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This paper introduces a novel planning and estimation framework for maximizing infor-
mation collection in missions involving cooperative teams of multiple autonomous vehicles
and human agents, such as those used for multi-target search and tracking. The main
contribution of this work is the scalable unification of effective algorithms for distributed
high-level task planning, decentralized information-based trajectory planning, and hybrid
Bayesian information fusion through a common Gaussian mixture uncertainty representa-
tion, which can accommodate multiple mission objectives and constraints as well as het-
erogeneous human/robot information sources. The proposed framework is validated with
promising results on real hardware through a set of experiments involving a human-robot
team performing a multi-target search mission.

I. Introduction

Modern day mission operations often involve large teams of networked agents, with heterogeneous capa-
bilities, interacting together to perform the requisite mission tasks. Such missions typically involve executing
several different types of task at once, such as intelligence, surveillance, and reconnaissance (ISR), target
classification, rescue operations, scientific exploration, and security monitoring.1,2 Furthermore, within the
heterogeneous team, some specialized agents are better suited to handle certain types of tasks than others.
For example, autonomous air and ground vehicles equipped with video can be used to perform target search
and track, human operators can be used for target classification tasks, and ground teams can be deployed
to perform rescue operations or engage targets.

Ensuring proper coordination and collaboration between agents in the team is crucial to efficient and
successful mission execution. As a result, there has been increasing interest in exploring efficient methods
to plan for mixed human-robot teams for various types of missions. Furthermore, the advancement of
communication systems, sensors, and embedded technology has significantly increased the value of those
solutions that are scalable to larger teams, from dozens to hundreds or even thousands of agents.1,2 In such
complex systems, care must be taken to balance the resources allocated to primary mission tasks (e.g. search
and tracking) and related secondary tasks (e.g. maintenance, monitoring, safety, retrieval, etc).

There are many technical challenges associated with developing algorithms that can effectively coordinate
the behavior of such teams. For example, consider a scenario where a team of human operators and au-
tonomous robots is tasked with searching for, tracking, and classifying unknown targets in an obstacle-filled
environment. A key research question is how to efficiently allocate limited agent resources with the objec-
tive of minimizing target state uncertainty as quickly as possible, while simultaneously executing required
secondary tasks (e.g. vehicle status monitoring, etc). Furthermore, this task assignment process must take
into account the challenges associated with the underlying autonomous motion planning and navigation that
the agents must perform to successfully accomplish their tasks. For example, the vehicles must be able to
autonomously plan trajectories in obstacle-filled and potentially uncertain search environments, minimizing
target state uncertainty while also ensuring safety. An additional consideration for this problem is that, given
that many disjoint and heterogeneous agents are collaborating to search the environment, it is important to
employ efficient information fusion methods, which can be used to effectively combine sensor data acquired
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by different mobile agents with information from human operators. Since most planning strategies rely on
underlying agent models, developing accurate and efficient representations for agents in the team, including
human operators, is crucial. In particular, modeling human agents for use in autonomous task allocation
and information fusion algorithms remains a challenging problem.3 Finally, any approach considered should
be able to scale with the problem size, characterized by the number of agents and targets, without straining
available computational or communication resources.

This work presents an algorithmic approach to tackle task allocation, trajectory planning and informa-
tion fusion within a unified framework, with the objective of reducing uncertainty in the target search and
tracking process, while considering the complex constraints associated with realistic human-robot missions.
In this novel approach, the goal of maximizing information is a primary objective for each of the algorithms
at every step, producing a cohesive framework that strategically addresses the main mission objectives. Both
task planning and vehicle path planning are information based, enabling intelligent and efficient coopera-
tive search and track strategies that are balanced alongside other mission objectives. The task allocation
and trajectory planning algorithms employed are distributed, making the system scalable to large teams
of operators and autonomous agents with diverse potential task sets. Furthermore, the information fusion
algorithms presented in this work provide strategies to directly include “soft” inputs from human agents,
that can be combined with conventional autonomous sensor information via robust particle filtering algo-
rithms, enabling convenient recursive Bayesian updates for efficient replanning. The unified task allocation,
trajectory planning and information fusion framework is validated in a real-time human-robot multi-target
search experiment, demonstrating the viability of the approach.

This paper is organized as follows. Section II defines the problem statement considered by this work.
Section III presents the distributed planning and information fusion framework developed to address this
problem, including the overall system architecture (Section III-A), the information-rich planning algorithms
(Section III-B), and the Bayesian hybrid data fusion algorithms (Section III-C). Indoor target search and
track experiments for human-robot teams using the proposed framework are presented and analyzed in
Section IV, followed by concluding remarks in Section V. Note that related work is provided throughout the
paper, in the corresponding sections.

II. Problem Formulation and Background

This work considers the problem of planning for a team of autonomous robotic mobile agentsa and human
operators, tasked with searching for, tracking, and classifying unknown targets in an obstacle-filled dynamic
environment. The robotic agents consist of heterogeneous vehicles equipped with onboard computers and a
variety of sensors, such as laser range-finders, cameras and visual detection software. The human operators
are static and can interact with the robotic agents directly through a computer console. The team’s mission
is to locate and identify a known number of targets as quickly and accurately as possible in a real-time
environment. The details of this search and track problem are described below.

Assume that search region S ⊆ R3 contains N static targets with fixed labels i ∈ {1, . . . , N} and unknown
positions xi = [xi, yi, zi]

T with respect to some fixed origin (N is known a priori). The uncertainty in xi
is initially modeled by the probability density function (PDF) p(xi). This PDF represents any prior beliefs
about xi (e.g. as obtained from intelligence information, previous experience, or physical considerations).
Using the initial target PDFs, {p(x1), . . . , p(xN )}, and a set of observations, Z, acquired by the human-
robot team throughout the mission, the primary objective is to detect, identify and localize all N targets
in S as quickly and efficiently as possible. The exact specification of this objective function might include
a maximum time limit, a maximum uncertainty covariance for each target, a weighted sum of these factors,
or several other considerations (such as specific vehicle constraints).

It is assumed here that each target distribution p(xi) is a known Mi-term Gaussian mixture (GM),

p(xi) =

Mi∑
m=1

wi,m N (µi,m,Σi,m), (1)

where the parameters wi,m, µi,m, and Σi,m are respectively the weight, mean, and covariance matrix for

component m of target i, with
∑Mi

m=1 wi,m = 1. It is well-known that GMs can approximate arbitrarily com-

aThe framework considered in this paper can be extended to incorporate human-operated mobile agents, though this is not
discussed further.
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plex PDFs for suitably chosen Mi and mixing components,4 and are thus quite useful in general estimation
problems with significant non-Gaussian uncertainties.5 At any given time, the aggregated estimate of each
target is given by the mean of the distribution which can be computed from the individual modes as

x̂i =

Mi∑
m=1

wi,m µi,m, (2)

with target covariance given by

Pi =

Mi∑
m=1

wi,m
[
Σi,m + (µi,m − x̂i)(µi,m − x̂i)

T
]
. (3)

The target locations are further assumed to be marginally independent, so that the joint target PDF is
given by

p(x̄) = p(x1, ...,xN ) =

N∏
i=1

p(xi). (4)

If the human-robot team acquires a set of shared target observations Zk up to time step k, then the distri-
bution for xi can be updated via Bayes’ rule as

p(xi|Zk) =
1

K
p(xi)p(Zk|xi), (5)

K =

∫
p(xi)p(Zk|xi)dxi,

where p(Zk|xi) is the likelihood function for the observations Zk, and K is a normalizing constant.
In the context of mixed human-robot search teams, the likelihood function, p(Zk|xi), is composed of

several independent models describing how measurements from various sensing platforms are stochastically
generated as a function of the underlying target states. For robotic agents, the likelihood function character-
izes measurements arising from typical robot sensing platforms, such as cameras and LIDAR. In human-robot
search teams, human operators also contribute important target information, particularly with respect to
target identification and high-level target behaviors,6 but this information typically has limited usefulness in
reducing uncertainty in xi, since it is either not very related (e.g. target classification), or cannot be prop-
erly modeled in p(Zk|xi) unless the target has been extensively characterized through an a priori behavioral
model. However, human operator insight is often valuable in guiding search missions, and, in many cases, it
is desirable to include these “low-level” observations from operators as “soft inputs” in Zk in Equation (5),
thus allowing human insight to be treated as a sensor that returns continuous or categorical observations of
continuous states, such as the target locations.7,8

An alternative characterization of the search and track problem described above involves modeling the
search mission as an optimal control problem, where the objective is to place the sensing agents on trajectories
that maximize the probability of finding the targets over a given time horizon. One strategy to accomplish
this is to minimize the uncertainty in the posterior (Equation (5)), for example, by using a receding horizon
planning strategy that accounts for sensor platform dynamics.9 For heterogeneous multi-agent search teams,
a centralized planning approach with a shared information set could be used in the optimization, but such
methods usually scale poorly with the size of the search area, target population, and the number of agents.
Recent work10 considers how to perform decentralized target search in two dimensions, via a discretized
representation; however, this approach also scales poorly in three dimensions and with increasing problem
sizes, as well as with other realistic constraints such as target dynamics and communication constraints.

In this work, an information-based approach is employed to address the search and track problem at
both the task assignment and trajectory planning levels. The solution methodologies do not require the
discretization of the search space, although the environment is assumed to be bounded and non-convex.
The task assignment process determines which agents are best suited to track which targets given their
sensor configurations, current pose, and the prior target estimates provided by the GMs (Section III-B).
Once the targets are assigned to the respective vehicles, the motion planning algorithm designs information-
rich kinodynamically feasible trajectories which traverse this continuous environment while satisfying all

3 of 22

American Institute of Aeronautics and Astronautics



state and input constraints11 (Section III-B). The vehicles are assumed to have known dynamics and
sensor/detection models (though they may be nonlinear), such that predicted trajectories can be generated
deterministically. Reliable pose estimates and environmental obstacle maps are assumed to be available to
each agent for convenience, although extensions to uncertain pose and maps are also possible and will be
studied in future work. Furthermore, all trajectory planning is decentralized and performed by each vehicle
independently; the paths of other agents are assumed unknown, although this information could be shared
among the agents. While more efficient sensor fusion can be achieved in such extended search problems
using GM representations,12 there has been little prior work on how to effectively embed GMs into the
planning framework. The algorithms proposed by this paper incorporate the GM target representations at
each level of planning, including task allocation, trajectory planning, and human operator interface. By
using computationally efficient algorithms in each of these phases, it is possible for large teams to develop
real-time plans which explicitly account for the nature of the target uncertainty at every level.

III. Decentralized Planning and Fusion Framework

This section outlines the proposed framework for managing a team of human operators and autonomous
vehicles engaged in a generalized target search, tracking, and identification mission. The presented approach
consists of three primary algorithmic components: task allocation, trajectory planning, and information
fusion. The key contribution of this work is the development of a unified framework which integrates these
algorithms, allowing for the explicit consideration of target uncertainty reduction, complex constraints, and
secondary objectives (e.g. safety, refueling, etc.) at every level of planning. Section III-A presents the overall
system architecture. Section III-B reviews the task planning and vehicle path planning algorithms, describing
how information gains are directly accounted for in the planning process, enabling the algorithms to balance
information collection with other mission objectives. Finally, Section III-C presents the hybrid Bayesian
fusion strategy, which combines traditional sensor models with low-level categorical human observations of
target states.

A. Proposed Information-based Control Architecture

This section presents the overall system architecture for the types of planning and fusion problems considered
in this work, describing the relationship between the individual components. A diagram of the generalized
framework is presented in Figure 1. The main components, as shown in the figure, consist of task allocation,
path planning, vehicle and sensor configurations, and state estimation and sensor fusion. The task allocation
algorithm receives the latest state estimates of both the vehicles and targets, and uses this information, along
with accurate models of the agents and sensors, to determine the assignment of targets to vehicles. These task
assignments are then communicated to the individual vehicle path planners. The path planning algorithms
design trajectories for the vehicles that minimize the target state uncertainty while considering resource
consumption and obstacle avoidance. The vehicles then implement these trajectories, update their pose
estimates, and collect observations via their sensors. The individual agent state and sensor data is sent to a
state estimation and sensor fusion module that combines all this information to obtain the latest estimates
of the agent and target states, along with measures of the estimation uncertainty.

Figure 2 shows a diagram of the proposed information-rich planning and fusion framework presented in
this paper. The task allocation algorithm in the proposed approach consist of the decentralized Consensus-
Based-Bundle Algorithm (CBBA)13 augmented with information metrics, the path planning uses the Information-
rich Rapidly-exploring Random Tree (IRRT)11 algorithm, and the state estimation is performed by a recur-
sive hybrid Bayesian fusion strategy. The hardware platform used to obtain experimental results consisted
of a Pioneer rover equipped with cameras (Section IV). The key principle behind this framework is that
task allocation, trajectory planning, and sensor fusion all consider acquiring information and reducing target
uncertainty as the primary objectives, creating a unified framework for target tracking that addresses the
main mission goals at every level. A secondary advantage is that both the task assignment and trajectory
planning are decentralized, as illustrated in Figure 2, providing a scalable solution methodology which re-
mains computationally tractable as the number of agents and targets increases. An additional contribution
illustrated in this framework is the explicit use of human operators in the control and estimation loop, via
a human-robot interface (HRI). In this formulation, human operators provide “soft inputs” to the sensor
fusion, validating the identity of all potential target detections in addition to other target state information
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Figure 1. General system block diagram for proposed planning and fusion framework.

Figure 2. System block diagram for indoor human-robot target search and track experiment

which assists the robots in their search (e.g. these can include fuzzy descriptions of perceived target loca-
tions such as ‘nearby landmark A’ or perceived target behaviors such as ‘moving quickly through the side
door’). Operators may also be used to handle some secondary tasks, such as monitoring refueling operations
or responding to automation failures. The following sections provide further details on these algorithmic
system components.

B. Decentralized Information-Rich Planning

The performance of dynamic search and track missions is typically measured in terms of the efficiency with
which the agents involved reduce target estimation uncertainty. However, trajectories that achieve this
uncertainty reduction are subject to a complex set of internal and external constraints, including dynamic
constraints, environmental restrictions, and sensor limitations. By using the recently-proposed Information-
rich Rapidly-exploring Random Tree (IRRT) algorithm,14 a team of agents can quickly identify feasible,
uncertainty-reducing paths that explicitly embed the latest target probability distributions, whilst satisfying
these constraints. While IRRT is capable of handling multiple vehicles and targets,11 algorithmic efficiency
is lost when considering realistic large-scale ISR missions. Trajectories identified for such scenarios must
embed both the vehicle routing problem (in selecting which distant targets to visit) and the constrained
sensor problem (in finding a vantage point to view nearby targets), and become computationally intractable
as the number of agents and targets increases. By pursuing a distributed approach that partitions the target
environment into disjoint tasks and allocates these tasks amongst the agents, the computational burden on
the motion planners is reduced. In this work we use a decentralized task allocation algorithm called the
Consensus-Based Bundle Algorithm (CBBA)13 to distribute the targets to the individual agents. The score
functions used within the CBBA task allocation framework explicitly account for the information that agents
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(a) Overall Architecture

(b) Single Vehicle Architecture (leftmost block of Figure 3(a))

Figure 3. Block diagrams illustrating the overall CBBA+IRRT integrated architecture.

are able to obtain about their assigned targets.
The combination of IRRT+CBBA results in a novel multi-level algorithm which embeds information-rich

trajectory planning within a task allocation framework, efficiently assigning targets and planning paths for
teams of agents at the mission planning level. This real-time algorithm can leverage networks of mobile
sensor agents to perform dynamic task reallocation as target estimates are updated, resulting in improved
coordination and collaboration between agents while executing the mission. Figure 3 shows the proposed
IRRT+CBBA architecture, where each vehicle runs an instance of the decentralized CBBA task allocation
algorithm as well as its own IRRT planner. The next sections provide further detail on these two components
of the decentralized planning process.

1. Decentralized Information-Based Task Allocation

The problem of task allocation has been extensively studied and many different methods have been considered
for enabling agents to distribute tasks amongst themselves from a known mission task list (see [13, 15] and
the references contained therein for more details). Centralized planners, which rely on agents communicating
their state to a central server that generates a plan for the entire fleet, are commonly used in the literature.
However, most of these planning architectures require high communication bandwidth, computational re-
sources, and are typically slower to react to changes in local information. Decentralized planning algorithms,
where agents make their own plans and communicate amongst themselves, have gained recent popularity,
and offer several advantages over centralized planning methods.16,17 Many of these decentralized algorithms
have to be augmented with consensus algorithms for agents to converge on consistent situational awareness
prior to planning,18,19 a process that can take a significant amount of time and often requires transmitting
large amounts of data.20 A unique decentralized auction algorithm called the Consensus-Based Bundle Algo-
rithm (CBBA)13,15 uses a consensus protocol that acts upon the task space only, guaranteeing conflict-free
solutions despite possible inconsistencies in situational awareness. CBBA is guaranteed to achieve at least
50% optimality,13 although empirically its performance is shown to be within 93% of the optimal solution.21

The task selection process of CBBA runs in polynomial time, demonstrating good scalability with increasing
numbers of agents and tasks, making it well suited to real-time dynamic environments.

This work uses CBBA to allocate targets to the best suited agents. Figure 3(a) shows the overall target
allocation architecture which is described in this section. Prior to the task allocation process, the targets are
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grouped into sets using K-means clustering on the target means obtained from the latest target Gaussian
mixture estimates. These target sets or “tasks” can then be allocated to the individual agents using CBBA.
A key advancement of the CBBA algorithm is a novel information-based scoring framework called the Task
Information Heuristic (TIH), which embeds an approximation of the information gain in the assessed value
of a target cluster to an agent or team. The TIH consists of selecting a starting location to enter the target
clusterb, followed by a one-step optimization process to find the best information-rich path within the cluster,
providing an estimate of the locally optimal information-gathering trajectory. The path optimization involves
minimizing the average A-optimality of the individual Fisher Information Matrices for each target,22 and the
algorithm continues to extend the path until this average A-optimality is below some uncertainty threshold
(or some timeout is reached). The individual target Fisher Information Matrices are initialized using the
inverses of the target covariance matrices obtained from the latest target PDFs, thus accounting for the
actual acquired information thus far. Finally, the estimated score for the task is computed as the expected
acquired information for all targets, minus the fuel resources consumed by following the optimized path.
Likewise, the arrival time and task duration are approximated using the agent’s arrival time at the selected
start point, and the time required to traverse the optimized path, respectively. Using the estimated scores,
task durations, and arrival times, CBBA is able to allocate the tasks to the individual agents producing
target lists and expected schedules for each vehicle.

2. Information-Rich Path Planning

Given the target lists produced by the task allocation process, each agent must plan a trajectory that
enables the vehicle to search and track the targets assigned to it as efficiently as possible. Due to its explicit
consideration of target uncertainty reduction, this work employs the Information-rich Rapidly-exploring
Random Tree (IRRT) algorithm.11,14 IRRT uses a closed-loop state prediction in conjunction with sensor
models and target prior distributions to simulate a tree of candidate trajectories. Using Fisher information,23

the value of successful measurement poses along each path can be quantified, allowing trajectories to be
selected via a trade-off between uncertainty reduction and path duration. As an extension of RRT, the
IRRT algorithm is amenable to the general, complex constraint characterizations often encountered in real-
world planning problems. This section reviews the IRRT formulation and describes, in particular, how
information collection is quantified.

From the perspective of information collection, path quality is a function of the path measurement
sequence. And while CL-RRT also enjoys the benefits of smoother path planning on a stabilized vehicle
model, it is the added disturbance robustness over open-loop RRT24 and the associated accurate state
prediction that are particularly useful for measurement pose prediction and, therefore, for information-
based planning. Because the vehicle’s state trajectory is usually simulated with high fidelity, and the result
of its prediction is notably accurate, a list of predicted measurement poses M = 〈µ1, µ2, ..., µl〉 can be
interpolated for each of many (possibly independent) sensors on the platform. These sensors need not have
the same characteristics. Each sensor’s list of predicted measurement poses is generated once per node, and
thereafter has no need to be updated. Given the most recent modal state estimates x̂i,m of target i with
modes m ∈ {1, . . . ,Mi}, each measurement pose µk, k ∈ {1, . . . , l} can be checked against the sensor and
environment models to assess visibility. The information for measurements deemed visible is quantified, as
described below, and stored in the resulting node nnew. Visibility and information quantification of the M
elements may be recomputed as target estimation data is updated.

A myriad of information-theoretic metrics exist to quantify the value of a set of measurements; we use the
Fisher Information Matrix (FIM) JZ(x), which describes the information contained in a set of measurements
z about an estimation process for the vector x. The inverse JZ(x)−1 of the Fisher Information Matrix is
exactly the Cramér-Rao Lower Bound (CRLB), a lower bound on the achievable estimation error covariance
and thus a quantity to be minimized.25 A discrete system with linear state transitions and measurements,
subject to additive Gaussian white noise, can be modeled as

xk+1 = Φk+1|kxk + wk, (6)

zk = Hkxk + vk,

bThe task start location for each vehicle is determined by computing the closest point on the outer edge of a sphere around
the cluster’s centroid, whose radius is given by the average cluster spread, with an additional margin to avoid starting inside
any target’s no-fly zone.
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where Φk+1|k is the state transition matrix, Hk is the linear measurement matrix, wk is the process noise,
and vk is the sensing noise. The process and sensing noises are assumed to be Gaussian, zero-mean and
uncorrelated, with covariances given by Qk and Rk respectively. For such systems, the recursive update
equation for the FIM is given by26

Jk+1 = (Qk + Φk+1|kJ
−1
k ΦTk+1|k)−1 +HT

k+1R
−1
k+1Hk+1. (7)

For stationary targets, Qk = 0 and Φk+1|k = I for all k, and the recursion becomes

Jk+1 = Jk +HT
k+1R

−1
k+1Hk+1, (8)

a particularly convenient form since the FIM in this case is additive, and the information content of a path is
just the sum of the FIMs along the path edges. Using this form provides considerable computational savings
over planning methods that propagate the covariance, since it does not require the computation of matrix
inverses.

The linearity assumption on the observation system can be relaxed by utilizing the linearized FIM as an
approximation of the CRLB inverse. Consider systems with discrete measurements z that are nonlinear in
both the target state xi and measurement pose µ, and are thus of the form

zk = h(µk,xi) + vk, (9)

where vk is a vector of zero-mean, white Gaussian sequences. The approximate FIM can be formulated by
defining Hk to be the Jacobian of the nonlinear measurement function, i.e.,

Hk(µk, x̂i) ,
∂h

∂x

∣∣∣∣
µk=µk, xi=x̂i(t)

. (10)

Note that the assumption of Gaussian noise is retained.
The expected measurement poses 〈µ1, . . . , µl〉 can be used in the framework of the FIM to quantify the

information content of a particular node in the tree. The approach is to compute FIMs for each target
mode separately, approximate a lower bound on the target mixture covariance, and combine the information
error from all N targets. The modal FIMs are stored in that node and are used as the initial information
conditions for its children. Assuming a Gaussian mixture prior, the recursion is initiated at the root node
nroot with Jroot(x̂i,m) = Pi,m(t)−1, where Pi,m(t) = E

[
(xi,m − x̂i,m(t))(xi,m − x̂i,m(t))T

]
is the error

covariance matrix for mode m of target i at time t. For each target i, for each mode m, the FIM Jb(x̂i,m)
of a child node nb is formed by a recursive update from its parent node na,

Jb(x̂i,m) = Ja(x̂i,m) +

l∑
k=1

ν(µk, x̂i,m, Ê)HT
k (µk, x̂i,m)R−1k Hk(µk, x̂i,m), (11)

where l is the number of measurements along the path segment, Ê is the environment representation, and
ν is a binary-valued function capturing the success/occlusion of a measurement. In this way, the tree FIMs
are populated and can be recomputed, for example, after the target distributions have been updated.

In the presented approach, the cost associated with information for target i at node na is specified as the
A-optimality criterion on a lower bound of the mixture covariance, specifically,

Ia(x̂i) = trace

(
Mi∑
m=1

wi,mJ
−1
a (x̂i,m)

)
. (12)

The A-optimality criterion has been shown to be better suited than other FIM optimality conditions for the
3D target tracking case.22 In the multi-target case, convex combinations of the A-optimality costs can be
found by summing over the targets,

Ia =

N∑
i=1

qi Ia(x̂i),

N∑
i=1

qi = 1 (13)
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Algorithm 1 IRRT, Tree Expansion
1: Take a sample xsamp from the environment
2: Identify the nearest node nnear using mixture of explo-

ration, optimization, and information heuristics
3: x(t+ k)← final state of nnear

4: while x(t + k) ∈ Xfree and x(t + k) has not reached
xsamp do

5: Use reference law to generate r(t+ k)
6: Use control law to generate u(t+ k)
7: Use prediction model to simulate x(t+ k + 1)
8: k ← k + 1
9: end while

10: for each feasible node n generated do
11: Update cost estimates for n
12: Compute simulated measurement poses n.M
13: Compute FIMs using (11)
14: Add n to T
15: end for

Algorithm 2 IRRT, Execution Loop
1: t← 0
2: Initialize tree T with node at x(0)
3: while x(t) 6= xgoal do
4: Update the current state x(t) and target estimates

x̂i ∀i
5: Propagate the state x(t) by ∆t→ x(t+ ∆t)
6: while time remaining for this timestep do
7: Expand tree by adding nodes
8: end while
9: Update FIMs throughout T using (11)

10: Use information-based cost metric to identify best fea-
sible path, {nroot, . . . , nselect}

11: Apply best feasible path, if one exists
12: t← t+ ∆t
13: end while

where the relative weights qi can be used to bias information collection towards some targets (e.g. mission-
critical targets). Summation of the A-optimality costs is consistent with the nature of the multi-objective
problem.c

The ability to simulate expected measurement poses is used in two ways to extend the CL-RRT algorithm
for information gathering. First, these expected measurements are used to bias tree growth toward regions
of high information-gain11 (Algorithm 1)d. Second, the vehicle selects paths from the tree that minimize a
cost function which explicitly considers information, in addition to path cost and remaining cost-to-go.

Whenever new feasible nodes nnew are generated for the tree, the predicted measurement poses M are
stored within the node (line 12). These measurement poses are used to compute the FIMs based on the
current target estimates x̂i,m for all i and m, both when the node is created (line 13) and whenever the best
path is selected, as discussed next.

The IRRT execution loop is presented in Algorithm 2. In the IRRT algorithm, a single, multi-objective
cost metric is used (Algorithm 2, line 10), which considers both progress toward the goal and the value of
information collection. This cost function here takes the form

C(na) = αττ (na|nroot) + τ∗ (na) + αIIa, (14)

where τ(na|nroot) is the simulated time to travel from the root node nroot to node na, τ∗(na) is the lower-
bound cost-to-go (e.g. Euclidean or Dubins length divided by average speed) from na to the goal, and Ia
is the information-related cost component. The weights ατ and αI can be adjusted to reflect the relative
importance of information gathering and of following minimal-time paths to the goal. To ensure all recent
measurements are taken into account, the latest target estimates are measured at the beginning of each
execution loop (line 4), which are then used to update the FIM of each node in the tree (line 9). Though
this FIM update is performed on the entire tree on each pass, this is a computationally efficient operation
compared to other aspects of the algorithm, such as constraint evaluation.

Of particular note with this cost function is that it can be shown to result in “smooth” mission-level
behaviors, in the sense that negligible churning between information collection and goal directedness exists.
Rather, the planner is always conscious of the inherent tradeoff and will generate behaviors that, for example,
conclude missions by maneuvering to collect information while remaining relatively close to the goal. It
should also be noted as a limitation of IRRT, and RRTs in general, that mission-critical requirements like
maximum allowable duration and/or minimum required information collection are not well handled; it is
difficult enough to find, let alone guarantee that one could find, a feasible solution to such requirements in
finite time. Despite this, IRRT has been shown through simulations to perform well empirically under a
number of previously prohibitive general constraints. Furthermore, recent flight results have demonstrated
the viability of the IRRT approach, incorporating multiple vehicles, complex uncertainty models and sensors
in the loop.11

cIt should be noted that simply summing the FIMs (and not the associated A-optimality costs) over all targets at a given
measurement pose is imprudent; for example, two targets with singular FIMs could in their sum form a nonsingular FIM,
thereby masking the momentary unobservability of each target’s estimation process.

dSee [24] for more information on existing components.
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C. Recursive Bayesian Hybrid Data Fusion

This section describes the components of the “State Estimation” block in Figure 2, which combines obser-
vations made by human and robot agents to update the Gaussian Mixture target PDFs used by the CBBA
task allocation algorithm and IRRT path planning algorithm for each agent. The proposed sensor fusion
process is centralized and leads to recursive Bayesian GM updates. Decentralized recursive Bayesian fusion
with GMs remains a challenging problem27 and will be addressed in future work.

1. Overview of Gaussian Mixture Fusion Updates and Measurement Models

Let Zk =
{
Ztotal1 , . . . ,Ztotalk

}
be the set of all available observations up to time k from human and robot

agents, where Ztotalk =
{
Zrk,Z

h
k

}
is the set of observations Zrk from robot agents at time k and the set of

observations Zhk from human agents at time k. For Nr robot agents and Nh human agents, Zrk contains

Nk
r ≤ Nr measurements zr,jk ∈ Rnr×1 for j ∈ {1, . . . , Nr} and Zhk contains Nk

h ≤ Nh measurements zh,jk ∈
Rnh×1 for j ∈ {1, . . . , Nh}, where nr and nh are the fixed sizes of the robot and human measurement

vectors, respectively. The observations zr,jk and zh,jk are generally non-linear and described stochastically

by non-Gaussian likelihood functions p(zr,jk |xi) and p(zh,jk |xi), where it is assumed that reliable agent state
estimates and environment maps are available so that only xi is uncertain. A more general treatment of the
fusion problem that includes uncertain target dynamics, agent states and environment maps is also possible,
but is omitted here for brevity.

If Zrk and Zhk are conditionally independent given xi, the Bayesian posterior (Equation (5)) can be
recursively computed as

p(xi|Zk) =
1

K
p(xi|Zk−1)p(Ztotalk |xi) =

1

K
p(xi|Zk−1)p(Zrk|xi)p(Zhk |xi), (15)

where

K =

∫
p(xi|Zk−1)p(Zrk|xi)p(Zhk |xi)dxi (16)

is a normalization constant, and

p(Zrk|xi) =
∏

zr,j
k ∈Z

r
k

p(zr,jk |xi), (17)

p(Zhk |xi) =
∏

zh,j
k ∈Z

h
k

p(zh,jk |xi),

p(xi|Z0) = p(xi).

Since p(xi|Zk) = p(xi|Zk−1,Zrk,Zhk), Equation (15) is factored into sequential Bayesian updates for Zrk and
Zhk ,

p(xi|Zk−1,Zrk) =
1

Kr
p(xi|Zk−1)p(Zrk|xi) (18)

p(xi|Zk−1,Zrk,Zhk) =
1

Kh
p(xi|Zk−1,Zrk)p(Zhk |xi), (19)

where

Kr =

∫
p(xi|Zk−1)p(Zrk|xi)dxi,

Kh =

∫
p(xi|Zk−1,Zrk)p(Zhk |xi)dxi.

Finally, (18) and (19) are evaluated using Nk
r and Nk

h recursive Bayesian updates, respectively,

p(xi|Zk−1, ..., zr,jk ) =
1

Kr,j
k

p(xi|Zk−1, ..., zr,j−1k )p(zr,jk |xi), (20)

p(xi|Zk−1,Zrk, ..., z
h,j
k ) =

1

Kh,j
k

p(xi|Zk−1,Zrk, ..., z
h,j−1
k )p(zh,jk |xi), (21)
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where the indices (r, j) and (h, j) respectively denote the agents with measurements in Zrk and Zhk for

j ∈
{

1, ..., Nr
k or Nh

k

}
, and the constants Kr,j

k and Kh,j
k are the required normalizing integrals. After (18)

and (19) are evaluated at each time step k for each target i, the updated GM PDFs are fed back to the
agents so that they can replan and execute tasks more efficiently via CBBA and IRRT in light of newly
acquired information.

Zrk and Zhk are both assumed here to contain discrete multi-category observations with respect to xi.
Prior to actual target acquisition, the discrete target detector outputs for each robot vehicle can be used to
update the continuous target PDFs via Equation (18), as the probability of detection/no detection function
can be treated as the likelihood p(zr,jk |xi) for the binary observation zr,jk ∈ {“no detection”, “detection”}.9,10

Since zr,jk depends on the vehicle pose at time k and on xi, the fusion of “no detection” observations squashes
p(xi|Zk−1) with vehicle j’s “no detection” likelihood at time k, thus shifting probability mass to regions of
S where the target is more likely to be detected.

Similar “GM squashing” updates can also be induced in Equation (19) by “soft” human observations zh,jk
that take the form of ambiguous categorical location descriptions. For instance, a human agent might observe
“something is around landmark A”, “something is behind wall 2”, or “nothing is in front of the robot”, where
the prepositional phrases “around landmark A”, “behind wall 2”, and “in front of the robot” can be treated as
fuzzy categorical labels for coarse range and bearing measurements relative to known locations on a common
map. As with probability of detection models, such terms can be modeled probabilistically via likelihood
functions that squash the target PDFs towards/away from specified map reference points via Bayes’ rule.

The likelihood functions p(zr,jk |xi) and p(zh,jk |xi) are modeled here via multimodal softmax (MMS) mod-
els, which enable simple piecewise linear representations of “continuous-to-discrete” probability surface map-
pings.8 The top left of Figure 4(b) shows an example 2D MMS model of a triangular probability of detection
region for a camera-based target detector mounted to a robot agent facing east. This particular MMS
likelihood model has the form

p(zr,jk = c|xi) =

∑
s∈σ(c) exp(wTs ξ)∑

r∈{σ(D)∪σ(ND)} exp (wTr ξ)
, (22)

where ξ = [xi, 1]T , c ∈ {“no detection” (ND), “detection” (D)} is the observed category of zr,jk . The weights
ws in (22) are parameters for the two mutually exclusive subcategories, σ(D) and σ(ND), that geometrically
define the possible observation categories of zr,jk as a function of ξ, where s ∈ σ(ND) or s ∈ σ(D). The

camera detection model in Figure 4(b) uses 3 subcategories in σ(ND) to describe zr,jk = “no detection”

as being most probable outside of the triangle, and 1 subcategory in σ(D) to describe zr,jk = “detection”
as being most probable inside the triangle. The bottom left of Figure 4(b) shows an example 2D MMS
likelihood model corresponding to a coarse human range observation relative to a robot vehicle, with 3
possible categorical values zh,jk ∈ {“next to”, “around”, “far from”}. The form of the likelihood function

p(zh,jk = c|xi) for this ternary model is similar to that of the binary camera model in (22); here σ(“next to”)
contains 1 subcategory (defining the hole of the ring), σ(“around”) contains 8 subcategories (each defining
a segment of the octagon ring), and σ(“far from”) contains 8 subcategories (each defining a convex region
extending from an outer face of the ring), for a total of 17 weightse.

Despite their flexibility, the highly nonlinear/non-Gaussian nature of MMS likelihood models means that
the exact posteriors on the left-hand sides of Equations (20) and (21) are unfortunately no longer closed-form,

since the required integrals for the normalizing constants Kr,j
k and Kh,j

k cannot be determined analytically.
In fact, the resulting hybrid Bayesian updates in (20) and (21) can only be performed via approximation
methods such as discretization or Monte Carlo sampling.28

2. Hybrid Bayesian Gaussian Mixture Updates via Monte Carlo Importance Sampling

As discussed in [8], fast Monte Carlo importance sampling techniques can be used to obtain accurate GM
approximations for the required posteriors on the left-hand sides of Equations (20) and (21) when the right-
hand sides contain GM priors and MMS likelihoods. This leads to a recursive approximate Bayesian fusion
strategy in which the priors and posteriors in (20) and (21) are always represented as GMs, thus ensuring
that human and robot agents can incorporate new information from each other in a consistent and compact
form.

eSee [8] for further details on MMS models.
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(a) (b)

Figure 4. (a) Bimodal GM prior with µ1 = [0, 4]T , µ2 = [0,−4]T , Σ1 = Σ2 = 5 · I2, and w1 = w2 = 0.5, (b) left (top
and bottom): MMS likelihood models for camera detection probability and human range observation, where
probabilities are close to 1 for red and close to 0 for blue; right (top and bottom): corresponding Gaussian
mixture posterior approximations for GM prior in (a) (robot vehicle position indicated by magenta circle).

The basic importance sampling algorithm used here to evaluate Equations (20) and (21) for non-dynamic
GM priors and MMS likelihoods is given in Algorithm 3. Importance sampling approximates expectations
under an intractable posterior distribution by using weighted samples drawn from a known “importance”
distribution q(xi), which ideally has a similar shape to the posterior; this idea underlies the well-known
particle filter, which represents the priors and posteriors for non-Gaussian Bayesian filtering via weighted
samples at each time step.29 Algorithm 3 extends this representation by treating the input prior as a full
GM and compressing the weighted particles from importance sampling measurement updates into a new
GM posterior model. This not only provides a consistent and compact uncertainty representation for task
and path planning for all time steps, but also helps avert sample degeneracy problems that can lead to
inaccurate/unreliable Bayesian fusion.29

Since the importance distribution q should be as close as possible to the true posterior for efficient
sampling,29 Algorithm 3 also tailors q to the measurement updates in (20) and (21). For updates via
Equation (20), q is set to the mth component of the input GM, since its components are typically very
close to the true posterior modes when “detection/no detection” observations arrive from robot vehicles at
a sufficiently high rate. For updates via Equation (21), a variational Bayes algorithm is used to determine a
q close to the true posterior, which can shift far away from the modes of the input GM when human agents
make “surprising” observations (in such cases, severe sample degeneracy could result if q were instead set to
the mth component of the input GM). A more detailed description of Algorithm 3, including further details
on the selection of q and evaluation of the importance weights ωn in step 2, can be found in [8].

Figure 4 illustrates some typical fusion results using Algorithm 3 . Figure 4(a) shows the 2 component
GM prior used in this demonstration with the MMS observation likelihoods shown in Figure 4(b). The
top right of Figure 4(b) shows the 6 component GM posterior following an update with a robot vehicle
“no detection” observation, which pushes probability mass away from the triangular detection region of the
robot’s camera. The bottom right of Figure 4(b) shows an 18 component GM posterior following the human
observation “target around robot”, where almost all of the probability mass from the GM in Figure 4(a) is
forced into the ring-shaped region of the corresponding MMS likelihood model.

3. Practicalities

Mixture management: If the input GM of Algorithm 3 has Mi components and p(zt,jk |xi) has Sz rel-

evant subcategories corresponding to zt,jk , then the output GM will have Mi · Sz components. Thus, GM
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Algorithm 3 Importance Sampling Measurement Update Algorithm

Inputs: Agent type t ∈ {r, h}, agent index j ∈
{

1, ..., Nt
k

}
, input GM p(xi|Zk−1, ..., z

t,j−1
k ) =

∑Mi
m=1 wi,m N (µi,m,Σi,m),

MMS observation likelihood p(zt,jk |xi), observation zt,jk with Sz subcategories in p(zt,jk |xi)

Output: Posterior GM p(xi|Zk−1, ..., z
t,j
k ) =

∑Sz ·Mi
h=1 wh,i N (µh,i,Σh,i)

Initialize h ← 0
for Input GM component m = 1 to Mi do

for Each subcategory s ∈ σ(zt,jk ) do
Set h ← h + 1
if t = r for updating via (20) then

Set q(xi) = N (µi,m,Σi,m)
else if t = h for updating via (21) then

Set q(xi) using variational Bayes method (see [8])
end if
1. Draw N samples

{
x1
i , ...,x

N
i

}
from q(xi)

2. Evaluate importance weights
{
ω1, ..., ωN

}
(see [8])

3. Estimate the conditional measurement likelihood l(m, s) = 1
N

∑N
n=1 ω

n

4. Re-normalize importance weights so that
∑N

n=1 ω
n = 1

5. Estimate posterior component h mixing weight wh,i, mean µh,i and covariance Σh,i,

wh,i = wi,m · l(m, s), µh,i =

N∑
n=1

ωnxn
i , Σh,i =

N∑
n=1

ωn(xn
i xnT

i )− µh,iµTh,i (23)

end for
end for
Re-normalize mixing weights so that

∑Sz ·Mi
h=1 wh,i = 1

compression techniques should be used after each measurement update to prevent the number of GM terms
in Equations (20) and (21) from becoming prohibitively large after each time step. As discussed in [8], many
GM compression algorithms can be used, although all incur some information loss with respect to the original
output GM. Salmond’s merging algorithm30 is used here after each application of Algorithm 3, so that the
compressed output GM contains no more than Mmax mixands that preserve the overall mean and covari-
ance of the uncompressed output GM. While the best value of Mmax is strongly problem/implementation-
dependent, Mmax must in general be tuned to balance between (i) minimizing the time costs of evaluating
and compressing (20) and (21) for each target (so that agents can replan in a timely manner) and (ii) main-
taining the most accurate possible GM approximation of (5) for each target (so that agents can use as much
information as possible for replanning). To this end, it should also be noted that the fusion updates for
multiple independent target GMs can be run in parallel, while the nested for loops in Algorithm 3 can be
split into Mi · Sz parallel importance sampling updates.

False alarms and data association for ambiguous human observations: It is assumed here that
human agents perfectly filter out false target detections from Zrk, and that the soft location information
in Zhk is completely reliable. While it is theoretically possible to extend the proposed fusion process to
accommodate false alarms in Zrk and human errors/uncertainties in Zhk , these extensions are omitted here
for brevity.

Data association issues arise in Equation (21) when human observations zh,jk are not target specific (e.g.
if a human reports the location of “something” or “nothing” in the absence of target ID information). For

example, the “positive” observation zh,jk =“Something is nearby the robot” could apply to any remaining

target, but only truly corresponds to one target. However, the “negative” observation zh,jk =“Nothing is
nearby the tree” corresponds to all remaining targets. The fusion of such ambiguous measurements can be
handled by probabilistic data association techniques.31 The naive data association method of [8] is used here
for the typical case where human observations only describe either “something” or “nothing” without target
ID information.

IV. Indoor Target Search and Track Experiments

This section describes the experiments conducted at Cornell’s Autonomous Systems Lab to validate the
proposed planning and fusion methods for an actual cooperative human-robot target search and identification
mission. Five static targets (orange traffic cones with numbered labels) were hidden in an obstacle-filled en-
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(a) Search area used for experiment (b) Pioneer 3DX rover equipped
with computer, LIDAR, and cam-
era

Figure 5. Real-time search and track experiments for human-robot teams performed at Cornell’s Autonomous
Systems Lab

vironment and assigned random state priors. A human-robot team consisting of two completely autonomous
ground rovers and a human analyst were tasked with detecting, identifying, and localizing all N = 5 targets
in under 10 minutes. The 5m x 10.5m indoor search area used for the experiment is shown in Figure 5(a).

Due to the relatively small scale of the problem, in these experiments, only the robotic agents were
involved in the “Task Allocation” and “Path Planning” process described in Figure 1; the human operator was
instead considered a stationary sensor whose sole task was to provide information (i.e. target verification and
possibly soft location information) through a desktop computer console to the “State Estimation and Sensor
Fusion” block. The targets i ∈ {1, . . . , 5} were placed at fixed locations xtruei throughout a field featuring
four movable wall obstacles measuring between 1m and 1.5m, which obstructed the human operator’s direct
line-of-sight to some of the targets when seated at the console. The operator had access to the live video
streams from the vehicle cameras, displayed at the console, to assist in the classification process. The
operator could also send information to the robots via the Human-Robot Interface (HRI) to improve their
autonomous search.

A. Experimental Setup

1. Hardware

The robot platform used for these experiments was the Pioneer 3DX with the following mounted devices: Mini
ATX based computer with a 2.00 GHz Intelr CoreTM 2 processor, 2 GB of RAM and WiFi networking to
control the robot, a Unibrain Fire-I OEM Board camera, and a Hokuyo URG-04 LX LIDAR sensor (Figure
5(b)). A computer with a 2.66 GHz Intelr CoreTM 2 Duo processor and 2 GB of RAM performed the
State Estimation and Human-Robot Interface (HRI) tasks. An additional computer with similar hardware
executed task allocation in a simulated decentralized environment. A computer with two 2.66 GHz Intelr

Xeonr processors and 4 GB of RAM implemented high-level path planning for the experimental trials. A
Vicon motion-tracking system performed robot localization and pose calculations.

2. Messaging, Local Controller, and Target Detection Algorithms

The Pioneers sent three types of messages: images, detected targets, and robot data. Each robot data
message was sent at 20 Hz and contained the robot’s name, ID number, pose, local timestamp, most recent
LIDAR scan, current path, current trajectories, and path completion status. This data was processed for
high-level task and path planning, as well as low-level local robot control and target detection.

Local Pioneer robot controllers enabled the vehicles to autonomously follow the waypoint trajectories
created by the path planners while avoiding dynamic collisions. The Pioneer controllers were provided with
a map of the search environment in order to plan around known obstacles as well as state data for any
dynamic obstacles. Local path following used a D* planning algorithm to find an optimal path and a pure
pursuit controller to generate velocity commands. The D* planner was required to avoid newly detected
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(a) Main operator user interface window, with menus for
soft inputs and windows for camera feeds

(b) Overhead field map with the combined target GM
PDF, walls, and robot locations

Figure 6. Screenshots from the HRI console available to the human operator

obstacles and other robots in the field, as well as to provide a safety measure against possible inconsistencies
between Vicon localization and actual field positions. Objects detected by the Pioneer LIDAR units were
considered collision hazards if they were within a 0.4m threshold, with a bearing between 0 and π radians (in
front of the vehicle). When a collision was imminent, the robots searched their latest LIDAR scan returns
for possible escape directions that avoided these potential collisions. In some cases, a robot could get ‘stuck’
inside obstacles if they strayed too close to them, which necessitated human intervention to ‘rescue’ the
robot.

The positions of other robots were unknown to the local path planners in this experimental setup, and
the local robot controllers were instead responsible for avoiding robot-robot collisionsf. The state data for
each robot was broadcast at 2 Hz so that each local D* planner could model the other robot as a dynamic
obstacle. A simple fixed precedence algorithm was used to resolve potential robot-robot collisions if the
robots came within a fixed distance of each other. The trajectories sent from the vehicle computer to the
Pioneer controller were varied between rates of 4 sec and 10 sec; the effects of these two different rates are
examined below.

To detect and localize potential targets, the Pioneer computer used OpenCV “blob” detection algorithms
on areas of the camera images that were within thresholds corresponding to the color of a standard traffic cone
under the lab’s lighting conditions. A cone detection algorithm developed in OpenCV was then employed to
provide the HRI with a bounding box of possible cone-shaped blobs in a “potential target detection” message.
To simulate realistic mission conditions given the small size of the field, the HRI restricted detection ability
to a forward range of 1m by ignoring potential targets with bounding boxes of insufficient height. The HRI
associated potentially valid targets with the generated image, and with the LIDAR scan with the closest
timestamp to that image. The location of the possible target was then roughly estimated using the LIDAR
points with the best match in bearing to the bounding box. If the estimated location was not for an already
identified target or a false alarm, this information was prompted to the user, who either identified the
specified target or classified it as a false alarm.

3. Human-Robot Interface

In addition to assisting in target detection, the HRI, shown in Figure 6, allowed the human operators to
send soft sensor information to update the Gaussian mixture model for each target, as described in Section
III.C. The observations from the human agent involved positive/negative information using the previously
described “something/nothing” format and the preposition models shown in Section III.C to describe target
location information relative to field landmarks or the robots themselves via a scroll menu. Using the HRI,
the operator also had available the camera views of each Pioneer and a top-down map view of the field,
which included all known obstacles, robot locations, identified target/false alarm locations, and the latest

fNote that IRRT has the capability to perform dynamic obstacle/agent avoidance if augmented with the appropriate state
data for those dynamic obstacles/agents. This capability was not leveraged in these experiments, however, in the next set of
trials this feature will be enabled.
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Figure 7. Field map showing walls (magenta lines), true target locations (red triangles), initial target prior for
combined target GM, and initial vehicle locations (circles) with camera detection field of view (black triangles).

combined target PDF. Note that the vehicles were fully autonomous and that the HRI could not directly
send any control signals to the robots (except for an emergency stop command). Any operator inputs to the
robots were via “soft” observations only, as described in Section III.C.

B. Search Performance Metrics and Results

Each target i ∈ {1, . . . , 5} was assigned a Gaussian prior p(xi) = N (µi,Σi) with covariance Σi = I and mean
µi. The values for µi and xtruei that were used for the experiments were

µ1 = [1.50, 1.30]T , xtrue1 = [0.103, 1.526]T

µ2 = [4.25,−1.70]T , xtrue2 = [2.648, 1.28]T

µ3 = [1.25, 0.55]T , xtrue3 = [−0.973,−0.214]T

µ4 = [−1.75, 1.55]T , xtrue4 = [2.867,−0.201]T

µ5 = [6.00, 1.05]T , xtrue5 = [5.012,−0.679]T .

The PDF surface for the combined target prior is shown in Figure 7, along with the 2D field map, initial
search vehicle locations and orientations, and the true target locations and labels. Note that in some cases,
xtruei is sometimes quite far from the specified µi prior, which creates a fairly challenging search problem.

Multiple search trials were conducted to compare team search performance using several metrics under
different planning and information fusion modalities. The experiments included trials with and without
human operator soft inputs and varied task allocation replan rates. Planner performance was evaluated via
the following metrics: (1) number of targets detected/identified, (2) individual and combined vehicle distances
traveled (not including rotations in place), (3) time required to find the targets, and (4) information acquired
throughout the mission. The latter metrics reflect the efficiency of the combined decentralized planning
algorithms in exploring the search spaceg. The information gain at each time-step, following updates from
the GM target state estimator, was computed via the Kullback-Leibler divergence (KLD) between the
updated combined (undetected) target GM posterior in Equation (24) at time-step k + 1 and the combined

gNote that mission duration could be less than the allotted 10 minutes either because: all targets were found and identified
successfully, or because the trajectory planner or robot controller became “stuck” in an irrecoverable state (e.g. inside an
obstacle buffer), in which case the mission was terminated since the robots could not continue autonomously without significant
human intervention. Hence, the mission termination condition also served as a loose qualitative measure of planner performance,
although it should be emphasized that this is sensitive to the particular tuning and implementations of the local robot controllers
and the experimental environment.
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target GM posterior from time-step k, given by

KL [p(x̄|Zk+1)||p(x̄|Zk)] =

∫ ∞
−∞

p(x̄|Zk+1) ln

[
p(x̄|Zk+1)

p(x̄|Zk)

]
dx̄. (24)

As discussed in [9], the KLD can be thought of as a distance measure between two probability distributions,
which quantifies the amount of information acquired about the combined target estimate x̄ from time k to
k+1. KLDs are nonnegative and are zero only if both PDFs in the integrand are identical, which implies that
no new information is acquired. The sum of the KLD over the mission duration reflects the overall average
changes in the uncertainty of the undetected target locations during the search mission. The cumulative sum
of Equation (24) from mission start to end was computed for each trial offline via discretization techniques.

1. Effect of Human Operator Soft Inputs

To quantify the benefit of the human operator soft inputs to the Bayesian fusion performance, trials were
conducted to compared the proposed GM target state estimator which fused soft human information to a
baseline GM target state estimator that ignored soft human information. A basic greedy Markov Decision
Process (GMDP) path planner served to generate default trajectories. For each robot, the GMDP discretized
the combined target PDF for the robot’s assigned targets, and then selected the cell with the largest PDF
share as the goal location. A path to that location was then planned using value iteration,32 where the robot
was allowed to move into adjacent cells by moving either left, right, up, down, or diagonally. For the trials
where the soft human observations were ignored, only the probability of no detection information from the
robot camera and pose information were used to update the target GMs. In such cases, the human agent was
instructed not to send any observations to the robots, other than responding to target confirmations. For
the trials where the human’s observations were fused, the human could send soft information observations
to the robots at will, as long as the robots were not awaiting target confirmation responses. In all cases,
the maximum number of GM components per target was set to 15. The trials were repeated using a 4 sec
replan rate for the CBBA task allocation component and a 10 sec replan rate. Table 1 shows the detected
targets along with the time it took the team to find them in each of the trials.

Table 1. Results for Human Operator Soft Input Experiments: Targets Detected and Time to Detect Targets
(in order of acquisition)

Case Targets, no Human Time (s), no Human Targets, with Human Time (s), with Human

4 sec CBBA 2,5,4,1 98,246,496,543 4,3,2,1,5 25,199,241,286,336

10 sec CBBA 1,4,5,3 65,209,262,427 2,4,3,1,5 49,60,79,347,365

Figure 8 compares the mission performance for the different trials, showing the vehicle distances traveled
(Figure 8(a)) and the mission durations (Figure 8(b)) for each case. These results highlight the benefit of
the human operator soft inputs, showing that by fusing in the information provided by the operator, the
robotic team is able to locate and identify the targets more quickly and efficiently than without the operator
inputs.

2. Information-Based Search and Track

Next, the IRRT trajectory planning approach described in Section III.B was implemented and used to
generate information-based paths for the robotic agents. Multiple trials were conducted for different task
allocation replan rates (4 sec vs. 10 sec), and for cases with and without the human operator soft inputs
described above. Table 2 presents the results for these trials, showing the targets acquired throughout
the mission along with the time it took the team to located and identify them. Figure 9 shows the mission
durations and vehicle distances traveled for the different trials, and Figure 10 shows the information acquired
by the team throughout the mission for the different experiments. There are some interesting observations
that can be made from these results. Firstly, as shown in Figure 10, the trials incorporating human soft
inputs achieved a higher information content than the trials without human inputs for both the 10 sec and
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(a) Individual and combined vehicle distances traveled during
each trial

(b) Total mission duration for each trial

Figure 8. Results for Human Operator Soft Input Experiments: Comparison of mission durations and distances
traveled with and without human operator soft inputs.

Table 2. IRRT Targets Detected and Time to Detect Targets (in order of acquisition)

Case Targets, no Human Time (s), no Human Targets, with Human Time (s), with Human

4 sec CBBA 5,3 148,287 3,4,1,5 77,176,178,282

10 sec CBBA 5,4,2,1 27,85,121,339 4,2,1,5 30,144,222,421

4 sec replan cases. In fact, in the 4 sec replan case the autonomous team found only 2 out of the 5 targets,
but using human inputs it was able to find 4 (see Table 2). A second observation is that the information
acquired using a 10 sec replan rate was consistently higher than that obtained using a 4 sec replan rate (for
both with and without human inputs). This is due to a tradeoff between replanning often to include the
latest target estimate information vs. allowing IRRT enough time to generate a quality plan before using it.
Finally, it is worth noting that the impact of human inputs and replan rates on vehicle distances and total
mission completion times was inconclusive for this set of experiments. This is partly due to the fact that
vehicle distances and mission times were affected by the collision avoidance software that would sometimes
stop or reroute vehicles before returning them to the trajectories planned by IRRT. The next section provides
a more detailed discussion on the different elements that impacted the results, especially with regards to
mission times and vehicle distances.

C. Discussion

The hardware implementation results for the multi-target search and identification mission provide several
interesting and useful insights about the proposed information-rich planning and hybrid fusion framework
for human-robot teams. This section describes the benefits of the proposed architecture as well as lessons
learned and suggestions for future work.

1. Effects of soft human inputs on Bayesian fusion performance

The performance metrics above show that the fusion of human information generally improved target search
efficiency; in particular, the rates of average information gain with respect to the undetected target PDF
without human inputs were smaller than the rates of average information gain with human input. This
shows that although human agents are rate limited and less precise than conventional robot sensors, proper
Bayesian fusion of soft categorical human data can lead to significant improvements in team performance
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(a) Individual and combined vehicle distances traveled during
each trial

(b) Total mission duration for each trial

Figure 9. Results for Information-Based Search and Track Experiments: Comparison of mission durations and
distances traveled

for information-based tasks. Soft categorical human inputs are especially interesting to consider for data
fusion in ISR-type missions, due to their natural interpretability to human operators and their high degree
of flexibility. The GM-based data fusion framework presented here for soft human inputs can also readily
accommodate existing Bayesian fusion methods for conventional sensors (e.g. such as those based on Kalman
filtering).

However, care must always be taken in practice to properly characterize the context of soft human inputs
before fusion takes place. For example, the meaning (and hence the likelihood functions) of ‘nearby’ is
quite different in the statements ‘the car is nearby the tree’ and ‘Newark is nearby New York City’. In
the experiments presented here, this issue is resolved through the use of a simple messaging protocol and a
limited but unambiguous set of contextual cues (i.e. the ‘wall’ and ‘robot’ location reference points) that
can be passed to an interpreter, which is constructed offline. More sophisticated messaging protocols or
interfaces (e.g. natural language) could also be implemented with additional effort for other applications, as
long as sufficient training data is available for properly translating the desired soft categories into meaningful
probabilistic likelihood functions, as described in Section III.

Interestingly, while human sensor inputs are clearly advantageous from an information fusion perspec-
tive, they remain challenging to directly accommodate and account for within information-based planning
algorithms, since humans are not as predictable or reliable as conventional sensors such as cameras and
LIDAR. In particular, the highly intermittent and nonlinear/non-Gaussian nature of soft categorical human
inputs makes it difficult to predict the expected amount of information to be contributed by human sensor
agents over a finite horizon. As a result, information-based planners must be tuned carefully to the styles
of different human operators in order to ensure good team performance. Future work will explore different
strategies for coping with these issues, such as explicitly polling the human operator for inputs to improve
predictability and calculation of information gain bounds with respect to intermittent human observations.

2. Analysis of information-based search and track

While the experiments using the proposed IRRT-CBBA fusion architecture illustrated the viability of a
unified information-based planning framework, there were several interesting issues observed and lessons
learned. Firstly, the experiments using a 4 sec task allocation replan rate vs. a 10 sec replan rate highlighted
a tradeoff between plan relevance and plan quality. The quality of the plans generated by IRRT improves
the longer the algorithm is allowed to run, thus the 10 sec replan rate created more informative trajectories
which enabled the team to acquire larger amount of information throughout the mission (see Figure 10).
On the other hand, a faster replan rate ensures that the current plan remains relevant in light of changing
information, such as updated GM estimates and critical information provided by human operators. For this
particular mission, a 10 sec task allocation replan rate proved more efficient than a 4 sec rate, but in a more
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(a) (b)

(c) (d)

Figure 10. Results for Information-Based Search and Track Experiments: KLD information gain for the
combined undetected target PDF. Plots show information acquired for (a) 10 sec CBBA replan with human
inputs, (b) 10 sec CBBA replan without human inputs, (c) 4 sec CBBA replan with human inputs, and (d) 4
sec CBBA replan without human inputs. Red lines indicate target detection/ID events and black diamonds
denote instances where a soft human observation message is fused.

dynamic environment it is likely that the relevance of the plan will become more important than the quality,
thus favoring faster replan rates. This tradeoff is problem and implementation dependent, and should be
carefully considered when implementing these system to achieve the best performance.

Secondly, the complications associated with performing actual hardware experiments impacted the per-
formance of the system resulting in discrepancies between expected and actual performance. For example,
the information-based trajectories planned by the IRRT component were not being executed exactly by
the rovers during the experiments for a variety of reasons such as collision avoidance, delays, and modeling
inaccuracies. The low-level dynamic collision avoidance software often changed the shape of the trajectory,
creating detours so that the vehicles would not hit each other. These detours often resulted in larger vehicle
distances and longer mission completion times. Although the IRRT algorithm presented in [11] accounts
for dynamic collision avoidance, the distributed hardware nature of the experiment did not allow us to take
advantage of this feature, however, this capability will be included in future iterations of these experiments.
The other reason mentioned above involved delays between planning the trajectory and communicating it to
the vehicles. Although minor, these delays impacted the trajectory following capability and the next itera-
tion of experiments will attempt to minimize these delays as much as possible. The third reason was due to
mismatches between the IRRT’s model of the vehicle dynamics and sensor model, and those actually used by
the rovers during execution (such as many of the D? effects). IRRT specifies exact trajectories that include
position, orientation and sensor location, but the low-level path following software consisted only of waypoint
following, causing discrepancies between the planned and actual sensor location/orientation required for ob-
taining accurate measurements (although the vehicles often got really close to taking a proper measurement,
they would pass by without looking directly at the target, and therefore there would be no reward for exe-
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cuting the almost perfect trajectory). In addition, the actual measurement procedure was slightly different
than that modeled in the IRRT framework, causing mismatches in predicted and actual performance. In
particular, the vehicle sensor limitations in the vision processing software were more conservative than the
sensor models used by IRRT. Thus, while the trajectories generally exhibited good behavior, the “reward”
in terms of valid observations was often insufficient. Furthermore, there was significant sensitivity in the
actual measurement procedure making it difficult to obtain a good measurement. For example, the target
cones had to be centered at a certain height and distance for the vision processing software to accept them,
and white labels used to mark the targets were interfering with the vision software’s classifiers, therefore,
even when the vehicles were looking directly at the targets, a proper measurement was not received. These
real-world considerations are hard to model within the IRRT framework, and future work should consider
ways to incorporate robustness into both the planning and image processing components.

Lastly, it should also be noted that, out of all these trials, only the two GMDP trials with human input
terminated in under 10 minutes because all targets were successfully detected and identified. All other trials
ended either because the 10 minute time limit was reached (GMDP, no human, 4 sec CBBA replan rate) or
because the robots determined that they were irreversibly “trapped” by obstacles (often by moving too close
to previously detected targets or walls), thus requiring human intervention to break free (all other trials). To
ensure some consistency for meaningful comparisons in light of these difficulties, these latter trials were only
accepted after at least 5 minutes of the search had elapsed, otherwise the trial was discarded and restarted.
As mentioned before, early termination due to motion infeasibility was usually caused by discrepancies in
the low level controllers, Vicon state estimation, and/or environmental setup, which are issues that will be
addressed in the next iteration of trials. In spite of all the real-world considerations that arise when dealing
with actual hardware, note that at least 4 out of the 5 targets were successfully detected and identified in
all but one of the eight total trials, illustrating the potential benefits of this information-based planning and
fusion architecture for search and track missions.

V. Conclusions and Ongoing Work

Motivated by the need for scalable and flexible information-based planning algorithms and robust fusion
methods to exploit heterogeneous information sources in large-scale semi-autonomous systems, this paper
introduces a new planning and estimation framework for optimizing information collection in cooperative
human-robot missions. To this end, a unified approach to high-level distributed task planning, information-
based path planning, and hybrid Bayesian information fusion using Gaussian mixtures is presented and
validated in a real hardware experiment involving multi-target search with a cooperative human robot team.
The results illustrate the benefits of including information acquisition as a goal at every level of planning,
as well as showing that by including human operator soft inputs into the Bayesian fusion framework the
performance and efficiency of the autonomous search team can be greatly improved.

Future work will consider extending the proposed planning and fusion framework in several ways to
accommodate other realistic estimation problems for cooperative human-robot search missions. These ex-
tensions include (but are not limited to): dynamic target tracking with continuous sensor information fusion
and multiple model uncertainties; environmental map uncertainties to accommodate simultaneous local-
ization and mapping (SLAM);32 3D target dynamics and sensor model updates (e.g. using UAV sensor
platforms); decentralized fusion with Gaussian mixtures; and improved false alarm modeling and data as-
sociation techniques for soft information fusion. Future work will also consider task-planning extensions for
human sensor agents and for human-operated mobile agents, as well as task and path planning for mobile
human agents. Since CBBA is well-suited to handling heterogeneous agents that can perform a wide variety
of tasks, extensions to incorporate realistic secondary mission objectives such as refueling and automation
failure handling (e.g. assignment of a human agent to tele-operate a ‘trapped’ robot to rescue it) will also
be studied.
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