
Decentralized Cooperative Control
A multivehicle platform for research in networked embedded systems

Daniel Cruz, James McClintock, Brent Perteet,

Omar Orqueda, Yuan Cao, and Rafael Fierro

Recent advances in communication, computation, and embedded technologies support the devel-

opment of cooperative multivehicle systems [1]. For the purposes of this article, we adopt the following

definition of cooperative behavior [2]: “Given some task specified by a designer, a multiple-robot system

displays cooperative behavior if, due to some underlying mechanism (i.e., the ’mechanism of cooperation’),

there is an increase in the total utility of the system”. The development of cooperative multivehicle systems

is motivated by the recognition that, by distributing computer power and other resources, teams of mobile

agents can perform many tasks more efficiently and robustly than an individual robot. For example, teams

of robots can complete tasks such as multi-point surveillance, distributed localization and mapping, and

cooperative transport.

To facilitate the development of cooperative control systems and mobile sensor networks, we have

created a COoperative MultivehiclE Testbed (COMET) for research and experimentation. The objective

of this platform is to implement and validate new cooperative control techniques. This article provides an

overview of COMET. Specifically, we discuss the hardware and software components of the platform and

show how the components are integrated to maximize flexibility and expandability. We provide examples

to illustrate the types of applications that can be explored using this platform.

COMET consists of a team of ten mobile sensor agents as shown in Figure 1. Each agent is

equipped with an onboard embedded computer that interfaces with sensors and actuators on the robot.

This onboard computer supports wireless network access so that the robots can be queried and controlled

1

from the Internet or a local area network. In addition, we have developed models for simulating the rigid

body dynamics on an open-source simulator. The availability of a tightly coupled simulation environment

allows researchers and developers to preview the functionality of their algorithms, which helps to minimize

testing and development time.

COMET is designed to be scalable, accommodating experiments with an arbitrary number of

vehicles. Depending on the application, new sensors can be added on-the-fly to the sensor pool available

for each agent. As we discuss later, each vehicle is itself a network of sensors. Thus, COMET is a

collection of small, dynamic networks. This architecture enables COMET to serve as a testbed for studying

decentralized, dynamic, real-time sensor networks as well as networked control and cooperative control

algorithms. Additionally, the platform offers a unique educational opportunity. While working with these

robots, students gain first-hand experience with technologies such as networked control systems, embedded

computing systems, and controller area networks (CAN). Videos of COMET performing several of the

cooperative control tasks described in this article are available online [3].

The remainder of this article is organized as follows. In the related work section, we discuss

similar work being done at other universities and research facilities. The second section presents a vehicle

description, discussing the main hardware and embedded sensing components of the platform. Next, the

software architecture, vision library, and graphical user interface (GUI) are presented. In the remaining

sections, we discuss several control techniques that are implemented on the platform. We begin by showing

a suite of basic control behaviors, such as obstacle avoidance. Next, control techniques that are more

advanced are described. In the final section, we draw conclusions and suggest future work.

Related Multivehicle Platforms

In the last few years, multivehicle platforms have been developed at several universities and research

labs. Some of the platforms involve hovercraft vehicles such as the Caltech multivehicle wireless testbed

2

[4] and the University of Illinois HoTDeC [5]. Other testbeds feature unmanned ground vehicles and

unmanned aerial vehicles, such as MIT’s multivehicle testbed [6] and the University of Pennsylvania’s

Multiple Autonomous Robots (MARS) testbed [7], [8]. The MARS platform uses ground vehicles based

on the Tamiya TXT-1 chassis, which we use in COMET. Cornell University’s RoboFlag testbed [9]

includes several small robots with local control loops that work cooperatively to achieve a common goal.

These robots, designed for indoor experiments, use an overhead camera for localization. Each vehicle

carries a simple microcontroller unit, which is in charge of commanding the actuators on the robot.

High-level control is accomplished using a remote workstation. Researchers at Brigham Young University

use a multivehicle testbed [10] for cooperative robotics research in their MAGICC lab. Their initial

system consisted of five nonholonomic robots, with an onboard Pentium-based computer and wireless

communications.

In this article, we discuss several coordinated control algorithms that are implemented on COMET.

Our approach is to design low-level robotic behaviors and combine them to generate high-level controllers,

as suggested in [11]. More recently, several authors have approached the problem of behavior-based control

using techniques from hybrid systems. For example, [12] provides an overview of multimodal behavior-

based control with an emphasis on using low-level behaviors to describe a high-level task as compactly as

possible. The behaviors that we use are based on potential field control (PFC), a technique used extensively

by robotics researchers [13]. Although most of the work focuses on fully actuated planar robots, some

results discuss the more difficult problem of using PFC for nonholonomic robots. For example, [14]

approaches this problem by generating a trajectory for a holonomic robot and then using nonholonomic

trajectory tracking.

Although our platform has some similarities with those listed above, COMET provides a

combination of features that cannot be found elsewhere. For example, to facilitate experimental use,

COMET supports online sensor reconfiguration. We use PC-104 computers on the robots to maximize

3

compactness and modularity. Most of our onboard sensors communicate with the computers using a locally

designed CANBot board [15]. Additionally, our platform offers a system for vision-based multivehicle

coordination by combining inexpensive webcams with a NameTag system. Finally, we make extensive

use of open-source software, including Linux and Player [16].

Vehicle Description

COMET consists of ten robots based on the TXT-1, a one-tenth scale R/C monster truck from

Tamiya, Inc. Each truck is modified to be part of an adaptable team of networked mobile agents. The

vehicles are small enough to operate in a laboratory environment yet sturdy enough to negotiate rough

outdoor terrain. The robot can support a load of 3.7 kg, allowing it to carry an assortment of computers,

sensors, and other objects. A list of COMET’s major components and their respective vendors is provided

in the sidebar “COMET Components and Vendors.”

The system allows users to configure each vehicle with various sensors depending on the application

requirements. Figure 2(a) illustrates the sensors that are currently available for use. The mechanical

specifications of the platform are shown in Table I.

The controller area network is used to communicate with onboard sensors because of its low

latency time and high speed (up to 1 Mbps) [17]. Each device or sensor attached to the vehicle is

accompanied by a small board as a communication interface to the CANBus. These boards use PIC18F

series microcontrollers to process sensor data. Since CAN uses a message-based protocol, addresses are

not required. The CANBus system allows sensors and actuators to be added and removed from the system

without reconfiguring the high-level control structure. When a module is connected to the bus, the low-

level software configures the device to make its information available to the higher level software. This

plug-and-play capability allows large sensor networks to be built without the need to reconfigure the entire

system.

4

Mechanical Modifications

To convert an off-the-shelf Tamiya R/C truck into a mobile robot for research in networked

embedded systems, several modifications are required. The remainder of this section describes the changes

and additions that we make to each vehicle.

To provide odometry for each robot, the front wheels, which can rotate independently, are equipped

with separate 400-counts-per-revolution quadrature optical encoders. By using two encoders, the vehicle’s

translational and rotational speeds can be calculated. The encoder boards and code wheels are installed

as shown in Figure 3.

Since the plastic truck body that comes with the TXT-1 is not conducive to mounting sensors, a

precision-milled aluminum plate is attached to each robot as shown in Figure 4. This plate is designed to

be light weight but sturdy enough to support computers and sensors.

Finally, the suspension system on the chassis is improved through the addition of one shock

absorber per wheel. This upgrade increases the maximum load that the vehicle can carry without leaning

while raising the chassis slightly higher off the ground.

The CANBot Control Board

The CANBot control board is designed to provide a simple interface between sensors connected

to the CANBus and the vehicle’s onboard computer. A functional block diagram of this board is shown

in Figure 2(b). The three main features of this board include device management, vehicle control, and

pulse-width-modulated (PWM) signal generation. These features are described in more detail below.

5

Device Management

The CANBot board performs active bus monitoring to relieve the high-level controller of this task.

The device manager broadcasts a data packet with information about which devices are connected and

active at any moment in the CANBus. When a device stops transmitting information, the device manager

attempts to reset the device in order to bring it back into operation. If no response is received, the device

manager signals the high-level controller that the sensor is no longer present.

Vehicle Control

The CANBot control unit provides the high-level controller with a simple interface for adjusting the

robot’s translational and rotational velocities. To complete this task, the unit uses two PID controllers that

run on a single microcontroller. More details on speed control are provided in the following subsection.

Pulse-Width-Modulated Signal Generation

PWM signal generation is an important capability of the CANBot control unit, since the servo

motors use PWM for input commands. All of the servos on the platform, including the motor drive, steering

servo, and camera pan servo, are controlled using commands sent over the CANBus. The CANBot board

can simultaneously control eight servos through its PWM-generation chip. A typical servo connected to

this unit has a resolution of 0.043 deg per control bit.

Optical encoders are extremely insensitive to noise. However, electrical noise on the signal lines

can degrade the accuracy of the odometry system, for instance, by adding counts. Since PWM uses

high-frequency signals, care must be taken to avoid coupling noise into sensitive systems. Standard noise-

reduction practices are followed when designing the CANBot control board and wiring the signal lines

from the board to the servos.

6

Vehicle Kinematics and PID Tuning

Considering the monster truck chassis, a kinematic description of COMET is given by the car-like

model [18]

ẋi = vi cos θi, (1)

ẏi = vi sin θi, (2)

θ̇i =
vi

l
tan φi, (3)

where (xi, yi) and θi are the position and orientation of robot i; vi and φi represent the robot’s translational

velocity and front wheel steering angle, respectively; and l is the distance between the robot’s front and

rear wheels. Note that (3) can simply be written as

θ̇i = ωi, (4)

where ωi is the angular velocity of the vehicle.

To facilitate high-level control design, COMET’s low-level speed controller is set up to accept

velocity commands uc
i = [vc

i ωc
i]

T . The CANBot control board provides this feature by using a PID

controller to maintain the robot’s translational and rotational speeds at desired values. This low-level

controller guarantees that, after a short period of time,

||uc
i − ui|| < ε,

where ui = [vi ωi]
T is the ith robot’s speed vector and ε is a small positive constant. The controller

requires measured values of the translational speed vi and rotational speed ωi as feedback. These speeds

are estimated by the CANBot control unit using the front wheel encoders. Encoder counts are read

from the CANBus using a sampling time ∆T = 20 ms. Each time the encoders are read, the previous

7

count is subtracted from the current count to determine the number of ticks that occurred in that 20-ms

interval. The counter rolls over to zero once it reaches about 64,000 ticks; however, the subtraction routine

automatically accounts for turnover unless the truck travels more than about 10 m in any 20-ms interval,

which is impossible. Because the encoders have 400 lines and are quadrature, their effective resolution

is 1600 ticks per revolution, that is, 0.225 deg. Using this value together with the wheel diameter of

6 in, the encoder distance factor is approximately ζ = 0.3 mm/tick. This calculation has been verified

experimentally on flat, even terrain. Since random wheel slippage can occur [19], the odometry is calibrated

to determine an average distance factor for a given type of surface. Using the distance factor together

with the vehicle width W = 37.5 cm, the translational velocity vi and rotational velocity ωi are estimated

as

vi =
(dR + dL)ζ

2∆T
, (5)

ωi =
(dR − dL)ζ

W∆T
, (6)

where dR and dL are the number of ticks in one sampling interval by the robot’s right and left encoders,

respectively.

To maintain the robot’s translational and rotational velocities, the CANBot board uses a PID

controller of the form

Vi(n) = Kpei(n) + Ki

n∑

k=0

ei(k) + Kd[ei(n)− ei(n− 1)],

where Vi(n) =
[
V Drive

i V Steer
i

]T are the PID controller outputs that drive the robot’s motors and

steering servos, respectively, ei(n) = [vc
i − vi ωc

i − ωi]
T is the difference between the commanded

and measured translational and rotational speeds, and Kp = diag(Kpv, Kpω), Ki = diag(Kiv, Kiω), and

Kd = diag(Kdv, Kdω) are controller gains. This PID controller runs on a PIC microcontroller. To calculate

the error signal, the microcontroller estimates vi and ωi using (5) and (6). The commanded translational

8

speed vc
i and rotational speed ωc

i are provided by the high-level control program running on the PC-104.

The values V Drive
i ∈ [−2048, 2047] and V Steer

i ∈ [−2048, 2047] are discrete controller outputs. After the

PID controller executes, V Drive
i is converted to a PWM signal, which is sent to the dc motor drive. V Steer

i

is also converted to a PWM signal, which controls the steering servo.

The controller gains Kd, Ki, and Kp are hand tuned using the dynamic model

miv̇i = −ηvi + K1V
Drive
i ,

Jiω̇i = −σωi + K2V
Drive
i V Steer

i ,

where mi is the mass of the ith robot, Ji is the robot’s moment of inertia, η and σ are damping factors,

K1 is a constant with units of force, and K2 is a constant with units of torque. Since these values are

highly dependent on the motors and servos, they are not listed here. This dynamic model is used for

PID tuning because it accounts for the coupling between the translational and rotational speeds. Once the

performance of the controller is satisfactory, the controller gains are set in the CANBot firmware. The

gains that we use are

Kpv = 0.80 s/m, Kdv = 1.00 s/m, Kiv = 0.02 s/m,

Kpω = 0.40 s, Kdω = 0.01 s, Kiω = 0.10 s.

Figure 5 shows the controller performance on even terrain.

Onboard Computing

An Advanced Digital-Logic PC-104 computer hosts the local control software on each vehicle.

The PC-104 system, which has the same capabilities as a desktop system, has a reduced size that fits on

COMET. The PC-104 is equipped with a 40-GB hard drive, FireWire, Kvaser CAN card, WiFi support,

and a Pentium M processor. The system features the RedHat Fedora operating system and runs the Linux

9

kernel version 2.6. The onboard computer, which runs high-level control tasks, interfaces with the vehicle

through the CANBot Control Unit. The CANBot Control Unit is the only CAN device that is mandatory

for each vehicle.

Sensor Suite

This section describes the suite of sensors available for use on the platform. Each sensor features

CAN connectivity based on the PIC18F258/248 microcontroller.

Infrared Sensors

The trucks carry infrared (IR) arrays based on the Sharp 2Y0A02 infrared long-distance measuring

sensor. Each Sharp sensor outputs an analog voltage proportional to object distance over a range of 0.2 m

to 1.5 m. The IR array consists of three IR sensors mounted at a 45-deg offset. An IR/CAN control-board

interface with the IR array transmits the measured distances through the CANBus at a 25-Hz sampling

rate.

Global Positioning System

The global positioning system (GPS)/CAN control board can support any GPS receiver that outputs

standard NMEA 0183 sentences. A Garmin GPS 18 receiver (the 5-Hz version) is used on the platform.

This device, which is accessed using RS-232, provides data on longitude, latitude, altitude, heading,

speed, satellites detected, and dilution of precision (which indicates GPS error based on the positions of

the satellites relative to the GPS receiver). The GPS features wide area augmentation system technology

to enhance its accuracy using a network of ground stations and satellites. When this feature is enabled,

the position accuracy is approximately 3 m. The sensor has an adjustable update rate of up to 5 Hz.

10

When a GPS receiver is connected to a vehicle, its position data are considered as truth. If present,

the inertial measurement unit (discussed below) and encoders are used as part of the positioning system

to provide higher resolution over short distances. However, the output of the positioning system is reset

to the GPS position if the difference between odometry measurements and the GPS position is greater

than the GPS resolution.

Inertial Measurement Unit

The inertial measurement unit (IMU) is the Microstrain 3DM-G. This IMU provides temperature-

compensated triaxial orientation information in pitch (θ), roll (φ), and yaw (ψ) by integrating data from

9 sensors (3 gyros, 3 accelerometers, and 3 magnetometers) and measuring against a local coordinate

system. This information is updated at a rate of 75 Hz. Gyro-enhanced odometry is more accurate than

encoder-based odometry, particularly in determining the heading of the vehicle, since this angle is provided

by the IMU instead of differences in wheel rotation.

While 2D gyro-enhanced odometry is automatically provided when the IMU is connected to the

system, the user can alternatively request 3D position, which makes more comprehensive use of the

sensor. The interface board, which samples data from the IMU using the RS-232 data port, has the same

design and layout as the GPS interface board. The only difference between the two is the firmware loaded

into the microcontroller’s flash memory. Since both the GPS and IMU operate by reading low-power

electromagnetic signals, their performance is affected by electromagnetic interference produced by the

vehicle itself and the environment. For this reason, the sensors are mounted as far away from the onboard

computer as possible. Also, large metal objects in the environment or onboard can degrade the accuracy

of the magnetometers.

11

Laser Range Finder

The most recent addition to COMET’s sensor suite is a Hokuyo URG-04LX laser range finder

(LRF). Mounted on top of the PC-104 enclosure, the LRF is connected to the computer by USB. The

device uses a spinning laser coupled with advanced detection circuitry to create a 2D map of the distance

to nearby objects. This sensor has a range of 5 m and offers a wide viewing angle of 240 deg. The LRF

has a scanning rate of 10 Hz, an angular resolution of 0.36 deg, and accuracy of ±10 mm, which makes it

an excellent tool for autonomous vehicles exploring an unknown environment. Experimental applications

of a LRF include obstacle avoidance and contour following.

Vision

A video camera is available for use on the robots. Due to the large volume of data generated

by the camera, the sensor does not connect to the CAN network. Instead, we use a FireWire camera

connected directly to the onboard computer. Currently, our vision library works with BumbleBee stereo

cameras from Point Grey as well as Fire-i digital cameras from Unibrain [20]. More details about the

vision library are provided below.

Power System

The vehicle electronics, including the onboard computer and all of the sensors, are powered by

a Powerizer 11.1-V, 5500-mAh, lithium ion battery. Lithium ion batteries are light weight, storing more

energy per unit mass (110-160 W-h/kg) than batteries using heavier metals such as nickel metal hydride

(30-80 W-h/kg). On a full charge, the Powerizer battery can keep the electronics running for approximately

3 hours. Additionally, a Datel UHE-5/5000 DC/DC converter provides the 5-V input required by several

of the components.

12

A second battery is used for the motors because the current draw surges when the motors spin

up causing voltage fluctuations, which are problematic for the sensitive electronics. Also, the lithium ion

battery cannot supply the current needed by the motors. Instead, we use a 6-cell, 7.2-V, 3300-mAh, nickel

metal hydride battery. This battery connects directly to the speed controller and, depending on usage, lasts

for several hours on a charge.

Vehicle Operation and Maintenance

Overall, the robots are robust, requiring little maintenance for everyday operation. For attaching and

reconfiguring sensors, each robot’s aluminum plate is drilled and tapped with approximately 100 mounting

holes. An aluminum case houses the onboard computer to provide protection, with a removable cover for

easy access. Everyday maintenance of the robot includes cleaning after outdoor use and recharging motor

and computer batteries.

To keep the vehicles in working order, some routine maintenance is required. For example, the

batteries are replaced as they wear out, usually after about 50 chargings. Also, the dampers in the

suspension system lose a small amount of oil over time so they must be checked and refilled periodically.

On rare occasions mechanical components such as the lower plastic supports for the shield that holds the

steering servos, as well as the gears inside the servos, are damaged and must be replaced.

TXT Software Libraries

In this section we elaborate on the higher level software developed for COMET (see Figure 6).

This software is written using C++ and Playerlib to interface with Player. This section describes the

Player driver that interfaces with the in-vehicle CAN network, the vision library, and the control functions

available to developers.

13

The Player/Stage/Gazebo Project

The Player/Stage/Gazebo [16] project is an ongoing open source software development effort that

offers a suite of tools for research in robotics. The source code, which is available for free download

from sourceforge.net, is protected by the GNU General Public License. Since the source code is available

for download and is open to modifications, researchers and developers often contribute drivers for new

sensors and mobile robots. The software can run on several platforms such as Solaris, Linux, and Mac

OSX.

The project is comprised of three components that can be used individually or together. Player

is an application that provides a network interface for sensors and actuators on the robot. Additionally,

since Player allows multiple connections, more than one client can access each robot’s resources at the

same time. This feature is useful in multivehicle control and coordination applications. Player supports

hardware such as LRFs, cameras, GPSs, and most MobileRobots (previously ActivMedia) robots. Stage and

Gazebo are 2D and 3D world simulators, respectively. Both of these applications can simulate populations

of agents, sensors, objects, and environments.

Each vehicle executes Player using its onboard PC-104 computer. Once Player is running, the

vehicle is controllable through the network. A control program might run on the local machine or on a

remote computer. Since COMET uses several communication networks, systematic and non-systematic

delays can affect the performance of the controllers. The lower level controller deals with the CANBus

network delays and latency. These delays are generally insignificant and can be disregarded. The higher

level control assumes information is readily available at each sampling interval. However, when the

controller operates using the local area network, delays can be significant and affect the performance

of the system [21]. We plan to model these delays and their effects on performance of the testbed in

future work.

14

A Gazebo model that supports the same sensors as our trucks is used to simulate COMET. Since

Gazebo has a standard Player network interface, high-level control programs can connect to virtual robots

to read sensor values and execute control commands. In fact, from the standpoint of a high-level control

program, virtual and real robots are identical. Without any changes, a program that can run on the PC-104

to control a real robot can run on a desktop and control a virtual robot in Gazebo. An example of a Gazebo

simulation is shown in Figure 7(a).

The TXT CAN Player Driver

The TXT Player driver is a bridge between Player and the CAN sensor network. A PCMCIA-

CAN card or USB-CAN connector is used as the interfacing hardware, which is facilitated by the Kvaser

CANLib library of functions. The currently supported CAN-enabled devices include the Garmin GPS,

CANBot control unit, MicroStrain IMU, and IR distance sensors. Player includes the camera1394 driver to

interface with FireWire cameras. The TXT Player driver updates information from every sensor connected

to the CANBus at 1 kHz. This speed exceeds the update rates of our current sensors, and thus can facilitate

integration of faster sensors in the future.

Mobile Robot Vision

When a group of mobile agents attempts to perform a coordinated behavior such as flocking [22],

leader-following [23], or a cooperative operation [24], each agent in the group must identify its neighbor

agents and estimate their positions and orientations. One way to obtain this information is through an

onboard vision sensor [25], [26]. To accomplish robot identification and localization, COMET uses markers

or visual tags arranged on the back of each robot on a 3D-truncated octagonal-shaped structure, as shown

in Figure 4. Each face of this visual tag has a code that provides the vehicle’s ID as well as the position

of the face in the 3D-visual marker. This information allows a vision sensor to identify the vehicle and

15

estimate its pose relative to the sensor coordinate system. The ink pattern is black and white to reduce

lighting and camera sensitivities.

The vision library analyzes an image using a five-step process. During video capture and

transformation, images from the camera are captured and converted into OpenCV’s RGB format. The

second step is filtering and thresholding, in which the image is converted to grayscale and thresholding

based on a modified Otsu method [27] is performed. In the third step, a point selection/face labeling

algorithm is applied. A search and identification of each face marker in the binary image is performed. To

this end, all of the contours on the binary image are extracted, and the rectangles enclosing each marker

are identified. After estimating the four corners of each rectangle, a search for markers is performed. If

a valid marker is found, the corresponding four corners are stored for pose estimation. The fourth step

is pose estimation, which consists of a nonlinear optimization problem [28]. To reduce the likelihood of

false local minima, the optimization problem is initialized with the POSIT algorithm [29]. The position

of the leader robot with respect to the camera position as well as the relative rotation of the leader robot

with respect to the camera plane are estimated. The fifth step involves the diffeomorphic transformation

of the measured values to the desired ones. More details about COMET’s vision library are given in [20].

Figure 8 shows the steps involved in the NameTag detection processes.

Robot Control Software

The Graphical User Interface

To coordinate the multivehicle network, we have created a GUI for use by a human operator.

The interface is written in C++ using the Trolltech Qt application framework. The GUI can run on any

platform that Qt supports, such as Windows, Linux, and Mac. The GUI is designed to support TCP/IP

communication and interface with Player to command and monitor the mobile agents. In a laboratory

environment, the robots can connect to a wireless access point with Internet access, and the GUI can

16

then be run on any computer connected to the Internet. To accommodate field work, an ad hoc wireless

network is set up, and the GUI is run on a laptop with wireless capability. The GUI is shown in Figure

9.

Methods of Operation

The GUI has several features that allow users to configure COMET’s level of autonomy. For

example, users can choose between individual and team control. At the lowest level, users can command

individual robots by setting translational and rotational velocities for each vehicle. Alternatively, the GUI

can be used to specify a set of waypoints for each vehicle, thus allowing the agent to plan its trajectory

using a PFC [30]. Finally, to control team maneuvers, the GUI provides a set of basic building block

functions. Specifically, teams can move in a leader-follower or flocking formation to a desired location.

The team can also be commanded to travel along a route specified by waypoints. More details about these

coordinated control behaviors are provided below.

The GUI also facilitates centralized or decentralized coordination of the team. In centralized

coordination mode, the control algorithms for each vehicle, for example, obstacle avoidance, go-to-goal,

or waypoint navigation, run on the same computer as the GUI. This mode requires a powerful computer

since a copy of the navigation algorithm must be run for each vehicle. In decentralized coordination mode,

the GUI is used only to issue high-level commands and monitor the state of the multivehicle system. Each

vehicle computes and executes its own controller based on the mission at hand. Navigation and obstacle

avoidance are also executed locally on the agent’s onboard computer. Instead of sending a large amount

of real-time control data, the GUI communicates only waypoints to the vehicles.

Finally, the GUI provides the user with advanced monitoring capabilities. When a map of the

environment is supplied, the interface shows the location of each robot as well as the robot’s proximity to

obstacles. When a robot moves in the real world, the interface shows a moving icon on the map. The GUI

17

can display more detailed information about any individual agent, including its position, orientation, and

velocity. To support reconnaissance missions, live video from any agent equipped with a camera can be

viewed. Users can pan the camera to view objects that are not directly in front of the vehicle. However,

the video transfer makes heavy use of the network.

Levels of Autonomy

As mentioned above, the level of autonomy of COMET depends on how the team is configured by

the GUI to operate. For example, to run in centralized coordination mode, the robots must stay in contact

with the GUI. In decentralized mode, however, the GUI might disconnect after uploading a mission to

the robots. Also, when team maneuvers are requested, the robots exercise greater autonomy than when

the user specifies waypoints for each vehicle. The tradeoffs relate to the amount of user input and scope

of operation. When the robots act autonomously, the user has less finely tuned control over their actions,

although entering control commands is less of a burden. On the other hand, commanding each robot is

time consuming but allows for precise control. Also, when the robots act autonomously, they can carry

out missions in areas where communication is limited. The major disadvantage is that the user loses the

advanced monitoring capabilities of the GUI.

Basic Control Behaviors

This section describes basic control behaviors that are implemented on COMET. These behaviors

can be combined in parallel or sequentially to create more complex swarming behaviors. The algorithms

are implemented with C++ control functions and run in Linux on the PC-104 computers. Player is used to

interface with the vehicle’s hardware. Thus, the behavior implementations are subject to the networking

delays and sampling time restrictions of the CANBus as well as the sensors and actuators described above.

18

Go-To-Goal

The go-to-goal behavior is based on a PFC algorithm. PFCs use an attractive potential, which allows

the agents to move to a specific location. A PFC can be used for feature tracking, leader-following,

waypoint tracking, or any other application in which a vehicle needs to reach a designated goal. The

artificial potential Pa(xi, yi) is given by [30]

Pa(xi, yi) =
1

2
ε[(xi − xg)

2 + (yi − yg)
2],

where (xi, yi) is the position of agent i, ε is a positive constant, and (xg, yg) is the position of the goal.

The attractive force, Fa(xi, yi), can be expressed as

Fa(xi, yi) = −5Pa(xi, yi) = −




∂Pa

∂xi

∂Pa

∂yi


 ,

which yields

Fa(xi, yi) = ε




xg − xi

yg − yi


 ,




Fa,xi

Fa,yi


 . (7)

Based on the two values calculated in (7), the desired orientation angle

θi,d = arctan2(Fa,yi
, Fa,xi

) (8)

can be determined, where arctan2(·) in (8) represents the four-quadrant inverse tangent of Fa,xi
and Fa,yi

.

This function uses the signs of these two values to remove the two-solution ambiguity normally associated

with the inverse tangent of Fa,yi
/Fa,xi

.

After the orientation relative to the goal is calculated, the proportional controller

ωi = ±k (θi,d − θi),

19

where k = ωmax

2π
s−1 and ωmax = 0.4 rad/s, is used to align the vehicle with the desired heading. The

translational speed of the vehicle while executing the PFC may vary. In some applications such as feature

detection, this speed can be held constant. In other applications such as goal seeking, the speed of the

vehicle depends on the distance to the goal. In leader-follower applications, the speed of the leader is

used as a feedforward term to increase system robustness.

This behavior has several limitations that must be considered. When using the PFC together with a

nonholonomic vehicle, the robot may begin to circle around its goal position. This behavior occurs because

noise in the odometry can cause the robot’s position estimate to shift laterally, and thus the robot must

circle around to correct the error. This problem can be solved by including a threshold in the potential Pa

such that the robot does not move when Pa is below a certain value. Additionally, since the go-to-goal

behavior does not consider obstructions in the environment, collisions can occur. Go-to-goal behavior can

be coupled with obstacle avoidance to overcome this problem as described in the following subsections.

Obstacle Avoidance

Obstacle avoidance (OA) is a basic building block of autonomous robotic systems [31]. The OA

behavior can be seen as part of a hierarchical hybrid system [32], which combines both continuous and

discrete states. A common technique is to define obstacle avoidance as a discrete control state. When the

robot detects an object that is closer than a threshold value, the obstacle avoidance state is used. The

hybrid automaton shown in Figure 10 illustrates this idea. Obstacle avoidance makes operating the robot

safer by using sonar or IR sensors to detect and avoid obstacles. In our implementation of OA, the agent

uses two CAN-enabled IR arrays located at the front of the vehicle body. Since each CAN-enabled IR

array has three IR sensors, six IR sensors are available. These sensors are numbered from 0 to 5 as shown

in Figure 11. Much like the PFC, this algorithm begins by computing a set of virtual forces. In this case,

20

the virtual right and left forces are repulsive and are calculated based on four IR sensor readings as

Fr =
2∑

n=1

λn

dn

,

Fl =
4∑

n=3

λn

dn

,

where dn is the distance to the obstacle reported by the nth sensor and λn is a scaling factor applied

to each IR sensor’s distance measurement. In other words, λn determines the weight of each sensor in

controlling the robot. After extensive experimental testing, we chose the value λn = [0.7, 0.9, 1.0, 0.7],

which weighs the repulsive force in favor of objects directly in front of the robot.

The OA controller is a hybrid controller with two discrete states. The algorithm tracks the contour

of an obstacle if the obstacle is in the way of the designated goal, but not directly in front of the vehicle.

In this contour tracking state, OA uses the proportional controller

ωc
i =





kp(d5 −Dsafe), if the obstacle is on the left,

kp(Dsafe − d0), if the obstacle is on the right,

where kp is constant gain and Dsafe is the constant distance at which the perimeter of the obstacle is

tracked. This distance is set to 0.2 m. The contour tracking speed is vOA = 0.6 m/s. When an obstacle is

directly in front and must be avoided, the OA controller enters a collision-avoidance state and calculates

the translational and rotational velocities as

vc
i = vOA − kvp

4∑
n=1

λn

dn

,

ωc
i = kωp(Fl − Fr),

where kvp and kωp are control constants, and vOA is a reduced contour tracking velocity. Once the obstacle

is no longer directly in front, the controller switches to contour tracking, and the obstacle’s perimeter is

tracked as before. The vehicle continues tracking the contour of the obstacle until the obstacle no longer

21

obstructs the path to the goal. This condition is verified when the distance to the obstacle reported by

sensors 1 or 4 (see Figure 11) are d1 ≥ ρ or d4 ≥ ρ, where ρ = 0.25 m. Once the obstacle is negotiated,

the higher level control continues operation.

Goal seeking

Goal seeking emerges from a combination of obstacle avoidance and go-to-goal behaviors using

the hybrid architecture shown in Figure 10. The objective of this emergent behavior is to drive the agent

to a designated waypoint without colliding with obstacles. This behavior is useful since it enables the

vehicle to travel autonomously. Goal seeking is included as a fundamental block of the GUI. Figure 12

shows a mobile agent at its initial position in a goal-seeking experiment along with the trajectory that the

agent follows while traveling to its goal.

Figure 13(a) shows the goal-seeking controller’s performance. Since the controller is hybrid, it

switches between the obstacle-avoidance states discussed above based on the proximity of obstacles in

the environment. Figure 13(b) depicts the transition of the controller between the PFC, collision avoidance,

and obstacle contour-tracking states. The goal-seeking algorithm is not a path planner and therefore cannot

guarantee that the goal is reachable. This behavior is intended to be a basic building block in a library

of more complex path-planning algorithms.

Motion-Coordination Algorithms

In this section, we discuss several motion-coordination algorithms used on COMET. Some

mathematical preliminaries are required. A multivehicle system can be considered as a dynamic network in

which each node represents a mobile agent (vehicle, mobile sensor, robot) with communication, sensing,

and control capabilities. We consider a dynamic network Σ composed of N mobile agents that share

a configuration space Q. Specifically, following [33], [34], a dynamic network Σ of mobile agents is

22

a tuple (I,A,Gc,Gs,H), where I = {1, . . . , N} is the set of unique identifiers representing agents in

the network, A = {(Xi, Ui, X0, fi)}i∈I is a set of control systems (physical agents), Gc = {V , Ec} is an

undirected communication graph, where V is the set of nodes and Ec is the communication edge map,

and Gs = {V , Es} is a directed sensing graph, where Es is the sensing edge map. Finally, H = {V , Eh} is

a directed control graph with the set of nodes V and the control edge map Eh.

Several graphs are needed to capture the interactions of the agents within the network and

environment. In some cases, agents can hear but not see each other. The design of the control graph

H involves the assignment of control policies for each agent. The set Eh is related to the communication

Ec and sensing Es graphs. An edge between two nodes in the control graph can be created only if a

communication edge or sensing edge exists. Moreover, agents can be modeled as hierarchical hybrid

systems [32] that can exchange data that affect their continuous-time motions at discrete-time instants.

Figure 14 illustrates how the notation above can describe a dynamic network Σ of vehicles executing a

formation control task.

For a dynamic network Σ performing a cooperative task, a motion-coordination algorithm is the

control, sensing, and communication law that accomplishes the given task. In the discussion that follows,

we assume that all robots are modeled using the model (1), (2), and (4). This model defines Xi, Ui, and

fi for each agent i in the set A. Several motion-coordination algorithms that are implemented on COMET

are described.

Formation Control

Many natural systems such as swarms, schools, and flocks exhibit stable formation behaviors [35].

In these systems, individuals follow distant leaders without colliding with neighbors. In some application

domains, a group of agents need to move as a rigid structure. Also, in practical situations such as

cooperative manipulation, a target formation must be established for a given task or environment. In

23

these cases, reconfiguration of agents in formation is required [24].

Formation control is useful when a network of mobile agents is required to follow a prescribed

trajectory g(t) while achieving and maintaining a desired formation shape Fd [36], [37]. A formation

shape F is described by the relative positions of the agents with respect to a reference coordinate frame.

Let the Euclidean distance `ij (t) ∈ [0,∞) and the bearing ψij (t) ∈ (−π, π] between agents i and j be

defined as

`ij (t) :=

√
(xi − xj)

2 + (yi − yj)
2, (9)

ψij (t) := π + ζij (t)− θi (t) , (10)

with ζij (t) = arctan2 (yi − yj, xi − xj), as shown in Figure 15. The following definition is based on [38].

Definition: A formation is a network of N vehicles Σ interconnected by means of a collection

S = {sij} of node specifications

sij (t) := [`ij (t) ψij (t)]T ,

where i, j ∈ I, and `ij and ψij are the separation distance and bearing angle between vehicles i and j,

respectively. An element sij(t) ∈ S indicates the relative position vector that follower agent j maintains

with respect to its leader agent i. The interconnections between agents are modeled as edges in the directed

control graph H described above and shown in Figure 14.

Note that a desired formation shape Fd is mapped into a collection Sd = {sd
ij} of node

specifications, where sd
ij defines a desired separation `d

ij and bearing ψd
ij for follower agent j with respect

to its leader agent i. Both communication-based and vision-based formation control techniques have been

implemented on COMET. These algorithms are discussed below.

24

Vision-based Formation Control

Let us consider a vehicle formation in which a lead vehicle is tele-operated or is required to

follow a given trajectory. To implement a formation controller, each robot with the possible exception

of the lead robot must have information about the relative location of at least one of its neighbors. This

information can either be gathered through communication, if an edge exists in Gc, or sensing, if an edge

exists in Gs. Here, we assume that intervehicle communication is disabled and thus no edges exist in the

communication graph Gc. However, an edge exists in the sensing graph Gs from nodes i to j whenever

agent i recognizes the NameTag of robot j. COMET uses a decentralized vision-based formation-control

strategy that requires knowledge of only leader-follower relative distances and bearing angles. These

data are estimated based on measurements from the pan-controlled cameras on board each vehicle. The

remainder of this subsection gives an overview of the formation control strategy.

Let the node specification sij (t) ∈ R × (−π, π] of agent j be given by (11). Differentiating sij

using (9) and (10), the relative kinematic model becomes

˙̀
ij = vj cos γ − vi cos ψij,

ψ̇ij =
vi sin ψij − vj sin γ

`ij

− ωi,

γ = ψij + θi − θj,

where vi and ωi are the leader’s translational and rotational velocities, respectively. Similarly, the follower’s

translational and rotational velocities are denoted by vj and ωj , respectively. The auxiliary relative angle

γ as well as `ij, ψij, θi, θj are defined in Figure 15. In matrix form, we have

ṡij =




˙̀
ij

ψ̇ij


 =




cos γ 0

− sin γ
`ij

0


 uj +



− cos ψij 0

sin ψij

`ij
−1


 ui.

The objective is to design a control law uj (t) = [vj ωj]
T that allows agent j to track agent i

25

with a desired specification sd
ij (t), assuming that agent i is stably tracking a desired trajectory g(t) with

smooth, bounded inputs ui (t) = [vi ωi]
T . To solve this problem, a high-gain observer is used to estimate

the derivatives of the vehicles’ relative positions [39].

Communication-Based Formation Control

In communication-based formation control, vehicles follow each other based on their position

relative to a common world frame. This behavior requires that each vehicle communicate its position

to its neighbors. A robot in the formation is designated as the lead vehicle. The lead vehicle can be

driven by a high-level controller or tele-operated through the GUI. Each one of the other robots, on the

other hand, is programmed to follow the location communicated by a preselected neighboring robot. This

technique requires that an edge be maintained in the communication graph Gc between two robots in a

leader-follower configuration. Sensing is not used, and thus no edges exist in Gs. Communication-based

following is useful in urban environments, where the leader agent might not be visible at all times. The

success of the technique depends on the accuracy of the position-estimation system. Additionally, the

vehicles must share an absolute position reference frame. Figure 16 depicts a group of TXT vehicles

changing from a convoy formation to a V-like formation and returning to a convoy formation.

Flocking

The mechanisms through which natural systems move together in a decentralized, coordinated

manner is a research topic in biology, mathematics, and controls. Flocking is a collective behavior that

emerges when a large number of mobile agents with a common goal [22] interact with each other to reach

a consensus state in their heading angles and intervehicle separation distances [40]. A simple flocking

model is discussed in [41], where several agents travel at the same speed. Each agent aligns its heading

based on the average of its heading and the heading of its surrounding neighbors. Despite the absence of

26

a centralized coordination algorithm, the group aligns itself in the same direction, and flocking behavior

emerges. A theoretical explanation for this behavior is presented in [42].

The model described in [41] is implemented on COMET, where each agent is aware of the heading

of its neighboring peers. A local PI controller enforces the neighboring rule that aligns the agent’s heading

according to

θi(t + 1) =
1

1 + ni(t)


θi(t) +

∑

j∈Ni(t)

θj(t)


 , (11)

where θi is the heading of agent i, and ni(t) is the number of neighbors that can be heard or seen by

agent i at time t. Also, all of the vehicles are commanded to maintain the same translational speed vc
I(t).

Although obstacle avoidance is active, the implementation is tested in an obstacle-free environment. Figure

17 shows a five-agent team in which one of the robots follows a set of waypoints to provide direction for

the flock. The remaining robots use the alignment rule (11) to successfully navigate together through the

desired waypoints.

Perimeter Detection and Tracking

We now describe a decentralized coordination algorithm that allows a mobile sensor network to

find and track a dynamic perimeter. A perimeter can be a chemical substance spill, building, or landmark.

We assume that each agent is equipped with an appropriate sensor to detect the perimeter. As before,

we consider a network Σ of N mobile agents, each modeled with the unicycle model with control input

uc
i = [vc

i ωc
i]

T ∈ U , where U is a bounded, convex set.

We define a convex polygonal searching area S ⊂ R2 with boundary ∂S containing a target

region Ω ⊂ S with perimeter ∂Ω. The robots are initially placed in the environment at random locations

(xi, yi) ∈ S \ Ω, as shown in Figure 18(a). Also, agents can communicate with other members of the

team at discrete time instants. Finally, we assume that each agent has a limited field of view and limited

27

communication range. Now we state the perimeter-detection and tracking problem as follows.

Perimeter Detection and Tracking Problem: Given a dynamic network Σ of N mobile sensors

randomly distributed in a planar polygonal environment S , determine a motion-coordination algorithm such

that the team detects and tracks a perimeter ∂Ω defined by a target region Ω while avoiding intervehicle

collisions.

To solve this problem, we implement a motion-coordination algorithm composed of a random-

coverage controller to start the search for the perimeter, a PFC (discussed above) to attract agents to a

known perimeter boundary point, and a tracking controller to track the perimeter. The agents coordinate

their efforts to locate the perimeter. Once an agent finds the perimeter containing the target region, the

agent broadcasts its position to all robots within range. As each robot receives the message, it starts

the PFC to reach the perimeter location and retransmits the received message, creating a communication

relay. Additionally, OA is active in the background throughout the execution of the algorithm to prevent

collisions. The goal of this algorithm is to use a multirobotic system to estimate a dynamic perimeter as

it evolves. Once an estimate of the perimeter is known, cooperation can be used to uniformly surround

the target region [43]. Figure 18 shows the algorithm in operation.

A Target Assessment Case Study

This section demonstrates how COMET might be used in the real world for surveillance or target

assessment. The experiment uses basic behaviors, motion-coordination algorithms, and the GUI described

previously. Figure 19 shows the site where the experiment is conducted.

The three phases that comprise the mission include securing the path, driving to the target, and

encircling the target. These steps illustrate the modes of operation and levels of autonomy discussed in

the Robot Control Software section above.

28

Securing the Path

For the convoy to travel safely, the path must be secured. When the mission begins, two scout

agents position themselves at tactical locations to survey the path. Figure 19 shows those locations, which

are labeled as the surveillance points. Each scout is commanded to its surveillance point using a series of

waypoints. Once its surveillance point is reached, the scout agent pans its camera to provide a panoramic

view to users, allowing them to verify the safety of the path.

After the first scout reaches the first surveillance location, the second scout drives farther into

the preselected convoy path. Like the first scout, its function is to monitor the area and provide video

surveillance feedback.

Driving to the Target

Once the path is known to be safe, the convoy is commanded to go to the target location. The

convoy is composed of one leader agent and three followers. The first agent in the convoy is provided

with a series of waypoints to reach the target. The remaining agents follow the leader, executing a

communication-based leader-follower operation.

Encircling the Target

Once the convoy has reached the vicinity of the target, each vehicle is commanded to a new

location. This operation is based on a series of preselected waypoints that guide the robot to a particular

location near the target. The objective of this rearrangement is to provide the user with a diverse view of

the target. The user can now, by means of remote video, assess the target condition.

29

Conclusions

A scalable multivehicle platform has been developed to demonstrate cooperative control systems

and sensor networks. Major features of this platform include high flexibility to varying sensor configu-

rations, with a pool of hot-swappable sensors that can be added or removed on-the-fly, and a modular

framework for integrating sensing and control capabilities. The platform is compatible with Player and

Gazebo, which makes it easily accessible and offers the benefit of a simulation environment with full

sensor support. The software library gives developers a basic set of building blocks for more complex

algorithms.

Currently, we are adding motion-coordination algorithms to the library of team controllers. These

algorithms include deployment, rendezvous [44], perimeter estimation and pattern formation [45], and

dynamic target tracking [46]. We are also exploring alternative methods, such as machine learning [47]

and optimal formation shape changes [48], to improve the performance of existing motion-coordination

algorithms. Additionally, new sensing devices and drivers are being added to the suite of onboard,

hot-swappable embedded sensors. These devices include NorthStar localization systems from Evolution

Robotics, environmental wireless sensors from Moteiv, and fisheye lens cameras.

COMET provides a comprehensive research and educational tool, allowing students to learn

hardware and software design for embedded computer systems and become familiar with cutting-edge

computer-controlled design and manufacturing technology. Additionally, COMET provides researchers in

cooperative and distributed control with an interdisciplinary environment to integrate embedded sensing,

hybrid control, and communication networks.

Acknowledgments

The authors would like to thank the anonymous reviewers for providing useful comments and

30

suggestions that improved the presentation of this paper. We also thank Justin Clark for his work in

perimeter detection, Rahul Buddhisagar for his effort assisting in the development of the graphical user

interface, Chris Flesher for his work in computer vision, and Colby Toland and Kyle Hutchins for their

efforts in tuning the PID controllers. This work is supported in part by NSF grants #0311460 and CAREER

#0348637 and by the U.S. Army Research Office under grant DAAD19-03-1-0142 (through the University

of Oklahoma).

31

References

[1] D. Hristu-Varsakelis and W. S. Levine, Eds., Handbook of Networked and Embedded Control Systems,

ser. Control Engineering. Boston: Birkhäuser, 2005.

[2] Y. Cao, S. Fukunga, and A. Kahng, “Cooperative mobile robotics: Antecedents and directions,”

Autonomous Robots, vol. 4, pp. 1–23, 1997.

[3] (2007, January) Marhes multimedia. [Online]. Available: http://marhes.okstate.edu/multimedia.htm

[4] Z. Jin, S. Waydo, E. B. Wildanger, M. Lammers, H. Scholze, P. Foley, D. Held, and R. M. Murray,

“MVWT-II: The second generation caltech multi-vehicle wireless testbed,” in Proc. American Control

Conf., vol. 6, Boston, MA, June 2004, pp. 5321–5326.

[5] V. Vladimerou, A. Stubbs, J. Rubel, A. Fulford, and G. Dullerud, “Multivehicle systems control over

networks,” in IEEE Control Systems Magazine, vol. 26, no. 3, June 2006, pp. 56–69.

[6] E. King, Y. Kuwata, M. Alighanbari, L. Bertuccelli, and J. How, “Coordination and control

experiments on a multi-vehicle testbed,” in Proc. American Control Conf., vol. 6, Boston, MA,

June 2004, pp. 5315–5320.

[7] L. Chaimowicz, B. Grocholsky, J. F. Keller, V. Kumar, and C. J. Taylor, “Experiments in multirobot

air-ground coordination,” in Proc. IEEE Int. Conf. Robot. Automat., vol. 4, New Orleans, LA, April

2004, pp. 4053–4058.

[8] B. Grocholsky, J. Keller, V. Kumar, and G. Pappas, “Cooperative air and ground surveillance,” IEEE

Robotics & Automation Magazine, vol. 13, no. 3, pp. 16–26, September 2006.

[9] R. D’Andrea and M. Babish, “The RoboFlag testbed,” in Proc. American Control Conf., vol. 1,

Boston, MA, June 2004, pp. 656–660.

[10] T. W. McLain and R. W. Beard, “Unmanned air vehicle testbed for cooperative control experiments,”

in Proc. American Control Conf., vol. 6, Boston, MA, June 2004, pp. 5327–5331.

[11] T. Balch and R. Arkin, “Behavior-based formation control for multirobot teams,” IEEE Trans. on

32

Robotics and Automation, vol. 14, no. 46, pp. 926–939, December 1998.

[12] M. Egerstedt, Control of Autonomous Mobile Robots, ser. Control Engineering Series, D. Hristu-

Varsakelis and W. Levine, Eds. Boston, MA: Birkhauser, 2005.

[13] P. Ögren, E. Fiorelli, and N. E. Leonard, “Cooperative control of mobile sensor networks: Adaptive

gradient climbing in a distributed environment,” IEEE Trans. on Automatic Control, vol. 49, no. 8,

pp. 1292–1302, August 2004.

[14] K. Kyriakopoulos, P. Kakambouras, and N. Krikelis, “Navigation of nonholonomic vehicles in

complex environments with potential fields and tracking,” in Proc. IEEE Int. Conf. Robot. Automat.,

Minneapolis, Minnesota, USA, April 1996, pp. 2968–2973.

[15] J. Sanchez and K. Walling. (2004, July) MARHES TXT-1 CAN bus control unit. [Online].

Available: http://marhes.okstate.edu/CAN control unit.htm

[16] B. Gerkey, R. T. Vaughn, and A. Howard, “The Player/Stage project: Tools for multi-robot and

distributed sensor systems,” in Proc. of the 11th Int. Conf. on Advanced Robotics, Coimbra, Portugal,

June 2003, pp. 317–323.

[17] K. Etschberger, Controller Area Network: Basics, Protocols, Chips and Applications. Weingarten,

Germany: IXXAT Press, 2001.

[18] A. De Luca, G. Oriolo, and C. Samson, “Feedback control of a nonholonomic car-like robot,” in

Robot Motion Planning and Control, J.-P. Laumond, Ed. London: Springer-Verlag, 1998, pp. 171–

253.

[19] L. Ojeda, D. Cruz, G. Reina, and J. Borenstein, “Current-based slippage detection and odometry

correction for mobile robots and planetary rovers,” IEEE Trans. on Robotics, vol. 22, no. 2, pp.

366–378, April 2006.

[20] O. Orqueda, “Vision-based control of multi-agent systems,” Ph.D. Thesis, Oklahoma State

University, 202 Engineering South, Stillwater, OK 74078, Dec. 2006. [Online]. Available:

http://marhes.okstate.edu/dissertations/orqueda 06.pdf

33

[21] L. Mirkin and Z. J. Palmor, “Control issues in systems with loop delays,” in Handbook of Networked

and Embedded Control Systems, D. Hristu-Varsakelis and W. S. Levine, Eds. Birkhäuser, 2005, pp.

627–649.

[22] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms and theory,” IEEE Trans.

on Automatic Control, vol. 51, no. 3, pp. 401–420, March 2006.

[23] R. Fierro, A. Das, V. Kumar, and J. P. Ostrowski, “Hybrid control of formations of robots,” in Proc.

IEEE Int. Conf. Robot. Automat., Seoul, Korea, May 2001, pp. 157–162.

[24] R. Fierro, L. Chaimowicz, and V. Kumar, “Multi-robot cooperation,” in Autonomous Mobile Robots:

Sensing, Control, Decision Making and Applications, ser. Control Engineering, S. S. Ge and F. L.

Lewis, Eds. CRC Press - Taylor & Francis Group, May 2006, ch. 11, pp. 417–459.

[25] D. Terzopoulos and R. Szeliski, Active Vision. Cambridge, MA: MIT Press, 1992, ch. Tracking

with Kalman Snakes, pp. 3–20.

[26] P. Renaud, E. Cervera, and P. Martinet, “Towards a reliable vision-based mobile robot formation

control,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, vol. 4, 2004, pp. 3176–3181.

[27] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. on Syst., Man,

and Cyber., vol. 9, no. 1, pp. 62–66, 1979.

[28] D. Lowe, “Fitting parameterized three-dimensional models to images,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 13, no. 5, pp. 441–450, 1991.

[29] D. Oberkampf, D. DeMenthon, and L. Davis, “Iterative pose estimation using coplanar feature points,”

Computer Vision and Image Understanding, vol. 63, no. 3, pp. 495–511, May 1996.

[30] J. C. Latombe, Robot Motion Planning. Boston, Massachusetts USA: Kluwer Academic Publishers,

1991.

[31] J. Borenstein and U. Raschke, “Real-time obstacle avoidance for non-point mobile robots,” in SME

Transactions on Robotics Research, vol. 2, September 1992, pp. 2.1–2.10.

[32] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivancic, V. Kumar, I. Lee, P. Mishra, G. Pappas,

34

and O. Sokolsky, “Hierarchical hybrid modeling of embedded systems,” in Embedded Software, ser.

LNCS 2211, T. Henzinger and C. Kirsch, Eds. Springer, 2001, pp. 14–31.

[33] S. Martı́nez, F. Bullo, J. Cortés, and E. Frazzoli, “On synchronous robotic networks. part i: Models,

tasks and complexity notions,” in Proc. IEEE Conf. on Decision and Control, and the European

Control Conf., Seville, Spain, December 12-15 2005, pp. 2847–2852.

[34] N. A. Lynch, Distributed Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1997.

[35] J. Toner and Y. Tu, “Flocks, herds and schools: A quantitative theory of flocking,” Physical Review

E, vol. 58, no. 4, pp. 4828–4858, 1998.

[36] G. Lafferriere, A. Williams, J. Caughman, and J. Veerman, “Decentralized control of vehicle

formations,” Systems & Control Letters, vol. 54, no. 9, pp. 899–910, September 2005.

[37] A. K. Das, R. Fierro, V. Kumar, J. P. Ostrowski, J. Spletzer, and C. J. Taylor, “A vision-based

formation control framework,” IEEE Trans. on Robotics and Automation, vol. 18, no. 5, pp. 813–

825, October 2002.

[38] H. Tanner, V. Kumar, and G. Pappas, “Leader-to-formation stability,” IEEE Trans. on Robotics and

Automation, vol. 20, no. 3, pp. 443–455, June 2004.

[39] O. A. Orqueda and R. Fierro, “Robust vision-based nonlinear formation control,” in Proc. American

Control Conf., Minneapolis, MN, June 14-16 2006, pp. 1422–1427.

[40] N. Moshtagh, A. Jadbabaie, and K. Daniilidis, “Distributed geodesic control laws for flocking

of nonholonomic agents,” in Proc. IEEE Conf. on Decision and Control and European Control

Conference (CDC-ECC’05), Seville, Spain, December 2005, pp. 2835–2840.

[41] T. Vicsek, A. Czirok, E. B. Jacob, I. Cohen, and O. Schochet, “Novel type of phase transitions in a

system of self-driven particles,” in Physical Review Letters, vol. 75, 1995, pp. 1226–1229.

[42] J. L. A. Jadbabaie and A. S. Morse, “Coordination of groups of mobile autonomous agents using

nearest neighbor rules,” in IEEE Transactions on Automatic Control, 2003, pp. 988–1001.

[43] J. Clark and R. Fierro, “Cooperative hybrid control of robotic sensors for perimeter detection and

35

tracking,” in Proc. American Control Conf., Portland, OR, June 8-10 2005, pp. 3500 – 3505.

[44] A. Ganguli, S. Susca, S. Martı́nez, F. Bullo, and J. Cortés, “On collective motion in sensor networks:

sample problems and distributed algorithms,” in Proc. IEEE Conf. on Decision and Control, Seville,

Spain, December 2005, pp. 4239–4244.

[45] M. A. Hsieh and V. Kumar, “Pattern generation with multiple robots,” in Proc. IEEE Int. Conf.

Robot. Automat., Orlando FL, May 15-19 2006, pp. 2442–2447.

[46] T. H. Chung, J. W. Burdick, and R. M. Murray, “A decentralized motion coordination strategy for

dynamic target tracking,” in Proc. IEEE Int. Conf. Robot. Automat., Orlando, Florida, May 2006,

pp. 2416–2422.

[47] M. Lomas, P. Vernaza, D. Lee, and V. Kumar, “Hill-climbing for potential field based cooperative

navigation,” in Proc. IEEE Int. Conf. Robot. Automat., Orlando, Florida, May 2006, pp. 4318–4320.

[48] J. Spletzer and R. Fierro, “Optimal position strategies for shape changes in robot teams,” in Proc.

IEEE Int. Conf. Robot. Automat., Barcelona, Spain, April 18-22 2005, pp. 754–759.

36

Sidebar: COMET Components and vendors

Item: Chassis

Model: Tamiya TXT-1

Vendor: Tower Hobbies (http://www.towerhobbies.com)

Item: PC-104 (embedded computer)

Model: ADL855PC

Vendor: Advanced Digital-Logic (http://www.adlogic-pc104.com)

Item: Sensors (IR, LRF, Ultrasonic ranger)

Model: Sharp GP2Y0A02YK, Hokuyo URG-04LX, Devantech SRF08

Vendor: Acroname (http://www.acroname.com)

Item: IEEE-1394 stereo camera

Model: Bumblebee

Vendor: Point Grey Inc. (www.ptgrey.com)

Item: PC-CAN interface

Model: USBcan, LAPcan

Vendor: KVASER (http://www.kvaser.com)

Item: GPS

Model: GPS18 5Hz

Vendor: Garmin (http://www.garmin.com)

Item: IMU

Model: 3DM-GX1

Vendor: MicroStrain Inc. (http://www.microstrain.com)

37

Daniel Cruz received a bachelor degree in electronics engineering from the Pontificia Javeriana

University, Colombia in 2001. He worked at the University of Michigan as a visitor research investigator

for 2 years and received a master’s degree in electrical and computer engineering at Oklahoma State

University, Stillwater in 2006. His areas of interest include positioning systems, mobile robot navigation,

and hardware integration.

James McClintock received a B.S. degree in electrical engineering from Oklahoma State

University, Stillwater, Oklahoma in 2006. His research interests include cooperative control of robotic

systems and development of advanced robot-human interfaces. In 2004, he was awarded a NASA

Oklahoma Space Grant Consortium research fellowship to develop a robot-human interface for the

Evolution Robotics Scorpion Robot. He is currently pursing a master’s degree in electrical engineering at

OSU.

Brent Perteet received a B.S. degree in electrical engineering from Oklahoma State University

in 2005, where he is currently pursuing the M.S. degree in electrical engineering. His research interests

include cooperative control of robotic agents, strategies for pursuit-evasion and target tracking, embedded

systems, and software engineering.

Omar A.A. Orqueda received a B.S. degree in electronics engineering from the Universidad

Nacional del Sur, Bahı́a Blanca, Argentina. He received the Ph.D. in electrical engineering from the

School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK. His research

interests include distributed coordination of autonomous systems, artificial vision, nonlinear control theory,

and motion planning.

Yuan Cao received a B. Eng. and M.S. degrees from Zhejiang University, Hangzhou, China.

He is currently pursuing a Ph.D. at the School of Electrical and Computer Engineering, Oklahoma

State University, Stillwater, OK. His research interests include cooperative control of unmanned vehicles,

38

estimation theory and hybrid systems.

Rafael Fierro (rfierro@okstate.edu) received a M.Sc. degree in control engineering from the

University of Bradford, England, and a Ph.D. degree in electrical engineering from the University of

Texas at Arlington in 1990 and 1997, respectively. From 1999 to 2001, he held a postdoctoral research

appointment with the GRASP Lab, University of Pennsylvania. He is currently an assistant professor in

the School of Electrical and Computer Engineering at Oklahoma State University. His research interests

include hierarchical hybrid and embedded systems, optimization-based cooperative control, and robotics.

He is the recipient of a Fulbright Scholarship and a 2004 National Science Foundation CAREER Award.

He can be contacted at the School of Electrical and Computer Engineering, Oklahoma State University,

202 Engineering South, Stillwater, OK 74078-5032, USA. Tel. (405) 744-1328. For contact information,

visit the MARHES website at http://marhes.okstate.edu.

39

Dimensions
Length 498 mm
Width 375 mm
Height 240 mm

Weight Loaded 8.2 kg
Unloaded 5.2 kg

Maximum Speed 1.60 m/s
Carry Capacity 3.7 kg
Minimum Turning Radius 1359 mm

TABLE I: Platform mechanical specifications. Each vehicle can carry sensors and a payload. Agents are
small enough to be used indoors but robust enough to perform outdoors.

40

Figure 1: Multivehicle platform at Oklahoma State University. The platform consists of ten wirelessly
networked robots based on the TXT-1 monster truck from Tamiya, Inc. Each robot is provided with a
control board, odometry, various hot-swappable sensors, and an onboard embedded computer.

41

Camera Odometer Motor Controller

Servo Controller
(Pulse Width Modulation)

Servos

8 Signal
Lines

Infrared Module Global Positioning
System Module

Inertial Measurement
Unit Module

Device Manager

Low-Level (CAN Bus)

CAN Interface

ServerAccess Point

Wireless
Communication

High-Level (PC)

PC-104

MARHES CANBot Control Module

Speed Controller (v, ωωωω))))

Laser Range Finder

WiFi

(a)

PID
Vehicle Control Loop

(v,w)

PIC 18F458

Device Managing

PIC 18F458

Pulse Width Modulation
Servo Control

PIC 18F458

Hard Reset
Lines

8 Servo
Ports

Wheel
Encoders

MARHES CAN Control Unit CANBot

CANBus

(b)

Figure 2: (a) In-vehicle controller area network (CAN). (b) CANBot unit block diagram. Vehicle sensors
are networked using the CANBus. The CANBot control board hosts the CANBus and provides an interface
between sensors and the robot’s onboard computer. The camera and laser range finder are connected
directly to the computer because of their bandwidth requirements.

42

(a) (b)

Figure 3: (a) E7MS encoder placement in platform wheel. (b) Code wheel. Each of the vehicle’s front
wheels is equipped with a miniature encoder from USDigital. By measuring wheel rotation, these sensors
are used to determine the translational and rotational speeds of the vehicle.

43

Figure 4: 3D simulation model and assembled vehicle. Sensors are mounted on a plate designed using
SolidWorks 2004 and milled using a Haas computer-controlled milling machine. Additional modifications
include the installation of an electric speed controller (Novak Super Rooster), foam inserts for the wheels
to increase traction, stabilizer bar clamps, and center skid plates to protect the gearbox.

44

10 20 30 40 50
−2000

−1500

−1000

−500

0

500

1000

1500

Time [s]

Li
ne

ar
 S

pe
ed

 [m
m

/s
]

(a)

0 20 40 60 80 100 120
−400

−300

−200

−100

0

100

200

300

400

Time [s]

A
ng

ul
ar

 S
pe

ed
 [m

ra
d/

s]

(b)

Figure 5: (a) Translational speed profile tracking. (b) Rotational speed profile tracking. The gains
(Kp, Ki, Kd) are adjusted to reach the commanded velocity vector uc(t) in minimal time with the smallest
possible overshoot. The translational speed gains are (0.8 s/m, 1.0 s/m, 0.02 s/m), while the rotational
speed gains are (0.4 s, 0.01 s, 0.1 s).

45

Player
Sensor Server

CANLIB

USB &
FireWire

WiFi
802.11g

TXT Software Libraries

MRVision Robot Control
Software

Embedded Computer
FC Linux 2.6.xx

Gazebo
3D World
Simulator

High-Level Control
(Remote)

Laser Range Finder
Camera

CANBus Sensor Suite

- Control Unit (Odometry)
- Infrared
-Inertial Measurement

Unit
-Global Positioning

System
- …

TXT- Robot

TXT CAN Player
Driver

Figure 6: Vehicle software architecture. This block diagram shows how the onboard sensor network
interacts with the local embedded computer using the controller area network (CAN). Player runs on the
local computer and allows local or remote applications to access the system. A compatible simulation
environment is also available.

46

(a) (b)

Figure 7: (a) A Gazebo simulation of the platform. (b) Real vehicles. This figure shows the similarities
between the simulated platform in Gazebo and the physical robots. In fact, software written for the
simulated vehicles can run on the robots without modification.

47

Figure 8: Mobile robot vision processing sequence. The mobile robot vision library uses camera images
to recognize NameTags and compute relative position and orientation. This figure shows the sequence of
main steps involved in extracting NameTag information from a frame. First, a camera image is captured
and converted to grayscale. Next, a thresholding algorithm is applied and contours are located. Each
contour is then processed to determine whether it represents a valid face. This library can run on any
computer with a camera. The PC-104 executes the algorithm at about 10 frames per second.

48

Figure 9: The multivehicle graphical user interface. This program, which runs on a base station, allows
monitoring and control of a group of agents. Vehicles can be maneuvered as a group using built-in
swarming behaviors such as flocking, or they can be controlled individually.

49

Task Components

Behavior Behavior

Robot Task

ObstacleDetected == True

Obstacle Avoidance

Contour
Following

Collision
Avoidance

ObstacleDetected == False

Obstacle at side

Obstacle straight ahead

Behavior

Figure 10: Obstacle avoidance behavior in a hybrid system. In this system, obstacle avoidance is used
when an obstacle is detected nearer to the robot than a threshold value. Otherwise, the behaviors that
comprise the robot’s current task are run.

50

0 1

2

S
tereo cam

era

GPS

5

3

4

GPS

IR-left

IR-right

(a) (b)

Figure 11: (a) Top-front view of vehicle. (b) Infrared sensor coverage diagram. Infrared sensors are used
for obstacle avoidance and contour following. Two infrared arrays are mounted at the front of each robot.
Each array provides distance-to-obstacle information straight ahead, at a 45-deg angle, and at a 90-deg
angle.

51

(a)

0 2 4 6 8 10 12
0

1

2

3

4

5

6

X [m]

Y
 [m

]

(b)

Figure 12: (a) Starting position for a goal-seeking experiment. (b) Agent trajectory to goal. The designated
goal is located at (11 m, 5.5 m) around the corner in the hallway. As soon as the goal-seeking behavior
starts, the potential field controller begins aligning the vehicle toward the goal.

52

0 10 20 30 40
−0.5

0

0.5

1

Time [s]

T
ra

ns
la

tio
na

l s
pe

ed
 [m

/s
]

Setpoint
Robot speed

(a)

0 10 20 30 40

PFC

CT

CA

Time [s]

S
ta

te

(b)

Figure 13: (a) Goal-seeking experiment vehicle speed plot. (b) State plot. The goal-seeking behavior uses a
hybrid controller that switches between potential field control (PFC), contour tracking (CT), and collision
avoidance (CA) states as obstacles are encountered and negotiated. During the goal-seeking experiment,
the vehicle’s speed fluctuates as the controller switches between states while the robot travels toward its
goal.

53

3
5

4

1

2

6

hε

Figure 14: A dynamic network Σ for formation control. Each vehicle, which is assigned a unique identifier
in the set I, serves as a node V in the communication Gc, sensing Gs, and control H graphs. For simplicity,
only the directed control graph H = {V , Eh} is shown. To complete the definition of Σ, the set of control
systems A must be specified.

54

XE

YE

iθ
ijψ

ijl

ijζ

Agent j

Agent i

jθ

(a) (b)

Figure 15: (a) Formation geometry diagram. (b) A leader-follower experiment. Each agent calculates
the position of the vehicle directly in front of it and follows that vehicle in formation. The controller
specification for robot j indicates the separation distance `ij and bearing angle ψij to be maintained with
respect to its leader vehicle i. The lead agent is tele-operated.

55

(a) (b)

Figure 16: (a) Communication-based formation control experiment. (b) Vehicle paths. In this experiment,
the vehicles change formations while traveling to a goal. The red triangles in (b) represent the vehicles’
starting position in a convoy formation. Later they assume a V-like formation as shown in (a) and by the
blue triangles in (b). Finally, the robots return to a convoy formation. The maneuver is based on odometry
and intervehicle communications.

56

(a) (b)

Figure 17: (a) Flocking experiment. (b) Agent paths. This figure shows a flocking experiment with five
robots. The triangles in (b) represent the robots’ starting positions. In pure flocking, each agent runs the
same controller and calculates its speed based on the speeds of neighboring agents. During this modified
flocking experiment, one of the agents (red path) follows a set of waypoints to provide direction for the
flock. The remaining robots use the flocking controller presented in this article, and the team successfully
travels together through the desired waypoints.

57

Boundary

SSSS

∂∂∂∂SSSS

∂∂∂∂ΩΩΩΩ

Ω

Perimeter

(a)

2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

x (m)

y
(m

)

Perimeter Detection and Tracking
Robot Trajectories

R
1

R
2

R
3

(b)

Figure 18: (a) Perimeter-detection experiment. (b) Agent paths. The random-coverage controller commands
the agents in a spiral search path looking for the perimeter. A blobfinder, part of the vision library, uses the
onboard camera to detect and track the perimeter. Once an agent finds the perimeter, the blobfinder-based
tracking controller tracks it.

58

Figure 19: A target-assessment mission. A team of six robots is commanded to approach a target and
relay camera images that allow the user to assess the target’s condition. Initially, two scout robots inspect
the path to ensure its safety. The four remaining robots then proceed in formation to the target and send
back images.

59

(a) (b)

Figure 20: (a) Scout 1 in operation. (b) Graphical user interface control of Scout 1. The multivehicle
graphical user interface is used to control the surveillance operation. This task is accomplished by sending
waypoints to the vehicles. Using the camera view in the lower left hand corner of (b), the user verifies
that the path is safe.

60

0 2 4 6 8 10
0

2

4

6

8

10

X [m]

Y
 [m

]

Obstacle

(a)

0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

0.4

S
pe

ed
 [m

/s
]

Time [s]

0 10 20 30 40 50
−0.5

0

0.5

1

1.5

S
ta

te

Time [s]

PF
OA

(b)

Figure 21: (a) Scout 1 position plot. (b) Scout 1 translational velocity and state plots. The first scout
vehicle encounters an obstacle in the path, avoids it successfully, and positions itself at the surveillance
point. The commanded and actual translational speeds are shown. The state diagram shows when the
system switches from goal seeking to obstacle avoidance.

61

Figure 22: The convoy proceeds. The lead robot travels autonomously through the preassigned waypoints.
Using communication, the other robots follow the leader in a line. Each follower attempts to drive at a
safe distance from its preassigned leader. The robots safely traverse the path in formation.

62

−10 0 10 20 30 40
−10

−8

−6

−4

−2

0

2

4

6

8

10
Multi−Vehicle Testbed Position

X[m]

Y
[m

]

(a) (b)

Figure 23: (a) Trajectory of the team of mobile agents. (b) Target-assessment pictures. Following the paths
shown, the team successfully assumes positions around the target. Images from the camera on each agent
are shown. The user’s target assessment is based on these images.

63

