Decimal fractions - tenths, hundredths and thousandths

Common fractions and decimal fractions are related as they both show parts of a whole. In common fractions, we divide a whole into parts such as halves or sixths.
In decimal fractions, the whole is partitioned using the base 10 system - into tenths, then hundredths, then thousandths and so on.
We use a decimal point after the unit to indicate the end of whole numbers: 6.42
If the number has no whole numbers, we use a zero to make sure we don't miss the decimal point: 0.42

1 Divide these wholes into tenths and shade the specified amounts. Write each as a decimal fraction:
a

b

c

2 Now divide these wholes into hundredths and shade the specified amounts. Write each as a decimal fraction:
a

61
100

b

c

55 100

$0 \quad$	

(3) Express these as decimal fractions:
a 6 tenths, 7 hundredths, 4 thousandths

b $\frac{432}{1000}$	$0 \cdot$	

c 4 tenths, 9 hundredths, 3 thousandths

d $\frac{589}{1000}$	0.	

e 0 tenths, 2 hundredths, 9 thousandths

g 4 thousandths

h $\frac{1000}{1000}$| \bullet | | |
| :--- | :--- | :--- |

Decimal fractions - reading and writing decimals

When we write decimals we follow this place order:

Thousands	Hundreds	Tens	Units	Tenths	Hundredths	Thousandths
			2	2	5	6

Numbers before the decimal point are whole numbers.
Numbers after the decimal point are parts of a whole number.
The further the digit is to the left in the number, the greater its value. The further it is to the right, the smaller its value.
(1) What is the value of the digit in bold? Tick the correct column:

		$\begin{aligned} & \text { 응 } \\ & \frac{0}{0} \\ & 0 \\ & \hline \\ & \hline \end{aligned}$		$\frac{2}{5}$			
a 5.892							
b 13.05							
c 763.22							
d 89.021							
e 100.001							
f 560.45							
g 312.956							

2 Read each number and write it as a decimal:
a four units, one hundred and twenty two thousandths \qquad
b one hundred and eleven, and sixty five hundredths \qquad
c three hundred, and forty two thousandths \qquad
d four thousand, and twelve hundredths
e twelve, and 13 thousandths
f two hundred and thirteen, and forty-three hundredths \qquad

Watch out for the commas! They indicate the end of whole numbers.

3 These answers are all close but incorrect. Write the correct answers:
a twenty seven tenths is written as 0.27
b forty eight hundredths is written as 0.048
c 9000 thousandths is written as 0.009
d eleven and 12 hundredths is written as 11.012
e 167 hundredths is written as 16.7
No it's not, it's written as \square
No it's not, it's written as \square
No it's not, it's written as \square
No it's not, it's written as
No it's not, it's written as

Decimal fractions - comparing and ordering decimals

We need to carefully consider the place value of digits when ordering and comparing decimals.

(1) 6A has a very cool teacher who decides to harness, not ban, the class' current obsession with pea shooting. After a week of intense training, a shootoff occurs. The results for the top ten shooters are tabled on the right.

	Name	Distance
A	Spitter Macgee	3.34 m
B	Did You See That One Big-noter	3.1 m
C	Secret-ingredient Spitski	3.15 m
D	Dead-eye Jones	3.63 m
E	The Long Distance Shooter	4.01 m
F	Sally Straw	3.36 m
G	Technique Tezza	3.96 m
H	Lone Shooter	4.04 m
I	Double Or Nothing Danielle	4.05 m
J	Shoot Dog	3.94 m

Place the students on the number line. The first one has been done for you.

2 Use the above information to answer the following questions:
a Who shot the furthest on the day? \qquad
b Whose shot was the shortest? \qquad
c Which students' shots were 1 hundredth of a metre apart?
d What was the difference between the shots of Shoot Dog and Spitter Macgee? \qquad
e Do you think you could beat this? Something to try at home perhaps? Even 6A's teacher eventually had enough of the pea shooting.

Decimal fractions - renaming decimals

We can express the same decimal fraction in different ways. This shows 138 hundredths.
We can also express this as 1 unit, 3 tenths and 8 hundredths or 13 tenths and 8 hundredths or 1 unit and 38 hundredths.

1 Rename these fractions:
a 37 hundredths is also \square tenths $+\square$ hundredths
b 53 hundredths is also \square tenths $+\square$ hundredths
c 99 hundredths is also \square tenths $+\square$ hundredths
d 6 tenths and 3 hundredths is also \square hundredths
e 4 tenths and 9 hundredths is also \square hundredths
f 4 tenths, 9 hundredths and 8 thousandths is also \square thousandths
g 0 tenths, 5 hundredths and 8 thousandths is also \square thousandths

It may help to write these numbers in their decimal forms.

2 Now try these. Fill in the missing information:
a \qquad units $=$ \qquad tenths = \qquad 400 hundredths = \qquad thousandths
b \qquad units $=$ \qquad tenths $=$ \qquad hundredths = \qquad thousandths
c \qquad units $=$ \qquad tenths $=$ \qquad 250 hundredths = \qquad thousandths
d \qquad units $=$ \qquad tenths $=$ \qquad hundredths = \qquad thousandths

THINK

3 Rename these numbers as many ways as you can. Use the abbreviation: H for hundredths, T for tenths and U for units:

$$
5.67
$$

2.52
9.81
\qquad

Decimal fractions - rounding

We often round decimals to a particular place value. We do this to make the numbers easier to work with.
Look at 2.685 . We can round this to the nearest whole number, tenth or hundredth.
Let's round it to the nearest tenth. To do this, we look at the number in the hundredths place.
This is 8 , which is closer to 10 than 1 , so we round the tenth up. The rounded number is now 2.7
(1) Round these numbers to the nearest tenth:
a 67.23
b 48.07 \qquad If the rounding number
is a 1 to 4 , it rounds down.
If it is 5 to 9 , it rounds up.
c 124.78 \qquad
d 90.14 \qquad
e 54.53 \qquad f 7.06 \qquad
(2) Now round these numbers to the nearest hundredth:
a 58.127 \qquad b 70.345 \qquad
c 45.007 \qquad
d 78.134 \qquad
e 89.036 \qquad f 36.231 \qquad

3 Use a calculator to perform the following operations. Round the answers to the nearest tenth:
a $132.4 \div 5=$ \qquad
b $178 \div 8=$ \qquad
c $125.3 \div 4=$ \qquad
d $223 \div 4=$ \qquad
e $12 \div 7=$ \qquad
f $123.52 \div 4=$
\qquad

4 Look at the following meal options.
a Round each price to the nearest dollar and total the estimated cost of each option below:

Choice 1								
Hamburger	$\$ 4.95$		Noodles with prawns	$\$ 7.95$		Choice 3		
Can of drink	$\$ 2.25$		Green tea	$\$ 0.95$		Salad roll	$\$ 5.15$	
Large chips	$\$ 1.15$		3 Crab cakes	$\$ 2.98$		Juice	$\$ 2.25$	
	Total			Total		Cookie	$\$ 1.95$	

b You have $\$ 10$. Circle the choices you can afford.

Decimal fractions - percentages

Percent comes from the Latin 'per centum' and means parts per hundred. It is expressed using the symbol \%.

Here, 60% has been shaded. This is the same as 60 hundredths.
$\frac{60}{100}=0.60=60 \%$
We commonly use percentages in sales -25% off everything TODAY ONLY;
 on tests - I got 85%; and when we are gathering and reporting on data

- 78% of people surveyed love chocolate.
(1) Fill in the missing values:
a

$\frac{60}{100}$	0.	$\%$

b

$\frac{30}{100}$	0.3	$\%$

c

d

f

-	0.75	$\%$

g

h

-	0.5	$\%$

$$
\begin{array}{|l|l|l|}
\hline \frac{45}{100} & 0 . & \% \\
\hline
\end{array}
$$

It is useful to know some common percentages such as $25 \%, 50 \%, 75 \%$ or 100%.

2 Shade the grids to show the following percentages:
a

$\frac{1}{4}$	0.	$\%$

b

$\frac{1}{2}$	0.	$\%$

c

3	0.	$\%$
4		

d

4		$\%$
4		

17

Decimal fractions - percentages

Not all percentage values are whole numbers between 1 and 100. We can have such things as 300% growth or percentages that contain decimals such as 3.5%.

3 Shade the grids to show the following percentages:
a

250\%

b

C

375\%

4 How would you show half a percent? Circle the option you think is correct. Discuss your choice with a partner. Do they agree?

Option B

5100 people were surveyed. They were asked to nominate their preferred way of eating vegetables. Shade the grids to show the survey results:
a 7% preferred their veggies boiled till they were all soggy and watery.

c 19.5% preferred their veggies raw.

b 43% preferred their veggies stir fried.
d 30.5% did not care how they were prepared because they weren't going to eat them anyway.

Fractions, Decimals and Percentages

Ask around ...

What to do

In this activity you are going to design a survey and then ask 100 people your questions. You will then find a way to communicate your results.

Work in a small group.

As a group, think about what information you are going to gather. Some things to consider might be:

- What kind of answers are you after?
- Will you provide options? How many? What if someone gives an answer you haven't included in your list? What if you get 100 different answers?
- Who is your target audience and when will you ask them? If you are surveying kids about their favourite ice cream flavours, asking at lunch times would be a good time. If you want adult responses, when is the best time to be able to talk to 100 adults?
- How will you record the answers?

Plan your survey and run it by your teacher. If it all looks good, conduct it.

What to do next

Use a pie graph to represent your information. You may use this model below or create your own using a spreadsheet program.

Getting ready

We have been using 100 grids to represent percentage, with each square representing 1%.

What to do

300 people

Problem 1

These 6 squares have a value of 36 .
a What is the value of 1 square?
b What is the value of the entire grid?
c If 50% of the grid is shaded, what value is shaded?

Problem 2

There are 140 convenience stores in Smallville.
a 40% of these stock your favourite Slurpee flavour. Use the grid to represent this information.
b How many stores sell your favourite flavour?
These grids are set up a little differently. Work with a partner to figure out what each square represents and then answer the questions.
\qquad
\qquad
\qquad
\qquad

Problem 3

a If this grid represents 300 people, what does each square represent?
b How many people are represented by ten squares?
c 60 of the 300 people like watching sports. Represent this on the grid in red.
d 225 people prefer playing sport to watching it. Represent this in green.

