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Abstract
We propose a novel method for fabricating 3D shapes with decorative knots, which are unique patterns created
by overlapping and tying thick cords and are an art form passed down since ancient times. Our proposed method
automatically computes and displays a route for connecting decorative knots successively in the discretized input
model. We introduce a new technique for converting the knotting process into a knitting-like procedure, which
removes restrictions on the actual manufacturing steps for a number of knots. After the route is generated, appropriate
types of decorative knots are selected that most closely imitate the detailed surface of the input model. Our rendering
results show that a user can create large-scale and complex 3D artwork that makes good use of the rich geometric
patterns of decorative knots, which will help and extend the fabrication possibilities in handmade contexts.

1 Introduction

Digital fabrication is the technology of shaping various structures of 2D or 3D objects based on digital data,
such as polygon mesh models, and the application of algorithms to design and control the structures through
computational methods. As a new application of digital design, this paper focuses on decorative knots [1],
which are a type of artwork comprising a series of unique patterns and have been passed down since ancient
times. Examples of decorative knots are shown in Figure 1. These knots are created by tying and crossing
thick cords of about 5–10 mm diameter to express various geometric patterns including motifs of flowers as
well as simple and complex patterns, mainly for display and ornamental use.

However, structures of decorative knots have thus far not been extended to construct 3D shapes. This is
because knotting (i.e., the process of tying knots) includes procedures to pass the cord through loops made
of other sections of the same cord such that a large structure with numerous knots requires a considerable
amount of time in the manufacturing step, where the remainder of the cord must be passed through every
loop in the knot. Because of this difficulty, there was no choice but to use very thin string, which is easier
to maneuver through a loop. For example, in lace tatting, we wind the thread of about 0.3–1 mm diameter
into a small lump. In knitting, on the other hand, string of about 1–5 mm diameter is used to create models
by continuously connecting stitches, which are the basic or unit elements of the models and are made simply
by hooking a part of the string (unlike a knot). Hence, the knitted fabric cannot express complex structures,
which require more than just consecutive rows of the simple stitch.

Figure 1 : Examples of decorative knots with various shapes.



Figure 2 : Pipeline of our method: 1© inputting a model, 2© generating a quad mesh, 3© finding
a polygonal path, 4© finding a knot route, 5© calculating displacement maps, and 6© applying
decorative knots.

Therefore, we propose a fully automatic pipeline for constructing large-scale 3D objects, as shown in
Figure 2. We first discretize the input model into mesh structures, then generate a path along which the knots
can be successively connected, and finally apply the rich structures of decorative knots. This is an innovative
approach to combining digital design and traditional handicraft to extend range of shapes possible.

2 Related Work

Various methods have been proposed in literature to support the fabrication of 3D objects in handmade
contexts. Beady [5] is a system that assists the design and construction of 3D beadwork, which is the art
of connecting beads together by wires, based on polygonal mesh structures that represent the whole model.
The structure of the problem is similar to that of ours with knots in that the user connects the elements (i.e., a
bead and knot, respectively) to create the whole model. However, they cannot be treated in the same manner
because knots should be arranged along the cord that they are made from.

In particular, fabrication using strings is drawing increasing attention. An interactive design tool for
authoring, simulating, and adjusting yarn-level patterns for knitted and woven cloths are proposed [9]. Stitch
meshing [12] is a proposal to construct arbitrary 3D shapes by knitting. It converts input models into quad-
dominant polygon mesh structures, each quad of which correspond to the smallest units of knitting. An ex-
tension called knittable stitch meshes [13] guarantees that the models designed with this method can actually
be produced by manual knitting. Similarly, our problem deals with the given models as meshed structures to
construct surfaces with decorative knots. However, these methods are inapplicable to our knotting problem
because the decorative knots are not always connected in the same direction as the knitting. Further, deco-
rative knots express their patterns as lumped units with definite sizes, whereas yarn-level knitting methods
treat the whole structure as a set of small and simple stitches.



3 Problem Settings

Representation of 3D Models: Quad Mesh
In order to construct surface shapes with finite collections of decorative knots, we deal with them as

structures made of discretized units of polygons [3]. Polygon meshes are suitable because we can use the
topological information of the mesh structure to reflect the relationships between adjacent pairs of polygons.
Of the available choices of polygons to subdivide the surface, we use quad faces so that we can easily connect
them from one to the next by passing the cord along the diagonal of each quad. In this paper, we call the
path for connecting quads as the polygon path. Further, we call the successive diagonal directions based on
the polygon path as the knot route along which decorative knots are appropriately arranged.

Structure of the Problem on Mesh: Graph Theory
Once the meshes are generated on the model surface, we can define an undirected graph in which a

node corresponds to each quad and an edge represents an adjacent relationship between the jointed nodes.
In graph theory, a graph in which any two vertices are connected by exactly one path is called a tree. In
this paper, if there are branching points in a tree and multiple routes extending from one node, we call each
extended route as a branch. If a branch consists of only one polygon, we call it a leaf. In our problems,
series of decorative knots must be connected by a tree that covers all of the nodes. The problem of finding
a path that visits all of the nodes exactly once is equivalent to the Hamiltonian path problem [2]. However,
determining whether such paths exist is known to be NP-complete [7]. Hence, we must define an approach
to finding the appropriate path without relying on the conventional path planning problem.

Technique for Successive Knotting: Double Knotting
As shown in Figure 3, there are two types among structures of decorative knots: a closed path, where

both the start and end point of the knot come at the same point, and structures whose end points extend in
different directions. For the latter case, knots cannot be always created continuously along one-stroke paths
because the direction of the cord depends on the type of the knot, which makes it difficult to connect knots
according to a certain rule.

Therefore, we propose a preprocessing step that we call double knotting. First, we select twice the
length of the cord that is required to make a knot with conventional techniques. Then, we fold the selected
part at its midpoint and treat it as a single cord when making a knot. This generates a virtual double-tracked
knot whose end point always comes back to the beginning point of the knot. In Figure 4, structures of the
Hachi-no-ji knot made according to both (a) conventional method and (b) double knotting are shown. In the
double-knotted structure, the exit side of the knot always comes to the entry side. Further, the processes of
passing the remaining length of a cord through a loop every time to make a new knot can be removed, which
used to be a problem when constructing large structures with thick cords.

Figure 3 : End points of knots
are sometimes at the same point
and sometimes extend in differ-
ent directions.

Figure 4 : Structures of the (a) conventional and (b) double knot-
ted Hachi-no-ji knot.



Figure 5 : Knot routes and corresponding decorative knots. The green areas are the bodies of
the knots, and the red areas are the loops generated during the double knotting. (a) All knots are
connected by the one-stroke path of the cord. (b) Even when a leaf (shown in blue) is inserted, the
additional knot does not affect the original route.

During the double-knotting process, a loop is generated at the points corresponding to the end of the
knot with conventional methods, as highlighted in orange in Figure 4. In our method, we use these loops
as the beginning points of the successive knot when connecting it to the already-generated one. As shown
in Figure 5(a), by passing the cord to generate the next knot inside the loop, we can successively generate
a new knot which is connected to the diagonal direction of each quad. At the same time, additional tension
of pulling the cord toward the outside of the knot is caused, which prevents the generated loop from coming
back towards the starting point of the knot and getting untied.

Constraints of a Route for Connecting Knots
Of the routes available to connect decorative knots, one-stroke paths with no branching points are the

most desirable because we can generate knots without deviating from the route. However, such paths are
not ensured to exist in arbitrary input models. Hence, we relaxed this restriction; as shown in Figure 5(b),
even if a polygon path has branches constructed of one polygon (i.e., a leaf), other parts of the route are
not affected by the existence of the additional suspended knot. Therefore, leaves are viable components.
However, branches of two or more polygons are not acceptable because we cannot return to the starting
point after generating the series of knots without influencing the connection to the next polygon.

4 Methods for Creating Models with Decorative Knots

Generating Quad Meshes
In order to create a model with decorative knots, our method converts the input model into quad meshes

by applying instant meshes [6], which is a robust and efficient method that converts a surface into a naturally
aligned mesh with high isotropy. The number of quads is determined based on the level of detail needed.
After the mesh is generated, we regard it as an undirected graph in which each node corresponds to a quad in
the mesh. We assign the structure of the decorative knot to each quad and solve the problem of appropriately
connecting the knots where the corners of the quads are shared.

Finding Polygon Paths
On the generated graph, in order to find a path that passes through all of the nodes exactly once, we

apply a type of greedy algorithm [4] instead of solving the Hamilton path problem. These algorithms choose
a path based on minimizing the local cost at each stage without worrying about the effects that these decisions



Figure 6 : (a) Spiral polygon path. (b1) Polygon path with a branch made of three polygons
(circled in orange). (b2) Corrected path: the branch is disassembled into three individual leaves.

may have in the future, which can be solved in polynomial time in many problems. Kruskal’s algorithm [8]
is one of the algorithms derived on the basis of this concept. It is a minimum spanning tree algorithm on a
weighted graph, which regards all nodes as a tree and repeatedly combines the trees with the smallest-weight
available edge up to a single spanning tree. In our problem, however, we cannot determine the order of the
selected edges of the graph solely from the information of local points because there are no weights on them.
Hence, we determine the order of connecting knots according to the following steps ( i )–(iv).

( i ) Picking a Starting Point and Generating a Spiral Polygon Path
To generate a polygon path, we pick one of the quads as the starting point of the search and then

repeatedly select a polygon on the right from among the available polygons as the direction of extension of
the path. This process connects the whole structure in a spiral path, as shown in Figure 6(a).

(ii) Generating Branches to Deal with Dead Ends
On drawing the spiral paths, if all the accessible polygons have already been passed, it is impossible

for the path to move any further because of the rule that no polygon must be traversed more than once. In
such cases, we leave the dead end as a branch or a leaf and search for the next available path according to
the spiral rule ( i ) from the point where the branch begins.

(iii) Disassembling Branches into Leaves
If the generated branch contains more than one polygon, it disturbs the connecting knots continuously.

Hence, we convert the branch into a structure made of multiple leaves. Figure 6(b1) is an example of a
polygon path, where there is a branch made of three polygons (circled in orange). In such cases, we generate
new leaves at the adjacent nodes and replace the branch with these leaves, as shown in Figure 6(b2). We
continue disassembling all the branches on a path, as long as this is possible.

(iv) Searching for the Best Path
In case the generated path has too many leaves, we pick up another polygon as the starting point and

repeat the processes of ( i )–(iii). These processes can be calculated in a very short time because they are
based on the fast greedy algorithm. After paths from all of the polygons are searched, we choose the best
path with the fewest leaves.

Converting the Polygon Path into the Knot Route
Based on the generated polygon path, we make a knot route, which shows the order and direction for

decorative knots to traverse in the fabrication process. We begin with the diagonal of the first polygon and
continuously extend the route so that the knots are successively connected; diagonal directions are selected
for each polygon, keeping the order of the polygon in the polygon path. Figure 2 3© and 4© respectively show
the polygon path and the corresponding knot route.



Figure 7 : Process of calculating a dis-
placement map. The brightness value
is proportional to the distance from the
mesh surface to the model surface.

Figure 8 : Displacement maps and corresponding knots.
(L to R) Hachi-no-ji knot, Kuni knot, and Awaji knot. Stan-
dard deviations of the brightness are 12, 30, and 52.

Finding Appropriate Decorative Knots
Finally, for each quad, we assign a decorative knot which reflects the patterns of the surface as much

as possible. For this purpose, we compute a displacement map, which is an image acquired by calculating
the brightness values at each point in proportion to the distances from the mesh surface to the surface of the
input model, as shown in Figure 7. Then, we choose the best decorative knot whose surface has a texture
closest to the input shape based on it. We select candidates for the assigned decorative knot from [11] and
then choose one among them for each quad; we set thresholds of the standard deviations of brightness in the
displacement map to classify images into three types according to the geometrical patterns on quads. We
basically use the Hachi-no-ji knot because it is plain and can fit into a wide range of patterns. For quads
whose standard deviations are a bit high, the Kuni knot, which has more uneven patterns, is selected. If the
standard deviation is especially high, the Awaji knot is selected, whose shape is the most convex. Figure 8
shows examples of the displacement maps and decorative knots that are assigned to each type.

5 Results of Rendered Artwork Models

Representative results of artwork models where the quads are replaced by the handmade decorative knot
images using computer renderings (Xeon Gold 5122 CPU @3.60GHz) are shown in Figure 9, as well as
in Figure 2 6©. Various 3D shapes including even topologically different ones can be produced. Based
on our method, a user can create a model both with high resolutions and with low polygon meshes. In

Figure 9 : Rendered results of (a) a trahedral block, and (b) a torus. Appropriate decorative knots
are assigned to each quad and detailed textures are expressed.



Figure 10 : (a) An input bunny model, (b) a rendered model with a low resolution, and (c) a
polygon path with a high resolution.

the latter case, the rich structures of decorative knots are especially important. For example, a model of a
bunny in Figure 10(a) is discretized into a low resolution model with about 150 quads and is rendered into
Figure 10(b), in which the front legs (circled in yellow) are appropriately expressed by the Awaji knot, whose
spherical shape highly imitates the details of the corresponding parts in the input model. Further, our method
can design the model with high resolution of more than 500 quads in a very short time (less than 10 seconds),
which is very helpful for both skilled creators and beginners because previously creating such large models
with complex structures was difficult to be considered.

6 Limitations and Future Work

There are some cases where our method cannot be smoothly applied. For example, in the process of dis-
cretizing input models into quad meshes, structures of narrow areas, like the ears of the bunny, are easily lost
especially when the resolution is low. Also, even if such structures are expressed with high resolution mod-
els, it is not always ensured that branches can be disassembled into leaves on the generated polygon path.
Actually, in the narrow region of the ears in Figure 10(c), no suitable paths were found without branches of
more than two polygons. This is because once the path extends from the body to the top end of the ears of
the bunny according to the spiral rule, there are no more available polygons remaining for the path to return
to the body area. However, such problems are not unique to our method. For example, the traditional process
of knitting a sweater is not all done continuously; the sleeves are usually knitted separately and then attached
to the torso to construct the whole shape. Similarly, we can work around the problem by dividing the input
model into parts in advance, applying our method to each divided part, and then assembling the parts. Hence,
this limitation is not a serious disadvantage.

In the future, it may be possible to generate a polygon mesh that is optimized to produce a knot route.
If the grid patterns of meshes are controlled interactively using the method like Boundary First Flattening
[10], we will be able to freely design the surface and selectively assign polygons to the area we want to
express with a specific decorative knot. Further, because we can easily pull the cord and stretch its shape
to increase the variety of geometric patterns, if the deformability of knots are taken into consideration when
an optimized route is generated, we will be able to fabricate models with more detailed expressions. In our
classification algorithm, we currently use only three types of decorative knots. However, it is possible to use
other types of knots to express more unique shapes of models. Such further extensions will lead to richer
artwork based on the combination of both experimental techniques and computational strategies.



7 Conclusion

In this paper, we proposed a new pipeline to automatically design and construct 3D shapes with successive
decorative knots. We first discretized input models into quad mesh structures and then determined routes of
connecting knots. In order to construct model surfaces with a single-stroke cord, we proposed the double
knotting technique, which converts the process of knotting into a knitting-like process to remove the difficulty
of connecting a large number of knots in the actual manufacturing steps. Also, we proposed a practical
algorithm of finding routes to smoothly tie knots, which makes it possible to connect the overall structure in a
viable way in polynomial time. We showed rendered results where knots with appropriate geometric patterns
were assigned to each quad, which demonstrate the possibilities of creating both a large-scale 3D artwork and
a model with detailed expression. This type of artwork is first realized by our method of applying decorative
knots to create 3D models with rich patterns on the surface and complex structures, which is important in
the sense that we combined both computational methods and traditional techniques to expand the available
range and possibilities of handmade artwork.
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