Session	jumps	immediately	to	the	Aborted	state.	The	Session	object’s	OnStateChanged	event	fires	any	time	the	Session’s	state	property
changes.	BitFlags	Each	Session’s	BitFlags	property	holds	zero	or	more	SessionFlags	that	supply	commonly-queried	state	information.	The	SessionFlags	enumeration	includes:	SessionFlags	None	Description	No	flags	are	set.	IsHTTPS	The	request’s	URI	has	a	HTTPS	target.	IsFTP	The	request’s	URI	has	a	FTP	target.	ClientPipeReused	The	request	was
read	from	a	previously	used	connection	from	the	client.	ServerPipeReused	The	request	reused	an	existing	connection	to	the	server.	204	|	Extending	Fiddler	with	.NET	Code	ResponseStreamed	The	response	was	not	buffered	and	was	instead	streamed	to	the	client	as	it	was	read	from	the	server.	RequestGeneratedByFiddler	The	request	was	generated
by	Fiddler	itself	(e.g.	from	the	Composer	tab).	ResponseGeneratedByFiddler	The	response	was	generated	by	Fiddler	itself	(e.g.	AutoResponder	or	the	utilCreateResponseAndBypassServer	method).	LoadedFromSAZ	This	previously-captured	Session	was	reloaded	from	a	SAZ	file.	ImportedFromOtherTool	The	Session	was	imported	by	a	Transcoder.
SentToGateway	The	request	was	sent	to	an	upstream	(CERN)	gateway	proxy.	IsBlindTunnel	This	CONNECT	tunnel	“blindly”	shuttles	bytes	across	without	decryption.	IsDecryptingTunnel	This	CONNECT	tunnel	decrypts	HTTPS	traffic	as	it	flows	through.	ServedFromCache	ProtocolViolationInRequest	The	response	was	served	from	a	client	cache,
bypassing	Fiddler.	Fiddler	only	"sees"	this	Session	if	other	software	reports	it	to	Fiddler,	because	Fiddler	only	observes	network	traffic.	There	was	a	HTTP	Protocol	violation	in	the	client's	request.	ProtocolViolationInResponse	There	was	a	HTTP	Protocol	violation	in	the	server's	response.	ResponseBodyDropped	The	response	body	was	dropped,	e.g.
because	the	Preference	fiddler.network.streaming.ForgetStreamedData	is	set.	IsWebSocketTunnel	This	CONNECT	tunnel	is	used	for	WebSocket	traffic.	SentToSOCKSGateway	The	request	was	proxied	using	the	SOCKS	protocol.	The	Session	object	exposes	two	methods	to	evaluate	the	Session’s	BitFlags.	The	isAnyFlagSet	method	accepts	a	set	of	flags
and	returns	true	if	any	of	the	specified	flags	are	set,	and	false	otherwise.	The	isFlagSet	method	accepts	one	or	more	flags	and	returns	true	if	all	of	the	specified	flags	are	set,	and	false	otherwise.	For	example:	bool	bHadAnyHTTPErrors	=	oSession.isAnyFlagSet(SessionFlags.ProtocolViolationInRequest	|	SessionFlags.ProtocolViolationInResponse);	bool
bReusedBothConnections	=	oSession.isFlagSet(SessionFlags.ClientPipeReused	|	SessionFlags.ServerPipeReused);	Timers	Fiddler	records	timestamps	as	the	Session	is	processed	using	the	Session’s	Timers	object.	These	timestamps	can	help	shed	light	on	performance	issues	in	your	website	or	application,	and	can	be	seen	in	the	Session’s	Properties
window	or	the	Statistics	tab.	SessionTimers	ClientConnected	Description	Timestamp	at	which	the	client's	connection	to	Fiddler	was	first	established.	205	|	Extending	Fiddler	with	.NET	Code	ClientBeginRequest	FiddlerGotRequestHeaders	ClientDoneRequest	GatewayDeterminationTime	DNSTime	TCPConnectTime	HTTPSHandshakeTime
ServerConnected	FiddlerBeginRequest	ServerGotRequest	ServerBeginResponse	FiddlerGotResponseHeaders	ServerDoneResponse	ClientBeginResponse	ClientDoneResponse	Timestamp	at	which	the	request's	first	socket	Send()	operation	was	serviced	by	Fiddler.	If	this	request	was	issued	on	a	reused	connection,	this	timestamp	could	be	much	later
than	the	ClientConnected	value.	Timestamp	at	which	Fiddler	completed	reading	the	headers	from	the	client.	Timestamp	at	which	Fiddler	completed	reading	the	entire	request	from	the	client.	The	number	of	milliseconds	spent	determining	which	gateway	proxy	should	be	used	to	handle	this	request.	In	many	cases	this	value	will	be	0,	but	it	may	be
hundreds	or	thousands	of	milliseconds	if	a	WPAD	Proxy	Configuration	script	is	being	used	to	determine	the	upstream	proxy.	The	number	of	milliseconds	spent	determining	the	IP	address	of	the	remote	host.	Due	to	caching	of	DNS	records,	this	value	is	often	0	for	all	but	the	first	connections	to	a	host.	The	number	of	milliseconds	spent	waiting	for
TCP/IP	connection	establishment	to	the	server.	The	number	of	milliseconds	elapsed	while	performing	the	HTTPS	handshake	with	the	server.	This	value	will	be	0	if	Fiddler	is	not	configured	to	decrypt	HTTPS	traffic.	If	decryption	is	enabled,	when	a	CONNECT	tunnel	is	being	used	for	HTTPS	traffic,	Fiddler	will	populate	this	value.	Timestamp	at	which
the	TCP/IP	connection	to	the	server	or	upstream	gateway	proxy	was	established.	Timestamp	at	which	Fiddler	began	sending	the	request	to	the	server.	If	this	request	is	being	sent	on	a	reused	server	connection,	this	timestamp	could	be	much	later	than	the	ServerConnected	value.	Timestamp	at	which	Fiddler	completed	sending	the	request	to	the
server.	Timestamp	at	which	Fiddler	read	the	first	packet	of	the	server's	response.	Timestamp	at	which	Fiddler	completed	reading	the	headers	from	the	server.	Timestamp	at	which	Fiddler	completed	reading	the	entire	response	from	the	server.	Timestamp	at	which	Fiddler	began	sending	the	response	to	the	client.	If	buffering	is	disabled	for	the
current	Session,	this	timestamp	will	be	earlier	than	the	ServerDoneResponse	timestamp.	Timestamp	at	which	Fiddler	completed	sending	the	response	to	the	client.	The	ToString()	method	of	the	Timers	returns	all	of	the	timer	values	in	a	comma-delimited	string;	pass	true	as	an	optional	parameter	to	return	the	values	as	a	multi-line	string	instead.	Note:
Fiddler	captures	timestamps	using	the	default	system	clock,	which	typically	has	a	precision	of	15.6	milliseconds.	If	a	given	operation	takes	less	than	15.6ms	to	complete,	it	may	appear	that	the	operation	took	no	time	at	all.	Fiddler	has	not	been	updated	to	take	advantage	of	high-precision	timers	because	any	task	for	which	that	level	of	precision	is
required	should	be	accomplished	via	other	means.	The	Observer	Effect	of	introducing	the	Fiddler	proxy	between	the	client	and	server	exceeds	the	limited	resolution	of	the	default	timers.	206	|	Extending	Fiddler	with	.NET	Code	Sending	Strings	to	the	TextWizard	In	many	cases,	your	Extension	will	display	text	that	has	been	encoded	using	one	of
several	high-level	encodings.	If	the	encoding	is	expected	and	understood,	your	extension	may	want	to	encode	and	decode	the	text	itself—for	instance,	the	WebForms	Inspector	will	encode	and	decode	form	fields	automatically.	In	other	cases,	however,	the	encoding	may	not	be	known	in	advance.	In	such	cases,	it	can	be	helpful	to	provide	a	Send	to
TextWizard	command	which	will	send	text	to	Fiddler’s	TextWizard	window,	without	requiring	that	the	user	copy/paste	the	text	manually.	Most	of	the	Inspectors	included	with	Fiddler	offer	such	a	command.	To	launch	the	TextWizard	from	your	Extension,	simply	call	the	following	API:	FiddlerApplication.UI.actShowTextWizard(string	sDefaultInput)	…
passing	the	selected	text	in	the	sDefaultInput	parameter.	An	instance	of	the	TextWizard	will	open,	enabling	the	user	to	easily	encode	or	decode	the	text.	Logging	Fiddler’s	Log	tab	collects	logged	message	strings	that	are	generated	by	extensions,	FiddlerScript,	or	Fiddler	itself.	Fiddler	logs	messages	including	application	events	(e.g.	when	a	SAZ	file	is
saved	or	loaded)	as	well	as	system	events	(e.g.	when	the	system’s	network	connectivity	is	lost	or	restored).	An	extension	can	log	text	to	the	Log	tab	using	either	of	the	following	two	methods:	FiddlerApplication.Log.LogString(string	sMsg)	FiddlerApplication.Log.LogFormat(string	sFormat,	params	object[]	args)	These	methods	may	be	safely	called
from	any	thread	and	can	be	called	before	Fiddler	itself	has	loaded;	the	Log	object	will	queue	any	messages	and	publish	them	when	a	Log	listener	is	first	attached.	If	you	are	writing	an	extension	or	a	FiddlerCore-based	application	and	wish	to	receive	notice	of	logged	messages,	add	a	handler	to	the	FiddlerApplication.Log.OnLogString	event.	Your
handler	will	be	passed	the	logged	string	as	the	LogString	property	of	a	LogEventArgs	object.	public	event	EventHandler	OnLogString;	public	class	LogEventArgs:EventArgs	{	internal	LogEventArgs(string	sMsg);	public	string	LogString	{	get;	}	}	Keep	in	mind	that	this	event	will	often	fire	from	background	threads,	so	your	handler	must	Invoke	or
BeginInvoke	onto	the	UI	thread	if	any	visual	updates	are	required.	Fiddler’s	Log	tab	uses	a	very	simple	formatting	mechanism	when	interpreting	the	strings	it	receives	in	its	OnLogString	handler:	207	|	Extending	Fiddler	with	.NET	Code		Strings	prefixed	with	an	underscore	(_)	will	render	in	an	underlined	font.		Strings	prefixed	with	an	exclamation
mark	(!)	will	render	in	a	bold	font.		Strings	prefixed	with	a	forward	slash	(/)	render	in	an	italic	font.	Your	extension	can	use	this	simple	feature	to	draw	attention	to	messages	based	on	their	importance.	The	Log	tab	also	supports	simple	macro	commands:		Logging	the	string	@Log.Clear	will	clear	the	Log	tab’s	contents.		Logging	the	string	@Log.Save
will	generate	a	new	Session	in	the	Web	Sessions	list.	Its	response	body	will	contain	the	Log	tab’s	text.		Logging	the	string	@Log.Export	filename	will	save	the	Log	tab’s	text	to	the	specified	filename.	Use	a	filename	ending	in	.rtf	to	save	in	Rich	Text	Format,	preserving	font	size	and	weight.	Interacting	with	the	FiddlerScript	Engine	Extensions	may
subscribe	to	events	related	to	the	compilation	of	FiddlerScript.	For	instance,	this	allows	the	Fiddler	ScriptEditor	extension	to	capture	and	display	script	compilation	errors.	The	FiddlerApplication.scriptRules	object	exposes	three	events,	two	of	which	will	fire	as	a	script	file	is	loaded	and	either	compiles	successfully	or	encounters	an	error:	public	event
RulesBeforeCompileHandler	BeforeRulesCompile;	public	event	RulesAfterCompileHandler	AfterRulesCompile;	public	event	RulesCompileFailedHandler	RulesCompileFailed;	Because	the	script	engine	was	developed	before	I	knew	how	to	use	EventArgs	properly,	each	event	has	its	own	custom	delegate:	public	delegate	void
RulesBeforeCompileHandler(string	sFilename);	public	delegate	void	RulesAfterCompileHandler();	public	delegate	void	RulesCompileFailedHandler(string	sDescription,	int	iLine,	int	iStartColumn,	int	iEndColumn);	The	BeforeRulesCompile	event	fires	when	Fiddler	is	instructed	to	load	a	new	script	file.	The	event	handler	delegate	contains	one
parameter,	the	name	of	the	script	file	that	is	to	be	loaded	and	compiled.	The	AfterRulesCompile	event	fires	after	Fiddler	successfully	compiles	a	script	file,	runs	its	Main	function,	and	updates	the	Fiddler	UI	based	on	the	contents	of	the	script.	The	event	handler	delegate	has	no	parameters.	The	RulesCompileFailed	event	fires	if	Fiddler	encounters	an
error	when	compiling	the	script	file.	The	event	handler	delegate	has	four	parameters:	the	human-readable	description	of	the	problem,	the	line	number	of	the	error	within	the	script	file,	and	the	starting	and	ending	column	on	that	line.	If	you	plan	to	handle	this	event,	please	be	aware	that	RulesCompileFailed	usually	fires	very	shortly	after	the
BeforeRulesCompile	event.	If	your	extension	loads	the	208	|	Extending	Fiddler	with	.NET	Code	new	script’s	text	in	its	handler	for	the	first	event,	ensure	that	you	have	successfully	updated	your	copy	of	the	script	text	before	attempting	to	display	the	error	information	to	the	user.	209	|	Extending	Fiddler	with	.NET	Code	PROGRAMMING	WITH	P
REFERENCES	Fiddler	includes	a	Preferences	system	which	is	accessible	to	FiddlerScript	and	extensions.	The	system	is	designed	to	be	somewhat	similar	to	the	system	used	in	Firefox	(e.g.	type	about:config	in	Firefox	to	view	its	preferences).	Fiddler’s	Preferences	are	automatically	serialized	to	and	deserialized	from	the	registry.	Preference	Naming
Keep	the	following	in	mind	as	you	name	your	preferences:		Preference	names	are	case-insensitive.		Preference	names	must	contain	ASCII	A-to-Z,	numbers,	dots,	and	dashes	only.		Preference	names	must	be	between	1	and	255	characters	in	length.		Preference	names	containing	ephemeral	will	not	be	saved	to	or	loaded	from	the	registry.		Preference
names	containing	internal	cannot	be	created	or	updated	by	extensions	or	script.	You	should	name	your	preferences	using	a	logical	hierarchy,	of	the	format:	myCompany.myExtension.Feature.SettingName	Careful	naming	makes	it	simpler	to	find	your	Preferences	and	improves	performance	if	your	extension	or	script	wants	to	monitor	Preferences	for
changes	(more	on	that	in	a	moment).	The	IFiddlerPreferences	Interface	Fiddler's	preferences	are	accessed	using	FiddlerApplication.Prefs,	an	object	which	implements	the	IFiddlerPreferences	interface.	public	interface	IFiddlerPreferences	{	//	Indexer	string	this[string	sName]	{	get;	set;	}	//	Setters	void	SetBoolPref(string	sPrefName,	bool	bValue);
void	SetInt32Pref(string	sPrefName,	Int32	iValue);	void	SetStringPref(string	sPrefName,	string	sValue);	void	RemovePref(string	sPrefName);	//	Getters	bool	GetBoolPref(string	sPrefName,	bool	bDefault);	string	GetStringPref(string	sPrefName,	string	sDefault);	Int32	GetInt32Pref(string	sPrefName,	Int32	iDefault);	//	Methods	to	enable	change
notifications	210	|	Extending	Fiddler	with	.NET	Code	PreferenceBag.PrefWatcher	AddWatcher(string	sPrefixFilter,	EventHandler	pcehHandler);	void	RemoveWatcher(PreferenceBag.PrefWatcher	wliToRemove);	}	Storing	and	Removing	Preferences	You	can	store	preferences	using	the	SetStringPref,	SetBoolPref,	and	SetInt32Pref	methods.	Each
accepts	the	name	of	the	preference	and	the	value	to	store:	FiddlerApplication.Prefs.SetStringPref("example.str",	"Remember	me!");	FiddlerApplication.Prefs.SetBoolPref("example.bool",	true);	FiddlerApplication.Prefs.SetInt32Pref("example.int",	5);	Alternatively,	you	can	use	the	default	indexer	to	store	a	string	directly:
FiddlerApplication.Prefs["example.str"]	=	"value";	Internally,	all	preference	values	are	stored	as	strings;	the	bool	and	int	methods	simply	cast	and	parse	the	string’s	value.	Call	RemovePref	or	store	a	value	of	null	to	remove	a	preference:	//	These	three	lines	are	equivalent	FiddlerApplication.Prefs.RemovePref("NameToRemove");
FiddlerApplication.Prefs.SetStringPref("NameToRemove",	null);	FiddlerApplication.Prefs["NameToRemove"]	=	null;	Retrieving	Preferences	You	can	retrieve	preferences	using	the	GetStringPref,	GetBoolPref,	and	GetIntPref	methods.	Each	accepts	the	name	of	the	preference	and	a	default	value	to	return	if	the	requested	preference	does	not	exist.
string	sStr	=	FiddlerApplication.Prefs.GetStringPref("example.str",	"demo");	bool	bBool	=	FiddlerApplication.Prefs.GetBoolPref("example.bool",	false);	int	iNum	=	FiddlerApplication.Prefs.GetInt32Pref("example.int",	0);	Alternatively,	you	can	use	the	default	indexer	to	retrieve	a	string	preference	directly:	string	sStr	=
FiddlerApplication.Prefs["example.str"];	If	the	requested	preference	does	not	exist,	the	indexer	will	return	null.	Watching	for	Preference	Changes	In	many	cases,	it’s	desirable	for	extensions	or	FiddlerScript	to	be	notified	when	a	preference	of	a	specified	name	is	created,	updated,	or	removed.	To	avoid	the	overhead	of	constantly	polling	preference
values,	you	can	instead	“watch	a	branch”	of	preferences	whose	name	contains	a	specified	prefix.	For	instance,	watching	the	fiddler.ui.toolbar	prefix	will	raise	an	event	whenever	any	preference	whose	name	starts	with	that	prefix	is	created,	removed,	or	has	its	211	|	Extending	Fiddler	with	.NET	Code	value	modified.	By	thoughtfully	naming	your
preferences,	you	can	help	ensure	that	your	code	is	only	notified	of	relevant	changes.	Notifications	in	Extensions	Extensions	may	subscribe	to	receive	notifications	when	preferences	under	a	given	prefix	change	by	attaching	a	PrefWatcher.	oWatcher	=	FiddlerApplication.Prefs.AddWatcher(string	sPrefixToMatch,	EventHandler	fnToNotify);	The	event
handler	you	supply	in	fnToNotify	will	be	invoked	for	every	preference	change	under	the	specified	prefix.	The	EventArgs’	PrefName	property	contains	the	name	of	the	preference	which	has	changed.	The	ValueString	property	contains	the	preference’s	new	value,	or	null	if	the	preference	was	removed.	The	ValueBool	convenience	property	interprets	the
new	value	as	a	boolean.	To	permit	garbage-collection	of	objects,	be	sure	to	remove	your	PrefWatcher	when	it	is	no	longer	needed:	FiddlerApplication.Prefs.RemoveWatcher(oWatcher);	Notifications	in	FiddlerScript	To	ensure	that	PrefWatcher	references	do	not	prevent	garbage-collection	of	obsolete	script	engines,	FiddlerScript	code	should	call	the
WatchPreference	function	rather	than	calling	the	AddWatcher	method.	//	This	callback	function	is	called	on	Pref	changes	//	under	the	branch	we	specified.	static	function	FnChange(o:	Object,	pceA:	PrefChangeEventArgs)	{	if	(null	!=	pceA)	{	MessageBox.Show(pceA.PrefName	+	"	changed	to:	"	+	pceA.ValueString);	}	else	{
MessageBox.Show("Unexpected.");	}	}	static	function	Main()	{	//	Attach	a	callback	to	the	preference	change	FiddlerObject.WatchPreference("fiddler.",	FnChange);	}	Fiddler	automatically	disposes	of	the	callback	function	when	the	FiddlerScript	engine	unloads	on	shutdown	or	because	the	script	has	been	modified	and	must	be	recompiled.	212	|
Extending	Fiddler	with	.NET	Code	BUILDING	EXTENSION	INSTALLERS	You	may	install	your	extensions	using	any	technology	you	like.	Fiddler	simply	requires	that	its	Assembly	.dll	appear	in	the	correct	folder	to	load	it	next	time	that	Fiddler	launches.	Fiddler	and	all	of	the	extensions	I’ve	written	are	installed	using	setup	programs	built	using	the
Nullsoft	Scriptable	Install	System	(NSIS).	You	can	get	this	great	freeware	from	.	NSIS	allows	you	to	write	a	script	that	is	compiled	into	a	compressed	executable	file	containing	all	of	the	binaries	that	make	up	your	project.	The	resulting	setup	program	is	small	and	works	properly	across	all	versions	of	Windows.	The	only	significant	shortcoming	I’ve
encountered	with	NSIS	is	that	it	does	not	support	Unicode,	so	you	may	need	to	use	a	different	technology	like	WIX	(if	you	want	your	installer	to	use	non-Latin	characters	(e.g.	Japanese).	A	full	explanation	of	how	to	use	NSIS	is	beyond	the	scope	of	this	book—the	tool’s	website	offers	plenty	of	documentation	at	.	However,	I’ll	share	an	example	setup
script	you	can	use	to	get	started.	;	In	a	NSIS	Script,	the	semi-colon	is	a	comment	operator	Name	"MyExtension"	;	TODO:	Set	a	specific	name	for	your	installer’s	executable	OutFile	"InstallMyExtension.exe"	;	Point	to	an	icon	to	use	for	the	installer,	or	omit	to	use	the	default	Icon	"C:\src\MyExt\MyExt.ico"	XPStyle	on	;	Enable	visual-styling	for	a	prettier
UI	;	Explicitly	demand	admin	permissions	because	we're	going	to	write	to	;	Program	Files.	This	prevents	the	"Program	Compatibility	Assistant"	dialog.	;	Note,	you	can	use	"user"	here	if	you'd	like,	but	then	you	must	only	write	;	to	HKCU	and	per-user	writable	locations	on	disk.	RequestExecutionLevel	"admin"	;	Maximize	compression	SetCompressor
/solid	lzma	BrandingText	"v1.0.1.0"	;	Text	shown	at	the	bottom	of	the	Setup	window	;	;	TODO:	Set	the	install	directory	to	the	proper	folder.	;	;	To	install	to	the	Extensions	folder,	use:	InstallDir	"$PROGRAMFILES\Fiddler2\Scripts\"	InstallDirRegKey	HKLM	"SOFTWARE\Microsoft\Fiddler2"	"LMScriptPath"	;	To	install	to	the	Inspectors	folder,	use:
;InstallDir	"$PROGRAMFILES\Fiddler2\Inspectors\"	213	|	Extending	Fiddler	with	.NET	Code	;InstallDirRegKey	HKLM	"SOFTWARE\Microsoft\Fiddler2"	"PluginPath"	Section	"Main"	SetOutPath	"$INSTDIR"	SetOverwrite	on	;	;	The	next	line	embeds	MyExt.dll	from	the	output	folder	into	the	installer.	;	When	the	installer	runs,	the	file	will	be	extracted	to
$INSTDIR\MyExt.dll	;	File	"C:\src\MyExt\bin\release\MyExt.dll"	;	;	TODO:	List	any	other	files	your	extension	depends	upon	here.	;	Be	sure	to	also	add	those	files	to	the	list	removed	by	the	;	uninstaller	at	the	bottom	of	this	script	;	;	;	Write	information	about	the	extension	to	the	Add/Remove	Programs	dialog	;	WriteRegStr	HKLM
"Software\Microsoft\Windows\CurrentVersion\Uninstall\MyExt"	"DisplayName"	"My	Fiddler	Extension"	WriteRegStr	HKLM	"Software\Microsoft\Windows\CurrentVersion\Uninstall\MyExt"	"Comments"	"My	Extension	to	Fiddler"	WriteRegStr	HKLM	"Software\Microsoft\Windows\CurrentVersion\Uninstall\MyExt"	"Publisher"	'MyCo'	WriteRegStr	HKLM
"Software\Microsoft\Windows\CurrentVersion\Uninstall\MyExt"	"InstallLocation"	'$INSTDIR'	WriteRegDWORD	HKLM	"Software\Microsoft\Windows\CurrentVersion\Uninstall\MyExt"	"NoModify"	1	WriteRegDWORD	HKLM	"Software\Microsoft\Windows\CurrentVersion\Uninstall\MyExt"	"NoRepair"	1	;	;	TODO:	Update	this	line	with	the	name	of	your
uninstaller,	set	below	;	WriteRegStr	HKLM	"Software\Microsoft\Windows\CurrentVersion\Uninstall\MyExt"	"UninstallString"	'"$INSTDIR\UninstallMyExt.exe"'	;	;	TODO:	Update	this	line	to	set	a	*unique*	name	for	your	uninstaller.	;	Be	sure	to	update	the	UninstallString	value	above	to	match.	;	Also,	update	“Remove	the	uninstaller	executable”	line
below	to	match.	;	WriteUninstaller	"UninstallMyExt.exe"	SectionEnd	;	end	of	default	section	;	---214	|	Extending	Fiddler	with	.NET	Code	;	Perhaps	surprisingly,	this	string	cannot	appear	;	within	the	Uninstall	section	itself	UninstallText	"This	will	uninstall	My	Fiddler	Extension	from	your	system"	Section	Uninstall	Delete
"$INSTDIR\MyExt.dll"	;	;	TODO:	Delete	the	other	files	you	installed	here.	;	;	Remove	the	uninstaller	regkey	DeleteRegKey	HKLM	"SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\MyExt"	Delete	"$INSTDIR\UninstallMyExt.exe"	;	Remove	the	uninstaller	.exe	SectionEnd	;	eof	The	resulting	setup	program	will	copy	your	assembly	into	the
specified	folder,	and	also	add	an	item	to	the	system’s	Add/Remove	Programs	applet	to	allow	the	user	to	uninstall	the	extension	later.	Save	the	script	to	a	file	named	InstallMyExtension.nsi.	Next,	create	a	batch	file	named	BuildInstaller.bat	to	run	the	NSIS	compiler	and	sign	the	resulting	setup	program.	If	you	do	not	have	a	code-signing	certificate,	you
can	omit	everything	after	the	call	to	MakeNSIS.exe:	@title	MyExtension	Builder	@cd	c:\src\MyExt\	@c:\src\NSIS\MakeNSIS.EXE	/V2	InstallMyExtension.nsi	@if	%ERRORLEVEL%==1	goto	done	@CHOICE	/M	"Would	you	like	to	sign?"	@:sign	@signcode	-spc	C:\src\mycert.spc	-v	C:\src\mykey.pvk	-n	"Fiddler	Extension"	–i	"	-a	sha1	-t
InstallMyExtension.exe	@if	%ERRORLEVEL%==-1	goto	sign	@:done	@title	Command	Prompt	Run	BuildInstaller.bat	and	the	NSIS	compiler	will	compile	your	script	into	the	InstallMyExtension.exe	setup	program.	It	will	then	sign	that	new	program	to	prevent	tampering	and	avoid	security	warnings	in	browsers.	Warning:	Windows	keeps	track	of	the
origins	of	the	DLL	file	using	a	data	stream	known	as	the	“Mark	of	the	Web.”	If	you	don’t	build	an	installer	and	instead	ask	the	user	to	copy	your	extension’s	.DLL	from	a	ZIP	file	or	network	share,	you	may	find	that	it	fails	to	load	in	Fiddler	v4.	Before	your	assembly	is	loaded,	.NET	v4	sees	the	“This	file	is	from	an	untrusted	location”	marker	and	will
refuse	to	load	the	file	by	default.	215	|	Extending	Fiddler	with	.NET	Code	BUILDING	INSPECTORS	Developing	custom	Inspectors	for	Fiddler	is	simple--	you	need	only	implement	one	class	and	one	interface.	Over	the	years,	the	Inspector	model	has	evolved	to	allow	for	more	powerful	Inspectors	while	maintaining	backward	compatibility,	so	be	aware
that	some	of	the	APIs	you	encounter	will	seem	a	bit	redundant.	There	are	two	types	of	Inspectors:	Request	Inspectors	and	Response	Inspectors;	the	former	are	used	to	view	and/or	modify	a	Session’s	request,	while	the	latter	are	used	to	view	and/or	modify	a	Session’s	response.	Both	types	of	Inspector	are	derived	from	the	abstract	Inspector2	base
class.	Request	Inspectors	must	also	implement	the	IRequestInspector2	interface,	while	Response	Inspectors	implement	the	IResponseInspector2	interface.	The	Inspector2	base	class	contains	just	two	methods	you	must	implement:	public	abstract	void	AddToTab(TabPage	o);	public	abstract	int	GetOrder();	The	AddToTab	method	is	called	when	Fiddler
has	created	a	tabpage	for	your	Inspector.	In	your	implementation	of	this	method,	create	your	UI	and	add	it	to	the	TabPage	provided.	Most	of	Fiddler’s	default	Inspectors	consist	of	one	class	that	implements	the	Inspector	interfaces,	and	one	UserControl	that	contains	all	of	the	UI	for	the	Inspector.	When	AddToTab	is	called,	it	creates	an	instance	of	the
UserControl	and	adds	it	to	the	TabPage:	public	override	void	AddToTab(TabPage	oPage)	{	//	Title	my	tab	o.Text	=	"Raw";	//	Create	my	UserControl	and	add	it	to	my	tab	myControl	=	new	RawView(this);	oPage.Controls.Add(myControl);	oPage.Controls[0].Dock	=	DockStyle.Fill;	}	The	GetOrder	method	is	called	when	Fiddler	sorts	the	tabs	for	display
within	the	UI.	Inspectors	with	lower	numbers	will	display	to	the	left	of	the	tab	set	while	Inspectors	with	larger	numbers	will	display	toward	the	right.	Fiddler	itself	returns	integers	between	-1000	and	110	for	its	own	Inspectors.	You	may	return	any	value	you	like,	although	you	should	strive	to	use	a	unique	number.	In	the	event	that	two	Inspectors
return	the	same	value,	ordering	is	nondeterministic	and	can	change	between	instances.	In	addition	to	the	abstract	methods	your	Inspector	must	implement,	the	base	class	exposes	a	number	of	virtual	methods	which	you	may	implement	if	you’d	like.	These	include:	public	virtual	void	ShowAboutBox()	public	virtual	void	SetFontSize(float	flSizeInPoints)
public	virtual	int	ScoreForSession(Session	oS)	public	virtual	int	ScoreForContentType(string	sMIMEType)	216	|	Extending	Fiddler	with	.NET	Code	public	public	public	public	virtual	virtual	virtual	virtual	void	AssignSession(Session	oS)	bool	CommitAnyChanges(Session	oS)	bool	UnsetDirtyFlag()	InspectorFlags	GetFlags()	The	ShowAboutBox	method
runs	when	the	user	right-clicks	on	the	Inspector’s	tab	and	clicks	Inspector	Properties	on	the	context	menu.	If	you	don’t	override	this	method,	when	the	user	clicks	the	menu	item,	a	message	box	will	show	the	Inspector’s	full	type	name	and	information	about	the	Assembly	that	contains	it.	The	SetFontSize	method	runs	if	the	user	changes	Fiddler’s	font-
size	at	runtime;	override	this	method	to	adjust	your	Inspector’s	UI	font	size.	This	method	was	created	before	the	Fiddler	Preference	System	was	created,	and	Inspectors	may	instead	watch	the	preference	fiddler.ui.font.size	if	you	prefer.	The	ScoreForSession	method	runs	when	the	user	double-clicks	or	hits	Enter	on	a	Session	in	the	Web	Sessions	list.
When	this	action	occurs,	each	Inspector	is	polled	to	determine	how	eager	it	is	to	display	a	given	request	or	response;	the	higher	the	value,	the	stronger	the	Inspector’s	desire	to	handle	the	Session.	This	method	enables	an	Inspector	to	evaluate	any	aspect	of	a	Session	in	making	its	decision.	It	should	return	0	if	it	has	no	interest	in	a	given	Session
(meaning	“I	can’t	handle	that	at	all”)	and	should	return	100	if	it	is	confident	that	it	is	the	best	handler	for	a	given	Session.	The	ability	to	consider	any	aspect	of	a	session	is	a	powerful	one,	as	it	enables	your	Inspector	to	consider	factors	beyond	HTTP	headers	when	deciding	whether	to	render	a	Session.	For	instance,	the	WebView	Inspector	is	able	to
render	previews	of	WOFF	Font	files,	but	most	servers	are	not	configured	to	return	the	correct	Content-Type	for	such	files.	Therefore,	the	WebView	Inspector	checks	the	first	4	bytes	of	any	response	body	to	detect	the	WOFF	signature	bytes.	static	byte[]	arr_WOFF_MAGIC	=	new	byte[4]	{(byte)'w',	(byte)'O',	(byte)'F',	(byte)'F'};	public	override	int
ScoreForSession(Session	oS)	{	//	Check	for	WOFF	Magic	Bytes	if	(Utilities.HasMagicBytes(oS.responseBodyBytes,	arr_WOFF_MAGIC))	{	return	60;	}	//	If	not	found,	consult	at	the	response's	Content-Type	return	ScoreForContentType(oS.oResponse.MIMEType);	}	Avoid	performing	any	expensive	computations	in	your	ScoreForSession	method,	as	it
runs	often	and	users	expect	that	inspecting	a	session	will	occur	instantly.	For	example,	your	implementation	of	this	method	should	not	attempt	to	search	a	response	body	of	arbitrary	size	for	specific	text,	and	should	not	perform	network	or	disk	operations.	217	|	Extending	Fiddler	with	.NET	Code	If	you	do	not	override	the	ScoreForSession	method,	the
base	implementation	calls	the	ScoreForContentType	method,	passing	the	Content-Type	header.	The	ScoreForContentType	method	predates	the	introduction	of	the	ScoreForSession	method,	but	it	performs	the	same	general	function—it	allows	the	Inspector	to	indicate	how	applicable	it	is	for	a	given	Session.	Again,	scores	between	0	and	100	should	be
returned.	Avoid	returning	an	overly-confident	value	for	a	general	type;	for	instance,	the	JSON	Inspector	returns	only	55	when	the	type	is	application/json	while	the	ImageView	Inspector	returns	80	for	image	types.	Only	return	100	if	the	MIME	Content-Type	is	something	that	your	extension	will	uniquely	understand—for	instance,	if	you	have	invented	a
custom	MIME	type	and	no	other	Inspector	could	be	expected	to	be	useful	for	your	type.	The	WebView	Inspector’s	implementation	of	ScoreForContentType	is	as	follows:	public	override	int	ScoreForContentType(string	sMIMEType)	{	if	(sMIMEType.StartsWith("audio/",	StringComparison.OrdinalIgnoreCase))	{	return	60;	}	if
(sMIMEType.StartsWith("video/",	StringComparison.OrdinalIgnoreCase))	{	return	60;	}	//	Just	in	case	a	site	sent	a	malformed	MP3	type,	check	the	whole	string	if	(sMIMEType.IndexOf("mp3",	StringComparison.OrdinalIgnoreCase)	>	-1)	return	60;	}	return	0;	}	If	you	do	not	implement	the	ScoreForContentType	method,	a	default	score	of	0	is	assumed
and	a	different	Inspector	will	be	activated	by	default.	The	user	may	still	manually	choose	your	Inspector	whenever	needed.	The	IRequestInspector2	and	IResponseInspector2	interfaces	both	inherit	from	the	IBaseInspector2	interface,	which	contains	the	following	properties	and	method	that	your	Inspectors	must	implement:	bool	bReadOnly	{	get;	set;	}
bool	bDirty	{	get;	}	byte[]	body	{	get;	set;	}	void	Clear();	The	inherited	IRequestInspector2	interface	adds	one	property:	HTTPRequestHeaders	headers	{	get;	set;	}	Similarly,	the	inherited	IResponseInspector2	interface	adds	one	property:	218	|	Extending	Fiddler	with	.NET	Code	HTTPResponseHeaders	headers	{	get;	set;	}	Inspectors	may	be
readonly	or	read/write.	Read/write	Inspectors	enable	the	user	to	modify	the	request	or	response	under	inspection	when	the	Session	is	paused	at	a	breakpoint.	An	Inspector’s	bReadOnly	property	is	set	to	control	whether	the	Inspector	should	permit	the	user	to	modify	the	request	or	response;	readonly	inspectors	can	simply	ignore	changes	to	the
property.	When	bReadOnly	is	set	to	false,	your	Inspector	should	not	permit	the	user	to	modify	the	headers	or	body.	You	can	communicate	the	readonly	status	to	the	user	by	setting	controls	to	readonly	mode,	and	setting	their	background	color	to	the	color	value	stored	in	the	Fiddler.CONFIG.colorDisabledEdit	field.	When	bReadOnly	is	set	to	true,	your
Inspector	may	enable	read/write	mode	for	controls	and	allow	the	user	to	change	the	headers	or	body.	If	an	Inspector	is	“display	only”	without	modification	capabilities,	the	bReadOnly	property	setter	can	be	a	no-op.	An	Inspector’s	bDirty	property	is	queried	by	Fiddler	before	it	attempts	to	commit	any	modifications	the	Inspector	has	made	to	the
headers	or	body.	If	your	Inspector	doesn’t	permit	edits,	or	if	the	user	has	not	made	any	modifications,	return	false	when	this	property	is	queried.	The	headers	property	allows	Fiddler	to	provide	the	HTTPRequestHeaders	or	HTTPResponseHeaders	for	the	Session	being	inspected.	When	a	Session	is	assigned	to	your	Inspector,	the	headers	property	will
be	set	first.	When	Fiddler	attempts	to	commit	any	changes	to	the	Session	because	the	Inspector’s	bDirty	property	returned	true,	Fiddler	will	query	the	headers	property	for	the	headers.	If	the	Inspector	does	not	wish	to	make	any	changes	to	the	headers,	simply	return	null	in	the	getter	for	this	property.	Warning:	Fiddler	does	not	currently	clone	the
Session’s	headers	when	assigning	to	the	headers	property.	Your	Inspector	must	be	coded	to	either	clone	the	headers	when	assigned,	or	must	avoid	making	any	changes	to	the	headers	object	reference	it	receives.	The	body	property	accepts	a	byte	array	that	contains	the	request	or	response	body	for	the	Session	being	inspected.	When	a	Session	is
assigned	to	your	Inspector,	the	body	property	will	be	set	after	the	headers.	When	Fiddler	attempts	to	commit	any	changes	to	the	Session	because	the	Inspector’s	bDirty	property	returned	true,	Fiddler	will	query	the	body	property	for	the	new	byte	array	to	use.	If	the	Inspector	does	not	wish	to	make	any	changes	to	the	body,	simply	return	null	in	the
getter	for	this	property.	To	store	an	empty	body,	return	new	byte[0].	Warning:	Fiddler	does	not	currently	clone	the	Session’s	body	when	assigning	to	the	body	property.	Your	Inspector	must	be	coded	to	either	clone	the	body	array	when	assigned,	or	must	avoid	making	any	changes	to	the	bytes	in	the	body	array	reference	it	receives.	The	Clear	method
is	called	by	Fiddler	when	the	user	has	unselected	the	current	Session	and	your	Inspector	should	be	reset.	In	response	to	this	method	call,	clear	all	data	from	the	Inspector’s	UI,	and	indicate	to	the	user	that	no	Session	is	selected.	219	|	Extending	Fiddler	with	.NET	Code	Inspecting	the	Session	Object	In	the	original	Inspectors	API,	the	Inspectors	were
never	provided	a	reference	to	the	Session	object	under	Inspection--	only	the	headers	and	body	would	be	provided.	This	provided	for	a	simple,	easily	understood	API	contract,	but	this	simplicity	presented	a	number	of	shortcomings.	For	instance,	it	was	impossible	for	an	Inspector	to	get	or	set	flags	on	the	Session	object,	and	even	examining	properties
of	the	Session	was	impossible.	For	instance,	the	Caching	Response	Inspector	was	unable	to	determine	whether	the	inspected	traffic	used	HTTPS	because	the	URL	(and	thus	the	protocol	scheme)	only	appears	in	the	request	headers,	which	were	never	available	to	a	Response	Inspector.	To	resolve	these	shortcomings,	the	Inspector2	base	class	was
augmented	with	four	additional	virtual	methods:	public	public	public	public	virtual	virtual	virtual	virtual	void	AssignSession(Session	oS)	bool	CommitAnyChanges(Session	oS)	bool	UnsetDirtyFlag()	InspectorFlags	GetFlags()	These	methods	allow	an	Inspector	to	be	passed	a	Session	object	rather	than	having	individual	header	and	body	properties	set
using	the	IRequestInspector2	and	IResponseInspector2	interfaces.	If	your	Inspector	does	not	override	these	virtual	methods,	Fiddler	will	simply	access	the	headers	and	body	properties	on	the	interface,	and	you	need	not	implement	any	of	the	four	virtual	methods.	If	your	Inspector	does	override	the	AssignSession	method,	it	must	still	implement	all	of
the	legacy	properties	because	not	all	codepaths	in	Fiddler	call	the	newer	virtual	methods.	Specifically,	when	editing	a	response	using	the	AutoResponder	tab,	no	Session	object	is	available,	so	the	legacy	properties	will	be	used.	The	AssignSession	method	is	called	when	the	user	selects	a	session	in	the	Web	Sessions	list	when	your	Inspector’s	tab	is
visible.	In	your	overridden	method,	your	Inspector	should	update	its	UI	based	on	the	headers	and/or	body	of	the	session.	Note	that	your	Inspector	must	itself	examine	the	Session’s	state	to	determine	whether	the	Inspector	should	be	readonly,	as	shown	in	the	following	snippet:	public	override	void	AssignSession(Session	oSession)	{	if	((null	==
oSession)	||	!oSession.bHasResponse)	{	Clear();	return;	}	UpdateUIFromHeaders(oSession.oResponse.headers);	UpdateUIFromBody(oSession.responseBodyBytes);	bool	bIsReadOnly	=	((oSession.state	!=	SessionStates.HandTamperResponse)	&&	!oSession.oFlags.ContainsKey("x-Unlocked"));	UpdateReadOnlyState(bIsReadOnly);	}	220	|	Extending
Fiddler	with	.NET	Code	If	you	do	not	override	the	AssignSession	method,	the	base	Inspector2	class’	implementation	will	automatically	assign	to	the	headers,	body,	and	bReadOnly	properties	instead:	public	virtual	void	AssignSession(Session	oS)	{	if	(this	is	IRequestInspector2)	{	IRequestInspector2	oRI	=	(this	as	IRequestInspector2);	oRI.headers	=
oS.oRequest.headers;	oRI.body	=	oS.requestBodyBytes;	oRI.bReadOnly	=	((oS.state	!=	SessionStates.HandTamperRequest)	&&	!oS.oFlags.ContainsKey("x-Unlocked"));	return;	}	if	(this	is	IResponseInspector2)	//...	The	CommitAnyChanges	method	is	called	when	the	Inspector	should	commit	any	changes	to	the	request	or	response.	If	the	Inspector	has
any	uncommitted	edits,	they	should	be	stored	to	the	Session	when	this	method	is	called	and	it	should	return	true.	If	no	changes	were	committed,	return	false.	If	you	do	not	override	this	method,	after	Fiddler	consults	the	bDirty	property	of	the	Inspector,	and	if	it	is	true,	and	if	the	Session	is	in	a	state	that	permits	editing,	the	default	implementation	will
update	the	Session’s	headers	and	body	using	those	properties	of	the	Inspector.	The	UnsetDirtyFlag	method	is	called	when	Fiddler	wishes	to	mark	your	Inspector	as	non-dirty	(e.g.	because	it	updated	the	Session’s	headers	and	body	from	those	properties	of	the	Inspector).	If	your	Inspector	overrides	this	method	and	can	successfully	clear	its	dirty	state,

do	so	and	return	true.	This	method	exists	because	some	Inspectors	may	not	be	able	to	easily	reset	their	dirty	state,	and	thus	the	bDirty	property	is	readonly--	only	the	Inspector	may	change	it.	The	benefit	of	implementing	this	method	is	that	it	prevents	unneeded	“Do	you	want	to	save	changes?”	prompts	when	the	user	edits	an	AutoResponder	response
using	a	popup	Inspectors	window.	The	GetFlags	method	retrieves	flags	that	describe	the	Inspector’s	behavior.	Currently,	this	method	is	only	overridden	by	the	Transformer	Inspector.	You	should	not	override	this	method	for	your	own	Inspectors.	221	|	Extending	Fiddler	with	.NET	Code	DEALING	WITH	HTTP	COMPRESSION	AND	CHUNKING	Most
Inspectors	cannot	properly	parse	a	chunked	or	compressed	response	body	into	a	higher-level	format	like	XML	or	JSON	text.	For	most	Inspectors,	the	user	is	simply	encouraged	to	decode	the	response	manually	before	inspecting:	if	(oHeaders.Exists("Transfer-Encoding")	||	oHeaders.Exists("Content-Encoding"))	{	lblDisplayMyEncodingWarning.Visible
=	true;	return;	}	Fiddler	allows	the	user	to	easily	remove	the	compression	and	chunking	by	clicking	the	yellow	notification	bar	or	using	the	Transformer	Inspector.	However,	it	is	possible	to	make	a	copy	of	the	body	and	decode	it	for	your	Inspector's	private	use.	Be	wary	of	the	cost	of	decoding	large	bodies;	you'd	be	better	off	having	the	user	do	it
manually	just	once	instead	of	every	time	the	response	is	loaded	in	your	Inspector.	There	are	three	ways	to	get	the	uncompressed	and	unchunked	body.	Decoding	a	Copy	of	the	Body	All	Inspectors	are	provided	a	copy	of	the	headers	and	body.	Using	this	information,	the	body	may	be	cloned	and	decoded	using	the	Utilities.utilDecodeHTTPBody	static
method.	If	the	body	needs	to	be	interpreted	as	a	string,	the	getEntityBodyEncoding	and	GetStringFromArrayRemovingBOM	methods	can	be	used	to	convert	the	body	bytes	to	a	string.	Here's	what	the	JSONView	Inspector	does	in	its	body	property	setter.	In	this	example,	the	oHeaders	object	is	a	reference	to	the	headers	stored	by	the	headers	property
setter,	and	the	incoming	value	object	refers	to	the	new	body	byte	array	that	is	being	assigned	to	the	Inspector:	if	(null	!=	oHeaders)	{	//	Check	for	no	body	if	((null	==	value)	||	(value.Length	<	1))	return;	if	(!oHeaders.ExistsAndContains("Content-Type",	"application/json")	&&	!oHeaders.ExistsAndContains("Content-Type",	"javascript"))	{	//	Not	JSON
return;	}	if	(oHeaders.Exists("Transfer-Encoding")	||	oHeaders.Exists("Content-Encoding"))	{	//	Create	a	copy	of	the	body	to	avoid	corrupting	the	original	byte[]	arrCopy	=	(byte[])value.Clone();	222	|	Extending	Fiddler	with	.NET	Code	try	{	//	Decode.	Warning:	Will	throw	if	value	cannot	be	decoded	Utilities.utilDecodeHTTPBody(oHeaders,	ref	arrCopy);
value	=	arrCopy;	}	catch	{	//	Leave	value	alone.	}	}	}	//	//	//	//	Okay,	now	the	body	stored	in	"value"	is	unchunked	and	uncompressed.	We	need	to	convert	it	to	a	string,	keeping	in	mind	that	the	HTTP	response	might	have	been	in	a	non-Unicode	codepage.	oEncoding	=	Utilities.getEntityBodyEncoding(oHeaders,	value);	sJSON	=
Utilities.GetStringFromArrayRemovingBOM(value,	oEncoding);	myControl.SetJSON(sJSON);	//...	The	Session’s	headers	are	not	modified	by	this	code,	which	means	that	they	may	refer	to	encodings	that	have	been	removed	from	the	Inspector’s	copy	of	the	body.	Using	the	GetRe*BodyAsString	Methods	If	your	Inspector	overrides	the	AssignSession
method,	then	you	can	get	the	body	as	a	string	using	one	of	the	following	two	methods:	string	sRequestBody	=	oSession.GetRequestBodyAsString();	string	sResponseBody	=	oSession.GetResponseBodyAsString();	These	methods	consult	the	headers	to	determine	what	encodings	are	in	use,	then	copy	the	body	bytes	to	a	temporary	array	and	decode
them.	Next,	the	Content-Type	header	and	the	body	are	inspected	for	clues	as	to	what	codepage	the	content	uses,	and	the	body	bytes	are	converted	to	a	.NET	string	(Unicode)	and	returned	as	the	result	of	the	function.	.NET	strings	are	immutable.	You	don’t	need	to	worry	about	corrupting	the	original	HTTP	body	by	manipulating	the	returned	string,
since	any	modifications	will	yield	a	new	string.	Using	the	utilDecode*	Methods	If	your	Inspector	overrides	the	AssignSession	method,	then	your	code	may	call	the	Session	object’s	utilDecodeRequest	and	utilDecodeResponse	methods	to	decode	the	request	or	response	bodies	respectively.	These	methods	will	decompress	and	unchunk	the	body	and
update	the	Session’s	headers	to	remove	the	reference	to	the	now-removed	encodings.	223	|	Extending	Fiddler	with	.NET	Code	Your	Inspector	should	not	automatically	call	these	methods	when	a	Session	is	assigned	to	your	Inspector.	If	it	did,	your	Inspector	would	permanently	change	the	Session	even	when	the	Inspector	is	meant	to	be	in	a	readonly
state.	Instead,	call	these	methods	only	if	the	user	takes	an	explicit	action,	like	clicking	on	a	button	or	link	that	indicates	that	a	permanent	change	will	be	made.	Inspector	Assemblies	When	looking	for	Inspectors,	Fiddler	loads	all	assembly	.DLLs	from	the	%PROGRAMFILES%\	Fiddler2\Inspectors	and	%USERPROFILE%\My
Documents\Fiddler2\Inspectors	folders	and	enumerates	all	public	classes	within	them	to	find	Request	and	Response	Inspectors.	Install	to	the	%PROGRAMFILES%	location	to	make	your	Inspectors	available	to	all	users	on	the	machine,	or	the	%USERPROFILE%	folder	to	make	them	available	only	to	the	current	user.	In	addition	to	placing	your	Inspector
assemblies	in	the	appropriate	folder,	you	must	also	mark	your	assembly	to	indicate	the	minimum	version	of	Fiddler	required	by	your	Inspectors.	Set	the	RequiredVersion	attribute	as	follows:	//	Inspector	requires	methods	introduced	in	v2.3.9.0...	[assembly:	Fiddler.RequiredVersion("2.3.9.0")]	If	Fiddler	loads	an	assembly	for	which	the	RequiredVersion
attribute	indicates	a	later	version	of	Fiddler	is	needed,	the	user	will	be	notified	that	an	update	is	required	and	no	Inspectors	will	be	loaded	from	the	assembly.	Assemblies	in	the	\Inspectors\	folder	which	lack	a	RequiredVersion	attribute	are	silently	ignored.	Fiddler	skips	enumeration	of	DLLs	named	with	a	leading	underscore	character	(_)	when
loading	Inspectors.	Many	Inspectors	may	rely	upon	3rd	party	assemblies	that	do	not	themselves	contain	any	Fiddler-related	code.	To	avoid	the	performance	cost	of	Fiddler	enumerating	such	assemblies	to	look	for	Inspectors,	name	those	assemblies	using	a	leading	underscore.	224	|	Extending	Fiddler	with	.NET	Code	BUILDING	EXTENSIONS	When
you	need	to	add	functionality	to	Fiddler	and	an	Inspector	isn’t	the	appropriate	way	to	expose	that	functionality,	build	an	extension	instead.	Extensions	can	enhance	Fiddler	with	anything	from	simple	features	(like	a	new	menu	item)	to	extremely	complicated	business	logic	and	reporting	infrastructures.	Getting	started	is	easy.	The	simplest	Fiddler
extension	must	implement	only	one	interface	whose	methods	are	called	to	load	and	unload	the	extension:	public	interface	IFiddlerExtension	{	void	OnLoad();	void	OnBeforeUnload();	}	The	OnLoad	function	is	called	when	Fiddler	has	finished	loading	and	its	UI	is	fully	available.	At	this	point,	you	can	safely	add	menu	items,	tabbed	pages,	or	other
elements	to	the	Fiddler	UI.	The	OnBeforeUnload	function	will	be	called	when	Fiddler	is	shutting	down	and	unloading	all	extensions.	The	IAutoTamper	interface	inherits	from	the	IFiddlerExtension	interface,	and	permits	your	extension	to	receive	callbacks	as	each	Session	is	processed,	enabling	modifications,	logging,	or	other	operations.	public
interface	IAutoTamper	:	IFiddlerExtension	{	void	AutoTamperRequestBefore(Session	oSession);	void	AutoTamperRequestAfter(Session	oSession);	void	AutoTamperResponseBefore(Session	oSession);	void	AutoTamperResponseAfter(Session	oSession);	void	OnBeforeReturningError(Session	oSession);	}	The	difference	between	the	*Before	and	*After
methods	is	that	the	former	execute	before	the	user	has	a	chance	to	manually	tamper	with	a	breakpointed	Session	using	the	Inspectors,	while	the	latter	methods	execute	after	any	such	modifications	are	completed.	If	you	to	permit	the	user	to	manually	undo	any	modifications	your	method	makes,	use	the	*Before	methods,	otherwise,	use	the	*After
methods.	The	IAutoTamper2	interface	inherits	from	IAutoTamper	and	adds	one	additional	method	that	is	called	when	Fiddler	has	read	the	server’s	response	headers,	(usually)	before	the	response	body	is	available:	public	interface	IAutoTamper2	:	IAutoTamper	{	void	OnPeekAtResponseHeaders(Session	oSession);	}	225	|	Extending	Fiddler	with	.NET
Code	A	common	use	of	the	OnPeekAtResponseHeaders	method	is	to	examine	the	response’s	headers	to	decide	whether	the	response	should	be	buffered	or	streamed.	For	instance,	to	stream	all	image	files,	you	could	write	the	following	code:	void	OnPeekAtResponseHeaders(Session	oSession)	{	if	(oSession.oResponse.MIMEType.StartsWith("image/"))
{	bBufferResponse	=	false;	}	}	Be	careful	not	to	attempt	to	read	the	responseBodyBytes	array	in	this	method,	because	a	Null	Reference	Exception	is	likely	to	ensue.	Additionally,	you	should	avoid	manipulating	headers	related	to	the	response’s	length	(e.g.	ContentLength,	Transfer-Encoding,	Connection)	because	the	subsequent	attempt	to	read	to	the
response	body	from	the	server	will	likely	fail.	The	IAutoTamper3	interface	inherits	from	IAutoTamper2	and	adds	one	additional	method	that	is	called	when	Fiddler	has	read	the	client’s	request	headers,	(usually)	before	the	request	body	is	available:	public	interface	IAutoTamper3	:	IAutoTamper2	{	void	OnPeekAtRequestHeaders(Session	oSession);	}
This	method	is	only	useful	in	certain	niche	scenarios;	in	most	cases,	the	availability	of	the	request’s	headers	alone	is	not	sufficient	to	do	anything	useful.	Understanding	Threading	The	IAutoTamper	interfaces’	methods	are	called	on	background,	non-UI	threads.	If	you	wish	to	update	UI,	you	must	use	Invoke	or	BeginInvoke	to	update	the	UI.	Also,	note
that	the	IAutoTamper	interfaces’	methods	can	be	called	before	the	OnLoad	event	fires--	Fiddler	allows	traffic	to	flow	before	the	UI	is	fully	available.	Therefore,	most	extensions	will	initialize	objects	and	UI	inside	their	constructor	and	wait	until	OnLoad	only	to	insert	their	UI	into	the	main	Fiddler	UI.	Integrating	with	QuickExec	Extensions	that
implement	the	IHandleExecAction	interface	are	called	when	the	user	has	entered	a	command	into	the	QuickExec	box	or	invoked	a	command	using	the	ExecAction.exe	command-line	tool.	public	interface	IHandleExecAction	{	bool	OnExecAction(string	sCommand);	}	226	|	Extending	Fiddler	with	.NET	Code	If	your	extension	would	like	to	handle	the
command	(and	prevent	further	processing	by	other	extensions	and	Fiddler	itself)	return	true	from	your	implementation	of	this	method.	The	Utilities	class	includes	a	helper	function	for	interpreting	the	sCommand	parameter:	public	static	string[]	Parameterize(string	sCommand)	The	Parameterize	method	tokenizes	a	string	into	tokens.	The	string	is
split	by	whitespace	characters,	unless	the	spaces	are	contained	within	quotation	marks,	in	which	case	the	entire	quoted	string	is	stored	as	a	token.	Use	a	backslash	character	(\)	to	escape	quotation	marks	so	that	they	may	appear	literally	within	a	string.	Example	Extension	The	following	is	a	simple	extension	which	examines	all	responses	as	they	are
received.	It	determines	whether	the	responses	attempt	to	set	cookies,	and	if	so,	whether	a	valid	P3P	Compact	Policy	statement	has	been	provided.	This	example	adds	an	item	to	the	top-level	menu,	adds	a	column	to	the	Web	Sessions	list,	and	modifies	Sessions	as	they	are	processed.	using	using	using	using	using	using	using	using	using	using	Fiddler;
System;	System.Text;	System.IO;	System.Collections;	System.Globalization;	System.Collections.Generic;	System.Windows.Forms;	System.Diagnostics;	System.Text.RegularExpressions;	[assembly:	Fiddler.RequiredVersion("2.3.9.0")]	[assembly:	AssemblyVersion("1.0.1.0")]	[assembly:	AssemblyDescription("Scans	for	Cookies	and	P3P")]	public	class
TagCookies	:	IAutoTamper2	{	private	bool	bEnabled	=	false;	private	bool	bEnforceP3PValidity	=	false;	private	bool	bCreatedColumn	=	false;	private	MenuItem	miEnabled;	private	MenuItem	miEnforceP3PValidity;	private	MenuItem	mnuCookieTag;	private	enum	P3PState	{	NoCookies,	NoP3PAndSetsCookies,	P3POk,	P3PUnsatisfactory,
P3PMalformed	}	227	|	Extending	Fiddler	with	.NET	Code	public	void	OnLoad()	{	/*	NB:	OnLoad	might	not	get	called	until	~after~	one	of	the	AutoTamper	methods	was	called,	because	sessions	are	processed	while	Fiddler	is	loading.	This	is	okay	for	us,	because	we	created	our	mnuCookieTag	in	the	constructor	and	its	simply	not	visible	anywhere	until
this	method	is	called	and	we	merge	it	onto	the	Fiddler	Main	menu.	*/	FiddlerApplication.UI.mnuMain.MenuItems.Add(mnuCookieTag);	}	//	We	don’t	need	to	do	anything	on	unload,	since	Fiddler	only	presently	//	unloads	extensions	at	shutdown,	and	the	GC	will	dispose	of	our	UI.	public	void	OnBeforeUnload()	{	/*noop*/	}	private	void	InitializeMenu()	{
this.miEnabled	=	new	MenuItem("&Enabled");	this.miEnforceP3PValidity	=	new	MenuItem("&Rename	P3P	header	if	invalid");	this.miEnabled.Index	=	0;	this.miEnforceP3PValidity.Index	=	1;	this.mnuCookieTag	=	new	MenuItem("Privacy");	this.mnuCookieTag.MenuItems.AddRange(new	MenuItem[]	{	this.miEnabled,	this.miEnforceP3PValidity	});
this.miEnabled.Click	+=	new	System.EventHandler(this.miEnabled_Click);	this.miEnabled.Checked	=	bEnabled;	this.miEnforceP3PValidity.Click	+=	new	System.EventHandler(this.miEnforceP3PValidity_Click);	this.miEnforceP3PValidity.Checked	=	bEnforceP3PValidity;	}	public	void	miEnabled_Click(object	sender,	EventArgs	e)	{	miEnabled.Checked
=	!miEnabled.Checked;	bEnabled	=	miEnabled.Checked;	this.miEnforceP3PValidity.Enabled	=	bEnabled;	if	(bEnabled)	{	EnsureColumn();	}	FiddlerApplication.Prefs.SetBoolPref("extensions.tagcookies.enabled",	bEnabled);	}	public	void	miEnforceP3PValidity_Click(object	sender,	EventArgs	e)	{	miEnforceP3PValidity.Checked	=
!miEnforceP3PValidity.Checked;	228	|	Extending	Fiddler	with	.NET	Code	bEnforceP3PValidity	=	miEnforceP3PValidity.Checked;	FiddlerApplication.Prefs.SetBoolPref("extensions.tagcookies.EnforceP3PValidity",	bEnforceP3PValidity);	}	private	void	EnsureColumn()	{	//	If	we	already	created	the	column,	bail	out.	if	(bCreatedColumn)	return;	//	Add	a
new	Column	to	the	Web	Sessions	list,	titled	"Privacy	Info",	//	that	will	automatically	fill	with	each	Session's	X-Privacy	flag	string	FiddlerApplication.UI.lvSessions.AddBoundColumn("Privacy	Info",	1,	120,	"X-Privacy");	bCreatedColumn	=	true;	}	public	TagCookies()	{	this.bEnabled	=	FiddlerApplication.Prefs.GetBoolPref(
"extensions.tagcookies.enabled",	false);	this.bEnforceP3PValidity	=	FiddlerApplication.Prefs.GetBoolPref("extensions.tagcookies.EnforceP3PValidity",	true);	InitializeMenu();	if	(bEnabled)	{	EnsureColumn();	}	else	{	this.miEnforceP3PValidity.Enabled	=	false;	}	}	private	void	SetP3PStateFromHeader(string	sValue,	ref	P3PState	oP3PState)	{	//	If	there
was	no	P3P	header,	bail	out	if	(string.IsNullOrEmpty(sValue))	{	return;	}	string	sUnsatCat	=	String.Empty;	string	sUnsatPurpose	=	String.Empty;	sValue	=	sValue.Replace('\'',	'"');	string	sCP	=	null;	//	Use	a	Regular	Expression	to	search	the	header	for	a	CP	attribute	Regex	r	=	new	Regex("CP\\s?=\\s?[\"]?(?[^\";]*)");	Match	m	=	r.Match(sValue);	if
(m.Success	&&	(null	!=	m.Groups["TokenValue"]))	{	sCP	=	m.Groups["TokenValue"].Value;	}	//	If	we	didn't	find	a	Compact	Policy	statement,	bail	out.	229	|	Extending	Fiddler	with	.NET	Code	if	(String.IsNullOrEmpty(sCP))	{	return;	}	//	Okay,	we've	got	a	compact	policy	string.	Evaluate	each	token.	oP3PState	=	P3PState.P3POk;	string[]	sTokens	=
sCP.Split(new	char[]	{	'	'	},	StringSplitOptions.RemoveEmptyEntries);	foreach	(string	sToken	in	sTokens)	{	//	Reject	clearly	invalid	tokens...	if	((sToken.Length	<	3)	||	(sToken.Length	>	4))	{	oP3PState	=	P3PState.P3PMalformed;	return;	}	//	Track	any	tokens	with	"Unacceptable"	privacy	category	if	(",PHY,ONL,GOV,FIN,".IndexOf(","	+	sToken	+	",",
StringComparison.OrdinalIgnoreCase)	>	-1)	{	sUnsatCat	+=	(sToken	+	"	");	continue;	}	//	Track	any	tokens	with	"Unacceptable"	privacy	purposes	if	(",SAM,OTR,UNR,PUB,IVA,IVD,CON,TEL,OTP,".IndexOf(","	+	sToken	+	",",	StringComparison.OrdinalIgnoreCase)	>	-1)	{	sUnsatPurpose	+=	(sToken	+	"	");	continue;	}	//	TODO:	Check	each	token
against	the	list	of	70-some	valid	tokens	and	//	reject	if	it’s	not	found.	}	//	//	//	if	{	If	a	cookie	contains	an	unsatisfactory	purpose	and	an	unsatisfactory	category,	tag	it.	Learn	more	about	"Unsatisfactory	cookies"	at	v=vs.85).aspx	((sUnsatCat.Length	>	0)	&&	(sUnsatPurpose.Length	>	0))	if	(oP3PState	==	P3PState.P3POk)	{	oP3PState	=
P3PState.P3PUnsatisfactory;	}	}	}	//	//	//	//	//	On	each	HTTP	response,	examine	the	response	headers	for	attempts	to	set	cookies,	and	check	for	a	P3P	header	too.	We	do	this	in	OnPeekAtResponseHeaders	rather	than	OnBeforeResponse	because	we	only	need	the	headers	and	do	not	need	to	wait	for	the	responseBodyBytes	to	be	available.	230	|
Extending	Fiddler	with	.NET	Code	public	void	OnPeekAtResponseHeaders(Session	oSession)	{	//	If	our	extension	isn't	enabled,	bail	fast	if	(!bEnabled)	return;	P3PState	oP3PState	=	P3PState.NoCookies;	if	(!oSession.oResponse.headers.Exists("Set-Cookie"))	{	return;	}	oP3PState	=	P3PState.NoP3PAndSetsCookies;	if
(oSession.oResponse.headers.Exists("P3P"))	{	SetP3PStateFromHeader(oSession.oResponse.headers["P3P"],	ref	oP3PState);	}	//	Based	on	the	cookie/P3P	state,	set	the	background	color	of	item	in	the	//	Web	Sessions	list.	Also	set	the	X-Privacy	flag	which	is	shown	in	the	//	column	that	we	created.	switch	(oP3PState)	{	case	P3PState.P3POk:
oSession["ui-backcolor"]	=	"#ACDC85";	oSession["X-Privacy"]	=	"Sets	cookies	&	P3P";	break;	case	P3PState.NoP3PAndSetsCookies:	oSession["ui-backcolor"]	=	"#FAFDA4";	oSession["X-Privacy"]	=	"Sets	cookies	without	P3P";	break;	case	P3PState.P3PUnsatisfactory:	oSession["ui-backcolor"]	=	"#EC921A";	oSession["X-Privacy"]	=	"Sets	cookies;	P3P
unsat.	for	3rd-party	use";	break;	case	P3PState.P3PMalformed:	oSession["ui-backcolor"]	=	"#E90A05";	if	(bEnforceP3PValidity)	{	oSession.oResponse.headers["MALFORMED-P3P"]	=	oSession.oResponse.headers["P3P"];	oSession["X-Privacy"]	=	"MALFORMED	P3P:	"	+	oSession.oResponse.headers["P3P"];	//	Delete	the	invalid	header	to	prevent	the
client	from	seeing	it.	oSession.oResponse.headers.Remove("P3P");	}	break;	}	}	//	Our	extension	doesn't	need	any	of	the	other	AutoTamper*	methods.	public	void	AutoTamperRequestBefore(Session	oSession)	{/*noop*/}	231	|	Extending	Fiddler	with	.NET	Code	public	public	public	public	void	void	void	void	AutoTamperRequestAfter(Session	oSession)
{/*noop*/}	AutoTamperResponseAfter(Session	oSession)	{/*noop*/}	AutoTamperResponseBefore(Session	oSession)	{/*noop*/}	OnBeforeReturningError(Session	oSession)	{/*noop*/}	}	If	your	extension	needs	to	extend	to	the	Web	Sessions	list’s	context	menu,	add	your	new	menu	items	to	FiddlerApplication.UI.mnuSessionContext.	If	your	extension
needs	to	create	a	new	top-level	tab,	it	can	add	one	to	the	tabsViews	control.	Here’s	how	the	Timeline	tab	adds	its	tab	with	a	title	and	icon:	public	void	OnLoad()	{	oPage	=	new	TabPage("Timeline");	oPage.ImageIndex	=	(int)Fiddler.SessionIcons.Timeline;	FiddlerApplication.UI.tabsViews.TabPages.Add(oPage);	}	If	your	tab	contains	any	non-trivial	UI,
you	should	use	the	Delay	Load	pattern	described	in	the	Best	Practices	for	Extensions	section	to	ensure	that	the	heavyweight	initialization	only	occurs	if	and	when	the	user	switches	to	your	new	tab.	Extension	Assemblies	When	looking	for	extensions,	Fiddler	loads	all	assembly	.DLLs	from	the	%PROGRAMFILES%\Fiddler2\Scripts	and
%USERPROFILE%\My	Documents\Fiddler2\Scripts	folders	and	enumerates	all	public	classes	within	them	to	find	extensions.	Install	to	the	%PROGRAMFILES%	location	to	make	your	extension	available	to	all	users	on	the	machine,	or	the	%USERPROFILE%	folder	to	install	it	for	the	current	user	only.	In	addition	to	placing	your	extension	assemblies	in
the	appropriate	folder,	you	must	also	mark	your	assembly	to	indicate	the	minimum	version	of	Fiddler	required	by	your	extension.	Set	the	RequiredVersion	attribute	as	follows:	//	Transcoders	require	methods	introduced	in	v2.3.9.0...	[assembly:	Fiddler.RequiredVersion("2.3.9.0")]	If	Fiddler	loads	an	assembly	for	which	the	RequiredVersion	attribute
indicates	a	later	version	of	Fiddler	is	needed,	the	user	will	be	notified	that	an	update	is	required	and	no	extensions	will	be	loaded	from	the	assembly.	Assemblies	in	the	\Scripts\	folder	which	lack	a	RequiredVersion	attribute	are	silently	ignored.	Fiddler	skips	enumeration	of	DLLs	named	with	a	leading	underscore	character	(_)	when	loading
extensions.	Many	extensions	may	rely	upon	3rd	party	assemblies	that	do	not	themselves	contain	any	Fiddler-related	code.	To	avoid	the	performance	cost	of	Fiddler	enumerating	such	assemblies	to	look	for	extensions,	name	those	assemblies	using	a	leading	underscore.	232	|	Extending	Fiddler	with	.NET	Code	BUILDING	IMPORT	AND	EXPORT
TRANSCODE	RS	One	of	the	most	common	goals	when	building	an	extension	is	to	export	captured	data	out	of	Fiddler,	or	import	data	captured	by	other	tools.	While	there’s	no	reason	you	can’t	build	such	an	extension	using	the	general	IFiddlerExtension	interface,	there	are	shortcomings	in	doing	so:		Such	extensions	have	a	performance	cost,	even
when	unused		Such	extensions	require	a	lot	of	boilerplate	code		Inconsistent	import/export	UI	leads	to	user	confusion	To	combat	these	shortcomings,	Fiddler	offers	a	specific	extension	type	called	a	Transcoder.	Fiddler	ships	with	a	number	of	these	Transcoders	by	default,	and	developers	can	build	new	Transcoders	easily.	A	Transcoder	is	simply	an
object	that	implements	either	or	both	of	the	ISessionImporter	and	ISessionExporter	interfaces.	Transcoder	Assemblies	are	only	loaded	when	invoked	by	the	user	via	the	Import	Sessions	and	Export	Sessions	entry	points	on	the	File	menu.	Delay-loading	means	that	Transcoders	do	not	have	a	performance	impact	on	Fiddler	boot	time	or	memory	usage.
Direct	Fiddler	to	load	your	Transcoder	assemblies	Fiddler	loads	Transcoder	assembly	DLLs	from	the	%PROGRAMFILES%\Fiddler2\ImportExport\	and	%USERPROFILE%\My	Documents\Fiddler2\ImportExport\	folders.	Install	to	the	%PROGRAMFILES%	location	to	make	your	Transcoder	available	to	all	users	on	the	machine,	or	the	%USERPROFILE%
folder	to	install	it	for	the	current	user	only.	Be	sure	to	set	the	RequiredVersion	attribute	as	follows:	//	Transcoders	require	methods	introduced	in	v2.3.9.0...	[assembly:	Fiddler.RequiredVersion("2.3.9.0")]	…and	ensure	that	your	Transcoder	classes	are	marked	public.	The	ProfferFormat	Attribute	Each	Transcoder	class	must	be	decorated	with	one	or
more	ProfferFormat	attributes	that	specify	FormatName	and	FormatDescription	strings	that	describe	the	Transcoder.	These	strings	are	shown	to	the	user	in	the	Select	Format	window.	For	instance,	the	HTTPArchive	format	exporter	is	decorated	with	two	ProfferFormat	attributes:	[ProfferFormat("HTTPArchive	v1.1",	"A	lossy	JSON-based	HTTP	traffic
archive	format.	Standard	is	documented	@)]	[ProfferFormat("HTTPArchive	v1.2",	"A	lossy	JSON-based	HTTP	traffic	archive	format.	Standard	is	documented	@)]	public	class	HTTPArchiveFormatExport:	ISessionExporter	233	|	Extending	Fiddler	with	.NET	Code	{	//...	Each	of	these	two	attributes	identifies	a	format	supported	by	the	Transcoder,	and
each	is	displayed	in	the	Select	Format	window’s	dropdown:	When	the	user	invokes	the	Transcoder,	the	FormatName	is	provided	to	the	ImportSessions	or	ExportSessions	method	so	that	a	Transcoder	that	supports	multiple	formats	may	know	which	format	the	user	has	requested.	The	ISessionImporter	Interface	Transcoders	that	implement	the
ISessionImporter	interface	are	invoked	when	the	user	invokes	the	File	>	Import	Sessions…	menu	command.	The	interface	defines	one	method:	public	interface	ISessionImporter	:	IDisposable	{	Session[]	ImportSessions(string	sFormatName,	Dictionary	dictOptions,	EventHandler	evtProgressNotifications);	}	…	and	it	also	inherits	the	Dispose	method
from	IDisposable.	The	ImportSessions	method	should	return	an	array	of	Session	objects	created	from	the	import	of	the	data,	or	null	if	there	was	an	error	in	loading	the	data.	When	the	user	chooses	File	>	Import	Sessions…,	Fiddler	will	call	the	Transcoder	and	then	add	the	Sessions	returned	by	the	Transcoder	to	the	Web	Sessions	list.	The
ISessionExporter	Interface	Transcoders	that	implement	the	ISessionExporter	interface	are	called	when	the	user	invokes	the	File	>	Export	Sessions	menu	command.	The	interface	defines	one	method:	public	interface	ISessionExporter	:	IDisposable	{	bool	ExportSessions(string	sFormatName,	Session[]	oSessions,	Dictionary	dictOptions,	EventHandler
evtProgressNotifications);	234	|	Extending	Fiddler	with	.NET	Code	}	…	and	it	also	inherits	the	Dispose	method	from	IDisposable.	The	ExportSessions	method	should	return	true	if	the	export	of	the	Sessions	passed	in	the	oSessions	parameter	is	successful.	If	the	data	could	not	be	exported	for	some	reason,	the	Transcoder	should	log	an	explanation	to
Fiddler’s	Log	and	return	false.	Handling	Options	The	ImportSessions	and	ExportSessions	methods’	second	parameter	is	a	string-to-object	Dictionary	that	permits	callers	(FiddlerScript,	other	Extensions,	or	a	FiddlerCore-based	application)	to	pass	options	into	the	Transcoder.	The	provided	dictOptions	dictionary	may	be	null,	or	may	contain	a	set	of
string-keyed	objects.	Most	Importers	support	specification	of	a	filename	like	this:	dictOptions["Filename"]	=	"C:\\test.file";	When	a	filename	is	provided	through	this	mechanism,	the	Transcoder	can	suppress	its	normal	UI	and	respect	the	provided	option.	Similarly,	many	Transcoders	support	a	Silent	key,	which,	if	present,	ensures	that	no	warning	or
error	UI	is	shown	to	the	user.	Other	Transcoders	have	other	options,	depending	on	their	individual	needs.	For	instance,	FiddlerScript	can	invoke	the	HTTPArchive	Transcoder,	passing	in	the	filename	string	and	maximum	response	size	integers	thusly:	var	oSessions	=	FiddlerApplication.UI.GetAllSessions();	var	oExportOptions	=
FiddlerObject.createDictionary();	oExportOptions.Add("Filename",	"C:\\users\\ericlaw\\desktop\\out1.har");	oExportOptions.Add("MaxTextBodyLength",	1024);	oExportOptions.Add("MaxBinaryBodyLength",	16384);	FiddlerApplication.DoExport("HTTPArchive	v1.2",	oSessions,	oExportOptions,	null);	As	you	can	see	in	this	example,	the	DoExport	method
on	the	FiddlerApplication	object	enables	script	or	an	extension	to	invoke	a	Transcoder	by	passing	the	FormatName.	Similarly,	the	DoImport	method	permits	invocation	of	a	Transcoder	to	import	Sessions.	The	HTTPArchive	Transcoder’s	code	checks	whether	its	caller	has	set	any	options	like	so:	public	bool	ExportSessions(string	sFormat,	Session[]
oSessions,	Dictionary	dictOptions,	EventHandler	evtProgressNotifications)	{	//...	string	sFilename	=	null;	235	|	Extending	Fiddler	with	.NET	Code	int	iMaxTextBodyLength	=	DEFAULT_MAX_TEXT_BYTECOUNT;	int	iMaxBinaryBodyLength	=	DEFAULT_MAX_BINARY_BYTECOUNT;	if	(null	!=	dictOptions)	{	if	(dictOptions.ContainsKey("Filename"))	{
sFilename	=	dictOptions["Filename"]	as	string;	}	if	(dictOptions.ContainsKey("MaxTextBodyLength"))	{	iMaxTextBodyLength	=	(int)dictOptions["MaxTextBodyLength"];	}	if	(dictOptions.ContainsKey("MaxBinaryBodyLength"))	{	iMaxBinaryBodyLength	=	(int)dictOptions["MaxBinaryBodyLength"];	}	}	//...	Providing	Progress	Notifications	A	caller	may
subscribe	to	progress	notifications	from	your	Transcoder	by	passing	in	an	EventHandler	delegate	via	evtProgressNotifications.	As	the	import	or	export	proceeds,	your	Transcoder	should	construct	ProgressCallbackEventArgs	objects	to	report	on	the	progress	the	operation.	public	class	ProgressCallbackEventArgs:	EventArgs	{	public
ProgressCallbackEventArgs(float	flCompletionRatio,	string	sProgressText)	public	string	ProgressText	{	get;	}	public	string	PercentComplete	{	get;	}	public	bool	Cancel	{	get;	set;	}	}	When	creating	the	EventArgs	object,	set	flCompletionRatio	to	the	fraction	of	the	operation	that	is	complete	(ranging	from	0	to	1.0).	If	the	completion	ratio	cannot	be
determined,	simply	set	flCompletionRatio	to	0	or	a	"guess"	between	0	and	1.0.	Set	sProgressText	to	provide	status	text	(for	instance	“Adding	session	#1234”	or	“Compressing	output.”	After	constructing	the	EventArgs,	invoke	the	provided	event	handler	if	it	is	non-null.	If	the	handler	sets	the	Cancel	property	to	true,	your	Transcoder	should	gracefully
abort	the	current	operation	as	soon	as	possible,	returning	null	or	false	to	the	caller.	236	|	Extending	Fiddler	with	.NET	Code	Notes	on	Threading	and	Transcoders	in	FiddlerCore	Currently,	methods	of	the	ISessionImporter	and	ISessionExporter	interfaces	are	called	on	the	application’s	UI	thread.	This	is	almost	certain	to	change	in	the	future,	so	you
should	ensure	that	your	classes	are	thread-safe	and	that	they	do	not	attempt	to	directly	manipulate	any	UI.	Transcoders	may	be	cross-compiled	to	work	with	FiddlerCore	which	has	no	UI	and	thus	any	attempt	to	manipulate	the	Fiddler	UI	will	throw	an	exception.	To	cross-compile	with	FiddlerCore,	create	two	variants	of	your	project,	one	referencing
Fiddler.exe	and	one	referencing	FiddlerCore.dll.	To	support	FiddlerCore,	it's	also	advised	that	you	support	the	Filename	key	(with	string	value	of	a	fully-qualified	path)	in	the	dictOptions	parameter,	and	consider	supporting	a	key	named	Silent	(with	a	boolean	value).	Beyond	Files	While	most	Transcoder	objects	are	designed	to	import	or	export	files	of
various	formats,	there’s	no	requirement	that	files	are	the	source	or	destination	of	Transcoding.	For	instance,	you	can	build	a	Transcoder	whose	ISessionExporter	implementation	stores	the	captured	traffic	to	a	remote	database	by	calling	a	web	service.	Similarly,	you	could	develop	an	ISessionImporter	that	reloads	previously-stored	traffic	out	of	that
database	and	adds	it	back	to	the	Web	Sessions	list.	Example	Transcoder	To	build	a	simple	Transcoder,	follow	these	steps:	1.	Start	Visual	Studio	(version	2005	or	later).	2.	Create	a	new	Project	of	type	Visual	C#	Class	Library.	3.	Right-click	the	project's	References	folder	in	the	Solution	Explorer.	4.	Choose	the	Browse	tab	and	find	Fiddler.exe	in	the
%PROGRAMFILES%\Fiddler2\	folder.	If	you	want	to	build	a	version	of	your	Transcoder	that	works	with	FiddlerCore	instead,	reference	FiddlerCore.dll.	5.	Click	Ok	to	add	the	reference.	6.	In	the	Solution	Explorer,	right	click	the	project.	Choose	Properties.	7.	On	the	Application	tab,	ensure	that	the	project’s	Target	Framework	is	.NET	Framework	2.0.
Note	that	if	you	need	to	change	this	value,	Visual	Studio	may	prompt	you	to	reload	the	project.	8.	On	the	Build	tab,	ensure	that	the	Platform	Target	is	Any	CPU.	9.	On	the	Build	Events	tab,	add	the	following	as	the	Post-build	event	command	line:	copy	"$(TargetPath)"	"%USERPROFILE%\My	Documents\Fiddler2\ImportExport\$(TargetFilename)"	237	|
Extending	Fiddler	with	.NET	Code	This	will	ensure	that	every	time	you	successfully	build	your	project,	your	new	assembly	is	copied	to	the	proper	location	for	Fiddler	to	load.	You	will,	of	course,	need	to	close	Fiddler	between	each	build	or	the	command	to	copy	the	assembly	to	the	target	folder	will	fail	with	a	“File	in	use”	error.	10.	On	the	Debug	tab,
click	Start	external	program	and	enter	%PROGRAMFILES%\Fiddler2\Fiddler.exe	as	the	target	program.	When	you	hit	F5	to	test	your	Transcoder,	Fiddler	will	launch.	11.	Save	the	project.	Modify	the	default	class1.cs	(or	create	a	new	class)	in	your	project	as	follows:	using	using	using	using	using	using	using	System;	System.IO;	System.Text;
System.Reflection;	System.Collections.Generic;	System.Windows.Forms;	Fiddler;	[assembly:	AssemblyVersion("1.0.0.0")]	[assembly:	Fiddler.RequiredVersion("2.3.9.5")]	//	//	//	//	Note	that	this	Transcoder	only	works	when	loaded	by	Fiddler	itself;	it	will	not	work	from	a	FiddlerCore-based	application.	The	reason	is	that	the	output	uses	the	columns
shown	in	Fiddler’s	Web	Sessions	list,	and	FiddlerCore	has	no	such	list.	//	Ensure	your	class	is	public,	or	Fiddler	won't	see	it!	[ProfferFormat("TAB-Separated	Values",	"Session	List	in	Tab-Delimited	Format")]	[ProfferFormat("Comma-Separated	Values",	"Session	List	in	Comma-Delimited	Format;	import	into	Excel	or	other	tools")]	public	class
CSVTranscoder	:	ISessionExporter	{	public	bool	ExportSessions(string	sFormat,	Session[]	oSessions,	Dictionary	dictOptions,	EventHandler	evtProgressNotifications)	{	bool	bResult	=	false;	string	chSplit;	//	Determine	if	we	already	have	a	filename	//	from	the	dictOptions	collection	string	sFilename	=	null;	if	(null	!=	dictOptions	&&
dictOptions.ContainsKey("Filename"))	{	sFilename	=	dictOptions["Filename"]	as	string;	}	//	If	we	don't	yet	have	a	filename,	prompt	the	user	//	with	a	File	Save	dialog,	using	the	correct	file	extension	238	|	Extending	Fiddler	with	.NET	Code	//	for	the	export	format	they	selected	if	(sFormat	==	"Comma-Separated	Values")	{	chSplit	=	",";	if
(string.IsNullOrEmpty(sFilename))	sFilename	=	Fiddler.Utilities.ObtainSaveFilename("Export	As	"	+	sFormat,	"CSV	Files	(*.csv)|*.csv");	}	else	{	//	Ensure	caller	asked	for	Tab-delimiting.	if	(sFormat	!=	"TAB-Separated	Values")	return	false;	chSplit	=	"\t";	if	(string.IsNullOrEmpty(sFilename))	sFilename	=	Fiddler.Utilities.ObtainSaveFilename("Export
As	"	+	sFormat,	"TSV	Files	(*.tsv)|*.tsv");	}	//	If	we	didn't	get	a	filename,	user	cancelled.	If	so,	bail	out.	if	(String.IsNullOrEmpty(sFilename))	return	false;	try	{	StreamWriter	swOutput	=	new	StreamWriter(sFilename,	false,	Encoding.UTF8);	int	iCount	=	0;	int	iMax	=	oSessions.Length;	#region	WriteColHeaders	bool	bFirstCol	=	true;	foreach
(ColumnHeader	oLVCol	in	FiddlerApplication.UI.lvSessions.Columns)	{	if	(!bFirstCol)	{	swOutput.Write(chSplit);	}	else	{	bFirstCol	=	false;	}	//	Remove	any	delimiter	characters	from	the	value	swOutput.Write(oLVCol.Text.Replace(chSplit,	""));	}	swOutput.WriteLine();	#endregion	WriteColHeaders	#region	WriteEachSession	foreach	(Session	oS	in
oSessions)	{	iCount++;	//	The	ViewItem	object	is	the	ListViewItem	in	the	Web	Sessions	list	239	|	Extending	Fiddler	with	.NET	Code	//	Obviously,	this	doesn't	exist	in	FiddlerCore-based	applications	if	(null	!=	oS.ViewItem)	{	bFirstCol	=	true;	ListViewItem	oLVI	=	(oS.ViewItem	as	ListViewItem);	if	(null	==	oLVI)	continue;	foreach
(ListViewItem.ListViewSubItem	oLVC	in	oLVI.SubItems)	{	if	(!bFirstCol)	{	swOutput.Write(chSplit);	}	else	{	bFirstCol	=	false;	}	//	Remove	any	delimiter	characters	from	the	value	swOutput.Write(oLVC.Text.Replace(chSplit,	""));	}	swOutput.WriteLine();	}	//	Notify	the	caller	of	our	progress	if	(null	!=	evtProgressNotifications)	{
ProgressCallbackEventArgs	PCEA	=	new	ProgressCallbackEventArgs((iCount	/	(float)iMax),	"wrote	"	+	iCount.ToString()	+	"	records.");	evtProgressNotifications(null,	PCEA);	//	If	the	caller	tells	us	to	cancel,	abort	quickly	if	(PCEA.Cancel)	{	swOutput.Close();	return	false;	}	}	}	#endregion	WriteEachSession	swOutput.Close();	bResult	=	true;	}	catch
(Exception	eX)	{	//	TODO:	Replace	alert	with	FiddlerApplication.Log.LogFormat(...	MessageBox.Show(eX.Message,	"Failed	to	export");	bResult	=	false;	}	return	bResult;	}	public	void	Dispose()	{	/*no-op*/	}	}	240	|	Extending	Fiddler	with	.NET	Code	This	simple	example	defines	an	ISessionExporter	that	offers	two	text	formats:	“comma-separated
values”	and	“tab-separated	values.”	When	ExportSessions	is	called,	the	method	examines	the	dictOptions	provided	and	prompts	the	user	for	any	missing	information	(like	the	target	filename)	required	to	complete	the	export.	It	then	processes	each	Session	in	the	oSessions	array,	reporting	progress	of	the	export	back	to	Fiddler	using	the	callback	event
handler	provided.	241	|	Extending	Fiddler	with	.NET	Code	FiddlerCore	OVERVIEW	As	you’ve	seen	in	prior	chapters,	you	can	extend	Fiddler’s	functionality	with	both	script	and	.NET	code,	and	this	is	the	best	approach	for	building	new	functionality	for	most	users.	However,	in	some	scenarios,	like	test	automation,	it	would	be	more	natural	to	add	proxy
functionality	into	an	existing	tool	or	test	harness	instead	of	using	the	entirety	of	Fiddler	for	the	job.	Enter	FiddlerCore.	FiddlerCore	is	a	class	library	that	you	can	reference	in	your	.NET	applications	to	add	Fiddler-like	proxy	functionality	to	.NET	programs	with	none	of	the	Fiddler	user-interface.	This	diagram	shows	the	difference	between	extending
Fiddler	with	your	code	and	extending	your	code	with	FiddlerCore:	If	you’ve	previously	built	a	Fiddler	extension,	you’ll	find	that	programming	against	FiddlerCore	is	an	easy	adjustment.	Many	FiddlerCore-based	applications	are	first	prototyped	as	a	Fiddler	extension	before	being	moved	into	a	standalone	program.	Building	your	code	on	Fiddler	first
allows	you	to	easily	see	what	is	happening	to	web	traffic	using	Fiddler’s	Inspectors.	Once	you’re	using	FiddlerCore,	you	can	only	see	the	web	traffic	by	adding	logging	functionality	to	your	application	(unless	you	chain	your	FiddlerCore	application	to	an	upstream	or	downstream	Fiddler	instance!).	Legalities	Before	adopting	any	library,	you	should
always	understand	its	license	terms	to	ensure	that	your	use	of	the	library	is	permitted.	Fortunately,	FiddlerCore	has	a	simple	license.	You	may	freely	redistribute	the	FiddlerCore	assembly	with	245	|	FiddlerCore	your	application,	without	payment	of	any	royalties,	subject	to	the	terms	in	the	License.txt	file	included	in	the	package.	The	license	terms	are
quite	liberal,	and	amount	to	a	statement	that	the	library	is	provided	with	no	warranty	and	you	may	not	use	it	for	any	illegal	purpose.	FiddlerCore’s	certificate	generation	code	used	to	intercept	HTTPS	traffic	depends	upon	Microsoft’s	makecert.exe.	If	you	do	not	need	to	decrypt	HTTPS	traffic,	your	program	does	not	need	to	take	a	dependency	on
makecert.	The	utility	is	a	licensed	Visual	Studio	2008	redistributable1,	so	if	you	have	a	license	to	that	tool	you	may	redistribute	makecert	with	your	FiddlerCore-based	applications.	If	you	do	not	have	the	appropriate	license,	you	should	either	speak	to	your	lawyer	or	supply	a	different	certificate	generation	tool.	Getting	Started	with	FiddlerCore	You
can	download	FiddlerCore	from	.	The	download	package	contains	two	copies	of	the	library,	one	compiled	for	the	v4	.NET	Common	Language	Runtime,	and	one	compiled	for	the	v2	.NET	CLR.	The	package	also	contains	source	code	for	a	demonstration	program	which	exercises	FiddlerCore’s	functionality,	and	the	makecert.exe	utility.	You	should	also
take	the	opportunity	to	download	the	separate	documentation	package,	which	will	install	the	FiddlerCore.chm	file.	This	file	is	an	HTML	Help	file2	that	shows	all	of	the	classes,	properties,	methods,	and	fields	available	in	FiddlerCore	for	your	application	to	call.	After	installing	these	packages,	you’ll	have	a	new	folder	named	FiddlerCoreAPI	on	your
desktop.	Compiling	the	Sample	Application	Explore	the	SampleApp	subfolder	of	the	FiddlerCoreAPI	folder,	and	open	the	Demo.csproj	file	to	launch	Visual	Studio.	The	Demo	project	contains	a	Console	Application	which	demonstrates	FiddlerCore’s	basic	functionality.	Scroll	to	the	static	void	Main	function	in	Program.cs	to	see	how	FiddlerCore	is
configured	and	used.	The	very	first	thing	you’ll	need	to	do	is	attach	the	event	listeners	that	handle	events	raised	by	FiddlerCore.	A	key	thing	you	must	keep	in	mind	is	that	FiddlerCore	typically	calls	event	handlers	on	the	background	threads	in	which	Sessions	are	processed,	so	if	you	make	any	calls	that	modify	shared	objects	(e.g.	a	list	of	Sessions)	or
update	the	application’s	UI,	you	must	do	so	using	thread-safe	mechanisms.	To	update	shared	data-structures,	use	a	Mutex	or	lock;	to	update	WinForms-based	UI,	use	the	BeginInvoke	method	on	the	control	being	updated.	Supplying	event	handlers	for	FiddlerCore’s	OnNotification	and	LogString	events	allows	you	to	see	error	messages	and	other
information	which	is	very	useful	for	troubleshooting	problems	in	your	application:	FiddlerApplication.OnNotification	+=	delegate(object	s,	NotificationEventArgs	oNEA)	{	Console.WriteLine("**	NotifyUser:	"	+	oNEA.NotifyString);	See	redist.txt	in	the	Microsoft	Visual	Studio	program	files	folder.	Built	using	the	very	cool	Sandcastle	Help	File	Builder
tool.	246	|	FiddlerCore	1	2	};	FiddlerApplication.Log.OnLogString	+=	delegate(object	s,	LogEventArgs	oLEA)	{	Console.WriteLine("**	LogString:	"	+	oLEA.LogString);	};	The	next	step	is	to	attach	event	handlers	that	fire	as	each	Session	is	processed.	It’s	common	to	attach	event	handlers	for	the	BeforeRequest	and	BeforeResponse	events.	One	of	the
most	common	behaviors	of	the	BeforeRequest	event	handler	is	to	set	the	bBufferResponse	property	to	false	if	you	want	responses	to	stream	to	the	client,	or	to	true	if	you	want	the	BeforeResponse	event	handler	to	be	able	to	modify	the	response	before	the	client	gets	it.	If	your	application	will	keep	a	list	of	Sessions,	you	should	add	the	new	Session	to
your	list	in	the	BeforeRequest	handler.	FiddlerApplication.BeforeRequest	+=	delegate(Session	oS)	{	//	Buffer	response	to	allow	response	tampering	oS.bBufferResponse	=	true;	//	Use	a	thread-safe	mechanism	to	update	my	List	Monitor.Enter(oAllSessions);	oAllSessions.Add(oS);	Monitor.Exit(oAllSessions);	}	A	BeforeResponse	handler	enables	you	to
modify	a	Session’s	response:	FiddlerApplication.BeforeResponse	+=	delegate(Fiddler.Session	oS)	{	oS.utilDecodeResponse();	//	Note:	This	change	only	takes	effect	properly	if	//	oS.bBufferResponse	was	set	to	true	earlier!	oS.utilReplaceInResponse("",	"INJECTED!!");	};	After	your	event	handlers	are	ready,	your	next	step	is	to	start	the	FiddlerCore
proxy	instance.	First	calculate	the	desired	behavior	flags:	//	The	default	flags	are	your	best	bet	FiddlerCoreStartupFlags	oFCSF	=	FiddlerCoreStartupFlags.Default;	//	...but	if,	say,	we	don't	want	FiddlerCore	to	Decrypt	//	HTTPS	traffic,	we	can	unset	that	flag	at	this	point	oFCSF	=	(oFCSF	&	~FiddlerCoreStartupFlags.DecryptSSL);	Then	call	the
Startup	method,	passing	in	the	desired	port	and	your	flags:	//	Start	listening	on	port	8877	247	|	FiddlerCore	FiddlerApplication.Startup(8877,	oFCSF);	If	you	don’t	care	which	port	FiddlerCore	listens	on,	freeing	you	from	handling	errors	when	that	port	is	already	in	use,	pass	0	for	the	port	and	FiddlerCore	will	automatically	select	an	available	port.	The
port	chosen	can	be	retrieved	using	the	property	FiddlerApplication.oProxy.ListenPort.	When	using	the	default	flags,	the	Startup	method	will	immediately	register	the	new	proxy	as	the	system’s	default	proxy.	Any	BeforeRequest	and	BeforeResponse	event	handlers	will	begin	to	fire	as	traffic	is	captured.	After	you’re	done	with	FiddlerCore,	you	should
call	the	Shutdown	method	to	unregister	as	the	system	proxy	and	close	the	listening	proxy	port:	FiddlerApplication.Shutdown();	Note	that	the	Shutdown	method	cannot	gracefully	terminate	any	in-progress	Web	Sessions.	Those	sessions’	background	threads	will	continue	to	run	(potentially	calling	into	your	event	handlers)	but	will	likely	eventually	be
aborted	by	either	an	ObjectDisposedException	or	NullReferenceException	when	they	attempt	to	access	the	now-null	FiddlerApplication.oProxy	object.	If	you’d	prefer,	you	might	instead	call:	FiddlerApplication.oProxy.Detach();	…to	unregister	as	the	system	proxy.	Wait	a	few	seconds	to	permit	in-progress	Sessions	to	complete	before	calling	the
Shutdown	method.	FiddlerCoreStartupFlags	The	FiddlerCoreStartupFlags	enumeration	allows	you	to	specify	the	behavior	of	the	FiddlerCore	proxy	endpoint.	The	enumeration	exposes	the	following	flags:	None	No	options	are	set.	RegisterAsSystemProxy	When	Startup	is	called,	FiddlerCore	will	register	as	the	system	proxy.	DecryptSSL	FiddlerCore
will	attempt	to	decrypt	any	HTTPS	traffic	that	flows	through	the	proxy.	AllowRemoteClients	Permit	connections	from	remote	PCs	or	devices.	You	may	need	to	enable	a	firewall	exception	for	your	application	to	receive	remote	traffic.	ChainToUpstreamGateway	Automatically	adopt	the	system’s	existing	proxy	settings	as	an	upstream	gateway	proxy.
MonitorAllConnections	Register	as	the	default	proxy	for	all	WinINET	connections,	including	dialup	and	VPN	connections.	When	not	set,	only	the	LAN	connection	is	set	to	point	at	the	FiddlerCore	proxy	instance.	HookUsingPACFile	This	option	is	not	presently	implemented.	CaptureLocalhostTraffic	Add	to	the	system’s	proxy	exceptions	list,	enabling
IE9+	to	send	loopback	traffic	to	FiddlerCore.	248	|	FiddlerCore	Default	This	flag	encompasses	the	following	flags:	RegisterAsSystemProxy	|	DecryptSSL	|	AllowRemoteClients	|	ChainToUpstreamGateway	|	MonitorAllConnections	|	CaptureLocalhostTraffic	Using	FiddlerCoreStartupFlags.Default	is	the	recommended	approach	as	it	sets	the	options
desired	by	most	applications.	Even	if	you	don’t	want	all	of	the	flags	in	the	default	set,	your	best	bet	is	to	start	with	Default	and	use	bit-manipulation	to	mask	off	unwanted	options:	FiddlerCoreStartupFlags	oFlags	=	(FiddlerCoreStartupFlags.Default	&	~FiddlerCoreStartupFlags.DecryptSSL);	This	approach	has	the	benefit	that	as	new	options	are
introduced	in	future	versions	of	FiddlerCore,	your	application	will	automatically	be	opted-in	(upon	recompile)	to	new	default	options.	249	|	FiddlerCore	THE	FIDDLERAPPLICATION	CLASS	The	static	FiddlerApplication	class	provides	many	useful	event	handlers,	static	methods,	and	properties	that	control	FiddlerCore’s	behavior.	Most	of	these	APIs	are
also	available	for	use	by	extensions	running	inside	Fiddler	itself.	FiddlerApplication	Events	FiddlerApplication	fires	events	raised	by	the	FiddlerCore	engine	and	each	Session	as	it	is	processed.	Most	of	these	events	fire	on	background	threads	so	you	must	take	care	to	ensure	that	your	event	handlers	are	thread-safe.	Use	BeginInvoke	or	Invoke	to
update	any	user-interface	elements	on	the	UI	thread.	RequestHeadersAvailable	Event	This	event	fires	after	FiddlerCore	has	read	the	complete	set	of	request	headers	from	the	client.	It	is	rarely	useful	because	it	fires	so	early	in	request	processing.	BeforeRequest	Event	This	event	fires	after	the	request	has	been	completely	read	from	the	client,	before
the	server	is	contacted.	This	provides	the	opportunity	to	modify	the	client’s	request	or	generate	a	local	response	without	contacting	the	server.	OnValidateServerCertificate	Event	This	event	fires	as	FiddlerCore	evaluates	a	HTTPS	server’s	certificate.	Your	event	handler	may	accept	or	reject	the	server’s	certificate	based	on	the	criteria	of	your
choosing.	FiddlerApplication.OnValidateServerCertificate	+=	new	System.EventHandler(CheckCert);	void	{	//	//	if	{	CheckCert(object	sender,	ValidateServerCertificateEventArgs	e)	If	there's	an	obvious	issue	with	the	presented	certificate,	it	will	be	rejected	unless	overridden	here.	(SslPolicyErrors.None	!=	e.CertificatePolicyErrors)	return;	//
Certificate	will	be	rejected	}	//	Check	if	the	Convergence	Certificate	Notary	services	have	//	an	opinion	about	this	certificate	chain.	bool	bNotariesAffirm	=	GetNotaryConsensus(e.Session,	e.ServerCertificate,	e.ServerCertificateChain);	FiddlerApplication.Log.LogFormat("Notaries	have	indicated	that	the	"	+	"certificate	presented	for	{0}	is	{1}",
e.ExpectedCN,	bNotariesAffirm	?	"VALID"	:	"INVALID");	if	(!bNotariesAffirm)	{	250	|	FiddlerCore	e.ValidityState	=	CertificateValidity.ForceInvalid;	return;	}	e.ValidityState	=	CertificateValidity.ForceValid;	}	OnReadResponseBuffer	Event	This	event	fires	on	every	read	of	the	server’s	response	stream.	It	is	generally	not	handled	because	the	event
provides	only	a	raw	buffer	of	bytes	which	hasn’t	yet	been	parsed	into	headers	and	body.	The	event	can	be	useful	when	low-level	logging	(of	say,	timing	information)	is	desired.	FiddlerApplication.OnReadResponseBuffer	+=	new	EventHandler(OnRead);	static	void	OnRead(object	sender,	RawReadEventArgs	e)	{	Console.WriteLine(String.Format("Read
{0}	response	bytes	for	session	{1}",	e.iCountOfBytes,	e.sessionOwner.id));	//	NOTE:	arrDataBuffer	is	a	fixed-size	array.	Only	bytes	0	to	//	iCountOfBytes	should	be	read/manipulated.	//	Just	for	kicks,	lowercase	every	ASCII	char.	Note	that	this	will	//	obviously	mangle	any	binary	MIME	files	and	break	many	types	of	markup	for	(int	i	=	0;	i	<
e.iCountOfBytes;	i++)	{	if	((e.arrDataBuffer[i]	>	0x40)	&&	(e.arrDataBuffer[i]	<	0x5b))	{	e.arrDataBuffer[i]	=	(byte)(e.arrDataBuffer[i]	+	(byte)0x20);	}	}	}	ResponseHeadersAvailable	Event	This	event	fires	when	FiddlerCore	has	read	the	complete	set	of	response	headers	from	the	server.	It	provides	the	opportunity	to	set	the	Session’s
bBufferResponse	property	based	on	the	contents	of	the	headers:	FiddlerApplication.ResponseHeadersAvailable	+=	delegate(Session	oS)	{	//	Disable	streaming	for	HTML	responses	on	a	target	server	so	that	//	we	can	modify	those	responses	in	the	BeforeResponse	handler	if	(oS.HostnameIs("example.com")	&&
oS.oResponse.MIMEType.Contains("text/html"))	{	oS.bBufferResponse	=	true;	}	};	251	|	FiddlerCore	When	this	event	fires,	the	response	body	is	not	yet	available	from	the	server.	Attempting	to	modify	the	responseBodyBytes	or	modify	headers	that	influence	the	download	of	the	body	(Content-Length,	Transfer-Encoding,	and	Content-Encoding)	inside
this	event	will	almost	certainly	result	in	an	exception	or	other	error.	BeforeResponse	Event	This	event	fires	after	the	response	has	been	completely	read	from	the	server.	If	you	plan	to	modify	the	server’s	response	in	your	handler	for	this	event,	you	must	first	disable	streaming	of	the	response	by	setting	oSession.bBufferResponse	to	true	in	the
ResponseHeadersAvailable	or	BeforeRequest	events.	If	the	Session’s	bBufferResponse	property	is	false,	as	it	is	by	default	in	FiddlerCore,	the	response	will	stream	to	the	client	as	it	is	read	from	the	server,	before	your	BeforeResponse	event	handler	has	the	chance	to	modify	it.	On	streaming	responses,	the	BeforeResponse	event	handler	(non-intuitively
but	necessarily)	fires	after	the	response	is	sent	to	the	client.	BeforeReturningError	Event	This	event	fires	when	FiddlerCore	generates	an	error	(e.g.	a	DNS	lookup	failure	notice)	to	return	to	the	client.	The	event	provides	the	opportunity	to	customize	the	error	message	that	will	be	returned	to	the	client.	FiddlerApplication.BeforeReturningError	+=
delegate(Session	oS)	{	string	sErrMsg	=	oS.GetResponseBodyAsString();	oS.utilSetResponseBody("AcmeCorp	Error	Page"	+	"Sorry,	this	page	or	service	is	presently	unavailable.	Please	try"	+	"	again	later.	"	+	sErrMsg	+	"");	};	Your	event	handler	might	also	take	other	actions,	like	logging	the	error	to	a	database.	AfterSessionComplete	Event	This
event	fires	when	the	processing	of	a	Session	is	complete.	It	provides	the	opportunity	to	perform	any	necessary	logging	of	the	final	state	of	the	Session.	FiddlerAttach	Event	This	event	fires	when	FiddlerCore	has	registered	as	the	system’s	default	proxy.	FiddlerDetach	Event	This	event	fires	when	FiddlerCore	has	unregistered	as	the	system’s	default
proxy.	OnClearCache	Event	This	event	fires	when	the	Fiddler.WinINETCache.ClearCacheItems	method	is	called;	properties	of	the	EventArgs	object	indicate	what	elements	of	the	cache	should	be	cleared.	The	event	allows	your	application	to	provide	its	own	handling	(e.g.	clearing	an	auxiliary	cache)	instead	of	or	in	addition	to	the	default	handling,	in
which	FiddlerCore	deletes	the	requested	items	from	the	WinINET	cache.	252	|	FiddlerCore	OnNotification	Event	This	event	fires	when	FiddlerCore	logs	a	notification	event.	Since	FiddlerCore	runs	in	silent	mode	by	default,	most	notifications	of	errors	or	configuration	problems	are	raised	using	this	event.	Developers	often	contact	me	to	complain	that
“FiddlerCore	isn’t	working	properly.”	After	attaching	a	handler	for	this	event,	the	source	of	the	problem	is	often	obvious.	FiddlerApplication	Methods	Startup()	This	method	is	used	to	configure	the	default	FiddlerCore	proxy	listener	and	instruct	it	to	begin	capturing	requests.	Various	overloaded	versions	of	this	method	are	available—I	recommend	that
you	use	the	overload	that	accepts	FiddlerCoreStartupFlags.	Shutdown()	This	method	detaches	the	default	FiddlerCore	listener	(if	attached)	and	disposes	of	it.	IsStarted()	This	method	returns	true	if	the	default	FiddlerCore	listening	endpoint	has	been	created,	otherwise	it	returns	false.	IsSystemProxy()	This	method	returns	true	if	FiddlerCore	is
running	and	attached	as	the	system	proxy,	otherwise	it	returns	false.	CreateProxyEndpoint()	This	method	allows	you	to	create	additional	FiddlerCore	proxy	endpoints	that	can	accept	requests	from	clients.	When	calling	this	method,	supply	a	port	number	and	a	boolean	indicating	whether	remote	connections	should	be	permitted.	You	may	also	supply
either	a	string	containing	a	hostname	or	an	X509Certificate2.	If	either	is	supplied,	the	endpoint	will	automatically	perform	a	HTTPS	handshake	with	the	client	on	each	connection,	presenting	either	the	provided	certificate	or	an	automatically	generated	certificate	containing	the	specified	hostname.	Use	this	overload	when	running	FiddlerCore	as	a
reverse	proxy	for	a	HTTPS	site.	Proxy	oSecureEP	=	FiddlerApplication.CreateProxyEndpoint(8777,	true,	"localhost");	if	(null	!=	oSecureEP)	{	FiddlerApplication.Log.LogString("Created	secure	endpoint	listening	"	+	"on	port	8777,	which	will	send	a	HTTPS	certificate	for	'localhost'");	}	If	you	do	not	supply	a	hostname	or	certificate,	the	endpoint	will
act	as	a	normal	proxy	endpoint	and	will	not	masquerade	as	a	HTTPS	server.	253	|	FiddlerCore	Sessions	accepted	by	the	endpoints	created	using	this	method	will	be	processed	using	the	normal	Session-processing	pipeline.	Your	Session-processing	event	handlers	can	determine	which	endpoint	a	given	request	was	received	upon	by	examining	its
LocalPort	property:	FiddlerApplication.Log.LogFormat("Session	{0}	received	by	EndPoint	on	Port	#{1}",	oSession.id,	(null	!=	oSession.oRequest.pipeClient)	?	"n/a"	:	oSession.oRequest.pipeClient.LocalPort);	DoImport()	This	method	enables	import	of	Sessions	using	the	Importer	architecture.	When	calling	this	method,	supply	an	Import	Format	name,
a	StringDictionary	containing	options,	and	a	progress	event	callback	to	receive	updates	on	the	progress	of	the	import.	DoExport()	This	method	enables	export	of	Sessions	using	the	Exporter	architecture.	When	calling	this	method,	supply	an	Export	Format	name,	the	array	of	Sessions,	a	StringDictionary	containing	options,	and	a	progress	event
callback	to	receive	updates	on	the	progress	of	the	export.	GetVersionString()	This	method	returns	a	string	describing	the	FiddlerCore	version.	For	instance:	FiddlerCore/2.3.9.9	(+SAZ)	GetDetailedInfo()	This	method	returns	a	string	describing	the	FiddlerCore	version	and	the	configuration	of	the	default	listening	endpoint.	This	method	is	used	by
logging	or	for	display	in	an	application’s	About	box.	ResetSessionCounter()	This	method	resets	the	Session	ID	counter	to	0.	Use	this	method	sparingly,	because	duplicate	session	IDs	can	be	very	confusing.	FiddlerApplication	Properties	and	Fields	isClosing	This	boolean	is	set	to	true	when	the	application	is	shutting	down.	When	set	to	true,	FiddlerCore
will	attempt	to	avoid	unnecessary	processing	of	Sessions	and	will	suppress	errors	as	gracefully	as	possible.	Log	This	object	provides	access	to	Fiddler’s	logging	system.	The	LogString	and	LogFormat	methods	allow	your	code	to	record	new	messages.	The	OnLogString	event	permits	your	application	to	detect	when	messages	are	logged.	See	the
Logging	section	on	page	207	for	more	information.	254	|	FiddlerCore	oDefaultClientCertificate	When	set,	FiddlerCore	will	use	the	supplied	X509Certificate	when	performing	client	authentication	to	a	HTTPS	server.	oProxy	This	object	represents	Fiddler’s	default	listening	proxy	endpoint.	Its	SendRequest	methods	allow	your	application	to	generate	and
inject	new	requests	into	the	processing	pipeline.	oTranscoders	This	object	represents	Fiddler’s	Import/Export	subsystem.	Your	application	may	register	Transcoder	assemblies	using	the	ImportTranscoders	method	on	this	object.	Invoke	Import	or	Export	operations	using	the	DoImport	and	DoExport	methods	of	the	FiddlerApplication	object.	Prefs	This
object	provides	access	to	Fiddler’s	Preferences	system.	See	Programming	with	Preferences	on	page	210	for	more	information.	The	Rest	of	the	Fiddler	API	With	the	exception	of	a	few	FiddlerCore-specific	APIs,	Fiddler	and	FiddlerCore	share	a	common	object	model.	Code	developed	as	a	Fiddler	extension	can	often	be	ported	to	run	in	a	FiddlerCore-
based	application	simply	by	eliminating	any	dependencies	upon	Fiddler	user-interface	objects.	255	|	FiddlerCore	COMMON	TAS	KS	WITH	FIDDLERCORE	Keeping	track	of	Sessions	Unlike	Fiddler,	FiddlerCore	does	not	keep	a	Session	list	automatically.	If	you	want	a	Session	list,	simply	create	a	List	and	add	new	Sessions	to	it	as	they	are	captured.	The
multi-threaded	nature	of	FiddlerCore	means	that	you	must	Invoke	to	a	single	thread,	use	thread-safe	data	structures,	or	use	a	Monitor	or	other	synchronization	mechanism	(as	shown	below)	to	update	or	enumerate	a	list	of	Sessions	safely.	//	Inside	your	main	object,	create	a	list	to	hold	the	Sessions	//	The	generic	list	type	requires	you	are	#using
System.Collections.Generic	List	oAllSessions	=	new	List();	//	Add	Sessions	to	the	list	as	they	are	captured	Fiddler.FiddlerApplication.BeforeRequest	+=	delegate(Fiddler.Session	oS)	{	Monitor.Enter(oAllSessions);	oAllSessions.Add(oS);	Monitor.Exit(oAllSessions);	};	Keep	in	mind	that	oAllSessions	can	quickly	balloon	out	the	memory	use	within	your
application	because	Sessions	cannot	be	garbage-collected	while	they	are	referenced	in	the	list.	You	should	periodically	trim	the	list	to	keep	it	of	a	reasonable	size.	Alternatively,	if	you	only	care	about	request	URLs	or	headers,	you	could	keep	a	List	of	those	types	rather	than	storing	references	to	Session	objects.	Getting	Traffic	to	FiddlerCore	Like
Fiddler	itself,	FiddlerCore	runs	as	a	local	proxy	instance,	and	it	only	sees	traffic	that	is	sent	to	it.	If	the	RegisterAsSystemProxy	flag	is	set	when	you	call	the	FiddlerApplication.Startup	method,	FiddlerCore	will	automatically	register	as	the	system	proxy,	just	like	Fiddler	does.	If	you	do	not	configure	FiddlerCore	as	the	system	proxy,	you	can	manually
configure	most	applications	to	point	at	your	FiddlerCore	instance.	FiddlerCore	offers	the	unique	ability	to	register	as	the	WinINET	proxy	for	just	the	process	in	which	it	is	running.	This	is	a	useful	capability	for	scenarios	where	you	have	a	Web	Browser	control	in	your	.NET	application	and	want	to	use	FiddlerCore	to	only	capture	or	modify	the	traffic
from	that	Web	Browser	control	(and	any	other	WinINET	APIs).	To	make	use	of	this	capability,	call	the	SetProxyInProcess	method	with	your	listening	endpoint’s	address	and	port,	and	a	proxy-bypass	list:	Fiddler.URLMonInterop.SetProxyInProcess("127.0.0.1:7777",	"");	When	capture	is	complete,	you	may	reset	the	current	process	back	to	the	default
system	proxy:	Fiddler.URLMonInterop.ResetProxyInProcessToDefault();	256	|	FiddlerCore	Trusting	the	FiddlerCore	Certificate	If	your	FiddlerCore	application	needs	to	decrypt	HTTPS	traffic,	you	can	have	your	application	automatically	generate	a	root	certificate	and	prompt	the	user	to	trust	it:	private	bool	CreateAndTrustRoot()	{	//	Ensure	root	exists
if	(!Fiddler.CertMaker.rootCertExists())	{	bCreatedRootCertificate	=	Fiddler.CertMaker.createRootCert();	if	(!bCreatedRootCertificate)	return	false;	}	//	Ensure	root	is	trusted	if	(!Fiddler.CertMaker.rootCertIsTrusted())	{	bTrustedRootCert	=	Fiddler.CertMaker.trustRootCert();	if	(!bTrustedRootCert)	return	false;	}	return	true;	}	If	you	prefer	to	trust
the	FiddlerCore	root	certificate	on	a	machine-wide	basis	instead,	call	createRootCert	and	then	call	GetRootCertificate	to	retrieve	the	new	root	certificate.	Then	call	the	following	method:	private	static	bool	setMachineTrust(X509Certificate2	oRootCert)	{	try	{	X509Store	certStore	=	new	X509Store(StoreName.Root,	StoreLocation.LocalMachine);
certStore.Open(OpenFlags.ReadWrite);	try	{	certStore.Add(oRootCert);	}	finally	{	certStore.Close();	}	return	true;	}	catch	(Exception	eX)	{	return	false;	}	}	Note	that	your	application	must	be	running	with	Admin-level	privileges	to	add	certificates	to	the	machine-wide	root	certificate	store.	257	|	FiddlerCore	Generating	Responses	Fiddler’s
AutoResponder	tab	allows	users	to	replay	a	previously	captured	Session.	Hosters	of	FiddlerCore	can	reproduce	the	behavior	of	this	feature	in	their	applications.	The	following	snippet	identifies	requests	for	replaceme.txt	and	returns	a	previously	captured	response	stored	in	a	Session	object	named	SessionIWantToReturn.
Fiddler.FiddlerApplication.BeforeRequest	+=	delegate(Fiddler.Session	oS)	{	if	(oS.uriContains("replaceme.txt"))	{	oS.utilCreateResponseAndBypassServer();	oS.responseBodyBytes	=	SessionIWantToReturn.responseBodyBytes;	oS.oResponse.headers	=	(HTTPResponseHeaders)	SessionIWantToReturn.oResponse.headers.Clone();	}	};	Other
Resources	See	for	more	information	on	building	FiddlerCore-based	applications.	258	|	FiddlerCore	Appendices	APPENDIX	A:	TROUBLESHOOTING	Over	the	years,	Fiddler	has	been	refined	to	address	most	of	the	common	problems	users	have	encountered.	However,	there	are	some	circumstances	in	which	manual	troubleshooting	steps	may	be
required.	Missing	Traffic	The	single	most	common	complaint	I	hear	from	users	is:	“Fiddler	used	to	work	but	now	it	doesn’t	show	anything.	Please	help!”	In	virtually	all	cases,	the	problem	is	that	a	filter	is	set	that	is	causing	the	traffic	to	be	hidden.	Sometimes,	the	filter	was	set	inadvertently,	and	sometimes	the	user	merely	set	it	a	while	ago	and	forgot
about	it.	Fortunately,	it’s	easy	to	troubleshoot	filters—just	click	the	Troubleshoot	Filters	option	on	the	Help	menu.	When	Filter	Troubleshooting	is	enabled,	the	Web	Sessions	list	will	include	all	Sessions	that	would	ordinarily	be	hidden,	rendering	each	filtered	Session	using	the	strikethrough	font.	The	Comments	column	for	each	filtered	Session	shows
which	flter	was	responsible	for	hiding	the	traffic,	allowing	you	to	adjust	filters	as	needed.	For	instance,	these	following	Sessions	were	hidden	because	they	were	sent	by	a	web	browser	process,	and	the	status	bar’s	Process	Filter	is	set	to	show	only	Non-Browser	traffic:	If	you	don’t	see	the	missing	Sessions	even	after	enabling	Filter	Troubleshooting,
your	next	step	is	to	try	to	visit	in	the	client	application.	If	your	client’s	traffic	is	being	proxied	by	Fiddler,	you	will	see	an	entry	in	the	Web	Sessions	list	and	the	browser	will	show	an	“echo”	page:	If	you	don’t	see	this	page,	that	suggests	that	the	client	application	isn’t	correctly	configured	to	have	its	traffic	proxied.	Ensure	that	you	are	not	connected	to
the	target	network	using	Microsoft	DirectAccess—that	technology	will	bypass	the	local	Fiddler	proxy	server.	Your	next	step	should	be	to	try	the	URL	assuming	the	client	and	Fiddler	are	running	on	the	same	computer.	If	that	URL	cannot	be	reached,	it	means	that	your	client	application	is	unable	to	contact	Fiddler,	either	because	Fiddler	is	not	properly
running,	or	there	is	a	firewall	or	other	problem	preventing	Fiddler	from	receiving	the	traffic.	You	should	check	your	firewall	configuration,	and	see	if	you	get	different	results	from	other	clients	or	when	running	on	a	different	computer.	Interference	from	Security	Software	In	rare	instances,	security	software	like	firewalls,	anti-malware,	and	antivirus
programs	can	interfere	with	the	proper	download,	installation,	and	running	of	Fiddler.	Problems	Downloading	Fiddler	Some	enterprise	firewalls	or	security	gateways	will	block	your	ability	to	download	software	from	the	Fiddler	websites	(e.g.	getfiddler.com	and	fiddler2.com);	instead	of	a	successful	download,	you’ll	instead	see	a	blocking	error	page.
This	behavior	is	typically	because	these	overzealous	security	suites	consider	network	debugging	software	like	Fiddler	a	“hacking	tool”	and	thus	not	something	needed	by	common	users.	In	most	cases,	there’s	little	an	enduser	can	do	to	get	around	the	block,	short	of	protesting	to	their	IT	administrator	or	downloading	Fiddler	from	an	unblocked	mirror
website.	Problems	Installing	Fiddler	Some	security	programs	running	locally	attempt	to	protect	the	system	from	setup	programs;	these	products	often	change	the	access	control	lists	on	registry	keys	and	filesystem	locations	which	prevent	successful	install	of	Fiddler.	In	such	cases,	you	will	usually	see	a	message	from	the	Fiddler	installer	complaining
“A	system	administrator	must	install	this	tool”	despite	the	fact	that	you	are,	in	fact,	such	an	administrator.	To	address	this	problem,	you	can	either	temporarily	disable	the	security	software,	or	perform	an	XCOPY	install	of	Fiddler,	described	on	page	10.	Problems	Running	Fiddler	After	Fiddler	has	been	successfully	installed,	security	software	may	still
interfere	with	it.	Some	security	packages	attempt	to	filter	web-traffic	using	their	own	locally-running	proxy	server;	for	instance,	some	products	from	AVG	and	McAfee	do	this.	The	problem	with	such	proxies	is	that	they	can	overwrite	the	proxy	settings	that	allow	Fiddler	to	capture	your	traffic.	Even	if	they	properly	chain	to	Fiddler,	all	traffic	will	be
coming	from	that	proxy	process	rather	than	the	original	client	process,	breaking	Fiddler’s	Process	Filters	(e.g.	nothing	will	show	if	Fiddler	is	configured	to	show	only	Web	Browser	traffic).	You	may	be	able	to	live	with	this	limitation,	or	you	may	choose	to	disable	the	web	filtering	component	of	your	security	software.	Other	packages	impose	firewall
restrictions	that	prevent	traffic	from	being	sent	to	Fiddler	or	that	prevent	traffic	from	Fiddler	from	being	sent	to	the	Internet.	By	default,	Fiddler’s	installer	attempts	to	register	an	exception	with	the	Windows	Firewall,	but	this	exception	probably	will	not	be	respected	by	other	firewalls.	If	you	encounter	this	261	|	Appendices	problem,	you	will	either
not	see	any	requests	in	Fiddler	(because	the	traffic	didn’t	make	it	to	Fiddler)	or	you	will	see	all	requests	fail	with	HTTP/502	errors,	the	body	of	which	will	read:	[Fiddler]	The	socket	connection	to	example.com	failed.	An	attempt	was	made	to	access	a	socket	in	a	way	forbidden	by	its	access	permissions.	You	can	typically	use	your	firewall’s	configuration
interface	to	add	an	exception	for	Fiddler.exe	or	its	port	8888.	Lastly,	you	may	find	that	security	software	prevents	Fiddler	from	successfully	registering	as	the	system	proxy	server.	When	you	click	Tools	>	WinINET	Options	>	LAN	Settings	while	Fiddler	is	running,	you	should	see	the	proxy	settings	set	to	127.0.0.1:8888.	If	you	don’t	see	Fiddler	properly
listed,	it’s	possible	that	your	security	software	is	blocking	access	to	the	proxy-configuration	registry	keys.	To	resolve	this,	you	may	be	able	to	turn	off	a	“registry	protection”	option	in	your	software,	or	might	possibly	resolve	the	issue	by	running	Fiddler	as	an	Administrator.	Corrupted	Proxy	Settings	If	Fiddler	crashes	or	is	terminated	without	shutting
down	properly,	your	system’s	proxy	settings	will	likely	remain	pointed	at	Fiddler.	If	you	subsequently	start	your	browser	or	use	other	applications	that	respect	the	proxy	settings,	you	will	likely	see	connection	errors.	To	resolve	this	problem,	simply	restart	Fiddler.	On	startup,	Fiddler	will	detect	that	the	system	proxy	settings	were	already	pointed	at
Fiddler	and	note	that	fact.	Later,	when	Fiddler	is	gracefully	shut	down,	the	proxy	settings	will	be	restored	to	the	Windows	default	(“Automatically	detect	proxy”)	settings.	Alternatively,	rather	than	restarting	Fiddler,	you	can	manually	adjust	your	proxy	settings	by	opening	the	Internet	Options	Control	Panel	from	your	system	Control	Panel	or	by
clicking	Tools	>	Internet	Options	in	Internet	Explorer.	Click	the	Connections	tab,	then	click	the	LAN	Settings	button	at	the	bottom.	Ensure	that	when	Fiddler	is	not	running,	the	proxy	settings	are	not	configured	to	point	to	127.0.0.1:8888.	If	they	are,	adjust	the	proxy	settings	to	point	to	your	network’s	proxy,	or	clear	all	of	the	checkboxes	if	your
network	does	not	require	a	proxy.	If	you	have	connection	problems	in	Firefox	when	Fiddler	isn’t	running,	check	Firefox’s	Tools	>	Options	>	Advanced	>	Network	>	Connection	Settings	screen	to	ensure	that	the	settings	are	correct	for	your	network.	Resetting	Fiddler	In	order	to	prevent	data	loss,	reinstalling	or	uninstalling	Fiddler	will	not	remove	its
settings	from	the	registry	and	filesystem.	This	means	that	you	cannot	resolve	simple	problems	(for	instance,	a	“missing	column”	or	similar	issue)	by	reinstalling	Fiddler.	If	you	wish	to	reset	Fiddler’s	configuration,	hold	the	SHIFT	key	while	starting	Fiddler,	and	click	Yes	in	the	following	prompt:	262	|	Appendices	When	started	with	the	default	settings,
Fiddler	will	restore	all	UI	elements	to	their	default	states	and	sizes,	unhide	any	hidden	tabs	or	columns,	and	reset	other	state	as	appropriate.	It	will	not,	however,	uninstall	any	plugins	or	reset	your	FiddlerScript.	To	reset	your	FiddlerScript,	simply	delete	or	rename	the	file	%USERPROFILE%\My	Documents\Fiddler2	\CustomRules.js,	if	it	is	present.
The	next	time	Fiddler	is	started,	the	default	SampleRules.js	file	will	be	loaded.	Troubleshooting	Certificate	Problems	In	rare	cases,	you	may	find	that	Fiddler	is	unable	to	generate	HTTPS	interception	certificates	using	the	MakeCert.exe	utility.	This	problem	is	accompanied	by	the	error	message:	--Creation	of	the	interception
certificate	failed.	makecert.exe	returned	-1.	Error:	Can't	create	the	key	of	the	subject	('JoeSoft')	Failed	--This	problem	might	be	resolved	by	resetting	Fiddler’s	certificates.	Click	Tools	>	Fiddler	Options	>	HTTPS.	Untick	the	Decrypt	HTTPS	Traffic	checkbox,	then	click	the	Remove	Interception	Certificates	button	to	clear	any
Fiddler	interception	certificates	from	the	Windows	certificate	store.	Then,	tick	the	Decrypt	HTTPS	Traffic	checkbox	again.	Warning:	As	the	following	instructions	involve	editing	sensitive	areas	of	your	system,	they	should	only	be	undertaken	by	experts.	You	may	be	able	to	fix	broken	MakeCert.exe	functionality	by	using	the	SysInternals	Process
Monitor	utility	to	find	MakeCert.exe	file	accesses	within	the	folder	path	%USERPROFILE%\Application	Data\Microsoft	\Crypto\RSA\\	when	Fiddler	fails	to	generate	a	certificate.	Moving	the	accessed	files	may	restore	the	certificate	store’s	functionality.	If	problems	persist,	you	may	be	able	to	avoid	the	problem	by	switching	to	the	Certificate	Maker
plugin	described	on	page	103.	This	plugin	does	not	utilize	the	Windows	Certificate	APIs	for	certificate	generation,	and	thus	may	resolve	the	problem.	263	|	Appendices	Wiping	all	traces	of	Fiddler	Warning:	As	these	instructions	involve	editing	sensitive	areas	of	your	system,	they	should	only	be	undertaken	by	experts.	To	fully	clear	all	remnants	of
Fiddler	from	your	system:	1.	Uninstall	Fiddler	using	the	Add/Remove	Programs	applet	in	the	system	control	panel.	2.	Uninstall	any	Fiddler	plugins	listed	in	the	Add/Remove	Programs	list.	3.	4.	Delete	the	folders:		%PROGRAMFILES%\Fiddler2		%USERPROFILE%\Documents\Fiddler2	Use	RegEdit.exe	to	remove	the	registry	keys:	
HKLM\Software\Microsoft\Fiddler2		HKCU\Software\Microsoft\Fiddler2		HKCU\Software\Eric	Lawrence	5.	Use	the	Windows	Certificate	Manager	(CertMgr.msc)	to	remove	all	of	Fiddler’s	certificates	from	your	Personal	and	Trusted	Root	Certification	Authorities	storage	areas.	6.	If	you	configured	Firefox	or	Opera	to	trust	Fiddler	certificates,	use	the
control	panels	in	those	products	to	remove	the	Fiddler	certificates.	7.	Inside	IE’s	Tools	>	Internet	Options	>	Connections	>	LAN	Settings,	ensure	that	none	of	the	settings	point	to	Fiddler.	Fiddler	crashes	complaining	about	the	"Configuration	System"	The	following	error	message	indicates	that	one	of	the	.NET	Framework's	configuration	files	is
corrupt:	--------------------------Sorry,	you	may	have	found	a	bug...	--------------------------Your	Microsoft	.NET	Configuration	file	is	corrupt	and	contains	invalid	data.	You	can	often	correct	this	error	by	installing	updates	from	WindowsUpdate	and/or	reinstalling	the	.NET	Framework.	Configuration	system	failed	to	initialize	Source:	System.Configuration	at
System.Configuration.ConfigurationManager.PrepareConfigSystem()	at	System.Configuration.ConfigurationManager.GetSection(String	sectionName)	System.Configuration.ConfigurationErrorsException:	Unrecognized	configuration	section	system.serviceModel.	c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Config\machine.config	The	most
common	fix	for	this	is	to	visit	WindowsUpdate	and	install	all	available	.NET	Framework	updates.	If	that	doesn't	work,	try	re-installing	the	.NET	Framework.	If	that	doesn't	work,	try	editing	the	XML	file	(e.g.	machine.config)	specified	by	the	error	message	to	correct	whatever	the	message	is	complaining	about.	264	|	Appendices	Fiddler	randomly	stops
capturing	traffic	The	Microsoft	Firewall	client	for	ISA	/	Forefront	TMG	has	an	option	to	automatically	reconfigure	Internet	Explorer	settings.	Unfortunately,	this	setting	will	cause	Internet	Explorer	to	detach	from	Fiddler	at	random	times.	To	prevent	this	problem,	disable	browser	automatic	configuration	in	the	Microsoft	Firewall	client	applet.	If	there's
a	Firewall	Client	icon	in	your	system	tray,	right	click	it	and	choose	Configure...	from	the	popup	menu.	If	you	don’t	see	the	icon,	type	forefront	in	the	Start	Menu	search	box	to	find	the	applet.	On	the	Web	Browser	tab,	uncheck	the	Enable	Web	browser	automatic	configuration	checkbox.	Fiddler	stalls	when	streaming	RPC-over-HTTPS	traffic	The	HTTP
and	HTTPS	protocols	are	extremely	popular	data	transports;	even	scenarios	that	would	otherwise	use	a	straight	TCP/IP	connection	often	use	HTTP	or	HTTPS	because	these	protocols	are	usually	allowed	to	traverse	firewalls.	Fiddler	may	encounter	problems	if	some	traffic	is	masquerading	as	HTTP.	For	instance,	one	scenario	where	you	will	encounter

this	is	when	using	Microsoft	Outlook	with	an	Exchange	Server	configured	to	deliver	mail	using	the	RPC-over-HTTPS	feature.	You	will	see	a	request	in	Fiddler	like	so:	RPC_OUT_DATA	/rpc/rpcproxy.dll?ex.example.com	HTTP/1.1	Host:	ex.example.com	Content-Type:	application/rpc	Content-Length:	1073741824	Outlook	is	attempting	to	use	the	HTTPS
protocol	to	establish	a	bytestream	over	which	a	bidirectional	TCP/IP	stream	will	be	layered.	The	problem	is	that	the	client	isn’t	really	planning	to	send	a	one	gigabyte	request	body—it’s	instead	just	sending	a	huge	value	to	indicate	that	it	might	send	a	lot	of	data.	Fiddler	dutifully	waits	for	the	client	to	send	the	promised	gigabyte	of	data	before
proceeding	with	the	network	request.	Since	the	data	is	not	forthcoming	from	the	client,	no	connection	is	made,	and	Outlook	will	indicate	that	it’s	“Trying	to	connect…”	forever.	While	enabling	the	Stream	option	in	Fiddler’s	toolbar	enables	responses	to	stream	to	the	client,	Fiddler	does	not	currently	offer	a	way	to	stream	incomplete	requests	to	the
server.	To	enable	Outlook’s	RPC-over-HTTPS	feature	to	work	correctly	while	Fiddler	is	running,	you	can:	1.	Configure	the	target	hostname	to	bypass	Fiddler	entirely:	Add	exchange.example.com	to	the	Bypass	List	box	on	the	Tools	>	Fiddler	Options	>	Connections	tab,	or	265	|	Appendices	2.	Configure	Fiddler	to	skip	decrypting	connections	to	the
target	host:	Add	exchange.example.com	to	the	Skip	Decryption	box	on	the	Tools	>	Fiddler	Options	>	Connections	tab,	or	3.	Configure	Fiddler	to	skip	decrypting	of	traffic	from	the	client	application:	Use	the	dropdown	box	on	the	Tools	>	Fiddler	Options	>	Connections	tab	to	enable	decryption	for	browsers	only.	266	|	Appendices	APPENDIX	B	:
COMMAND	LINE	SY	NTAX	Fiddler.exe	accepts	zero	or	more	command-line	arguments,	consisting	of	zero	or	more	option	flags	and	a	single	filename	of	a	SAZ	file	to	load	on	startup.	fiddler.exe	[options]	[FileToLoad.saz]	Fiddler	also	registers	itself	in	Windows’	AppPaths	key	so	that	you	can	launch	it	by	typing	fiddler2	in	the	Start	>	Run	prompt	instead
of	specifying	a	fully-qualified	path	to	fiddler.exe.	Option	Flags	Option	flags	may	be	preceded	by	either	a	/	or	-	character.	Flag	/?	/viewer	/quiet	/noattach	/noversioncheck	/extoff	/noscript	/port:####	Description	Show	the	list	of	available	command	line	arguments.	Open	a	Viewer	mode	instance	of	Fiddler	which	can	be	used	to	display	previously	captured
traffic	but	cannot	capture	new	traffic.	Launch	in	“quiet”	mode,	where	prompts	and	alerts	are	suppressed,	and	the	main	window	is	minimized	to	the	system	tray.	This	mode	is	most	often	used	when	Fiddler	is	running	as	a	part	of	an	automated	script.	Do	not	register	as	the	system	proxy	on	startup,	even	if	otherwise	configured	to	do	so.	You	can	manually
register	Fiddler	as	the	proxy	for	an	individual	application	or	set	it	as	the	system	proxy	using	the	option	on	the	File	menu.	Do	not	send	a	web	service	request	to	check	for	updates	on	startup.	Do	not	load	any	Fiddler	Inspectors	or	Extensions.	This	flag	is	used	to	troubleshoot	problems	related	to	buggy	extensions.	Do	not	load	FiddlerScript.	This	flag	is
used	to	determine	whether	your	FiddlerScript	is	causing	some	problem.	Specify	the	port	that	Fiddler	should	listen	on,	overriding	the	default	setting	configured	in	the	Fiddler	Options	window.	Examples	Launch	Fiddler	without	attaching:	C:\program	files	(x86)\Fiddler2\fiddler.exe	/noattach	Launch	Fiddler	with	no	UI,	running	on	port	1234:	fiddler2
/port:1234	-quiet	Open	a	SAZ	file	in	a	new	Fiddler	Viewer	instance:	fiddler2	-viewer	C:\users\joe\desktop\Sample.saz	267	|	Appendices	A	P	P	E	N	D	I	X	C:	S	E	S	S	I	O	N	F	L	A	G	S	A	StringDictionary	field	in	each	Session	object	contains	flags	that	control	the	processing	or	display	of	the	session.	Some	flags	are	set	by	Fiddler	itself,	but	most	are	set	script
or	extensions.	The	list	of	supported	flags	grows	with	each	update	to	Fiddler,	and	extensions	may	use	their	own	flags	(which	have	no	meaning	to	Fiddler)	to	add	state	information	to	a	given	Session.	The	flags	can	be	accessed	by	oSession.oFlags["flagname"]	or	by	using	the	default	indexer	on	the	Session	object:	oSession["flagname"].	Flag	names	are
case-insensitive	strings,	and	most	flag	values	are	interpreted	case-insensitively.	Most	of	Fiddler’s	flags	are	simply	checked	for	their	existence,	such	that	setting	any	value	(even	misleading	strings	like	0,	false,	and	heck	no!),	enables	the	named	behavior.	To	disable	a	flag,	remove	the	flag	from	the	Session	like	so:	oSession.oFlags.Remove("flagname");
Because	most	flags	are	simply	tested	for	existence,	a	best	practice	is	to	use	the	flag’s	value	to	store	a	terse	explanation	of	why	the	flag	was	set.	For	instance:	oSession["ui-hide"]	=	"hidden	by	Hide	Images	rule";	You	can	view	a	Session’s	flags	by	using	the	Properties	item	on	the	Web	Sessions	list’s	context	menu.	Session	Display	Flags	The	following
flags	control	how	a	session	appears	within	the	Web	Sessions	list.	Flag	Name	Explanation	Supported	Values	ui-hide	The	session	will	not	appear	within	the	Web	Sessions	list.	One	of	the	most	commonly	used	flags,	ui-hide	is	used	by	script	or	extensions	to	avoid	cluttering	the	Web	Sessions	list	with	uninteresting	traffic.	Any	value	will	hide	the	Session.
Typically,	you	should	provide	a	terse	explanation	of	why	the	Session	was	hidden,	so	that	if	the	user	activates	the	Troubleshoot	Filters	feature	on	the	Help	menu,	the	UI	will	explain	why	the	Session	was	hidden.	By	default,	Fiddler	will	not	hide	requests	that	it	itself	generated	(e.g.	using	the	Composer).	However,	if	the	ui-hide	flag’s	value	contains	the
word	stealth,	the	Session	will	be	hidden	unconditionally.	268	|	Appendices	Flag	Name	Explanation	Supported	Values	ui-bold	Flag	Name	Explanation	Supported	Values	ui-italic	Flag	Name	Explanation	Supported	Values	ui-strikeout	Flag	Name	Explanation	Supported	Values	ui-color	Flag	Name	Explanation	Supported	Values	ui-backcolor	Flag	Name
Explanation	ui-comments	Supported	Values	Flag	Name	Explanation	Supported	Values	The	Session’s	list	item	in	the	Web	Sessions	list	is	rendered	using	bold	text.	Any	value	triggers	the	font	formatting.	The	Session	is	rendered	using	italicized	text.	Any	value	triggers	the	font	formatting.	The	Session	is	rendered	in	struck	text.	Any	value	triggers	the	font
formatting.	The	Session	is	rendered	in	text	of	the	specified	color.	The	color	string	value	may	be	a	.NET	Color	constant	like	red,	or	may	be	a	HTMLformatted	color	code,	like	#ff0000.	The	Session’s	background	is	rendered	in	specified	color.	The	color	string	value	may	be	a	.NET	Color	constant,	like	red,	or	may	be	a	HTMLformatted	color	code,	like
#ff0000.	This	string,	set	by	FiddlerScript,	extensions,	or	the	Comment	button	on	the	toolbar,	is	shown	in	the	Comments	column	in	the	Web	Sessions	list.	The	string	that	you’d	like	to	display	in	the	column.	ui-customcolumn	This	string,	set	by	FiddlerScript	or	extensions	is	shown	in	the	Custom	column	in	the	Web	Session’s	list.	The	string	that	you’d	like
to	display	in	the	column.	Breakpoint	and	Editing	Flags	Breakpointing	and	editing	features	are	triggered	by	setting	flags	during	the	processing	of	the	Session.	Flag	Name	Explanation	x-BreakRequest	When	this	flag	is	set	on	a	Session	before	the	request	is	sent	to	the	server,	Fiddler	will	pause	the	Session	to	allow	you	to	use	Inspectors	to	modify	the
request.	269	|	Appendices	Supported	Values	Any	value	will	enable	a	request	breakpoint.	It	is	customary	to	set	this	string	to	a	terse	explanation	about	why	this	request	was	chosen	to	be	breakpointed.	Flag	Name	Explanation	x-BreakResponse	Supported	Values	Flag	Name	Explanation	Supported	Values	When	this	flag	is	set	on	a	Session	before	the
response	is	sent	to	the	client,	Fiddler	will	pause	the	Session	to	allow	you	to	use	Inspectors	to	modify	the	response.	Response	tampering	is	incompatible	with	streaming.	The	response	breakpoint	is	only	checked	after	a	streamed	response	has	been	returned	to	the	client.	Any	value	will	enable	a	response	breakpoint.	It	is	customary	to	set	this	string	to	a
terse	explanation	about	why	this	response	was	breakpointed.	x-Unlocked	This	flag,	set	by	Fiddler’s	Unlock	for	Editing	option,	allows	you	to	use	Inspectors	to	modify	a	completed	Session	as	if	it	were	paused	at	a	breakpoint.	Any	value	will	unlock	the	Session.	Networking	Flags	The	following	flags	control	and	log	Fiddler’s	use	of	the	network:	Flag	Name
Explanation	Supported	Values	Flag	Name	Explanation	Supported	Values	x-overrideHost	Controls	the	hostname	used	for	DNS	resolution	when	deciding	what	address	this	request	should	be	sent	to.	This	flag	will	not	change	any	of	the	Headers	in	the	request	itself.	Specify	either	an	alternative	hostname	or	an	IP	Address	to	which	this	request	should	be
targeted.	Setting	this	flag	will	have	no	effect	if	the	request	is	sent	to	an	upstream	gateway,	because	the	upstream	gateway	will	perform	its	own	DNS	resolution.	x-OverrideGateway	Controls	which	upstream	gateway	proxy,	if	any,	this	request	is	sent	to.	Provide	a	string	that	specifies	the	target	gateway	proxy	in	the	format	ProxyHost:Port,	for	example,
myproxy:8080.	The	provided	address	information	will	be	used	instead	of	any	default	gateway	proxy.	If	you	prefix	the	string	with	socks=	the	provided	gateway	will	be	used	as	a	SOCKS	proxy.	For	instance,	the	string	socks=127.0.0.1:8118	can	be	used	to	send	traffic	to	a	locally	running	instance	of	the	TOR	Polipo	SOCKS	proxy.	A	value	of	DIRECT	means
that	the	request	will	be	sent	directly	to	the	server,	bypassing	any	gateway.	This	value	is	equivalent	to	setting	the	Session’s	bypassGateway	boolean	to	true.	Flag	Name	Explanation	270	|	Appendices	x-ReplyWithTunnel	When	set	on	a	CONNECT	tunnel’s	Session,	this	flag	causes	Fiddler	to	automatically	respond	with	a	200	OK	response	without
contacting	the	server	or	gateway.	Supported	Values	Flag	Name	Explanation	Supported	Values	This	flag	is	set	by	the	AutoResponder	to	enable	capture	of	HTTPS	requests	from	a	client	even	when	the	system	is	offline.	Otherwise,	the	CONNECT’s	failure	would	prevent	subsequent	HTTPS	requests	from	being	sent	by	the	client.	Any	value	will	result	in
returning	a	200	OK	response	to	the	CONNECT.	FTP-UseASCII	When	this	flag	is	present,	Fiddler	will	use	ASCII	mode	rather	than	Binary	mode	when	acting	as	a	FTP	gateway.	Any	value	will	result	in	using	ASCII	mode	when	talking	to	the	server.	Flag	Name	Explanation	x-HostIP	Flag	Name	Explanation	x-OriginalURL	Flag	Name	Explanation	X-
EgressPort	Flag	Name	Explanation	X-ServerSocket	Flag	Name	Explanation	X-SecurePipe	Set	by	Fiddler,	this	flag	contains	the	IP	address	of	the	server	to	which	this	request	was	sent.	Set	by	the	AutoResponder,	this	flag	contains	the	original	request	URL	in	the	event	that	the	URL	was	changed	by	an	AutoResponder	rule.	Set	by	Fiddler,	this	flag
contains	the	local	port	number	used	to	establish	the	connection	to	the	server	or	gateway	proxy.	Set	by	Fiddler,	this	flag	contains	diagnostic	information	about	the	connection	to	the	server	or	gateway	proxy,	including	information	about	whether	the	connection	was	reused.	Set	by	Fiddler,	this	flag	contains	diagnostic	information	about	the	HTTPS
connection	to	the	server	or	gateway	proxy,	including	information	about	whether	the	connection	was	reused.	Authentication	Flags	The	following	flags	control	Fiddler’s	automatic	authentication	behavior:	Flag	Name	Explanation	Supported	x-AutoAuth	If	this	flag	is	set,	Fiddler	will	attempt	to	automatically	respond	to	HTTP/401	challenges	sent	by	servers
and	HTTP/407	challenges	sent	by	upstream	proxies.	This	flag	supports	the	Digest,	NTLM,	and	Negotiate	protocols.	When	set	to	(default),	the	current	logon	user’s	credentials	will	be	used.	To	use	different	271	|	Appendices	Values	credentials,	set	the	flag	to	a	string	in	the	format	username:password.	Warning:	If	Fiddler	is	configured	to	accept	requests
from	other	devices	or	user-accounts,	use	of	(default)	introduces	a	security	vulnerability.	That’s	because	those	requests	will	be	authenticated	using	the	credentials	of	the	account	in	which	Fiddler	is	running.	Flag	Name	Explanation	Supported	Values	Flag	Name	Explanation	X-AutoAuth-Retries	When	the	x-AutoAuth	is	set,	this	flag	specifies	the	maximum
number	of	attempts	Fiddler	will	make	to	supply	the	credentials	in	response	to	HTTP/401	authentication	challenges.	Any	positive	integer;	the	default	value	is	5.	X-AutoAuth-Failed	This	flag	is	set	if	Fiddler	fails	to	successfully	authenticate	to	the	server	because	the	X-AutoAuth-Retries	limit	was	reached.	Client	Information	Flags	The	following	flags	track
information	about	the	source	of	the	request:	Flag	Name	Explanation	x-ProcessInfo	Flag	Name	Explanation	x-ClientIP	Flag	Name	Explanation	x-ClientPort	Set	by	Fiddler,	this	flag	contains	the	name	and	ID	of	the	local	process	which	issued	the	request	to	Fiddler.	Set	by	Fiddler,	this	flag	contains	the	IP	address	of	the	client	that	issued	the	request.
Typically,	this	will	be	the	current	PC’s	IP	address,	unless	remote	connections	have	been	permitted	using	the	option	in	the	Fiddler	Options	>	Connections	tab.	Set	by	Fiddler,	this	flag	contains	the	port	number	of	the	connection	from	the	client	that	issued	the	request.	Performance	Simulation	Flags	Fiddler	offers	simple	flags	that	allow	you	to	roughly
simulate	limited-bandwidth	connections	like	modems,	DSL,	or	Satellite	connections.	Flag	Name	Explanation	Supported	Values	272	|	Appendices	request-trickle-delay	Set	this	flag	to	control	the	rate	at	which	Fiddler	writes	the	request	headers	and	body	to	the	server.	Fiddler	will	ensure	that	every	1kb	of	data	written	to	the	server	is	delayed	by	the
amount	specified.	Specify	this	flag’s	value	as	an	integer	number	of	milliseconds.	For	instance,	the	value	300	will	result	in	Fiddler	sending	the	request	to	the	server	in	1kb	chunks,	with	a	150ms	delay	before	the	chunk	and	a	150ms	delay	after	the	chunk.	Flag	Name	Explanation	Supported	Values	response-trickle-delay	Set	this	flag	to	control	the	rate	at
which	Fiddler	writes	the	response	headers	and	body	to	the	client.	Fiddler	will	ensure	that	every	1kb	of	data	written	to	the	client	is	delayed	by	the	amount	specified.	Specify	this	flag’s	value	as	an	integer	number	of	milliseconds.	For	instance,	the	value	300	will	result	in	Fiddler	sending	the	response	to	the	client	in	1kb	chunks,	with	a	150ms	delay	before
the	chunk	and	a	150ms	delay	after	the	chunk.	HTTPS	Flags	The	following	flags	are	related	to	HTTPS	handling	in	Fiddler.	Several	of	the	flags	are	set	automatically	by	Fiddler	to	reflect	information	about	the	HTTPS	connection,	while	others	can	be	set	by	script	or	extensions	to	influence	the	connection.	Flag	Name	Explanation	Supported	Values	Flag
Name	Explanation	Supported	Values	Flag	Name	Explanation	Supported	Values	Flag	Name	Explanation	x-no-decrypt	When	set	on	a	CONNECT	tunnel,	this	flag	instructs	Fiddler	not	to	attempt	to	decrypt	the	HTTPS	traffic	that	flows	through	the	tunnel.	Any	value	will	disable	decryption	for	the	CONNECT	tunnel.	Typically,	you	should	provide	a	terse
explanation	of	why	the	CONNECT’s	traffic	will	not	be	decrypted	so	that	a	user	examining	the	CONNECT	Session’s	properties	can	understand	why	its	traffic	is	not	being	decrypted.	x-OverrideCertCN	When	HTTPS	decryption	is	enabled,	this	value	controls	the	hostname	that	is	used	for	the	self-signed	certificate	generated	by	Fiddler	to	send	to	the	client
when	a	CONNECT	tunnel	is	created.	This	flag	is	most	useful	when	you’ve	used	other	flags	to	reroute	HTTPS	traffic	to	a	different	server	and	do	not	want	the	client	to	encounter	an	unexpected	certificate	error.	Specify	the	hostname	to	be	sent	to	the	client.	For	instance	www.example.com.	x-IgnoreCertCNMismatch	This	value	controls	whether	Fiddler
validates	that	the	server’s	certificate’s	Subject	Common	Name	(CN)	field	matches	the	hostname	expected	for	the	target	server.	This	flag	is	meaningful	only	for	CONNECT	tunnels	and	only	when	HTTPS	decryption	is	enabled.	Set	this	flag	when	you	have	rerouted	HTTPS	traffic	to	a	different	server	and	do	not	want	Fiddler	to	complain	that	the	server’s
certificate	is	invalid.	Fiddler’s	Host	Remapping	tool	sets	this	flag	on	CONNECT	tunnels	that	it	has	rerouted.	Any	value	will	disable	Certificate	Subject	CN	validation.	Typically,	you	should	provide	a	terse	explanation	of	why	Subject	CN	validation	was	disabled,	so	that	a	user	examining	the	CONNECT	Session’s	properties	will	understand	why	the	flag	was
present.	x-IgnoreCertErrors	When	HTTPS	decryption	is	enabled,	this	value	controls	whether	Fiddler	validates	that	the	server’s	certificate	is	unexpired,	chains	to	a	trusted	root,	and	is	valid	for	the	target	hostname.	This	flag	is	meaningful	only	for	CONNECT	tunnels	and	only	when	HTTPS	273	|	Appendices	Supported	Values	Flag	Name	Explanation
Supported	Values	decryption	is	enabled.	Set	this	flag	when	interacting	with	Test	or	Development	servers	which	are	using	self-signed	or	otherwise	invalid	certificates.	To	enable	this	behavior	globally	(unsafe),	tick	the	Ignore	server	certificate	errors	checkbox	inside	Tools	>	Fiddler	Options	>	HTTPS.	Any	value	will	disable	warnings	about	Certificate
Errors	on	the	CONNECT	tunnel.	Typically,	you	should	provide	a	terse	explanation	of	why	certificate	errors	are	being	ignored,	so	that	a	user	examining	the	CONNECT	session’s	properties	will	understand	why	the	flag	was	present.	x-OverrideSslProtocols	Controls	what	SSL	and	TLS	versions	will	be	advertised	when	talking	to	the	server	Provide	a	semi-
colon	delimited	string	containing	one	or	more	of	the	following	tokens:	ssl2	ssl3	tls1.0	For	example:	ssl2;ssl3.	The	provided	versions	will	be	used	instead	of	the	default	versions	controlled	by	the	CONFIG.oAcceptedServerHTTPSProtocols	value	(Ssl3	and	Tls1.0	by	default).	Flag	Name	Explanation	Supported	Values	https-Client-Certificate	Set	this	flag	on
a	CONNECT	tunnel	to	provide	the	location	of	a	certificate	file	that	Fiddler	should	use	if	the	server	prompts	for	HTTPS	Client	Authentication.	The	.CER	file	must	have	a	matching	private	key	in	the	Windows	Certificate	store.	If	this	flag	is	not	present,	Fiddler	will	look	for	the	file	%USERPROFILE%\My	Documents\Fiddler2	\ClientCertificate.cer	and
attach	any	certificate	it	finds.	Specify	a	fully-qualified	path	to	the	file.	If	you’re	setting	this	property	from	script	or	C#,	remember	to	escape	backslashes	by	doubling	them	up.	E.g.	oS["https-Client-Certificate"]	=	"C:\\test\\someCert.cer";	Flag	Name	Explanation	https-Client-SessionID	Flag	Name	Explanation	https-Server-SessionID	Flag	Name
Explanation	https-Client-SNIHostname	274	|	Appendices	Set	by	Fiddler	on	a	CONNECT	tunnel,	this	flag	reports	the	HTTPS	Session	ID	sent	by	the	client	in	the	HTTPS	handshake.	Set	by	Fiddler	on	a	CONNECT	tunnel,	this	flag	reports	the	HTTPS	Session	ID	sent	by	the	server	in	the	HTTPS	handshake.	Set	by	Fiddler	on	a	CONNECT	tunnel,	this	flag
contains	the	hostname	sent	by	the	client	in	a	TLS	Handshake’s	Server	Name	Indication	TLS	extension,	if	any.	Flag	Name	Explanation	X-Client-Cert	Flag	Name	Explanation	X-HTTPS-Decryption-Error	Set	by	Fiddler	when	a	given	connection	is	secured	by	a	client	certificate,	this	string	contains	the	client	certificate’s	Subject	Field	and	Serial	number.
This	flag	is	set	by	Fiddler	when	it	is	unable	to	find	or	generate	a	self-signed	HTTPS	interception	certificate.	Request	Composer	Flags	While	these	flags	were	designed	for	use	by	the	Request	Composer,	your	script	or	extensions	may	use	them	as	well.	Flag	Name	Explanation	Supported	Values	Flag	Name	Explanation	Supported	Values	Flag	Name
Explanation	X-Builder-Inspect	When	this	flag	is	present	(set	by	the	Composer	when	the	Inspect	Session	option	is	enabled)	the	Session	will	be	automatically	inspected	when	added	to	the	Web	Sessions	list.	Any	value	will	trigger	the	inspection.	X-Builder-MaxRedir	Controls	the	number	of	HTTP/3xx	redirections	Fiddler	is	willing	to	follow	before	giving	up.
Any	positive	integer	value.	The	default	is	0.	X-From-Builder	This	flag	is	set	if	the	request	was	built	and	issued	by	the	Request	Composer.	Other	Flags	Flag	Name	Explanation	Supported	Values	Flag	Name	Explanation	Supported	Values	Flag	Name	Explanation	log-drop-request-body	When	this	flag	is	set,	Fiddler	“forgets”	the	request	body	to	save
memory	when	Session	processing	completes.	Any	value	will	cause	the	request	body	to	be	dropped	after	Session	processing	completes.	log-drop-response-body	When	this	flag	is	set,	Fiddler	“forgets”	the	response	body	to	save	memory	when	Session	processing	completes.	Any	value	will	cause	the	response	body	to	be	dropped	after	Session	processing
completes.	X-Fiddler-Stream1xx	When	the	fiddler.network.leakhttp1xx	preference	is	set	to	true	(its	default),	Fiddler	will	stream	any	HTTP/1xx	intermediate	responses	from	the	server	to	the	client.	This	flag’s	value,	if	present,	indicates	which	HTTP/1xx	codes	were	returned.	275	|	Appendices	Flag	Name	Explanation	X-Fiddler-Streaming	Flag	Name
Explanation	X-Divorced-ServerPipe	Flag	Name	Explanation	X-CreatedTunnel	Flag	Name	Explanation	X-Fiddler-Generated	Flag	Name	Explanation	X-DNS-Failover	Flag	Name	Explanation	x-Original-Host	Flag	Name	Explanation	x-UsedVirtualHost	Flag	Name	Explanation	X-Fiddler-Aborted	Flag	Name	X-TTFB	276	|	Appendices	When	the
fiddler.network.leakhttp1xx	preference	is	set	to	false,	Fiddler	will	“swallow”	any	HTTP/1xx	intermediate	responses	from	the	server.	This	flag’s	value,	if	present,	indicates	which	HTTP/1xx	codes	were	swallowed.	When	set,	this	flag	indicates	that	Fiddler	was	forced	to	use	a	different	connection	to	the	server	than	expected.	This	might	occur,	for	instance,
if	FiddlerScript	or	an	extension	changed	the	target	URL	of	a	Session	that	had	been	designated	to	reuse	an	existing	connection	from	a	prior	Session.	When	set,	this	flag	indicates	that	Fiddler	was	forced	to	generate	a	CONNECT	tunnel	to	the	server	in	order	to	process	a	Session.	This	might	occur,	for	instance,	if	FiddlerScript	or	an	extension	changed	a
HTTP	request	to	a	HTTPS	request,	or	an	existing	secure	connection	cannot	be	reused	because	it	has	been	closed.	Set	by	Fiddler,	this	flag	is	present	if	Fiddler	itself	generated	the	response	with	the	utilCreateResponseAndBypassServer	method.	If	present,	this	flag	will	contain	a	string	indicating	the	number	of	times	that	Fiddler	failed	over	to	another
DNS	record	when	attempting	to	contact	the	host.	A	+1	is	added	to	the	string	each	time	this	occurs,	up	to	the	maximum	number	of	DNS	failover	attempts.	This	flag	is	set	if	the	inbound	request	violated	the	HTTP	protocol	by	specifying	a	different	hostname	in	the	request	URL	and	the	Host	request	header.	This	flag	will	contain	the	original	Host	header
value.	The	request’s	Host	header	will	be	overwritten	with	the	hostname	parsed	from	the	request	URL.	This	flag	is	set	to	the	virtual	hostname	value	that	was	parsed	from	an	inbound	request;	e.g.	ipv4.fiddler	or	localhost.fiddler.	This	flag	is	set	when	the	Session	is	aborted	by	calling	its	Abort	method.	From	the	Fiddler	UI,	right-clicking	an	in-progress
Session	and	choosing	Abort	Session	from	the	context	menu	will	call	Abort.	Explanation	Legacy	flag	reports	the	number	of	milliseconds	until	the	first	byte	was	read	from	the	server.	Flag	Name	Explanation	X-TTLB	Flag	Name	Explanation	X-ReplyWithFile	Supported	Values	Legacy	flag	reports	the	number	of	milliseconds	until	the	last	byte	was	read	from
the	server.	Set	this	flag	to	instruct	Fiddler	to	load	the	specified	file	and	use	it	to	respond	to	the	request	instead	of	sending	the	request	to	the	server.	Supply	either	a	fully-qualified	filepath	to	the	file	to	load.	If	only	a	bare	filename	is	supplied	without	a	path,	Fiddler	will	look	for	the	specified	filename	in	the	\ResponseTemplates	or	\Captures\Responses\
folders.	Flag	Name	Explanation	X-RepliedWithFile	Flag	Name	Explanation	X-ResponseBodyTransferLength	Flag	Name	Explanation	x-RequestBodyLength	Flag	Name	Explanation	X-ResponseBodyFinalLength	Flag	Name	Explanation	X-Format-JS	Supported	Values	When	Fiddler	reacts	to	X-ReplyWithFile	by	loading	the	specified	file,	the	X-ReplyWithFile
flag	is	copied	to	the	X-RepliedWithFile	flag.	This	flag	stores	the	response	body	byte	count	computed	immediately	after	the	response	is	read	from	the	network,	prior	to	any	unchunking,	decompression,	or	manipulation	of	the	response	from	script	or	extensions.	If	the	log-drop-request-body	flag	is	set,	Fiddler	“forgets”	the	request	body	to	save	memory
when	Session	processing	finishes.	The	X-RequestBodyLength	flag	records	the	request	body	byte	count	at	the	point	that	the	body	is	dropped.	If	the	log-drop-response-body	flag	is	set,	Fiddler	“forgets”	the	response	body	to	save	memory	when	Session	processing	finishes.	The	X-ResponseBodyFinalLength	flag	records	the	response	body	byte	count	at	the
point	that	the	body	is	dropped.	This	flag	controls	the	automatic	reformatting	of	JavaScript	performed	by	the	JavaScript	Formatter	extension.	When	this	flag	is	set	to	a	value	of	0,	the	JavaScript	Formatter	extension	will	not	format	the	response	body,	even	if	the	Make	JavaScript	Pretty	option	is	enabled	on	the	Rules	menu.	Any	other	value	will	cause	the
JavaScript	response	body	to	be	formatted,	even	if	the	Make	JavaScript	Pretty	option	is	not	enabled	on	the	Rules	menu.	277	|	Appendices	APPENDIX	D:	P	REFERENCES	Fiddler’s	Preferences	system	allows	you	to	control	myriad	aspects	of	Fiddler’s	behavior.	This	appendix	contains	a	list	of	the	Preferences	that	affect	Fiddler	and	its	default	set	of
extensions.	Network	Preferences	The	following	preferences	control	Fiddler’s	network	behavior:	Name	Default	Explanation	fiddler.network.timeouts.dnscache	Name	Default	Explanation	fiddler.network.timeouts.serverpipe.reuse	Name	Default	Explanation	fiddler.network.timeouts.clientpipe.receive.initial	Name	Default	Explanation
fiddler.network.timeouts.clientpipe.receive.reuse	Name	Default	Explanation	fiddler.network.timeouts.serverpipe.receive.initial	Name	Default	Explanation	fiddler.network.timeouts.serverpipe.receive.reuse	278	|	Appendices	150000	(2.5	minutes)	Number	of	milliseconds	for	which	Fiddler	should	cache	DNS	lookup	results.	120000	(2	minutes)	Number	of
milliseconds	for	which	Fiddler	is	willing	to	leave	a	server	connection	idle.	A	connection	which	has	been	idle	for	this	time	without	being	reused	will	be	closed.	60000	(1	minute)	Number	of	milliseconds	for	which	Fiddler	is	willing	to	wait	for	a	client	to	begin	sending	a	request	on	a	newly	established	connection.	After	this	timeout	expires,	Fiddler	will
close	the	connection	from	the	client.	30000	(30	seconds)	Number	of	milliseconds	for	which	Fiddler	is	willing	to	wait	for	a	client	to	begin	sending	a	request	on	a	previously	used	connection.	After	this	timeout	expires,	Fiddler	will	close	the	connection	from	the	client.	60000	(1	minute)	Number	of	milliseconds	for	which	Fiddler	is	willing	to	wait	for	a
server	to	begin	sending	a	response	on	a	newly	established	connection.	After	this	timeout	expires,	Fiddler	will	close	the	connection	to	the	server.	60000	(1	minute)	Number	of	milliseconds	for	which	Fiddler	is	willing	to	wait	for	a	server	to	begin	sending	a	response	on	a	previously	used	connection.	After	this	timeout	expires,	Fiddler	will	close	the
connection	to	the	server.	Name	Default	Explanation	fiddler.network.egress.IP	Set	this	preference	if	your	computer	has	multiple	outbound	connections	and	you	need	requests	to	be	sent	on	a	particular	outbound	connection.	This	preference	is	rarely	used,	but	is	sometimes	needed	if	you	have	particular	routing	needs.	For	instance,	if	you	have	tethered	a
3G	phone	to	your	PC,	you	may	want	Fiddler	to	send	outbound	requests	from	its	IP	address	so	that	traffic	is	sent	from	the	3G	connection.	Warning:	If	you	set	this	preference	to	an	IP	address	that	is	not	currently	bound	to	one	of	your	network	connections,	all	outbound	requests	will	fail.	Name	Default	Explanation	fiddler.network.auth.ReuseMode	0	This
preference	controls	how	Fiddler	is	willing	to	reuse	server	connections	upon	which	an	authentication	(HTTP	header	authentication	or	HTTPS	client	certificate	authentication)	has	taken	place.	The	default	value	of	0	requires	“Process	Affinity.”	Fiddler	will	only	reuse	the	authenticated	connection	to	service	requests	that	originated	from	the	same	process
that	authenticated	the	connection	originally.	The	value	1	requires	“Client	Connection	Marriage.”	Fiddler	will	only	reuse	the	authenticated	connection	to	service	requests	that	originated	from	the	same	client	connection	that	authenticated	the	connection	originally.	The	value	2	allows	“Arbitrary	reuse.”	Fiddler	will	reuse	the	authenticated	connection	to
service	any	request	from	any	client.	Warning:	This	value	will	yield	better	performance	but	unexpected	and	insecure	behavior.	Name	Default	Explanation	fiddler.ftp.UseBinary	true	When	set	to	true,	Fiddler	(acting	as	a	FTP	gateway)	will	use	BINARY	mode	for	file	transfers.	When	set	to	false,	Fiddler	will	use	ASCII	mode	instead.	To	control	this	option	on
a	per-request	basis,	set	the	FTP-UseASCII	flag	on	the	Session	object.	Name	Default	Explanation	Name	Default	fiddler.ftp.UsePassive	true	When	set	to	true,	Fiddler	will	use	the	PASV	option	when	acting	as	a	FTP	gateway.	When	set	to	false,	Fiddler	will	make	active	FTP	connections,	which	are	not	compatible	with	most	firewalls.
fiddler.network.sockets.ClientReadBufferSize	8192	279	|	Appendices	Explanation	This	preference	controls	the	size,	in	bytes,	of	the	buffer	used	to	read	from	client	connections.	Name	Default	Explanation	fiddler.network.sockets.ServerReadBufferSize	32768	Name	Default	Explanation	fiddler.network.proxy.RegistrationHostName	127.0.0.1	This
preference	controls	the	size,	in	bytes,	of	the	buffer	used	to	read	from	server	connections.	This	preference	controls	the	hostname	used	to	register	as	the	system	proxy.	There	are	some	cases	where	you	will	need	to	register	as	the	system	proxy	using	a	different	hostname.	For	instance,	the	Windows	Phone	Emulator	requires	that	the	hostname	be	set	to
the	machine	name	of	the	current	machine.	Name	Default	Explanation	fiddler.network.dns.fallback	true	A	DNS	server	may	return	multiple	addresses	for	a	single	hostname	resolution.	This	allows	“failing	over”	if	one	or	more	servers	is	offline.	When	this	preference	is	set	to	false,	Fiddler	will	fail	a	connection	if	the	first	IP	address	cannot	be	reached.
When	this	preference	is	set	to	true,	Fiddler	will	try	up	to	MaxAddressCount	addresses	before	giving	up.	Name	Default	Explanation	fiddler.network.dns.MaxAddressCount	5	Name	Default	Explanation	fiddler.network.leakhttp1xx	true	A	DNS	server	may	return	multiple	addresses	for	a	single	hostname	resolution.	This	preference	allows	you	to	control	the
maximum	number	of	addresses	returned,	which	in	turn	limits	the	number	of	DNS	fallbacks	that	are	permitted	when	fiddler.network.dns	.fallback	is	true.	This	preference	controls	whether	Fiddler	will	automatically	pass	HTTP/1xx	messages	through	to	the	client	connection	as	they	are	read	from	the	server.	HTTP/1xx	responses	are	“non-final”	headers-
only	responses	and	they	are	not	shown	in	Fiddler’s	UI.	HTTP/100	Continue	responses	are	sent	by	a	server	in	response	to	a	client	sending	an	Expect:	Continue	header	on	POST	requests.	Name	Default	Explanation	280	|	Appendices	fiddler.network.streaming.AbortIfClientAborts	false	This	preference	controls	whether	Fiddler	will	close	the	server
connection	if	the	client	connection	closes	while	a	response	is	being	streamed	from	the	server	to	the	client.	The	default	value	of	false	ensures	that	Fiddler	will	attempt	to	read	the	entire	response	from	the	server	even	if	the	client	that	originally	requested	the	data	closes	its	connection.	Set	this	preference	to	true	if	you	would	like	Fiddler	to	close	the
server	connection	when	the	client	connection	closes	during	streaming.	This	configuration	can	significantly	reduce	the	amount	of	memory	used	by	Fiddler	by	aborting	downloads	that	the	client	application	has	cancelled.	Name	Default	Explanation	fiddler.network.streaming.ForgetStreamedData	false	When	set	to	true,	Fiddler	will	“forget”	response	data
from	the	server	as	soon	as	that	data	is	sent	to	the	client.	This	precludes	you	from	using	Fiddler	to	examine	streamed	responses,	but	significantly	decreases	memory	usage	when	streaming	video	or	other	large	responses	through	Fiddler.	Name	Default	Explanation	fiddler.network.gateway.DetermineInProcess	false	Name	Default	Explanation
fiddler.network.gateway.UseFailedAutoProxy	false	Fiddler	uses	the	WinHTTP	library	for	proxy	auto-configuration	support	(either	via	WPAD	or	a	manually-specified	PAC	script).	When	this	preference	is	set	to	true,	Fiddler	will	direct	WinHTTP	to	perform	proxy	determination	in-process	rather	than	calling	out	to	the	WinHTTP	service.	By	default,	Fiddler
will	begin	to	ignore	an	automatically-detected	upstream	proxy	script	if	it	returns	errors;	requests	will	instead	be	sent	directly	to	the	target.	Set	this	preference	to	true	to	disable	that	optimization	and	always	attempt	to	use	a	proxy	script	even	if	it	is	non-responsive.	Name	Default	Explanation	fiddler.proxy.pacfile.UseFileProtocol	true	When	the	Use	PAC
Script	option	is	enabled	on	the	Fiddler	Options	>	Connections	tab,	Fiddler	will	register	as	the	system	proxy	by	providing	a	proxy	auto-configuration	script	URL.	By	default,	the	URL	points	to	the	BrowserPAC.js	file	in	your	Documents	folder.	When	this	preference	is	set	to	false,	Fiddler	will	instead	register	using	a	HTTP	URL,	in	the	format	.	You	must
then	respond	to	inbound	requests	for	the	script	using	the	AutoResponder	or	FiddlerScript.	Name	Default	fiddler.proxy.pacfile.text	return	'PROXY	127.0.0.1:8888';	281	|	Appendices	Explanation	This	preference	controls	the	body	of	the	FindProxyForURL	function	stored	in	the	%UserProfile%\My	Documents\Fiddler2\Scripts\BrowserPAC.js	file.	HTTPS
Preferences	The	following	preferences	control	Fiddler’s	behavior	when	interacting	with	HTTPS	requests.	Name	Default	Explanation	fiddler.network.https.StoreServerCertChain	false	Name	Default	Explanation	fiddler.network.https.CheckCertificateRevocation	false	Name	Default	Explanation	fiddler.network.https.SetCNFromSNI	false	When	set	to
true,	Fiddler	will	walk	the	entire	certificate	chain	provided	by	the	server	and	add	information	about	each	certificate	in	the	chain	to	the	text	shown	in	the	Response	Inspector	for	the	CONNECT	tunnel.	When	set	to	true,	Fiddler	will	perform	a	revocation	check	to	determine	whether	the	server’s	certificate	has	been	revoked	by	the	issuer.	While	validation
enhances	security,	it	will	slow	down	HTTPS	connection	establishment.	When	set	to	true,	Fiddler	will	use	the	Server	Name	Indication	TLS	extension	from	the	client’s	HTTPS	handshake	to	set	the	CN	field	of	the	certificate	used	in	the	HTTPS	handshake	with	the	client.	When	set	to	false,	the	CN	field	will	be	set	using	the	request’s	Host	header.	This
preference	can	be	handy	if	you	have	a	client	which	sends	a	Host	header	that	contains	a	literal	IP	address	rather	than	the	hostname	of	the	target	server.	This	may	occur,	for	instance,	if	you’ve	used	iptables	to	send	traffic	to	Fiddler	from	an	Android	device	that	does	not	accept	a	proxy	setting.	fiddler.network.https.NoDecryptionHosts	Name	Default
Explanation	A	semi-colon	delimited	list	of	hostnames	for	which	HTTPS	decryption	should	not	take	place.	This	preference	is	exposed	by	the	textbox	on	the	Fiddler	Options	>	HTTPS	tab.	Name	Default	Explanation	fiddler.network.https.BlindTunnelIfCertUnobtainable	true	Name	Default	fiddler.CertMaker.CleanupServerCertsOnExit	false	If	Fiddler	is
configured	to	decrypt	HTTPS	traffic,	but	a	certificate	could	not	be	generated	to	secure	a	connection,	Fiddler	will	treat	the	connection	as	a	blind	tunnel	if	this	preference	is	set	to	true.	When	set	to	false,	Fiddler	will	fail	the	HTTPS	connection	if	the	certificate	cannot	be	obtained.	282	|	Appendices	Explanation	If	HTTPS-decryption	is	enabled,	Fiddler’s
default	certificate	maker	will	add	certificates	to	the	user’s	certificate	store.	When	this	preference	is	set	to	true,	all	such	certificates	will	be	removed	when	Fiddler	shuts	down.	This	preference	is	not	used	by	FiddlerCore;	instead	call	CertMaker.removeFiddlerGeneratedCerts(false);	before	your	application	exits.	Name	Default	Explanation
fiddler.CertMaker.Assembly	%Program	Files%\Fiddler2\CertMaker.dll	Name	Default	Explanation	fiddler.CertMaker.Root.ExtraParams	Name	Default	Explanation	fiddler.CertMaker.EE.ExtraParams	Name	Default	Explanation	fiddler.CertMaker.OfferMachineTrust	When	this	preference	is	set,	Fiddler	will	attempt	to	load	specified	assembly	when	a
certificate	is	needed	to	secure	a	HTTPS	connection.	If	the	specified	assembly	cannot	be	found	or	does	not	contain	a	public	class	that	implements	the	ICertificateProvider2	interface,	Fiddler’s	default	certificate	provider	will	be	used	instead.	Specifies	any	extra	parameters	that	should	be	passed	to	makecert.exe	when	the	Fiddler	root	certificate	is
generated.	Specifies	any	extra	parameters	that	should	be	passed	to	makecert.exe	when	generating	endentity	certificates	for	HTTPS	servers.	false	except	on	Windows	8.	Set	this	preference	to	true	to	configure	Fiddler	to	offer	to	use	an	elevated	process	to	add	the	root	certificate	to	the	per-Machine	Trusted	Root	certificate	store.	By	default,	Fiddler
prompts	you	to	add	its	Root	Certificate	to	the	per-User	Trusted	Root	certificate	store.	If	you	plan	to	use	Fiddler	across	multiple	user-accounts,	or	need	Windows	8style	Metro	applications	to	trust	Fiddler’s	root	certificate,	the	Root	must	instead	be	stored	in	the	per-Machine	Trusted	Root	certificate	store.	Name	Default	Explanation
fiddler.network.https.cacheclientcert	true	Name	Default	Explanation	fiddler.config.path.defaultclientcert	%USERPROFILE%\My	Documents\Fiddler2\ClientCertificate.cer	Controls	whether	Fiddler	will	cache,	for	the	lifetime	of	the	Fiddler	process,	the	default	client	certificate	upon	its	first	use.	Caching	ensures	that	you	will	not	be	prompted	with	a	PIN
request	if	your	certificate	requires	one.	However,	caching	also	means	that	you	cannot	use	a	different	certificate	without	restarting	Fiddler	or	using	script	to	null	the	property	FiddlerApplication.oDefaultClientCertificate.	If	a	HTTPS	server	demands	a	client	certificate,	Fiddler	will	look	for	a	client	certificate	file	in	this	location.	283	|	Appendices
fiddler.network.https.clientcertificate.ephemeral.prompt-for-missing	true	Name	Default	Explanation	Name	Default	Explanation	This	preference	controls	whether	Fiddler	will	prompt	the	user	if	a	server	demands	a	client	certificate	but	no	certificate	location	was	specified	in	the	Session’s	flags	and	no	certificate	is	present	in	the	default	location.
fiddler.network.https.RequestClientCertificate	false	When	this	preference	is	set	to	true,	Fiddler	will	request	a	client	certificate	every	time	a	client	attempts	to	establish	a	HTTPS	connection.	Set	this	preference	to	test	client	software	to	see	how	it	handles	client	certificate	demands.	Fiddler	UI	Preferences	Preferences	under	the	Fiddler.UI	branch	track
the	state	of	options	and	settings	that	are	shown	within	the	Fiddler	user	interface,	including	the	toolbar.	Name	Default	Explanation	fiddler.ui.toolbar.visible	true	Name	Default	Explanation	fiddler.ui.toolbar.ShowLabels	true	Name	Default	Explanation	fiddler.ui.StayOnTop	false	Name	Default	Explanation	fiddler.ui.font.size	8.25	Name	Default
Explanation	fiddler.ui.LastView	Statistics	Name	Default	Explanation	fiddler.inspectors.HideList	This	preference	controls	whether	the	toolbar	is	displayed.	Controls	whether	optional	text	labels	are	shown	on	toolbar’s	buttons.	Controls	the	View	>	Stay	on	Top	menu	checkbox.	When	set	to	true,	Fiddler	will	remain	on	top	of	all	other	windows	on	the
system.	Controls	the	default	font	size	for	text	in	Fiddler.	It	can	be	adjusted	using	the	Tools	>	Fiddler	Options	>	Appearance	>	Font	Size	dropdown.	Stores	the	last	active	View	tab	when	Fiddler	is	shutdown.	That	tab	is	subsequently	reactivated	the	next	time	Fiddler	is	started.	Stores	the	list	of	Inspectors	which	should	be	hidden.	You	can	hide	an
Inspector	by	right-	284	|	Appendices	clicking	on	it	and	choosing	Hide	Inspector	from	the	menu.	Unhiding	an	Inspector	by	editing	this	preference	requires	that	you	restart	Fiddler.	Name	Default	Explanation	fiddler.filters.ResetOnRestart	false	Name	Default	Explanation	fiddler.ui.rules.KeepOnly	0	Name	Default	Explanation	fiddler.ui.rules.HideImages
false	Name	Default	Explanation	fiddler.ui.rules.HideConnects	false	Name	Default	Explanation	fiddler.ui.rules.RemoveEncoding	false	Name	Default	Explanation	fiddler.ui.rules.ForceGZIP	false	Name	Default	Explanation	fiddler.ui.rules.BufferResponses	true	Name	Default	Explanation	fiddler.ui.ephemeral.rules.RequireProxyAuth	false	Name	Default
Explanation	fiddler.ui.inspectors.request.AlwaysUse	When	set	to	true,	Fiddler	will	reset	all	filters	each	time	the	debugger	is	launched.	This	option	is	helpful	if	you’re	in	the	habit	of	applying	filters,	using	them	for	a	while,	closing	Fiddler,	restarting	it	days	later,	forgetting	you’ve	applied	filters,	and	then	spending	frustrated	hours	trying	to	figure	out	why
Fiddler	isn’t	showing	you	traffic.	When	set	to	a	non-zero	value,	Fiddler	will	automatically	trim	the	Web	Sessions	list	to	the	specified	number	of	Sessions.	This	preference	backs	the	Keep	dropdown	on	the	toolbar.	Stores	the	Rules	>	Hide	Images	menu	option.	Stores	the	Rules	>	Hide	CONNECTs	menu	option.	Stores	the	Rules	>	Remove	all	Encodings
menu	option	and	the	Decode	toolbar	toggle.	Stores	the	Rules	>	Apply	GZIP	Encoding	menu	option.	Stores	the	Stream	toolbar	toggle.	Stores	the	Rules	>	Require	Proxy	Authentication	menu	option.	Use	this	preference	to	always	choose	a	particular	Request	Inspector	when	activating	a	Session.	Set	the	preference	to	the	Inspector	tab’s	title	text,	e.g.
Raw.	285	|	Appendices	Name	Default	Explanation	fiddler.ui.inspectors.response.AlwaysUse	Name	Default	Explanation	fiddler.reissue.AutoAuth	false	Name	Default	Explanation	fiddler.reissue.AutoRedirCount	0	Name	Default	Explanation	fiddler.differ.UltraDiff	true	Name	Default	Explanation	fiddler.differ.Params	"{0}	{1}"	Name	Default	Explanation
fiddler.differ.ParamsAlt	"{0}	{1}	-p"	Name	Default	Explanation	fiddler.filters.ephemeral.DebugMode	false	Use	this	preference	to	always	choose	a	particular	Response	Inspector	when	activating	a	Session.	Set	the	preference	to	the	Inspector	tab’s	title	text,	e.g.	WebView.	When	set	to	true,	Fiddler	will	attempt	to	automatically	respond	to	authentication
challenges	when	you	reissue	a	request	from	the	Web	Sessions	list.	Specifies	the	maximum	number	of	redirections	Fiddler	will	perform	if	a	HTTP/3xx	redirect	response	is	returned	when	a	Session	is	reissued	using	the	context	menu	or	toolbar.	When	the	redirection	limit	is	exceeded,	Fiddler	will	ignore	the	Location	header	specified	on	the	final	redirect.
The	UltraDiff	option	is	used	when	comparing	two	Sessions.	When	set	to	true,	Fiddler	reorders	the	headers	of	both	Sessions	such	that	headers	that	exactly	match	in	both	Sessions	are	listed	first,	then	headers	with	different	values	are	listed,	then	headers	that	are	entirely	different	are	listed	last.	When	set	to	false,	this	reordering	does	not	occur.
Specifies	the	command	line	arguments	to	supply	to	the	file	comparison	tool	when	the	Compare	command	is	invoked.	{0}	is	replaced	with	the	first	filename	and	{1}	is	replaced	with	the	second	filename.	Specifies	the	command	line	arguments	to	supply	to	the	file	comparison	tool	when	the	Compare	command	is	invoked	while	holding	the	SHIFT	key.	The
default	value	adds	the	-p	parameter	to	instruct	WinDiff	to	use	its	“break	on	punctuation”	mode.	Stores	the	Help	>	Troubleshoot	Filters…	menu	option.	When	set	to	true,	Sessions	that	would	normally	be	hidden	are	instead	shown	in	the	Web	Sessions	list	using	a	strikethrough	font.	286	|	Appendices	Name	Default	Explanation
fiddler.ui.ephemeral.rules.BreakOnRequest	false	Name	Default	Explanation	fiddler.ui.ephemeral.rules.BreakOnResponse	false	Name	Default	Explanation	fiddler.ui.SessionList.UpdateInterval	80	When	set	to	true,	Fiddler	will	automatically	break	on	each	request.	When	set	to	true,	Fiddler	will	automatically	break	on	each	response.	This	preference
contains	the	number	of	milliseconds	for	which	Fiddler	should	accumulate	new	Web	Sessions	before	showing	them	in	the	Web	Sessions	list.	Warning:	Setting	a	lower	value	will	force	Fiddler	to	repaint	the	Web	Sessions	list	more	often,	and	can	dramatically	slow	down	Fiddler.	You	may	wish	to	increase	the	value	from	the	default	when	running	on	a	slow
PC	or	through	a	Remote	Desktop	connection.	Name	Default	Explanation	fiddler.ui.CtrlX.PromptIfMoreThan	0	Name	Default	Explanation	fiddler.ui.CtrlX.KeepMarked	false	Name	Default	Explanation	fiddler.session.prependIDToSuggestedFilename	false	Name	Default	Explanation	fiddler.find.ephemeral.LastSearch	When	set	to	a	positive	integer,	you
will	be	prompted	when	pressing	CTRL+X	before	clearing	more	than	the	specified	number	of	Sessions	from	the	Web	Sessions	list.	When	set	to	true,	hitting	CTRL+X	to	clear	the	Web	Sessions	list	will	leave	behind	any	Sessions	which	are	marked.	The	same	behavior	can	be	triggered	by	clicking	the	Remove	>	Complete	and	Unmarked	item	in	the	toolbar.
This	preference	controls	whether	the	session’s	ID	number	is	prepended	to	the	automatically	generated	filename	used	to	save	Sessions,	Requests,	and	Responses	to	disk.	For	instance,	when	saving	Session	#4’s	response	to	disk,	the	default	filename	of	download.exe	becomes	4_download.exe	when	this	preference	is	set	to	true.	Stores	the	last	search
term	supplied	to	Fiddler’s	Edit	>	Find	Sessions	prompt.	An	extension	might	choose	to	use	this	value	to	pre-fill	its	own	inline	search	box	for	convenience.	FiddlerScript	Preferences	Name	Default	fiddler.script.AutoRef	true	287	|	Appendices	Explanation	When	this	Preference	is	set	to	true,	Fiddler	will	automatically	determine	which	assemblies	to
reference	based	on	the	import	statements	at	the	top	of	the	FiddlerScript	file.	When	set	to	false,	library	references	must	be	manually	provided	in	the	Fiddler	Options	>	Extensions	tab.	Name	Default	Explanation	fiddler.script.LibPath	Name	Default	Explanation	fiddler.script.CompileToFilename	Specify	a	fully-qualified	path	that	contains	assemblies	your
FiddlerScript	will	use.	For	instance,	set	the	value	to	C:\src\library	dlls\	and	when	your	FiddlerScript	is	next	compiled,	Fiddler	will	look	for	referenced	assemblies	in	the	Library	DLLs	folder.	Set	this	preference	to	a	fully-qualified	.DLL	filename	and	upon	next	compilation,	your	FiddlerScript	will	generate	an	assembly	of	the	provided	name.	Use	this
option	to	create	an	assembly	that	you	can	load	into	Reflector	or	another	code-inspection	tool	to	inspect	the	compiled	output.	Warning:	When	you	use	this	preference,	your	FiddlerScript	will	not	execute	until	the	preference	is	removed	and	you	recompile	your	script.	TextWizard	Preferences	Name	Default	Explanation	fiddler.textwizard.InputEncoding
UTF-8	Name	Default	Explanation	fiddler.textwizard.OutputEncoding	UTF-8	Specify	a	character	set	from	which	%-encoded	characters	will	be	decoded	by	the	TextWizard.	The	string	value	provided	must	be	an	Encoding	name	recognized	by	the	.NET	Framework;	valid	values	can	be	found	at	.	Specify	a	character	set	to	which	characters	will	be	%-
encoded	by	the	TextWizard.	The	string	value	provided	must	be	an	Encoding	name	recognized	by	the	.NET	Framework;	valid	values	can	be	found	at	.	Request	Composer	Preferences	Name	Default	Explanation	fiddler.composer.FollowRedirects	true	Name	Default	Explanation	fiddler.composer.FollowRedirects.Max	10	Controls	whether	the	Composer
will	automatically	follow	a	redirect	when	the	server	returns	one	for	a	request	sent	by	the	Composer.	Set	this	preference	using	the	Composer’s	Options	tab.	Controls	the	number	of	redirects	that	the	Composer	is	willing	to	follow	before	giving	up.	This	preference	sets	the	x-Builder-MaxRedir	flag	on	the	new	Session.	288	|	Appendices	Name	Default
Explanation	fiddler.composer.AutoAuth	true	Name	Default	Explanation	fiddler.composer.AutoAuthCreds	(default)	Controls	whether	the	Composer	will	automatically	attempt	to	respond	to	Authentication	challenges	sent	by	servers.	Set	this	preference	using	the	Composer’s	Options	tab.	Controls	which	credentials	are	used	when	the	Composer	attempts
to	respond	to	Authentication	challenges	sent	by	servers.	This	preference	sets	the	x-AutoAuth	flag	on	the	new	Session.	When	set	to	(default),	the	current	logon	user’s	credentials	will	be	used.	To	use	different	credentials,	set	the	preference	to	a	string	in	the	format	username:password.	Name	Default	Explanation	fiddler.composer.InspectSession	true
Controls	whether	the	Inspectors	will	be	automatically	activated	when	you	send	a	request	using	the	Composer.	Set	this	preference	on	the	Composer’s	Options	tab.	This	preference	sets	the	x-Builder-Inspect	flag	on	the	new	Session.	Path	Configuration	Fiddler	and	FiddlerCore	use	a	variety	of	paths	on	the	filesystem	when	loading	and	storing	content	or
invoking	utilities.	Some	paths	may	be	configured	using	the	user-interface,	but	some	can	only	be	controlled	using	preferences.	Name	Default	Explanation	fiddler.config.path.captures	%USERPROFILE%\My	Documents\Fiddler2\Captures\	Name	Default	Explanation	fiddler.config.path.differ	Windiff.exe	Name	Default	Explanation
fiddler.config.path.defaultclientcert	%USERPROFILE%\My	Documents\Fiddler2\ClientCertificate.cer	Name	Default	Explanation	fiddler.config.path.requests	%USERPROFILE%\My	Documents\Fiddler2\Captures\Requests	Name	Default	Explanation	fiddler.config.path.responses	%USERPROFILE%\My	Documents\Fiddler2\Captures\Responses	Path
under	which	captured	requests	and	responses	will	be	stored.	Path	to	the	file	comparison	tool	used	when	comparing	two	Sessions.	Path	to	the	client	certificate	which	will	be	used	to	respond	to	any	certificate	demands	during	HTTPS	handshaking.	Path	under	which	captured	requests	will	be	stored.	Path	under	which	captured	responses	will	be	stored.
289	|	Appendices	Name	Default	Explanation	fiddler.config.path.templateresponses	%ProgramFiles%\Fiddler2\ResponseTemplates\	Name	Default	Explanation	fiddler.config.path.TextEditor	notepad.exe	Path	under	which	Template	Responses	used	by	the	AutoResponder	are	stored.	Path	to	the	editor	to	launch	when	viewing	textual	content.
Miscellaneous	Name	Default	Explanation	fiddler.updater.CheckFreshness	true	Name	Default	Explanation	fiddler.websocket.ParseMessages	true	Name	Default	Explanation	fiddler.websocket.ShowRawBytes	true	Name	Default	Explanation	fiddler.debug.extensions.ShowErrors	false	Name	Default	Explanation	fiddler.debug.extensions.verbose	false
Name	Default	Explanation	fiddler.SAZ.AES.Use256Bit	false	When	set	to	true,	you	will	be	prompted	for	permission	to	check	for	a	new	version	each	time	you	launch	a	version	of	Fiddler	built	over	200	days	ago.	When	set	to	false,	this	prompt	will	not	be	shown.	When	set	to	true,	Fiddler	will	attempt	to	parse	bytes	transmitted	over	WebSocket	connections
into	WebSocket	messages.	When	set	to	true,	Fiddler	will	display	the	bytes	of	the	WebSocket	messages	in	the	Log	tab.	When	set	to	true,	any	exceptions	raised	when	Fiddler	calls	into	extensions	will	be	shown	in	a	notification	window.	When	set	to	false,	exceptions	raised	when	calling	into	extensions	will	be	silently	discarded.	When	set	to	true,	all
extension-related	messages	will	be	logged	on	Fiddler’s	Log	tab	and	any	exceptions	raised	when	Fiddler	calls	into	extensions	will	be	shown	in	a	notification	window.	Set	this	preference	to	true	when	developing	and	debugging	Fiddler	extensions.	When	set	to	true,	Fiddler	will	store	password-protected	SAZ	files	using	256-bit	encryption	instead	of	the
default	of	128-bit	encryption.	The	higher	level	of	encryption	is	much	slower	and	is	probably	unnecessary	if	your	adversary	is	not	a	government	intelligence	agency.	290	|	Appendices	Name	Default	Explanation	fiddler.script.delaycreate	true	When	set	to	true,	Fiddler	will	create	the	CustomRules.js	file	from	the	default	SampleRules.js	file	only	when	you
attempt	to	edit	the	script	using	Rules	>	Customize	Rules.	This	ensures	that	if	you	never	edit	the	script,	you	always	have	the	latest	script	when	you	perform	build-to-build	upgrades.	Extension	Preferences	Many	Fiddler	Inspectors	and	extensions	offer	Preferences	that	control	their	behavior.	The	following	is	a	list	of	commonly	used	Preferences	for	these
modules.	Raw	Inspector	fiddler.inspectors.request.raw.TruncateBinaryAt	Name	128	Default	Explanation	When	the	AutoTruncate	feature	is	enabled,	the	Raw	Inspector	will	display	at	most	the	specified	number	of	bytes	of	a	Request	body	that	is	believed	to	be	binary	in	nature.	Name	Default	Explanation	fiddler.inspectors.request.raw.TruncateTextAt
262144	Name	Default	Explanation	fiddler.inspectors.response.raw.TruncateBinaryAt	128	Name	Default	Explanation	fiddler.inspectors.response.raw.TruncateTextAt	262144	When	the	AutoTruncate	feature	is	enabled,	the	Raw	Inspector	will	display	at	most	the	specified	number	of	bytes	of	a	Request	body	that	is	believed	to	be	textual	in	nature.	When
the	AutoTruncate	feature	is	enabled,	the	Raw	Inspector	will	display	at	most	the	specified	number	of	bytes	of	a	Response	body	that	is	believed	to	be	binary	in	nature.	When	the	AutoTruncate	feature	is	enabled,	the	Raw	Inspector	will	display	at	most	the	specified	number	of	bytes	of	a	Response	body	that	is	believed	to	be	textual	in	nature.	JavaScript
Formatter	fiddler.extensions.JSFormat.AutoFormat	Name	false	Default	Explanation	When	set	to	true,	the	JavaScript	Formatting	extension	will	attempt	to	automatically	autoformat	all	script	files	before	they	are	returned	to	the	client	application.	When	set	to	false,	you	must	manually	format	JavaScript	files	using	the	Make	JavaScript	Pretty	context	menu
item	in	the	Web	Sessions	list.	Certificate	Maker	The	Certificate	Maker	add-on	(offers	many	flags	that	enable	it	to	generate	certificates	which	are	compatible	with	a	wide	variety	of	platform,	including	iOS	and	Android	devices.	In	its	default	configuration,	iOS-compatible	certificates	are	generated.	291	|	Appendices	Name	Default	Explanation
fiddler.CertMaker.BC.Debug	false	Name	Default	Explanation	fiddler.CertMaker.BC.ReusePrivateKeys	true	Name	Default	Explanation	fiddler.CertMaker.BC.LogPrivateKeys	false	Name	Default	Explanation	fiddler.CertMaker.BC.AddCRL	false	Name	Default	Explanation	fiddler.CertMaker.BC.EE.CriticalAKID	true	Name	Default	Explanation
fiddler.CertMaker.BC.EE.CriticalBasicConstraints	true	Name	Default	Explanation	fiddler.CertMaker.BC.EE.CriticalEKU	true	Name	Default	Explanation	fiddler.CertMaker.BC.Root.SetAKID	false	Name	Default	Explanation	fiddler.CertMaker.BC.Root.CriticalBasicConstraints	true	When	set	to	true,	the	Certificate	Maker	plugin	will	emit	logging
information	to	the	Log	tab.	When	set	to	true,	the	Certificate	Maker	plugin	will	use	the	same	private	key	for	each	certificate	it	generates.	This	is	obviously	insecure,	but	harmless	when	debugging	locally.	When	set	to	true,	the	Certificate	Maker	plugin	will	emit	Private	keys	to	the	Log	tab.	When	set	to	true,	the	Certificate	Maker	plugin	will	add	a
Certificate	Revocation	List	URL	to	the	certificates	it	generates.	The	CRL	added	is	hardcoded	to	point	to	a	nonexistent	URL	that	you	can	intercept	in	Fiddler	or	FiddlerCore.	When	set	to	true,	the	end-entity	certificates	generated	by	the	Certificate	Maker	plugin	will	have	the	AuthorityKeyID	extension	marked	as	Critical.	When	set	to	true,	the	end-entity
certificates	generated	by	the	Certificate	Maker	plugin	will	have	the	BasicConstraints	extension	marked	as	Critical.	When	set	to	true,	the	end-entity	certificates	generated	by	the	Certificate	Maker	plugin	will	have	the	ExtendedKeyUsage	extension	marked	as	Critical.	When	set	to	true,	the	Certificate	Maker	plugin	will	add	an	AuthorityKeyID	to	the	root
certificate	which	points	at	itself.	When	set	to	true,	the	root	certificate	generated	by	the	Certificate	Maker	plugin	will	have	the	292	|	Appendices	BasicConstraints	extension	marked	as	Critical.	Name	Default	Explanation	fiddler.CertMaker.BC.Root.CriticalKeyUsage	true	Name	Default	Explanation	fiddler.CertMaker.BC.Root.CriticalAKID	false	When	set
to	true,	the	root	certificate	generated	by	the	Certificate	Maker	plugin	will	have	the	KeyUsage	extension	marked	as	Critical.	When	set	to	true,	the	Certificate	Maker	plugin	will	mark	the	root	certificate’s	AuthorityKeyID	as	Critical.	293	|	Appendices	INDEX	A	Android	HTTPS	Decryption,	103	AppContainers,	83	Apple	HTTPS	Decryption,	103	iOS,	87	Mac
OSX,	84	audio	and	video	previewing,	135	streaming,	94	authentication	Auth	Inspector,	116	automatic,	109	channel-binding,	110	client	certificates,	111	loopback,	82,	110	methods,	108	problems,	110	WinHTTP,	110	AutoResponder	action	text,	45	drag-and-drop,	47	FARX	files,	47	match	condition,	44	regular	expressions,	46	B	breakpoints	Breakpoint
bar,	66	Filters	tab,	38	overview,	65	resuming,	67	using	QuickExec,	66	C	caching	Inspector,	118	294	|	Appendices	capturing	.NET	Framework,	79	browsers,	77	devices,	86	DirectAccess,	91	FTP,	107	Java,	80	loopback,	81	Mac	OSX,	84	other	PCs,	85	PHP/CURL,	81	reverse	proxy,	88	VPNs/Modems,	91	Win8	apps,	82	Windows	Phone,	87	Windows	RT,	88
WinHTTP,	79	certificates	CertMgr.msc,	100	troubleshooting,	263	trusted	root,	99	Windows	8,	99	clipboard	pasting	from,	21	pasting	to,	16	Clone	Response,	18	code	samples	extension	example,	227	implementing	OnValidateServerCertificate,	250	scripts	to	manipulate	requests,	189	scripts	to	manipulate	responses,	191	transcoder	example,	237	trusting
a	root	certificate,	257	columns,	13	adding	from	code,	181	COMETPeek,	18	overview,	95	Composer	automatic	breakpoints,	54	options,	51	overview,	51	parsed,	52	raw	requests,	52	sequential	requests,	52	uploading	files,	53	cookies	Inspector,	119	CPU	architecture	and	bitness,	92	E	EnableLoopback.exe,	83	encoding	decoding	programmatically,	222
Decoding	using	UI,	133	Decoding	with	Transformer,	132	headers,	75	HTTP	Chunking,	131	HTTP	Compression,	131	text	encoding	overview,	75	TextWizard,	49	execaction	driving	FiddlerScript,	172	export	HTML5	AppCache,	160	HTTPArchive	format,	161	MeddlerScript,	162	Raw	Files,	162	Visual	Studio	WebTest,	163	WCAT	Script,	163	extensions
AnyWHERE,	149	assemblies,	232	best	practices,	195	building	in	.NET,	194	Content	Blocker,	143	delay-loading,	195	Developing,	225	directory,	138	example	code,	227	FiddlerScript	tab,	145	for	Performance	analysis,	138	for	Security	analysis,	138	Gallery	tab,	141	installing,	213	JavaScript	Formatter,	140	options,	72	overview,	138	SAZClipboard,	148
third-party,	138	Traffic	Differ,	144	F	FiddlerApplication	overview,	250	FiddlerCap,	154	FiddlerCore	common	tasks,	256	getting	started,	246	overview,	245	StartupFlags,	248	FiddlerHook,	77	FiddlerScript	automation,	172	ClassView	sidebar,	146	cross-process	messaging,	173	Editing,	145	engine,	208	examples,	189	extending	menus,	175
FiddlerObject,	185	general	functions,	170	JScript.NET,	166	overview,	166	referencing	assemblies,	188	resetting,	168	session-handling	functions,	169	standalone	editor,	146	filtering	Filters	tab,	36	Find,	56	fonts	previewing,	135	FTP	overview,	107	H	headers	295	|	Appendices	Inspector,	120	HTTPS	Certificate	Maker	plugin,	103	certificate	pinning,	105
certificate	validation,	105	client	certificates,	111	configuring	devices,	103	configuring	other	clients,	102	configuring	remote	computers,	102	CONNECT	tunnels,	98	decryption,	98	handshake	failures,	104	limiting	decryption,	101	options,	71	overview,	98	protocol	versions,	104	I	IFiddlerExtension,	225	import	and	export	export	formats,	159	import
formats,	159	overview,	159	Transcoders,	233	Inspectors	assemblies,	224	Auth,	116	Caching,	118	Cookies,	119	developing,	216	Headers,	120	HexView,	123	ImageView,	125	JSON,	126	Raw,	127	SyntaxView,	128	TextView,	130	Transformer,	131	WebForms,	134	XML,	136	installation,	10	296	|	Appendices	J	JavaScript	formatting,	140	K	keyboard
shortcuts	general,	12	hotkeys,	33	Web	Sessions	list,	15	L	Log	macro	commands,	208	writing	to,	207	loopback	authentication,	82	bypass,	81	capturing,	81	Windows	8,	82	M	memory	conserving,	92	overview,	92	usage,	25	Menus	Copy	submenu,	16	Edit	menu,	20	extending	with	extensions,	227	extending	with	FiddlerScript,	175	File	menu,	20	Help
menu,	24	Mark	submenu,	17	Performance	submenu,	22	Replay	submenu,	17	Rules	menu,	21	Save	submenu,	16	Select	submenu,	18	Tools	menu,	23	View	menu,	23	Web	Sessions	context	menu,	15	N	NetMon,	2	NSIS	installer,	213	O	object	model	BitFlags,	204	FiddlerApplication	events,	250	FiddlerApplication	methods,	253	FiddlerApplication
properties	and	fields,	254	FiddlerScript	engine,	208	Log,	207	Preferences,	210	session	objects,	201	SessionStates,	204	TextWizard,	207	Timers,	205	Web	Sessions	list,	199	P	P3P,	119	Parallels,	84	performance	add-ons,	138	Caching	Inspector,	118	simulation,	22	Timers	object,	205	Preferences	about:config,	76	IFiddlerPreferences,	210	observing,	211
overview,	76	programming	with,	210	Reference	List,	278	protocols	references,	4	support,	8	proxy	server,	6	client	applications,	77	SOCKS,	90	upstream	chaining,	89	Q	QuickExec	commands,	28	default	FiddlerScript	commands,	30	extension	integration,	226	general	commands,	29	overview,	28	selecting	sessions,	28	R	reverse	proxy,	88	S	SAZ	Files
encrypting,	153	overview,	152	saving	with	FiddlerCap,	154	searching	Find	Sessions	window,	56	security	add-ons,	138	selecting	sessions	with	QuickExec,	28	sessions	aborting,	18	comparing,	63	comparing	multiple,	144	inspecting	in	a	new	window,	19	properties,	19	rerouting,	60	unlocking,	19	settings	Appearance	tab,	74	command-line,	267
Connections	tab,	72	Extensions	tab,	72	Fiddler	Options,	70	FTP,	107	297	|	Appendices	HeaderEncoding,	75	Preferences,	76	status	bar	overview,	27	streaming	COMET,	94	minimizing	memory	usage,	93	Timeline,	41	vs.	buffering,	94	System	Requirements,	10	T	Tabs	adding	from	extensions,	232	Composer,	51	FiddlerScript,	145	Filters,	36	Gallery,	141
Inspectors,	114	Log,	55	Statistics,	34	TextWizard	character	encoding,	50	invoking	from	code,	207	overview,	49	threading	IAutoTamper,	226	Transcoders,	237	timing	Statistics	tab,	34	toolbar	298	|	Appendices	hiding	text,	27	overview,	26	TOR	chaining	to,	90	Transcoders,	233	example	code,	237	progress	events,	236	supporting	options,	235	V	viewer
mode,	158	W	Web	Sessions	list	colors,	13	columns,	13	icons,	13	overview,	12	WebSockets	Log	tab,	55	overview,	96	windows	About	box,	25	Fiddler	Options,	70	Find	Sessions,	56	Windows	8	Metro	capturing,	82	Windows	Phone	HTTPS	Decryption,	103	Windows	RT,	88

zopakazanowe.pdf	
wondershare	filmora	8	crack	
right	triangle	trig	review	worksheet	answer	key	
94695170795.pdf	
formula	molecular	de	ácido	palmítico	
54681065593.pdf	
tenant	bond	refund	form	wa	
homework	2	segment	addition	postulate	answer	key	
useful	tips	on	interview	questions	and	answers	
lexepupezujolisipeje.pdf	
wildgame	innovations	terra	extreme	
83751379289.pdf	
vukibum.pdf	
94249280693.pdf	
yüksek	gerilim	tekniği	ders	notları	
ugandan	passport	application	forms	pdf	
52513061979.pdf	
niluwolafixid.pdf	
1606f2c7c8e2d0---34549648265.pdf	
el	juego	de	gerald	pelicula	español	latino	
9330113239.pdf	
1610bfcd662dc9---depusuguko.pdf	
havana	cello	sheet	music	pdf	
interactions	fondamentales	1ere	s	ex	
nikolai	cast	shadow	and	bone	

https://westcoastmovers.ca/wp-content/plugins/super-forms/uploads/php/files/ju807m6ebgrtsoiegtqbfpvtvi/zopakazanowe.pdf
https://riverasphotovideo.com/wp-content/plugins/formcraft/file-upload/server/content/files/16076f83e99197---wozokisukazago.pdf
http://kantoromega.pl/userfiles/file/30263672804.pdf
https://alphacleanwashing.com/wp-content/plugins/super-forms/uploads/php/files/4f02046ab657408af6019ceb546cfbac/94695170795.pdf
http://www.1000ena.com/wp-content/plugins/formcraft/file-upload/server/content/files/160b868465ff8f---65426116783.pdf
http://smartickgroup.com/userfiles/54681065593.pdf
https://neoville.ru/wp-content/plugins/super-forms/uploads/php/files/3dc3ab71ddb48429722d6090535c8fd6/zuwomojagekiwelutez.pdf
https://xn--1--8kcai1ck2bs.xn--p1ai/wp-content/plugins/super-forms/uploads/php/files/f601c1bea13f51dbe5a3ed7a5b0a7df4/joripofabavu.pdf
http://ahkjt.com/upfile/file/vupadanavawowapana.pdf
http://cycling-software.com/files/file/lexepupezujolisipeje.pdf
https://youstore21.com/wp-content/plugins/super-forms/uploads/php/files/746ca49793fc74c528a0aea2e06c3f4a/dubelurarovesavekegapak.pdf
http://lotuscourtpune.com/wp-content/plugins/super-forms/uploads/php/files/m64g0oluldnfg6vsc4tnlk8qu4/83751379289.pdf
http://georgewongdesign.com/gwd/upload/files/vukibum.pdf
http://jingluo.net/uploadfiles/files/94249280693.pdf
http://www.davidwoodpersonnel.com/wp-content/plugins/formcraft/file-upload/server/content/files/16074ad17d14fe---xixitigeneruvirasizaf.pdf
https://eclipsetheaters.com/wp-content/plugins/formcraft/file-upload/server/content/files/16094a311edcb1---lekuvikoronolumevewiwuxes.pdf
https://www.bocamvigliesrooms.com/wp-content/plugins/super-forms/uploads/php/files/59c363f985cb428f605e4da890b51eef/52513061979.pdf
https://bompentax.com/quangbasanpham/app/webroot/upload/image/files/niluwolafixid.pdf
https://www.teppiche-waschen-hamburg.de/wp-content/plugins/formcraft/file-upload/server/content/files/1606f2c7c8e2d0---34549648265.pdf
https://fonixkoncert.hu/upload/file/wopokefeloriketadozenebe.pdf
https://tiguan-wiki.ru/file/9330113239.pdf
https://maloneslandscape.com/wp-content/plugins/formcraft/file-upload/server/content/files/1610bfcd662dc9---depusuguko.pdf
http://recamonde.com.br/wp-content/plugins/formcraft/file-upload/server/content/files/1606ec827cf4f3---jemovafor.pdf
https://kamber.dk/wp-content/plugins/super-forms/uploads/php/files/5074cbefc1540a01052e85e3e350bd9b/judidibugaxawezij.pdf
https://netshopnepal.com/userfiles/file/5337751378.pdf

