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Abstract

This paper presents an innovative decentralized seismic tomography
computing paradigm in cyber-physical sensor systems, where each sen-
sor node computes the tomography based on its partial information and
through gossip with local neighbors only. The key challenge is the poten-
tial high communication overhead due to limited knowledge of each node
about the entire network topology and information. The aim of this paper
is to develop efficient algorithms for maximizing the quality of tomography
resolution while minimizing the communication cost. We reformulate the
conventional seismic tomography problem and exploit the Alternating Di-
rection Method of Multipliers (ADMM) method to design two distributed
algorithms. One is a synchronous algorithm and the other is asynchronous
and more fault-tolerant and scalable. We theoretically prove that both
proposed algorithms can reach their convergent solutions in a linear rate
in terms of the number of communication rounds. Extensive evaluations
on both synthetic and real data sets validate the superior efficiency of the
proposed algorithms. They not only achieve near-optimal (compare to
centralized solution) high quality tomography but also retain low commu-
nication cost even in sparse networks.
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1 Introduction

Current seismic imaging systems use sensors placed on earth surface to acquire
information of the compressional waves generated by underground seismic activ-
ities. The acquired data are then used to derive the internal velocity structure of
the earth subsurface. However, they are prone to several bottleneck problems.
First, for example, in previous volcano monitoring investigations, the number
of stations (sensors) is up to 20 due to deployment cost and other issues. The
resulting low station coverage inevitably becomes a main constraint on our ca-
pability of obtaining high-resolution tomography model [1]. Second, even if
thousands of nodes can be incorporated (e.g. petroleum exploration systems),
the huge volume of raw seismic data has to be collected into a central place for
post-processing. The underlying time-consuming process prohibits its potential
for effective disaster warning in which the time scale can be tens of minutes.
More introduction and motivation can be seen in [2].

We adopt the travel-time based seismic tomography in the presenting work
to reveal the velocity model inside the volcano [3]. The basic procedure of
seismic tomography is illustrated in Figure 1 involving three steps.
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Figure 1: Procedure of Seismic Tomography [2]
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The first step is “Event Location”, which means we need estimate the where
and when certain seismic event occurs. (Figure 1(a)). The second step is named
“Ray tracing”. This process is to estimate the rays coming from the the event
location to the receivers. The traces of the rays are affected by the velocity
structures of the materials they travel along. In other words, the rays contain
information of the internal velocity model that we are interested in (see Fig-
ure 1(b) as a conceptual view of this process). The final step is “Tomographic
Inversion”. It basically utilizes the traced ray paths to image a 3-D tomography
of the velocity model within the volcano (Figure 1(c)). Interested readers are
referred to [2] for more details.

In this paper, we focus on the tomographic inversion process, which can
be formulated as a large linear inversion problem (detailed formulation in next
section). However, it is highly demanded to have a distributed computing algo-
rithm to fill the gap between the “centralized” nature of traditional tomography
computing and the “distributed” feature of sensor networks.

Considering the issues discussed above, we are thus motivated to propose
two in-situ seismic imaging methods on decentralized large-scale cyber-physical
sensor systems. They enjoy the nature of distributed and fully decentralized
computing and gossip between neighbors only. One is synchronous and the
other is asynchronous. They exhibit the following merits: (i) Simple implemen-
tation and no data fusion center or coordinator required; (ii) Close to “optimal”
(centralized algorithm is considered as the benchmark) imaging quality even
in sparse networks with severe packet loss, which are scenarios often occur in
volcano monitoring; (iii) Guaranteed linear rate approaching to consensus opti-
mal solution for every node; (iv) Lower communication cost comparing to other
potential distributed methods in the literature.

In our hardware design, each station is capable of sensing, communicating
and computing. The hardware design of each station adopts the stackable design
principles and there are four type of stacks in each station: computing board,
communication board, sensor board, energy board. Detail hardware configu-
ration is described in [4]. We plan to test the proposed decentralized seismic
tomography algorithms in the underlying system architecture for real-world de-
ployment.

The rest of the paper is organized as follows. Section 2 reviews the related
work. The reformulation of seismic tomography and derivation of Synchronized
Distributed Seismic Tomography (sDSTA) are described in Section 3. Next
in Section 4, we present the derivation of Asynchronous Distributed Seismic
Tomography Algorithm (aDSTA). Section 5 focuses on the convergence analysis
of sDSTA and aDSTA. In Section 6, the effectiveness of the proposed approaches
is evaluated. Section 7 describes potential benefits of proposed methods under
different modelings. Section 8 provides the final remarks.

2 Related Work

There has been a rich history that people use iterative methods (e.g. conjugate
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gradient) to solve the seismic tomography inversion problem in (3) [5]. However,
they are designed or specialized for computing resources in which “centralized”
computing is performed. A parallel splitting method for solving (3) was pro-
posed in [6] where the local solutions are weighted combined to obtain the final
solution. The method in [6] can distribute the computational tasks into multiple
computers while the communication between the nodes becomes an issue, that
is: every node needs to communicate with the rest of the nodes in each iteration.
Several studies in the context of signal processing applications bring applicable
distributed algorithms in sensor networks [7–9]. Sayed and Lopes developed a
Distributed Recursive Least-Squares (D-RLS) strategy in [7]. The main issue
is that a “cyclic path” exists in the network to execute the computation and
a large dense matrix needs to be exchanged between nodes. Schizas proposed
the Distributed Least-Mean-Square (LMS) algorithm [8] in which every node
keeps a local copy of the common variable and all the nodes are expected to
reach consensus on the value of the decision variable eventually. Although the
communication protocol in [8] only transmits the solutions and is more efficient
than the one in [6], certain “bridge” sensors are still required as fusion centers
for collecting the information within the neighbors and distributing processed
information back to the neighbors. This results in huge communication burden
in the “bridge” sensors. Multi-resolution based and component-average based
distributed algorithms have been proposed in [2] and [10], respectively. How-
ever, their methods are not performed in a decentralized fashion, which means
large data aggregations or multi-hop communications are still involved in their
methods. In contrast to the aforementioned existing works, we proposed algo-
rithms in the presenting work which are: communication and computational
load balanced, multi-hop communication free, robust, and privacy preserving.

Recently several fast distributed algorithms have been proposed for solving
general convex and differentiable functions [11–13]. They assume the network
has a synchronized clock while this setting might not be always feasible or fa-
vorable in distributed sensor networks. In this paper, besides the synchronized
algorithm, we develop an asynchronous version, which can alleviate the syn-
chronization task and further reduce the communication overhead.

3 Synchronized Distributed Seismic Tomogra-
phy Algorithm-sDSTA

3.1 Problem Formulation

In this section, we give the formal formulation of decentralized seismic tomog-
raphy computation problem. Similar or even more detail formulation leading
to (3) were described in [10], [2]. We assume the event location and ray tracing
steps are completed. Let t∗i = [t∗i1, t

∗
i2, . . . , t

∗
iJ ]T , where t∗ij is the travel time

experienced by node i in the j-th event. The travel time of a ray is the sum
of the slowness in each block times the length of the ray within that block,
i.e., t∗ij = Ai[j, h] · s∗[h] where Ai[j, h] is the length of the ray from the j-th

4



event to node i in the h-th block and s∗[h] is the slowness of the h-th block. Let
t0i = [t0i1, t

0
i2, . . . , t

0
iJ ]T be the unperturbed travel times where t0ij = Ai[j, h]·s0[h].

We can thus have the following compact form:

Ais
∗ −Ais

0 = Ais (1)

Let ti = [ti1, ti2, . . . , tiJ ]T denotes the travel time residual such that ti = t∗i −t0i ,
equation (1) is equivalent to:

Ais = ti (2)

We now have a linear relationship between the travel time residual obser-
vations, ti, and the slowness perturbations, s. Since each ray path intersects
with the model only at a small number of blocks compared with n, the design
matrix, Ai, is sparse. The seismic tomography inversion problem is to solve a
linear system of equations:

As = t (3)

where A ∈ Rm×n, t ∈ Rm and s ∈ Rn is the vector to be estimated. This
system is usually organized to be over-determined (let the number of rays (the
number of measurements) m is larger than n) and the inversion aims to find the
least-squares solution s such that,

s = arg min
s
‖ As− t ‖2 (4)

Since vector t is usually noise-corrupted, the system is inconsistent. In conse-
quence, one needs to solve a regularized least-square problem (the regularization
term can vary, we use Tikhonov regularization here since it is the most popular
one in seismic inversion problem):

min
s

1

2
‖As− t‖22 + λ2‖s‖22 (5)

From (2), we can equivalently express (5) as follows.

min
s

p∑
i=1

ci(s) (6)

where p sensor nodes are considered in the system, ci(s) = 1
2‖Ais − ti‖22 +

λ2i ‖s‖22. The i-th sensor node has the knowledge of Ai and ti only. We can
see (6) is meant a problem that each sensor node jointly optimizes (using their
private local functions ci’s) to reach a consensus on the global common interest
s that minimizing the total cost. Notice that minimizing each local function ci
respectively is clearly a sub-optimal solution since only partial information is
utilized and the result would be inevitably biased.
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3.2 Preliminary of ADMM

In this paper, we leverage the ADMM technique to devise our distributed seismic
tomography solution for (6). To briefly illustrate the general ADMM algorithm
[14], consider the prototype problem:

minimize f(x) + g(z)

subject to: Ax+Bz = c
(7)

with variables x ∈ Rn and z ∈ Rm, where A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp.
Functions f and g are assumed to be convex. As in the method of multipliers,
the augmented Lagrangian can be formed:

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2) ‖Ax+Bz − c‖22 .

ADMM consists of the iterations:

xk+1 := arg min
x

Lρ(x, z
k, yk) (8a)

zk+1 := arg min
z

Lρ(x
k+1, z, yk) (8b)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c), (8c)

where ρ > 0 is the predefined augmented Lagrangian parameter and y is the
Lagrangian multiplier (dual variable) of the constraint in (7). The ADMM algo-
rithm is considered to have three steps: an x-minimization (8a), a z-minimization
step (8b) and a dual variable update (8c).

3.3 Algorithm Desgin

To fit the generic two-block ADMM framework, a natural reformulation of (6)
can be posed as:

min
{si}

p∑
i=1

ci(si)

s.t. si = sj , j ∈ Ni,∀i
(9)

where si is the local estimate of the global variable s at i-th sensor node, and Ni
is the set of neighbors of node i. The constraints in (9) are consensus constraints
that lead the neighbors to have agreement on the decision variable s. However,
in the constraints of (9), the estimate si is directly coupled with neighboring
nodes, a parallel processing of the optimization problem is not possible.

To overcome this issue, we introduce auxiliary variables qij , then the con-
straints in (9) are decomposed equivalently into the following form (e.g. see [15]):

min
{si,qij}

p∑
i=1

ci(si)

s.t. si = qij , sj = qij , j ∈ Ni,∀i
(10)
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Let k be the iteration index and the generic ADMM solution of (10) con-
sists of updates in (12a)-(12d). Denote Lρ as the augmented Lagrangian of
optimization problem (10) given by:

Lρ(si,qij ,yij , zij) =

p∑
i=1

{
ci(si) +

∑
j∈Ni

{yTij(si − qij)+

zTij(sj − qij) +
ρ

2
‖si − qij‖22 +

ρ

2
‖sj − qij‖22}

} (11)

where ρ > 0 is a predefined parameter. Note that yij and zij are the Lagrangian
multipliers for the first and second constraint in (10), respectively.

sk+1
i = arg min

{si}
Lρ(si,qkij ,ykij , zkij) (12a)

qk+1
ij = arg min

{qij}
Lρ(sk+1

i ,qij ,y
k
ij , z

k
ij) (12b)

yk+1
ij = ykij + ρ(sk+1

i − qk+1
ij ) (12c)

zk+1
ij = zkij + ρ(sk+1

j − qk+1
ij ) (12d)

(12a)-(12d) are over every node i and all its neighbours j ∈ Ni. Typically, each
node i updates its variables in (12a)-(12d) and performs only local communica-
tions with its immediate neighbors.

Notice that the generic ADMM in (12a)-(12d) requires sensor node i to
update variables {si,qij ,yij , zij} in each iteration, where each variable is the
same size as si. It is evidently a huge burden when the size of variable si is
large. Fortunately, a simplified efficient version for our problem can be obtained
as follows (only needs to transmit si for sensor i).

sk+1
i =

(
AT
i Ai + (2λ2i + 2ρ′|Ni|)I

)−1(
AT
i ti − uki + ρ′

(
|Ni|ski +

∑
j∈Ni

skj

))
(13a)

uk+1
i = uki + ρ′

(
|Ni|sk+1

i −
∑
j∈Ni

sk+1
j

)
(13b)

where |Ni| represents the cardinality of set Ni. ρ′ = ρ/2.

Proposition 1. For the problem in (10), the updates of (12a)-(12d) are equiv-
alent to (13a)-(13b).

Proof. See the detail derivation in Appendix A. Interested readers are referred
to [16] and [17] for similar derivations of the average consensus problem and the
sparse linear regression problem, respectively.

Note that obtaining sk+1
i in (13a) is solving a linear system of equations.

Theoretically, we can use any solver while considering the property of tomogra-
phy inversion problem, we adopt Bayesian Algebraic Reconstruction Technique
(BART) method in this paper [18].
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A closer look into (13a) and (13b) reveals that for node i, the information
needed is only the summation of its neighbors’s current estimates skj , j ∈ Ni.
Thus a natural implementation is that: in every iteration, all the nodes broad-
cast their current estimates to all their neighbors. After receiving all the neigh-
bors’s estimates, the sensor nodes can perform local updates in parallel. When
all the nodes finish their computations, they will broadcast their new estimates
again. The idea is summarized in Algorithm 1.

Algorithm 1 Synchronized Distributed Seismic Tomography Algo-
rithm (sDSTA)

1: Initialization: Input Ai, ti for sensor i, ∀i.
Initialize s0i = 0, u0

i = 0, ∀i. Set parameters ρ′ > 0 and λi, ∀i.
2: At each iteration k, (k = 0, 1, . . .), every sensor i broadcasts its ski to its

neighbors j ∈ Ni.
3: Once every head i receives all its neighbors’s estimates,

do the following local updating.
4: Compute uki based on (13b).
5: Update sk+1

i by running a finite number of BART iterations on (13a), with
initial value ski .

6: When all the nodes finish their primal updates sk+1
i ,∀i,

broadcast them to all neighbors, and repeats step 4-6
until certain stopping criterion has been satisfied.

Note that in step 5 of Algorithm 1, the minimization of ski is not carried out
exactly. In this situation, the proposed ADMM-based algorithm will still con-
verge provided certain mild conditions [19](pp.26). More importantly, solving
the minimization of ski to a very high accuracy, especially at the initial iterations,
may not be worthwhile. The reason is two-folds: first, at the initial iterations
(communications), node i has limited information (even no information) about
the whole structure due to its nature of local communication with immediate
neighbors. In this situation, the solution si may has a large deviation from the
true solution no matter how hard we try for the solution. In addition, solving
ski is an iterative process and might require a large amount of time (iterations)
to have a solution with very small relative error.

Regarding the communication cost of this proposed scheme, we see that it
depends on the network topology. The quantitive relation can be described in
Proposition 2.

Proposition 2. The communication cost of sDSTA for each node is o(k) and
the total communication cost is at most o(kN(N − 1)) (complete network) and
can be as low as o(2kN) (ring network) with respective to network size N and
communication round k.

In addition, the convergence speed of the proposed iterative method also de-
pends on the communication topology. In general, network with larger average
degree is expected to converge faster. We will discuss it in detail in Section 6.
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4 Asynchronous Distributed Seismic Tomogra-
phy Algorithm-aDSTA

We can recall that the updating in sDSTA requires each sensor node to wait until
receiving the solution of its slowest neighbor. While in some cases, it might be
desirable to update with less coordination and in an asynchronous fashion such
that every node can independently determine its own actions. In this section,
we provide a solution methodology to address this problem.

4.1 Component 1: Adaptive Communication

One major motivation of this adaptive communication scheme is that: in sensor
network applications such as our distributed seismic tomography, communica-
tion is the most energy-consuming component. In each iteration, sensor nodes
need to broadcast their local estimates si’s, which is a long vector (e.g. in real
data of Mount St.Helens, the size could be around 768,000). Thus it is highly
demanded to design a mechanism that can reduce the communication overhead
for the proposed distributed algorithm [20]. Specifically, assume a coordinator
exists requiring all the nodes to perform m iterations. However, some node
may already owns a good enough solution in less than m iterations, and its
value does not change much for several successive iterations. In this situation,
it would be a waste if these nodes continue to communicate and update. To
address this problem, an adaptive communication scheme is proposed in the
following context.

Each sensor node should be able to determine if it needs to communicate and
computing. In each iteration, each node will compute an index which depends
on the relative-updates. If this index is greater than a threshold, then the node
will stop grabbing updates of its neighbors.

Proposed Scheme: For sensor node i, if the following two conditions sat-
isfied:

‖ski − sk−1i ‖
‖sk−1i ‖

≤ ϕi and
∥∥uki − uk−1i

∥∥ ≤ µi (14)

then cti = cti + 1, otherwise cti = 0, where cti is a counter of node i and define
Ei as a threshold for node i. When cti > Ei, sensor node i stops updating, which
also means that it stops querying the estimates from its neighbors. When node i
stops updating, its neighbors can still ask for the latest value of node i to improve
their accuracy. Notice that in this situation, once node j obtains the last update
of node i, it will not need more transmissions from i since the estimate of node
i will not change. Note that the stopping criterion (14) is different from those
of conventional ADMM methods where all the sensors shall stop computations
at the same time using a common stopping criteria and common primal and
dual tolerances. Stopping criteria (14) allows a sensor i to stop its computation
asynchronously and independently from other sensors. However, these criteria
themselves are insufficient for asynchronous implementation. Synchronization
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is still required for dual and primal variable updates at iteration k + 1 due to
their dependencies on values of k-th iteration.

Algorithm 2 Asynchronous Distributed Seismic Tomography Algo-
rithm (aDSTA): For sensor i

1: Initialization: Input Ai, ti.
Initialize s0i = 0, u0

i = 0, cti = 0. Set parameters ρ′ > 0, ϕi, µi, Ei and λi.
2: while criterion cti > Ei is not satisfied do
3: At new iteration k + 1, sensor i selects a neighbor j

according to the probability distribution in (15).
4: Sensor i contacts j to obtain j’s current value sj .
5: Compute uki based on (13b) with replacing∑

j∈Ni

sj by |Ni| · sj .

6: Update sk+1
i by running a finite number of BART iterations on (35) with

replacing
∑
j∈Ni

sj by |Ni| · sj .

Use ski as the initial guess.
7: When sensor i finishes its primal updates sk+1

i , go to the following:
8: if criterion in (14) is satisfied then
9: cti = cti + 1

10: else
11: cti = 0
12: end if
13: end while

4.2 Component 2: Randomized Gossiping

To ensure full asynchronous implementation, the update of each node should be
performed in a randomized manner (otherwise there must be some predefined
order for updating). To this end, we use the doubly stochastic matrix, T ∈ Rp·p
for deciding the communications among sensors, where Tij is the probability
that a sensor i contacts another sensor j at any iteration. In a mathematical
form, we can have

Tij =

 h(dij), j ∈ Ni;
0, otherwise.

(15)

where dij , {j ∈ S : j ∈ Ni} is the distance between sensor i and j. S is the
set of sensors. h(·) is a function of dij . At iteration k + 1, sensor i may need
to ask only one of the neighbors j to send its estimate to i, unless i’s stopping
criteria are already satisfied, whereas sensor j can be contacted by more than
one sensor, even when both of j’s stopping criteria are satisfied.

Observation: In seismic tomography, each station has the ray information
coming from the events to the station. Thus, the closer the two stations are, the
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higher the similarity between their obtained ray information is. Based on this
observation, we can design the probability Tij in the following way: At each
iteration, for sensor i, the probability of selecting its neighbor sensor j is pro-
portional to their distance dij . Since we give more weight to the neighbor that
contributes more new information to sensor i, our proposed scheme is expected
to converge faster than the method selecting its neighbor with uniform distri-
bution (since the unequal weighting might help the sensors reach consensus).

The communication scheme for sensor i can be described as follows. When
the conditions in (14) are not satisfied, sensor i selects a neighbor j according
to the probability distribution of Tij . Upon contacting j, sensor i pulls the
current value of sj from j. During the computation, first update dual variable
ui by replacing

∑
j∈Ni

sj with |Ni|sj . Second, for updating primal variable si, in

the right side of (35), the item
∑
j∈Ni

sj is replaced by |Ni|sj . After updating the

primal variable si, sensor i will again do the similar randomized communication
process for receiving new sj . Sensor i repeats the above steps until conditions
in (14) are already satisfied. The algorithm with this proposed communication
scheme is illustrated in Algorithm 2.

Note that the set of neighbors Ni of sensor i in fact contains the sensors
within the communication range of node i. That is, if all the sensors except
sensor i in the network are within the communication range of sensor i, then
they are all considered as neighbors of sensor i.

5 Convergence Analysis of sDSTA and aDSTA

Convergence rate is a critical factor in designing our proposed methods since
faster convergence means less communication rounds and more bandwidth sav-
ing. In this section, we exploit markov chain and spectral theory to derive
the convergence speed of sDSTA and aDSTA. We find that both methods can
achieve linear convergence rate in theory.

Theorem 1. The proposed sDSTA and aDSTA methods converge to an opti-
mal solution at a linear rate O(αk) for some α < 1, in terms of the per-node
communications k.

In the following section, we will discuss in detail the proof of Theorem 1
in the convergence analysis. Our analysis tool is similar to that in [16] [III.A]
where it considers the problem of average consensus, which is different from
our seismic tomography problem defined in (5). The attack plan is construct a
linear system capturing the dynamics of the solution and utilize the properties of
markov chain (described in Lemma 1 and 2) to obtain the convergence rate [21].

5.1 Convergence Rate Analysis

In order to obtain the convergence rate of proposed aDSTA framework, The
first step is to describe the linear systems described in aDSTA (we will see that
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sDSTA is a special case under this framework). To this end, we first focus on
the state update for sensor i.

Recall that in aDSTA, the original updating equation for sk+1
i in (35) is mod-

ified by replacing
∑
j∈Ni

sj with |Ni| · sj , for some random neighbor j. According

to the distribution in (15), the expected value of |Ni| · sj is:

|Ni| ·
∑
j∈Ni

Tijsj (16)

At this point, we can rewrite the updating of sk+1
i in aDSTA as follows.

(
AT
i Ai + (2λ2i + 2ρ′|Ni|)I

)
sk+1
i − ρ′|Ni|ski

− ρ′|Ni| ·
{ ∑
j∈Ni

Tijs
k
j

}
+ uki −AT

i ti = 0
(17)

The updating rule for ski can be obtained accordingly:

(
AT
i Ai + (2λ2i + 2ρ′|Ni|)I

)
ski − ρ′|Ni|sk−1i

− ρ′|Ni| ·
{ ∑
j∈Ni

Tijs
k−1
j

}
+ uk−1i −AT

i ti = 0
(18)

Also, (13b) can be rewritten as:

uk+1
i = uki + ρ′|Ni|sk+1

i − ρ′|Ni ·
{ ∑
j∈Ni

Tijs
k+1
j

}
(19)

Combining the previous three equations (17)-(19) yields:

(
AT
i Ai + (2λ2i + 2ρ′|Ni|)I

)
sk+1
i =(

AT
i Ai + (2λ2i + 2ρ′|Ni|)I

)
ski + 2ρ′|Ni| ·

{ ∑
j∈Ni

Tijs
k
j

}

− ρ′|Ni|sk−1i − ρ′|Ni| ·
{ ∑
j∈Ni

Tijs
k−1
j

} (20)

In a clearer form, the state update for sensor i can be expressed as:

sk+1
i = ski + 2ρ′|Ni| ·

(
AT
i Ai + (2λ2i + 2ρ′|Ni|)I

)−1
·{ ∑

j∈Ni

Tijs
k
j

}
− ρ′|Ni|

(
AT
i Ai + (2λ2i + 2ρ′|Ni|)I

)−1
sk−1i

− ρ′|Ni| ·
(
AT
i Ai + (2λ2i + 2ρ′|Ni|)I

)−1{ ∑
j∈Ni

Tijs
k−1
j

} (21)
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Now the matrix form for the linear system in aDSTA is:

E
[
vk+1

]
= E

[
M
]
· vk (22)

M =

 F G

I 0

 (23)

where F, G, I and 0 are all p × p dimensional block matrices respectively.

vk+1 =
[
s̄k+1, s̄k

]T
, where s̄k stacks all the sensor solutions at iteration k. For

notation convenience, we drop E
[
·
]

in (24) in the later context.
Regarding matrix F, the entry Fii = I and entry (i, j) is: Fij = 2TijPi.

With respect to matrix G, we have Gii = −Pi, Gij = −TijPi, where Pi =

ρ′|Ni|
(
AT
i Ai + (2λ2i + 2ρ′|Ni|)I

)−1
.

The state update (24) is valid for k > 0. Notice that in aDSTA we initialize
s0i = 0,u0

i = 0,∀i. By plugging in these initial conditions into (17), it is shown

that s1i =
(
AT
i Ai + (2λ2i + 2ρ′|Ni|)I

)−1
AT
i ti.

Thus the initial state vector v1 can be expressed as:

v1 =
[
R1, · · · ,Rp,0, · · · ,0

]T
(24)

where Ri =
(
AT
i Ai + (2λ2i + 2ρ′|Ni|)I

)−1
AT
i ti.

Before approaching our final claim, we state two properties of matrix M,
which will help derive the convergence rate of proposed algorithms.

Lemma 1. Matrix M has an eigenvalue equals 1.

Proof. See details in Appendix B.

Lemma 2. There exists a selection of value ρ′ and matrix T such that the
second largest eigenvalue of matrix M is smaller than 1.

Proof. See details in Appendix C.

Since the state transition matrix M has the two above properties, based on
the classical convergence analysis in [21], the convergence rate can be obtained
as:

‖vk+1 − v∞‖2 6 Cσk−J+1
2 (25)

where C is a constant, J is the size of the largest Jordan block of M. σ2 denotes
the second largest eigenvalue of matrix M. Theorem 1 is thus verified.

Observation: Recall that in (16), if we assign the probability Tij in a
uniform distributed manner such that:

Tij =
1

|Ni|
(26)
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Then we have,

|Ni| ·
∑
j∈Ni

Tijsj =
∑
j∈Ni

sj (27)

This implies that in this case the convergence rate of aDSTA is the same as
sDSTA in expectation.

Considering the convergence rate in (25), we see that the second largest
eigenvalue of matrix M is an important factor, which depends on the value of
ρ′ and the selection of matrix T. In fact, besides our T matrix selection rule in
III-B (given a certain feasible value ρ′), another strategy is to minimize σ2 by
solving the following optimization problem (akin to the fastest mixing Markov
chain problem [22]):

minimize
t,T

t

subject to − tI �M(T)−M∞ � tI
(28)

Here M(T) indicates the transition matrix M is a function of T. M∞ is a
limiting point of M. The symbol � in A � B means matrix B−A is positive
semidefinite.

6 Performance Evaluation

In this section, we evaluate the performance and characteristics of sDSTA and
aDSTA respectively. Our experiments are performed through MATLAB and
network emulators [23]. In the performance study, both synthetic and real
seismic imaging data sets are tested.
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Figure 3: Convergence behavior of sDSTA.

6.1 Synthetic Data (2-D Model)

The performance analysis here is based on the data set generated using code
in [24]. We create a 2-D seismic tomography test problem with an N ·N domain,

14



5 10 15 20 25 30

5

10

15

20

25

30

(a) Groud truth

5 10 15 20 25 30

5

10

15

20

25

30

(b) Centralized

5 10 15 20 25 30

5

10

15

20

25

30

(c) Complete network

5 10 15 20 25 30

5

10

15

20

25

30

(d) Ring network

Figure 4: Seismic Tomography Comparison (noisy data). Centralized solution
in (b) is obtained by running 50 iterations of BART. (c) is the tomography in
Node 1 after 50 message communications assumed in a complete network. (d)
is Node 1’s tomography after 100 message communications assumed in a ring
network.

using n sources located on the right boundary and p receivers (seismographs)
scattered along the left and top boundary. The rays are transmitted from each
source to each receiver. We know that the regularization parameter λ depends
on the application and data sets, which means for specific scenario, λ is chosen
based on the understanding and knowledge of the application. For simplicity,
we fix λ2 = 1 and λ2i = 1/p in our experiments. The parameter ρ′ is set to be
0.5.

6.1.1 Convergence behavior of sDSTA

We first study the performance of sDSTA with a case that {N = 16 (tomography
resolution is 16 × 16), n = 64, p = 32}. The associated communicate network
is a complete network (every node can communicate with all the other nodes)
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Figure 5: sDSTA vs aDSTA. (a) is the relative error plot. (b) shows the objective
value curves. (c) & (d) are tomography results.

and there is no noise in the data. Note that in this scenario, the size of matrix
A is 2048× 256 and the size of each sub-matrix Ai is 64× 256.

In Figure 3, we plot the error (measured by ‖s−st‖2, st refers to the ground
truth) and residual (measured by ‖As − t‖2) for sensor 1 - sensor 8 (first 8
nodes) in the system. It shows that these 8 nodes finally reach consensus after
around 25 iterations. It is worth noting that one iteration here means one
message communication for every node. For the seismic tomography application
investigated in this paper, our key concern is to find a communication efficient
algorithm since in this problem communication for each node is much more
expensive than computation within each node.

6.1.2 Tomography results of sDSTA

Now we consider a larger data size model with {N = 32 (tomography resolution
is 32 · 32), n = 128, p = 64}. A 5% gaussian noise is added into data vector t.
The tomography results are depicted in Figure 4. Since noise is included, both
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centralized and sDSTA results are less accurate comparing to the noiseless case.
Nevertheless, the outline of the fault zone (the brown part in (a)) is almost
recovered. Another interesting point is that when connectivity ratio of the com-
munication network is low (as the ring network in (d)), more communications
among the neighbors are required in order to achieve similar results as the high
connectivity ratio ones (e.g. (c)). This validates our claim in the last paragraph
of Section 3.3.

6.1.3 Performance comparison: sDSTA vs aDSTA.

We study a case with {N = 32, n = 256, p = 128}. Noise level is the same
as the previous example. A random communication network is created and on
average each sensor node has only 3 neighbors. This setting is to emulate the
situation in real that the sensor network is widely spread in the field to cover
a large area and for each sensor node, there are very few number of nodes are
within its communication range.

In Figure 5, we compare the performance of two proposed algorithms sD-
STA and aDSTA. In particular, though the tomography is a bit worse, the
convergence speed of aDSTA is shown to be close to sDSTA (in (a)-(b)). This
observation is conform to the theoretical analysis in Section 5.2. In fact, if the
application has a base station or a coordinator, and is not very real-time sensi-
tive, synchronized-based sDSTA will meet the requirement. In other situations,
aDSTA might be more suitable.

Remark 1. We conclude that aDSTA can provide comparable tomography so-
lution with sDSTA and has less communication and coordination.

In the later context, we will focus on the performance evaluations of aDSTA.
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Figure 6: Performance of aDSTA with different strategies of choosing probability
matrix T.
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6.1.4 Impact of probability matrix T on aDSTA

It is also interesting to study the effect of using different selection rules for
probability matrix T. In Figure 6, “Proposed mix” refers to the rule suggested
in Section 4.2 (eq. (15)) and “SDP-based mix” is the method described in (28).
For each method, we run 5 realizations of aDSTA and average the solutions.
We find that “SDP-based mix” is slightly better than “Proposed mix” in terms
of convergence rate. Nevertheless, the distinction between them is not that
obvious. In addition, solving (28) might need optimization solver installed in
the nodes. In short, if solving (28) is not available or wanted in the application,
the simple “Proposed mix” can be a good alternative.
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Figure 7: Convergence performance comparison: aDSTA, DGD, EXTRA, D-
NG.

6.1.5 Compare aDSTA with other methods in the literature

We compare aDSTA with three recently developed general distributed opti-
mization algorithms: Decentralized Gradient Descent (DGD) [11], EXTRA [12]
and D-NG method [13]. All of these three methods are tested using hand-
tuned optimal parameters, respectively. Figure 7 demonstrates that aDSTA
(blue curve) significantly outperforms the other methods. Recall that in Figure
5(a)-5(b), sDSTA is very close to aDSTA, which insinuates that sDSTA is also
faster than DGD, EXTRA and D-NG. This comparison conveys a message that
the proposed sDSTA and aDSTA algorithms might be more suitable for our
communication-sensitive distributed seismic tomography.

6.2 Synthetic Data (3-D Model)

We follow the routine in [2] to generate a similar synthetic 3-D model data set
and use the same code in [2] for visualizing our solutions in Fig 8 and 9. The
synthetic model consists of a magma chamber (low velocity area) in a 10 km3
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cube. 100 stations are randomly distributed on top of the cube and form a
network. To construct the matrix A and vector b, 650 events are generated and
we compute the travel times from every event to each node based on the ground
truth, and send the event location and travel time to corresponding node with
white Gaussian noise.
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(c) aDSTA

Figure 8: Vertical slices of tomography model. The ground truth in (a) is
generated by simulating seismic data on resolution 1283 and 650 events are
used. Centralized and aDSTA methods are simulated with resolution 323 and
400 events.
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Figure 9: Effect of packet loss in aDSTA.

6.2.1 Comparison of tomography results

Figure 8 demonstrates that aDSTA is close to centralized method in tomography
quality. Another interesting point is that aDSTA almost reconstructs the surface
of magma even in a much lower resolution comparing to the ground truth.
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6.2.2 Data loss-tolerance of aDSTA

We evaluate the robustness of aDSTA in Figure 9. Two packet loss ratios 10%
and 30% are tested in the emulator. We can find that even for 30% packet
loss ratio, the distinction between the result without packet loss is relatively
small. This validates the robustness of aDSTA in dealing with severe packet
loss situations.

6.3 Real Data (3-D Model)

To study the performance of the two proposed algorithms in realistic scenarios,
we use ten years (2001-2011) real seismic event data of Mount St. Helens in
Washington, USA for the experiment. The data were collected from 78 stations
and a 3-D velocity model is used, which assumes the velocity in the volcano
changes along x-axis, y-axis and depth. Notice that unlike synthetic data used
in previous section, there is no ground truth in this real data scenario. In other
words, the true velocity structure of volcano Mount St. Helens is currently
unknown. Hence we focus on the comparison of the proposed methods with
centralized processing scheme, which can be seen as a benchmark that fully
utilize the data available.

6.3.1 Comparison of tomography results in real data

Figure 10 illustrates vertical slices of tomography model with various depths.
The range of x-axis is from 65 km to 95 km, and the range of y-axis is from 80
km to 120 km. The underlying resolution is 160× 200× 24. The color in Figure
10 represents the relative velocity perturbation in specific location. More red
means larger (negative) value of perturbation. More blue means larger (positive)
value of perturbation. It is shown in Figure 10 that both sDSTA and aDSTA
(at the solution of 300 iterations) can effectively invert the tomography model
close to the benchmark (centralized algorithm) using real data.

6.3.2 Communication cost evaluation in real data

Figure 11 visualizes the communication cost characteristics of aDSTA. Figure
11(a) shows that sDSTA and aDSTA need much less amount of communication
than the centralized method and aDSTA is more efficient than sDSTA. Figure
11(b) illustrates the communication distribution of aDSTA on each node with a
heat map. We can see that, unlike synchronized sDSTA, in aDSTA some nodes
stop communication earlier than others, which saves the bandwidth. Second,
the cost disparities between several high cost nodes and the lowest one are
around 18%, which implies that the communication load is still balanced over
the network.
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(a) Centralized (b) sDSTA (c) aDSTA

(d) Centralized (e) sDSTA (f) aDSTA

(g) Centralized (h) sDSTA (i) aDSTA

Figure 10: Real data tomography inversion results comparison. Figure (a)-(c)
are results of layer depth 0.9 km. Figure (d)-(f) are results of layer depth 2.9
km. Figure (g)-(i) are results of layer depth 4.9 km.

7 Discussion

There are two potential benefits of using our proposed algorithms for seismic
tomographic inversion problem. First, both sDSTA and aDSTA can be easily
modified to accommodate problems with constraints on solution s. For example,
we can add constraint that the value of velocity perturbation is within some
range (need knowledge from geophysics community). The solution in this case
might be better in revealing the real situation within the volcano. Second, they
can deal with different regularizations (as long as it is convex). For instance, an
efficient distributed algorithm can still be derived for the `1-norm regularized
inversion problem in [25].
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Figure 11: Communication cost comparison.

8 Conclusion

This work opens a relatively under-exploited area where seismic tomography
inversion is done over a sensor network in a distributed, decentralized fashion.
This paper presents novel designs for in-network travel-time seismic imaging in
cyber-physical sensor systems under synchronous and asynchronous communi-
cation scenarios. The performance and features are verified with experiments
in both synthetic and real data sets through network emulators. The merits of
the proposed methods elucidate that they are promising solutions for real-time
in-situ seismic tomography in the near future.

Appendix A Derivation of (13a)-(13b)

The goal here is to reduce the original ADMM steps (12a)-(12d) to (13a)-(13b).
To this end, we first focus on (12b). A closer look reveals that a closed-form
solution of (12b) can be obtained as follows:

qk+1
ij =

1

2ρ

{
ρ(sk+1

i + sk+1
j ) + (ykij + zkij)

}
(29)

Adding both sides of (12c) and (12d) yields:

yk+1
ij + zk+1

ij = (ykij + zkij) + ρ(sk+1
i + sk+1

j )− 2ρ · qk+1
ij (30)

After plugging (29) into the right side of (30), we obtain the following result:

yk+1
ij + zk+1

ij = 0 (31)

Consequently, by plugging (31) back into (29), we have

qk+1
ij =

1

2

(
sk+1
i + sk+1

j

)
(32)
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We now re-express (12a) removing all the independent items with respect to
variable si:

sk+1
i = arg min

{si}

{
ci(si) +

∑
j∈Ni

(ykij)
T si +

ρ

2

∑
j∈Ni

‖si − qkij)‖22
}

= arg min
{si}

{
ci(si) +

∑
j∈Ni

(ykij)
T si +

ρ

2

∑
j∈Ni

‖si −
1

2
(ski + skj )‖22

} (33)

Let uki =
∑
j∈Ni

(ykij). Since function ci is differentiable with respect to si, (33) is

equivalent to solving the following equation:

∇ci(sk+1
i ) + uki + 2ρ|Ni|sk+1

i − ρ′
(
|Ni|ski +

∑
j∈Ni

skj

)
= 0 (34)

where ∇ denotes the gradient of the function. Plugging ci(s
k+1
i ) = 1

2‖Ais
k+1
i −

ti‖22 + λ2i ‖s
k+1
i ‖22 into (34) yields the following equation, which becomes (13a)

immediately.(
AT
i Ai + (2λ2i + 2ρ′|Ni|)I

)
sk+1
i = AT

i ti − uki + ρ′
(
|Ni|ski +

∑
j∈Ni

skj

)
(35)

Now we need to derive the updating equation for ui. Substituting (32) into
(12c), we can have (consider uk+1

i ):

uk+1
i =

∑
j∈Ni

(yk+1
ij )

=

{ ∑
j∈Ni

(ykij)

}
+
ρ

2

(
|Ni|sk+1

i −
∑
j∈Ni

sk+1
j

)
= uki +

ρ

2

(
|Ni|sk+1

i −
∑
j∈Ni

sk+1
j

) (36)

Define ρ′ = ρ/2, then (13b) follows.

Appendix B Proof of Lemma 1

First, in the second row of matrix M, the summation is I, thus in the lower part,
the summation of every row is 1. Now we look at the upper part, considering the
facts in about matrices F and G, the summation of i-th row can be expressed
as:

Fii + Gii +
∑
j∈Ni

Fij +
∑
j∈Ni

Gij

=I−Pi +
∑
j∈Ni

2TijPi −
∑
j∈Ni

Tij ·Pi

=I−Pi +
∑
j∈Ni

TijPi

(37)
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Recall that matrix T is defined as a doubly stochastic matrix yielding
∑
j∈Ni

Tij =

1. Hence the above equation equals I. Consequently, both the upper and lower
part of matrix M satisfies the condition that the summation of each row is 1.
Based on this fact, it is straightforward to show Lemma 1 (the corresponding
eigenvector contains scaling factor for each element in a row).

Appendix C Proof of Lemma 2

Based on Lemma 1, we can construct the corresponding left and right eigen-
vectors denoted by l1v and r1v, respectively (also scale the eigenvectors such that
l1vr

1
v=1). Next, we need to find a limiting point of the state transition matrix.

From the definition, we can have l1vM = l1v,Mr1v = r1v. Consequently,

lim
k→∞

Mk = r1vl
1
v

The above fact implies that r1vl
1
v = M∞ is a limiting point [21]. Akin to the

techniques used in [26], it can be shown that once the following condition is
satisfied, all the other eigenvalues of matrix M is less than 1. Thus Lemma 2 is
verified.

‖M−M∞‖2 < 1 (38)

Here ‖ · ‖2 is the spectral norm of a matrix.
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