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Recently, convolutional neural networks have demonstrated excellent performance on various visual tasks, including the
classification of common two-dimensional images. In this paper, deep convolutional neural networks are employed to classify
hyperspectral images directly in spectral domain. More specifically, the architecture of the proposed classifier contains five layers
with weights which are the input layer, the convolutional layer, the max pooling layer, the full connection layer, and the output
layer. These five layers are implemented on each spectral signature to discriminate against others. Experimental results based on
several hyperspectral image data sets demonstrate that the proposed method can achieve better classification performance than
some traditional methods, such as support vector machines and the conventional deep learning-based methods.

1. Introduction

The hyperspectral imagery (HSI) [1] is acquired by remote
sensers, which are characterized in hundreds of observa-
tion channels with high spectral resolution. Taking advan-
tages of the rich spectral information, numerous traditional
classification methods, such as 𝑘-nearest-neighbors (𝑘-nn),
minimum distance, and logistic regression [2], have been
developed. Recently, some more effective feature extraction
methods as well as advanced classifiers were proposed, such
as spectral-spatial classification [3] and local Fisher discrim-
inant analysis [4]. In the current literatures, support vector
machine (SVM) [5, 6] has been viewed as an efficient and
stablemethod for hyperspectral classification tasks, especially
for the small training sample sizes. SVM seeks to separate
two-class data by learning an optimal decision hyperplane
which best separates the training samples in a kernel-
included high-dimensional feature space. Some extensions of
SVM in hyperspectral image classification were presented to
improve the classification performance [3, 7, 8].

Neural networks (NN), such as multilayer perceptron
(MLP) [9] and radial basis function (RBF) [10] neural net-
works, have already been investigated for classification of
remote sensing data. In [11], the authors proposed a semi-
supervised neural network framework for large-scale HSI
classification. Actually, in remote sensing classification tasks,
SVM is superior to the traditional NN in terms of classi-
fication accuracy as well as computational cost. In [12], a
deeper architecture of NN has been considered a powerful
model for classification, whose classification performance is
competitive to SVM.

Deep learning-based methods achieve promising perfor-
mance in many fields. In deep learning, the convolutional
neural networks (CNNs) [12] play a dominant role for pro-
cessing visual-related problems. CNNs are biologically-
inspired and multilayer classes of deep learning models that
use a single neural network trained end to end from raw
image pixel values to classifier outputs. The idea of CNNs
was firstly introduced in [13], improved in [14], and refined
and simplified in [15, 16]. With the large-scale sources
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of training data and efficient implementation on GPUs,
CNNs have recently outperformed some other conventional
methods, even human performance [17], on many vision-
related tasks, including image classification [18, 19], object
detection [20], scene labeling [21], house number digit
classification [22], and face recognition [23]. Besides vision
tasks, CNNs have been also applied to other areas, such as
speech recognition [24, 25]. The technique has been verified
as an effective class of models for understanding visual
image content, giving some state-of-the-art results on visual
image classification and other visual-related problems. In
[26], the authors presented DNN for HSI classification, in
which stacked autoencoders (SAEs) were employed to extract
discriminative features.

CNNs have been demonstrated to provide even better
classification performance than the traditional SVM classi-
fiers [27] and the conventional deep neural networks (DNNs)
[18] in visual-related area. However, since CNNs have been
only considered on visual-related problems, there are rare
literatures on the technique with multiple layers for HSI
classification. In this paper, we have found that CNNs can
be effectively employed to classify hyperspectral data after
building appropriate layer architecture. According to our
experiments, we observe that the typical CNNs, such as
LeNet-5 [14] with two convolutional layers, are actually not
applicable for hyperspectral data. Alternatively, we present a
simple but effective CNN architecture containing five layers
with weights for supervised HSI classification. Several exper-
iments demonstrate excellent performance of our proposed
method compared to the classic SVM and the conventional
deep learning architecture. As far as we know, it is the first
time to employ the CNN with multiple layers for HSI classi-
fication.

The paper is organized as follows. In Section 2, we give
a brief introduction to CNNs. In Section 3, the typical
CNN architecture and the corresponding training process
are presented. In Section 4, we experimentally compare the
performance of our method with SVM and some neural
networks with different architectures. Finally, we conclude by
summarizing our results in Section 5.

2. CNNs

CNNs represent feed-forward neural networks which consist
of various combinations of the convolutional layers, max
pooling layers, and fully connected layers and exploit spatially
local correlation by enforcing a local connectivity pattern
between neurons of adjacent layers. Convolutional layers
alternate with max pooling layers mimicking the nature of
complex and simple cells in mammalian visual cortex [28].
A CNN consists of one or more pairs of convolution andmax
pooling layers and finally ends with a fully connected neural
networks. A typical convolutional network architecture is
shown in Figure 1 [24].

In ordinary deep neural networks, a neuron is connected
to all neurons in the next layer. CNNs are different from
ordinary NN in that neurons in convolutional layer are only
sparsely connected to the neurons in the next layer, based
on their relative location. That is to say, in a fully connected
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Figure 1: A typical CNN architecture consisting of a convolutional
layer, a max pooling layer, and a fully connected layer.

DNNs, each hidden activation ℎ
𝑖
is computed by multiplying

the entire input V by weights W in that layer. However, in
CNNs, each hidden activation is computed by multiplying
a small local input against the weights W. The weights W
are then shared across the entire input space, as shown in
Figure 1. Neurons that belong to the same layer share the same
weights. Weight sharing is a critical principle in CNNs since
it helps reduce the total number of trainable parameters and
leads to more efficient training and more effective model. A
convolutional layer is usually followed by amax pooling layer.

Due to the replication of weights in a CNN, a feature may
be detected across the input data. If an input image is shifted,
the neuron detecting the feature is shifted as much. Pooling is
used to make the features invariant from the location, and it
summarizes the output of multiple neurons in convolutional
layers through a pooling function. Typical pooling function
is maximum. A max pooling function basically returns the
maximum value from the input. Max pooling partitions the
input data into a set of nonoverlapping windows and outputs
the maximum value for each subregion and reduces the
computational complexity for upper layers and provides a
form of translation invariance. To be used for classification,
the computation chain of a CNN ends in a fully connected
network that integrates information across all locations in all
the feature maps of the layer below.

Most of CNNs working in image recognition have the
lower layers composed to alternate convolutional and max
pooling layers, while the upper layers are fully connected
traditional MLP NNs. For example, LeNet-5 is such a CNN
architecture presented for handwritten digit recognition [14]
firstly and then it is successfully used for solving other visual-
related problems. However, LeNet-5 might not be directly
employed for HSI classification, especially for small-size data
sets, according to our experiments in Section 4. In this paper,
we will explore what is the suitable architecture and strategy
for CNN-based HSI classification.
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Figure 2: Spectral signatures of the 9 classes selected from University of Pavia data set with 103 channels/spectral bands.

3. CNN-Based HSI Classification

3.1. Applying CNNs to HSI Classification. The hierarchical
architecture of CNNs is gradually proved to be the most
efficient and successful way to learn visual representations.
The fundamental challenge in such visual tasks is to model
the intraclass appearance and shape variation of objects. The
hyperspectral data with hundreds of spectral channels can
be illustrated as 2D curves (1D array) as shown in Figure 2
(9 classes are selected from the University of Pavia data set).
We can see that the curve of each class has its own visual
shape which is different from other classes, although it is
relatively difficult to distinguish some classes with human eye
(e.g., gravel and self-blocking bricks). We know that CNNs
can achieve competitive and even better performance than
human being in some visual problems, and its capability
inspires us to study the possibility of applying CNNs for HSI
classification using the spectral signatures.

3.2. Architecture of the Proposed CNN Classifier. The CNN
varies in how the convolutional and max pooling layers
are realized and how the nets are trained. As illustrated in

C1: feature maps M2: feature maps OutputF3

Convolution
Max pooling Full connection Full connection

Input

Sharing same weights

1@n1 × 1 20@n2 × 1 20@n3 × 1 n4 n5

· · ·
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Figure 3:The architecture of the proposedCNNclassifier.The input
represents a pixel spectral vector, followed by a convolution layer
and a max pooling layer in turns to compute a set of 20 feature maps
classified with a fully connected network.

Figure 3, the net contains five layers with weights, including
the input layer, the convolutional layer C1, the max pooling
layer M2, the full connection layer F3, and the output layer.
Assuming 𝜃 represents all the trainable parameters (weight
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values), 𝜃 = {𝜃
𝑖
} and 𝑖 = 1, 2, 3, 4, where 𝜃

𝑖
is the parameter

set between the (𝑖 − 1)th and the 𝑖th layer.
In HSI, each HSI pixel sample can be regarded as a 2D

image whose height is equal to 1 (as 1D audio inputs in
speech recognition). Therefore, the size of the input layer is
just (𝑛

1
, 1), and 𝑛

1
is the number of bands. The first hidden

convolutional layer C1 filters the 𝑛
1
× 1 input data with 20

kernels of size 𝑘
1
×1. Layer C1 contains 20×𝑛

2
×1 nodes, and

𝑛
2
= 𝑛
1
− 𝑘
1
+ 1. There are 20 × (𝑘

1
+ 1) trainable parameters

between layer C1 and the input layer. The max pooling layer
M2 is the second hidden layer, and the kernel size is (𝑘

2
, 1).

Layer M2 contains 20 × 𝑛
3
× 1 nodes, and 𝑛

3
= 𝑛
2
/𝑘
2
.

There is no parameter in this layer. The fully connected layer
F3 has 𝑛

4
nodes and there are (20 × 𝑛

3
+ 1) × 𝑛

4
trainable

parameters between this layer and layer M2.The output layer
has 𝑛
5
nodes, and there are (𝑛

4
+ 1) × 𝑛

5
trainable parameters

between this layer and layer F3.Therefore, the architecture of
our proposed CNN classifier totally has 20 × (𝑘

1
+ 1) + (20 ×

𝑛
3
+ 1) × 𝑛

4
+ (𝑛
4
+ 1) × 𝑛

5
trainable parameters.

Classifying a specified HSI pixel requires the correspond-
ing CNN with the aforementioned parameters, where 𝑛

1
and

𝑛
5
are the spectral channel size and the number of output

classes of the data set, respectively. In our experiments, 𝑘
1
is

better to be ⌈𝑛
1
/9⌉, and 𝑛

2
= 𝑛
1
−𝑘
1
+1. 𝑛
3
can be any number

between 30 and 40, and 𝑘
2
= ⌈𝑛
2
/𝑛
3
⌉. 𝑛
4
is set to be 100.These

choices might not be the best but are effective for general HSI
data.

In our architecture, layer C1 and M2 can be viewed as a
trainable feature extractor to the input HSI data, and layer
F3 is a trainable classifier to the feature extractor. The output
of subsampling is the actual feature of the original data. In
our proposed CNN structure, 20 features can be extracted
from each original hyperspectral, and each feature has 𝑛

3

dimensions.
Our architecture has some similarities to architectures

that applied CNN for frequency domain signal in speech
recognition [24, 25]. We think it is caused by the similarity
between 1D input of speech spectrum and hyperspectral data.
Different from [24, 25], our network varies according to the
spectral channel size and the number of output classes of
input HSI data.

3.3. Training Strategies. Here, we introduce how to learn
the parameter space of the proposed CNN classifier. All the
trainable parameters in our CNN should be initialized to
be a random value between −0.05 and 0.05. The training
process contains two steps: forward propagation and back
propagation. The forward propagation aims to compute the
actual classification result of the input data with current
parameters. The back propagation is employed to update
the trainable parameters in order to make the discrepancy
between the actual classification output and the desired
classification output as small as possible.

3.3.1. Forward Propagation. Our (𝐿 + 1)-layer CNN network
(𝐿 = 4 in this work) consists of 𝑛

1
input units in layer

INPUT, 𝑛
5
output units in layer OUTPUT, and several so-

called hidden units in layers C2, M3, and F4. Assuming x
𝑖
is

the input of the 𝑖th layer and the output of the (𝑙 − 1)th layer,
then we can compute x

𝑖+1
as

x
𝑖+1

= 𝑓
𝑖
(u
𝑖
) , (1)

where

u
𝑖
= W𝑇
𝑖
x
𝑖
+ b
𝑖
, (2)

and W𝑇
𝑖
is a weight matrix of the 𝑖th layer acting on the

input data, and b
𝑖
is an additive bias vector for the 𝑖th

layer. 𝑓
𝑖
(⋅) is the activation function of the 𝑖th layer. In

our designed architecture, we choose the hyperbolic tangent
function tanh(u) as the activation function in layer C1 and
layer F3.The maximum function max(u) is used in layer M2.
Since the proposed CNN classifier is a multiclass classifier,
the output of layer F3 is fed to 𝑛

5
way softmax function

which produces a distribution over the 𝑛
5
class labels, and the

softmax regression model is defined as

y = 1

∑
𝑛
5
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. (3)

The output vector y = x
𝐿+1

of the layer OUTPUT denotes
the final probability of all the classes in the current iteration.

3.3.2. Back Propagation. In the back propagation stage, the
trainable parameters are updated by using the gradient
descent method. It is realized by minimizing a cost function
and computing the partial derivative of the cost functionwith
respect to each trainable parameter [29]. The loss function
used in this work is defined as

𝐽 (𝜃) = −
1

𝑚

𝑚

∑

𝑖=1

𝑛
5

∑

𝑗=1

1 {𝑗 = Y(𝑖)} log (y(𝑖)
𝑗
) , (4)

where 𝑚 is the number of training samples. Y is the desired
output. y(𝑖)

𝑗
is the 𝑗th value of the actual output y(𝑖) (see (3)) of

the 𝑖th training sample and is a vector whose size is 𝑛
5
. In the

desired output 𝑌(𝑖) of the 𝑖th sample, the probability value of
the labeled class is 1, and the probability values of other classes
are 0. 1{𝑗 = Y(𝑖)}means, if 𝑗 is equal to the desired label of the
𝑖th training sample, its value is 1; otherwise, its value is 0. We
add a minus sign to the front of 𝐽(𝜃) in order to make the
computation more convenient.

The derivative of the loss function with respect to u
𝑖
is

𝛿
𝑖
=

𝜕𝐽

𝜕u
𝑖

=
{

{

{

− (Y − y) ∘ 𝑓 (u
𝑖
) , 𝑖 = 𝐿

(W𝑇
𝑖
𝛿
𝑖+1
) ∘ 𝑓

(u
𝑖
) , 𝑖 < 𝐿,

(5)

where ∘ denotes element-wise multiplication. 𝑓(u
𝑖
) can be

easily represented as

𝑓

(u
𝑖
) =

{{{{

{{{{

{

(1 − 𝑓 (u
𝑖
)) ∘ (1 + 𝑓 (u

𝑖
)) , 𝑖 = 1, 3

null, 𝑖 = 2

𝑓 (u
𝑖
) ∘ (1 − 𝑓 (u

𝑖
)) , 𝑖 = 4.

(6)
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⊳ Constructing the CNNModel
function INITCNNMODEL (𝜃, [𝑛

1–5])
layerType = [convolution, max-pooling, fully-connected, fully-connected];
layerActivation = [tanh(), max(), tanh(), softmax()]
model = new Model();
for 𝑖 = 1 to 4 do
layer = new Layer();
layer.type = layerType[𝑖];
layer.inputSize = 𝑛

𝑖

layer.neurons = new Neuron [𝑛
𝑖+1
];

layer.params = 𝜃
𝑖
;

model.addLayer(layer);
end for
returnmodel;

end function
⊳ Training the CNNModel
Initialize learning rate 𝛼, number of max iteration ITERmax, min error ERRmin, training
batchs BATCHEStraining, bach size SIZEbatch, and so on;
Compute 𝑛

2
, 𝑛
3
, 𝑛
4
, 𝑘
1
, 𝑘
2
, according to 𝑛

1
and 𝑛

5
;

Generate random weights 𝜃 of the CNN;
cnnModel = InitCNNModel(𝜃, [𝑛

1–5]);
iter = 0; err = +inf;
while err > ERRmin and iter < ITERmax do
err = 0;
for bach = 1 to BATCHEStraining do
[∇
𝜃
𝐽(𝜃), 𝐽(𝜃)] = cnnModel.train (TrainingDatas, TrainingLabels), as (4) and (8);

Update 𝜃 using (7);
err = err + mean(𝐽(𝜃));

end for
err = err/BATCHEStraining;
iter++;

end while
Save parameters 𝜃 of the CNN;

Algorithm 1: Our CNN-based method.

Therefore, on each iteration, we would perform the update

𝜃 = 𝜃 − 𝛼 ⋅ ∇
𝜃
𝐽 (𝜃) (7)

for adjusting the trainable parameters, where 𝛼 is the learning
factor (𝛼 = 0.01 in our implementation), and

∇
𝜃
𝐽 (𝜃) = {

𝜕𝐽

𝜕𝜃
1

,
𝜕𝐽

𝜕𝜃
2

, . . . ,
𝜕𝐽

𝜕𝜃
𝐿

} . (8)

We know that 𝜃
𝑖
containsW

𝑖
and b

𝑖
, and

𝜕𝐽

𝜕𝜃
𝑖

= {
𝜕𝐽

𝜕W
𝑖

,
𝜕𝐽

𝜕b
𝑖

} , (9)

where

𝜕𝐽

𝜕W
𝑖

=
𝜕𝐽

𝜕u
𝑖

∘
𝜕u
𝑖

𝜕W
𝑖

=
𝜕𝐽

𝜕u
𝑖

∘ x
𝑖
= 𝛿
𝑖
∘ x
𝑖
,

𝜕𝐽

𝜕b
𝑖

=
𝜕𝐽

𝜕u
𝑖

∘
𝜕u
𝑖

𝜕b
𝑖

=
𝜕𝐽

𝜕u
𝑖

= 𝛿
𝑖
.

(10)

With an increasing number of training iteration, the
return of the cost function is smaller, which indicates that
the actual output is closer to the desired output.The iteration
stops when the discrepancy between them is small enough.
We use average sum of squares to represent the discrepancy.
Finally, the trained CNN is ready for HSI classification. The
summary of the proposed algorithm is shown in Algorithm 1.

3.4. Classification. Since the architecture and all correspond-
ing trainable parameters are specified, we can build the
CNN classifier and reload saved parameters for classifying
HSI data. The classification process is just like the forward
propagation step, in which we can compute the classification
result as (3).

4. Experiments

All the programs are implemented using Python language
and Theano [30] library. Theano is a Python library that
makes us easily define, optimize, and evaluate mathematical
expressions involvingmultidimensional arrays efficiently and
conveniently on GPUs. The results are generated on a PC
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Table 1: Number of training and test samples used in the Indian
Pines data set.

Number Class Training Test
1 Corn-notill 200 1228
2 Corn-mintill 200 630
3 Grass-pasture 200 283
4 Hay-windrowed 200 278
5 Soybean-notill 200 772
6 Soybean-mintill 200 2255
7 Soybean-clean 200 393
8 Woods 200 1065

Total 1600 6904

equipped with an Intel Core i7 with 2.8GHz and Nvidia
GeForce GTX 465 graphics card.

4.1.TheData Sets. Threehyperspectral data, including Indian
Pines, Salinas, and University of Pavia scenes, are employed
to evaluate the effectiveness of the proposed method. For
all the data, we randomly select 200 labeled pixels per class
for training and all other pixels in the ground truth map for
test. Development data are derived from the available training
data by further dividing them into training and testing
samples for tuning the parameters of the proposed CNN
classifier. Furthermore, each pixel is scaled to [−1.0, +1.0]

uniformly.
The Indian Pines data set was gathered by Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) sensor in
northwestern Indiana. There are 220 spectral channels in the
0.4 to 2.45 𝜇m region of the visible and infrared spectrum
with a spatial resolution of 20m. From the statistical view-
point, we discard some classes which only have few labeled
samples and select 8 classes for which the numbers of training
and testing samples are listed in Table 1.The layer parameters
of this data set in the proposed CNN classifier are set as
follows: 𝑛

1
= 220, 𝑘

1
= 24, 𝑛

2
= 197, 𝑘

2
= 5, 𝑛

3
= 40, 𝑛

4
=

100, and 𝑛
5
= 8, and the number of total trainable parameters

in the data set is 81408.
The second data employed was also collected by the

AVIRIS sensor, capturing an area over Salinas Valley,
California, with a spatial resolution of 3.7m. The image
comprises 512×217 pixels with 220 bands. It mainly contains
vegetables, bare soils, and vineyard fields (http://www.ehu.es/
ccwintco/index.php/Hyperspectral Remote Sensing Scenes).
There are also 16 different classes, and the numbers of training
and testing samples are listed in Table 2.The layer parameters
of this data set in our CNN are set to be 𝑛

1
= 224, 𝑘

1
= 24,

𝑛
2
= 201, 𝑘

2
= 5, 𝑛

3
= 40, 𝑛

4
= 100, and 𝑛

5
= 16, and the

number of total trainable parameters in the data set is 82216.
The University of Pavia data set was collected by the

Reflective Optics System Imaging Spectrometer (ROSIS)
sensor. The image scene, with a spatial coverage of 610 × 340

pixels covering the city of Pavia, Italy, was collected under
the HySens project managed by DLR (the German Aerospace
Agency). The data set has 103 spectral bands prior to water

Table 2: Number of training and test samples used in the Salinas
data set.

Number Class Training Test
1 Broccoli green weeds 1 200 1809
2 Broccoli green weeds 2 200 3526
3 Fallow 200 1776
4 Fallow rough plow 200 1194
5 Fallow smooth 200 2478
6 Stubble 200 3759
7 Celery 200 3379
8 Grapes untrained 200 11071
9 Soil vineyard develop 200 6003
10 Corn senesced green weeds 200 3078
11 Lettuce romaine, 4 wk 200 868
12 Lettuce romaine, 5 wk 200 1727
13 Lettuce romaine, 6 wk 200 716
14 Lettuce romaine, 7 wk 200 870
15 Vineyard untrained 200 7068
16 Vineyard vertical trellis 200 1607

Total 3200 50929

Table 3: Number of training and test samples used in University of
Pavia data set.

Number Class Training Test
1 Asphalt 200 6431
2 Meadows 200 18449
3 Gravel 200 1899
4 Trees 200 2864
5 Sheets 200 1145
6 Bare soil 200 4829
7 Bitumen 200 1130
8 Bricks 200 3482
9 Shadows 200 747

Total 1800 40976

band removal. It has a spectral coverage from 0.43 to 0.86 𝜇m
and a spatial resolution of 1.3m. Approximately 42776 labeled
pixels with 9 classes are from the ground truth map, and the
numbers of training and testing samples are shown in Table 3.
The layer parameters of this data set in our CNN are set to be
𝑛
1
= 103, 𝑘

1
= 11, 𝑛

2
= 93, 𝑘

2
= 3, 𝑛

3
= 30, 𝑛

4
= 100, and

𝑛
5
= 9, and the number of total trainable parameters in the

data set is 61249.

4.2. Results and Comparisons. Table 4 provides the com-
parison of classification performance between the pro-
posed method and the traditional SVM classifier. SVM
with RBF kernel is implemented using the libsvm package
(http://www.csie.ntu.edu.tw/∼cjlin/libsvm); cross validation
is also employed to determine the related parameters, and
all optimal ones are used in following experiments. It is
obvious that our proposed method has better performance
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Corn-notill Corn-mintill Grass-pasture
Soybean-notill Soybean-mintill Soybean-clean Woods

Hay-windrowed

Figure 4: RGB composition maps resulting from classification for the Indian Pines data set. From left to right: ground truth, RBF-SVM, and
the proposed method.

Fallow
Fallow rough plow
Fallow smooth
Stubble
Celery
Grapes untrained
Soil vineyard develop
Corn senesced green weeds

Vineyard untrained
Vineyard vertical trellis

Broccoli green weeds 1
Broccoli green weeds 2

Lettuce romaine, 4wk
Lettuce romaine, 5wk
Lettuce romaine, 6wk
Lettuce romaine, 7wk

Figure 5: RGB composition maps resulting from classification for the Salinas data set. From left to right: ground truth, RBF-SVM, and the
proposed method.

Asphalt Meadows Gravel Trees Sheets
Bare soil Bitumen Bricks Shadows

Figure 6:Thematicmaps resulting from classification forUniversity
of Pavia data set. From left to right: ground truth, RBF-SVM, and the
proposed method.

(approximate 2% gain) than SVM classifier using all the three
data sets. Figures 4, 5, and 6 illustrate the corresponding
classification maps obtained with our proposed method
and RBF-SVM classifier. Furthermore, compared with RBF-
SVM, the proposed CNN classifier has higher classification
accuracy not only for the overall data set but also for almost
all the specific classes as shown in Figure 7.

Figure 8 further illustrates the relationship between clas-
sification accuracies and the training time (the test time is

Table 4: Comparison of results between the proposed CNN and
RBF-SVM using three data sets.

Data set The proposed CNN RBF-SVM
Indian Pines 90.16% 87.60%
Salinas 92.60% 91.66%
University of Pavia 92.56% 90.52%

Table 5: Results of comparison with different neural networks on
the Indian Pines data set.

Method Training time Testing time Accuracy
Two-layer NN 2800 s 1.65 s 86.49%
DNN 6500 s 3.21 s 87.93%
LeNet-5 5100 s 2.34 s 88.27%
Our CNN 4300 s 1.98 s 90.16%

also included) for three experimental data sets. With the
increasing of training time, the classification accuracy of
each data can reach over 90%. We must admit that the
training process is relatively time-consuming to achieve good
performance; however, the proposed CNN classifier shares
the same advantages (e.g., fast on testing) of deep learning
algorithms (see Table 5). Moreover, our implementation of
CNN could be improved greatly on efficiency, or we can use
other CNN frameworks, such as Caffe [31], to reduce training

lenovo
高亮
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Figure 7: Classification accuracies of all the classes for experimental data sets. From (a) to (c): Indian Pines, Salinas, and University of Pavia.
The class number is corresponding to the first column in Tables 1, 2, and 3.

and test time. According to our experiments, it takes only 5
minutes to achieve 90% accuracy on MNIST dataset [32] by
using Caffe compared to more than 120 minutes by using our
implemented framework.

Figure 9 illustrates the relationship between cost value
(see (4)) and the training time for the University of Pavia
data set. The value of the loss function is reduced with an
increasing number of training iteration, which demonstrates
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Figure 8: Classification accuracies versus the training time for experimental data sets. From (a) to (c): Indian Pines, Salinas, and University
of Pavia. Note that the test time is also included in the training time.

the convergence of our network with only 200 training
samples for each class.Moreover, the cost value is still reduced
after 5-minute training, but the corresponding test accuracy
is relatively stable (see Figure 8(a)), which indicates the
overfitting problem in this network.

To further verify that the proposed classifier is suitable
for classifying data sets with limited training samples, we also
compare our CNN with RBF-SVM under different training
sizes on the University of Pavia data set as shown in Figure 10.
It is obvious that our proposed CNN consistently provides

higher accuracy than SVM. However, although the conven-
tional deep learning-based method [26] can outperform the
SVM classifier, it requires plenty of training samples for
constructing autoencoders.

To demonstrate the relationship between classification
accuracies and the visual differences of curve shapes (see
Figure 2), we present the detailed accuracies of our proposed
CNN classifiers for the University of Pavia data set in Table 6.
In the table, the cell in the 𝑖th row, 𝑗th column means the
percentage of the 𝑖th class samples (according to ground
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Table 6: The detailed classification accuracies of all the classes for University of Pavia data set.

Asphalt Meadows Gravel Trees Sheets Bare soil Bitumen Bricks Shadows
Asphalt 87.34% 0.26% 2.32% 0.00% 0.19% 0.37% 6.25% 3.25% 0.02%
Meadows 0.00% 94.63% 0.02% 1.26% 0.00% 4.03% 0.00% 0.06% 0.00%
Gravel 0.53% 0.47% 86.47% 0.00% 0.00% 0.00% 0.05% 12.43% 0.05%
Trees 0.00% 2.67% 0.00% 96.29% 0.03% 1.01% 0.00% 0.00% 0.00%
Sheets 0.00% 0.09% 0.00% 0.00% 99.65% 0.26% 0.00% 0.00% 0.00%
Bare soil 0.12% 6.15% 0.00% 0.10% 0.08% 93.23% 0.00% 0.31% 0.00%
Bitumen 6.37% 0.00% 0.35% 0.00% 0.09% 0.00% 93.19% 0.00% 0.00%
Bricks 1.90% 0.20% 10.48% 0.00% 0.06% 0.60% 0.34% 86.42% 0.00%
Shadows 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
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Figure 9: Cost value versus the training time for University of Pavia
data sets.

truth) which is classified to the 𝑗th class. For example, 87.34%
of class Asphalt samples are classified correctly, but 6.25% of
class Asphalt samples are wrongly classified to class Bitumen.
The percentages on diagonal line are just the classification
accuracies of corresponding classes. As for one class, the
more unique the corresponding curve shape is, the higher
accuracy the proposed CNN classifier can achieve (check
the class Shadow and class Sheets in Figure 2 and Table 6).
The more similar two curves are, the higher opportunity
they are wrongly classified to each other (check the class
Gravel and class Bricks in Figure 2 and Table 6). Further-
more, the excellent performance verifies that the proposed
CNN classifier has discriminative capability to extract subtle
visual features, which is even superior to human vision for
classifying complex curve shapes.

Finally, we also implement three other types of neural
network architectures for the Indian Pines data set using
the same training and test samples. The first one is a simple
architecture with only two fully connected layers beside the
input layer.The second one is LeNet-5 which is a classic CNN
architecture with two convolutional layers. The third one is
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Figure 10: Classification accuracies versus numbers of training
samples (each class) for the University of Pavia data sets.

a conventional deep neural networks (DNNs) with 3 hidden
fully connected layers (a 220-60-40-20-8 architecture as sug-
gested in [26]).The classification performance is summarized
in Table 5. From Table 5, we can see that our CNN classifier
achieves the highest accuracy with competitive training and
testing computational cost. LeNet-5 and DNNs cost more
time to train models due to their complex architecture,
but limited training samples restrict their capabilities of
classification (only 20% samples selected for testing in [26]
compared with 95% in our experiment). Another reason for
the difficulty that deeper CNNs and DNNs face to achieve
higher accuracies could be that the HSI lacks the type of
high frequency signal commonly seen in the computer vision
domain (see Figure 2).

5. Conclusion and Future Work

In this paper, we proposed a novel CNN-based method
for HSI classification, inspired by our observation that
HSI classification can be implemented via human vision.



Journal of Sensors 11

Compared with SVM-based classifier and conventional
DNN-based classifier, the proposed method could achieve
higher accuracy using all the experimental data sets, even
with a small number of training samples.

Our work is an exploration of using CNNs for HSI
classification and has excellent performance.The architecture
of our proposed CNN classifier only contains one convo-
lutional layer and one fully connected layer, due to the
small number of training samples. In the future, a network
architecture called a Siamese Network [33] might be used,
which has been proved to be robust in the situation where
the number of training samples per category is small. Some
techniques, such as Dropout [34], can also be used to
alleviate the overfitting problem caused by limited training
samples. Furthermore, recent researches in deep learning
have indicated that unsupervised learning can be employed
to train CNNs, reducing the requirement of labeled samples
significantly. Deep learning, especially deep CNNs, should
have great potentiality for HSI classification in the future.
Moreover, in the current work, we do not consider the spatial
correlation and only concentrate on the spectral signatures.
We believe that some spatial-spectral techniques also can be
applied to further improve the CNN-based classification. At
last, we plan to employ efficient deep CNN frameworks, such
as Caffe, to improve our computing performance.
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