HSC - Aqua

1/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

36. Aqua Module

And A	lna												_)	×
File Mair	Cut Cut	Paste Find/Repla	ce Calculate	Aqua method	Units TS	Main Database Pitzer Dat	Parameter Sets	f(x) Density Calculator Tools	Help About					
E13	► A	В	С	D	E	F	G	Н	I		J	К	L	-
1 2 3	Water Phase Data	Temp. °C	Amount kmol	Amount mol-%	Amount	H Ideal kcal/mol	H Estimate	Cp Idea	al Cp Estin *K) cal/(mo	nate ol*K)	H Ideal kcal/kg	H Estimate kcal/kg	Cp Ideal kcal/(kg*K)	
4	Water Phase Water Species	40 Temp.	59.19 Amount	Amount	Amount	H Ideal	H Estimate	Cp Idea	al Cp Estin	nate	AC	AC	Molality	111
7	H2O	40	5.55E+01	moi-76	g	Kcal/mol	KCal/mol	car/(mor	K) Cal/(mo	OL K)	woiar sc.	WOIdi Sc.	moi/kg	
9 10	HS(-a)	40	5.28E-126											
11	HSO3(-a)	40	1.49E-42											
13	HSO5(-a)	40	1.37E-28		1	1								
14	Na(+a)	40	1.92E+00											
16	OH(-a)	40	7.69E-07											
18	S(-2a) ► ► Water Pha	40 ise	4.6/E-131					•	III					
0	utotec													

36.1. Introduction	3
36.2. Aqua Module Interface in HSC	4
36.3. Input Sheets	5
36.4. Output Sheets	8
36.5. New features in Aqua	9
36.6. Own database of Pitzer parameters	11
36.7. Multi-Component Examples	14
36.8. Aqueous Equilibria	16
36.9. General Calculation Principles for Water Systems	17
36.10. Excess Enthalpy and Heat Capacities	18
36.11. Summary of the Equations Used in HSC Aqua	19
36.12. Conclusions	25
36.13. References	26

HSC - Aqua 2/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Abstract

Non-ideal aqueous electrolyte models have been added to the HSC software in the newly developed "HSC Aqua module". HSC Chemistry software has up to this point not included non-ideal models for aqueous electrolyte solutions. However, HSC includes an impressive number of standard state data for neutral components and ionic species. For calculation of the excess Gibbs energy of the individual species and mixtures activity coefficient models need to be included in the HSC data bank. Electrolytes have so far been treated as ideal solutions where the activity coefficients of the individual solution species are set to one.

Predictive and semi-empirical models for ionic activities mean that the activity coefficient and osmotic coefficient have been introduced. In addition, an estimation of solution enthalpies and heat capacities is included. These working equations were derived from activity coefficient models. The activity coefficient models available are the Davies model (extended Debye-Hückel), the semi-empirical Pitzer model (with binary interactions only), and Harvie's modification of the Pitzer model (binary and ternary parameters). The Pitzer parameter database can be used for binary electrolyte systems as well as for multi-component solutions¹⁻⁶.

An extensive database has been collected, including temperature-dependent Pitzer binary and ternary ion interaction parameters. The total number of Pitzer parameters in the HSC Aqua database is currently 1031. This includes 425 cation-anion pairs, 114 cation-cation and anion-anion pairs, 199 ternary coefficients, and 293 ion-neutral pairs.

Many of these parameters are tabulated as temperature-dependent functions, thus allowing the derivation of thermodynamic relations for enthalpies and heat capacities. For those species that have good temperature-dependent data, calculations are in agreement with the literature. For systems that do not have temperature-dependent data, enthalpy and heat capacity estimates are consequently less accurate.

A Pitzer activity calculator tool has been tested against literature data. These include binary systems: NaOH, KOH, NaCl, KCl, HCl, LiCl, CaCl₂, ZnCl₂, Na₂SO₂, CaSO₄ CuSO₄, CoSO₄, NiSO₄, MgSO₄, MnSO₄, ZnSO₄, and AgNO₃, for example.

The Aqua module can be used for the estimation of ion activities, mean activity coefficients, the osmotic coefficient of water, enthalpies, and heat capacities of homogenous (single phase) aqueous electrolyte solutions. In addition, the water vapor pressures of electrolyte solutions, boiling point elevation, freezing point depression, relative humidity and osmotic pressure can be estimated. The Aqua module can be combined with the HSC Equilibrium Module just by checking a box, i.e. multiphase (gas-aqueous-solid) calculations where ion activities and speciation can be taken into account in the water phase.

HSC - Aqua 3/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

36.1. Introduction

Electrolyte solutions play an important role in a wide spectrum of industrial applications. These include the solubility phenomena of salts and gases in aqueous systems, precipitation, crystallization, desalination, distillation, and extraction. Wastewater, potable water, mine waters, and natural waters are all different types of electrolyte solutions.

Reliable thermodynamic data for ionic species is needed in order to estimate their properties correctly. Ionic systems deviate from ideality even in very dilute solutions. This is due to the long-range electrostatic forces between ions that are significant even in very dilute solutions. Thus electrolyte solutions are non-ideal even at low solute concentrations.

Adequate thermodynamic models are necessary for the determination of the properties of aqueous electrolyte systems. A simulation model should be reliable at a wide range of temperatures and solute concentrations. Despite the decades of effort put into finding a truly predictive fundamental theory for concentrated electrolyte solutions, a perfect theory has not yet been found. For practical applications, it is still necessary to rely on semi-empirical models. One of the most widely used semi-empirical models was developed by Kenneth Pitzer in 1973 and later modified by Harvie in the 1980s^{1,2}.

The Pitzer equations form a quite solid and theoretically realistic foundation for the calculation of aqueous system thermodynamics. The model is widely recognized and has been tested frequently for different electrolyte solutions.

Other benefits of the Pitzer formalism include the largest amount of reliable ion interaction parameters that can be extended to evaluate multi-component solutions. However, the Pitzer model is usually valid up to 6 mol/kg.

HSC - Aqua 4/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

36.2. Aqua Module Interface in HSC

The first step in the implementation of the Pitzer model into the HSC Chemistry software was the creation of the HSC Aqua module. With this module, the user can estimate the activity coefficients, enthalpies and heat capacities of homogenous (single-phase) aqueous electrolyte solutions. The development of the module consisted of two main tasks: the collection of Pitzer parameter data and the development of the calculation routine. The programs used for these tasks were Microsoft Visual Basic, the Formula One chart tool, and Microsoft Excel.

Fig. 1. The main screen of HSC.

HSC - Aqua

5/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

36.3. Input Sheets

The input sheets for the current HSC Aqua module are opened from the main menu. The input solution of the aqueous electrolyte calculation procedure can be specified on two separate sheets. From the top menu bar of the input sheets, example cases of a calculated electrolyte solution can be opened and saved through the "File" command. The example cases can be saved as *.aqu8.

Aqu A	qua													×
File Main	Cut Cut	Paste Find/Replac	ce Calculate	Aqua method	Units TS	Main Database Pitzer Dat	Parameter Sets	f(x) Density Calculator Tools	Help About Info					
E13	•													
	A	В	С	D	E	F	G	Н	1		J	К	L	
1 2	Water Phase Data	Temp.	Amount	Amount	Amount	H Ideal	H Estimate	Cp Idea	al Cp Estin	nate	H Ideal	H Estimate	Cp Ideal	
3		°C	kmol	mol-%	g	kcal/mol	kcal/mol	cal/(mol*	*K) cal/(mo	l*K)	kcal/kg	kcal/kg	kcal/(kg*K)	
4	Water Phase	40	59.19											11
5	Water Species	Temp.	Amount	Amount	Amount	H Ideal	H Estimate	Cp Idea	al Cp Estin	nate	AC	AC	Molality	
6	Data	°C	kmol	mol-%	g	kcal/mol	kcal/mol	cal/(mol*	*K) cal/(mo	l*K)	Molar Sc.	Molal Sc.	mol/kg	
7	H2O	40	5.55E+01											
8	H(+a)	40	4.05E-08											
9	HS(-a)	40	5.28E-126											
10	HS2(-a)	40	3.34E-221											_
11	HSO3(-a)	40	1.49E-42											
12	HSO4(-a)	40	7.29E-07		(-								_
13	HSO5(-a)	40	1.37E-28											
14	HS2O3(-a)	40	3.76E-135											
15	Na(+a)	40	1.92E+00											
16	NaSO4(-a)	40	1.63E+00											
17	OH(-a)	40	7.69E-07											
18	S(-2a)	40	4.67E-131											-
14 4	▶ N Water Pha	ise						•	- III)	
0	utotec													

Fig. 2. Appearance of the Aqua module Water Phase.

The "**Water Phase**" sheet is used to calculate the activity coefficients, enthalpies and heat capacities for an aqueous solution with a selected composition and temperature. The user specifies the system by inserting the ionic or molecular formulas of the solute species in the "**Water Species Data**" column.

HSC - Aqua

6/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

а												×
🔏 Cut 🖺	Paste		(j)				f(x)	😡 Help				
🗍 Copy 🚳	Find/Replac	e Calculate	Aqua metho	d Units	Main Database	Parameter Sets	Density Calculator	About				
Edi	t	Ca	lculation Optic	ons	Pitzer Dat	abase	Tools	Info				
• 1	120											
A	В	С	D	E	F	G	Н	1	J	К	L	-
Water Phase Data	Temp.	Amount	Amount	Amount	H Ideal	H Estimate	Cp Idea	l Cp Estima	te Hideal	H Estimate	Cp Ideal	
	°C	kmol	mol-%	g	kcal/mol	kcal/mol	cal/(mol*	K) cal/(mol*	K) kcal/kg	kcal/kg	kcal/(kg*K)	111
Water Phase	40	59.19	100.00	1.25E+06	-73.71	-73.70	17.69	17.95	-3485.75	-3485.13	0.84	
Vater Species	Temp.	Amount	Amount	Amount	H Ideal	H Estimate	Cp Idea	l Cp Estima	te AC	AC	Molality	
Data	°C	kmol	mol-%	g	kcal/mol	kcal/mol	cal/(mol*	K) cal/(mol*	K) Molar Sc.	Molal Sc.	mol/kg	
20	40	5.55E+01	93.77	1.00E+06	-68.05	-68.05	18.01	17.88	1.01	1.01	5.55E+01	
(+a)	40	4.05E-08	0.00	4.08E-05	0.00	0.00	0.00	0.00	0.31	0.29	4.05E-08	
S(-a)	40	5.28E-126	0.00	1.74E-121	-4.53	-4.69	-19.57	-14.52	0.73	0.69	5.28E-126	
S2(-a)	40	3.34E-221	0.00	2.17E-216	-64.13	-63.78	-6.63	-1.58	0.43	0.41	3.34E-221	
SO3(-a)	40	1.49E-42	0.00	1.21E-37	-149.68	-151.02	-0.06	5.00	1.02	0.96	1.49E-42	
SO4(-a)	40	7.29E-07	0.00	7.07E-02	-211.89	-211.69	5.72	10.55	0.67	0.63	7.29E-07	
SO5(-a)	40	1.37E-28	0.00	1.55E-23	-184.86	-184.51	33.37	38.42	0.43	0.41	1.37E-28	
S2O3(-a)	40	3.76E-135	0.00	4.25E-130	-153.84	-153.49	4.16	9.22	0.43	0.41	3.76E-135	
a(+a)	40	1.92E+00	3.24	4.40E+04	-57.28	-57.06	10.77	16.23	0.47	0.44	1.92E+00	
aSO4(-a)	40	1.63E+00	2.75	1.94E+05	-273.31	-272.96	21.21	26.27	0.43	0.41	1.63E+00	
H(-a)	40	7.69E-07	0.00	1.31E-02	-55.42	-55.47	-27.29	-5.53	0.76	0.71	7.69E-07	
(-2a)	40	4.67E-131	0.00	1.50E-126	7.36	8.74	-40.65	-20.22	0.03	0.03	4.67E-131	-
Water Pha	se						•	III			•	
	Cut Cut Copy Copy Edit Image: Copy Vater Phase Data Vater Phase Data Data Data 20 Image: Copy (+a) S(-a) SO4(-a) SO5(-a) SO3(-a) SO3(-a) a(+a) asO4(-a) H(-a) -2a)	Cut Paste Copy Find/Replace Edit Edit Vater Phase 40 Data °C Nater Phase 40 Jater Species Temp. Data °C Oata 40 (-a) 40 Sc(-a) 40 A 40 Sc(-a) 40 <tr tr=""></tr>	Cut Paste Copy Find/Replace Edit Calculate Edit Calculate H20 Temp. A B C Vater Phase Temp. Amount Vater Phase 40 59.19 Jate *C kmol Data *C kmol Data *C kmol 20 40 5.55E+01 (+a) 40 4.05E-08 5(-a) 40 3.28E-126 52(-a) 40 3.34E-221 503(-a) 40 1.49E-42 505(-a) 40 3.76E-135 3(-a) 40 1.29E-07 505(-a) 40 1.63E+00 H(-a) 40 7.69E-07 -2a) 40 4.67E-131	A B C D Calculate Aqua metho Calculation Optic Calculation Optic Edit Calculation Optic Calculation Optic Calculation Optic Vater Phase Temp. Amount Amount Vater Phase 40 59.19 100.00 Vater Phase 40 59.19 100.00 Vater Species Temp. Amount Amount Data °C kmol mol-% 20 40 5.55E+01 93.77 +a) 40 4.05E-08 0.00 5(-a) 40 3.34E-221 0.00 503(-a) 40 1.37E-28 0.00 503(-a) 40 1.37E-28 0.00 505(-a) 40 1.37E-135 0.00 3203(-a) 40 1.92E+00 3.24 aSO4(-a) 40 1.63E+00 2.75 H(-a) 40 7.69E-07 0.00 aso4(-a) 40 7.69E-07	Cut Paste Copy Find/Replace Edit Calculate Aqua method Units Edit Calculate Aqua method Units Edit Calculate Aqua method Units Find/Replace Calculate Aqua method Units Edit Calculate Aqua method Units Vater Phase Temp. Amount Amount Amount Data °C kmol mol-% g Zo 40 59.19 100.00 1.25E+06 /ater Species Temp. Amount Amount Amount Data °C kmol mol-% g 20 40 5.55E+01 93.77 1.00E+06 (+a) 40 4.05E-08 0.00 1.21E-37 SC(-a) 40 3.34E-221 0.00 1.21E-37 SO4(-a) 40 1.37E-28 0.00 1.55E-23 SC03(-a) 40 3.76E-135	A Daste Calculate Aqua method Units Main Database Copy B Find/Replace Calculate Aqua method Units Main Database Edit Calculation Options Pitzer Data V H2O Edit Calculation Options Pitzer Data Vater Phase Data Temp. Amount Amount Amount H Ideal Vater Phase 40 59.19 100.00 1.25E+06 -73.71 Jata °C kmol mol-% g kcal/mol Data °C kmol mol-% g kcal/mol 2O 40 5.55E+01 93.77 1.00E+06 -68.05 1+a) 40 4.05E-08 0.00 4.08E-05 0.00 5(-a) 40 3.34E-221 0.00 1.21E-37 -149.68 SO3(-a) 40 1.49E-42 0.00 1.21E-37 -149.68 SO4(-a) 40 7.29E-07 0.00 7.07E-02 -211.89 SO5(-a) 40 3.76E-135 0.00 4.25E-130 </td <td>A Deste Calculate Aqua method Units Main Database Parameter Sets Copy Image: Find/Replace Calculate Aqua method Units Main Database Parameter Sets Edit Calculation Options Pitzer Database Pitzer Database V H2O Edit Calculation Options Pitzer Database A B C D E F G Nater Phase Temp. Amount Amount Amount H Ideal H Estimate Data °C kmol mol-% g kcal/mol kcal/mol Ater Phase 40 59.19 100.00 1.25E+06 -73.71 -73.70 Jate °C kmol mol-% g kcal/mol kcal/mol Data °C kmol mol-% g kcal/mol kcal/mol 2O 40 5.55E+01 93.77 1.00E+06 -68.05 -68.05 52(-a) 40 3.34E-221 0.00 1.74E-121 -4.53 -4.69 52(-a) <td< td=""><td>A B C D E F G H A B C D E F G H Vater Phase Data *C Monount Amount Amount H Ideal H Estimate Cp Ideal Vater Phase Data *C Monount Amount Amount Amount H Ideal H Estimate Cp Ideal Vater Phase Data *C kmol mol-% g kcal/mol cal/(mol* Vater Phase 40 59.19 100.00 1.25E+06 -73.71 -73.70 17.69 Jate *C kmol mol-% g kcal/mol kcal/mol cal/(mol* 20 40 5.55E+01 93.77 1.00E+06 -68.05 -68.05 18.01 20 40 5.28E+126 0.00 1.7E+121 -4.53 -4.69 -19.57 52(-a) 40 3.34E+221 0.00 2.17E+216 -64.13 -63.78 -6.63 503(-a) 40 1.37E+28 0.00 1.55E+23 -184.86 -184.51 33.37</td></td<><td>Image: Cut Paste Image: Calculate Aqua method Units Main Database Parameter Image: Calculate Aqua method Units Main Database Parameter Image: Calculate About Edit Calculation Options Calculation Options Pitzer Database Parameter Tools Info Main Database Parameter Statistic Calculation Options Pitzer Database Image: Calculation Pitzer Database Image: Calculation Options Calculation Options Edit Calculation Options Pitzer Database Parameter Image: Calculation Options Main Database Image: Calculation Options Main Database Image: Calculation Options Main Data Calculation Calculation Options Image: Calc</td><td>Image: Cut Paste Image: Calculate Aqua method Units Image: Calculate Add B C D E F G H I J A B C D E F G H I J Vater Phase Data Temp. Amount Amount Amount H Ideal H Estimate Cp Ideal Cp Estimate H Ideal Vater Phase 40 59.19 100.00 1.25E+06 -73.71 -73.70 17.69 17.95 -3485.75 Ater Phase 40 59.19 100.00 1.25E+06 -73.71 -73.70 17.69 17.95 -3485.75 Ater Species Temp. Amount Amount Amount H Ideal H Estimate Cp Ideal Cp Estimate AC Data °C kmol mol-% g kcal/mol cal/(mol*K) cal/(mol*K)<td>Cut Paste Calculate Aqua method Units Main Database Parameter Sets Fit About Copy A Find/Replace Calculation Options Pitzer Database Parameter Density Calculator Tools Tools Info Image: Phase Data B C D E F G H I J K Nater Phase Data Temp. Amount Amount Amount H Ideal H Estimate Cp Ideal Cp Estimate H Ideal H Estimate °C kmol mol-% g kcal/mol kcal/mol cal/(mol*K) cal/(mol*K) kcal/kg kcal/kg Nater Phase 40 59.19 100.00 1.25E+06 -73.71 -73.70 17.69 17.95 -3485.75 -3485.13 Jater Species Temp. Amount Amount Amount Kal/mol kcal/mol cal/(mol*K) cal/(mol*K) Molar Sc. Mola Sc. 20 40 <td< td=""><td>Cut Paste Calculate Aqua method Units Main Database Parameter Sets If(x) PHep Copy Main Find/Replace Calculation Options Main Database Parameter Sets Density Database About About Image: Copy Main Database Parameter Sets Tools Image About Image: Copy Main Database Parameter Sets Database Parameter Sets Density Database About Image: Copy Main Database Parameter Sets Distabase Parameter Sets Distabase About Image: Copy Amount Amount Amount Haldeal H Estimate Cp Ideal Cp Ideal H Ideal H Estimate Cp Ideal Cal/(mol*K) kcal/kg <td< td=""></td<></td></td<></td></td></td>	A Deste Calculate Aqua method Units Main Database Parameter Sets Copy Image: Find/Replace Calculate Aqua method Units Main Database Parameter Sets Edit Calculation Options Pitzer Database Pitzer Database V H2O Edit Calculation Options Pitzer Database A B C D E F G Nater Phase Temp. Amount Amount Amount H Ideal H Estimate Data °C kmol mol-% g kcal/mol kcal/mol Ater Phase 40 59.19 100.00 1.25E+06 -73.71 -73.70 Jate °C kmol mol-% g kcal/mol kcal/mol Data °C kmol mol-% g kcal/mol kcal/mol 2O 40 5.55E+01 93.77 1.00E+06 -68.05 -68.05 52(-a) 40 3.34E-221 0.00 1.74E-121 -4.53 -4.69 52(-a) <td< td=""><td>A B C D E F G H A B C D E F G H Vater Phase Data *C Monount Amount Amount H Ideal H Estimate Cp Ideal Vater Phase Data *C Monount Amount Amount Amount H Ideal H Estimate Cp Ideal Vater Phase Data *C kmol mol-% g kcal/mol cal/(mol* Vater Phase 40 59.19 100.00 1.25E+06 -73.71 -73.70 17.69 Jate *C kmol mol-% g kcal/mol kcal/mol cal/(mol* 20 40 5.55E+01 93.77 1.00E+06 -68.05 -68.05 18.01 20 40 5.28E+126 0.00 1.7E+121 -4.53 -4.69 -19.57 52(-a) 40 3.34E+221 0.00 2.17E+216 -64.13 -63.78 -6.63 503(-a) 40 1.37E+28 0.00 1.55E+23 -184.86 -184.51 33.37</td></td<> <td>Image: Cut Paste Image: Calculate Aqua method Units Main Database Parameter Image: Calculate Aqua method Units Main Database Parameter Image: Calculate About Edit Calculation Options Calculation Options Pitzer Database Parameter Tools Info Main Database Parameter Statistic Calculation Options Pitzer Database Image: Calculation Pitzer Database Image: Calculation Options Calculation Options Edit Calculation Options Pitzer Database Parameter Image: Calculation Options Main Database Image: Calculation Options Main Database Image: Calculation Options Main Data Calculation Calculation Options Image: Calc</td> <td>Image: Cut Paste Image: Calculate Aqua method Units Image: Calculate Add B C D E F G H I J A B C D E F G H I J Vater Phase Data Temp. Amount Amount Amount H Ideal H Estimate Cp Ideal Cp Estimate H Ideal Vater Phase 40 59.19 100.00 1.25E+06 -73.71 -73.70 17.69 17.95 -3485.75 Ater Phase 40 59.19 100.00 1.25E+06 -73.71 -73.70 17.69 17.95 -3485.75 Ater Species Temp. Amount Amount Amount H Ideal H Estimate Cp Ideal Cp Estimate AC Data °C kmol mol-% g kcal/mol cal/(mol*K) cal/(mol*K)<td>Cut Paste Calculate Aqua method Units Main Database Parameter Sets Fit About Copy A Find/Replace Calculation Options Pitzer Database Parameter Density Calculator Tools Tools Info Image: Phase Data B C D E F G H I J K Nater Phase Data Temp. Amount Amount Amount H Ideal H Estimate Cp Ideal Cp Estimate H Ideal H Estimate °C kmol mol-% g kcal/mol kcal/mol cal/(mol*K) cal/(mol*K) kcal/kg kcal/kg Nater Phase 40 59.19 100.00 1.25E+06 -73.71 -73.70 17.69 17.95 -3485.75 -3485.13 Jater Species Temp. Amount Amount Amount Kal/mol kcal/mol cal/(mol*K) cal/(mol*K) Molar Sc. Mola Sc. 20 40 <td< td=""><td>Cut Paste Calculate Aqua method Units Main Database Parameter Sets If(x) PHep Copy Main Find/Replace Calculation Options Main Database Parameter Sets Density Database About About Image: Copy Main Database Parameter Sets Tools Image About Image: Copy Main Database Parameter Sets Database Parameter Sets Density Database About Image: Copy Main Database Parameter Sets Distabase Parameter Sets Distabase About Image: Copy Amount Amount Amount Haldeal H Estimate Cp Ideal Cp Ideal H Ideal H Estimate Cp Ideal Cal/(mol*K) kcal/kg <td< td=""></td<></td></td<></td></td>	A B C D E F G H A B C D E F G H Vater Phase Data *C Monount Amount Amount H Ideal H Estimate Cp Ideal Vater Phase Data *C Monount Amount Amount Amount H Ideal H Estimate Cp Ideal Vater Phase Data *C kmol mol-% g kcal/mol cal/(mol* Vater Phase 40 59.19 100.00 1.25E+06 -73.71 -73.70 17.69 Jate *C kmol mol-% g kcal/mol kcal/mol cal/(mol* 20 40 5.55E+01 93.77 1.00E+06 -68.05 -68.05 18.01 20 40 5.28E+126 0.00 1.7E+121 -4.53 -4.69 -19.57 52(-a) 40 3.34E+221 0.00 2.17E+216 -64.13 -63.78 -6.63 503(-a) 40 1.37E+28 0.00 1.55E+23 -184.86 -184.51 33.37	Image: Cut Paste Image: Calculate Aqua method Units Main Database Parameter Image: Calculate Aqua method Units Main Database Parameter Image: Calculate About Edit Calculation Options Calculation Options Pitzer Database Parameter Tools Info Main Database Parameter Statistic Calculation Options Pitzer Database Image: Calculation Pitzer Database Image: Calculation Options Calculation Options Edit Calculation Options Pitzer Database Parameter Image: Calculation Options Main Database Image: Calculation Options Main Database Image: Calculation Options Main Data Calculation Calculation Options Image: Calc	Image: Cut Paste Image: Calculate Aqua method Units Image: Calculate Add B C D E F G H I J A B C D E F G H I J Vater Phase Data Temp. Amount Amount Amount H Ideal H Estimate Cp Ideal Cp Estimate H Ideal Vater Phase 40 59.19 100.00 1.25E+06 -73.71 -73.70 17.69 17.95 -3485.75 Ater Phase 40 59.19 100.00 1.25E+06 -73.71 -73.70 17.69 17.95 -3485.75 Ater Species Temp. Amount Amount Amount H Ideal H Estimate Cp Ideal Cp Estimate AC Data °C kmol mol-% g kcal/mol cal/(mol*K) cal/(mol*K) <td>Cut Paste Calculate Aqua method Units Main Database Parameter Sets Fit About Copy A Find/Replace Calculation Options Pitzer Database Parameter Density Calculator Tools Tools Info Image: Phase Data B C D E F G H I J K Nater Phase Data Temp. Amount Amount Amount H Ideal H Estimate Cp Ideal Cp Estimate H Ideal H Estimate °C kmol mol-% g kcal/mol kcal/mol cal/(mol*K) cal/(mol*K) kcal/kg kcal/kg Nater Phase 40 59.19 100.00 1.25E+06 -73.71 -73.70 17.69 17.95 -3485.75 -3485.13 Jater Species Temp. Amount Amount Amount Kal/mol kcal/mol cal/(mol*K) cal/(mol*K) Molar Sc. Mola Sc. 20 40 <td< td=""><td>Cut Paste Calculate Aqua method Units Main Database Parameter Sets If(x) PHep Copy Main Find/Replace Calculation Options Main Database Parameter Sets Density Database About About Image: Copy Main Database Parameter Sets Tools Image About Image: Copy Main Database Parameter Sets Database Parameter Sets Density Database About Image: Copy Main Database Parameter Sets Distabase Parameter Sets Distabase About Image: Copy Amount Amount Amount Haldeal H Estimate Cp Ideal Cp Ideal H Ideal H Estimate Cp Ideal Cal/(mol*K) kcal/kg <td< td=""></td<></td></td<></td>	Cut Paste Calculate Aqua method Units Main Database Parameter Sets Fit About Copy A Find/Replace Calculation Options Pitzer Database Parameter Density Calculator Tools Tools Info Image: Phase Data B C D E F G H I J K Nater Phase Data Temp. Amount Amount Amount H Ideal H Estimate Cp Ideal Cp Estimate H Ideal H Estimate °C kmol mol-% g kcal/mol kcal/mol cal/(mol*K) cal/(mol*K) kcal/kg kcal/kg Nater Phase 40 59.19 100.00 1.25E+06 -73.71 -73.70 17.69 17.95 -3485.75 -3485.13 Jater Species Temp. Amount Amount Amount Kal/mol kcal/mol cal/(mol*K) cal/(mol*K) Molar Sc. Mola Sc. 20 40 <td< td=""><td>Cut Paste Calculate Aqua method Units Main Database Parameter Sets If(x) PHep Copy Main Find/Replace Calculation Options Main Database Parameter Sets Density Database About About Image: Copy Main Database Parameter Sets Tools Image About Image: Copy Main Database Parameter Sets Database Parameter Sets Density Database About Image: Copy Main Database Parameter Sets Distabase Parameter Sets Distabase About Image: Copy Amount Amount Amount Haldeal H Estimate Cp Ideal Cp Ideal H Ideal H Estimate Cp Ideal Cal/(mol*K) kcal/kg <td< td=""></td<></td></td<>	Cut Paste Calculate Aqua method Units Main Database Parameter Sets If(x) PHep Copy Main Find/Replace Calculation Options Main Database Parameter Sets Density Database About About Image: Copy Main Database Parameter Sets Tools Image About Image: Copy Main Database Parameter Sets Database Parameter Sets Density Database About Image: Copy Main Database Parameter Sets Distabase Parameter Sets Distabase About Image: Copy Amount Amount Amount Haldeal H Estimate Cp Ideal Cp Ideal H Ideal H Estimate Cp Ideal Cal/(mol*K) kcal/kg kcal/kg <td< td=""></td<>

Fig. 3. The left-hand part of the "Water Phase" sheet of the HSC Aqua aqueous electrolyte module.

And Ac	lua												_	
	🔀 Cut	🛅 Paste		(A)	83			f(x)	Help				
File	Сору	🔊 Find/Replace	e Calculate	Aqua method	Units Ma	ain Databas	e Parameter Sets	Densi	ty 🔞	About				
Main		Edit	Calo	ulation Options		Pitzer D	atabase	Tool	s 1	info				
A7														
	М	N	0	Р	Q	R	S	т	U	V	W	X	Y	Ζ ^
1	Cp Estimate	Osmotic	H2O Vapour Press.	Sol. Vapour Press.	Ionic Strength	pH	Relat. Humidity	FP	BP	FP (aw at 25°C)	BP (aw at 25°C)	Osmotic Pressure		
3	kcal/(kg*K)	Coeff.	Pa	Pa	mol/kg		%	°C	°C	°C	°C	Ра		E
4	0.85	0.78	7377.08	7004.56	2.06	7.93	94.95	-5.26	101.43	-5.26	101.49	7430735.09		
5	MW	Elements:												
6	g/mol	н	Na	0	S	e-								
7	18.02	2.00		1.00										
8	1.01	1.00				-1.00								
9	33.07	1.00			1.00	1.00								
10	65.14	1.00			2.00	1.00								
11	81.07	1.00		3.00	1.00	1.00								
12	97.07	1.00		4.00	1.00	1.00								
13	113.07	1.00		5.00	1.00	1.00								
14	113.14	1.00		3.00	2.00	1.00								
15	22.99		1.00			-1.00								
16	119.05		1.00	4.00	1.00	1.00								
17	17.01	1.00		1.00		1.00								
18	32.07				1.00	2.00								
14 4	► ► Water	Phase									III (P.
0	utotec													

Fig. 4. The right-hand part of the "Water Phase" sheet of the HSC Aqua aqueous electrolyte module.

The water species "H2O" is pre-inserted into the system in each calculation case, because it is compulsory for the calculations. All the neutral and ionic solutes have to be expressed with the suffix (a). For example, the CO_3^{2-} ion is inserted as CO3(-2a) and CO_2 is inserted as CO2(a). The suffix defines that the species are contained within the aqueous phase. After the specification of the electrolyte, the listed components are provided with temperature values in degrees Celsius. In addition, the user must specify

HSC - Aqua 7/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

the amounts of each species and the solvent (water) in kmol units. Temperature, pressure and energy units can be changed from Units menu.

At this point, the user can also define the model to be used in the calculations. This is done with the help of the Aqua method icon where "Davies", "Pitzer", and "Harvie" can be chosen, which define the model used for estimating the activity coefficients of ions, the mean activity coefficient of binary system, osmotic coefficient of water, excess enthalpies, and heat capacities. By selecting "Harvie," the calculation routine uses all the binary and ternary parameters in the databank and Harvie's modification is used. By selecting "Pitzer," the calculation routine omits all Pitzer (including Harvie's) ternary interaction parameters and calculations are carried out using Pitzer binary parameters only. By selecting the "Davies" option, in turn, all the Pitzer ion interaction parameters are disregarded and the system properties are calculated using Equation (15).

All activity coefficient equations included in the Aqua module should show limiting behavior i.e. activity coefficients γ_i should approach the numerical value 1 as the solution becomes more dilute. This is the Debye-Hückel limiting law. In very dilute solutions (with respect to ions), solution properties, enthalpies and heat capacities should also approach the numerical values of pure water.

The possibility of using different models to calculate system properties greatly adds to the depth of the simulation module, as the user can choose between a simple model and a more rigorous one depending on the case. The simplifications performed by the different model selections are explained to the user when the checkboxes are selected.

If the desired aqueous electrolyte contains species other than water and the cation and anion of the solute salt, HSC Aqua announces that the user has specified the system incorrectly and performs the calculation using only the "Water Phase" sheet. HSC Aqua assumes complete dissociation of the salt into the water phase.

HSC - Aqua 8/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

36.4. Output Sheets

The output of the HSC Aqua module is included in the input sheets. The calculation routine determines the molalities, molecular weights, amounts in grams, ionic activity coefficients, enthalpies, and heat capacities of the different species and displays them to the user in the different columns of the calculation sheets. The element matrix of the solutes and solvent is also displayed. In addition, the heat capacities and enthalpies are displayed both on a mass and mole basis. The properties of the entire electrolyte solution are displayed in the first row of the "**Water Phase**" sheet.

HSC - Aqua

9/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

36.5. New features in Aqua

There are three new features in Aqua module: Main Database, Parameter Sets and Density Calculator.

<u>Main Database</u> icon opens a list of Pitzer parameters in the database. It does not show numerical values, see **Fig. 5**.

	Main Pitzer Database																					x
	A	В	C D	E	F	G	н	I	J	К	LN	1 N	0	P	Q	R	S	τL	J V W	х	Y	-
1	Pitzer Binaries: Cati	ion - Anion Interactions	s	Pitzer-Har	vie activity coe	efficient e	equation for	cation M(+) and anion X(-				Equ	ation	param	eters							ш
2								/		>		Gan	nma	ā	activi	ity co	efficie	ent, AC				
3	Authors:	Pertti Koukkari; 98		Inv=	$= z^2 F + \sum r$	n. (2.B.	+ 7.6.	$+\sum m (2\Phi_m + \sum$	m	¥)		z		0	harg	ge of i	ion					
4		Risto Pajarre; 98		1117 +,51	-+· · _	a cate M	аныома		a	· Mca		m		r	nolal	lity						
5		Justin Salminen; 98, 09, 10			27			77				Ζ		5	sum o	of (m	olality	x ionic	charge) of all	ions		
6		Hannu Sippola, 98			$+ 2 2 m_a$	$m_{a'} \Psi_M$	aa' + Z+	$\sum m_c m_a C_{ca} + 2 \sum$	mn	$t_{nM} + \cdot$		1		i	onic	stren	igth, f	unction	of m and z			
7		Matias Hultgren, 09, 10			a < a'			c a n				С		0	ation	n						
8								∇ / ∇				a		2	anion	1						
9	Temperature dependence	ce of Pitzer parameters	$m_c(2B_X)$	$c + ZC_{Xc})$	$+ $ $m_a 2\Phi_{Xa} + $	m	Wyxca		n		r	neutr	ral sp	ecies								
10	b (m) .	Im . m ² . cm- ²)		В		0	:-a te	erm, f	unctio	on of b(0), b(1), b(2),	1	Binary sheet				
11	$a + \frac{1}{T} + c \cdot ln(T) + \frac{1}{T}$	$dI + eI^{-} + fI^{-}$			$_{\pm} \nabla \nabla_{m}$	m.W	+ 7	$\sum m m c \pm 2 \sum$	m	2 +		С		0	:-a te	erm, f	unctio	on of C(f), z		Binary sheet	
12					T L L me	""c' 1 co	"x + 2- L	L'madca + 2	mn	nnx +		Fii		0	c-c ar	nd a-a	a term	n, functi	on of theta, I		Theta sheet	
13	Temperature dependence	ce notations			c< c'		3	c a n				Psi	1.2	0	:-c-a	& a-a	a-c ter	m			Psi sheet	
14	I = temperature depende	ent data available in defined to	emperature ra	nge								Lam	baa		1-0 &	n-at	erm				Lambda sheet	
15	C = Pitzer parameter set	defined by constant values at .	25 degrees C									F		L.	Javie	es ter	m					
17	- = specific parameter da	ita unavaliable	Temp	aratura danar	etch trahe	Ro	ported par	motor uplidity range		40		1		u	-		Cr					11
11			Activity	rature deper	Specific heat	Ne	porteu para	interer valury range		AC							Ch.	·				
	Cation (+)	Anion (-)	coefficie	Enthalpy	capapcity	Min T IC] Max T [C	Molality / ionic strength	b(0)	b(1) b	(2) C(f) b(0)	b(1)	b(2)	C(f)	b(0)	b(1)	b(2) C(fi			
18			(AC)	(H)	(Cp)		.,	[mol/kg]		, -(-, -				-(-/	-(.)	-(-)	-(-/	-(-) -("			
19	Ag(+a)	NO3(-a)	С	•	•	•	•	•	С	с	C											
20	Al(+3a)	CI(-a)	т	т	т	*	290	m < 5	Т	т	Т	Т	Т		т	Т	Т	Т	T.			
21	Al(+3a)	NO3(-a)	С	•	•	25	25	m = 1-3	С	С	C											
22	Al(+3a)	SO4(-2a)	C	*	*	25	25	I < 4.5	С	С	C C											
23	Ba(+2a)	Br(-a)	Т	С	•	5	45	•	Т	Т	Т	C	С		C							
24	Ba(+2a)	CH3COO(-a)	C	*	*	*		*	С	С	C											
25	Ba(+2a)	Cl(-a)	Т	Т	Т	25	200	•	Т	Т	Т	Т	Т		Т	Т	Т	Т	1			
H	Binary parameters	Theta parameters / Psi parameters	s/Lambda para	meters	-				1						111							

Fig. 5. List of Main Database Pitzer parameters.

<u>Parameter Sets</u> icon shows parameters for the active system specified by the user in column A of the water phase sheet, see **Fig. 6**.

	ctive Pitzer	Parameter	5															_		x
	А	В	С	D	E	F	G	Н	1	J	K	L	М	N	O P	Q	R	S T	r U	-
1	Active P	tzer Pa	rameters																	
2	Pitzer inte	raction par	rameters that	at are currently	used from t	he database ba	sed on spe	cified soluti	on and calculation method	d.										
3																				
4	Temperate	ure depen	dence of Pita	zer parameters	5		Temperat	ure depend	lence notations											
5	b						T = tempe	rature depe	endent data available in de	fined	l tem	peratu	re ra	inge						
6	$a + \frac{1}{T} + \frac{1}{T}$	$-c \cdot ln(T)$) + dT + e	$T^2 + fT^{-2}$			C = Pitzer	parameter :	set defined by constant va	lues a	at 25	degree	s C							
7	1						* = specifi	c paramete	r data unavailable			on Portania.								
8	Pitzer Bin	aries: Cat	tion - Anion	Interactions			-6-			- 00										
9				Tempera	ature depen	dent data	Rep	orted parar	neter validity range		P	C			н			Ср		н
1		tion (+) Anion (-) Specific heat capapeity Min T [C] Max T [C] Molality / ionic strength b(0) b(1) b(2) C(f) b(1) b(1) b(2) C(f) b(1) b(1) b(1) b(1) b(1) b(1) b(1) b(1																		
	Cation (+)	tion (+) Anion (-) Coefficient (AC) (H) Cop (Cp) (AC) (AC) (H) Cop (Cp) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC																		
10				(AC)	-	(Cp)							_		-	_		-		ł
11	H(+a)	HSO4(-a)		-	-	-				-	1		-	-	1	~	1	C	-	
12	H(+a)	504(-2a)		-	-	1		-		1			1	1		1	1		1	
13	Na(+a)	HS(-a)			1 	T		50	*		-		C T	T	Ŧ	T		Ŧ	т	
14	Na(+a)	HSO3(-a)			т Т	T			*	T	1 T		T	1	- -	-		T	1	
15	Na(+a)	HSU4(-a)		T		T			*	1 -	- 1 - T		1 T	T	+	T		T	т	
10	Na(+a)	CP(-a)		T	т	T			*	T	T		T	т	т	T	T	T	T	
10	Na(+a)	SO4(2a)		Ť	T					T	Ť		T	T	T	Ť	T T	T	T	
10	Na(+a)	5203(-22)	1	Ċ	*	*	*		*	Ċ	Ċ		C		-					
20	Theta: Ca	tion - Cat	ion & Anio	n - Anion Inte	ractions								C.	-		_				4
21	metarea	tion out		Tempera	ature depen	dent data	Ren	orted parar	meter validity range	-										11
				Activity		Specific heat	nep	orcea parar	never validity range											
	lon i (+/-)	lon j (+/-))	coefficient	Enthalpy	capapcity	Min T [C]	Max T [C]	Molality / ionic strength											
22				(AC)	(H)	(Cp)			[mol/kg]	2										
23	H(+a)	Na(+a)		Т	С	•		90	<1	1										
24	HSO4(-a)	SO4(-2a)		Т	Т	т	*	*	*											
25	OH(-a)	SO4(-2a)		С	*	*	*	*	*			_		_		_	_			-
14 4	► ► Acti	ive Paramet	ers / Missing P	Parameters /					•				.111					-		2

Fig. 6. Parameter Sets icon show parameters for the active system specified in column A. It also shows the missing parameters for the active system.

HSC - Aqua 10/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

<u>Density Calculator</u> estimates water solution density. The salt concentration unit needs to be given using weight fractions, see **Fig 7**. Estimates are available for only limited salts.

Age							Density	/ Calculator				x
A	> <											
Add	Rer	nove Clear										
Sp	pecies Li	ist Sheet										
	A	В	С	D	E	F	G	Н	1	J	К	-
1	Dens	sity of Aqueou	s Solution									
2	Autho	r: Tuukka Kotirant	а					H2O density	996.95	kg/m3		
3	Densit	ty database: C:\HS	C9\Databases\	Aqueous So	olution Der	isity.xls		Solution density	1204.371594	kg/m3		
4								Temperature	25	°C		
5			Mass fract	ion	Temperat	ure °C				Validity region	violations	
6		Component in wa	ter Min	Max	Min	Max		Selected components	Mass fraction in solution	Mass fraction	Temperature °	С
7		Al2(SO4)3	9.724E-03	0.398	15	95		ZnSO4	0.149			
8		AICI3	0.0023	0.193556	25	25		H2SO4	0.048			
9		Ba(NO3)2	1.297E-02	8.381E-02	5	95						
10		BaCl2	8.073E-04	0.26	0	140						
11		Ca(CH3CO2)2	2.164E-03	8.766E-02	15	45						
12		Ca(NO3)2	4.438E-02	0.76815	25	60						
13		CaCl2	1.392E-03	0.5132	0	100						
14		CaSO4	7.479E-05	1.003E-03	25	25						
15		Cd(NO3)2	1.168E-02	0.7	15	85						-
H 4	H	Sheet1/				out and		•				٢

Fig 7. Density Calculator estimates water solution density. In this example, the mass fraction of ZnSO4 and H2SO4 is 0.149 and 0.048, respectively, and rest 0.803 is water.

HSC - Aqua 11/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

36.6. Own database of Pitzer parameters

Starting from HSC 10, users can create and maintain their own databases of Pitzer parameters. The values of the parameters from the Own Database can be used in the calculations outside the Aqua module, in other modules of HSC, such as Sim and Gem, along with the standard Pitzer parameters from the Main Database. Note that the values of the parameters from the Own Database overwrite those from the Main Database if both databases contain the same parameters.

Aqu A	qua																			(x)
	3	Cut	naste		(A)	B					2	f(x)	0	Help						
File		Сору	30 Find/Replac	e Calculate	Aqua metho		Jse OwnDB	Main Database	e Paramete Sets	er Own D	atabase	Density	0	About						
Mair	n		Edit		Calculatio	n Options			Pitzer Datab	oase		Tools	I	nfo						
A1		, ,	Water Phase	Data																
	1	١.	В	С	D	E	F	G	ŀ	1	1	Ŭ.	J	к	L	M		N	0	p ^
1	Water Da	Phase ta	Temp.	Amount	Amount	Amount	H Ideal	H Estima	te Cp le	deal C	p Estima	e H	Ideal	H Estimate	Cp Ideal	Cp Estin	nate	Osmotic	H2O Vapour Press.	Sol. Vapo Press.
3			-• °c	kmol	mol-%	g	kcal/mo	l kcal/mo	ol cal/(m	nol*K) c	al/(mol*I	() kc	al/kg	kcal/kg	kcal/(kg*K)	kcal/(kg	g*K)	Coeff.	Pa	Pa
4	Water	Phase	40	59,19	100,00	1,25E+06	-73,72	-73,70	17,	08	17,34	-34	86,16	-3485,53	0,81	0,82	2	0,78	7377,08	7004,5
5	Water	Specie	s Temp.	Amount	Amount	Amount	H Ideal	H Estima	te Cplo	deal C	p Estimat	e	AC	AC	Molality	MM	/	Elements:		
6	Da	ita	°C	kmol	mol-%	g	kcal/mo	l kcal/mo	ol cal/(m	nol*K) c	al/(mol*I	() Mo	lar Sc.	Molal Sc.	mol/kg	g/ma	ol	н	Na	0
7	H2O		40	5,55E+01	93,77	1,00E+06	-68,05	-68,05	17,	99	17,86	1	L,01	1,01	5,55E+01	18,0	2	2,00		1,00
8	H(+a)		40	4,05E-08	0,00	4,08E-05	0,00	0,00	0,0	00	0,00	C	0,31	0,29	4,05E-08	1,01	L	1,00		
9	HS(-a)		40	5,28E-126	0,00	1,74E-12	-4,53	-4,69	-19	,57	-14,52	0	0,73	0,69	5,28E-126	33,0	7	1,00		
10	HS2(-a)	Acti		3 346-221	0.00	2.176-210	-64.03	-63.68	0.0		5.05	(143	0.41	3 344-221	65.1	4	1.00		
11	HSO3(-a	a)	la I Delete De																	0
12	H504(-a	1) T du	e Delete Ko	W IA	_	0	C	D	r.		-			1		V			6 N	0
14	HS2O3(2	Open	A Carloss Ca	Alex . A.	B Ion Into	U	U	E	- F	0				,	N				
15	Na(+a)	1	Save	naries: Ca	tion - An	ion inte	ractions													
16	NaSO4(Save As	re depende	nce of Pitze	r paramet	ers													0
17	OH(-a)	1	Reset	$c \cdot ln(T) +$	$dT \pm aT$	$2 \perp fT^{-1}$	2													0
18	S(-2a)	5	T	i in(1)	ui tei	+) 1														
19	SO3(-2a) 6								Ren	orted par	ameter	validit	v range					b(0)	0
20	SO4(-2a)						Show T			Min	m N	Max m	Min I	Max I				-(-)	0
21	\$203(-2	a 7	Cat	ion (+)		Anion (-)	p	arameters	Min T [C]	Max T	[C] [mol/	'kg] [n	nol/kg]	[mol/kg]	[mol/kg]	а		b c	d	0
22		8	A	g(+a)		Cl(-a)]	25	55	0		2			2		5		
23		9	A	(+3a)		Cl(-a)]	25	55				0	5	3				
24		10																		
25		11																		~
26		H	H H Bina	ry parameters	Theta para	meters/Psi	parameters	Lambda par	ameters/				<							>
27		-																		-
14 4	L F H \	Nater F	hase /										<							, *
0	utote	c																		

Fig 8. In HSC 10 it is possible to add your own Pitzer parameters in the Aqua module. These Own Pitzer parameters can also be used in the Gem and Sim modules.

Before using the Own Database the user has to fill in the data in the forms of the Own Database and save the database. *Use OwnDB* button makes the parameters from the Own Database visible in the Main Database. At the same time, the parameters from the Main Database are still accessible in the calculations as noted above. When the use of the Own Database is activated in the Aqua module, all the parameters from both databases are listed in the Main Database. The parameters from the Own Database are placed at the top of the forms and marked with a blue color. It is possible to exclude certain parameters from calculations with help of checkboxes in the Main Database. When the *Use OwnDB* button changes its state, the program resets the forms of the parameters, collects the parameters from the databases and resets the checkboxes.

Main Database of Pitzer parameters

The Main Database displays the parameters available for calculations. It is possible to exclude certain parameters from the calculations using the checkboxes next to the parameters in the forms. When the Own Database is activated using the *Use OwnDB* button, the Main Database lists the parameters from both databases. Four colors are used to distinguish different types of parameters. Black depicts the parameters from the Main Database of HSC. Blue indicates the parameters present in the user's Own Database. Green indicates the parameters that are present in both databases. The parameters from the Own Database are employed in the calculations if not set otherwise using the checkboxes. Red indicates the parameters excluded from the

HSC - Aqua 12/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

calculations by setting the value of the respective checkbox to false. The parameters having a numerical value are marked with an X symbol.

	А	В	C D	E	F	G	н	1	J	K	L	M	N	0	P	Q	n
1	Pitzer Binaries: Cat	tion - Anion Interact	ons	Pitzer-Har	vie activity	coefficient	t equation	for cation I	A(+) and a	nion X(-)						
2							,			>							
1	Authors:	Pertti Koukkari; 98	$ln \gamma \dots = z^2$	$F + \sum m$	(2B., +	Z(.,) +	$\sum m$	20. +	Σm Ψ.								
4		Risto Pajarre; 98	cref +,M = 2+1	· _	a(==>Ma +	20Ma)	2"	LTMC L	a ma M	ca)							
5		Justin Salminen; 98, 09,	10 5	77		∇	V.	5	-								
5		Hannu Sippola, 98	+2	$\sum m_a m$	$\iota_{a'} \Psi_{Maa'}$	+ Z+ 2	$\sum m_c m_c$	$C_{ca} + 2$	$m_n \lambda_{nM}$	+							
7		Matias Hultgren, 09, 10	a	< a'		С	a		n								
3							- /		_	1							
) T	lemperature dependen	ce of Pitzer parameters	$ln\gamma_{-M} = z_{-}^2$	$F + \sum_{m} m$	$a_c(2B_{xc} +$	$ZC_{y_c}) +$) mal	$2\Phi_{y_a} +$	$m_{e}\Psi_{x}$								
0	b	···· ··· ·· · · · · · · · · · · · · ·	1 ,01	4	c Ac	AU		44 4	c c at	")							
1	$a + \frac{1}{T} + c \cdot ln(T) +$	$dT + eT^2 + fT^{-2}$	N N	77		~ ~ "											
									-								
2			+2	$\sum_{m_c m}$	$\iota_{c'} \Psi_{cc'x}$	$+ z_{-} \sum$	$\sum m_c m_d$	$C_{ca} + 2$	$m_n \lambda_{nX}$	+							
.2			+ 2	$\frac{\sum_{c'} m_c m_c}{m_c}$	$n_{c'} \Psi_{cc'x}$	$+ Z_{-} \sum_{c}$	$\sum_{a} m_{c} m_{a}$	$C_{ca} + 2$	$m_n \lambda_{nX}$	+ …							
2 3 4			$+ \sum_{c < c}$	$\sum_{c'} m_c m_c$	$\iota_{c'} \Psi_{cc'x}$	$+ Z_{-} \sum_{c} Z_{c}$	$\sum_{a} m_{c} m_{c}$	$C_{ca} + 2$	$\sum_{n} m_n \lambda_{nX}$	+							
2 3 4 5			+ 2	$\sum_{c'} m_c m_c$	$u_{c'} \Psi_{cc'x}$	$+Z_{-}\sum_{c}$	$\sum_{a} m_{c} m_{d}$	$C_{ca} + 2$	$m_n \lambda_{n\chi}$	+							
.2 .3 .4 .5 .6			+ $\sum_{c < c}$	$\sum_{c'} \sum_{c'} m_c m$	ι _c , Ψ _{cc} , Υ	$+ Z_{-} \sum_{c} Z_{c}$	$\sum_{a} m_{c} m_{d}$	$C_{ca} + 2 $	$\sum_{n} m_n \lambda_{n\chi}$	+		b(0)			_	_
2 .3 .4 .5 .6 .7		1	+ 2 Active set used in	$\sum_{c'} m_c m$	Report	$+ Z_{-} \sum_{c} Z_{c}$	$\sum_{a} m_{c} m_{d}$ eter validit Max m	V range Min I	$\sum_{n} m_n \lambda_{n\chi}$ Max I	+		b(0)	_	4		
2 3 4 5 6 7 8	Cation (+)	Anion (-)	+ 2 c< Active set used in Pitzer calc.	$\sum_{c'} m_c m$ Min T [C]	Report Max T [C]	$+ Z_{-} \sum_{c} Z_{c}$ ted parame Min m [mol/kg]	∑_a m_cm_c eter validit Max m [mol/kg]	y range Min I [mol/kg]	Max I [mol/kg]	+ ···	b	b(0 c) d	e	f	а	b
2 .3 .4 .5 .6 .7 .8 .9	Cation (+) Ag(+a)	Anion (-) Cl(-a)	+ $\sum_{c \in C}$ Active set used in Pitzer calc.	$\int_{c} \sum_{c'} m_c m_c$ Min T [C]	Report Μax T [C] 55	+ Z red parame Min m [mol/kg] 0	eter validit Max m [mol/kg] 2	y range Min I [mol/kg]	Max I	а х	b	b(0 c X) d	e X	f	a X	b
.2 .3 .4 .5 .6 .7 8 9 0	Cation (+) Ag(+a) Al(+3a)	Anion (-) Cl(-a) Cl(-a)	+ \sum_{col} Active set used in Pitzer calc.	Min T [C]	Report Μax T [C] 55 55	+ Z_ \sum_{c} . red parame Min m [mol/kg] 0	eter validit Max m [mol/kg] 2	/ range Min I [mol/kg]	Max I [mol/kg]	a X X	b	b(0 c X X) d	e X	f	a X X	b X
.2 .3 .4 .5 .6 7 8 9 0 1	Cation (+) Ag(+a) Al(+3a) Ag(+a)	Anion (-) Cl(-a) Cl(-a) NO3(-a)	+ $\sum_{c < c}$ Active set used in Pitzer calc.	Min T [C]	Report Max T [C] 55 55	+ Z_ \sum_{c} , med parame Min m [mol/kg] 0	eter validit Max m [mol/kg] 2	y range Min I [mol/kg]	Max I [mol/kg]	a X X X	b X	b(0 c X X) d	e X	f	a X X X	b X
.2 .3 .4 .5 .6 .7 .7 .9 .9 .0 .1 .1 .2	Cation (+) Ag(+a) Al(+3a) Al(+3a) Al(+3a)	Anion (-) Cl(-a) Cl(-a) NO3(-a)	+ 2 Active set used in Pitzer calc.	Min T [C] 25 25 25	Report Max T [C] 55 55 25	+ Z_ \sum_{c} , red parame Min m [mol/kg] 0	eter validit Max m [mol/kg] 2	y range Min I [mol/kg]	Max I [mol/kg]	a X X X X	b X	b(0 c X X) d	e X	f	a X X X X	b X
2 3 4 5 6 7 8 9 9 0 1 1 2 3	Cation (+) Ag(+a) Al(+3a) Ag(+a) Al(+3a)	Anion (-) Cl(-a) Cl(-a) NO3(-a) NO3(-a) SO4(-2a)	+ 2 Active set used in Pitzer calc.	Min T [C] 25 25 25 25	Report Max T [C] 55 55 25 25 25	+ Z_ \sum_{c} . teed parame Min m [mol/kg] 0 3	eter validit Max m [mol/kg] 2	range Min I [mol/kg]	Max I [mol/kg] 5 4,5	a X X X X X X	b X	b(0 c X X) d	e X	f	a X X X X X X	b X
2 3 4 5 6 7 8 9 0 1 2 3 4	Cation (+) Ag(+a) A(+3a) Ag(+a) A(+3a) A(+3a) Ba(+2a)	Anion (-) Cl(-a) Cl(-a) NO3(-a) NO3(-a) SO4(-2a) Br(-a)	+ 2 Active set used in Pitzer calc. V V V V	Min T [C] 25 25 25 25 5	Report Max T [C] 55 55 25 25 45	+ Z	eter validiti Max m [mol/kg] 1	y range Min I [mol/kg]	Max I [mol/kg] 5 4,5	a x x x x x x x x x	b	b(0 c X X) d X	e X	f	a X X X X X X X X	b X

User's Own Database of Pitzer parameters

The user can add and modify the data in the white cells in the forms of the user's Own Database. The *Show T parameters* checkbox disables the temperature-dependent coefficients of Pitzer parameters. When the checkbox is in the 'false' state, only the coefficients independent of temperature are available. The change of state of the checkbox erases the data in the cells. A right click on an active row calls the pop-up icon menu *Delete Row*, which can be used to delete the row. Note that it is important to remove the focus from the cell being edited before saving or closing the forms of the user's Own Database; otherwise the data in the cell will not be saved.

The forms of the user's Own Database are stored locally on the user's computer. The forms are saved every time the forms are closed. If there is a need to reset the forms (delete all the data from the user's Own Database) then the user can click *Reset* in the context menu *Table*. Note that the file containing the data is not deleted in this way; only the link with the file is deleted. The link can be restored by clicking *Open* in the context menu *Table* and selecting the correct file.

Things to be remembered while using the Own Database:

- Invalid entries to the cells of validity range or the values of the parameters will not be recognised correctly. The invalid entries of the parameter values will be replaced in calculations with zeros.
- Save as command in the context menu *Table* creates a new file with the Own Database forms and sets a path to it for the modules of HSC.
- Save command in the context menu Table saves the data in the existing file. If the file has not been saved before, the command acts in the same way as Save as.
- *Open* command from the context menu *Table* sets the path to the database file and loads the forms of the user's Own Database from the file.

HSC - Aqua 13/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

- It is not possible to change the file of the Own Database outside the Aqua module. Using Own Database forms changed for example in MS Excel will not succeed, and the program will return an error message.
- It is obligatory to specify all the species in each active row correctly. The program reads the data from the forms of the Own Database until the first invalid row on each page.
- In order to use the data from the Own Database of the Aqua module in other modules of HSC, such as Gem or Sim, it is enough to create the database file and save it locally. There is no need to activate it with the *Use OwnDB* button. This button only controls the visibility of the parameters from the Own Database in the Main Database. The user can disable the use of the Own Database by clicking Reset in the context menu *Table* of the Own Database.

HSC - Aqua 14/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

36.7. Multi-Component Examples

The testing of the HSC Aqua module with multi-component electrolytes was much more complicated than with binary systems, because there was not as much data available in the literature about these kinds of solutions. Especially when considering enthalpies and heat capacities, the number of multi-component electrolyte systems was really small. Nevertheless, the HSC Aqua model was tested for the activity coefficients for some experimental systems. Examples of seawater simulation results are shown in **Table 1** and **Fig. 10**.

Table 1. Ionic properties of solutes in seawater, Millero's seawater recipe, salinity 35 at 298.15K, Harvie's model (Clegg and Whitfield, 413).¹²

			Acti coeff	ivity icient	H/c	al/mol	C _P /ca	l/Kmol	
Water Phase	Temp / °C	Amount / mol	Exp.	Calc.	Ideal	Calc.	Stand.	Calc.	Molality
		5.667E-02			-68.071	-68.070	17.359	17.420	
H2O	25	5.551E-02	1.001	1.002	-68.315	-68.315	17.980	17.940	55.50844
Br(-a)	25	8.700E-07	0.716	0.719	-29.040	-28.865	-30.174	-24.554	0.00087
Ca(+2a)	25	1.064E-05	0.194	0.184	-129.800	-129.282	-7.402	5.937	0.01064
Cl(-a)	25	5.658E-04	0.692	0.693	-39.933	-39.931	-29.217	-24.134	0.56579
F(-a)	25	6.000E-08	0.281	0.299	-80.150	-80.038	-26.952	-15.884	0.00006
HCO3(-a)	25	2.410E-06	0.605	0.590	-164.898	-164.727	-8.284	-4.947	0.00241
K(+a)	25	1.058E-05	0.589	0.605	-60.270	-60.299	2.040	7.828	0.01058
Mg(+2a)	25	5.519E-05	0.205	0.247	-111.616	-110.839	-5.119	-3.037	0.05519
Na(+a)	25	4.853E-04	0.638	0.650	-57.433	-57.440	9.168	14.706	0.48525
SO4(-2a)	25	2.927E-05	0.100	0.125	-217.400	-217.120	-63.323	-72.444	0.02927
Sr(+2a)	25	9.000E-08	0.175	0.223	-131.670	-131.092	-9.871	2.494	0.00009

HSC - Aqua 15/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Fig. 10. The activity coefficients of different ionic species of seawater at different temperatures. Millero's seawater recipe, S=35. (Clegg and Whitfield, 413).¹²

HSC - Aqua 16/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

36.8. Aqueous Equilibria

Equilibrium calculations of aqueous solutions can be made in a similar manner as presented above for non-electrolyte solutions. However, some points need special attention:

- Always remember to add water to the aqueous phase. It must be the first species in the Aqua module calculations. For example, 55.509 mol (= 1 kg) is a good selection if the amount of ions is some 0.01 - 5 moles.
- 2. Add some charged species (electrons) to the system, for example, by 0.001 mol OH(-a) and the same amount of H(+a). Be sure to maintain the electronic neutrality of the system if you carry out the calculations with the Gibbs solver.
- 3. If you are calculating, for example, the dissolution of 1 mole of CaCO₃ in water and you have stoichiometric raw material amounts, please also add a small amount of O₂(g) to the gas phase, for example, 1E-5 moles. If you have stoichiometric NaCl in the system, please add a minor amount of Cl₂(g) to the gas phase (1E-5 mol). These tricks help the GIBBS solver to find the equilibrium composition in cases of fully stoichiometric overall compositions.
- 4. HSC converts the entropy values of aqueous components from the molality scale to the mole fraction scale if the Mixing Entropy option is selected. Therefore, the entropy values in the results1 sheet are not the same as those in the HSC database, see Chapter 13 (sections 13.4. and 13.6). Identical results will be achieved if the Raoultian activity coefficients of the aqueous species are changed to 55.509/x(H2O), which converts the Raoultian activity scale to the aqueous activity scale.
- 5. For some aqueous species only G values are available at 25 °C. These can be saved in the database as H values if S = 0. Please note, however, that these can only be used in the calculations at 25 °C.
- 6. You can check the equilibrium results by doing simple element balance checks or comparing the equilibrium constants. For example, you can calculate the equilibrium constant for Equation (1) using the Reaction Equations option at 25 °C:

$$H_2 O = H(+a) + OH(-a), K = 1.020 \cdot 10^{-14}$$
(1)

You can also calculate the same equilibrium constant from the equilibrium results of the GIBBS program (CaCO3.gem9) using Equation (11) in Chapter 8 Introduction. You can read the necessary molal concentrations, for example, in the equilibrium results1 sheet. This calculation should give nearly the same results as the Reaction Equation option.

$$K = \frac{[H(+a)] \cdot [OH(-a)]}{[H_2O]} = \frac{4.9015 \cdot 10^{-10} \cdot 20.858 \cdot 0.055584}{55468.3299} = 1.023 \cdot 10^{-14} \quad (2)$$

HSC - Aqua 17/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

36.9. General Calculation Principles for Water Systems

In ionic solutions, interactions between ions are so strong that an ideal assumption can be made only in a very dilute solution (less than 0.001 mol/kg). The chemical potential of a species *i* (partial molar Gibbs energy) of a solute in a solution is related to its activity a_i by:

$$\mu_i = \mu_i^{\Theta} + RT lna_i \tag{3}$$

The activity is related to the molality by:

$$a_i = \frac{\gamma_i m_i}{m^{\Theta}} \tag{4}$$

where activity coefficient γ_i depends on the composition, molality, temperature, and to a lesser degree on pressure. The $m^\circ = 1$ mol/kg standard state simply cancels the units of molality in the equation. As the solution approaches ideality at low molalities, the activity coefficient approaches the numerical value 1.

$$\gamma_i \to \mathbf{1} \text{ and } a_i \to \frac{m_i}{m^{\circ}} \text{ as } m_i \to \mathbf{0}$$
 (5)

The chemical potential can be written in an ideal and non-ideal part as:

$$\mu_{i} = \mu_{i}^{\circ} + RTln \frac{m_{i}}{m^{\circ}} + RTln\gamma_{i} = \mu_{i}^{\circ} + RTln(m_{i}\gamma_{i})$$
(6)

where μ°_i} is the standard chemical potential in J/mol.

The chemical potential ($G_m = \mu$) of a salt $M_{\nu+}X_{\nu-}$ that dissolves to give ν_+M^+ cations and ν_-X^- anions is:

$$G_m = v_+ \mu_+ + v_- \mu_- = \mu_+^* + \mu_-^* + v_+ RT ln(m_+ \gamma_+) + v_- RT ln(m_- \gamma_-) = G_m^* + RT ln(m_\pm \gamma_\pm)$$
(7)

where γ_{\pm} is the mean activity coefficient defined as:

$$\gamma_{\pm} = (\gamma_{+}^{\nu+} \gamma_{-}^{\nu-})^{1/(\nu_{+}+\nu_{-})}$$
(8)

The chemical potential of each ion can be written using a mean activity coefficient:

$$\mu_i = \mu_i^{\circ} + RT \ln(m_{\pm}\gamma_{\pm})$$
(9)

The mean activity coefficient is usually used in binary systems only. In multi-component solutions, the chemical potential of an individual species *i* is written as:

$$\mu_i = \mu_i^* + RT ln(m_i \gamma_i)$$
(10)

The osmotic coefficient of water is related to the activity coefficients that can be derived from activity coefficient relations.^{4,6}

HSC - Aqua 18/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

36.10. Excess Enthalpy and Heat Capacities

Excess Gibbs energy yields other thermodynamic properties such as excess enthalpies and heat capacities determined by appropriate differentiation. The enthalpy of the entire electrolyte solution can then be calculated by the addition of the partial enthalpies multiplied by the solute species amounts in moles. Furthermore, the partial heat capacity of a solute can be determined by further differentiation of the excess enthalpy function. This means that the equations of all the relevant thermodynamic properties of the aqueous system species can be led back to the equations of the logarithmic activity coefficient expressions. The excess enthalpy is derived from the temperature dependency of the activity coefficient function as follows:

$$\left(\frac{\partial ln\gamma_i}{\partial T}\right)_P = -\frac{H_{m,i}^{ex}}{\nu RT^2}$$
(11)

Excess enthalpy is often noted as *L* and it is related to apparent molar enthalpy as follows:

$${}^{\phi}L = \frac{L - n_1 L_1^{\bullet}}{n_2} = \frac{L}{n_2}$$
(12)

The second derivative of excess Gibbs energy and the first derivative of enthalpy yields the following expression for heat capacity:

$$C_{P,m} = \left(\frac{\partial H_m}{\partial T}\right)_P = C_{P,m}^{\circ} + \left(\frac{\partial L_m}{\partial T}\right)_P$$
(13)

The apparent molar heat capacity, ${}^{\phi}C_{P}$ (J/Kmol), is derived as follows:

$${}^{\phi}C_{P} = \frac{C_{P} - n_{1}C_{P1}^{*}}{n_{2}}$$
(14)

In equations (12)-(14):

[•]*L* is the apparent relative molal enthalpy of a solution, J/mol *L* is the relative enthalpy of a solution (is excess enthalpy), J *L*[•]₁ is the excess enthalpy of water, J/mol *C*_{*P*,*m*} is the specific heat capacity, J/Kmol *H*_{*m*} is the enthalpy, J/mol *T* is temperature, K *L*_{*m*} is the molar excess enthalpy, J/mol **C**[•]_{*P*,*m*} is the standard molar heat capacity, J/Kmol. *C*_{*P*</sup> is the heat capacity, J/K **C**[•]_{*P*1} is the infinite dilute partial molal heat capacity of the solvent, J/Kmol and *n*₁ and *n*₂ are the molar amounts of the solvent and the solute, mol}

HSC - Aqua 19/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

36.11. Summary of the Equations Used in HSC Aqua

Davies:

$$ln\gamma_i = -A_{\phi}\left(\frac{\sqrt{I}}{\mathbf{1} + b\sqrt{I}} + \frac{\mathbf{2}}{b}ln(\mathbf{1} + b\sqrt{I})\right)$$
(15)

(not actually the Davies equation but called Davies here).

Pitzer:

$$ln\gamma_{+,M} = z_{+}^{2}F + \sum_{a} m_{a}(\mathbf{2}B_{Ma} + ZC_{Ma}) + \mathbf{2}\sum_{n} m_{n}\lambda_{nM}$$
(16)

$$ln\gamma_{-,M} = z_{-}^{2}F + \sum_{c} m_{c} (\mathbf{2}B_{Xc} + ZC_{Xc}) + \mathbf{2}\sum_{n} m_{n}\lambda_{nM}$$
(17)

The mean activity coefficient of a dissolved salt (in the Pitzer formalism without ternaries):

$$ln\gamma_{\pm} = z_{+}|z_{-}|f^{\gamma} + \frac{v_{+}v_{-}}{v}m\left(2B_{+-}^{\phi} + 2B_{+-} + 3ZC_{+-}\right)$$
(18)

The osmotic coefficient of water (in the Pitzer formalism without ternaries):

$$\phi - \mathbf{1} = -A_{\phi} z_{+} |z_{-}| \frac{\sqrt{I}}{(\mathbf{1} + b\sqrt{I})} + \mathbf{2} \frac{v_{+} v_{-}}{v} m \left(B_{+-}^{\phi} + ZC_{+-} \right)$$
(19)

Parameters used in the Pitzer option in the calculations:

$$\beta_{MX}^{(0)}, \beta_{MX}^{(1)}, \beta_{MX}^{(2)}, C_{MX}^{\phi}, \lambda_{nM}$$

Harvie:

$$ln\gamma_{+,M} = z_{+}^{2}F + \sum_{a} m_{a}(\mathbf{2}B_{Ma} + ZC_{Ma}) + \sum_{c} m_{c}\left(\mathbf{2}\Phi_{Mc} + \sum_{a} m_{a}\Psi_{Mca}\right)$$
(20)

$$+ \sum_{a < a'} \sum_{a'} m_a m_{a'} \Psi_{Maa'} + Z_+ \sum_c \sum_a m_c m_a C_{ca} + 2 \sum_n m_n \lambda_{nM} + \cdots$$

$$ln\gamma_{-,M} = z_-^2 F + \sum_c m_c (2B_{Xc} + ZC_{Xc}) + \sum_a m_a \left(2\Phi_{Xa} + \sum_c m_c \Psi_{Xca} \right)$$

$$+ \sum_{c < c'} \sum_{c'} m_c m_{c'} \Psi_{cc'X} + Z_- \sum_c \sum_a m_c m_a C_{ca} + 2 \sum_n m_n \lambda_{nX} + \cdots$$
(21)

Parameters used in the Harvie option in the calculations:

$$\beta_{MX}^{(0)}, \beta_{MX}^{(1)}, \beta_{MX}^{(2)}, C_{MX}^{\phi}, \theta_{ij} \text{ and } \Psi_{ijk}.$$

The Number of Pitzer Parameters on the Database is:

- The interaction parameter data was collected from the available literature. At present, the database is not visible to the user but the parameter species pairs that exist on the database are listed in Appendix B.

All the parameters of the HSC Aqua Pitzer database were then fitted to the same temperature-dependent equation (22):

$$F = a + \frac{b}{T} + c \cdot ln(T) + dT + eT^{2} + fT^{-2}$$
(22)

HSC - Aqua 20/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

where **T** is the solution temperature in Kelvin and **a**, **b**, **c**, **d**, **e** and **f** are adjustable parameters.

In many cases only data at a standard temperature, 25 °C, exists. In such cases, the parameters were included on the database as constant terms ("a" parameters), which are shown as the first term in the function.

Osmotic Coefficient and Activity of Water

The osmotic coefficient of pure water has a numerical value of 1,000. The osmotic coefficient differs if any other components are dissolved in water, including salts. The osmotic coefficient is related to the vapor pressure of the water and is thermodynamically related to ion activities in the solution. The osmotic coefficient and activity of water are related through the following equation²:

$$ln(a_w) = -\frac{W}{1000} \left(\sum m_i\right) \phi \tag{23}$$

The activity of water can further be used to calculate important properties like water activity and vapor pressure (24), and relative humidity (25). The pure water vapor pressure in Equation (24) was calculated from the vapor pressure values listed in the "Measure Units" database of HSC. The pressure values were fitted to polynomial regression curves in order to match the experimental pressure values as well as possible.

In order to increase the accuracy of the fit, the temperature range was split into two parts above and below 160 °C, see Appendix A. The vapor pressures, osmotic coefficients, and relative humidities (water activities) are calculated in the new "Osmcalc" subroutine of the AquaDLL.dll calculation routine.

$$a_w = \frac{p}{p_0} \tag{24}$$

$$RH(\%) = \frac{p}{p_0} \cdot 100\%$$
 (25)

 $\begin{array}{l} \textbf{p}_0 = (\textbf{-3.10432954399391} \cdot \textbf{10}^{-21} \cdot \textbf{T}^{10} + \textbf{1.00959411100662} \cdot \textbf{10}^{-18} \cdot \\ \textbf{T}^9\textbf{-5.88099024207425} \cdot \textbf{10}^{-17} \cdot \textbf{T}^8\textbf{-3.18476754457404} \cdot \textbf{10}^{-14} \cdot \textbf{T}^7 + \textbf{6.55612456912702} \cdot \\ \textbf{10}^{-12} \cdot \textbf{T}^6 + \textbf{2.25575938350116} \cdot \textbf{10}^{-9} \cdot \textbf{T}^5 + \textbf{2.99998801482107} \cdot \textbf{10}^{-7} \cdot \textbf{T}^4 + \\ \textbf{2.57849258952755} \cdot \textbf{10}^{-5} \cdot \textbf{T}^3 + \textbf{1.43776358189044} \cdot \textbf{10}^{-3} \cdot \textbf{T}^2 + \textbf{4.51730065352071} \cdot \\ \textbf{10}^{-2} \cdot \textbf{T} + \textbf{0.599030194123347})^* \text{din equations} (23)-(25): \end{array}$

*a*_w is water activity *W* is the molar mass of water, g/mol *m*_i is the molality of a solute species i, mol/kg **RH(%)** is the relative humidity *p* is the solution vapor pressure and *p*₀ is the vapor pressure of pure water, see Appendix A.

The osmotic coefficient of water was added to the "Water phase" listing for multicomponent solution systems.

HSC - Aqua 21/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Osmotic Pressure

The osmotic coefficient can also be used to determine the osmotic pressure of an electrolyte solution. Osmotic pressure has units of pressure and gives a pressure difference compared to pure water. It is an important property in membrane systems, when considering processes like reverse osmosis, for example. The osmotic pressure value is calculated in HSC Aqua using Equation (26)⁶.

In the first version of the calculation code, the temperature-dependent water density function Equation (27) required for the calculation was taken from McCutcheon et al.¹⁴. The osmotic pressure is calculated in the "Osmcalc" subroutine of AquaDLL.dll.

$$\pi = -\frac{RT}{v_w} ln(a_w) = -\frac{RT\rho_w}{M_w} ln(a_w)$$
(26)

$$\rho_w = 1000 \cdot \left(1 - \frac{T_c + 288.9414}{508929.2 \cdot (T_c + 68.12963)} \cdot (T_c - 3.9863)^2\right)$$
(27)

 $\rho_{\rm w} = 1000 \cdot (1 - \frac{(T_{\rm C} + 288.9414)}{508929.2 \cdot (T_{\rm C} + 68.12963)} \cdot (T_{\rm C} - 3.9863)^2)$ In equations (26)-(27):

a_w is the water activity, **R** is the molar gas constant, J/(mol K) **T** is the solution temperature, K **v**_w is the partial molar volume of the solvent, m³/mol **π** is the osmotic pressure, Pa **M**_w is the molecular weight of the solvent, kg/mol ρ_w is the density of the solvent, kg/m³ and **T**_c is the solution temperature, ^oC.

Boiling Point Elevation and Freezing Point Depression

Since the vapor pressure of the solution and freezing point of a liquid are directly related to the phase equilibrium, the water activity can be further related to estimating important solution properties, namely boiling point elevation and freezing point depression.

The derivation of the boiling and freezing point changes begin with the definition of chemical potential. Because the calculation of the freezing point depression is analogous to the boiling point elevation, only the freezing point depression will be considered here in detail. At the solid-liquid equilibrium point, the chemical potential of the solvent is equal between the solid and the liquid phase. The chemical potential of the different phases may, in turn, be expressed with Equations (28)-(29). Since the activity of the pure solid solvent is unity and because the chemical potentials of the phases are equal, the Gibbs free energy of fusion can be expressed with Equation (30). When the Gibbs-Helmholz equation is applied to expression (30), the relation (31) is obtained¹⁵.

$$\mu_{liq}(T,P) = \mu_{liq}^{o}(T,P) + RT \cdot ln\left(a_{liq}(T,P,m)\right)$$
(28)

$$\mu_{sol}(T,P) = \mu_{sol}^{o}(T,P) + RT \cdot ln(a_{sol}(T,P))$$
(29)

$$\Delta G_o^{fus} = \mu_{liq}^o - \mu_{sol}^o = -RT \cdot ln(a_{liq})$$
(30)

HSC - Aqua

22/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

$$\frac{dln(a_{liq})}{dT} = \frac{\Delta H_T^{fus}}{RT^2}$$
(31)

In equations (28)-(31):

 μ_{liq} and μ_{sol} are the chemical potential of the liquid solvent (water) and solid solvent (ice),

 $\mu_{liq}^0 \mu^{\circ}_{liq}$ and μ°_{sol} are the chemical potential of the pure liquid solvent and pure solid solvent,

T, P, and R are temperature, pressure and molar gas constant,

m is the solute molality,

a_{liq} **a**_{liq} and **a**_{sol} are the activity of the liquid solvent and solid solvent,

 $\Delta \tilde{\mathbf{G}}_{0}^{\mathrm{fus}} \Delta \mathbf{G}_{0}^{\mathrm{fus}}$ and $\Delta \mathbf{H}_{T}^{\mathrm{fus}}$ are the Gibbs free energy of fusion and the enthalpy of fusion.

 $\Delta \mathbf{H}_{T}^{fus}$ Because of the relatively large freezing point depressions of some salts, the enthalpy of fusion term of Eq. (31) is often not constant. In most cases, a linear temperature dependency related to the heat capacity change of the phase transition (32) is assumed. By integrating Eq. (31) and combining it with Eq. (32), an expression for the temperature change of the freezing point depression Eq. (33) is obtained. By approximating the logarithmic function with the first two terms of the Taylor series, the freezing point Equation (34) used in AquaDLL.dll is derived. The boiling point elevation is similar to this expression, although the enthalpies and heat capacity changes of fusion are replaced by those of vaporization¹⁵.

$$\Delta H_T^{fus} = \Delta H_{0,T_F}^{fus} + \Delta C_P^{fus} (T - T_F) = \Delta H_{0,T_F}^{fus} - (C_P^{liq} - C_P^{sol}) \theta_F$$
(32)

$$R \cdot ln(a_{liq}) = \Delta H_{0,T_F}^{fus} \left(\frac{\mathbf{1}}{T_F} - \frac{\mathbf{1}}{T_F - \theta_F} \right) + \Delta C_P^{fus} \left(ln \left(\frac{T_F - \theta_F}{T_F} \right) + \frac{T_F}{T_F - \theta_F} \right)$$
(33)

$$\theta_F = \frac{\Delta H_{0,T_F}^{fus} - \mathbf{2}RT_F ln(a_{liq}) - \sqrt{\mathbf{2}\Delta C_P^{fus} T_F^2 Rln(a_{liq}) + \left(\Delta H_{0,T_F}^{fus}\right)^2}}{\mathbf{2} \cdot \left(\frac{\Delta H_{0,T_F}^{fus}}{T_F} + \mathbf{0.5}\Delta C_P^{fus} - Rln(a_{liq})\right)}$$
(34)

$$\theta_{B} = \frac{\Delta H_{0,T_{B}}^{vap} - \mathbf{2}RT_{B}ln(a_{liq}) - \sqrt{\mathbf{2}\Delta C_{P}^{vap}T_{B}^{2}Rln(a_{liq}) + \left(\Delta H_{0,T_{B}}^{vap}\right)^{2}}{\mathbf{2} \cdot \left(\frac{\Delta H_{0,T_{B}}^{vap}}{T_{B}} + \mathbf{0.5}\Delta C_{P}^{vap} - Rln(a_{liq})\right)}$$
(35)

where

T is the freezing temperature of the solution,

 T_F and T_B are the (normal) freezing and boiling temperatures of the pure solvent, ΔH_T^{fus} is the enthalpy change of fusion of the solution,

 $\Delta \mathbf{H}_{0,T_{F}}^{\text{fus}} \Delta \mathbf{H}_{0,T_{F}}^{fus}$ is the enthalpy change of fusion of the pure solvent at T_{F} ,

 $\Delta H_{0,T_B}^{vap} \Delta H_{0,T_B}^{vap}$ is the enthalpy change of vaporization of the pure solvent at T_B,

 $\Delta \mathbf{C}_{\mathrm{P}}^{\mathrm{fus}} \Delta \mathbf{C}_{\mathrm{P}}^{\mathrm{fus}}$ is the heat capacity difference between the liquid and solid phases at T_{F} , $\Delta \mathbf{C}_{\mathrm{P}}^{\mathrm{vap}} \Delta \mathbf{C}_{\mathrm{P}}^{\mathrm{vap}}$ is the heat capacity difference between the vapor and liquid phases at T_{B} , $\mathbf{C}_{\mathrm{P}}^{\mathrm{liq}} \mathbf{C}_{\mathrm{P}}^{\mathrm{liq}}$ is the real heat capacity of the liquid solvent,

HSC - Aqua 23/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

 $C_P^{sol} \mathbf{C}_P^{sol}$ is the heat capacity of the solid solvent,

 $\mathbf{C}_{\mathbf{P}}^{\mathrm{vap}} \mathbf{C}_{\mathbf{P}}^{\mathrm{vap}}$ is the heat capacity of the solvent vapor,

R is the molar gas constant,

aliq **a**liq is the activity of the liquid solvent,

 θ_F and θ_B are the freezing point depression and boiling point elevation.

The new "Colligcalc" subroutine was developed for boiling point elevation and freezing point depression calculations. The heat capacities and water activities of Equations (32)-(35) were calculated at the boiling and freezing points of an ideal solution (i.e., pure water). In order to do this, a new subroutine called "CPPitzer" was created. Essentially, this is just a scaled-down version of the "Pitzer_AC" subroutine. The calculation of the activity coefficients has been removed and only the osmotic coefficient and its temperature derivatives are calculated.

In addition to the expressions related directly to water activity, other important expressions were included in the new software version. The ionic strength I of the solution Equation (36) is an essential denominator in the Pitzer formalism and it was therefore already included in the previous versions of the HSC Aqua calculation algorithm. However, this quantity is now also visible on the results sheet for both binary and multi-component systems, since a printing command was added to the "Istrength" subroutine of AquaDLL.dll. In addition, molar activity coefficients displayed in HSC Aqua next to the molal activity coefficients have been calculated with the Pitzer formalism. These activity coefficients were derived through Eq. (37) and were displayed because the HSC Gibbs calculation routine uses the molar activity coefficients in the "**Equilibrium Compositions**" module user interface. The new calculations were included in AquaDLL.dll.

$$I = \frac{1}{2} \sum_{i} m_i z_i^2 \tag{36}$$

$$\gamma_x = \frac{\gamma_m}{x(H_2O)} \tag{37}$$

In equations (36)-(37):

I is the ionic strength of the solution, *m*_i is the molality of a solute species i (mol/kg) and *z*_i is the charge of solute species i. *x*_i is the mole fraction of solute species i, *y*_x and *y*_m are the molar and the molal activity coefficient of solute species i.

Another extremely essential property of the aqueous solution is the pH value of the solution. Because the pH is the 10-base logarithm of the hydrogen ion activity in the solution (38), this quantity can also readily be determined with HSC Aqua. The ability to simulate the pH value of different solutions is crucial to the software development, because pH is a very common and independent measurement, which can be performed in fairly simple laboratory conditions. It is therefore an important and easily perceived reference point for the accuracy of the calculations. The pH of the solution is calculated in the new "pHcalc" subroutine of AquaDLL.dll. If the hydrogen ion has not been specified as an aqueous species by the user, the pH values are not calculated. In the future development of the calculations, some kind of notification about the hydrogen ion specification could be included in the code.

HSC - Aqua

24/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

$$pH = -log(a_{H^+}) = -log(\gamma_{H^+} \cdot m_{H^+})$$
(38)

in Equation (38):

 $\mathbf{a}_{\mathrm{H^+}} \mathbf{a}_{H^+}$ is the hydrogen ion activity, $\gamma_{\mathrm{H^+}} \gamma_{H^+}$ is the hydrogen ion (molal) activity coefficient and $\mathbf{m}_{\mathrm{H^+}} \mathbf{m}_{H^+}$ is the hydrogen ion molality.

All the new calculation results of HSC Aqua have been included in the multi-component sheet ("Water Phase"). Furthermore, the enthalpy of dilution is calculated from the apparent relative molal enthalpies (39). The enthalpy of dilution of a binary system is calculated from one molal concentration to another and the calculation principle has been presented by Silvester and Pitzer⁷.

The enthalpy of dilution can be calculated as the difference of relative apparent molar enthalpies ${}^{\phi}L$ between two molalities:

$$\Delta H_D(m_1 \to m_2) = {}^{\phi}L_2 - {}^{\phi}L_1 \tag{39}$$

where

 $\Delta \mathbf{H}_D \Delta \mathbf{H}_D$ is the enthalpy of dilution, J/Kmol, m_1 and m_2 are the initial molality of the solution and the final molality of the dilution, mol/kg,

 ${}^{\phi}L_1$ and ${}^{\phi}L_2$ are the apparent relative molal enthalpies of initial and final solution, J/mol.

Data Validation and Database Development

New data was added to the database and verified against literature data using HSC Aqua, i.e., the new data was validated by comparing the calculation results with experimental or other calculated values. Through this testing, not only the validity of the parameter sets but also the capabilities of the calculation tool are determined in a more rigorous way than just by cross-referencing parameter values. In this study, previous testing of the software was expanded with further binary salts and some new solution properties. The experimental data was derived from different literary sources.

Based on the test results, tabulation errors in the Pitzer parameter database were corrected and some parameter sets were also replaced or modified. In addition, new parameter entries were also made.

HSC - Aqua 25/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

36.12. Conclusions

The HSC Chemistry software has been expanded with the HSC Aqua module, which deals with non-ideal electrolyte solutions. It estimates the activity coefficients, enthalpies, and heat capacities of binary and multi-component aqueous solutions. The module was also tested with several aqueous binary electrolytes and some multi-component examples.

The enthalpies yield satisfactory results, but the heat capacities, being the 2nd derivatives of Pitzer functions, show a greater deviation from experimental data. This estimation should be used as guidance only and the direct measurement of heat capacities for the most important process solutions is recommended.

From the test cases it is clear that the HSC Aqua aqueous electrolyte module is a capable tool for the modeling of different thermodynamic properties of aqueous electrolyte ionic species with respect to temperature and composition.

The various example systems examined in this work clearly show that aqueous electrolyte systems differ considerably from ideal systems. Even at low solute molalities, the activity coefficients, molal enthalpies, and molal heat capacities are greatly affected by the ion interactions between the different solute species.

It can therefore be stated that accurate aqueous solution calculations in HSC Chemistry definitely require a model for the estimation of corrections to ideal solution properties. This module will be developed and improved further.

HSC - Aqua 26/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

36.13. References

- 1. K. S. Pitzer, Thermodynamics of electrolytes. 1. Theoretical basis and general equations, *J. Phys. Chem.*, **77**, (1973) 268-277.
- 2. C. Harvie, N. Møller, and J. Weare, The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-H-Cl-SO₄-OH-HCO₃-CO₃-CO₂-H₂O system to high ionic strengths at 25°C, *Geochim. Cosmochim. Acta.*, **48** (1984) 723-751.
- Debye and E. Huckel, The theory of electrolytes. I. Lowering of freezing point and related phenomena, Physik. Z. 24 185, 334 (1923). Ref. from H. Harned and B. Owen, *The Physical Chemistry of Electrolyte Solutions*, 2nd edition, Reinhold Publishing Corp. 1950, p.18.
- 4. K. S. Pitzer, *Thermodynamics*, 3rd edition, McGraw-Hill, 1995.
- 5. K. S. Pitzer, *Activity Coefficients in Electrolyte Solutions*, CRC Press, Boca Raton, Florida, USA, 1979.
- 6. Prausnitz, R. Lichtenthaler, and E. Azevedo, *Molecular Thermodynamics of Fluid-Phase Equilibria*, 3rd edition, Prentice-Hall, 1999.
- 7. Silvester, Pitzer, Thermodynamic of electrolytes. X. Enthalpy and the effects of temperature on the activity coefficients, *J. Sol. Chem.*, **7** No 5 (1978) 327-337.
- 8. C. M. Criss and J. F. Millero., *J. Phys. Chem.* **100** (1996), 1288-1294.
- 9. Zemaitis et al., *Handbook of aqueous electrolyte thermodynamics. Theory and application*, New York, 1986
- 10. Wagman, et al., The NBS Tables of Chemical Thermodynamic Properties, *J. Phys. Chem. Ref. Data.* **5**, 10 (1982).
- 11. R. T. Pabalan and K.S. Pitzer, Apparent molar heat capacity and other thermodynamic properties of aqueous KCl solutions to high temperatures and pressures, *J. Chem. Eng. Data*, 33 (1988a) 354-362.
- 12. Clegg and Whitfield, Activity coefficients in Electrolyte Solutions, 2nd ed., K.S. Pitzer, ed., CRC Press, Boca Raton, 1991, p.413.
- Malatesta et al., Activity and osmotic coefficients from the emf of liquidmembrane cells. VII: Co(ClO4)2, Ni(ClO4)2, K2SO4, CdSO4, CoSO4, and NiSO4. J. Sol. Chem. 28 No 5 (1999) 593-619.
- McCutcheon S. C., Martin J. L. & Barnwell T. O. Jr. (1993) Water Quality. In: Maidment D. R. (editor) (1993) Handbook of Hydrology. McGraw-Hill, New York, NY. 1424 p.
- Ge X. & Wang X. Estimation of Freezing Point Depression, Boiling Point Elevation, and Vaporization Enthalpies of Electrolyte Solutions. Ind. Eng. Chem. Res., 48 (2009) 2229–2235.

HSC - Aqua 27/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Appendix A. Vapor pressure of pure water

 $p_0 = (a \cdot T^{10} + b \cdot T^9 + c \cdot T^8 + d \cdot T^7 + e \cdot T^6 + f \cdot T^5 + g \cdot T^4 + h \cdot T^3 + i \cdot T^2 + j \cdot T + k) \cdot 1000$ (A1)

```
\begin{array}{l} \textbf{p}_0 = (\textbf{1}.\textbf{11982860630743} \cdot \textbf{10}^{\textbf{-18}} \cdot \textbf{T}^{10}\textbf{-4.04920519596997} \cdot \textbf{10}^{\textbf{-15}} \cdot \textbf{T}^9 + \\ \textbf{6.08290457531376} \cdot \textbf{10}^{\textbf{-12}} \cdot \textbf{T}^8\textbf{-5.12897992812743} \cdot \textbf{10}^{\textbf{-9}} \cdot \textbf{T}^7 + \textbf{2.7240831169274} \cdot \textbf{10}^{\textbf{-6}} \cdot \\ \textbf{T}^6\textbf{-9.59696050004219} \cdot \textbf{10}^{\textbf{-4}} \cdot \textbf{T}^5 + \textbf{0.228254919514224} \cdot \textbf{T}^4\textbf{-36.311462374836} \cdot \textbf{T}^3 + \\ \textbf{3706.72828793979} \cdot \textbf{T}^2\textbf{-219658.499462442} \cdot \textbf{T} + \textbf{5746593.5787401} \text{*d} \text{T} < \textbf{160} \ ^{\circ}\text{C} \end{array}
```

 $a = -3.10432954399391 \cdot 10^{-21}$ $b = 1.00959411100662 \cdot 10^{-18}$ $c = -5.88099024207425 \cdot 10^{-17}$ $d = -3.18476754457404 \cdot 10^{-14}$ $e = 6.55612456912702 \cdot 10^{-12}$ $f = 2.25575938350116 \cdot 10^{-9}$ $g = 2.99998801482107 \cdot 10^{-7}$ $h = 2.57849258952755 \cdot 10^{-5}$ $i = 1.43776358189044 \cdot 10^{-3}$ $j = 4.51730065352071 \cdot 10^{-2}$ k = 0.599030194123347

T ≥ 160 °C

 $\begin{array}{l} a = 1.11982860630743\cdot 10^{-18} \\ b = -4.04920519596997\cdot 10^{-15} \\ c = 6.08290457531376\cdot 10^{-12} \\ d = -5.12897992812743\cdot 10^{-9} \\ e = 2.7240831169274\cdot 10^{-6} \\ f = -9.59696050004219\cdot 10^{-4} \\ g = 0.228254919514224 \\ h = -36.311462374836 \\ i = 3706.72828793979 \\ j = -219658.499462442 \\ k = 5746593.5787401 \end{array}$

HSC - Aqua 28/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Appendix B. HSC Aqua thermodynamic database

The Pitzer parameter sets of the HSC Aqua database are presented in this appendix. Because some of the parameter sets have a temperature dependency presented in Equation (22) and some parameters have only been tabulated as constant values, the temperature dependencies of the parameter sets are presented here as well. As the logarithmic activity coefficient expression is differentiated to calculate the enthalpies and heat capacities, the constant terms and first order terms of Equation (22) are eliminated. Therefore, the temperature dependencies of the *H* and *C*p expressions have to be considered separately.

The total number of entries in the HSC Aqua database for each sheet of Pitzer parameters is displayed below. The entries of the previous Pitzer parameter database, which was used as a template for the HSC Aqua database, are given in parentheses. These old parameter set amounts also include sets that have been replaced with new parameter entries in the new HSC Aqua database. This data can also be found when the user selects the Main Database icon in the Aqua module.

- Binary ion pairs (Beta and C parameters): 425
- Cation-cation and anion-anion (Theta parameter) pairs: 114
- Ternary (Psi) ion interaction parameters: 199
- Neutral-ion (Lambda parameter) pairs: 293

Total amount of entries: 1031

HSC - Aqua

29/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B1. The parameter sets and the parameter temperature dependencies of the HSC Aqua

 Pitzer database Binary parameter sheet. (HSC Aqua 2009)

Y = the parameter set has at least one temperature-dependent term

N = the parameter set is defined by constant values

	IONS	Т	dep)., A	С	-	Гde	p., I	1	Т	dep	o., C	р
Cation	Anion	$\beta^{(0)}$	$\beta^{(1)}$	$\beta^{(2)}$	C∳	$\beta^{(0)}$	$\beta^{(1)}$	$\beta^{(2)}$	C∲	$\beta^{(0)}$	$\beta^{(1)}$	$\beta^{(2)}$	C∳
Ag(+a)	NO3(-a)	Ν	Ν		Ν								
Al(+3a)	Cl(-a)	Υ	Υ		Υ	Υ	Υ		Υ	Υ	Υ		Υ
Al(+3a)	NO3(-a)	Ν	Ν		Ν								
Al(+3a)	SO4(-2a)	Ν	Ν	Ν	Ν								
Ba(+2a)	Br(-a)	Υ	Υ		Υ	Ν	Ν		Ν				
Ba(+2a)	CH3COO(-a)	Ν	Ν		Ν								
Ba(+2a)	Cl(-a)	Υ	Υ		Υ	Υ	Υ		Υ	Υ	Υ		Υ
Ba(+2a)	ClO4(-a)	Ν	Ν		Ν								
Ba(+2a)	HSO4(-a)	Ν	Υ				Ν						
Ba(+2a)	l(-a)	Ν	Ν		Ν								
Ba(+2a)	NO3(-a)	Υ	Υ			Ν	Ν						
Ba(+2a)	OH(-a)	Ν	Ν										
Ba(+2a)	SO4(-2a)	Υ	Υ	Υ		Υ	Υ	Υ		Ν	Ν	Ν	
Be(+2a)	SO4(-2a)	Ν	Ν		Ν								
Ca(+2a)	B(OH)4(-a)	Υ	Υ	Υ		Ν	Ν	Υ				Ν	
Ca(+2a)	Br(-a)	Υ	Υ		Ν	Ν	Ν						
Ca(+2a)	Cl(-a)	Υ	Υ		Υ	Υ	Υ		Υ	Υ	Ν		Υ
Ca(+2a)	ClO4(-a)	Υ	Υ		Υ	Ν	Ν		Ν				
Ca(+2a)	HCO3(-a)	Ν	Ν										
Ca(+2a)	HS(-a)	Ν	Ν										
Ca(+2a)	HSO3(-a)	Ν	Ν										
Ca(+2a)	HSO4(-a)	Ν	Ν										
Ca(+2a)	l(-a)	Ν	Ν		Ν								
Ca(+2a)	NO3(-a)	Υ	Υ		Υ	Υ	Υ		Υ	Υ	Υ		Υ
Ca(+2a)	OH(-a)	Ν	Ν	Ν									
Ca(+2a)	PbCl3(-a)	Ν	Ν										
Ca(+2a)	PbCl4(-2a)	Ν			Ν								
Ca(+2a)	SO4(-2a)	Υ	Υ	Υ		Υ	Υ	Υ		Ν	Ν	Ν	
CaB(OH)(+a)	Cl(-a)	Ν											
Cd(+2a)	Br(-a)	Ν	Ν		Ν								
Cd(+2a)	Cl(-a)	Ν	Ν		Ν								
Cd(+2a)	ClO4(-a)	Ν	Ν		Ν								
Cd(+2a)	l(-a)	Ν	Ν		Ν								
Cd(+2a)	NO2(-a)	Ν	Ν		Ν								
Cd(+2a)	NO3(-a)	Ν	Ν		Ν								
Cd(+2a)	SO3(-2a)	Ν	Ν	Ν									
Cd(+2a)	SO4(-2a)	Υ	Υ	Υ	Υ	Ν	Ν	Ν	Ν				
Ce(+3a)	Cl(-a)	Ν	Ν		Ν								

HSC - Aqua

30/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B1 (continued). The parameter sets and the parameter temperature dependencies of the HSC Aqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)

Y = the parameter set has at least one temperature-dependent term

N = the parameter set is defined by constant values

IONS			dep)., A	С	-	T de	p.,	1	٦	dep	з., C	р
Cation	Anion	β(0)	β ⁽¹⁾	β ⁽²⁾	C∳	β(0)	β ⁽¹⁾	$\beta^{(2)}$	C∳	β(0)	β ⁽¹⁾	β ⁽²⁾	C∲
CH3NH3(+a)	Cl(-a)	Ν	Ν		Ν								
(CH3)2NH2(+a)	Cl(-a)	Ν	Ν		Ν								
CH3NH3(+a)	NO3(-a)	Ν	Ν		Ν								
(CH3)2NH2(+a)	NO3(-a)	Ν	Ν		Ν								
(CH3)3NH(+a)	NO3(-a)	Ν	Ν		Ν								
CH6N3(+a)	Br(-a)	Ν	Ν		Ν								
CH6N3(+a)	ClO4(-a)	Ν	Ν		Ν								
CH6N3(+a)	F(-a)	Ν	Ν		Ν								
CH6N3(+a)	l(-a)	Ν	Ν		Ν								
CH6N3(+a)	NO3(-a)	Ν	Ν		Ν								
(CH3)4CH6N3(+a)	Br(-a)	Ν	Ν		Ν								
(CH3)4CH6N3(+a)	Cl(-a)	Ν	Ν		Ν								
(CH3)4CH6N3(+a)	ReO4(-a)	Ν	Ν		Ν								
(CH3)4CH6N3(+a)	H2NSO3(SFAA)(-a)	Ν	Ν		Ν								
C6H14N4O2H(ARG)(+a)	Cl(-a)	Ν	Ν		Ν								
C6H9N3O2H(HIS)(+a)	Cl(-a)	Ν	Ν										
C6H14N2O2H(LYS)(+a)	Cl(-a)	Ν	Ν		Ν								
Cm(+3a)	Cl(-a)	Ν	Ν		Ν								
CmCO3(+a)	Cl(-a)	Ν	Ν		Ν								
Co(+2a)	Br(-a)	Ν	Ν		Ν								
Co(+2a)	Cl(-a)	Y	Y		Y	Ν	Ν		Ν				
Co(+2a)	ClO4(-a)	Ν	Ν		Ν								
Co(+2a)	I(-a)	Ν	Ν		Ν								
Co(+2a)	NO3(-a)	Ν	Ν		Ν								
Co(+2a)	SeO4(-2a)	Ν	Ν		Ν								
Co(+2a)	SO3(-2a)	Ν	Ν	Ν									
Co(+2a)	SO4(-2a)	Ν	Ν	Ν	Ν								
Cr(+3a)	Cl(-a)	Ν	Ν		Ν								
Cr(+3a)	NO3(-a)	Ν	Ν		Ν								
Cs(+a)	Br(-a)	Y	Υ		Ν	Ν	Ν						
Cs(+a)	CH3COO(-a)	Ν	Ν		Ν								
Cs(+a)	Cl(-a)	Υ	Y		Υ	Υ	Υ		Υ	Υ	Υ		Υ
Cs(+a)	F(-a)	Υ	Υ		Ν	Ν	Ν						
Cs(+a)	HSO4(-a)	Υ	Ν		Υ	Υ			Υ	Ν			Ν
Cs(+a)	l(-a)	Y	Υ		Ν	Ν	Ν						
Cs(+a)	NO2(-a)	Ν	Ν		Ν								
Cs(+a)	NO3(-a)	Ν	Ν										
Cs(+a)	OH(-a)	Ν	Ν										
Cs(+a)	S2O8(-2a)	Ν	Ν										

HSC - Aqua

31/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

 Table B1 (continued).
 The parameter sets and the parameter temperature dependencies of the HSC Aqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)

Y = the parameter set has at least one temperature-dependent term

N = the parameter set is defined by constant values

	IONS	٦	Г dep	o., A0	C		T de	р., Н		7	۲ dep	o., C i	C
Cation	Anion	β ⁽⁰⁾	β ⁽¹⁾	$\beta^{(2)}$	C∲	β ⁽⁰⁾	β ⁽¹⁾	$\beta^{(2)}$	C∲	β ⁽⁰⁾	$\beta^{(1)}$	$\beta^{(2)}$	C∲
Cs(+a)	SO4(-2a)	Y	Y		Y	Y	Y		Y	Y	Υ		Υ
Cu(+2a)	Br(-a)	Ν	Ν		Ν								
Cu(+2a)	Cl(-a)	Y	Y		Ν	Ν	Ν						
Cu(+2a)	ClO4(-a)	Ν	Ν		Ν								
Cu(+2a)	CuCl3(-a)	Ν	Ν		Ν								
Cu(+2a)	CuCl4(-2a)	Ν	Ν	Ν	Ν								
Cu(+2a)	HSO4(-a)	Ν	Ν										
Cu(+2a)	NO3(-a)	Ν	Ν		Ν								
Cu(+2a)	SO4(-2a)	Υ	Υ	Υ	Υ	Ν	Ν	Ν	Ν				
CuCl(+a)	Cl(-a)	Ν	Ν		Ν								
CuCl(+a)	CuCl3(-a)	Ν	Ν		Ν								
CuCl(+a)	CuCl4(-2a)	Ν	Ν		Ν								
CuCl(+a)	SO4(-2a)	Ν	Ν										
Dy(+3a)	Cl(-a)	Ν	Ν		Ν								
Dy(+3a)	ClO4(-a)	Ν	Ν		Ν								
Dy(+3a)	NO3(-a)	Ν	Ν		Ν								
Er(+3a)	Cl(-a)	Ν	Ν		Ν								
Er(+3a)	ClO4(-a)	Ν	Ν		Ν								
Er(+3a)	NO3(-a)	Ν	Ν		Ν								
Eu(+3a)	Cl(-a)	Ν	Ν		Ν								
Eu(+3a)	NO3(-a)	Ν	Ν		Ν								
Fe(+2a)	Cl(-a)	Ν	Ν		Ν								
Fe(+2a)	HSO4(-a)	Ν	Ν										
Fe(+2a)	SO4(-2a)	Ν	Ν	Ν	Ν								
Fe(+3a)	CI(-a)	Ν	Ν		Ν								
Ga(+3a)	CI(-a)	Ν	Ν		Ν								
GaOH(+3a)	Cl(-a)	Ν	Ν										
Ga(+3a)	CIO4(-a)	Ν	Ν		Ν								
Gd(+3a)	CI(-a)	Ν	Ν		Ν								
Gd(+3a)	CIO4(-a)	Ν	Ν		Ν								
Gd(+3a)	NO3(-a)	Ν	Ν		Ν								
H(+a)	Br(-a)	Y	Υ		Υ	Y	Υ		Υ	Y	Υ		Υ
H(+a)	C7H8O3S(4MBSA)(-a)	Ν	Ν		Ν								
H(+a)	C8H9O3S(25DMBSA)(-a)	Ν	Ν		Ν								
H(+a)	CF3O3S(-a)	Ν	Ν		Ν								
H(+a)	Cl(-a)	Υ	Υ		Υ	Υ	Υ		Υ	Υ	Υ		Υ
H(+a)	ClO4(-a)	Υ	Υ		Υ	Ν	Ν		Ν				
H(+a)	CuCl3(-a)	Ν	Ν		Ν								
H(+a)	CuCl4(-2a)	Ν	Ν		Ν								
H(+a)	F(-a)	Ν	Ν		Ν								

HSC - Aqua

32/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B1 (continued). The parameter sets and the parameter temperature dependencies of the HSC Aqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)

Y = the parameter set has at least one temperature-dependent term

N = the parameter set is defined by constant values

	IONS	-	T dej	o., A	С		T de	р., Н		٦	「 dep)., Cl	þ
Cation	Anion	$\beta^{(0)}$	β ⁽¹⁾	β ⁽²⁾	C∲	β ⁽⁰⁾	$\beta^{(1)}$	$\beta^{(2)}$	C∲	β ⁽⁰⁾	$\beta^{(1)}$	$\beta^{(2)}$	C∲
H(+a)	HF2(-a)	Ν	Ν		Ν								
H(+a)	HSO4(-a)	Y	Υ			Υ	Υ			Υ	Ν		
H(+a)	l(-a)	Υ	Υ		Υ	Ν	Ν		Ν				
H(+a)	NO3(-a)	Υ	Υ		Υ	Υ	Ν		Υ	Ν			Ν
H(+a)	H2NSO3(SFAA)(-a)	Ν	Ν		Ν								
H(+a)	PbCl3(-a)	Ν	Ν										
H(+a)	PbCl4(-2a)	Ν											
H(+a)	ReO4(-a)	Ν	Ν		Ν								
H(+a)	SO4(-2a)	Υ			Υ	Υ			Υ	Υ			Υ
H(+a)	SO2CI(-a)	Ν	Ν										
Hf(+4a)	Cl(-a)	Ν	Ν		Ν								
HfOH(+3a)	Cl(-a)	Ν	Ν										
Hg(+2a)	ClO4(-a)	Ν	Ν		Ν								
HgCl(+a)	ClO4(-a)	Ν			Ν								
HgOH(+a)	ClO4(-a)	Ν	Ν		Ν								
Hg2OH(+3a)	CIO4(-a)	Ν	Ν		Ν								
Ho(+3a)	Cl(-a)	Ν	Ν		Ν								
Ho(+3a)	CIO4(-a)	Ν	Ν		Ν								
Ho(+3a)	NO3(-a)	Ν	Ν		Ν								
In(+3a)	Cl(-a)	Ν	Ν										
K(+a)	(CH2COO)2(-2a)	Ν	Ν										
K(+a)	AI(OH)4(-a)	Ν	Ν		Ν								
K(+a)	AsO4(-3a)	Ν	Ν		Ν								
K(+a)	B(OH)4(-a)	Υ	Y		Υ	Ν	Ν		Ν				
K(+a)	B3O3(OH)(-a)	Ν											
K(+a)	B4O5(OH)4(-2a)	Ν											
K(+a)	Br(-a)	Y	Υ		Υ	Υ	Υ		Ν	Ν	Ν		
K(+a)	BrO3(-a)	Y	Y		Υ	Υ	Y		Y	Υ	Υ		Υ
K(+a)	CH3COO(-a)	Ν	Ν		Ν								
K(+a)	CCI3COO(-a)	Ν	Ν		Ν								
K(+a)	CF3O3S(3FMSFOA)(-a)	Ν	Ν		Ν								
K(+a)	CH4O3S(MSA)(-a)	Ν	Ν		Ν								
K(+a)	C5H8N4(GLU)(-a)	Ν	Ν		Ν								
K(+a)	Cl(-a)	Y	Y		Υ	Υ	Y		Υ	Υ	Υ		Υ
K(+a)	ClO3(-a)	Y	Y		Y	Y	Y		Υ	Y	Y		Υ
K(+a)	CNS(-a)	Y	Y		Y	Ν	Ν		Ν				
K(+a)	Co(CN)6(-3a)	Ν	Ν		Ν								
K(+a)	CO3(-2a)	Y	Y		Y	Y	Y		Υ	Y	Y		Y
K(+a)	Cr2O7(-2a)	Ν	Ν	Ν	Ν								

HSC - Aqua

33/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B1 (continued). The parameter sets and the parameter temperature dependencies of the HSC Aqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)

Y = the parameter set has at least one temperature-dependent term

N = the parameter set is defined by constant values

	IONS	-	Гdep)., A(C		T de	р., Н		-	T dej	p., Cl	o
Cation	Anion	$\beta^{(0)}$	β ⁽¹⁾	$\beta^{(2)}$	C∲	β(0)	$\beta^{(1)}$	β ⁽²⁾	C∳	β(0)	β ⁽¹⁾	β ⁽²⁾	C∲
K(+a)	CrO4(-2a)	Ν	Ν		Ν								
K(+a)	F(-a)	Y	Y		Y	Ν	Ν		Ν				
K(+a)	Fe(CN)6(-3a)	Y	Y		Y	Ν	Ν		Ν				
K(+a)	Fe(CN)6(-4a)	Y	Y		Y	Ν	Ν		Ν				
K(+a)	H2AsO4(-a)	Ν	Ν										
K(+a)	H2P2O7(-2a)	Ν	Ν		Ν								
K(+a)	H2PO4(-a)	Y	Y		Y	Ν	Ν		Ν				
K(+a)	HasO4(-2a)	Ν	Ν		Ν								
K(+a)	HCO3(-a)	Υ	Υ		Υ	Υ	Υ		Υ	Υ	Y		Υ
K(+a)	HOOC(CH2)2COO(-a)	Ν	Ν		Ν								
K(+a)	HOOC(CH2)4COO(-a)	Ν	Ν										
K(+a)	HOOCCH2COO(-a)	Ν	Ν		Ν								
K(+a)	H3CSO4(-a)	Ν	Ν		Ν								
K(+a)	H2NSO3(SFAA)(-a)	Ν	Ν		Ν								
K(+a)	HPO4(-2a)	Ν	Ν		Ν								
K(+a)	HS(-a)	Υ			Ν	Υ				Υ			
K(+a)	HSO4(-a)	Υ	Y		Y	Υ	Y		Υ	Y	Y		Ν
K(+a)	l(-a)	Υ	Y		Y	Ν	Ν		Ν				
K(+a)	IO3(-a)	Ν	Ν										
K(+a)	NH2C6H4SO3(4ABSA)(-a)	Ν	Ν		Ν								
K(+a)	NO2(-a)	Ν	Ν		Ν								
K(+a)	NO3(-a)	Υ	Y		Y	Ν	Ν		Ν				
K(+a)	OH(-a)	Υ	Y		Y	Υ	Y		Υ	Y	Y		Υ
K(+a)	PbCl4(-2a)	Ν											
K(+a)	P3O9(-3a)	Ν	Ν		Ν								
K(+a)	PtF6(-a)	Ν	Ν										
K(+a)	PO4(-3a)	Ν	Ν		Ν								
K(+a)	Pt(CN)4(-2a)	Ν	Ν		Ν								
K(+a)	SCN(-a)	Ν	Ν		Ν								
K(+a)	SO4(-2a)	Y	Y		Υ	Υ	Υ		Υ	Y	Y		Y
La(+3a)	Cl(-a)	Y	Y		Y	Ν	Ν		Ν				
La(+3a)	ClO4(-a)	Y	Y		Υ	Ν	Ν		Ν				
La(+3a)	NO3(-a)	Y	Υ		Υ	Ν	Ν		Ν				
Li(+a)	B4O7(-2a)	Ν	Ν	Ν	Ν								
Li(+a)	B4O5(OH)4(-2a)	Ν	Ν		Ν								
Li(+a)	Br(-a)	Y	Y		Y	Ν	Ν		Ν				
Li(+a)	BrO3(-a)	Ν	Ν		Ν								
Li(+a)	BrO3(-a)	Ν	Ν										
Li(+a)	CF3O3S(3FMSFOA)(-a)	Ν	Ν		Ν								

HSC - Aqua

34/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B1 (continued). The parameter sets and the parameter temperature dependencies of theHSC Aqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)

Y = the parameter set has at least one temperature-dependent term

N = the parameter set is defined by constant values

	IONS	-	T dep)., AQ	2		T de	р., Н		•	T dep	o., Cp)
Cation	Anion	β ⁽⁰⁾	β ⁽¹⁾	$\beta^{(2)}$	C∲	β ⁽⁰⁾	β ⁽¹⁾	$\beta^{(2)}$	C∲	β ⁽⁰⁾	β ⁽¹⁾	$\beta^{(2)}$	C∲
Li(+a)	CH3COO(-a)	Ν	Ν		Ν								
Li(+a)	CCI3COO(-a)	Ν	Ν		Ν								
Li(+a)	CH4O3S(MSA)(-a)	Ν	Ν		Ν								
Li(+a)	Cl(-a)	Y	Υ		Υ	Ν	Ν		Υ				Υ
Li(+a)	CIO3(-a)	Ν	Ν		Ν								
Li(+a)	ClO4(-a)	Y	Υ		Υ	Ν	Ν		Ν				
Li(+a)	CuCl3(-a)	Ν	Ν										
Li(+a)	CuCl4(-2a)	Ν	Ν										
Li(+a)	HSO4(-a)	Y	Υ		Υ	Υ	Υ		Υ	Ν	Ν		Υ
Li(+a)	H2NSO3(SFAA)(-a)	Ν	Ν		Ν								
Li(+a)	l(-a)	Ν	Ν										
Li(+a)	IO3(-a)	Ν	Ν		Ν								
Li(+a)	NO2(-a)	Ν	Ν		Ν								
Li(+a)	NO3(-a)	Ν	Ν		Ν								
Li(+a)	OH(-a)	Ν	Ν										
Li(+a)	ReO4(-a)	Ν	Ν		Ν								
Li(+a)	SO4(-2a)	Y	Υ		Υ	Ν	Ν		Ν				
Lu(+3a)	Cl(-a)	Ν	Ν		Ν								
Lu(+3a)	ClO4(-a)	Ν	Ν		Ν								
Lu(+3a)	NO3(-a)	Ν	Ν		Ν								
Mg(+2a)	B(OH)4(-a)	Y	Y	Y		Ν	Ν	Y				Ν	
Mg(+2a)	Br(-a)	Y	Υ		Ν	Υ	Υ			Ν	Ν		
Mg(+2a)	CH3COO(-a)	Ν	Ν		Ν								
Mg(+2a)	Cl(-a)	Y	Y		Y	Υ	Υ		Υ	Ν	Ν		Ν
Mg(+2a)	CIO4(-a)	Y	Υ		Υ	Ν	Ν		Ν				
Mg(+2a)	CuCl3(-a)	Ν	Ν										
Mg(+2a)	CuCl4(-2a)	Ν	Ν	Ν									
Mg(+2a)	F(-a)	Ν	Ν		Ν								
Mg(+2a)	HCO3(-a)	Ν	Ν										
Mg(+2a)	HPO4(-2a)	Ν	Ν										
Mg(+2a)	H2PO4(-a)	Ν	Ν										
Mg(+2a)	HS(-a)	Ν	Ν		Ν								
Mg(+2a)	HSO3(-a)	Ν	Ν		Ν								
Mg(+2a)	HSO4(-a)	Ν	Ν										
Mg(+2a)	I(-a)	Ν	Ν		Ν								
Mg(+2a)	NO3(-a)	Y	Υ		Ν	Ν	Ν						
Mg(+2a)	PbCl3(-a)	Ν	Ν										
Mg(+2a)	PbCl4(-2a)	Ν											
Mg(+2a)	SeO4(-2a)	Ν	Ν		Ν								
Mg(+2a)	SO3(-2a)	Ν	Ν	Ν									

HSC - Aqua

35/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B1 (continued). The parameter sets and the parameter temperature dependencies of theHSC Aqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)

Y = the parameter set has at least one temperature-dependent term

N = the parameter set is defined by constant values

IONS			dep)., A	С		Гde	p., I	1	Г	de	ว., C	р
Cation	Anion	$\beta^{(0)}$	$\beta^{(1)}$	$\beta^{(2)}$	C∲	β(0)	$\beta^{(1)}$	$\beta^{(2)}$	C∳	$\beta^{(0)}$	$\beta^{(1)}$	$\beta^{(2)}$	C^{ϕ}
Mg(+2a)	SO4(-2a)	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
MgB(OH)4(+a)	Cl(-a)	Ν											
MgOH(+a)	Cl(-a)	Ν	Ν										
Mn(+2a)	Br(-a)	Ν	Ν		Ν								
Mn(+2a)	Cl(-a)	Ν	Ν		Ν								
Mn(+2a)	ClO4(-a)	Ν	Ν		Ν								
Mn(+2a)	SO3(-2a)	Ν	Ν	Ν									
Mn(+2a)	SO4(-2a)	Ν	Ν	Ν	Ν								
N(C2H5)4(+a)	Cl(-a)	Ν	Ν		Ν								
N(C3H7)4(+a)	Cl(-a)	Ν	Ν		Ν								
N(C4H9)4(+a)	Br(-a)	Υ	Υ		Υ	Υ	Υ		Υ	Υ	Υ		Υ
N(C4H9)4(+a)	Cl(-a)	Ν	Ν		Ν								
N(CH3)4(+a)	Cl(-a)	Ν	Ν		Ν								
Na(+a)	AI(OH)4(-a)	Υ	Υ		Υ	Υ	Υ		Υ	Υ	Υ		Υ
Na(+a)	AsO4(-3a)	Ν	Ν		Ν								
Na(+a)	B(OH)4(-a)	Υ	Υ		Υ	Ν	Ν		Ν				
Na(+a)	B3O3(OH)4(-a)	Ν	Ν										
Na(+a)	B4O5(OH)4(-2a)	Ν	Ν										
Na(+a)	BF4(-a)	Υ	Υ		Υ	Υ	Υ		Υ	Ν	Ν		Ν
Na(+a)	BO2(-a)	Ν	Ν		Ν								
Na(+a)	Br(-a)	Υ	Υ		Υ	Υ	Υ		Υ	Υ	Υ		Υ
Na(+a)	BrO3(-a)	Υ	Υ		Υ	Υ	Υ		Υ	Υ	Υ		Υ
Na(+a)	(CH2COO)2(-2a)	Ν	Ν		Ν								
Na(+a)	(CHCOO)2(cis)(-2a)	Ν	Ν		Ν								
Na(+a)	(CHCOO)2(trans)(-2a)	Ν	Ν		Ν								
Na(+a)	C6H5O7(CAC)(-3a)	Ν	Ν		Ν								
Na(+a)	H(C6H5O7(CAC))(-2a)	Ν	Ν		Ν								
Na(+a)	H2(C6H5O7(CAC))(-a)	Ν	Ν		Ν								
Na(+a)	CF3O3S(3FMSFOA)(-a)	Ν	Ν		Ν								
Na(+a)	C2H5COO(-a)	Ν	Ν		Ν								
Na(+a)	CH3COO(-a)	Ν	Ν		Ν								
Na(+a)	CH4O3S(MSA)(-a)	Ν	Ν		Ν								
Na(+a)	C12H17O3S(25IPBSA)(-a)	Ν	Ν										
Na(+a)	C8H9O3S(24DMBSA)(-a)	Ν	Ν		Ν								
Na(+a)	C10H13O3S(2M5IPBSA)(-a)	Ν	Ζ		Ζ								
Na(+a)	C5H8N4(GLU)(-a)	Ν	Ν		Ν								
Na(+a)	C7H5O2(BA)(-a)	Ν	Ν		Ν								
Na(+a)	C7H6O3(SA)(-a)	Ν	Ν		Ν								
Na(+a)	C8H9O3(3MSA)(-a)	Ν	Ν		Ν								
Na(+a)	C13H20O3(35DIPSA)(-a)	Ν	Ν		Ν								

HSC - Aqua

36/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B1 (continued). The parameter sets and the parameter temperature dependencies of theHSC Aqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)

Y = the parameter set has at least one temperature-dependent term

N = the parameter set is defined by constant values

IONS			dep)., A	С	-	Гde	p., I	1	Т	dep)., C	р
Cation	Anion	$\beta^{(0)}$	$\beta^{(1)}$	$\beta^{(2)}$	C^{ϕ}	$\beta^{(0)}$	$\beta^{(1)}$	$\beta^{(2)}$	C∳	$\beta^{(0)}$	$\beta^{(1)}$	$\beta^{(2)}$	C∳
Na(+a)	C2O4(-2a)	Ν	Ν		Ν								
Na(+a)	CoC2O2(-2a)	Ν	Ν		Ν								
Na(+a)	HC2O4(-a)	Ν	Ν		Ν								
Na(+a)	MnC2O2(-2a)	Ν											
Na(+a)	NiC2O2(-2a)	Ν	Ν		Ν								
Na(+a)	Cl(-a)	Υ	Υ		Υ	Υ	Υ		Υ	Υ	Υ		Υ
Na(+a)	ClO3(-a)	Υ	Υ		Υ	Υ	Υ		Υ	Υ	Υ		Υ
Na(+a)	ClO4(-a)	Υ	Υ		Υ	Υ	Υ		Υ	Υ	Υ		Υ
Na(+a)	Cm(CO3)2(-a)	Ν	Ν		Ν								
Na(+a)	Cm(CO3)3(-3a)	Ν	Ν		Ν								
Na(+a)	Cm(CO3)4(-5a)	Ν	Ν		Ν								
Na(+a)	CNS(-a)	Υ	Υ		Ν	Ν	Ν						
Na(+a)	CoC6H5O7(CAC)(-3a)	Ν	Ν		Ν								
Na(+a)	CO3(-2a)	Υ	Υ		Ν	Ν	Ν						
Na(+a)	CrO4(-2a)	Ν	Ν		Ν								
Na(+a)	CuCl3(-a)	Ν	Ν		Ν								
Na(+a)	CuCl4(-2a)	Ν	Ν		Ν								
Na(+a)	F(-a)	Υ	Υ		Υ	Υ	Υ		Υ	Υ	Υ		Υ
Na(+a)	HAsO4(-2a)	Ν	Ν		Ν								
Na(+a)	H2AsO4(-a)	Ν	Ν										
Na(+a)	H2PO4(-a)	Ν	Ν		Ν								
Na(+a)	H2SiO4(-2a)	Ν	Ν										
Na(+a)	H3SiO4(-a)	Ν	Ν										
Na(+a)	HCO3(-a)	Υ	Υ			Ν	Ν						
Na(+a)	HCOO(-a)	Ν	Ν		Ν								
Na(+a)	HOOC(CH2)2COO(-a)	Ν	Ν		Ν								
Na(+a)	HOOC(CH2)4COO(-a)	Ν	Ν										
Na(+a)	HOOCCH2COO(-a)	Ν	Ν		Ν								
Na(+a)	H3CSO4(-a)	Ν	Ν		Ν								
Na(+a)	Hf(OH)6(-2a)	Ν	Ν		Ν								
Na(+a)	HgCl3(-a)	Ν			Ν								
Na(+a)	HgCl4(-2a)	Ν			Ν								
Na(+a)	H2NSO3(SFAA)(-a)	Ν	Ν		Ν								
Na(+a)	HPO4(-2a)	Υ	Υ		Υ	Υ	Υ		Υ	Υ	Υ		Υ
Na(+a)	HS(-a)	Υ			Ν	Υ				Υ			
Na(+a)	HSO3(-a)	Υ	Υ		Υ	Υ	Υ		Υ	Υ	Υ		Υ
Na(+a)	HSO4(-a)	Υ	Υ		Υ	Υ	Υ		Ν	Ν	Υ		
Na(+a)	l(-a)	Υ	Υ		Υ	Ν	Ν		Ν				
Na(+a)	Mg(CO3)2(-2a)	Ν	Ν		Ν								
Na(+a)	NH2C6H4SO3(4ABSA)(-a)	Ν	Ν		Ν								

HSC - Aqua

37/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

 Table B1 (continued).
 The parameter sets and the parameter temperature dependencies of the HSC Aqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)

Y = the parameter set has at least one temperature-dependent term

N = the parameter set is defined by constant values

	IONS	٦	l dep)., AQ	2		T de	р., Н			Г dep	o., Cp	C
Cation	Anion	β ⁽⁰⁾	$\beta^{(1)}$	$\beta^{(2)}$	C∲	$\beta^{(0)}$	$\beta^{(1)}$	$\beta^{(2)}$	C∲	β ⁽⁰⁾	$\beta^{(1)}$	$\beta^{(2)}$	C∲
Na(+a)	NiC6H5O7(CAC)(-a)	Ν	Ν		Ν								
Na(+a)	NO2(-a)	Ν	Ν		Ν								
Na(+a)	NO3(-a)	Y	Y		Υ	Y	Υ		Y	Y	Y		Y
Na(+a)	OH(-a)	Y	Y		Υ	Y	Υ		Y	Υ	Y		Y
Na(+a)	PbCl3(-a)	Υ	Υ		Υ	Υ	Υ		Υ	Υ	Υ		Υ
Na(+a)	PbCl4(-2a)				Ν								
Na(+a)	PO4(-3a)	Υ	Υ		Υ	Υ	Υ		Υ	Υ	Υ		Υ
Na(+a)	ReO4(-a)	Ν	Ν		Ν								
Na(+a)	Si2O3(OH)4(-2a)	Ν	Ν										
Na(+a)	Si3O6(OH)3(-3a)	Ν	Ν										
Na(+a)	Si3O5(OH)5(-3a)	Ν	Ν										
Na(+a)	Si4O8(OH)4(-4a)	Ν	Ν										
Na(+a)	Si4O6(OH)6(-2a)	Ν	Ν										
Na(+a)	Si4O7(OH)6(-4a)	Ν	Z										
Na(+a)	Si6O15(-6a)	Ν	Ν										
Na(+a)	S2O3(-2a)	Ν	Ν		Ν								
Na(+a)	S2O6(-2a)	Ν	Ν										
Na(+a)	S2O8(-2a)	Ν	Ν										
Na(+a)	SO3(-2a)	Υ	Y		Y	Y	Y		Y	Υ	Y		Υ
Na(+a)	SO4(-2a)	Υ	Y		Υ	Y	Y		Y	Υ	Y		Υ
Na(+a)	SO2CI(-a)	Ν	Z										
Na(+a)	Th(CO3)(-6a)	Ν	Z										
Na(+a)	WO4(-2a)	Ν	Ν		Ν								
Nd(+3a)	Cl(-a)	Ν	Ν		Ν								
Nd(+3a)	CIO4(-a)	Ν	Ν		Ν								
Nd(+3a)	NO3(-a)	Ν	Ν		Ν								
NH4(+a)	Br(-a)	Ν	Ν		Ν								
NH4(+a)	Cl(-a)	Y	Υ		Υ	Y	Υ		Υ	Υ	Υ		Y
NH4(+a)	ClO4(-a)	Ν	Ν										
NH4(+a)	CNS(-a)	Ν	Ν		Ν								
NH4(+a)	F(-a)	Y	Ν		Ν	Υ				Y			
NH4(+a)	H2PO4(-a)	Υ	Υ		Υ	Ν	Ν		Ν				
NH4(+a)	HCO3(-a)	Ν	Ν										
NH4(+a)	HPO4(-2a)	Ν	Ν		Ν								
NH4(+a)	I(-a)	Ν	Ν		Ν								
NH4(+a)	NO3(-a)	Ν	Ν		Ν								
NH4(+a)	SO4(-2a)	Ν	Ν		Ν								
Ni(+2a)	Br(-a)	Ν	Ν		Ν								
Ni(+2a)	Cl(-a)	Y	Y		Y	Ν	Ν		Ν				
Ni(+2a)	ClO4(-a)	Ν	Ν		Ν								

HSC - Aqua

38/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B1 (continued). The parameter sets and the parameter temperature dependencies of theHSC Aqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)

Y = the parameter set has at least one temperature-dependent term

N = the parameter set is defined by constant values

	IONS		T de	p., AC	;		T de	р., Н			T dep	о., Ср	1
Cation	Anion	β ⁽⁰⁾	β ⁽¹⁾	β ⁽²⁾	C∲	β ⁽⁰⁾	β ⁽¹⁾	β ⁽²⁾	C∲	β ⁽⁰⁾	β ⁽¹⁾	β ⁽²⁾	C∲
Ni(+2a)	HSO4(-a)	Ν	Y				Ν						
Ni(+2a)	NO3(-a)	Ν	Ν		Ν								
Ni(+2a)	SeO4(-2a)	Ν	Ν		Ν								
Ni(+2a)	SO3(-2a)	Ν	Ν	Ν									
Ni(+2a)	SO4(-2a)	Y	Y	Y	Y	Ν	Ν	Ν	Ν				
Pb(+2a)	Cl(-a)	Y	Y		Y	Y	Y		Y	Y	Y		Y
Pb(+2a)	ClO4(-a)	Y	Y		Y	Y	Y		Y	Y	Y		Y
Pb(+2a)	HSO4(-a)	Y	Ν			Y				Y			
Pb(+2a)	NO3(-a)	Ν	Ν		Ν								
Pb(+2a)	SO4(-2a)	Ν	Y	Υ			Ν	Y				Y	
PbCl(+a)	Cl(-a)	Y	Υ		Y	Y	Y		Υ	Y	Y		Y
PbCl(+a)	ClO4(-a)	Y	Υ		Y	Y	Υ		Υ	Υ	Υ		Y
Pr(+3a)	Cl(-a)	Ν	Ν		Ν								
Pr(+3a)	ClO4(-a)	Ν	Ν		Ν								
Pr(+3a)	NO2(-a)	Ν	Ν		Ν								
Pr(+3a)	NO3(-a)	Ν	Ν		Ν								
Ra(+2a)	HSO4(-a)	Ν	Υ				Ν						
Ra(+2a)	SO4(-2a)	Ν	Y	Y			Ν	Ν					
Rb(+a)	Br(-a)	Y	Y		Ν	Ν	Ν						
Rb(+a)	CH3COO(-a)	Ν	Ν		Ν								
Rb(+a)	Cl(-a)	Y	Y		Ν	Ν	Ν						
Rb(+a)	F(-a)	Y	Υ		Ν	Ν	Ν						
Rb(+a)	l(-a)	Y	Y		Ν	Ν	Ν						
Rb(+a)	NO2(-a)	Ν	Ν		Ν								
Rb(+a)	NO3(-a)	Ν	Ν		Ν								
Rb(+a)	S2O8(-2a)	Ν	Ν										
Rb(+a)	SO4(-2a)	Y	Υ		Ν	Ν	Ν						
Sc(+3a)	Cl(-a)	Ν	Ν		Ν								
Sm(+3a)	Cl(-a)	Ν	Ν		Ν								
Sm(+3a)	ClO4(-a)	Ν	Ν		Ν								
Sm(+3a)	NO3(-a)	Ν	Ν		Ν								
Sr(+2a)	B(OH)4(-a)	Y	Y	Y		Ν	Ν	Y				Ν	
Sr(+2a)	Br(-a)	Y	Y		Ν	Ν	Ν						
Sr(+2a)	Cl(-a)	Y	Y		Y	Y	Y		Y	Y	Y		Y
Sr(+2a)	ClO4(-a)	Y	Y		Y	Ν	Ν		Ν				
Sr(+2a)	HCO3(-a)	Ν	Ν										
Sr(+2a)	HSO3(-a)	Y	Υ		Y	Ν	Ν		Ν				
Sr(+2a)	HSO4(-a)	Ν	Ν										
Sr(+2a)	I(-a)	Ν	Ν		Ν								
Sr(+2a)	NO3(-a)	Y	Y		Ν	Ν	Ν						

HSC - Aqua

39/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B1 (continued). The parameter sets and the parameter temperature dependencies of theHSC Aqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)

Y = the parameter set has at least one temperature-dependent term

N = the parameter set is defined by constant values

	IONS		T dep)., AC	;	T dep., H				T dep	э., Ср		
Cation	Anion	β ⁽⁰⁾	β ⁽¹⁾	β ⁽²⁾	C∲	β ⁽⁰⁾	β ⁽¹⁾	β ⁽²⁾	C∲	β ⁽⁰⁾	β ⁽¹⁾	β ⁽²⁾	C∲
Sr(+2a)	OH(-a)	Ν	Ν		Ν								
Sr(+2a)	SO4(-2a)	Y	Y	Y		Y	Y	Y		Ν	Ν	Ν	
Tb(+3a)	Cl(-a)	Ν	Ν		Ν								
Tb(+3a)	ClO4(-a)	Ν	Ν		Ν								
Tb(+3a)	NO3(-a)	Ν	Ν		Ν								
TI(+a)	Cl(-a)	Ν	Ν										
TI(+a)	NO2(-a)	Ν	Ν		Ν								
Tl(+a)	CH3COO(-a)	Ν	Ν		Ν								
Tl(+a)	ClO4(-a)	Ν	Ν										
Tl(+a)	NO3(-a)	Ν	Ν										
Tm(+3a)	Cl(-a)	Ν	Ν		Ν								
Tm(+3a)	ClO4(-a)	Ν	Ν		Ν								
Tm(+3a)	NO3(-a)	Ν	Ν		Ν								
UO2(+2a)	Cl(-a)	Ν	Ν		Ν								
UO2(+2a)	ClO4(-a)	Ν	Ν		Ν								
UO2(+2a)	NO3(-a)	Ν	Ν		Ν								
UO2(+2a)	SO4(-2a)	Ν	Ν		Ν								
Y(+3a)	Cl(-a)	Ν	Ν		Ν								
Y(+3a)	NO3(-a)	Ν	Ν		Ν								
Yb(+3a)	Cl(-a)	Ν	Ν		Ν								
Yb(+3a)	ClO4(-a)	Ν	Ν		Ν								
Yb(+3a)	NO3(-a)	Ν	Ν		Ν								
Zn(+2a)	Br(-a)	Ν	Ν		Ν								
Zn(+2a)	Cl(-a)	Ν	Ν		Ν								
Zn(+2a)	ClO4(-a)	Y	Y		Y	Ν	Ν		Ν				
Zn(+2a)	F(-a)	Ν	Ν										
Zn(+2a)	HSO4(-a)	Ν	Ν		Ν								
Zn(+2a)	l(-a)	Ν	Ν		Ν								
Zn(+2a)	NO3(-a)	Ν	Ν		Ν								
Zn(+2a)	SeO4(-2a)	Ν	Ν		Ν								
Zn(+2a)	SO4(-2a)	Y	Y	Y	Y	Ν	Ν	Ν	Ν				

HSC - Aqua

40/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B2. The parameter sets and the parameter temperature dependencies of the HSC Aqua Pitzer database Theta parameter sheet. (HSC Aqua 2009)

Y = the parameter set has at least one temperature-dependent term N = the parameter set is defined by constant values Empty cell = no parameter value

IO	NS	T dep. AC	T dep. H	T dep. Cp
Al(+3a)	Ca(+2a)	Ν		
Al(+3a)	Cu(+2a)	Ν		
Al(+3a)	Fe(+2a)	Ν		
Al(+3a)	H(+a)	Ν		
Al(+3a)	K(+a)	Ν		
Al(+3a)	Mg(+2a)	Ν		
Al(+3a)	Ni(+2a)	Ν		
Al(+3a)	Na(+a)	Ν		
Al(OH)4(-a)	OH(-a)	Ν		
Ba(+2a)	Ca(+2a)	Ν		
Ba(+2a)	Cs(+a)	Ν		
Ba(+2a)	H(+a)	Y	Ν	
Ba(+2a)	K(+a)	Ν		
Ba(+2a)	Li(+a)	Ν		
Ba(+2a)	Na(+a)	Ν		
B(OH)4(-a)	Cl(-a)	Y	Y	Ν
B(OH)4(-a)	SO4(-2a)	Ν		
B3O3(OH)4(-a)	Cl(-a)	Ν		
B3O3(OH)4(-a)	HCO3(-a)	Ν		
B3O3(OH)4(-a)	SO4(-2a)	Ν		
B4O5(OH)4(-2a)	Cl(-a)	Ν		
B4O5(OH)4(-2a)	HCO3(-a)	Ν		
B4O5(OH)4(-2a)	SO4(-2a)	Ν		
B4O7(-2a)	Cl(-a)	Ν		
Br(-a)	Cl(-a)	Ν		
Br(-a)	Cr2O7(-2a)	Ν		
Br(-a)	OH(-a)	Ν		
Ca(+2a)	Co(+2a)	Ν		
Ca(+2a)	H(+a)	Y	Ν	
Ca(+2a)	K(+a)	Ν		
Ca(+2a)	Mg(+2a)	Ν		
Ca(+2a)	Mg(+a)	Ν		
Ca(+2a)	Na(+a)	Ν		
Ca(+2a)	PbCl(+a)	Ν		
Cl(-a)	AsO4(-3a)	Ν		
Cl(-a)	B4O5(OH)4(-2a)	Ν		
Cl(-a)	CH3COO(-a)	Ν		
Cl(-a)	CO3(-2a)	Ν		
Cl(-a)	Cr2O7(-2a)	Ν		
Cl(-a)	CuCl3(-a)	Ν		
Cl(-a)	CuCl4(-2a)	Ν		
Cl(-a)	F(-a)	Ν		

HSC - Aqua

41/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B2 (continued). The parameter sets and the parameter temperature dependencies of the
HSC Aqua Pitzer database Theta parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent term
N = the parameter set is defined by constant values

	IONS	T dep. AC	T dep. H	T dep. Cp
Cl(-a)	HAsO4(-2a)	N		
Cl(-a)	H2AsO4(-a)	N		
Cl(-a)	H2PO4(-a)	N		
Cl(-a)	HCO3(-a)	N		
Cl(-a)	HPO4(-a)	N		
Cl(-a)	HSO4(-a)	N		
Cl(-a)	NO3(-a)	N		
Cl(-a)	OH(-a)	Y	Y	N
Cl(-a)	PO4(-3a)	N		
Cl(-a)	SO3(-2a)	N		
Cl(-a)	SO4(-2a)	Y	Ν	
ClO4(-a)	CO3(-2a)	N		
ClO4(-a)	HCO3(-a)	N		
ClO4(-a)	Th(CO3)(-6a)	N		
Cm(+3a)	Na(+a)	N		
Co(+2a)	H(+a)	Y	Ν	
Co(+2a)	Mg(+2a)	N		
Co(+2a)	Na(+a)	N		
Co(+2a)	Zn(+2a)	N		
CO3(-2a)	F(-a)	N		
CO3(-2a)	HCO3(-a)	N		
CO3(-2a)	NO2(-a)	N		
CO3(-2a)	NO3(-a)	N		
CO3(-2a)	OH(-a)	N		
CO3(-2a)	SO4(-2a)	N		
Cr2O7(-2a)	SO4(-2a)	N		
Cs(+a)	H(+a)	N		
Cs(+a)	K(+a)	N		
Cs(+a)	Li(+a)	N		
Cs(+a)	Na(+a)	Y	Y	Y
Cu(+2a)	CuCl(+a)	N		
Cu(+2a)	H(+a)	Ν		
Cu(+a)	Na(+a)	Ν		
Cu(+2a)	Na(+a)	N		
CuCl(+a)	H(+a)	N		
CuCl(+a)	Na(+a)	Ν		
CuCl3(-a)	CuCl4(-2a)	Ν		
F(-a)	HF2(-a)	Ν		
F(-a)	NO3(-a)	Ν		
F(-a)	OH(-a)	Ν		
H(+a)	K(+a)	Y	Ν	

HSC - Aqua

42/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B2 (continued). The parameter sets and the parameter temperature dependencies of the HSC Aqua Pitzer database Theta parameter sheet. (HSC Aqua 2009) Y = the parameter set has at least one temperature-dependent term N = the parameter set is defined by constant values

IC	NS	T dep. AC	T dep. H	T dep. Cp
H(+a)	Li(+a)	N		
H(+a)	Mg(+2a)	Y	N	
H(+a)	Mn(+2a)	N		
H(+a)	Na(+a)	Y	Ν	
H(+a)	NH4(+a)	Ν		
H(+a)	Ni(+2a)	Y	Ν	
H(+a)	Sr(+2a)	Y	Ν	
H(+a)	UO2(+2a)	N		
HCO3(-a)	SO4(-2a)	N		
HSO4(-a)	SO4(-2a)	Y	Y	Y
K(+a)	Li(+a)	Ν		
K(+a)	Mg(+2a)	Ν		
K(+a)	Na(+a)	Y	Y	Y
K(+a)	Sr(+2a)	Ν		
Li(+a)	Na(+a)	Ν		
Mg(+2a)	Na(+a)	Y	Ν	
Mg(+2a)	Ni(+2a)	Ν		
Mg(+2a)	PbCl(+a)	Ν		
Mn(+2a)	Na(+a)	Ν		
Na(+a)	La(+3a)	Ν		
Na(+a)	Pb(+2a)	Ν		
Na(+a)	PbCl(+a)	Ν		
Na(+a)	Sr(+2a)	Ν		
Na(+a)	UO2(+2a)	Ν		
Na(+a)	Zn(+2a)	Ν		
Ni(+2a)	Zn(+2a)	Ν		
NO2(-a)	PO4(-3a)	Ν		
NO3(-a)	SO4(-2a)	Ν		
OH(-a)	PO4(-3a)	Ν		
OH(-a)	SO4(-2a)	N		

HSC - Aqua

43/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B3. The parameter sets and the parameter temperature dependencies of the HSC Aqua

 Pitzer database Psi parameter sheet. (HSC Aqua 2009)

Y = the parameter set has at least one temperature-dependent term

N = the parameter set is defined by constant values

IONS		T dep. AC	T dep. H	T dep. Cp	
Al(+3a)	Ca(+2a)	SO4(-2a)	Ν		
Al(+3a)	Cu(+2a)	SO4(-2a)	Ν		
Al(+3a)	Fe(+2a)	SO4(-2a)	Ν		
Al(+3a)	H(+a)	Cl(-a)	Y	Y	Y
Al(+3a)	K(+a)	Cl(-a)	Y	Y	Y
Al(+3a)	Mg(+2a)	SO4(-2a)	Ν		
Al(+3a)	Na(+a)	Cl(-a)	Y	Y	Y
Al(+3a)	Ni(+2a)	SO4(-2a)	Ν		
Al(OH)4(-a)	OH(-a)	K(+a)	Ν		
AI(OH)4(-a)	OH(-a)	Na(+a)	Ν		
Ba(+2a)	Ca(+2a)	Cl(-a)	Ν		
Ba(+2a)	Cs(+a)	Cl(-a)	Ν		
Ba(+2a)	H(+a)	Br(-a)	Ν		
Ba(+2a)	H(+a)	Cl(-a)	Y	Ν	
Ba(+2a)	K(+a)	Cl(-a)	Ν		
Ba(+2a)	Li(+a)	Cl(-a)	Ν		
Ba(+2a)	Na(+a)	Cl(-a)	Ν		
B(OH)4(-a)	Cl(-a)	Ca(+2a)	Ν		
B(OH)4(-a)	Cl(-a)	Na(+a)	Ν		
B(OH)4(-a)	Cl(-a)	Mg(+2a)	Ν		
B3O3(OH)4(-a)	Cl(-a)	Na(+a)	Ν		
B4O5(OH)4(-2a)	Cl(-a)	Na(+a)	Ν		
B4O7(-2a)	Cl(-a)	Li(+a)	Ν		
Br(-a)	Cl(-a)	K(+a)	Ν		
Br(-a)	Cl(-a)	Na(+a)	Ν		
Br(-a)	Cr2O7(-2a)	K(+a)	Ν		
Br(-a)	OH(-a)	K(+a)	Ν		
Br(-a)	OH(-a)	Na(+a)	Ν		
Ca(+2a)	Co(+2a)	Cl(-a)	Ν		
Ca(+2a)	H(+a)	Br(-a)	Ν		
Ca(+2a)	H(+a)	Cl(-a)	Y	Ν	
Ca(+2a)	K(+a)	Cl(-a)	Y	Y	Y
Ca(+2a)	K(+a)	SO4(-2a)	Ν		
Ca(+2a)	Mg(+2a)	Cl(-a)	Ν		
Ca(+2a)	Mg(+2a)	NO3(-a)	Ν		
Ca(+2a)	Mg(+2a)	SO4(-2a)	Ν		
Ca(+2a)	Na(+a)	Cl(-a)	Ν		
Ca(+2a)	Na(+a)	NO3(-a)	Ν		
Ca(+2a)	Na(+a)	SO4(-2a)	Ν		
Cl(-a)	AsO4(-3a)	Na(+a)	Ν		
Cl(-a)	B4O5(OH)4(-2a)	K(+a)	Ν		

HSC - Aqua

44/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

 Table B3 (continued).
 The parameter sets and the parameter temperature dependencies of the

 HSC Aqua Pitzer database Psi parameter sheet.
 (HSC Aqua 2009)

Y = the parameter set has at least one temperature-dependent term

N = the parameter set is defined by constant values

IONS		T dep. AC	T dep. H	T dep. Cp	
Cl(-a)	B4O5(OH)4(-2a)	Li(+a)	Ν		
Cl(-a)	B4O5(OH)4(-2a)	Na(+a)	Ν		
Cl(-a)	CO3(-2a)	K(+a)	Ν		
Cl(-a)	CO3(-2a)	Na(+a)	Ν		
Cl(-a)	Cr2O7(-2a)	K(+a)	Ν		
Cl(-a)	CuCl3(-a)	Cu(+2a)	Ν		
Cl(-a)	CuCl4(-2a)	Cu(+2a)	Ν		
Cl(-a)	CuCl3(-a)	CuCl(+a)	Ν		
Cl(-a)	CuCl4(-2a)	CuCl(+a)	Ν		
Cl(-a)	CuCl3(-a)	H(+a)	Ν		
Cl(-a)	CuCl3(-a)	Na(+a)	Ν		
Cl(-a)	CuCl4(-a)	Na(+a)	Ν		
Cl(-a)	F(-a)	Na(+a)	Ν		
Cl(-a)	HAsO4(-2a)	Na(+a)	Ν		
Cl(-a)	H2AsO4(-a)	Na(+a)	Ν		
Cl(-a)	H2PO4(-a)	K(+a)	Ν		
Cl(-a)	H2PO4(-a)	Na(+a)	Ν		
Cl(-a)	HCO3(-a)	Mg(+2a)	Ν		
Cl(-a)	HCO3(-a)	Na(+a)	Ν		
Cl(-a)	HPO4(-2a)	Na(+a)	Ν		
Cl(-a)	HSO4(-a)	H(+a)	Ν		
Cl(-a)	HSO4(-a)	Na(+a)	Ν		
Cl(-a)	NO3(-a)	Ca(+2a)	Ν		
Cl(-a)	NO3(-a)	K(+a)	Ν		
Cl(-a)	NO3(-a)	Li(+a)	Ν		
Cl(-a)	NO3(-a)	Mg(+2a)	Ν		
Cl(-a)	NO3(-a)	Na(+a)	Ν		
Cl(-a)	OH(-a)	Ca(+2a)	Ν		
Cl(-a)	OH(-a)	K(+a)	Ν		
Cl(-a)	OH(-a)	Na(+a)	N		
Cl(-a)	PO4(-3a)	Na(+a)	Ν		
Cl(-a)	SO3(-2a)	Na(+a)	Ν		
Cl(-a)	SO4(-2a)	Ca(+2a)	Ν		
Cl(-a)	SO4(-2a)	Co(+2a)	Ν		
Cl(-a)	SO4(-2a)	Cu(+2a)	Ν		
Cl(-a)	SO4(-2a)	K(+a)	Y	Y	Y
Cl(-a)	SO4(-2a)	Li(+a)	Ν		
Cl(-a)	SO4(-2a)	Mg(+2a)	Ν		
Cl(-a)	SO4(-2a)	Na(+a)	Y	Y	N
Cl(-a)	SO4(-2a)	Ni(+2a)	Ν		
ClO4(-a)	CO3(-2a)	Na(+a)	Ν		
ClO4(-a)	HCO3(-a)	Mg(+2a)	Ν		

HSC - Aqua

45/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B3 (continued). The parameter sets and the parameter temperature dependencies of the HSC Aqua Pitzer database Psi parameter sheet. (HSC Aqua 2009)

Y = the parameter set has at least one temperature-dependent term N = the parameter set is defined by constant values

IONS			T dep.	AC	T de	р. <mark>Н</mark>	T dep. Cp
ClO4(-a)	HCO3(-a)	Na(+a)	N				
Cm(+3a)	Na(+a)	Cl(-a)	N				
Co(+2a)	Ca(+2a)	Cl(-a)	N				
Co(+2a)	H(+a)	Cl(-a)	Y		Ν	I	
Co(+2a)	Mg(+2a)	SeO4(-2a)	N				
Co(+2a)	Na(+a)	Cl(-a)	N				
Co(+2a)	Na(+a)	SO4(-2a)	N				
Co(+2a)	Rb(+a)	SO4(-2a)	N				
Co(+2a)	Zn(+2a)	SeO4(-2a)	N				
CO3(-2a)	F(-a)	Na(+a)	N				
CO3(-2a)	HCO3(-a)	K(+a)	N				
CO3(-2a)	HCO3(-a)	Na(+a)	N				
CO3(-2a)	OH(-a)	K(+a)	N				
CO3(-2a)	OH(-a)	Na(+a)	N				
CO3(-2a)	SO4(-2a)	K(+a)	N				
CO3(-2a)	SO4(-2a)	Na(+a)	N				
Cr2O7(-2a)	SO4(-2a)	K(+a)	N				
Cs(+a)	H(+a)	Cl(-a)	N				
Cs(+a)	K(+a)	Cl(-a)	N				
Cs(+a)	Li(+a)	Cl(-a)	N				
Cs(+a)	Na(+a)	Cl(-a)	N				
Cu(+2a)	CuCl(+a)	Cl(-a)	N				
Cu(+2a)	CuCl(+a)	CuCl3(-a)	N				
Cu(+2a)	CuCl(+a)	CuCl4(-2a)	N				
Cu(+2a)	H(+a)	Cl(-a)	N				
Cu(+2a)	H(+a)	CuCl3(-a)	N				
Cu(+2a)	H(+a)	CuCl4(-2a)	N				
Cu(+2a)	H(+a)	HSO4(-a)	N				
Cu(+2a)	Na(+a)	Cl(-a)	N				
Cu(+2a)	Na(+a)	CuCl3(-a)	N				
Cu(+2a)	Na(+a)	CuCl4(-2a)	N				
Cu(+2a)	Na(+a)	SO4(-2a)	N				
Cu(+2a)	Ni(+2a)	NO3(-a)	N				
CuCl(+a)	H(+a)	Cl(-a)	N				
CuCl(+a)	H(+a)	CuCl3(-a)	N				
CuCl(+a)	H(+a)	CuCl4(-2a)	N				
CuCl(+a)	Na(+a)	Cl(-a)	N				
CuCl(+a)	Na(+a)	CuCl3(-a)	N				
CuCl(+a)	Na(+a)	CuCl4(-2a)	N				
CuCl3(-a)	CuCl4(-2a)	Cu(+2a)	N				
CuCl3(-a)	CuCl4(-2a)	CuCl(+a)	N				
CuCl3(-a)	CuCl4(-2a)	H(+a)	N				

HSC - Aqua

46/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

 Table B3 (continued).
 The parameter sets and the parameter temperature dependencies of the

 HSC Aqua Pitzer database Psi parameter sheet.
 (HSC Aqua 2009)

Y = the parameter set has at least one temperature-dependent term

N = the parameter set is defined by constant values

IONS		T dep. AC	T dep. H	T dep. Cp	
CuCl3(-a)	CuCl4(-2a)	Na(+a)	Ν		
F(-a)	HF2(-a)	H(+a)	Ν		
F(-a)	NO3(-a)	Na(+a)	Ν		
F(-a)	OH(-a)	Na(+a)	Ν		
Fe(+2a)	H(+a)	HSO4(-a)	Ν		
Ga(+3a)	H(+a)	Cl(-a)	Ν		
H(+a)	K(+a)	Br(-a)	Ν		
H(+a)	K(+a)	Cl(-a)	Ν		
H(+a)	K(+a)	HSO4(-a)	Ν		
H(+a)	K(+a)	SO4(-2a)	Ν		
H(+a)	Li(+a)	Br(-a)	Ν		
H(+a)	Li(+a)	Cl(-a)	Ν		
H(+a)	Li(+a)	ClO4(-a)	Ν		
H(+a)	Mg(+2a)	Br(-a)	Ν		
H(+a)	Mg(+2a)	Cl(-a)	Y	Ν	
H(+a)	Mg(+a)	Cl(-a)	Ν		
H(+a)	Mg(+a)	HSO4(-a)	Ν		
H(+a)	Mn(+2a)	Cl(-a)	Ν		
H(+a)	Na(+a)	Br(-a)	Ν		
H(+a)	Na(+a)	Cl(-a)	Ν		
H(+a)	Na(+a)	ClO4(-a)	Ν		
H(+a)	Na(+a)	HSO4(-a)	Ν		
H(+a)	Na(+a)	NO3(-a)	Ν		
H(+a)	Na(+a)	SO4(-2a)	Ν		
H(+a)	NH4(+a)	Br(-a)	Ν		
H(+a)	NH4(+a)	Cl(-a)	Ν		
H(+a)	Ni(+2a)	Br(-a)	Ν		
H(+a)	Ni(+2a)	Cl(-a)	Y	Ν	
H(+a)	Sr(+2a)	Br(-a)	Ν		
H(+a)	Sr(+2a)	Cl(-a)	Y	Ν	
H(+a)	UO2(+2a)	ClO4(-a)	Ν		
H(+a)	UO2(+2a)	NO3(-a)	Ν		
HCO3(-a)	SO4(-2a)	Mg(+2a)	Ν		
HCO3(-a)	SO4(-2a)	Na(+a)	Ν		
HSO4(-a)	SO4(-2a)	K(+a)	Ν		
HSO4(-a)	SO4(-2a)	Mg(+2a)	Ν		
HSO4(-a)	SO4(-2a)	Na(+a)	Y	Y	Y
K(+a)	Mg(+2a)	Cl(-a)	Y	Y	Y
K(+a)	Mg(+2a)	SO4(-2a)	Ν		
K(+a)	Mg(+a)	Cl(-a)	Ν		
K(+a)	Mg(+a)	SO4(-2a)	Ν		
K(+a)	Na(+a)	B4O5(OH)4(-2a)	Ν		

HSC - Aqua

47/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

 Table B3 (continued).
 The parameter sets and the parameter temperature dependencies of the

 HSC Aqua Pitzer database Psi parameter sheet.
 (HSC Aqua 2009)

Y = the parameter set has at least one temperature-dependent term

N = the parameter set is defined by constant values

IONS		T dep. AC	T dep. H	T dep. Cp	
K(+a)	Na(+a)	Br(-a)	Ν		
K(+a)	Na(+a)	Cl(-a)	Y	Y	Y
K(+a)	Na(+a)	CO3(-2a)	Ν		
K(+a)	Na(+a)	H2PO4(-a)	Ν		
K(+a)	Na(+a)	HCO3(-a)	Ν		
K(+a)	Na(+a)	NO3(-a)	Ν		
K(+a)	Na(+a)	SO4(-2a)	Y	Y	Y
K(+a)	Sr(+2a)	Cl(-a)	Ν		
La(+3a)	Na(+a)	ClO4(-a)	Ν		
Li(+a)	K(+a)	B4O5(OH)4(-2a)	Ν		
Li(+a)	K(+a)	Cl(-a)	Ν		
Li(+a)	Na(+a)	B4O5(OH)4(-2a)	Ν		
Li(+a)	Na(+a)	CH3COO(-a)	Ν		
Li(+a)	Na(+a)	Cl(-a)	Ν		
Li(+a)	Na(+a)	ClO4(-a)	Ν		
Li(+a)	Na(+a)	NO3(-a)	Ν		
Mg(+2a)	MgOH(+a)	Cl(-a)	Ν		
Mg(+2a)	Na(+a)	Cl(-a)	Y	Ν	
Mg(+2a)	Na(+a)	SO4(-2a)	Ν		
Mg(+2a)	Ni(+2a)	SeO4(-2a)	Ν		
Mn(+2a)	Na(+a)	Cl(-a)	Ν		
Na(+a)	Ni(+2a)	Cl(-a)	Ν		
Na(+a)	Ni(+2a)	SO4(-2a)	Ν		
Na(+a)	Sr(+2a)	Cl(-a)	Ν		
Na(+a)	UO2(+2a)	ClO4(-a)	Ν		
Na(+a)	UO2(+2a)	NO3(-a)	Ν		
Na(+a)	Zn(+2a)	SO4(-2a)	Ν		
Ni(+2a)	Zn(+2a)	SeO4(-2a)	Ν		
NO2(-a)	PO4(-3a)	Na(+a)	Ν		
NO3(-a)	SO4(-2a)	Na(+a)	Ν		
OH(-a)	PO4(-3a)	Na(+a)	N		
OH(-a)	SO4(-2a)	K(+a)	Ν		
OH(-a)	SO4(-2a)	Na(+a)	Ν		

HSC - Aqua

48/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B4. The parameter sets and the parameter temperature dependencies of the HSC AquaPitzer database Lambda parameter sheet. (HSC Aqua 2009)

Y = the parameter set has at least one temperature-dependent term N = the parameter set is defined by constant values

NEUTRAL	ION	T dep. AC	T dep. H	T dep. Cp
Ar(a)	Br(-a)	N		
Ar(a)	Ca(+2a)	Ν		
Ar(a)	H(+a)	N		
Ar(a)	HCO3(-a)	Ν		
Ar(a)	K(+a)	Ν		
Ar(a)	Mg(+2a)	N		
Ar(a)	Na(+a)	Ν		
Ar(a)	OH(-a)	Ν		
Ar(a)	SO4(-2a)	Ν		
B(OH)3(a)	Cl(-a)	Ν		
B(OH)3(a)	H(+a)	Ν		
B(OH)3(a)	K(+a)	Ν		
B(OH)3(a)	Na(+a)	Ν		
B(OH)3(a)	SO4(-2a)	Ν		
CCl4(a)	Br(-a)	Ν		
CCl4(a)	Ca(+2a)	Ν		
CCl4(a)	H(+a)	Ν		
CCl4(a)	HCO3(-a)	Ν		
CCl4(a)	K(+a)	Ν		
CCl4(a)	Mg(+2a)	Ν		
CCl4(a)	Na(+a)	Ν		
CCl4(a)	OH(-a)	Ν		
CCl4(a)	SO4(-2a)	Ν		
C2H2(a)	Br(-a)	Ν		
C2H2(a)	Ca(+2a)	Ν		
C2H2(a)	H(+a)	Ν		
C2H2(a)	HCO3(-a)	Ν		
C2H2(a)	K(+a)	Ν		
C2H2(a)	Mg(+2a)	Ν		
C2H2(a)	Na(+a)	Ν		
C2H2(a)	OH(-a)	Ν		
C2H2(a)	SO4(-2a)	Ν		
C2H4(a)	Br(-a)	Ν		
C2H4(a)	Ca(+2a)	Ν		
C2H4(a)	H(+a)	Ν		
C2H4(a)	HCO3(-a)	N		
C2H4(a)	K(+a)	N		
C2H4(a)	Mg(+2a)	N		
C2H4(a)	Na(+a)	N		
C2H4(a)	OH(-a)	N		
C2H4(a)	SO4(-2a)	N		
C2H6(a)	Br(-a)	N		

HSC - Aqua

49/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B4 (continued). The parameter sets and the parameter temperature dependencies of the HSC Aqua Pitzer database Lambda parameter sheet. (HSC Aqua 2009) Y = the parameter set has at least one temperature-dependent term

N = the parameter set is defined by constant values Empty cell = no parameter value

NEUTRAL	ION	T dep. AC	T dep. H	T dep. Cp
C2H6(a)	H(+a)	Ν		
C2H6(a)	HCO3(-a)	Ν		
C2H6(a)	K(+a)	Ν		
C2H6(a)	Mg(+2a)	Ν		
C2H6(a)	Na(+a)	Ν		
C2H6(a)	OH(-a)	Ν		
C2H6(a)	SO4(-2a)	Ν		
C6H6(a)	Br(-a)	Ν		
C6H6(a)	Ca(+2a)	Ν		
C6H6(a)	Cl(-a)	Ν		
C6H6(a)	H(+a)	Ν		
C6H6(a)	HCO3(-a)	Ν		
C6H6(a)	K(+a)	Ν		
C6H6(a)	Li(+a)	Ν		
C6H6(a)	Mg(+2a)	Ν		
C6H6(a)	Na(+a)	Ν		
C6H6(a)	OH(-a)	Ν		
C6H6(a)	SO4(-2a)	Ν		
C7H6O22(BA)(a)	Cl(-a)	Ν		
C7H6O22(BA)(a)	K(+a)	Ν		
C7H6O22(BA)(a)	Li(+a)	Ν		
C7H6O22(BA)(a)	Na(+a)	Ν		
CF4(a)	Br(-a)	Ν		
CF4(a)	Ca(+2a)	Ν		
CF4(a)	H(+a)	Ν		
CF4(a)	HCO3(-a)	Ν		
CF4(a)	K(+a)	Ν		
CF4(a)	Mg(+2a)	Ν		
CF4(a)	Na(+a)	Ν		
CF4(a)	OH(-a)	Ν		
CF4(a)	SO4(-2a)	Ν		
CH3COOH(a)	Cl(-a)	Ν		
CH3COOH(a)	CH3COO(-a)	Ν		
CH3COOH(a)	H(+a)	Ν		
CH3COOH(a)	K(+a)	Ν		
CH3COOH(a)	Na(+a)	Ν		
CH3NO2(a)	Cl(-a)	Ν		
CH3NO2(a)	K(+a)	Ν		
CH3NO2(a)	Li(+a)	Ν		
CH3NO2(a)	Na(+a)	Ν		
CH4(a)	Br(-a)	Ν		

HSC - Aqua

50/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B4 (continued). The parameter sets and the parameter temperature dependencies of the HSC Aqua Pitzer database Lambda parameter sheet. (HSC Aqua 2009) Y = the parameter set has at least one temperature-dependent term

N = the parameter set is defined by constant values Empty cell = no parameter value

NEUTRAL	ION	T dep. AC	T dep. H	T dep. Cp
CH4(a)	Ca(+2a)	N		
CH4(a)	H(+a)	N		
CH4(a)	HCO3(-a)	N		
CH4(a)	K(+a)	N		
CH4(a)	Mg(+2a)	N		
CH4(a)	Na(+a)	N		
CH4(a)	OH(-a)	N		
CH4(a)	SO4(-2a)	N		
CO(a)	Br(-a)	N		
CO(a)	Ca(+2a)	N		
CO(a)	H(+a)	N		
CO(a)	HCO3(-a)	N		
CO(a)	K(+a)	N		
CO(a)	Mg(+2a)	N		
CO(a)	Na(+a)	N		
CO(a)	OH(-a)	N		
CO(a)	SO4(-2a)	N		
CO2(a)	Al(+3a)	Y	Y	Y
CO2(a)	AlO(+a)	Y	Y	Y
CO2(a)	AlOH(+2a)	Y	Y	Y
CO2(a)	Ca(+2a)	Y	Y	Y
CO2(a)	Cl(-a)	Y	Y	Y
CO2(a)	ClO4(-a)	N		
CO2(a)	H(+a)	Y	Y	Y
CO2(a)	HSO4(-a)	N		
CO2(a)	K(+a)	Y	Y	Y
CO2(a)	Mg(+2a)	Y	Y	Y
CO2(a)	Na(+a)	Y	Y	Y
CO2(a)	NH4(+a)	Y	Y	Y
CO2(a)	SO4(-2a)	Y	Y	Y
CoC2O4(a)	Cl(-a)	N		
CuCl2(a)	Cl(-a)	N		
CuCl2(a)	Cu(+2a)	N		
CuCl2(a)	CuCl(+a)	Ν		
CuCl2(a)	CuCl3(-a)	N		
CuCl2(a)	CuCl4(-2a)	N		
CuCl2(a)	Na(+a)	N		
He(a)	Br(-a)	N		
He(a)	Ca(+2a)	N		
He(a)	H(+a)	N		
He(a)	HCO3(-a)	N		
He(a)	K(+a)	N		

HSC - Aqua

51/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B4 (continued). The parameter sets and the parameter temperature dependencies of the HSC Aqua Pitzer database Lambda parameter sheet. (HSC Aqua 2009) Y = the parameter set has at least one temperature-dependent term N = the parameter set is defined by constant values

NEUTRAL	ION	T dep. AC	T dep. H	T dep. Cp
He(a)	Mg(+2a)	Ν		
He(a)	Na(+a)	N		
He(a)	OH(-a)	N		
He(a)	SO4(-2a)	Ν		
HgCl2(a)	Na(+a)	N		
Hg(OH)2(a)	Na(+a)	Ν		
HgOHCI(a)	Na(+a)	Ν		
H2C2O4(a)	Cl(-a)	N		
H2C2O4(a)	HSO4(-a)	Ν		
H2C2O4(a)	Na(+a)	Ν		
H2C2O4(a)	NO3(-a)	Ν		
HF(a)	Cl(-a)	Ν		
HF(a)	F(-a)	Ν		
HF(a)	H(+a)	Ν		
HF(a)	HF2(-a)	Ν		
HF(a)	Na(+a)	Ν		
H2(a)	Br(-a)	Ν		
H2(a)	Ca(+2a)	Ν		
H2(a)	H(+a)	Ν		
H2(a)	HCO3(-a)	Ν		
H2(a)	K(+a)	Ν		
H2(a)	Mg(+2a)	Ν		
H2(a)	Na(+a)	Ν		
H2(a)	OH(-a)	Ν		
H2(a)	SO4(-2a)	Ν		
H4SiO4(a)	Na(+a)	Ν		
H3PO4(a)	Cl(-a)	Ν		
H3PO4(a)	H(+a)	N		
H3PO4(a)	K(+a)	Ν		
H3PO4(a)	Mg(+2a)	N		
H3PO4(a)	Na(+a)	Ν		
(HOCH2)3CNH2(a)	Ca(+2a)	N		
(HOCH2)3CNH2(a)	Cl(-a)	N		
(HOCH2)3CNH2(a)	K(+a)	N		
(HOCH2)3CNH2(a)	Mg(+2a)	N		
(HOCH2)3CNH2(a)	Na(+a)	N		
H2S(a)	Br(-a)	N		
H2S(a)	Ca(+2a)	N		
H2S(a)	Cl(-a)	N		
H2S(a)	H(+a)	N		
H2S(a)	HCO3(-a)	N		
H2S(a)	K(+a)	N		

HSC - Aqua

52/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B4 (continued). The parameter sets and the parameter temperature dependencies of the HSC Aqua Pitzer database Lambda parameter sheet. (HSC Aqua 2009) Y = the parameter set has at least one temperature-dependent term

N = the parameter set is defined by constant values Empty cell = no parameter value

NEUTRAL	ION	T dep. AC	T dep. H	T dep. Cp
H2S(a)	Mg(+2a)	Ν		
H2S(a)	Na(+a)	Ν		
H2S(a)	OH(-a)	N		
H2S(a)	SO4(-2a)	N		
H2S(a)	Sr(+2a)	Ν		
Kr(a)	Br(-a)	N		
Kr(a)	Ca(+2a)	N		
Kr(a)	H(+a)	N		
Kr(a)	HCO3(-a)	N		
Kr(a)	K(+a)	N		
Kr(a)	Mg(+2a)	N		
Kr(a)	Na(+a)	N		
Kr(a)	OH(-a)	N		
Kr(a)	SO4(-2a)	N		
MgHPO4(a)	Na(+a)	N		
MgCO3(a)	ClO4(+a)	N		
MgCO3(a)	Na(+a)	N		
N2(a)	Br(-a)	N		
N2(a)	Ca(+2a)	N		
N2(a)	H(+a)	N		
N2(a)	HCO3(-a)	N		
N2(a)	K(+a)	N		
N2(a)	Mg(+2a)	N		
N2(a)	Na(+a)	N		
N2(a)	OH(-a)	N		
N2(a)	SO4(-2a)	N		
NaNO2(a)	CO3(-2a)	Y	Y	Y
Ne(a)	Br(-a)	N		
Ne(a)	Ca(+2a)	N		
Ne(a)	H(+a)	N		
Ne(a)	HCO3(-a)	N		
Ne(a)	K(+a)	N		
Ne(a)	Mg(+2a)	N		
Ne(a)	Na(+a)	Ν		
Ne(a)	OH(-a)	Ν		
Ne(a)	SO4(-2a)	N		
NH3(a)	Br(-a)	Ν		
NH3(a)	Ca(+2a)	N		
NH3(a)	Cl(-a)	Ν		
NH3(a)	CO3(-2a)	Ν		
NH3(a)	F(-a)	Ν		
NH3(a)	H(+a)	Ν		

HSC - Aqua

53/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B4 (continued). The parameter sets and the parameter temperature dependencies of theHSC Aqua Pitzer database Lambda parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent term

N = the parameter set is defined by constant values Empty cell = no parameter value

NEUTRAL	ION	T dep. AC	T dep. H	T dep. Cp
NH3(a)	K(+a)	Ν		
NH3(a)	Mg(+2a)	Ν		
NH3(a)	Na(+a)	N		
NH3(a)	SO4(-2a)	Ν		
NH3(a)	Sr(+2a)	Ν		
NiC2O4(a)	Cl(-a)	Ν		
N2O(a)	Br(-a)	Ν		
N2O(a)	Ca(+2a)	Ν		
N2O(a)	H(+a)	Ν		
N2O(a)	HCO3(-a)	Ν		
N2O(a)	K(+a)	Ν		
N2O(a)	Mg(+2a)	Ν		
N2O(a)	Na(+a)	Ν		
N2O(a)	OH(-a)	Ν		
N2O(a)	SO4(-2a)	Ν		
NO(a)	Br(-a)	Ν		
NO(a)	Ca(+2a)	Ν		
NO(a)	H(+a)	N		
NO(a)	HCO3(-a)	Ν		
NO(a)	K(+a)	Ν		
NO(a)	Mg(+2a)	Ν		
NO(a)	Na(+a)	Ν		
NO(a)	OH(-a)	Ν		
NO(a)	SO4(-2a)	Ν		
O2(a)	Br(-a)	Ν		
O2(a)	Ca(+2a)	Ν		
O2(a)	Cl(-a)	Ν		
O2(a)	CO3(-2a)	Ν		
O2(a)	H(+a)	Ν		
O2(a)	HCO3(-a)	Ν		
O2(a)	K(+a)	Ν		
O2(a)	Mg(+2a)	Ν		
O2(a)	Na(+a)	Ν		
O2(a)	OH(-a)	Ν		
O2(a)	SO4(-2a)	Ν		
PbCl2(a)	Ca(+2a)	N		
PbCl2(a)	Cl(-a)	Y	Y	Y
PbCl2(a)	ClO4(-a)	Y	Y	Y
PbCl2(a)	Na(+a)	Ν		
PbCl2(a)	Mg(+2a)	N		
Rn(a)	Br(-a)	N		
Rn(a)	Ca(+2a)	N		

HSC - Aqua

54/54 Petri Kobylin, Justin Salminen, Alexey Rumyantsev, Matias Hultgren, Fedor Vasilyev December 11, 2020

Table B4 (continued). The parameter sets and the parameter temperature dependencies of the HSC Aqua Pitzer database Lambda parameter sheet. (HSC Aqua 2009) Y = the parameter set has at least one temperature-dependent term N = the parameter set is defined by constant values

NEUTRAL	ION	T dep. AC	T dep. H	T dep. Cp
Rn(a)	H(+a)	Ν		
Rn(a)	HCO3(-a)	Ν		
Rn(a)	K(+a)	Ν		
Rn(a)	Mg(+2a)	Ν		
Rn(a)	Na(+a)	Ν		
Rn(a)	OH(-a)	Ν		
Rn(a)	SO4(-2a)	Ν		
SF6(a)	Br(-a)	Ν		
SF6(a)	Ca(+2a)	Ν		
SF6(a)	H(+a)	Ν		
SF6(a)	HCO3(-a)	Ν		
SF6(a)	K(+a)	Ν		
SF6(a)	Mg(+2a)	Ν		
SF6(a)	Na(+a)	Ν		
SF6(a)	OH(-a)	Ν		
SF6(a)	SO4(-2a)	Ν		
SiO2(a)	Al(+3a)	Y	Y	Y
SiO2(a)	AlO(+a)	Y	Y	Y
SiO2(a)	AlOH(+2a)	Y	Y	Y
SiO2(a)	Ca(+2a)	Y	Y	Y
SiO2(a)	Cl(-a)	Ν		
SiO2(a)	H(+a)	Y	Y	Y
SiO2(a)	HCO3(-a)	Y	Y	Y
SiO2(a)	K(+a)	Y	Y	Y
SiO2(a)	Li(+a)	Ν		
SiO2(a)	Mg(+2a)	Y	Y	Y
SiO2(a)	Na(+a)	Y	Y	Y
SiO2(a)	NO3(-a)	Y	Y	Y
SiO2(a)	OH(-a)	Ν		
SiO2(a)	SO4(-2a)	Y	Y	Y
SO2(a)	Cl(-a)	Ν		
SO2(a)	Na(+a)	Ν		
SO2(a)	Mg(+2a)	Ν		
Xe(a)	Br(-a)	Ν		
Xe(a)	Ca(+2a)	Ν		
Xe(a)	H(+a)	Ν		
Xe(a)	HCO3(-a)	Ν		
Xe(a)	K(+a)	Ν		
Xe(a)	Mg(+2a)	Ν		
Xe(a)	Na(+a)	Ν		
Xe(a)	OH(-a)	Ν		
Xe(a)	SO4(-2a)	N		